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Abstract 

Background 

Scale-up of preventative treatment for tuberculosis (TB) represents a cornerstone 

of global control efforts. I examined a range of approaches to enable more precise 

targeting of preventative treatment to people at highest risk.  

Methods 

I evaluated whether prognostic tests for TB (tuberculin skin test (TST), 

QuantiFERON Gold-in-tube (QFT-GIT) and T-SPOT.TB) may be optimised by 

implementing higher thresholds, or by a newer generation assay (QuantiFERON-

TB Gold Plus; QFT-Plus). Next, I conducted a systematic review and individual 

participant data meta-analysis (IPD-MA) to examine TB risk among people tested 

for latent infection (LTBI) in settings with low TB transmission and to develop a 

multivariable prognostic model for incident TB. Finally, I performed a systematic 

review and IPD-MA of whole-blood RNA sequencing data to evaluate blood 

transcriptomic signatures as next-generation biomarkers. 

Results 

In a UK cohort of 9,610 adults, higher TST, QFT-GIT and T-SPOT.TB results 

were associated with increased incident TB risk. Implementing higher cut-offs led 

to a marginal improvement in positive predictive value, but at the cost of a marked 

loss in sensitivity. The newer generation QFT-Plus had similar predictive ability. 

In a pooled dataset of >80,000 participants from 18 cohort studies, TB risk was 

heterogeneous among people with LTBI, even after stratification by indication for 

testing. I developed and validated a multivariable prognostic model, which 

incorporates quantitative LTBI test results and clinical covariates, and 

demonstrated strong potential for clinical utility to inform provision of preventative 

treatment. Among 1,126 whole-blood RNA sequencing samples, eight 

transcriptomic signatures (comprising 1-25 transcripts) performed similarly for 

predicting incident TB, but only met global accuracy benchmarks over a 3-6 

month time-horizon.  
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Conclusions 

Personalised risk estimates integrating quantitative LTBI test results and clinical 

covariates may facilitate more precise targeting of preventative treatment. Blood 

transcriptomic biomarkers show promise, but only represent short-term TB risk. 

Future research priorities are highlighted.   
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1 Introduction 

1.1 Natural history of Mycobacterium tuberculosis infection 

1.1.1 Overview of natural history 

Tuberculosis disease is caused by Mycobacterium tuberculosis complex (M. 

tuberculosis), which spreads from person-to-person via aerosolised particles. M. 

tuberculosis is an obligate pathogen and is transmitted from individuals with 

pulmonary disease1. Following infection, innate and adaptive host immune 

responses are sufficient to control M. tuberculosis in most people. A subset of 

individuals, however, progress to TB disease. The host immunological 

determinants of outcome following M. tuberculosis infection are imperfectly 

understood. Deficient responses relating to T cells (as occurs in the context of 

CD4 cell depletion in people living with HIV infection (PLHIV)2), tumour necrosis 

factor (as demonstrated in people treated with anti-tumour necrosis factor 

monoclonal antibody therapy3) and interferon-gamma responses (as in 

Mendelian susceptibility to mycobacterial disease4) have all been implicated as 

being associated with increased risk of mycobacterial disease.  

1.1.2 The spectrum of M. tuberculosis infection 

The natural history of M. tuberculosis infection may be considered as a spectrum, 

from “latent” infection to active disease. Latent TB infection (LTBI) can either be 

defined clinically or theoretically. The clinical definition usually refers to evidence 

of immunosensitisation to M. tuberculosis (Chapter 1.4), while the theoretical 

definition refers to the presence of viable M. tuberculosis bacilli that remain under 

immune control. Viability of quiescent M. tuberculosis bacilli is very rarely proven, 

for example by inoculation of guinea pigs with resected granulomas5,6. Both 

clinical and theoretical LTBI definitions are conditional upon the absence of 

concurrent evidence of TB disease. While the overall lifelong risk of TB among 

people with clinically defined LTBI has been estimated as 5-15%, this varies 

markedly between individuals and risk groups7. 

Active TB disease is defined by the presence of symptomatic, microbiological, 

radiological and/or pathological evidence of disease (Chapter 1.3). TB most 

commonly affects the lungs, though extra-pulmonary disease can occur at any 
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anatomical site, most frequently the lymph nodes and pleura. Common 

symptoms of pulmonary TB include cough and haemoptysis. Symptomatic 

presentations of extra-pulmonary TB can be highly variable according to the 

affected disease site. Both pulmonary and extra-pulmonary TB are typically 

associated with systemic upset, including symptoms of fever, night sweats, 

weight loss and general malaise. 

The transition between latent infection and active disease is likely to be 

associated with increasing mycobacterial burden, in the absence of symptomatic 

disease. Recent analyses of TB prevalence surveys have suggested that 36.1-

79.7% (median 50.4%) of people with prevalent bacteriologically-confirmed TB 

are asymptomatic, highlighting a need to support passive case-finding with active 

case-finding approaches in order to achieve early case detection8. This is not a 

new concept. The importance of early pre-symptomatic case detection has been 

historically described: 

“Tuberculosis of the lungs begins without any warning to the patient. 
By the time patients voluntarily come for treatment, the disease is in 
an advanced stage, and such patients have perhaps already infected 
numerous other people. There are about a quarter of a million actual 
cases of pulmonary tuberculosis in the British Isles, and of these about 
1,500 between the ages of 15 and 50 die each month. In spite of this, 
the total number is kept up by a steady flow of recruits. To prevent the 
disease in the future we must try more persistently to discover patients 
in the early stages, before they have become infectious, since this 
endeavour will ultimately mean the conquest of tuberculosis.” 

- The Policy of the National Association for the Prevention of 
Tuberculosis, 19429 

Recent definitions of the asymptomatic phase between latent infection and active 

disease have varied. Pai et al proposed a unifying “subclinical” phase, 

characterised by low (albeit increasing) bacillary burden and intermittent 

mycobacterial culture positivity (Figure 1-1)1. This interpretation was also 

reinforced by Esmail et al, with the subclinical phase accounting for increasing 

bacillary burden and associated pathology (Figure 1-2)10. A World Health 

Organization (WHO) target product profile (TPP) document, however, refers to 

this subclinical phase as “incipient TB”, defined as “a prolonged asymptomatic 

phase of early disease during which pathology evolves”11. In contrast, Drain et al 

recently proposed distinct “incipient” and “subclinical” phases12. The former was 
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described as metabolic mycobacterial activity, indicative of imminent progression 

to disease, in the absence of microbiological or radiological evidence of disease. 

The more advanced “subclinical” phase was then described as microbiological or 

radiological evidence of disease in the absence of symptoms.  

Figure 1-1: Spectrum of TB, as described by Pai et al. 

Reprinted by permission from Springer Nature: Pai et al (2016)1. Tuberculosis. Nature 

Reviews Disease Primers 2(1) http://doi.org/10.1038/nrdp.2016.76, Copyright 2016. 

 

Figure 1-2: Spectrum of TB, as described by Esmail et al. 

Reproduced from Esmail et al (2014)10. The ongoing challenge of latent tuberculosis. 

Phil. Trans. R. Soc. B369: 20130437. http://doi.org/10.1098/rstb.2013.0437 under CC-

BY-3.0 license. 

 

Discordant definitions are not a new phenomenon when describing the natural 

history of TB, as described by Ritter. 

“Most European writers on medical topics, when they refer to primary 
or established pulmonary disease, usually designate by such 
descriptive terms as “early tuberculosis”, as “manifest tuberculosis” or 

http://doi.org/10.1038/nrdp.2016.76
http://doi.org/10.1098/rstb.2013.0437
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as “first stage disorder”. The expression “incipient tuberculosis” to 
denote a definite beginning involvement is never used. In speaking of 
early established pulmonary disease, no matter how long the disease 
has existed or how much primary involvement may be present, are not 
such descriptive terms more correct, more appropriate and less 
misleading than the term “incipient” now in use?” 

- John Ritter, 191613 

Despite this inconsistency in definitions, it is clear that there is a global appetite 

to supplant the binary distinction between latent infection and active disease, in 

favour of a more continuous theoretical framework. In this thesis, the term 

“incipient” will hereafter be used to describe the asymptomatic phase between 

latent infection and active disease, as per the WHO definition11.  

1.1.3 Timing of progression from latent infection to TB disease 

It is generally considered that progression to TB disease can occur quickly after 

initial M. tuberculosis infection, or at a later time point (so called “reactivation”). 

In the framework proposed by Drain et al, it is considered that individuals may 

progress through the spectrum from LTBI and TB disease at varying pace, or may 

have a more cyclical path with periods of regression, even in the absence of 

treatment12. However, it has long since been recognised that the risk of incident 

TB declines with increasing time since exposure, with a marked decline in TB 

incidence rate observed in the placebo arms of an early US trial among 

household TB contacts (Figure 1-3) 14, and the International Union Against 

Tuberculosis trial of 28,000 people with fibrotic pulmonary lesions (Figure 1-4)15.  
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Figure 1-3: TB incidence in trial of isoniazid versus placebo among 

household contacts in USA. 

Based on original data from Ferebee14. Reproduced from: Behr et al (2018)16. 

Revisiting the timetable of tuberculosis. BMJ; 362: k2738 

https://doi.org/10.1136/bmj.k2738 under CC-BY-4.0 license. 

 

Figure 1-4: TB incidence in International Union Against Tuberculosis trial 

of people with fibrotic pulmonary lesions. 

Reproduced from International Union Against Tuberculosis Committee on 

Prophylaxis15. Efficacy of various durations of isoniazid preventive therapy for 

tuberculosis: five years of follow-up in the IUAT trial. Bull World Health Organ. 1982; 

6(4). Licence: CC-BY-3.0 IGO. 12-I, 24-I and 52-I indicate 12-52 weeks of isoniazid. 

 

https://doi.org/10.1136/bmj.k2738
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Reductions in TB incidence with increasing time since arrival have also been 

described among migrants from high to low TB incidence countries17,18. Together 

with post-mortem evidence that >95% of lung granuloma lesions are sterile 

(following guinea pig inoculation)6, these data have been mooted to suggest that 

the vast majority of incident TB cases occur in the first two years following M. 

tuberculosis infection and that late reactivation after this interval may be a rare 

phenomenon16. However, 2019 surveillance data from England show that almost 

three quarters of cases are born outside the UK, with median time from entry to 

TB notification of 9 years (interquartile range (IQR) 3-18; Figure 1-5)19. Only 26% 

of foreign-born patients were known to have travelled abroad in the two years 

preceding diagnosis. While the relative contributions of local transmission and 

acquisition of infection during overseas travel are challenging to quantify, these 

data suggest that late reactivation among migrants may continue to have a 

significant role in the epidemiology of TB in low incidence countries (Chapter 1.2). 

Figure 1-5: Time since entry for migrants notified with TB in England 2010-

2019. 

Reproduced from: Public Health England Tuberculosis in England 2020 report under 

Open Government Licence v3.019.  
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1.2 Tuberculosis epidemiology 

1.2.1 Global trends in burden of disease 

TB case fatality rates declined steeply during initiation of the combination anti-

microbial chemotherapy era, which began in 1952 (Figure 1-6)20. While the 20th 

century saw marked declines in TB incidence and mortality rates in high-income 

countries, the onset of these reductions predated the advent of combination anti-

microbials, as demonstrated in historical data from London and New York20. 

However, many low and middle-income countries have been left behind in TB 

control. For example, in Cape Town, declines in TB incidence and mortality were 

not evident in the pre-antimicrobial chemotherapy era, in contrast to London and 

New York20. Following a temporary reduction in Cape Town TB incidence in the 

1950s-1970s, rates returned to pre-chemotherapy levels by 1980 and increased 

further over subsequent decades, in part driven by the HIV epidemic.  

These trends have led to marked heterogeneity in the global burden of TB that 

persists to this day, fuelled by socioeconomic disparity and exacerbated further 

in regions with high HIV prevalence. TB continues be a leading cause of morbidity 

and mortality globally, with 10 million incident cases and 1.4 million deaths 

estimated in 201921. County-level incidence rates vary markedly from <5/100,000 

to >500/100,000, with two thirds of 2019 cases occurring in the eight worst 

affected countries.  

Between 2015 and 2019, global estimated TB incidence rates fell by 9% (Figure 

1-7), while mortality fell by 14% (Figure 1-8). However, these reductions fall short 

of the targets set out in the WHO End TB Strategy, which aims to reduce TB 

incidence rates and mortality by 20% and 35% by 2020, and 90% and 95% by 

2035, respectively22.  



25 
 

Figure 1-6: Changes in TB case-fatality, incidence and mortality from 1910-

2010 in Cape Town, London and New York.  

Adapted from original data from Hermans et al20. Dashed vertical line indicates start of 

combination anti-microbial therapy era 
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Figure 1-7: Global TB incidence rates 2000 to 2020.  

Reproduced from Global TB Report, World Health Organization 202021. Licence: CC 

BY-NC-SA 3.0 IGO. 

 

Figure 1-8: Global TB mortality 2000 to 2020.  

Reproduced from Global TB Report, World Health Organization 202021. Licence: CC 

BY-NC-SA 3.0 IGO. 
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1.2.2 Trends in countries with low TB incidence 

The WHO defines low TB incidence countries as those with annual incidence 

rates <10/100,000 persons21. A total of 54 countries, predominantly in North 

America and Western Europe, met this definition in 2019 (Figure 1-9).  

Progress towards the WHO End TB Strategy targets has been more pronounced 

in the WHO European Region, with a 19% reduction in TB incidence rates and 

31% reduction in mortality from 2015-2019. The End TB Strategy 2035 target for 

countries with low TB incidence is to aim towards pre-elimination (defined as 

annual incidence <1/100,000).  

Figure 1-9: Countries with low TB incidence in 2019.  

Reproduced from Global TB Report, World Health Organization 202021. Licence: CC 

BY-NC-SA 3.0 IGO. 

 

In England, TB incidence rates fell by an average annual decline of 6.6% from 

2010 to 2019, but increased by 2.4% in 2019 compared to 201819. Despite this 

progress, the average annual decrease is below the level required (11.5%) to 

achieve the WHO End TB target (Figure 1-10).  
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Figure 1-10: Observed and projected trends in TB notifications (2010-2035).  

Reproduced from Public Health England Tuberculosis in England 2020 report under 

Open Government Licence v3.019.  

 

1.2.3 The rationale for TB prevention 

Early detection and prevention of TB disease reduces TB-associated morbidity 

and mortality. Since M. tuberculosis is an obligate pathogen, prevention of 

disease may also interrupt onward transmission. Early studies in Alaska 

demonstrated a dramatic reduction in TB incidence achieved through a 

combination of early case detection with TB treatment initiation, along with 

community-wide preventative treatment (Chapter 1.7.2)23. Scale-up of 

preventative treatment for people at high-risk of TB is therefore a key component 

of the WHO End TB Strategy21,22, and was also a key target set in the UN high-

level meeting on TB in 201824.  

Alongside preventative treatment to people at high risk of disease, a range of 

other interventions are central to reducing the burden of TB disease, as reflected 

in WHO policy21,22. Following its discovery in the early 20th century, Bacillus 

Calmette–Guérin (BCG) vaccine was first evaluated in a placebo-controlled trial 

in the 1930s25. It was subsequently shown to have consistently high efficacy in 

protecting against childhood TB meningitis and miliary TB26 and is therefore 

included in childhood vaccination programmes in many countries27. However, 

BCG efficacy for prevention of pulmonary TB has been heterogeneous. Meta-

analyses have suggested that higher efficacy may be observed among people 
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who are not already infected with M. tuberculosis or other non-tuberculous 

mycobacteria28, and that this may be partly explained by BCG protecting against 

initial M. tuberculosis infection as well as disease29. These data have suggested 

that BCG provides an important, but limited, contribution towards TB control, 

meaning that novel vaccines are required. Recent trials in high transmission 

settings have shown promise. BCG revaccination and a novel vaccine candidate 

(H4:IC31) among people who did not have evidence of LTBI at baseline (defined 

as negative interferon gamma release assay (IGRA); Chapter 1.4) reduced the 

risk of sustained IGRA positivity during follow-up30, while the M72/AS01E 

candidate vaccine provided 49.7% (95% confidence interval (CI) 2.1-74.2) 

protection against TB disease over three years31.  

In addition to vaccines, infection control interventions to reduce transmission in 

healthcare facilities, congregate settings and households32, along with adequate 

prevention and management of comorbidities associated with increased TB risk 

(including HIV, chronic lung disease, diabetes and alcohol dependence)33 are 

integral to TB prevention efforts globally.  

1.3 Diagnosis of TB disease 

Microbiological investigations for TB disease represent the cornerstone for 

confirmatory diagnosis, supported by radiology. Microbiological sampling is 

dependent upon the site of disease, with respiratory sampling for suspected 

pulmonary TB done most frequently. Respiratory samples include spontaneously 

expectorated sputa, induced sputa (for example following inhalation of hypertonic 

nebulised saline), or samples acquired invasively via bronchoscopy. All 

microbiological diagnostics are highly dependent upon adequate sampling. This 

may be particularly challenging among children, people with suspected extra-

pulmonary TB, and people with respiratory symptoms who cannot produce good 

quality sputum samples spontaneously, since access to sputum induction 

facilities is often limited, while bronchoscopy is usually confined to high- and 

middle-income settings34,35.  
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1.3.1 Microbiology 

1.3.1.1 Microscopy 

Smear microscopy for acid-fast bacilli has been used for diagnosis of TB since 

the 19th century, when M. tuberculosis was first visualised by Robert Koch. It is 

limited by poor sensitivity, and limited specificity due to an inability to differentiate 

M. tuberculosis from other non-tuberculous mycobacteria. Despite these issues, 

microscopy is still in widespread use today – often as a surrogate measure of 

bacillary load to infer infectiousness in high-income settings, and also as a first 

line diagnostic in many low- and middle-income countries.  

1.3.1.2 Culture 

Mycobacterial culture represents the gold-standard TB diagnostic. Culture 

facilitates mycobacterial speciation along with drug susceptibility testing. Liquid 

culture has gradually replaced solid culture techniques in view of greater yield 

and faster results36. However, culture is limited by the requirement for specialist 

laboratory facilities and expertise, and is slow (with final results usually taking up 

to six weeks). These issues mean that global access to mycobacterial culture is 

limited, while the long interval from sampling to results can also risk losses to 

follow-up that undermine the cascade of TB care.  

1.3.1.3 Molecular diagnostics 

Molecular diagnostics, in the form of real-time polymerase chain reaction (PCR) 

assays, are now recommended as a first-line diagnostic test for adults and 

children under investigation for pulmonary and extra-pulmonary TB. The Xpert 

MTB/RIF assay (Cepheid, Sunnyvale, USA), which is a semi-automated 

cartridge-based system on the GeneXpert platform that detects M. tuberculosis 

and rifampicin-resistant mutations in the rpoB gene and provides results in under 

two hours, was first endorsed by the WHO in 201037. An updated cartridge, called 

Xpert MTB/RIF Ultra (Xpert Ultra), was endorsed by the WHO in 201738. This 

newer assay has a lower limit of detection than Xpert MTB/RIF, estimated as 15.6 

colony-forming units (CFU) per mL of sputum compared to 112.6 CFU/mL for 

Xpert MTB/RIF39.  
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The diagnostic accuracy of Xpert MTB/RIF and Xpert Ultra for pulmonary and 

extra-pulmonary TB among adults and children, compiled from Cochrane 

systematic reviews and meta-analyses, are shown in Table 1-1. Accuracy for 

extra-pulmonary TB is heterogeneous, dependent on sample type. While Xpert 

Ultra generally has higher sensitivity due to its lower limit of detection, this comes 

at the cost of a small reduction in specificity. Lower specificity has led to 

diagnostic uncertainty with Xpert Ultra, particularly relating to “trace” positive 

results, which are often considered to be false-positives and are particularly 

common in people with a history of previous TB, and in settings with high 

transmission40. 

Table 1-1: Diagnostic accuracy of Xpert MTB/RIF and Xpert MTB/RIF Ultra 

for diagnosis of TB. 

Adapted from 41–43. Compared to reference standard of culture unless stated otherwise. 

Presented as point estimate (95% CI). 

 Xpert MTB/RIF Xpert MTB/RIF Ultra 

 Studies Sensitivity Specificity Studies Sensitivity Specificity 

Adults       

Pulmonary 70 85%  

(82-88) 

98%  

(97-98) 

1 88%  

(85-91) 

96%  

(94-97) 

Cerebrospinal fluid  30 71.1%  

(62.8-79.1) 

96.9%  

(95.4-98.0) 

6 89.4%  

(79.1-95.6) 

91.2%  

(83.2-95.7) 

Pleural fluid 25 49.5%  

(39.8-59.9) 

98.9%  

(97.6-99.7) 

4 75.0%  

(58.0-86.4) 

87.0%  

(63.1-97.9) 

Lymph node 

aspirate* 

4 81.6%  

(61.9-93.3) 

96.4%  

(91.3-98.6) 

1 70%  

(51-85) 

100%  

(92-100) 

Children       

Pulmonary (sputum) 23 64.6%  

(55.3-72.9) 

99.0%  

(98.1-99.5) 

3 72.8%  

(64.7-79.6) 

97.5%  

(95.8-98.5) 

Pulmonary 

(nasopharyngeal 

aspirate, stool) 

14 45.7-73.0% 98.1-99.6% 1 45.7%  

(28.9-63.3) 

97.5%  

(93.7-99.3) 

Cerebrospinal fluid 6 54.0%  

(27.8-78.2) 

93.8%  

(84.5-97.6) 

   

Lymph node 

aspirate or biopsy 

6 90.4%  

(55.7-98.6) 

89.8%  

(71.5-96.8) 

   

*Indicates composite reference standard. 
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More recently, the Truenat platform (Molbio, Goa, India) has been endorsed by 

the WHO as an alternative to Xpert. Truenat uses a chip-based platform for M. 

tuberculosis detection and is widely implemented in India44.  

While molecular diagnostics were initially heralded as “game-changers” in TB45, 

results of impact assessments on clinical outcomes have been disappointing, 

with no associated reduction in mortality in multiple randomised-controlled trials 

(RCTs), even when pooled in an individual participant data meta-analysis (IPD-

MA) to improve power46. These findings may highlight a need for integration of 

rapid diagnostics into effective care cascades and wider health systems in order 

to achieve population-level impact.  

1.3.1.4 Antigen-based diagnostics 

Tests that detect urine mycobacterial lipoarabinomannan (LAM) antigen have 

emerged as point-of-care diagnostics for TB disease. The Alere Determine TB 

LAM test (AlereLAM; Alere, USA) was first endorsed for use in PLHIV by the 

WHO in 201547. Guidance was updated in 2019 to now recommend using 

AlereLAM to assist in the diagnosis of active TB in HIV-positive adults, 

adolescents and children meeting any of the following criteria: signs and 

symptoms of pulmonary or extra-pulmonary TB; advanced HIV disease or 

seriously ill; or CD4 cell count <200 cells/mm3 (<100 cells/mm3 among 

outpatients) irrespective of signs and symptoms of TB48. These 

recommendations are based upon limited overall sensitivity among PLHIV, albeit 

higher among participants with CD4 <100 cells/mm3 (Table 1-2). Two RCTs have 

evaluated the impact of AlereLAM testing on mortality among inpatients with 

advanced HIV disease, with pooled risk ratio for mortality 0.85 (0.76-0.94)48–50.  

A new urine-based LAM test has since been developed – the Fujifilm SILVAMP 

TB LAM (FujiLAM; Fujifilm, Tokyo, Japan). This showed promising performance 

using biobanked frozen urine samples among five cohorts of inpatient and 

outpatient adults with HIV, with better sensitivity than AlereLAM, when using a 

microbiological reference standard (Table 1-2)51. FujiLAM also shows promise 

among HIV-uninfected adult outpatients with symptoms suggestive of pulmonary 

TB (Table 1-2). FujiLAM is not yet endorsed by the WHO, pending additional 

validation and impact assessments. However, a major limitation of using LAM-
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based diagnostics as confirmatory tests is that they do not provide information on 

M. tuberculosis drug susceptibilities.  

Table 1-2: Diagnostic accuracy of urine LAM antigen tests among 

unselected participants.  

Adapted from 48,51,52. Compared to culture reference standard unless stated otherwise. 

Presented as point estimate (95% CI). PLHIV = people living with HIV.  

 Studies Sensitivity Specificity 

AlereLAM 

PLHIV (overall) 7 35% 

(22-50) 

95% 

(89-98) 

PLHIV (inpatients) 3 62% 

(41-83) 

84% 

(48-96) 

PLHIV (outpatients)    

PLHIV (CD4 ≤100 cells/mm3) 3 47% 

(40-64) 

90% 

(77-96) 

FujiLAM 

PLHIV (inpatients and 

outpatients) 

5 71% (59-81) vs. 35% 

(20-51) for AlereLAM 

91% (87-94) vs. 95% 

(92-98) for AlereLAM 

HIV-uninfected adult 

outpatients with presumptive 

pulmonary TB 

1 53% (44-62) vs. 11% (6-

18) for AlereLAM 

99% (97-99.6) vs. 92% 

(89-95) for AlereLAM 

1.3.1.5 Drug susceptibility testing 

Phenotypic drug susceptibility testing is usually considered to be the gold-

standard method of determining appropriate treatment regimens, but is 

dependent upon first culturing M. tuberculosis. Molecular approaches are being 

used increasingly, with the Xpert MTB/RIF system enabling rapid detection of 

rifampicin resistance in the first-line cartridge43, and fluoroquinolones, 

aminoglycosides, and isoniazid in a recently developed second-line cartridge53. 

Line-probe assays are also commonly used to detect common resistance-

conferring mutations. More recently, the scale-up of M. tuberculosis whole 

genome sequencing, launched for all positive M. tuberculosis cultures in England 

in 201754, alongside detailed curations of phenotypic-genotypic correlates55, has 

led to genotypic drug susceptibility testing being used increasingly. However, 

despite these advances, access to phenotypic or genotypic drug susceptibility 

testing is limited in many low- and middle-income settings, where the TB burden 
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is often highest21. Multi-drug resistant (MDR) TB refers to resistance to both 

rifampicin and isoniazid, while extensively-drug resistant TB refers to additional 

resistance to fluoroquinolones and at least one injectable agent (amikacin, 

kanamycin, or capreomycin)56.  

1.3.2 Radiology 

Chest radiography has historically played a central role in diagnosis and in mass 

population screening for pulmonary TB57. Typical parenchymal abnormalities 

include infiltrates, cavitation and fibrotic lesions, with a preponderance for the 

upper lobes. These parenchymal changes are often accompanied by evidence of 

mediastinal lymphadenopathy. Chest radiography has been recommended by 

the WHO to facilitate TB control through a range of applications58. These include 

supporting TB diagnostic evaluation, triaging risk of disease, and as a screening 

test during active case finding58. However, reliance on film-based radiographs 

and a shortage of trained chest radiograph readers have presented barriers to 

widespread use59. Increasing digital x-ray services with computer-assisted 

interpretation60 may improve access to chest x-ray globally, facilitating increased 

use for active and passive case-finding. Despite these advances, chest 

radiography lacks specificity for TB and, in the absence of longitudinal imaging, 

cannot discriminate current TB from residual scarring caused by previous 

disease.  

Cross-sectional imaging using computed tomography (CT) is also frequently 

used to support TB diagnosis in high-resource settings, while the addition of 

nuclear imaging using positron emission tomography (PET-CT) may improve 

sensitivity through detection of focal metabolic activity, represented by 

radionucleotide tracer uptake61.  

1.4 Latent TB diagnostics 

There is no validated diagnostic test available to detect viable M. tuberculosis 

bacilli in the absence of disease. Instead, current LTBI diagnostics detect 

immunosensitisation to M. tuberculosis in the form of a cell-mediated T cell 

response. Consequently, the pragmatic clinical definition of LTBI is based upon 

(1) evidence of immunosensitisation; and (2) an absence of concurrent 
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disease7,62. Measurement of T cell responses to M. tuberculosis, however, cannot 

distinguish between LTBI, current or cured TB disease. 

1.4.1 Tuberculin skin test 

The tuberculin skin test (TST), involves intra-dermal injection of purified protein 

derivative (PPD) using the Mantoux technique, first used in the early 20th century. 

Following administration, the diameter of induration is read after a 48-72 hour 

interval. The test is relatively cheap, widely available and does not require 

specialist expertise or laboratory facilities. However, the TST requires two patient 

encounters (for administering and induration measurement), it lacks specificity as 

it can be affected by BCG vaccination and non-tuberculous mycobacteria 

exposure, and also has imperfect sensitivity, which may be partly explained by 

anergy in the context of current disease. TSTs provide quantitative values, which 

can then be categorised as binary results. A range of thresholds have been 

proposed, ranging from 5-15mm, with lower cut-offs often recommended for 

young children and immunocompromised people, among whom T cell responses 

may be attenuated. Hereafter, I will refer to TST cut-offs as 5mm (TST5), 10mm 

(TST10), 15mm (TST15) and a BCG-stratified TST cut-off (5mm among 

unvaccinated; 15mm among vaccinated; TST5/15). Sources of technical variation 

in TST may include boosting phenomena and inter- and intra-individual variation 

in injection placement and induration measurement63.  

1.4.2 Interferon gamma release assays 

Interferon gamma release assays (IGRAs) have been commercially available 

since 2002. Similarly to the TST, they detect a T cell response to M. tuberculosis. 

They achieve this through in-vitro stimulation of blood using antigens from the 

region of difference 1 (RD1) area of the genome, namely early secretory antigenic 

target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10). The most widely 

available commercial IGRAs are the QuantiFERON assays (Qiagen, Hilden, 

Germany), which use an enzyme-linked immunosorbent assay (ELISA), and T-

SPOT.TB (Oxford Immunotec, Oxford, UK), using an enzyme-linked 

immunosorbent spot (ELISPOT) approach. For both QuantiFERON and T-

SPOT.TB assays, mitogen and negative controls are run in parallel to TB 

antigenic stimulation. Quantitative results are obtained by subtracting negative 
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control responses from TB antigen responses, and can then be classified into 

binary results. Manufacturer-recommended cut-offs for QuantiFERON and T-

SPOT.TB assays are shown in Table 1-364,65. QuantiFERON assays have been 

regularly updated over time and including the QuantiFERON TB Gold, 

QuantiFERON TB Gold-in-tube (QFT-GIT) and QuantiFERON TB Gold Plus 

(QFT-Plus).  

Table 1-3: Cut-offs used for QuantiFERON and T-SPOT.TB. 

Quantitative values are calculated by subtracting negative control from maximal TB 

antigen response, assuming the test is valid. Based on manufacturer 

recommendations64,65.  

Test Negative Positive 

QuantiFERON (IU/mL) <0.35 ≥0.35 

T-SPOT.TB (spots) <5 ≥6 

IGRAs have the advantage of being more specific for M. tuberculosis than TST 

as they are not affected by prior BCG vaccination or exposure to most non-

tuberculous mycobacteria (with the exceptions of M. marinum and M. kansasii)66. 

However, IGRAs require specialist laboratory facilities and are relatively 

expensive, meaning that they are not routinely available in most low- and middle-

income countries.  

IGRAs are also subject to numerous sources of technical variability including: 

manufacturing differences between production lots; timing, volume and technique 

of blood collection; timing and duration of antigen stimulation; ELISA/ELISPOT 

imprecision; and immunological boosting phenomena (including due to prior 

TST)66. These sources of measurement error may contribute to the significant 

proportion of individuals who convert (transition from negative to positive results) 

or revert (positive to negative) during longitudinal sampling of healthcare 

workers67. The high frequency of dynamic fluctuations in IGRA values has led to 

proposals for a more rigorous definition for conversion, by inclusion of a 

‘borderline’ zone in quantitative values, as opposed to using standard 

manufacturer cut-offs68. 
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1.4.3 Diagnostic accuracy of TST and IGRAs 

In the absence of a gold-standard, evaluation of the diagnostic accuracy of LTBI 

diagnostics is challenging. Sensitivity is frequently estimated among people with 

microbiologically-confirmed TB disease, while specificity for LTBI is estimated 

separately among people at low risk of exposure M. tuberculosis who reside in 

countries with low transmission. Using this approach, previous meta-analyses 

estimated QuantiFERON sensitivity (QFT Gold and QFT-GIT) as 76-80% and T-

SPOT.TB sensitivity as 88-90%69,70. Specificity for QuantiFERON and T-

SPOT.TB were estimated as 98% and 93%, respectively69. TST performance 

appeared more heterogeneous across studies, with pooled sensitivity 65-77% 

and specificity 97% among non-BCG vaccinated participants, but this was much 

lower and more heterogeneous among vaccinated participants69,70. However, 

interpretation of these performance characteristics is impaired by heterogeneity 

in TST cut-offs across studies, and by a lack of direct head-to-head assessments 

comparing performance of each index test among the same participants. The 

latter is an important consideration since population differences may contribute 

to differences in test performance across studies. 

Test specificity can also be evaluated among people under investigation for TB 

disease, in order to assess whether TST and IGRAs could be part of the 

diagnostic evaluation for suspected TB. A previous systematic review and meta-

analysis of data from low- and middle-income countries found a sensitivity of 83% 

(95% CI 63-94) and specificity of 61% (40-79) for T-SPOT.TB (6 studies) and a 

sensitivity of 69% (52-83) and specificity of 52% (41-63) for QFT-GIT (8 

studies)71. 

A recent prospective observational cohort study further compared the diagnostic 

accuracy of QFT-GIT and T-SPOT.TB among symptomatic people presenting to 

TB services in the UK72. In this study, outcome measures were robust and pre-

specified and the cohort design ensured a representative sample. Sensitivity and 

specificity of QFT-GIT and T-SPOT.TB for culture-confirmed and highly probable 

TB cases, were  67.3% (62.0-72.1) and 81.4% (76.6-85.3), and 80.4% (76.1-84.1) 

and 86.2% (82.3-89.4), respectively. A similar study design in China 

demonstrated similar findings with sensitivities of T-SPOT.TB and QFT-GIT of 

85.2% and 84.8%, and specificities of 63.4% and 60.5%, respectively73. 
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Taken together, these data consistently demonstrate imperfect sensitivity and 

moderate specificity among people with suspected TB, supporting the current 

recommendation that IGRAs should not be routinely used to support TB 

diagnostic evaluation74. Imperfect sensitivity may be partly explained by anergy 

in the context of concurrent disease63,66. Recent data have also detected humoral 

and interferon-gamma-independent T cell responses among people with high 

exposure to M. tuberculosis who are persistently TST and IGRA negative75, 

though the diagnostic and prognostic value of these responses remains untested. 

1.4.4 Prognostic ability of TST and IGRAs 

The primary objective of LTBI testing is to identify people who may be at risk of 

future TB disease. Therefore, the prognostic ability of LTBI tests for incident TB 

is fundamental to their implementation in LTBI screening. Three systematic 

reviews and meta-analyses conducted over the last decade have sought to 

examine the prognostic ability of TST and/or IGRA across all populations and 

settings76–78, and are summarised in Table 1-4.
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Table 1-4: Prognostic performance of IGRAs and TST from previous systematic reviews and meta-analyses. 

Adapted from76–78. Data are included where available from the systematic review and meta-analysis reports. Data shown as point estimates (95% 

Cis). Precision of estimates presented as originally reported. 

 Campbell (2020)76 Zhou (2020)77 Rangaka (2014)78 

 General population Case contacts PLHIV All Head-to-head All 

IGRA 

Studies  19 9 40 12 9 

Incidence rate (+)^  17.0 (12.9-22.4) 16.9 (10.5-27.3)   Range 4-48 

Incidence rate (-)^      Range 2-24 

Incidence rate ratio  10.8 (6.1-19.0) 11.0 (4.6-26.2)   2.11 (1.29-3.46) 

Positive predictive value*  4.60% 5.10% 4.5% (3.3-5.8) 4.2% (2.5-6.3)  

Negative predictive value    99.7% (99.5-99.8) 99.4% (98.8-99.8)  

Risk ratio    9.35  (6.48-13.49) 7.12 (3.39-14.94) 2.22 (1.54-3.19) 

TST 

Studies 3 27 9 40 12 5 

Cut-off 10mm 10mm 5mm 10mm 10mm 10mm 

Incidence rate (+)^ 0.3 (0.1-1.1) 9.4 (6.3-14.1) 27.1 (15.0-49.0)    

Incidence rate (-)^       

Incidence rate ratio  4.1 (2.6-6.4) 11.1 (6.2-19.9)   1.60 (0.94-2.72) 

Positive predictive value 0.2% 2.60% 7.10% 2.9% (2.1-3.7) 1.8% (0.8-3.1)  

Negative predictive value    99.2% (98.9-99.4) 99.2% (98.6-99.6)  

Risk ratio    4.28 (3.29-5.56) 4.30 (2.03-9.10)  

^Incidence rates shown per 1,000 person-years.
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Rangaka et al evaluated the prognostic value of IGRA and reported 

heterogeneous incidence rates of 4-48/1,000 person years among people with 

positive tests78. In five studies classified as low risk of incorporation bias (where 

the test result has not contributed towards the outcome diagnosis), incidence rate 

ratios were 2.11 (1.29-3.46) for IGRA and 1.60 (0.94-2.72) for TST78. However, 

the number of studies included was low and heterogeneity in incidence rates 

precluded calculation of pooled estimates.  

Campbell et al conducted a recent systematic review and meta-analysis to 

estimate the risk of TB among untreated people with positive TST or IGRAs, 

including 122 original studies76. They estimated pooled random-effects TB 

incidence rates of 0.3/1,000 person years (0.1-1.1; I2 96%) among people in the 

general population with positive TST10, 17.0/1,000 person-years (12.9-22.4; I2 

81%) among recent TB contacts with positive IGRA and 8.4/1,000 person-years 

(5.6-12.6; I2 96%) among recent TB contacts with a positive TST5. Elevated TB 

incidence rates were also evident among PLHIV, immigrants, people with silicosis 

or requiring dialysis, transplant recipients, and prisoners, when comparing those 

with positive to negative TST and IGRA test results using incidence rate ratios 

(IRRs). However, comparisons between TST and IGRA performance in this meta-

analysis are precluded by a lack of direct head-to-head assessments of 

prognostic value among the same study participants. Moreover, there was 

evidence of marked heterogeneity in TB incidence rates across studies within 

each of the risk groups evaluated; the pooled estimates should therefore be 

interpreted with caution.  

Zhou et al conducted a systematic review and meta-analysis of 40 studies to 

compare the prognostic ability of TST and IGRA77. In the primary analyses, which 

were not restricted to head-to-head analyses, pooled IGRA positive and negative 

predictive values were estimated as 4.5% (3.3-5.8) and 99.7% (99.5-99.8), with 

a risk ratio of 9.35 (6.48-13.49). For TST10, positive and negative predictive 

values were estimated as 2.9% (2.1-3.7) and 99.2% (98.9-99.4), with a risk ratio 

of 4.28 (3.29-5.56). The authors concluded that IGRA had greater prognostic 

ability than TST. However, this meta-analysis had a number of important 

limitations. First, a sub-analysis restricted to head-to-head studies showed similar 

risk ratios of 7.12 (3.39-14.94) and 4.30 (2.03-9.10) for IGRA and TST10, 

respectively. Person-time was also not accounted for with no IRRs estimated. 
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Moreover, a WHO systematic review and meta-analysis of five studies from 

settings with high TB incidence (defined as annual incidence ≥100/100,000) 

showed similar predictive ability for TST and IGRA, leading to the WHO 

recommendation that either TST or IGRA may be used for LTBI screening62,79. 

These five studies were not included in the meta-analysis by Zhou et al79.  

In addition, the UK Prognostic Evaluation of Diagnostic IGRAs Consortium (UK 

PREDICT) study, which represents the largest prospective study to date directly 

comparing TST and IGRA prognostic ability, was not included in the head-to-

head sub-analysis by Zhou et al77,80. This prospective cohort study recruited 

9,610 adults in the UK who were recent TB contacts and migrants from high TB 

burden countries. In the pre-specified head-to-head analysis among 6,380 

participants with valid results for TST, QFT-GIT and T-SPOT, the three tests had 

similar prognostic ability when using a TST5/15. TB IRRs among test positive 

compared to test negative participants ranged from 5.4-8.8, TB incidence rates 

among participants with positive results were 10.1-11.1/1,000 person-years, and 

positive predictive values (during all available follow-up) ranged from 3.3-4.2% 

(Table 1-5). Among participants with negative test results, incidence rates were 

low for all three tests (1.5-1.9/1,000 person-years), and negative predictive 

values were consistently high (99.4-99.5%).  

Table 1-5: Prognostic performance of IGRAs and TST in UK PREDICT study. 

Adapted from Abubakar et al80. Incidence rates shown per 1,000 person-years. Data 

presented as point estimates (95% CI). 

 
 

QFT-GIT T-SPOT.TB TST5 TST10 TST5/15 

Incidence 
rate (+) 
 

10.1  
(7.4-13.4) 

13.2  
(9.9-17.4) 

6.8  
(5.2-8.7) 

8.5  
(6.5-11.0) 

11.1  
(8.3-14.6) 

Incidence 
rate (-) 
 

1.9  
(1.3-2.7) 

1.5  
(1.0-2.2) 

1.2  
(0.6-2.0) 

1.4  
(0.8-2.2) 

1.6  
(1.0-2.3) 

Incidence 
rate ratio 
 

5.4  
(3.4-8.5) 

8.8  
(5.5-14.2) 

5.8  
(3.2-10.6) 

6.2 
 (3.7-10.3) 

7.1  
(4.4-11.4) 

Positive 
predictive 
value 
 

3.3% 4.2% 2.2% 2.7% 3.5% 

Negative 
predictive 
value 
 

99.4% 99.5% 99.6% 99.6% 99.5% 
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In summary, while each of the above meta-analyses has limitations as discussed, 

the evidence collectively suggests three key messages. First, prognostic ability 

appears similar for QFT-GIT, T-SPOT.TB and TST, particularly when using 

TST15. As a result, either TST or IGRAs are recommended in global, European 

and UK LTBI guidance74,81,82. Second, for all three tests, incidence rates and 

positive predictive values among people with positive results are relatively low, 

with incidence rates consistently <50/1,000 person-years and positive predictive 

values <5% across all studies. Third, there was significant heterogeneity in 

prognostic value across studies, suggesting that pooled estimates may be of 

limited value in clinical practice, since the risk of progression to incident TB 

among individuals with LTBI is likely to vary markedly between individuals. 

1.4.5 Quantitative IGRAs 

It has long been considered that stronger TST responses are more likely to 

represent true sensitisation to M. tuberculosis, as opposed to history of BCG 

vaccination or sensitisation to non-tuberculous mycobaceria83. This has led to 

interest in whether quantitative LTBI test results may be of prognostic value for 

incident TB. Recent data from studies in both adults and infants in low and high 

TB incidence settings have demonstrated that higher quantitative IGRA results 

are associated with increased risk of incident TB, thus raising hope that 

implementing higher cut-offs may improve prognostic value. Moreover, since 

current diagnostic thresholds for scoring a positive test are based on detecting 

sensitisation to M. tuberculosis rather than development of incident TB disease, 

optimising these thresholds might facilitate better implementation of existing LTBI 

diagnostics, while novel biomarkers with improved predictive value are awaited. 

However, these previous evaluations of quantitative IGRA results have been 

limited to the QFT-GIT assay only84–88. It remains unclear whether 

implementation of a higher threshold for positivity may actually be of use 

programmatically to improve their prognostic ability. 

1.4.6 Newer generation skin tests and interferon-gamma release-assays 

Next generation skin tests incorporating ESAT-6 and CFP-10 as M. tuberculosis-

specific antigens are in development. One such candidate is C-Tb (Statens 

Serum Institute, Copenhagen, Denmark), which has demonstrated strong 
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concordance with QFT-GIT, without being affected by prior BCG vaccination89. 

However, there are no data to demonstrate superiority of C-Tb to TST when using 

higher cut-offs (i.e. TST15 or TST5/15), and no studies have examined the 

prognostic value of C-Tb for incident TB.  

A newer generation QuantiFERON (QFT-Plus) was also recently launched, 

adding a second TB antigen tube (TB2) that incorporates short peptides designed 

to stimulate a CD8+ T cell response, in addition to the CD4+-response tube (TB1) 

included in previous versions. The proposed rationale for this is that CD8+-

responses have been associated with mycobacterial load and recent TB 

exposure90,91. Initial evaluations have suggested QFT-Plus may have improved 

test sensitivity in active TB compared to QFT-GIT92, and that the CD8+-targeted 

antigen tube response may be associated with proxy measures of degree of TB 

exposure among contacts93. However, no studies have examined the prognostic 

value of QFT-Plus for predicting incident TB. 

Next-generation IGRAs, with addition of newer antigens, are also under 

development in an attempt to improve diagnostic and prognostic performance72. 

1.4.7 Reversion following clearance of M. tuberculosis infection 

As TST and IGRAs detect T cell responses to M. tuberculosis, rather than 

infection itself, it is widely recognised that positive tests frequently persist long 

after spontaneous or antimicrobial treatment-induced clearance of infection. This 

phenomenon was observed in early trials following effective treatment with 

preventative therapy regimens14, and is reinforced by more recent evidence 

demonstrating that IGRAs are not useful for monitoring response to therapy 

among people with TB disease94. It has also been suggested that test reversion 

may be more likely following clearance if M. tuberculosis was recently acquired 

(in the preceding year)95–97.  

This important limitation of TST and IGRAs has major implications when 

considering the global burden of M. tuberculosis infection, recently estimated as 

1.7 billion people, or 23% of the global population98. Such mathematical 

modelling estimates are heavily based upon LTBI prevalence surveys, using 

TSTs. Thus, the 23% estimate likely reflects immunoreactivity to M. tuberculosis, 

while the true underlying proportion who harbour viable bacilli remains unknown.  
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Persistent positivity of TST and IGRAs following clearance of M. tuberculosis 

infection also means that evidence of test conversion from negative to positive is 

likely to provide stronger evidence of recent infection. Recent conversion has 

therefore been associated with elevated risk of incident TB, compared to positive 

results from cross-sectional sampling only99,100. 

1.5 WHO target product profiles for novel TB diagnostics 

The need for novel diagnostic tests to improve TB control led to the development 

of TPPs by the WHO. High-priority TPPs were first identified by surveying 

stakeholders; a Delphi-like process was then used to build consensus for each 

TPP, with characteristics with significant discordance discussed at a consensus 

meeting. The objective of the TPPs is to provide target specifications that product 

developers should aim to meet relating to both performance and operational 

characteristics. Initial high-priority diagnostics addressed by 2014 WHO TPPs101 

included a point-of-care non-sputum-based test capable of detecting all forms of 

TB (i.e. a confirmatory test), and a point-of-care test that can be used by first-

contact health-care providers to identify those who need further testing (i.e. a 

triage test). The need to fulfil these TPPs has led to development of an interactive 

dashboard for active TB biomarkers102, curated through systematic review103.  

More recently, a TPP and framework for evaluation for a test predicting 

progression from M. tuberculosis infection to TB disease was published, using 

similar methodology11. This consensus document differentiates “persistent 

infection tests” that are intended to detect M. tuberculosis infection, but revert to 

negative if the infection is spontaneously cleared, from “incipient TB tests” that  

are intended to detect people in whom progression to TB disease has 

commenced.  Incipient TB test TPP specifications are shown in Table 1-6 and 

are intended to improve upon the prognostic ability of TST and IGRA. Minimum 

and optimum incipient TB test targets for development of active TB over a two 

year time horizon from testing are stated as sensitivity and specificity ≥75% and 

≥90%, respectively. 
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Table 1-6: WHO TPP specifications for an incipient TB test. 

Adapted from 11. USD = US Dollars. 

Characteristic Optimal requirements Minimal requirements 

Intended use 

Goal of test / Intended use Predicts risk of progression to active TB from TB 

infection within the next 2 years and provides a 

quantitative result that correlates with risk of 

progression. Result should decrease or revert to 

negative with treatment and thus allow an 

assessment of treatment success or cure and 

consequentially also reinfection. 

Predicts risk of progression to active TB from TB 

infection within the next 2 years. 

Type of specimen Capillary whole blood (finger prick sample) / saliva 

/ urine / stool / breath) 

Whole blood by phlebotomy (or subpopulation of cells if 

simple processing included) / sputum 

Performance characteristics 

Diagnostic sensitivity for progression to active TB ≥90% sensitivity ≥75% sensitivity 

Diagnostic specificity for risk of progression 

to active TB 

≥90% specificity ≥75% specificity 

Operational characteristics 

Sample preparation None or fully integrated  Allows for centrifugation/ incubation 

Time to results <24 hours 2.5 days 

Pricing 

Cost of equipment  <500 USD <5000 USD 

Cost of consumables <5 USD/test 10-100 USD/test 
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1.6 Incipient TB tests 

A range of candidate biomarkers for incipient TB are currently under development 

and evaluation. These include transcriptomic, proteomic, metabolomic, 

microbiological and imaging measurements.  

1.6.1 Whole blood transcriptomics 

Since a seminal study describing whole blood transcriptomic perturbation during 

TB disease104, there has been vast global interest in the pursuit of blood 

transcriptomic biomarkers for TB. In the original description by Berry et al, a 393 

transcript signature for active TB, representing interferon signalling, was 

derived104. Over the subsequent decade, a multitude of blood transcriptomic 

biomarkers for TB have been described105–112. These biomarkers have become 

increasingly parsimonious, with reducing numbers of component transcripts, and 

single transcript biomarkers have now been identified109,112. Transcriptomic 

changes have also been shown to correlate with disease severity (as measured 

by PET-CT)113–115 and to resolve during TB therapy104,113,115,116. Proposed 

applications of blood transcriptomic biomarkers have therefore included triaging 

risk of TB disease, supporting TB diagnosis, and monitoring response to 

treatment.  

More recently, a landmark nested case-control study among a longitudinal cohort 

study among adolescents in South Africa (the “Adolescent Cohort Study”117) 

demonstrated that transcriptomic perturbation predates the clinical diagnosis of 

TB118. A 16-gene transcriptomic signature was derived that predicted progression 

to TB with area under the receiver operating characteristic (AUROC) curve 0.74 

(95% CI 0.73-0.76) in the discovery set, giving sensitivity and specificity of 58.4% 

(56.1-60.7) and 80.0% (78.6-81.4), respectively. Performance of the signature 

was time-dependent, with greater discrimination for shorter time intervals from 

sampling. In an external validation cohort of recent TB case contacts in South 

Africa and the Gambia (Grand Challenges 6-74 study)119, AUROCs were 0.72 

(0.64-0.80) in the year following sampling, compared to 0.65 (0.53-0.76) 1-2 

years after sampling, when measured using a real-time PCR assay. Three other 

studies have subsequently been published that demonstrate blood transcriptomic 
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perturbation predating TB diagnosis, raising hope that blood transcriptomic 

biomarkers may be promising candidates as incipient TB tests119–121.  

However, almost all early data describing discovery and validation of 

transcriptomic biomarkers were derived from case-control studies, which may be 

prone to spectrum bias due to inclusion of more extreme phenotypes, leading to 

overly optimistic discrimination metrics122. High quality independent validation 

studies of candidate biomarkers using robust outcome definitions among cohorts 

that are representative of target populations are therefore needed to better 

assess real-world performance. 

The recently published Correlate of Risk Targeted Intervention Study (CORTIS) 

evaluated performance of a modified 11-gene version of the 16-gene signature 

described by Zak et al (RISK11) for predicting progression to TB, along with 

efficacy of signature-guided preventative therapy among HIV-uninfected adults in 

South Africa123. To do this, community-based participants were screened using 

RISK11, with a pre-specified biomarker cut-off. RISK11-positive participants were 

randomised to weekly open-label isoniazid and rifapentine for 12 weeks, versus 

no treatment. A subset of eligible RISK11-negative participants were randomly 

sampled and assigned to no treatment. Participants were screened at baseline 

for TB disease by testing two spontaneously produced sputum samples by Xpert 

MTB/RIF.  

The study showed a cumulative probability of prevalent or incident tuberculosis 

disease of 6.6% (4.9-8.4) among untreated RISK11-positive participants and 

1.8% in RISK11-negative participants, giving a risk ratio of 3.69 (2.25-6.05) for 

RISK11 over 15 months when using a pre-specified cut-off. Performance of 

RISK11 for diagnosis of baseline prevalent (84% of cases were asymptomatic) 

and incident TB is shown in Table 1-7. Even when using an optimised cut-off, 

RISK11 did not meet the WHO minimum TPP parameters for a triage test for 

prevalent TB or for an incipient TB test. Prognostic performance was highly time-

dependent, with AUROC >0.80 for approximately 9 months, before falling to 0.58 

between months 9 and 15. In addition, the preventative treatment regimen did 

not reduce TB incidence among RISK11+ participants over 15 months (treatment 

efficacy 7.0%, 95% CI −145-65).  



48 
 

The CORTIS trial represents a major contribution to the field. However, the lack 

of impact when used for general population screening means that optimal 

implementation of blood transcriptomic biomarkers for TB screening remains 

unclear. The lack of efficacy of preventative treatment to reduce TB incidence 

among RISK11+ participants also raises the question of whether preventative 

treatment regimens are sufficiently sterilising for people with incipient TB. 

Moreover, only one of the many candidate transcriptomic signature was 

evaluated in this study. A recent head-to-head evaluation of candidate signatures 

for TB disease was performed124, but omitted promising signatures and 

compared diagnostic accuracy for incipient TB in only a single cohort over a 0-6 

month time period only125. It is therefore unclear as to which of the many 

candidate transcriptomic signatures performs best for detection of incipient TB.  

Table 1-7: Performance of RISK11 transcriptomic signature for prevalent 

and incident TB in the CORTIS trial. 

Adapted from 123. Data shown as point estimates (95% CI).  

 Prevalent TB Incident TB (15 months) 

 RISK11 

(optimised cut-

off) 

QFT-Plus RISK11 

(optimised cut-

off) 

QFT-Plus 

Risk ratio  7.39  

(3.46-25.69) 

4.43  

(1.93-14.18) 

2.67  

(1.04-8.66) 

2.83  

(0.95-99.79) 

Biomarker 

prevalence 

25.8%  

(24.1-27.4) 

63.4%  

(61.3-65.4) 

25.3% 

(23.7-26.9) 

63.2%  

(61.1-65.3) 

AUROC 0.77  

(0.68-0.86) 

0.66  

(0.58-0.73) 

0.63  

(0.47-0.80) 

0.67  

(0.54-0.79) 

Sensitivity 72.1%  

(54.5-90.2) 

88.7%  

(77.1-96.4) 

47.5%  

(25.9-75.0) 

83.2%  

(61.9-100.0) 

Specificity 74.7%  

(73.1-76.4) 

36.9%  

(34.9-39.0) 

74.9%  

(73.2-76.5) 

37.0%  

(34.9-39.1) 

Positive 

predictive value 

3.1%  

(2.0-4.3) 

1.5%  

(1.0-2.2) 

1.3%  

(0.6-2.1) 

0.9%  

(0.5-1.4) 

Negative 

predictive value 

99.6%  

(99.2-99.9) 

99.7%  

(99.3-99.9) 

99.5%  

(99.1-99.9) 

99.7%  

(99.2-100.0) 

1.6.2 Proteomics and metabolomics 

There has also been interest in development of proteomic and metabolomic 

biomarkers for incipient TB. A proteomic nested case-control analysis using 
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samples collected in the Adolescent Cohort Study led to discovery of 3-protein 

and 5-protein biomarkers126. During external validation in Gambian participants 

in the Grand Challenges 6-74 study, the 5-protein and 3-protein biomarkers had 

AUROCs of 0.66 (0.56-0.75) and 0.65 (0.55-0.75) within one year of TB 

diagnosis, and neither met the WHO TPP benchmarks for incipient TB tests. By 

comparison, C-reactive protein, a non-specific acute phase reactant marker, had 

AUROCs of 0.76 (0.69-0.83) and 0.62 (0.49-0.74) in the Adolescent Cohort Study 

discovery and Grand Challenges 6-74 validation cohorts, respectively.  

A metabolomic signature, comprising 10 metabolites was also derived and 

validated in the Grand Challenges 6-74 study, again using a nested case-control 

approach127. Performance in the Grand Challenges 6-74 validation data showed 

an overall AUROC 0.67 (0.62-0.72), rising to 0.76 (0.68-0.84) in the 5 months 

following sampling. Once more, the WHO TPP parameters were not achieved 

over the longer time interval.  

These proteomic and metabolomic analyses share commonality with the 

previously discussed transcriptomic data in demonstrating that the performance 

of incipient TB biomarkers is likely to be highly time-dependent, with better 

performance for shorter time horizons.  

1.6.3 M. tuberculosis DNA detection 

Early data have suggested that M. tuberculosis DNA can be identified from 2mL 

aliquots of peripheral blood mononuclear cells (PBMCs) from immunocompetent 

adults by PCR, following bacteriophage treatment using the Actiphage test (PBD 

Biotech Ltd, UK)128. In a recent report, 11/15 (73%) participants with 

microbiologically confirmed TB disease had positive Actiphage results, while all 

participants with non-TB respiratory illnesses (n=5) and healthy controls (n=28) 

had negative results. 3/18 recent TB contacts with positive IGRAs also had 

positive results, of whom two developed incident TB disease during follow-up.  

A separate recent preliminary report described detection of M. tuberculosis DNA 

in large-volume PBMCs, particularly CD34+ haemopoietic stem cells, without 

bacteriophage treatment among recent TB contacts and PLHIV in Ethiopia129. M. 

tuberculosis DNA was detected using digital PCR in PBMC of 156/197 

participants (79.2%) and was not associated with IGRA status. Among PLHIV 
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who received isoniazid preventative therapy 41/43 (95.3%) had detectable M. 

tuberculosis DNA at baseline, reducing to 23/43 (53.5%) following treatment.  

Further validation of these preliminary findings is required in order to determine 

whether detection of M. tuberculosis DNA in blood may be a viable approach to 

facilitate diagnosis of true persistent infection and incipient disease and to monitor 

responses to preventative treatment.  

1.6.4 Imaging 

Chest radiography has been historically used to detect and define incipient TB. 

The National Association for the Study and Prevention of Tuberculosis defined 

incipient TB as: 

“Slight or no constitutional symptoms (including particularly 
gastrointestinal disturbances, or rapid loss of weight). Slight or no 
elevation of temperature or acceleration of the pulse, at any time 
during the twenty four hours. Expectoration is usually small in amount 
or is absent. Tubercle bacilli may or may not be present. Slight 
infiltration limited to the apex of one or both lungs or a small part of 
one lobe. No tuberculosis complications.” 

- From correspondence by John Ritter, 191613 

Since radiographic fibrotic lesions are known to be associated with elevated risk 

of future TB disease130, mass screening using chest x-ray could potentially play 

a role in incipient TB detection. However, chest radiographs lack specificity for 

TB and are also insensitive for early parenchymal changes. Through visualisation 

of foci of metabolic activity, PET-CT offers much higher sensitivity for detection 

of early infiltrates, nodular change and lymphadenopathy and may therefore be 

used to characterise incipient TB131. PET-magnetic resonance imaging (PET-

MRI), which offers a lower dose of ionising radiation, has also been used to 

identify incipient changes among recent TB contacts132. However, both PET-CT 

and PET-MRI are highly expensive and are not scalable; their utility is therefore 

likely to be largely limited to research purposes, for example by providing 

radiological correlates to facilitate validation of other biomarkers that are more 

amenable to clinical translation.  
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1.7 Antimicrobial therapy for M. tuberculosis 

1.7.1 Treatment for TB disease 

For drug-susceptible pulmonary TB, quadruple antimicrobial therapy using 

rifampicin and isoniazid for six months, accompanied by ethambutol and 

pyrazinamide for an initial two-month ‘intensive’ phase has been the cornerstone 

of TB treatment since the 1980s133,134. This regimen continues to be 

recommended by the WHO and is highly effective when administered 

adequately135.  

Multiple trials have sought to establish shorter regimens, recently through use of 

fluoroquinolones, but many failed to achieve non-inferiority compared to standard 

six-month therapy136–138. A recent post-hoc individual participant meta-analysis of 

these trials showed that four-month regimens were non-inferior in participants 

with “minimal” disease, as defined by paucibacillary disease on sputum smear 

and absence of chest radiographic cavities, while suggesting that participants 

with high smear grades and cavitation may require prolonged treatment durations 

beyond six months139. These findings support a stratified approach to TB 

treatment for people with pulmonary TB. This is not a new concept, as studies 

from the 1980s in Hong Kong also suggested that pauci-bacillary (smear 

negative) disease might be adequately treated with four-month antimicrobial 

regimens140. Preliminary results from an RCT for drug-susceptible pulmonary TB 

suggest that eight weeks of daily treatment with high-dose rifapentine, isoniazid, 

pyrazinamide, and moxifloxacin followed by nine weeks of rifapentine, isoniazid, 

and moxifloxacin are non-inferior to standard six month treatment, though full 

results are awaited141,142. Another ongoing trial is assessing whether treatment 

could be reduced to as short as two months for non-severe pulmonary TB143. 

Longer treatment durations (usually 12 months) are indicated for patients with 

central nervous system involvement, while tailored therapies are required in the 

presence of resistance to first-line drugs135. WHO guidance updated in 2018 

recommends oral therapy for drug-resistant TB, prioritising inclusion of 

fluoroquinolones (levofloxacin or moxifloxacin), bedaquiline and linezolid. 

Regimens are recommended to include at least four agents to which the M. 

tuberculosis isolate is likely to be susceptible in the first six months, and three 
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thereafter, for a total duration of 18-20 months. A shorter nine-month MDR-TB 

regimen can be given to selected patients - using moxifloxacin, clofazamine, 

pyrazinamide and ethambutol, with the addition of kanamycin, prothionamide, 

and high-dose isoniazid for an initial intensive phase56. Shorter, less toxic and all-

oral regimens for drug-resistant TB are urgently required; a six-month regimen of 

bedaquiline, pretomanid, and linezolid has recently shown promise in an open-

label, single arm study of 109 adults with multi- and extensively-drug resistant TB 

in South Africa, with 90% achieving favourable outcomes144. 

1.7.2 Preventative treatment 

Preventative treatment for TB has been recognised as an important component 

of TB control since the 1950s (Figure 1-11). The efficacy of isoniazid as 

preventative treatment for TB was first established in a 1957 cluster RCT in the 

general community in Alaska, where TB incidence was approximately 1% 

annually. The trial demonstrated a >60% reduction in TB incidence with 

community-wide isoniazid for one year compared to placebo, which was 

maintained for at least five years (Figure 1-12)23. In parallel, an RCT in the United 

States of 12 months of isoniazid or placebo among 25,033 household TB contacts 

with positive TST5 showed that isoniazid markedly reduced TB incidence in the 

first year after contact14,145. A later trial by the International Union Against 

Tuberculosis among 28,000 people with fibrotic pulmonary lesions showed that 

24 weeks of isoniazid provided a 65% reduction in TB incidence compared to 

placebo. A 52-week course provided greater efficacy, but at the cost of greater 

hepatotoxicity15. Comstock subsequently used previous trial data to propose an 

optimal duration of isoniazid therapy of nine months146. 
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Figure 1-11: History of TB preventative treatment.  

Reproduced from Salazar-Austin et al (2019)147 by permission of Oxford University 

Press. Seventy Years of Tuberculosis Prevention: Efficacy, Effectiveness, Toxicity, 

Durability, and Duration, American Journal of Epidemiology 188(12): 2078-2085. 

http://doi.org/10.1093/aje/kwz172  

 

Figure 1-12: TB incidence in trial of community-wide isoniazid for one year 

compared to placebo in Alaska.  

Reprinted from Comstock et al (1967). American Review of Respiratory Disease 95(6) 

with permission of the American Thoracic Societya.  

 

 
aCopyright © 2021 American Thoracic Society. All rights reserved. The American Review of 
Respiratory Disease* is an official journal of the American Thoracic Society. *Now titled The 
American Journal of Respiratory and Critical Care Medicine 

http://doi.org/10.1093/aje/kwz172
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Since these early trials, a range of alternative regimens have demonstrated 

equivalent efficacy to 6-9 months of isoniazid monotherapy and have been 

incorporated into WHO guidance81. The currently endorsed regimens for adults 

and children with LTBI are summarised in Table 1-8, along with the supporting 

evidence. Importantly, treatment completion has been consistently observed to 

be higher with shorter regimens148–150. 

Table 1-8: Summary of WHO-approved preventative treatment regimens for 

TB.  

Regimen Description Efficacy data References 

6-9H 6-9 months of daily isoniazid Superior to placebo 15,146 

4R 4 months of daily rifampicin Non-inferior to 9H among 

adults with LTBI 

151 

3HR 3 months of daily rifampicin and 

isoniazid 

Network meta-analysis 152 

3HP 3 months of weekly rifapentine and 

isoniazid 

Non-inferior to 9H in HIV-

uninfected people and 

PLHIV 

149,153 

1HP 1 month of daily rifapentine and 

isoniazid 

Non-inferior to 9H among 

PLHIV 

150 

Of note, the 1HP regimen has only been evaluated among PLHIV aged ≥13 years 

(median follow-up 3.3 years); additional data are required among children and 

HIV-uninfected populations150. 

Among PLHIV, three RCTs from sub-Saharan Africa now collated in an IPD-MA 

have demonstrated that isoniazid offers incremental benefit over and above anti-

retroviral therapy alone to prevent TB regardless of TST and IGRA results, with 

a hazard ratio 0.68 (95% CI 0.49-0.95)154.  

While early data from the Alaskan studies suggested good durability of protection 

by isoniazid preventative therapy23, more recent data from settings with high 

transmission showed a rapid resurgence of incident TB risk following treatment 

completion among South African gold miners and PLHIV, respectively155,156. A 

meta-analysis of three RCTs done in countries with high TB incidence among 

PLHIV showed that continuous isoniazid reduces risk of TB more than six months’ 

isoniazid (relative risk 0.62; 95% CI 0.42-0.89), and with greater efficacy among 

people with positive TST5 (relative risk 0.51; 95% CI 0.30-0.86)157. This led to the 
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WHO recommending at least 36 months of daily isoniazid monotherapy in PLHIV 

in high TB transmission settings81. The differing durability of preventative 

treatment between the Alaskan and more recent studies is likely to be linked to 

ongoing levels of community transmission. This highlights a need to reduce 

transmission in parallel to preventative treatment administration in order to 

achieve durable effects in settings with high force of infection.  

For people at risk of MDR-TB due to contact with an MDR index case, the WHO 

recommends consideration of preventative treatment (such as six months of 

levofloxacin daily), based on individualised risk assessment. There are currently 

no RCT data to support this, though a number of studies are ongoing158–160. 

1.7.3 Risks of preventative treatment 

The most frequent serious complication of TB preventative treatment is 

hepatotoxicity, which can rarely be fatal161. Frequency of grade 3 or more 

hepatotoxicity (defined as alanine aminotransferase or aspartate 

aminotransferase 3-10 times the upper limit of normal with accompanying 

symptoms of nausea, anorexia, vomiting, fatigue or abdominal pain; or alanine 

aminotransferase or aspartate aminotransferase 5-10 times the upper limit of 

normal in the absence of symptoms) with 9H has been estimated as 

approximately 2.0%148,149,151,162, though need for hospitalisation is rare (0.1%)162. 

Risk of peripheral neuropathy with isoniazid is reduced markedly by co-

administration of vitamin B6 supplementation (pyridoxine), while rashes and 

grade 3-4 haematological abnormalities (defined as neutropenia <1 x 109 cells/L 

or platelets <50 x 109 cells/L) are rare (incidence <1%)162. Increasing age is 

associated with greater risk of isoniazid-associated hepatotoxicity161, estimated 

as 5.5% for people aged 65-90 versus 1% for those aged 18-34 (adjusted odds 

ratio 5.3 (95% CI 1.9-13.3)162.  

In a pooled analysis of two RCTs comparing 4R vs 9H (3,205 individuals receiving 

isoniazid and 3,280 receiving rifampicin), adverse events (including 

hepatotoxicity) with the 4R regimen were not associated with age, and were less 

frequent compared to 9H (absolute risk difference −1.2%; 95% CI −1.9 to 

−0.5)162. When compared with 9H in another large RCT, the 3HP regimen has 

also been associated with lower risk of hepatotoxicity (0.3% vs 2.0%) but higher 
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risk of hypersensitivity reactions when using a broad definition (3.8 vs 0.5%), 

though there was no difference in overall risk of serious adverse events and no 

medication-associated deaths149. A network meta-analysis of RCTs found that 

3HR regimen also had lower hepatotoxicity than isoniazid monotherapy, but only 

when compared with isoniazid regimens of >12 months152. An RCT comparing 

1HP versus 9H among PLHIV found similar risks of serious adverse events 

overall (5 vs 6%) and slightly lower grade 3 or higher hepatotoxicity with 1HP (2 

vs 3%), while no hypersensitivity events were reported.  

In summary, rifamycin-containing regimens appear to have lower risks of 

hepatotoxicity than longer isoniazid monotherapy regimens, though rifapentine 

may be associated with a higher risk of hypersensitivity reactions. These small 

but considerable risks of adverse events must be weighed against the risk of TB 

disease on an individual level when considering initiation of preventative 

treatment.  

1.7.4 Treatment for incipient TB 

Treatment for TB has historically been dichotomised as either full treatment for 

TB disease, or preventative treatment for LTBI. This dichotomy means that 

optimal therapies for people in the incipient phase, between these two extremes, 

are yet to be defined. As discussed in 1.7.1, both historic and recent analyses 

have demonstrated that treatment may be tailored according to bacillary burden, 

with truncated regimens appearing effective for people with low-positive or 

negative sputum smears139,140. However, in the recently reported CORTIS trial, 

3HP was ineffective in reducing TB incidence among HIV-uninfected adults with 

a positive blood transcriptomic biomarker over 15 months, suggesting that a 

preventative treatment regimen may be insufficiently sterilising among people 

with incipient TB123. However, a post-hoc analysis showed that, among people 

who took at least 11/12 doses, there were no incident TB cases until 9 months, 

suggesting that suboptimal adherence and ongoing community transmission may 

also be contributing factors to these findings.  
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1.8 Targeting LTBI screening 

1.8.1 Target populations 

The overarching aim of LTBI screening is to identify people at high risk of TB who 

may benefit from preventative treatment and among whom the benefits outweigh 

the risks (Chapter 1.7.3). Moreover, as discussed in sections 1.4.4 and 1.4.7, the 

positive predictive values of TST and IGRAs for incident TB are consistently <5% 

over a 2-year interval among adult risk groups, and these tests cannot 

discriminate persistent from cleared M. tuberculosis infection. There is therefore 

a clear need to target LTBI screening towards people at higher risk of disease, in 

order to increase prior probability and maximise potential benefits of preventative 

treatment. WHO guidance on target groups for LTBI screening and preventative 

treatment are summarised in Table 1-9. Among all target risk groups, it is 

imperative to evaluate people for evidence of TB disease prior to initiating 

preventative treatment, as individuals with disease require higher intensity 

therapy (Chapter 1.7.1). This evaluation may include symptom screening, along 

with chest radiography when available and microbiological tests when indicated 

(Chapter 1.3)81.  
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Table 1-9: Recommended screening groups in WHO LTBI guidance. 

Adapted from WHO LTBI guidance81.  

People living with HIV 

Adults and adolescents living with HIV who are unlikely to have active TB should receive TB 

preventative treatment, including those on antiretroviral treatment, pregnant women and those 

who have previously been treated for TB, irrespective of the degree of immunosuppression and 

even if LTBI testing is unavailable. 

Infants aged < 12 months living with HIV who are in contact with a person with TB should 

receive TB preventative treatment. 

Children aged ≥ 12 months living with HIV should be offered TB preventative treatment if they 

live in a setting with high TB transmission, regardless of contact with TB. 

All children living with HIV who have successfully completed treatment for TB disease may 

receive TB preventative treatment. 

Household contacts (regardless of HIV status) 

Children aged < 5 years who are household contacts of people with bacteriologically confirmed 

pulmonary TB should be given TB preventative treatment even if LTBI testing is unavailable 

Children aged ≥ 5 years, adolescents and adults who are household contacts of people with 

bacteriologically confirmed pulmonary TB may be given TB preventative treatment 

In selected high-risk household contacts of patients with multidrug-resistant tuberculosis, 

preventative treatment may be considered based on individualized risk assessment and a 

sound clinical justification. 

Other people at risk 

People who are initiating anti-TNF treatment, or receiving dialysis, or preparing for an organ or 

haematological transplant, or who have silicosis should be systematically tested and treated for 

LTBI. 

Systematic LTBI testing and treatment may be considered for prisoners, health workers, 

immigrants from countries with a high TB burden, homeless people and people who use drugs 

Systematic LTBI testing and treatment is not recommended for people with diabetes, people 

who engage in the harmful use of alcohol, tobacco smokers and underweight people unless 

they also belong to other risk groups included in the above recommendations. 

WHO guidance prioritises recent household contacts of people with TB, PLHIV 

(irrespective of CD4 count) and other immunosuppressed groups (including 

people initiating anti-TNF treatment, receiving dialysis, preparing for an organ or 

haematological transplant, or with silicosis) in particular for LTBI screening and 

preventative treatment81. European guidance also recommends prioritised LTBI 

screening among these risk groups, with the addition of people with pulmonary 

fibrotic lesions82.  

While UK guidelines also recommend screening contacts and 

immunosuppressed groups, specific recommendations contrast with WHO 

guidance in a number of ways74. For example, UK guidance recommends 
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screening ‘close’ contacts (defined as people who have had prolonged, frequent 

or intense contact with a person with infectious TB), as opposed to household 

contacts only in WHO guidance. Among immunocompromised adults (including 

PLHIV), UK guidance recommends an individualised risk assessment to establish 

whether testing should be offered (based on degree of immunocompromise and 

exposure to M. tuberculosis). In addition, since 2015, systematic LTBI testing and 

treatment has been implemented for people aged 16-35 who arrived in the UK in 

the previous five years from countries with annual TB incidence rates 

>150/100,000163.  

1.8.2 Risk factors for progression from latent infection to TB disease 

WHO, European and UK guidelines are based upon observations of increased 

TB risk among the populations specified. Table 1-10 summarises relative risk 

estimates for TB disease among people with LTBI, compared to people with no 

risk factors and without evidence of TB disease, based on a previous literature 

review164. Increased risk is associated with demographics (with particularly high 

risk among young children)165, recent infection with M. tuberculosis (for example 

household and close contacts), comorbidities, immunocompromise, and 

radiographic abnormalities. However, such relative risk estimates and are often 

imprecise with wide point estimate ranges. They also assume multiplicative risk, 

without accounting for potential interactions between risk factors. Moreover, 

these estimates are frequently derived from cohort and case-control studies in 

which there is a risk of residual confounding, including due to differential risk of 

infection with M. tuberculosis, and without adjustment for TST and IGRA results. 

Nonetheless, these data can provide a framework to facilitate targeting of LTBI 

screening towards higher risk populations.  
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Table 1-10: Risk factors for progression from LTBI to TB disease from 

Canadian national guidance. 

Adapted from 164. 

Risk factor Estimated relative risk for TB, compared 

to people with no known risk factor 

High risk 

 

AIDS 110-170 

HIV 50-110 

Transplantation 20-74 

Silicosis 30 

Chronic renal failure requiring haemodialysis 7-50 

Carcinoma of head and neck 11.6 

Recent TB infection (<2 years) 15 

Fibronodular radiographic disease 6-19 

Moderate risk 

 

Tumour necrosis factor alpha inhibitors 1.5-5.8 

Diabetes mellitus 2-3.6 

Treatment with glucocorticoids 

(≥15mg/d prednisolone) 

4.9 

Age <4 years when infected 2.2-5 

Slightly increased risk 

 

Heavy alcohol consumption (≥3 drinks/day) 3-4 

Underweight (<90% ideal body weight, e.g. body 

mass index ≤20) 

2-3.6 

Cigarette smoker (20 cigarettes/day) 1.8-3.5 

Chest x-ray granuloma 2 

1.8.3 Interpreting LTBI tests in context 

Since the risk of progression to TB is heterogeneous among people with LTBI, a 

further approach that may improve prediction of incident TB is to include LTBI 

test results along with other clinical covariates (including demographics, 

exposure to TB, and immune function) in a multivariable prognostic model, in 

order to interpret the result in context of the individual tested. An existing tool 

(“TSTin3D”) aims to achieve this by calculating personalised risk of TB disease 

among people with latent infection166. These estimates are calculated using an 

equation, which is parameterised mathematically from multiple sources, as 

opposed to being based on individual-level data. The algorithm works by first 
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estimating the positive predictive value of the LTBI test as the patient’s probability 

of having true latent M. tuberculosis infection, as determined by the likelihood of 

TB infection and the probability of a false positive test167. This is then multiplied 

by ‘Annual Risk of Disease’ (estimated as 0.1% in healthy unexposed people and 

5% for the first two years from recent contact) and the relative risk estimates for 

specified risk factors taken from previous studies done anywhere in the world 

(summarised in Table 1-10). The performance of TSTin3D has recently been 

evaluated in a Canadian cohort, demonstrating moderate discrimination (C-

statistics 0.66-0.68) and evidence of miscalibration with overestimation of risk168. 

Nonetheless, this provides a useful theoretical framework to conceptualise 

personalised risk beyond TST and IGRA results alone. 

1.8.4 Cascade of LTBI care 

A previous systematic review and meta-analysis has also highlighted major 

weaknesses in the cascade of LTBI care that are likely to undermine the impact 

and cost-effectiveness of screening programmes169. Losses occurred at multiple 

steps in the cascade, with only 10-50% of people who may be eligible for 

preventative treatment completing therapy. This evidence is supported by 

national data from the NHS England migrant LTBI screening programme, where 

the proportion of migrants with positive LTBI test result who are known to have 

accessed treatment was only 39% in 201919. These data highlight a need for TB 

prevention services to strengthen each stage of the cascade in order to achieve 

population-level impact (Figure 1-13). 
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Figure 1-13: Steps in the cascade of LTBI care. 

Adapted from Alsdurf et al169.  

 

1.9 Summary of motivation for thesis 

Scale up of preventative treatment for TB represents a cornerstone of global TB 

control efforts as part of the WHO End TB Strategy22. However, both TST and 

IGRAs have low positive predictive value for incident TB. When implemented as 

part of LTBI screening programmes, this may lead to a significant burden of 

unnecessary preventative treatment, with associated risks of drug toxicity to 

patients, and economic costs to health services. Furthermore, limited positive 

predictive value may also undermine the uptake of LTBI treatment among target 

groups, due to the low perceived risk of TB170.  

Improvements in the risk-stratification of individuals with LTBI are therefore 

needed from both policymaker and patient perspectives. On a population level, 

these data would inform international policy regarding the populations that should 

be targeted for screening and treatment, enabling more efficient allocation of 

healthcare resources. On an individual patient level, better risk-stratification 

would facilitate a more personalised approach to TB prevention. Providing more 

accurate prognostication to clinicians and patients may also improve patient 

Population with LTBI eligible for screening

Identified by health system

Accepts and undergoes LTBI test

Result available

Undergoes medical 
evaluation

Accepts preventative 
treatment

Commences 
treatment
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treatment
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engagement in care and therefore completion of preventative treatment when 

indicated, while concurrently reducing unnecessary treatment and the associated 

toxicity. 

1.10 Research gaps 

This thesis will address a number of research gaps.  

First, optimising thresholds for existing LTBI tests might facilitate better 

implementation, while novel biomarkers are in development. Previous 

evaluations of the association between quantitative LTBI tests and incident TB 

risk have been limited to the QFT-GIT assay only84–88. It therefore remains 

unclear whether implementation of higher thresholds for positivity for 

QuantiFERON, T-SPOT.TB or TSTs may be of use programmatically to improve 

the risk-stratification of patients with LTBI. 

Second, no studies have examined the prognostic value of the newer generation 

QuantiFERON assay (QFT-Plus) for predicting incident TB. The added value of 

the second TB antigen tube that aims to stimulate a CD8+ T cell response is 

therefore unclear.  

Third, LTBI tests may be further optimised by interpreting results in the context of 

the individual - accounting for demographics, exposure to M. tuberculosis and 

immune function. While an existing tool seeks to achieve this, it is not based on 

individual-level data and does not account for important covariates such as 

quantitative LTBI test results, proximity of exposure among contacts and 

infectiousness of index cases. Therefore, the potential added value of a directly 

data-driven multivariable prognostic model is currently untested. 

Finally, there is also major interest in ‘next generation’ biomarkers targeting the 

incipient phase of TB, of which blood transcriptomic biomarkers are the most 

mature candidates. However, while a multitude of candidate transcriptomic 

biomarkers have been proposed, it remains unclear which of the many proposed 

candidate RNA signatures performs best, or whether any meets the WHO TPP 

benchmarks as incipient TB tests. 
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1.11 Aim and objectives 

1.11.1 Aim 

I aim to enable TB control strategies by facilitating precise targeting of 

preventative antimicrobial treatment. 

1.11.2 Objectives 

1. To test the hypothesis that higher quantitative QFT-GIT, T-SPOT.TB and 

TST results are associated with increased risk of incident TB, and assess 

the impact of implementing higher thresholds on test sensitivities, 

specificities and predictive values. 

2. To assess the prognostic value of the newer generation QuantiFERON-

TB Gold Plus test for predicting incident TB among recent TB contacts.  

3. To examine the risk of TB among people tested for latent infection in low 

incidence settings and develop a prognostic model for incident TB using 

an individual participant data meta-analysis. 

4. To systematically compare the diagnostic accuracy of candidate 

transcriptomic signatures for incipient TB, and to benchmark accuracy 

against the WHO target product profile parameters. 
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2 Objective 1: Quantitative interferon gamma release 

assay and tuberculin skin test results to predict 

incident TB: a prospective cohort study 

2.1 Introduction 

Previous studies have suggested that higher quantitative LTBI test results are 

associated with increased TB incidence rates84,85,88. However, these data have 

been limited to the QFT-GIT test only, and it has been unclear whether 

implementing higher thresholds may be of value programmatically.  

I sought to address these knowledge gaps through a secondary analysis of data 

from the previously reported UK PREDICT TB study80. Firstly, I aimed to test the 

hypothesis that higher quantitative QFT-GIT, T-SPOT.TB and TST results were 

associated with increased risk of incident TB. Secondly, I sought to evaluate the 

test sensitivities, specificities and predictive values when higher thresholds for a 

positive test than currently recommended are used over a fixed three-year follow-

up period. Finally, I plotted ROC curves for all three tests, to compare 

performance across the full range of test cut-offs.  

2.2 Methods 

2.2.1 Population 

The UK PREDICT study cohort has been described in detail previously80. Briefly, 

individuals aged ≥16 years were recruited between May 2010 and June 2015 

from multiple UK centres in London, Birmingham and Leicester. Inclusion criteria 

were: recent contacts of patients with active TB; or recent migrants from, or 

prolonged travellers to, high TB burden countries (defined as countries in sub-

Saharan Africa or Asia). Participants who received preventative TB treatment 

after recruitment were excluded, as were participants diagnosed with suspected 

baseline prevalent TB (evidence of TB within 21 days of enrolment), since the 

aim of the study was to evaluate the risk of incident TB in the absence of 

preventative treatment.   
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2.2.2 Study procedures 

Participants were tested with QFT-GIT, T-SPOT.TB and then Mantoux TST 

(Statens Serum Institut, Denmark) using standardised protocols on the same day, 

at least six weeks from last TB exposure or migration. Indeterminate results were 

classified as recommended by the manufacturers. Incident TB cases were 

identified via telephone interview at 12 and 24 months, and by linkage to the 

national TB surveillance system held at Public Health England in the originally 

reported UK PREDICT study80. National TB surveillance includes all statutory TB 

notifications and all results of positive M. tuberculosis cultures. For the current 

analysis, all study participants were re-linked to national surveillance records to 

identify individuals notified with TB until 31/12/2017. Follow-up was censored on 

the earliest of date of TB diagnosis, death or 31/12/2017. The original study 

procedures and protocol were approved by the Brent NHS Research Ethics 

Committee (10/H0717/14).  

2.2.3 Statistical analysis 

Analyses were performed using Stata (version 15) and R (version 3.5.1). 

Incidence rates and ratios relative to the negative test category (with 95% CIs) 

for incident TB were calculated using Poisson models, according to ordinal strata 

for quantitative results of each LTBI test during the full duration of follow-up. While 

Poisson models assume constant risk throughout follow-up171, the rationale for 

this approach was that I sought to examine the prognostic ability of the index tests 

throughout follow-up, reflecting the way in which these tests are implemented in 

clinical practice, and consistent with the primary UK PREDICT analyses and other 

evaluations of prognostic tests for TB. In addition, since the date of testing can 

be considered arbitrary, there is no natural time scale for this analysis.  

For participants with previous BCG vaccination (defined by self-report and scar 

inspection), 10mm was subtracted from the quantitative TST result to adjust for 

the associated sensitisation to BCG (‘BCG-adjusted TST’). The rationale for this 

was that, in the main UK PREDICT analysis, a BCG-stratified TST cut-off of 5mm 

in BCG-naïve or 15mm in vaccinated participants performed most similarly to 

IGRA80. For QFT-GIT and BCG-adjusted TST, test strata were based on previous 

data84,85,172–174, as shown in Table 2-1.  
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Table 2-1: Cut-offs for LTBI tests included in current analysis of UK 

PREDICT study. 

QFT-GIT (IU/mL) T-SPOT.TB (spots) BCG-adjusted TST* (mm) 

<0.35 <5 <5 

0.35-0.69 5-7 5-9 

0.7-3.99 8-49 10-14 

≥4 ≥50 ≥15 

*Includes 10mm deduction for participants with prior BCG vaccination 

Since no previous data were available to inform the definition of test strata for T-

SPOT.TB, I defined initial strata of spot counts in the maximal TB antigen panel 

minus the negative control of ≤4 spots and 5-7 spots, based on manufacturer test 

thresholds for borderline and positive results. I then modelled the non-linear 

relationship between the maximal T-SPOT.TB antigen minus negative control 

result and probability of incident TB using restricted cubic splines. Restricted 

cubic splines are a widely recommended approach to model associations 

between continuous predictors with non-linear associations and outcomes. In 

brief, this method applies piecewise cubic polynomials, which are forced to join 

at the junctions between the “pieces”171. The number of pieces and placement of 

the joining junctions are defined by “knot” placements. The predictor-outcome 

associations above and below the upper and lower knots are assumed to be 

linear in order to avoid overfitting to the tails of the distribution. Harrell 

recommends defining knot positions based on the distribution of the continuous 

predictor, using percentile placements175.  

In this analysis, I used restricted cubic splines with 4 knots, placed at 

recommended percentile locations175, to examine the association between T-

SPOT.TB results and incident TB risk in a Poisson regression model. Based on 

this, I defined ≥50 spots as the highest T-SPOT.TB stratum in the primary 

analysis (corresponding approximately to the top 5% of quantitative results in the 

cohort), since there was evidence of plateauing of risk above this point (Figure 

2-1).  
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Figure 2-1: Poisson regression model using restricted cubic splines to 

examine association between quantitative T-SPOT.TB results and risk of 

incident TB.  

Vertical dashed line indicates threshold of 50 spots used in primary analysis. Grey 

shaded area indicates 95% confidence intervals. Adapted from176. 

 

I then calculated sensitivity, specificity, positive and negative predictive values, 

plotted ROC curves and estimated the AUROCs for incident TB over a fixed 

three-year follow-up period at corresponding thresholds for each ordinal stratum. 

The AUROC metric can be interpreted as the probability that a randomly sampled 

person with the disease outcome has a higher score ranking than a randomly 

sampled disease-free person in the cohort177. An AUROC of 1 indicates perfect 

discrimination, while an AUROC of 0.5 is equivalent to an unbiased coin toss.   

2.2.4 Sensitivity analyses 

Six sensitivity analyses were performed: 

• Prevalent TB was re-defined as a TB case diagnosed <42 days from 

enrolment (versus <21 days in the primary analysis).  

• Subgroup analyses were performed restricted to only contacts and 

migrants, respectively.  
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• A fifth stratum was also included for each diagnostic test (≥8.00 IU/mL for 

QFT-GIT; ≥100 spots for T-SPOT.TB; ≥20mm for BCG-adjusted TST), due 

to the arbitrary nature of the defined thresholds.  

• Quantitative TST results were analysed without adjustment for prior BCG 

vaccination, using unadjusted ordinal strata of <15mm, 15-19mm, 20-

24mm and ≥25mm.  

• I recalculated sensitivity, specificity and predictive values for a fixed follow-

up period of six months to assess test performance for predicting short-

term risk of progression. 

• In the primary analysis, I did not perform a multivariable analysis to assess 

whether higher quantitative test results remained independently 

associated with risk of incident TB following adjustment for other 

covariates. The rationale for this was that my aim was to assess the 

potential programmatic impact of implementing higher diagnostic 

thresholds alone among target groups for LTBI screening programmes, 

rather than developing a multivariable risk prediction model. In a final 

sensitivity analysis, I examined associations between quantitative test 

results and incident TB in multivariable Poisson models adjusted for age, 

gender, ethnicity, country of birth and indication for screening (recent 

contact vs. migration), in order to examine whether associations between 

ordinal test strata and incident TB risk differed in multivariable, compared 

to primary univariable, analyses.  

2.3 Results 

2.3.1 Overview of study cohort 

A total of 10,045 participants were recruited to the UK PREDICT study, of whom 

175 had evidence of possible prevalent TB at enrolment and 260 received 

preventative treatment. The remaining 9,610 were therefore included in the final 

study cohort, with median follow-up 4.7 years (IQR 3.8-5.5).  

Baseline characteristics of the cohort are summarised in Table 2-2. Median age 

was 33 years (IQR 26-47). Approximately half of participants were recruited due 

to being recent TB contacts (4,781/9,610; 49.8%) and migrants from high-

incidence countries (4,729/9,610; 49.2%) respectively, while most (6,618/9,610; 
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68.9%) reported previous BCG vaccination. Where timing of previous BCG 

vaccination was available, this was reported to be >5 years prior to enrolment 

among 4,408/4,486 (98.3%) of participants. Quantitative results for QFT-GIT, T-

SPOT.TB and TST were available for 8,562 (89.1%), 8,079 (84.1%) and 7,833 

(81.5%) of participants, respectively.  

There were 107 incident TB events during follow-up (median days to notification 

188 days; IQR 76-488). Most incident TB notifications occurred in the first year 

following recruitment (71/107; 66.4%). Cumulative distribution plots for 

quantitative QFT-GIT, T-SPOT.TB, BCG-adjusted TST and unadjusted TST 

results, stratified by the incident TB outcome, are shown in Figure 2-2.  

Table 2-2: Baseline characteristics of UK PREDICT TB cohort, stratified by 

whether or not participants progressed to incident TB during follow-up.  

Data are presented as n (%) or median (IQR). 

 
TB-free TB progressors Total 

Sex 
   

Male 4673 (49.2) 56 (52.3) 4729 (49.2) 

Female 4758 (50.1) 51 (47.7) 4809 (50) 

Missing 72 (0.8) 0 (0) 72 (0.7) 

Age 
   

Median (IQR, range) 33 (26-47, 16-79) 30 (26-39, 16-65) 33 (26-47, 16-79) 

Missing 22 (0.2) 0 (0) 22 (0.2) 

Ethnicity 
   

Indian 3939 (41.5) 42 (39.3) 3981 (41.4) 

White 1161 (12.2) 12 (11.2) 1173 (12.2) 

Black African 1126 (11.8) 12 (11.2) 1138 (11.8) 

Mixed 881 (9.3) 11 (10.3) 892 (9.3) 

Pakistani 891 (9.4) 15 (14) 906 (9.4) 

Bangladeshi 712 (7.5) 4 (3.7) 716 (7.5) 

Black Caribbean 237 (2.5) 5 (4.7) 242 (2.5) 

Other 315 (3.3) 5 (4.7) 320 (3.3) 

Missing 241 (2.5) 1 (0.9) 242 (2.5) 

UK Born 
   

No 7917 (83.3) 91 (85) 8008 (83.3) 

Yes 1536 (16.2) 16 (15) 1552 (16.1) 

Missing 50 (0.5) 0 (0) 50 (0.5) 
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Contact or migrant 
   

Contact 4711 (49.6) 70 (65.4) 4781 (49.8) 

Migrant 4692 (49.4) 37 (34.6) 4729 (49.2) 

Missing 100 (1.1) 0 (0) 100 (1) 

QFT-GIT (IU/mL) 
   

<0.35 6603 (69.5) 34 (31.8) 6637 (69.1) 

0.35-0.69 398 (4.2) 7 (6.5) 405 (4.2) 

0.7-3.99 793 (8.3) 27 (25.2) 820 (8.5) 

≥4 552 (5.8) 26 (24.3) 578 (6) 

Indeterminate 119 (1.3) 3 (2.8) 122 (1.3) 

Missing 1038 (10.9) 10 (9.3) 1048 (10.9) 

T-SPOT.TB (spots) 
   

<5 6257 (65.8) 33 (30.8) 6290 (65.5) 

5-7 316 (3.3) 3 (2.8) 319 (3.3) 

8 to 49 876 (9.2) 30 (28) 906 (9.4) 

≥50 416 (4.4) 27 (25.2) 443 (4.6) 

Indeterminate 119 (1.3) 2 (1.9) 121 (1.3) 

Missing 1519 (16) 12 (11.2) 1531 (15.9) 

BCG-adjusted TST (mm) 
   

<5 5739 (60.4) 30 (28) 5769 (60) 

5 to 9 805 (8.5) 22 (20.6) 827 (8.6) 

10 to 14 612 (6.4) 18 (16.8) 630 (6.6) 

≥15 576 (6.1) 31 (29) 607 (6.3) 

Missing 1771 (18.6) 6 (5.6) 1777 (18.5) 

Follow-up (years) 
   

Median (IQR) 4.69 (3.82-5.52) 0.51 (0.21-1.34) 4.68 (3.78-5.51) 

Total 9503 107 9610 
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Figure 2-2: Cumulative distribution plots showing distributions of 

quantitative test results, stratified by outcome.  

Dashed lines indicate thresholds used to define ordinal strata in this analysis. Adapted 

from 176. 
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2.3.2 TB incidence rates in ordinal test strata 

For all tests, higher TB incidence rates and ratios were associated with higher 

test results (Figure 2-3). For QFT-GIT, TB incidence rates (per 1,000 person-

years) increased from 1.10 (95% CI 0.78-1.53) in the <0.35 IU/mL stratum, to 

10.02 (6.82-14.72) in the ≥4.00 IU/mL stratum (likelihood ratio test for trend 

p<0.0001). For T-SPOT.TB, TB incidence rates increased from 1.10 (0.78-1.54) 

in the ≤4 spots stratum to 12.73 (8.73-18.57) in the ≥50 spots stratum (p<0.0001). 

For the BCG-adjusted TST, TB incidence rates increased from 1.07 (0.75-1.54) 

in the <5mm stratum to 10.95 (7.70-15.57) in the ≥15mm stratum (p<0.0001).  

Table 2-3: TB incidence rates and ratios in ordinal strata for quantitative 

results of QFT-GIT, T-SPOT.TB and BCG-adjusted TST. 

Data shown as point estimates (95% CIs).  

 

TB 

cases 

Person-

years 

(1,000s) 

Incidence rate 

(per 1,000 person 

years) 

Incidence rate ratio 

QFT-GIT (IU/mL) 

    

<0.35 34 31.05 1.1 (0.78-1.53) Reference 

0.35-0.69 7 1.90 3.68 (1.75-7.71) 3.36 (1.49-7.57) 

0.7-3.99 27 3.80 7.1 (4.87-10.35) 6.48 (3.91-10.74) 

≥4 26 2.59 10.02 (6.82-14.72) 9.15 (5.49-15.25) 

T-SPOT.TB (spots) 

    

<5 33 30.07 1.1 (0.78-1.54) Reference 

5 to 7 3 1.54 1.95 (0.63-6.06) 1.78 (0.55-5.8) 

8 to 49 30 4.15 7.23 (5.06-10.35) 6.59 (4.02-10.81) 

≥50 27 2.12 12.73 (8.73-18.57) 11.6 (6.98-19.3) 

BCG-adjusted TST 

(mm) 

    

<5 30 27.91 1.07 (0.75-1.54) Reference 

5 to 9 22 3.94 5.58 (3.67-8.47) 5.19 (3-9) 

10 to 14 18 3.03 5.95 (3.75-9.44) 5.54 (3.09-9.93) 

≥15 31 2.83 10.95 (7.7-15.57) 10.19 (6.17-16.84) 
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Figure 2-3: TB incidence rates in ordinal strata for quantitative results of 

QFT-GIT, T-SPOT.TB and TST. 

Adapted from 176. 
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2.3.3 Sensitivities, specificities and predictive values over 3 years’ follow-

up 

During the first three years of follow-up, positive predictive values were uniformly 

low but increased modestly with the higher thresholds for all three tests (Table 

2-4). For example, for QFT-GIT, positive predictive values were 3.0% (2.2-3.9) 

for values ≥0.35 IU/mL vs. 3.6% (2.2-5.5) for ≥4.00 IU/m. However, as thresholds 

for test positivity increased, sensitivity declined for all tests (Table 2-4). For the 

QFT-GIT, sensitivity decreased from 61.0% (49.6-71.6) with a threshold ≥0.35 to 

23.2% (14.6-33.8) with a threshold ≥4.00 IU/mL. A similar pattern was seen for 

T-SPOT.TB and BCG-adjusted TST.  
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Table 2-4: Sensitivity, specificity, positive predictive values and negative predictive values during three years’ follow-up with pre-

specified test thresholds.  

n = numerator; N = denominator. 

  
QFT-GIT (IU/mL) T-SPOT.TB (spots) BCG-adjusted TST (mm) 

  
≥0.35 ≥0.7 ≥4 ≥5 ≥8 ≥50 ≥5 ≥10 ≥15 

Sensitivity n 50 44 19 53 50 22 62 42 25 

 
N 82 82 82 81 81 81 89 89 89 

 
Estimate 61.0% 53.7% 23.2% 65.4% 61.7% 27.2% 69.7% 47.2% 28.1% 

 
95% CI 49.6-71.6 42.3-64.7 14.6-33.8 54-75.7 50.3-72.3 17.9-38.2 59-79 36.5-58.1 19.1-38.6 

Specificity n 6134 6511 7242 5856 6155 6948 5520 6295 6882 

 
N 7755 7755 7755 7363 7363 7363 7445 7445 7445 

 
Estimate 79.1% 84.0% 93.4% 79.5% 83.6% 94.4% 74.1% 84.6% 92.4% 

 
95% CI 78.2-80 83.1-84.8 92.8-93.9 78.6-80.4 82.7-84.4 93.8-94.9 73.1-75.1 83.7-85.4 91.8-93 

Positive predictive value n 50 44 19 53 50 22 62 42 25 

 
N 1671 1288 532 1560 1258 437 1987 1192 588 

 
Estimate 3.0% 3.4% 3.6% 3.4% 4.0% 5.0% 3.1% 3.5% 4.3% 

 
95% CI 2.2-3.9 2.5-4.6 2.2-5.5 2.6-4.4 3-5.2 3.2-7.5 2.4-4 2.6-4.7 2.8-6.2 

Negative predictive value n 6134 6511 7242 5856 6155 6948 5520 6295 6882 

 
N 6166 6549 7305 5884 6186 7007 5547 6342 6946 

 
Estimate 99.5% 99.4% 99.1% 99.5% 99.5% 99.2% 99.5% 99.3% 99.1% 

 
95% CI 99.3-99.6 99.2-99.6 98.9-99.3 99.3-99.7 99.3-99.7 98.9-99.4 99.3-99.7 99-99.5 98.8-99.3 
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ROC curve analysis revealed similar AUROCs for quantitative QFT-GIT, T-

SPOT.TB and BCG-adjusted TST for predicting incident TB over three years’ 

follow-up, respectively (Table 2-5; Figure 2-4). Paired DeLong tests178 revealed 

no statistical differences between AUROCs for QFT-GIT (p=0.21) or BCG-

adjusted TST (p=0.14), when compared to T-SPOT.TB. The ROC curve points 

with maximal accuracy, as defined by the maximal Youden index179, were similar 

to those currently used in practice (Table 2-5).  

Figure 2-4: ROC curves for prediction of incident TB during three years’ 

follow-up for quantitative QFT-GIT, T-SPOT.TB and TST. 

Adapted from 176. 
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Table 2-5: AUROCs and thresholds with maximal Youden indices, with 

corresponding sensitivities and specificities, for index tests.  

Data shown as point estimates (95% CI).  

AUROC Commonly 

used threshold 

Maximal 

Youden index 

threshold 

Sensitivity Specificity 

QFT-GIT 

0.77 (0.72-0.82) ≥0.35 IU/mL 0.2 IU/mL 0.74 (0.64 -0.83) 0.75 (0.74-0.76) 

T-SPOT-TB 

0.78 (0.73-0.83) ≥6 spots 6.5 spots 0.65 (0.55-0.75) 0.83 (0.82-0.84) 

BCG-adjusted TST 

0.74 (0.69-0.79) ≥5 mm* 4.5 mm 0.7 (0.59-0.78) 0.74 (0.73-0.75) 

Unadjusted TST 

0.77 (0.72-0.82) ≥10 mm 11.5 mm 0.73 (0.63-0.81) 0.74 (0.73-0.75) 

* equivalent to TST5/15 

2.3.4 Sensitivity analyses 

In the sensitivity analyses, exclusion of incident TB cases <42 days from 

enrolment resulted in slightly lower TB incidence rates across all strata, but had 

little impact on IRRs between strata compared to the primary analysis (Table 2-6). 

Similarly, the subgroup analyses restricted to TB contacts and migrants revealed 

lower TB incidence rates overall among migrants compared to TB contacts, but 

little difference in IRRs between strata for each test compared to the primary 

analysis (Table 2-7, Table 2-8, Table 2-9).  

Inclusion of a fifth stratum for QFT-GIT (≥8 IU/mL) had no effect in increasing 

incidence rates further but, for T-SPOT.TB and BCG-adjusted TST (≥100 spots 

for T-SPOT.TB; ≥20mm for BCG-adjusted TST), led to further increases in the 

incidence rates in these strata (Table 2-10). However, as for the main analysis, 

there was a further loss of sensitivity when implementing corresponding 

diagnostic thresholds (Table 2-11).  

Analysis of quantitative TST results without adjustment for prior BCG vaccination 

resulted in similar findings to the primary analysis, suggesting that BCG 

adjustment had minimal effect (Figure 2-2, Figure 2-3, Figure 2-4, Table 2-5).  
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Limiting follow-up to six months produced similar sensitivity, specificity and 

predictive value results to the main analysis, suggesting that imperfect test 

sensitivity is unlikely to be explained by re-exposure events during follow-up 

(Table 2-12).  

Finally, associations between quantitative test results and incident TB in 

multivariable Poisson models were similar to the primary univariable analyses, 

suggesting that higher quantitative test results were associated with increased 

incident TB risk after adjustment for baseline covariates (Table 2-13). 

Table 2-6: TB incidence rates according to ordinal test strata - sensitivity 

analysis excluding prevalent TB, defined as cases <42 days from 

enrolment. 

Primary analysis defined prevalent TB as cases notified <21 days from recruitment. 

Shown as point estimates (95% CI). IR = incidence rate; IRR = incidence rate ratio. 

QFT-GIT (IU/mL) TB cases Person-years 

(1,000s) 

IR (per 1,000 

person-years) 

IRR 

<0.35 28 31.05 0.9 (0.62-1.31) Reference 

0.35-0.69 6 1.90 3.15 (1.42-7.02) 3.49 (1.45-8.44) 

0.7-3.99 25 3.80 6.57 (4.44-9.72) 7.29 (4.25-12.5) 

≥4 23 2.59 8.87 (5.89-13.34) 9.83 (5.66-17.07) 

T-SPOT.TB (spots)     

<5 31 30.07 1.03 (0.72-1.47) Reference 

5 to 7 2 1.54 1.3 (0.33-5.21) 1.26 (0.3-5.28) 

8 to 49 26 4.15 6.27 (4.27-9.21) 6.08 (3.61-10.24) 

≥50 22 2.12 10.38 (6.83-15.76) 10.07 (5.83-17.38) 

BCG-adjusted TST 

(mm) 

    

<5 28 27.91 1 (0.69-1.45) Reference 

5 to 9 19 3.94 4.82 (3.07-7.56) 4.8 (2.68-8.6) 

10 to 14 13 3.02 4.3 (2.5-7.4) 4.28 (2.22-8.27) 

≥15 26 2.83 9.19 (6.26-13.49) 9.16 (5.37-15.62) 
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Table 2-7: TB incidence rates in ordinal test strata stratified by risk group 

for screening (contacts vs. migrants).  

Shown as point estimates (95% CI). IR = incidence rate; IRR = incidence rate ratio. 

Contacts 

QFT-GIT (IU/mL) TB 

cases 

Person-years 

(1,000s) 

IR (per 1,000 

person-years) 

IRR 

<0.35 22 16.08 1.37 (0.9-2.08) Reference 

0.35-0.69 5 0.90 5.55 (2.31-13.34) 3.36 (1.49-7.57) 

0.7-3.99 18 2.01 8.97 (5.65-14.23) 6.48 (3.91-10.74) 

≥4 15 1.11 13.53 (8.16-22.45) 9.15 (5.49-15.25) 

T-SPOT.TB (spots)     

<5 25 16.56 1.51 (1.02-2.23) Reference 

5 to 7 3 0.89 3.39 (1.09-10.5) 2.24 (0.68-7.43) 

8 to 49 16 2.04 7.86 (4.81-12.82) 5.2 (2.78-9.74) 

≥50 18 1.10 16.37 (10.31-25.98) 10.84 (5.91-19.87) 

BCG-adjusted TST 
(mm) 

    

<5 22 15.15 1.45 (0.96-2.21) Reference 

5 to 9 11 2.21 4.99 (2.76-9.01) 3.43 (1.67-7.08) 

10 to 14 12 1.80 6.66 (3.78-11.74) 4.59 (2.27-9.27) 

≥15 21 1.76 11.96 (7.8-18.34) 8.24 (4.53-14.98) 

Migrants 

QFT-GIT (IU/mL) TB 
cases 

Person-years 
(1,000s) 

IR (per 1,000 
person-years) 

IRR 

<0.35 12 14.59 0.82 (0.47-1.45) Reference 

0.35-0.69 2 0.99 2.02 (0.5-8.07) 2.45 (0.55-10.96) 

0.7-3.99 9 1.76 5.12 (2.66-9.84) 6.22 (2.62-14.77) 

≥4 11 1.47 7.5 (4.16-13.55) 9.12 (4.03-20.68) 

T-SPOT.TB (spots)     

<5 8 13.10 0.61 (0.31-1.22) Reference 

5 to 7 0 0.64 - - 

8 to 49 14 2.08 6.74 (3.99-11.37) 11.03 (4.63-26.3) 

≥50 9 0.99 9.12 (4.75-17.53) 14.94 (5.76-38.71) 

BCG-adjusted TST 
(mm) 

    

<5 8 12.34 0.65 (0.32-1.3) Reference 

5 to 9 11 1.71 6.45 (3.57-11.65) 9.95 (4-24.73) 

10 to 14 6 1.20 4.98 (2.24-11.09) 7.68 (2.67-22.15) 

≥15 10 1.06 9.42 (5.07-17.51) 14.53 (5.74-36.82) 
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Table 2-8: Sensitivity, specificity, positive predictive values and negative predictive values for LTBI tests – sensitivity analysis 

among contacts. 

Shown for three years’ follow-up with pre-specified test thresholds. n = numerator; N = denominator; PPV = positive predictive value; NPV = negative 

predictive value; CI = confidence interval. 

  

QFT-GIT (IU/mL) T-SPOT.TB (spots) BCG-adjusted TST (mm) 
  

≥0.35 ≥0.7 ≥4 ≥5 ≥8 ≥50 ≥5 ≥10 ≥15 

Sensitivity n 31 27 10 32 29 14 38 28 17 
 

N 51 51 51 53 53 53 57 57 57 
 

Estimate 60.8% 52.9% 19.6% 60.4% 54.7% 26.4% 66.7% 49.1% 29.8% 
 

95% CI (46.1-74.2) (38.5-67.1) (9.8-33.1) (46-73.5) (40.4-68.4) (15.3-40.3) (52.9-78.6) (35.6-62.7) (18.4-43.4) 

Specificity n 2999 3169 3533 3074 3239 3610 2847 3270 3606 
 

N 3740 3740 3740 3822 3822 3822 3945 3945 3945 
 

Estimate 80.2% 84.7% 94.5% 80.4% 84.7% 94.5% 72.2% 82.9% 91.4% 
 

95% CI (78.9-81.5) (83.5-85.9) (93.7-95.2) (79.1-81.7) (83.6-85.9) (93.7-95.2) (70.7-73.6) (81.7-84.1) (90.5-92.3) 

PPV n 31 27 10 32 29 14 38 28 17 
 

N 772 598 217 780 612 226 1136 703 356 
 

Estimate 4.0% 4.5% 4.6% 4.1% 4.7% 6.2% 3.3% 4.0% 4.8% 
 

95% CI (2.7-5.7) (3-6.5) (2.2-8.3) (2.8-5.7) (3.2-6.7) (3.4-10.2) (2.4-4.6) (2.7-5.7) (2.8-7.5) 

NPV n 2999 3169 3533 3074 3239 3610 2847 3270 3606 
 

N 3019 3193 3574 3095 3263 3649 2866 3299 3646 
 

Estimate 99.3% 99.2% 98.9% 99.3% 99.3% 98.9% 99.3% 99.1% 98.9% 
 

95% CI (99-99.6) (98.9-99.5) (98.4-99.2) (99-99.6) (98.9-99.5) (98.5-99.2) (99-99.6) (98.7-99.4) (98.5-99.2) 
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Table 2-9: Sensitivity, specificity, positive predictive values and negative predictive values for LTBI tests – sensitivity analysis 

among migrants. 

Shown for three years’ follow-up with pre-specified test thresholds. n = numerator; N = denominator; PPV = positive predictive value; NPV = negative 

predictive value; CI = confidence interval. 

  

QFT-GIT (IU/mL) T-SPOT.TB (spots) BCG-adjusted TST (mm) 
  

≥0.35 ≥0.7 ≥4 ≥5 ≥8 ≥50 ≥5 ≥10 ≥15 

Sensitivity n 19 17 9 21 21 8 24 14 8 
 

N 31 31 31 28 28 28 32 32 32 
 

Estimate 61.3% 54.8% 29.0% 75.0% 75.0% 28.6% 75.0% 43.8% 25.0% 
 

95% CI (42.2-78.2) (36-72.7) (14.2-48) (55.1-89.3) (55.1-89.3) (13.2-48.7) (56.6-88.5) (26.4-62.3) (11.5-43.4) 

Specificity n 3065 3270 3629 2706 2838 3254 2600 2946 3193 
 

N 3932 3932 3932 3451 3451 3451 3414 3414 3414 
 

Estimate 78.0% 83.2% 92.3% 78.4% 82.2% 94.3% 76.2% 86.3% 93.5% 
 

95% CI (76.6-79.2) (82-84.3) (91.4-93.1) (77-79.8) (80.9-83.5) (93.5-95) (74.7-77.6) (85.1-87.4) (92.6-94.3) 

PPV n 19 17 9 21 21 8 24 14 8 
 

N 886 679 312 766 634 205 838 482 229 
 

Estimate 2.1% 2.5% 2.9% 2.7% 3.3% 3.9% 2.9% 2.9% 3.5% 
 

95% CI (1.3-3.3) (1.5-4) (1.3-5.4) (1.7-4.2) (2.1-5) (1.7-7.5) (1.8-4.2) (1.6-4.8) (1.5-6.8) 

NPV n 3065 3270 3629 2706 2838 3254 2600 2946 3193 
 

N 3077 3284 3651 2713 2845 3274 2608 2964 3217 
 

Estimate 99.6% 99.6% 99.4% 99.7% 99.8% 99.4% 99.7% 99.4% 99.3% 
 

95% CI (99.3-99.8) (99.3-99.8) (99.1-99.6) (99.5-99.9) (99.5-99.9) (99.1-99.6) (99.4-99.9) (99-99.6) (98.9-99.5) 
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Table 2-10: TB incidence rates in ordinal test strata – sensitivity analysis 

including fifth stratum for quantitative results of each test. 

Shown as point estimates (95% CI). IR = incidence rate. 

QFT-GIT (IU/mL) TB cases Person-years (1,000s) IR (per 1,000) 

≥8 11 1.30 8.49 (4.70-15.33) 

T-SPOT.TB (spots)    

≥100 21 0.94 22.42 (14.62-34.38) 

BCG-adjusted TST (mm)    

≥20 17 1.36 12.46 (7.75-20.04) 
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Table 2-11: Sensitivity, specificity, positive predictive values and negative predictive values for LTBI tests – sensitivity analysis 

with additional test thresholds.  

Shown during three years’ follow-up. n = numerator; N = denominator. 

  QFT-GIT ≥ 8 IU/mL T-SPOT.TB ≥ 100 spots BCG-adjusted TST ≥ 20mm 

Sensitivity n 9 16 12 
 

N 82 81 89 
 

Estimate 11.0% 19.8% 13.5% 
 

95% CI (5.1-19.8) (11.7-30.1) (7.2-22.4) 

Specificity n 7501 7181 7172 
 

N 7755 7363 7445 
 

Estimate 96.7% 97.5% 96.3% 
 

95% CI (96.3-97.1) (97.1-97.9) (95.9-96.7) 

Positive predictive value n 9 16 12 
 

N 263 198 285 
 

Estimate 3.4% 8.1% 4.2% 
 

95% CI (1.6-6.4) (4.7-12.8) (2.2-7.2) 

Negative predictive value n 7501 7181 7172 
 

N 7574 7246 7249 
 

Estimate 99.0% 99.1% 98.9% 
 

95% CI (98.8-99.2) (98.9-99.3) (98.7-99.2) 
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Table 2-12: Sensitivity, specificity, positive predictive values and negative predictive values in UK PREDICT TB cohort – 

sensitivity analysis, with follow-up limited to six months. 

Calculated using pre-specified test thresholds. n = numerator; N = denominator; PPV = positive predictive value; NPV = negative predictive value. 

  

QFT-GIT (IU/mL) T-SPOT.TB (spots) BCG-adjusted TST (mm) 
  

≥0.35 ≥0.7 ≥4 ≥5 ≥8 ≥50 ≥5 ≥10 ≥15 

Sensitivity n 26 22 13 33 31 17 39 29 18 
 

N 45 45 45 44 44 44 49 49 49 
 

Estimate 57.8% 48.9% 28.9% 75.0% 70.5% 38.6% 79.6% 59.2% 36.7% 
 

95% CI (42.2-72.3) (33.7-64.2) (16.4-44.3) (59.7-86.8) (54.8-83.2) (24.4-54.5) (65.7-89.8) (44.2-73) (23.4-51.7) 

Specificity n 6618 7019 7829 6278 6595 7487 5758 6575 7194 
 

N 8394 8394 8394 7913 7913 7913 7783 7783 7783 
 

Estimate 78.8% 83.6% 93.3% 79.3% 83.3% 94.6% 74.0% 84.5% 92.4% 
 

95% CI (78-79.7) (82.8-84.4) (92.7-93.8) (78.4-80.2) (82.5-84.2) (94.1-95.1) (73-75) (83.7-85.3) (91.8-93) 

PPV n 26 22 13 33 31 17 39 29 18 
 

N 1802 1397 578 1668 1349 443 2064 1237 607 
 

Estimate 1.4% 1.6% 2.2% 2.0% 2.3% 3.8% 1.9% 2.3% 3.0% 
 

95% CI (0.9-2.1) (1-2.4) (1.2-3.8) (1.4-2.8) (1.6-3.2) (2.3-6.1) (1.3-2.6) (1.6-3.3) (1.8-4.6) 

NPV n 6618 7019 7829 6278 6595 7487 5758 6575 7194 
 

N 6637 7042 7861 6289 6608 7514 5768 6595 7225 
 

Estimate 99.7% 99.7% 99.6% 99.8% 99.8% 99.6% 99.8% 99.7% 99.6% 
 

95% CI (99.6-99.8) (99.5-99.8) (99.4-99.7) (99.7-99.9) (99.7-99.9) (99.5-99.8) (99.7-99.9) (99.5-99.8) (99.4-99.7) 
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Table 2-13: Associations between quantitative test results and incident TB in multivariable Poisson models adjusted for age, 

gender, ethnicity, country of birth and indication for screening.  

P values for categorical variables with multiple levels indicate likelihood ratio tests. Sample sizes for the multivariable models were 8081 (94 events) 

for QFT-GIT, 7616 (93 events) for T-SPOT.TB and 7506 (101 events) for BCG-adjusted TST. There was no evidence of multi-collinearity between the 

ordinal test strata and other variables (variance inflation factors 1.04-1.11). IRR = incidence rate ratio.  

  IRR 95% CI p   IRR 95% CI p   IRR 95% CI p 

QFT-GIT (IU/mL)       T-SPOT.TB (spots)       BCG-adjusted TST (mm)       

<0.35 1 (ref)     <5 1 (ref)     <5 1 (ref)     

0.35-0.69 3.61 1.59-8.16 <0.0001 5 to 7 1.85 0.57-6.05 <0.0001 5 to 9 5.12 2.95-8.9 <0.0001 

0.7-3.99 6.93 4.15-11.58   8 to 49 7.51 4.51-12.5   10 to 14 5.66 3.13-10.22   

≥4 10.36 6.15-17.44   ≥50 13.41 7.91-22.73   ≥15 10.30 6.19-17.12   

Age       Age       Age       

≤35 1 (ref)     ≤35 1 (ref)     ≤35 1 (ref)     

>35 0.65 0.42-0.99 0.046 >35 0.58 0.38-0.91 0.017 >35 0.71 0.47-1.07 0.10 

Gender       Gender       Gender       

Male 1 (ref)     Male 1 (ref)     Male 1 (ref)     

Female 1.10 0.73-1.65 0.66 Female 1.07 0.71-1.62 0.75 Female 1.03 0.7-1.53 0.88 

Ethnicity       Ethnicity       Ethnicity       

White 1 (ref)     White 1 (ref)     White 1 (ref)     

South Asian 0.98 0.5-1.94 0.68 South Asian 0.88 0.44-1.74 0.69 South Asian 1.03 0.52-2.06 0.95 

Black African or Caribbean 0.68 0.3-1.54   Black African or Caribbean 0.66 0.3-1.47   Black African or Caribbean 0.87 0.4-1.91   

Other 0.89 0.4-1.97   Other 0.75 0.33-1.69   Other 1.00 0.45-2.21   

UK born       UK born       UK born       

No 1 (ref)     No 1 (ref)     No 1 (ref)     

Yes 0.96 0.52-1.78 0.90 Yes 0.96 0.51-1.82 0.91 Yes 0.78 0.42-1.44 0.43 

Contact or migrant       Contact or migrant       Contact or migrant       

Migrant 1 (ref)     Migrant 1 (ref)     Migrant 1 (ref)     

Contact 1.90 1.2-3.02 0.007 Contact 1.98 1.24-3.18 0.004 Contact 1.47 0.94-2.3 0.09 
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2.4 Discussion 

2.4.1 Summary of key findings in context of previous literature 

In this study, I have demonstrated that higher quantitative results for the QFT-

GIT, T-SPOT.TB and TST were strongly associated with higher TB incidence 

rates, supporting existing data derived among adult and paediatric populations, 

from low and high TB incidence settings respectively84,85,88. However, I found that 

implementing higher thresholds would lead to a marked loss of sensitivity for all 

three tests, whereby the majority of incident TB cases would test negative. A 

modest loss of test sensitivity may be acceptable in some circumstances, where 

the programmatic goal is to identify the subgroup with the highest risk of 

progression, if it is accompanied by a substantial improvement in positive 

predictive value. However, positive predictive values for all three tests remained 

modest, even in the highest ordinal strata and when limited to contacts, who 

generally have higher prior probability of developing TB disease. While this is 

likely partly a reflection of the low pre-test probability of incident TB in low TB 

incidence settings (such as the UK), even among risk groups for screening such 

as TB contacts and recent migrants, it also highlights the limitations of our existing 

LTBI tests for predicting incident TB when appropriately implemented in target 

populations.  

A previous analysis showed that TST stratified by BCG status (TST5/15) yielded 

comparable performance to both commercial IGRAs80. The ROC curve data in 

the current analysis reinforces this conclusion, as AUROCs were very similar for 

all three tests, with overlapping 95% confidence intervals. However, my sensitivity 

analysis using TST results without adjustment for prior BCG vaccination were 

very similar to the primary analysis, suggesting that BCG-adjustment was not 

required and that the TST5/15 cut-off (based on previous UK guidance180) may 

have performed more similarly to IGRA in the original UK PREDICT analysis due 

to use of the TST15 cut-off among most participants, as opposed to being driven 

by BCG-stratification80. This interpretation is consistent with previous analyses 

showing that BCG vaccination during infancy is likely to have minimal impact on 

TST measurements later in life181. While UK vaccination policy included school 

age BCG vaccination prior to 2005, most participants in the UK PREDICT cohort 

were born abroad and were likely to have received vaccination in infancy182. 
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Notably, my results demonstrated that higher quantitative TST results (with or 

without BCG-adjustment) were associated with higher TB incidence, in contrast 

to a previous cross-sectional report among 529 individuals suggesting that 

induration size above 5mm does not confer additional risk183. Taken together, 

these results can be explained by TST and IGRAs being differing ways of 

measuring a common underlying T cell mediated response to M. tuberculosis 

antigens, with stronger quantitative responses for each test being associated with 

higher incident TB risk.  

2.4.2 Policy implications 

These data demonstrate that, despite stronger responses being associated with 

higher TB risk, implementing higher diagnostic thresholds for QFT-GIT, T-

SPOT.TB and TST is unlikely to be of use in settings aiming towards TB 

elimination, and fails to bridge the gap to the WHO TPP for incipient TB tests. 

One policy approach may be to offer preventative therapy to all patients with 

positive LTBI tests, using current thresholds, with the offer of additional support 

to complete treatment for those with higher quantitative results, who are at 

highest risk of disease. However, such an approach should ensure that current 

resources are not diverted away from supporting those with lower quantitative 

positive test results to commence and complete preventative therapy, since doing 

so may risk missing the majority of progressors.  

Notably, the maximal Youden index values for each of the index tests were similar 

to currently implemented thresholds. The Youden index assumes equal weighting 

to sensitivity and specificity179. While the trade-off between sensitivity and 

specificity is likely to vary between settings, clinicians, and patients, the WHO 

TPP for incipient TB biomarkers gives equal weighting to each11, suggesting that 

the maximal Youden Index approach may be considered as a reasonable 

approach towards defining an optimal threshold. Nonetheless, in view of the 

modest predictive value of all three LTBI tests, it remains imperative to ensure 

appropriate use in target risk groups who have higher prior probability of 

developing incident TB, in order to mitigate the risks of offering unnecessary 

preventative treatment to low risk individuals, with associated risks of drug toxicity 

to patients, economic costs to health services, and further undermining the 

cascade of LTBI care (Chapter 1.9). 
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2.4.3 Strengths of this study 

This study has a number of strengths. Firstly, it is a large scale (n=9,610), 

prospective cohort study, with standardised clinical data capture and laboratory 

protocols. Extension of follow-up by re-linkage to national surveillance allowed 

lengthy median follow-up (approaching five years), and robust identification of 

incident TB cases through a validated linkage algorithm184. The study population, 

consisting of UK recent TB contacts and migrants from high TB incidence 

settings, is well characterised and highly representative of target groups for LTBI 

screening programmes in low TB incidence settings62. These findings are 

therefore likely to be generalisable to other low TB incidence countries, though 

additional data are required among adults in higher burden settings. Furthermore, 

availability of LTBI test results was high, with QFT-GIT, T-SPOT.TB and TST 

results available for 8,562 (89.1%), 8,079 (84.1%) and 7,833 (81.5%) of 

participants, respectively.  

2.4.4 Study limitations  

A limitation of this study was that an updated version of the QFT-GIT (QFT-Plus), 

which became available late in the follow-up period, was not assessed92. 

Prospective evaluations of the predictive value of this assay for incident TB are 

required.  

Secondly, a positive LTBI test could potentially have led to differential work-up 

bias, since a positive result may have increased clinical suspicion of TB and 

therefore led to more TB diagnoses among participants with positive index 

prognostic tests and exaggerated incidence rate ratios. However, test results (for 

a single test done as part of routine care) were available to participants’ clinicians 

only for TB contacts aged ≤35 years since, during the study period, these were 

the only participants who met national criteria for LTBI testing172. The magnitude 

of this bias is therefore likely to be small.  

Thirdly, only baseline testing was performed. I was therefore unable to assess 

conversions or reversions during serial testing, which may be frequent185. Since 

the reality of both contact and migrant LTBI screening programmes is that serial 

testing (beyond 6 weeks post-contact) would have major cost implications, this 

limitation reflects the constraints of routine programmatic conditions; the ability of 
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the tests to identify progressors at the point of initial screening is therefore a key 

attribute.  

I was also unable to account for any further TB exposure events between 

recruitment and diagnosis, which may have led to an underestimate of test 

sensitivity. However, 66.4% of progression events occurred in the first year 

(median time to disease 188 days), and there is a relatively low risk of TB 

transmission in the UK. Moreover, test sensitivity when using conventional 

thresholds remained 57.8-79.6% in my sensitivity analysis when follow-up was 

limited to six months; the impact of this bias is therefore likely small.  

Exclusion of people who received preventative therapy may have introduced 

selection bias if these individuals were at higher risk of incident TB, resulting in 

systematic underestimation of incident TB risk in the study cohort. Since 

participants with positive LTBI test results (using current thresholds) are more 

likely to be offered preventative treatment, this may have led to underestimation 

of incidence rate ratios in ordinal test strata, compared to the test negative group. 

This limitation reflects a ubiquitous challenge for studies examining the 

prognostic ability of LTBI tests when conducted among populations where 

preventative treatment is the current standard of care for people with LTBI. 

However, only 260 people were excluded on this basis in the current study.  

Finally, the primary analyses conducted in this chapter were univariable, with 107 

outcome events. I undertook a multivariable sensitivity analysis to evaluate 

whether associations between LTBI test ordinal strata and incident TB risk 

changed following adjustment for baseline co-variates. While the multivariable 

analysis was limited by power due to a relatively small number of outcome events, 

this analysis showed little change in the observed incidence rate ratios, thus 

supporting the primary analysis findings.   

2.4.5 Conclusion 

Optimal implementation of existing LTBI diagnostic tests is critical while novel 

commercial assays with improved predictive value are developed. While higher 

quantitative QFT-GIT, T-SPOT.TB and TST results were associated with higher 

TB incidence rates in this study, the implementation of higher diagnostic 

thresholds for these tests comes at the cost of a marked loss of sensitivity, such 
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that only a minority of incident TB cases are detected. Moreover, the 

improvement in positive predictive value with higher test thresholds was modest. 

Incorporation of quantitative results into validated multivariable risk prediction 

models may be of use to further improve prediction of incident TB. However, a 

better biomarker may ultimately be required to transform risk-stratification of 

patients with LTBI. 

2.5 Contribution statement 

This study was a secondary analysis of the UK PREDICT prospective cohort 

study. I led the analyses presented in this chapter - from protocol development to 

completion and dissemination - and co-ordinated data linkage to the UK 

Enhanced TB Surveillance system, in order to extend follow-up of the full study 

cohort for the primary incident TB outcome. 

2.6 Outputs relating to this chapter 

This study is published in the American Journal of Respiratory and Critical Care 

Medicine: 

Gupta RK, Lipman M, Jackson C, Sitch A, Southern J, Drobniewski F, Deeks 

JJ, Tsou C, Griffiths C, Davidson J, Campbell C, Stirrup O, Noursadeghi M, 

Kunst H, Haldar P, Lalvani A, Abubakar I (2020). Quantitative interferon gamma 

release assay and tuberculin skin test results to predict incident tuberculosis: a 

prospective cohort study. Am J Resp Crit Care Med. 

https://doi.org/10.1164/rccm.201905-0969OC 

I also presented this work as an oral presentation at the European Respiratory 

Society Congress, Madrid in September 2019 (awarded a British Thoracic 

Society Travel Grant).  

In addition, I led the analysis of a follow-up study to UK PREDICT which 

evaluated the yield of screening for LTBI and TB disease in London Emergency 

Departments and is published in the European Respiratory Journal: 

Gupta RK, Lule SA, Krutikov M,…, Abubakar I (2021). Screening for 

tuberculosis among high-risk groups attending London Emergency 

https://doi.org/10.1164/rccm.201905-0969OC
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Departments: A prospective observational study. European Respiratory 

Journal; in press https://doi.org/10.1183/13993003.03831-2020

https://doi.org/10.1183/13993003.03831-2020
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3 Objective 2: Evaluation of QuantiFERON-TB Gold 

Plus for predicting incident TB among recent 

contacts: a prospective cohort study 

3.1 Introduction 

A newer generation QuantiFERON assay (QFT-Plus) was recently launched, 

adding a second TB antigen tube (TB2). This incorporates short peptides 

designed to stimulate a CD8+ T cell response, in addition to the CD4+-response 

tube (TB1) included in previous versions. No previous studies have examined the 

predictive ability of QFT-Plus for incident TB, or assessed whether the addition 

of the CD8-targeted antigen tube adds any prognostic value to the assay. I aimed 

to address these knowledge gaps in a previously established cohort of UK TB 

contacts.  

3.2 Methods 

3.2.1 Population and recruitment procedures 

Adult (≥16 years) contacts of pulmonary and extra-pulmonary TB index cases 

were recruited to the Next Generation Tests for Latent Tuberculosis Infection 

existing study from ten London TB clinics, when attending for routine contact 

screening, between July 2015 and November 2016. Following recruitment, 

participants completed a questionnaire and blood sampling was conducted for 

the QFT-Plus assay (at least six weeks from last known TB exposure). Contacts 

with evidence of prevalent TB disease (defined as TB diagnosed within 21 days 

of enrolment as per previous work80), and those accepting preventative therapy 

(offered in accordance with contemporary national guidance74,172) were excluded 

from analysis.  

3.2.2 Outcomes 

Participants were linked to national TB surveillance records held by Public Health 

England, including all statutory TB notifications, to identify those notified with TB 

(until 31/12/2017). Notified TB cases were validated by local record review and 

included culture-confirmed TB or clinically diagnosed with radiological or 
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histological evidence of TB, where a clinician had prescribed treatment with a full 

course of anti-TB treatment.  

3.2.3 Statistical analysis 

Analyses were conducted in Stata (version 15) or R (version 3.5.1). QFT-Plus 

results were interpreted as per manufacturer guidance, with TB antigen 

responses calculated as TB antigen interferon-γ minus unstimulated control 

interferon-γ for all analyses64. I calculated incidence rates and rate ratios relative 

to the negative test category, along with sensitivity, specificity and predictive 

values, including the full duration of follow-up. 

To assess the correlation and agreement between the CD4+- CD8+-stimulating 

tubes, I plotted scatterplots and Bland-Altman plots of TB1 versus TB2 and 

calculated Spearman rank correlation (in view of non-normal distributions) and 

mean differences between tubes186. I then compared ROC curves and AUROCs 

when using TB1 only, TB2 only, and the maximal TB antigen tube (TBmax; higher 

of TB1 and TB2), in order to further evaluate potential incremental value of adding 

the CD8+-stimulating tube in predicting incident TB cases. I also plotted a ROC 

curve for the calculated difference between the TB1 and TB2 tubes (TB2-TB1) 

as a surrogate for the CD8+-specific response, since it has been hypothesised 

that this may identify contacts with recently acquired M. tuberculosis infection, 

who are at highest risk of TB disease93.  

3.3 Results 

3.3.1 Overview of study cohort 

A total of 623 contacts were recruited (Figure 3-1), of whom 532 (85.4%) had 

QFT-Plus results (89 missing; 2 indeterminate) and were followed-up for a 

median 1.93 years (IQR 1.65-2.21). QFT-Plus results were positive in 180/532 

(33.8%) (Table 3-1), of whom 39 (21.7%) commenced preventative therapy. After 

excluding participants with missing results, those commencing preventative 

treatment, and with prevalent TB (n=1; notified 3 days after recruitment), I 

included 492 participants in the primary analysis.  
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Baseline characteristics were similar between included and excluded 

participants, except for those who commenced preventative therapy being 

younger than those who did not (Table 3-1).  

Figure 3-1: Study flow chart showing participants included and excluded in 

primary analysis. 

 

  

623 contacts of TB index cases recruited and 
included in baseline analysis

140 QFT-Plus positive

8 incident TB cases;

median days to TB 216  

(range 90-376)

352 QFT-Plus negative

2 incident TB cases;

median days to TB 509

(range 329-688)

Exclusions:

- 89 QFT-Plus missing

- 2 QFT-Plus indeterminate

- 1 prevalent TB case (3 days after recruitment)

- 39 received preventative treatment
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Table 3-1: Baseline characteristics of study cohort, stratified by 

QuantiFERON-TB Gold Plus (QFT-Plus) results and provision of 

preventative therapy (PT).  

Data presented as n(%), unless stated otherwise. IQR = interquartile range. 

 
QFT-Plus -# QFT-Plus + QFT-Plus 

missing* 
All 

  
No PT# PT 

  

Age 
     

Median (IQR) 31 (25-43) 43 (32-54) 30 (26-35) 31.5 (23.7-
49) 

33 (25-46) 

Missing 3 (0.9) 2 (1.4) 0 (0) 1 (1.1) 6 (1) 

Gender 
     

Male 165 (46.9) 76 (53.9) 24 (61.5) 37 (40.7) 302 (48.5) 

Female 180 (51.1) 62 (44) 15 (38.5) 51 (56) 308 (49.4) 

Missing 7 (2) 3 (2.1) 0 (0) 3 (3.3) 13 (2.1) 

Ethnicity 
     

White 95 (27) 27 (19.1) 9 (23.1) 31 (34.1) 162 (26) 

South Asian 117 (33.2) 55 (39) 13 (33.3) 33 (36.3) 218 (35) 

Black African or 
Caribbean 

67 (19) 30 (21.3) 7 (17.9) 15 (16.5) 119 (19.1) 

Other 63 (17.9) 24 (17) 10 (25.6) 9 (9.9) 106 (17) 

Missing 10 (2.8) 5 (3.5) 0 (0) 3 (3.3) 18 (2.9) 

UK born 
     

No 235 (66.8) 126 (89.4) 33 (84.6) 66 (72.5) 460 (73.8) 

Yes 111 (31.5) 11 (7.8) 6 (15.4) 24 (26.4) 152 (24.4) 

Missing 6 (1.7) 4 (2.8) 0 (0) 1 (1.1) 11 (1.8) 

Contact type 
     

Household 210 (59.7) 96 (68.1) 30 (76.9) 49 (53.8) 385 (61.8) 

Family non-household 19 (5.4) 7 (5) 2 (5.1) 3 (3.3) 31 (5) 

Work or Social 62 (17.6) 19 (13.5) 4 (10.3) 14 (15.4) 99 (15.9) 

Other 13 (3.7) 3 (2.1) 2 (5.1) 2 (2.2) 20 (3.2) 

Missing 48 (13.6) 16 (11.3) 1 (2.6) 23 (25.3) 88 (14.1) 

Diabetes      

No 318 (90.3) 120 (85.1) 38 (97.4) 83 (91.2) 559 (89.7) 

Yes 20 (5.7) 18 (12.8) 0 (0) 6 (6.6) 44 (7.1) 

Missing 14 (4) 3 (2.1) 1 (2.6) 2 (2.2) 20 (3.2) 

HIV      

No 331 (94) 137 (97.2) 37 (94.9) 84 (92.3) 589 (94.5) 

Yes 4 (1.1) 0 (0) 1 (2.6) 2 (2.2) 7 (1.1) 

Missing 17 (4.8) 4 (2.8) 1 (2.6) 5 (5.5) 27 (4.3) 

Total 352 141 39 91 623 
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3.3.2 Prognostic value of QFT-Plus 

Ten incident TB cases were notified during follow-up (median 222 days after 

recruitment; range 90-688). TB incidence rates (per 1,000 person-years) were 

30.6 (95% CI 15.3-61.1) and 3.0 (0.8-12.1) in the QFT-Plus positive and negative 

groups, respectively, giving an IRR of 10.1 (2.2-47.7; Table 3-2). QFT-Plus 

sensitivity for incident TB was 80.0% (44.4-97.5). The positive and negative 

predictive values were 5.7% (2.5-10.9) and 99.4% (98.0-99.9), respectively. 

Characteristics of the participants notified with prevalent or incident TB during 

follow-up are shown in Table 3-3. 

Table 3-2: Incidence rates, rate ratios, and predictive values for incident TB 

during follow-up, stratified by QuantiFERON-TB Gold Plus (QFT-Plus) 

result.  

Data presented as point estimates (95% CI). 

 
QFT-Plus + QFT-Plus - 

TB cases 8 2 

Total participants 140 352 

Person-years 261.6 663.0 

Incidence rate per 1,000 person-years  30.6 (15.3-61.1) 3.0 (0.8-12.1) 

Incidence rate ratio 10.1 (2.2-47.7) 

Positive predictive value 5.7 (2.5-10.9) 

Negative predictive value 99.4 (98.0-99.9) 

Sensitivity 80.0 (44.4-97.5) 

Specificity 72.6 (68.4-76.5) 
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Table 3-3: Characteristics of prevalent and incident TB cases notified during follow-up.  

Gender Age 

(years) 

Ethnicity QFT-Plus Interval to TB (days) TB Culture Site of disease Immunocompromise 

Female 32 Indian Positive 3 (prevalent) Positive Uterus None 

Male 16 Black African Positive 90 Negative Pleural None 

Male 21 Mixed Positive 137 Negative Lymph node None 

Female 44 Indian Positive 182 Positive Pulmonary None 

Female 21 Mixed Positive 210 Negative Lymph node None 

Male 33 Indian Positive 222 Positive Lymph node None 

Male 52 Indian Positive 296 Positive Pulmonary Diabetic 

Male 24 Black African Negative 329 Positive Pleural None 

Female 27 Black African Positive 342 Negative Pleural None 

Male 44 Mixed Positive 376 Negative Pleural None 

Male 27 Black African Negative 688 Negative Lymph node None 
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3.3.3 Incremental value of TB2 tube 

There was strong correlation and agreement between the TB1 and TB2 

interferon-γ responses (Spearman rank R = 0.9; p <0.001; mean difference 0.03 

IU/mL; Figure 3-2). ROC curves for prediction of incident TB during all follow-up 

were similar for the TB1, TB2 and maximal TB antigen responses (AUROCs 0.80-

0.82; Figure 3-3). TB2 minus TB1, however, did not discriminate TB progressors 

from non-progressors (AUROC 0.44; 95% CI 0.20-0.68).  
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Figure 3-2: Association of interferon-γ responses in the TB1 and TB2 tubes 

shown as (a) scatterplot; and (b) Bland-Altman plot.  

R indicates Spearman rank correlation with accompanying p value. Adapted from 187.  

 

Figure 3-3: ROC curves showing performance of QFT-Plus for predicting 

incident TB. 

TB antigen tubes (TB1 and TB2) are shown separately, along with difference between 

them (TB2-TB1) and maximum (TBmax). Adapted from 187.  
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3.4 Discussion 

3.4.1 Summary of key findings 

In this study, QFT-Plus performance appeared comparable to published 

evaluations of QFT-GIT and T-SPOT.TB, with an IRR of 10.1, 80% sensitivity for 

detection of incident TB, and an overall positive predictive value for incident TB 

of 5.7%80. Interferon-γ responses in the TB1 and TB2 tubes had strong correlation 

and agreement, and ROC curves therefore showed minimal difference between 

them for predicting incident TB. As a result, the calculated difference between 

TB1 and TB2 responses, as a proxy for the CD8-specific response, did not predict 

incident TB. My cohort study findings support and extend previous data showing 

similar performance of QFT-Plus to QFT-GIT in cross-sectional studies188.  

3.4.2 Strengths of the study 

This is the first published evaluation, to our knowledge, of the prognostic value of 

QFT-Plus test. The prospective design allowed the collection of detailed clinical, 

demographic and laboratory data. Participants were recruited while attending 

routine contact-tracing services, ensuring the study population was 

representative of TB contacts. Moreover, follow-up was robust through linkage to 

national surveillance records using a validated matching algorithm184, minimising 

risk of missing incident TB cases. In addition, QFT-Plus results measured in this 

study were not used to inform clinical management decisions, since this test was 

not routinely implemented in the NHS during the study period, reducing the risk 

of differential work-up bias.  

3.4.3 Study limitations 

Despite recruitment of 492 recent TB contacts with valid test results, the number 

of TB progressors was small, reflecting low progression risk even among 

contacts, meaning that the study is not powered to detect differences in 

prognostic value for incident TB between the TB1 and TB2 antigen tubes. 

Nonetheless, our findings that TB1 and TB2 responses had strong correlation 

and agreement, and that the difference between the tubes (representing the CD8-

specific response) had no discrimination, together suggest that any incremental 

prognostic value of the second tube is likely to be limited. Future studies could 
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seek to evaluate the prognostic ability of QFT-Plus with greater precision using 

larger sample sizes and with direct head-to-head comparisons to QFT-GIT, T-

SPOT.TB and TST among the same participants.  

A second limitation was that the provision of preventative therapy to a subset of 

the QFT-Plus positive patients could have led to selection bias. In particular,  

preventative treatment may have been more likely to be offered to people at 

higher risk of developing TB, which may have led to underestimation of the 

prognostic ability of QFT-Plus. However, while the subgroup who received 

preventative therapy were younger than those who did not (reflecting national 

policy at the time of the study74,172), other measured characteristics were similar, 

suggesting that the magnitude of this bias is likely to be relatively small.  

Third, the TB contacts included both pulmonary and extra-pulmonary index 

cases, reflecting national contact screening policy during the study period172. 

positive predictive value of QFT-Plus may be higher among populations including 

only pulmonary TB contacts, due to higher pre-test probability of incident TB 

disease. However, previous evaluations of the QFT-GIT and T-SPOT.TB have 

also included extra-pulmonary contacts, which allows the current study findings 

to be put into this context80.  

Serial testing (before and after exposure) was not performed, meaning that I was 

unable to assess QFT-Plus conversions over time, which may provide a more 

reliable measure of recent M. tuberculosis infection. QFT-Plus results were also 

missing or indeterminate for 91/623 patients (14.6%), in keeping with the 

proportion of missing results for other IGRAs in a recent evaluation80. However, 

these patients’ characteristics were similar to the overall study population, 

suggesting that risk of subsequent selection bias was likely small.  

I included both microbiologically confirmed and clinically diagnosed TB cases in 

my outcome definition, in keeping with previous IGRA evaluations80,88,189–192. The 

rationale for this is that extra-pulmonary TB, which occurs frequently among TB 

cases occurring in foreign-born people living in the UK193, is often challenging to 

prove microbiologically. However, all TB cases diagnosed during the study 

received a full course of TB therapy, and none were de-notified. It is therefore 
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likely that these represented true TB cases, with low risk of outcome 

misclassification.  

Finally, in this study, I did not seek to assess whether TB1 and TB2 could be 

considered as independent predictors in a prognostic prediction model. However, 

this is not how QFT Plus is currently implemented and any such approach is likely 

to be limited by the very strong correlation and agreement between the two tubes.  

3.4.4 Conclusion 

In summary, in this evaluation of the prognostic ability of QFT-Plus for incident 

TB, performance was comparable to other commercial IGRAs. Addition of the 

TB2 tube is likely to have limited, if any, incremental prognostic value.  

3.5 Contribution statement 

This primary data for this chapter were collected in the ‘Next Generation Tests 

for Latent Tuberculosis Infection’ study, led by Professor Ibrahim Abubakar. I led 

the analyses presented in this chapter from protocol development to completion 

and dissemination. I also coordinated data linkage to the UK Enhanced TB 

Surveillance system, in order to identify incident TB cases during follow-up.  

3.6 Outputs relating to this chapter 

This study is published in Annals of the American Thoracic Society: 

Gupta RK, Kunst H, Lipman M, Noursadeghi M, Jackson C, Southern J, Imran 

A, Lozewicz S, Abubakar I (2020). Evaluation of QuantiFERON-TB Gold Plus 

for predicting incident tuberculosis among recent contacts: a prospective cohort 

study. Annals ATS. https://doi.org/10.1513/AnnalsATS.201905-407RL  

https://doi.org/10.1513/AnnalsATS.201905-407RL
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4 Objective 3: Development and validation of a 

personalised risk predictor for incident TB in settings 

aiming towards pre-elimination: an individual 

participant data meta-analysis 

4.1 Introduction 

The risk of TB among individuals with a clinical diagnosis of LTBI is highly variable 

between study populations, with incidence rates ranging from 0.3-84.5 per 1,000 

person-years of follow-up66,76. Quoting the 5-15% lifetime estimate is therefore 

likely to be inaccurate for many people. Thus, improved risk-stratification is 

required to enable more precise delivery of preventative treatment to those most 

likely to benefit16,194. While the magnitude of the T cell response to M. 

tuberculosis is associated with incident TB risk, implementing higher diagnostic 

thresholds alone does not improve prediction on a population level due to a 

marked loss of sensitivity with this approach (Chapter 2)176.  

In this study, I first sought to characterise the population risk of TB among people 

tested for LTBI using an IPD-MA. In order to study progression from LTBI to TB 

disease with low risk of re-infection with M. tuberculosis during follow-up, I 

focused on settings with low transmission (defined as annual incidence 

≤20/100,000 persons). I then aimed to develop and validate a directly data-driven 

personalised risk predictor for incident TB (PERISKOPE-TB) that combines a 

quantitative T cell response measure with key clinical covariates.  

4.2 Methods 

4.2.1 Systematic review and pooling of individual participant data 

I conducted a systematic review and IPD-MA, in accordance with Preferred 

Reporting Items for a Systematic Review and Meta-analysis of Individual 

Participant Data standards195, to investigate the risk of progression to TB disease 

among people tested for LTBI in low transmission settings (PROSPERO 

CRD42018115357). I searched Medline and Embase on 09/01/2019 for studies 

published 01/01/2002 to 31/12/2018 using comprehensive terms for ‘TB’, ‘IGRA’, 

‘TST’, ‘latent TB’, and ‘predictive value’, without language restrictions (Table 4-1).  
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Table 4-1: Medline search strategy for systematic review and IPD-MA to 

investigate risk of progression to TB among people tested for LTBI. 

1. exp TUBERCULOSIS/ or tuberculosis.mp. or exp MYCOBACTERIUM TUBERCULOSIS/ 

or tb.mp.  

2. exp Interferon-gamma Release Tests/  

3. interferon gamma release.mp.  

4. igra.mp.  

5. t-spot*.mp.  

6. tspot*.mp.  

7. quantiferon*.mp.  

8. qft*.mp.  

9. 2 or 3 or 4 or 5 or 6 or 7 or 8  

10. exp TUBERCULIN TEST/  

11. tuberculin skin test.mp.  

12. tst.mp.  

13. purified protein derivative.mp.  

14. ppd.mp.  

15. mantoux.mp.  

16. 10 or 11 or 12 or 13 or 14 or 15  

17. exp latent tuberculosis/  

18. latent.mp.  

19. 17 or 18  

20. 9 or 16 or 19  

21. exp "Predictive Value of Tests"/  

22. predict*.mp.  

23. prognos*.mp.  

24. progress*.mp.  

25. ((tb adj2 developed) or (tuberculosis adj2 developed)).mp.  

26. ppv.mp.  

27. npv.mp.  

28. (incidence rate ratio or irr).mp.  

29. 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28  

30. 1 and 20 and 29  

31. limit 30 to yr="2002 -2018"  

32. limit 31 to "humans only (removes records about animals)"  

33. remove duplicates from 32 
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Longitudinal studies that primarily aimed to assess the risk of progression to TB 

disease among individuals tested for LTBI and that were conducted in a low TB 

transmission setting were eligible for inclusion (Table 4-2). 

Table 4-2: Eligibility criteria for systematic review and IPD-MA to investigate 

risk of progression to TB among people tested for LTBI. 

Inclusion criteria 

1. Primary objective is to assess of risk of progression to TB disease among individuals 

tested for LTBI. 

2. Longitudinal study design (prospective or retrospective) 

3. Minimum median duration of follow-up one year. 

4. Conducted in a low-TB incidence setting (defined as annual incidence ≤20/100,000 

persons) at midpoint of study. 

5. Commercially available interferon-gamma release assay (IGRA) or the tuberculin 

skin test (TST) included as one of the diagnostic tests for LTBI. 

6. Minimum individual level exposure variables recorded should include age, gender, 

indication for LTBI screening, result of LTBI screening test (positive or negative), and 

whether preventative therapy was provided.  

7. Minimum individual level outcome variables recorded should include presence or 

absence of active TB during follow-up, date of TB diagnosis, date of follow-up 

censor. 

8. Study participants should be recruited after 1st January 2001. 

Exclusion criteria 

1. Studies in which all patients with evidence of LTBI received preventative therapy.  

2. Studies testing for LTBI with TST only that do not have data on prior BCG 

vaccination.  

3. Studies limited to single contact investigations. 

4. Studies without associated full-text publications. 

Two independent reviewers conducted first and second screens for the 

systematic review, with arbitration by a third reviewer where required. All titles 

and abstracts identified by the search were included in the first screen; relevant 

articles were selected for the second screen, which included full text review. 

Following confirmation of study eligibility, corresponding authors of original 

studies were invited to contribute individual participant data via a data safe haven. 

Received data were mapped to a master variables list, and the integrity of the 

data were examined by comparing original reported results with re-analysed 

results using contributed data. Quality assessment was performed using a 

modified version of the Newcastle-Ottawa scale for cohort studies196. 
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4.2.2 Definitions 

Participants entered the cohort on the day of LTBI screening or diagnosis, and 

exited on the earliest of censor date (last date of follow-up), active TB diagnosis 

date, date of death, or date of loss to follow-up (where available). LTBI was 

defined as any positive LTBI test (TST or commercial IGRA), using TST 

thresholds as defined by the contributing study (a 10mm cut-off was used for 

studies that assessed multiple thresholds). Quantitative IGRA thresholds were 

calculated according to standard manufacturer guidelines. IGRAs included three 

generations of QuantiFERON TB assays (QFT-GIT, QuantiFERON Gold, QFT-

Plus), which were assumed to be equivalent187, and T-SPOT.TB. 

Microbiologically confirmed and/or clinically diagnosed TB cases were included, 

as per contributing study definitions. Death was not included as a competing risk 

due to the low risk of mortality among the study cohorts.  

In the absence of a widely accepted temporal distinction between prevalent and 

incident disease, prevalent TB at the time of screening was arbitrarily defined as 

a TB diagnosis within 42 days of enrolment; these cases were omitted from the 

primary analysis. Alternative shorter and longer temporal definitions were tested 

as sensitivity analyses. Participants with missing outcomes or durations of follow-

up were considered lost to follow-up and excluded. ‘Preventative treatment’ was 

defined as any LTBI treatment regimen recommended by the WHO62. All 

contributing studies included regimens consistent with this guidance; the 

effectiveness of each regimen was assumed to be equivalent152.  

4.2.3 Population-level analysis 

4.2.3.1 One-stage IPD-MA: survival analysis 

In a one-stage IPD-MA approach, I used flexible parametric survival models, with 

a random effect intercept by source study to account for between study 

heterogeneity, to examine population level cumulative TB incidence over two and 

five years. The rationale for using flexible parametric survival models was that, in 

contrast to Cox proportional hazards models, they enable estimation of baseline 

risk throughout follow-up197. Flexible parametric survival models also estimate 

baseline hazard functions more flexibly than Poisson models (which assume 

constant hazards) or Weibull models (which assume monotonic changes in 



108 
 

hazards over time) by using restricted cubic splines171. I examined cumulative 

incident TB risk stratified by LTBI screening result (positive vs negative) and 

provision of LTBI treatment (commenced vs. not commenced). I then further 

examined cumulative incident TB risk among untreated participants with LTBI, 

stratified by indication for screening (recent child contacts (<15 years) vs adult 

contacts vs migrants vs immunocompromised), by separately fitting random-

effect flexible parametric survival models to each risk group. Child contacts were 

further stratified by age (<5 vs. 5 to 14 years). 

4.2.3.2 Two-stage IPD-MA: incidence rates 

I also calculated TB incidence rates (per 1,000 person-years) in a two-stage IPD-

MA approach, stratified by LTBI screening result, provision of LTBI treatment, 

and indication for screening. The rationale for this analysis was to complement 

the one-stage IPD-MA survival approach through forest plot visualisation and 

meta-analysis of study-level incidence rates. In contrast to the one-stage survival 

analyses, rates were calculated separately for the 0-2 year and 2-5 year follow-

up intervals, since risk of disease has been consistently reported to be higher in 

the initial two-year interval16. Pooled incidence rate estimates for each risk group 

and follow-up interval were derived using random intercept Poisson regression 

models, without continuity correction for studies with zero events, in the meta 

package in R198. I adopted this approach in preference to an inverse variance 

meta-analysis method (with continuity correction) since the latter is prone to 

biased estimates when outcomes are rare199, as may be the case for incident TB.  

4.2.4 Prediction model analysis 

4.2.4.1 Variables of interest 

I then developed and validated a personalised prediction model for incident TB, 

reported in accordance with transparent reporting of a multivariable prediction 

model for individual prognosis or diagnosis (TRIPOD) guidance200. For this 

analysis, I included studies that reported quantitative LTBI test results, proximity 

and infectiousness (based on sputum smear status) of index cases for contacts, 

and country of birth and time since entry for migrants, since I considered these 

variables fundamental a priori.  Using this subset of the data, I examined the 

availability of a range of variables of interest, specified a priori, in the contributing 
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datasets to determine eligibility for inclusion as candidate predictors in the model 

(Table 4-3). This list of variables was based on the UK PREDICT data dictionary80 

and was considered as a starting point for exploration of data availability and 

definitions across studies.  

Table 4-3: Pre-specified variables of interest as potential candidate 

predictors for prognostic model. 

Category Variables 

Demographics Age, gender 

Exposure to M. 

tuberculosis 

Country of birth, year of migration, presence/absence of recent contact 

with index case, contact proximity, time since exposure, index case 

site of disease, index case sputum smear status, index case drug 

susceptibility. 

Clinical risk factors 

for progression 

Body mass index, diabetes, transplant receipt, chronic renal failure, 

malignancy, anti-TNF therapy, corticosteroid exposure, silicosis, HIV 

status, blood CD4 count, smoking, problem drug use, alcohol excess, 

history of homelessness, imprisonment, BCG vaccination history, 

previous TB history 

LTBI screening IGRA / TST result (binary and quantitative), TST date and result, LTBI 

treatment acceptance and completion 

I determined that the following predictors were available from a sufficient number 

of datasets for further evaluation: age, gender, quantitative LTBI test result, 

previous BCG vaccination, recent contact (including proximity and infectiousness 

of index case), migration from a high TB incidence setting, time since migration, 

solid organ or haematological transplant receipt, HIV status and TB preventative 

treatment commencement.  

4.2.4.2 Variable transformations 

In Chapter 2, I demonstrated that higher quantitative TST, QFT-GIT and T-

SPOT.TB results are associated with risk of incident TB176. However, each LTBI 

test is reported using different scales, and it has hitherto been unclear whether 

quantitative values of each test are equivalent with respect to incident TB risk.  

To assess this further, I examined a sub-population of the entire cohort where all 

three tests were performed among the same participants in head-to-head studies. 

In view of their skewed distributions, I normalised quantitative results for the TST, 

QFT-GIT and T-SPOT.TB to a percentile scale using this head-to-head 

population, and examined the association between normalised result and incident 
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TB risk using Cox proportional hazards models with restricted cubic splines. 

Since TST cut-offs are frequently stratified by BCG vaccination and HIV 

status201,202, I also examined whether these variables modified the association 

between quantitative TST measurement and incident TB risk in the head-to-head 

subpopulation. Since there was no evidence that including interaction terms for 

either BCG vaccination or HIV improved model fit (based on Akaike Information 

Criteria (AIC)), I used unadjusted TST measurements from this point. This 

analysis revealed that the normalised percentile results for each test (unadjusted 

TST, QFT-GIT and T-SPOT.TB) appeared to be associated with similar risk of 

incident TB (Figure 4-1).  

Figure 4-1: Risk of incident TB with percentile normalised quantitative test 

results for the TST, QFT-GIT and T-SPOT.TB.  

Modelled using Cox regression among head-to-head population among whom all three 

tests were performed (n=8,335; 158 TB cases; 3 studies). Material from 203. 

 

The LTBI tests implemented differed between contributing studies. From this 

point, all LTBI test results were therefore normalised to this percentile scale to 
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enable data harmonisation across studies, by transforming raw quantitative 

results to the relevant percentile using look-up tables derived from the head-to-

head population (Supplementary Material; Chapter 8.1). Since most people 

evaluated for LTBI under routine programmatic conditions have a single test 

performed, I only included one test result per participant in the prediction model. 

I preferentially included tests where quantitative results were available. Where 

quantitative results were available for more than one test, I preferentially included 

the QuantiFERON result (since this was the most commonly used test in the 

dataset), followed by T-SPOT.TB, and then TST.  

Recent TB contacts were categorised as either ‘smear positive and household’ 

or ‘other’ contacts, since there was no evidence of separation of risk among 

additional subgroups of the ‘other’ contacts stratum during exploratory univariable 

analyses (Figure 4-2).  

Figure 4-2: Cumulative TB incidence, stratified by proximity and 

infectiousness of index cases among contacts. 

PTB = pulmonary TB index case; EPTB = extra-pulmonary TB index case. Material 

from 203. Shows by years since LTBI testing. Confidence intervals not shown to aid 

visual clarity.  
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Since I considered migration from a high TB burden country (defined as annual 

TB incidence ≥100/100,000 persons at the year of migration) to be a proxy for 

prior TB exposure, I included this in a composite ‘TB exposure’ variable, which 

included four mutually-exclusive levels: household contact of smear-positive 

index case; ‘other’ contact; migrant from country with high TB incidence, without 

recent contact; and no exposure. There was no evidence of separation of incident 

TB risk when stratified by TB incidence in country of birth above the binary 

country of birth threshold (TB incidence ≥100/100,000 persons) among migrants, 

or when stratified by country of birth among recent contacts (Figure 4-3, Figure 

4-4).  

Figure 4-3: Cumulative TB incidence, stratified by incidence in country of 

birth among migrants from high TB burden countries.  

P value represents Log-rank test. Material from 203. 
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Figure 4-4: Cumulative TB incidence, stratified by country of birth among 

recent contacts.  

P value represents Log-rank test. Material from 203. 

 

Age and normalised test result variables were modelled using restricted cubic 

splines (using a default of five knots placed at recommended intervals175) to 

account for their non-linear associations with incident TB, as described in Chapter 

2.2.3. These transformations were pre-specified and were done prior to multiple 

imputation. A data dictionary and summary of all candidate predictor variables 

considered for inclusion in the prognostic model is provided in Table 4-4. 

Table 4-4: Data dictionary of candidate predictors considered for inclusion 

in prognostic model. 

Variable Description Levels 

Age Age in years Numeric 

Sex Gender Male, Female 



114 
 

BCG Previously received BCG 

vaccination (self-report, presence of 

scar or documented evidence) 

Yes, No 

Percentile LTBI test 

result 

Normalised LTBI test result Numeric 

Exposure Composite TB exposure variable Household contact of smear 

positive index case 

‘Other’ contacts 

Migrant from high TB burden 

country with no contact 

No exposure 

Months since 

migration 

Months since migration for migrants 

with no TB contact 

Numeric 

HIV HIV status Positive, Negative 

Transplant Previously received haematological 

or solid organ transplant (assumed 

negative when missing) 

Yes, No 

LTBI treatment Commenced preventative treatment Yes, No 

4.2.4.3 Multiple imputation 

Age, sex, time since migration for migrants, quantitative LTBI test results and 

LTBI treatment commencement were available for >95% of participants. BCG 

vaccination history was systematically missing for 5/15 studies and HIV status 

was systematically missing from 6/15 studies, all conducted among recent TB 

contacts. A full summary of missingness of candidate predictor variables is 

provided in the Supplementary Material (Chapter 8.1).  

I performed multi-level multiple imputation to account for sporadically and 

systematically missing data, while respecting clustering by source study, in 

accordance with recent guidance204 using the micemd package in R205. This 

approach assumes missingness at random, whereby the pattern of missingness 

can be explained by the observed data206. I used predictive mean matching for 

continuous variables, due to their skewed distributions. I included all variables 

(including transformations) assessed in the downstream prediction model in the 

imputation model, along with auxiliary variables, to ensure compatibility of the 

imputation and analysis models. The incident TB outcome and Nelson-Aalen 

estimator variables were also included in the imputation model.  

Multi-level imputation was done separately for contacts and non-contacts due to 

expected heterogeneity between these groups. I generated ten multiply imputed 
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datasets, with 25 between-imputation iterations. Model convergence was 

assessed by visually examining plots of imputed parameters against iteration 

number. All downstream analyses were done in each of the ten imputed datasets; 

model coefficients and standard errors were combined using Rubin’s rules207.  No 

imputation was done for participants missing binary LTBI test results, or for those 

with missing outcomes; these individuals were excluded. For recent TB contacts 

or people screened due to HIV infection with missing data on transplant status, 

this was assumed negative due to the very low prevalence of transplant receipt 

when observed among these risk groups (<0.5%). 

4.2.4.4 Variable selection and final model development 

I then performed backward selection of the nine candidate predictors in each of 

the imputed datasets, using AIC. This process starts with a full model including 

all candidate variables. Predictors are then iteratively removed, and model fit is 

re-assessed based on AIC; predictors which do not lead to an increase in AIC 

when removed are not included in the selected model. I included predictors that 

were retained in more than 50% of the imputed datasets in the final model.  

T cell responses to M. tuberculosis may be impaired in the context of 

immunosuppression (including among people with HIV or transplant recipients)66. 

I therefore also tested whether there was a significant interaction between HIV or 

transplant and the normalised percentile test result variable, in order to assess 

whether the association between the quantitative test result and incident TB risk 

varied according to HIV or transplant status. This analysis showed no evidence 

of effect modification, based on AIC, thus these interaction terms were not 

included in the final model.  

Similar to the population-level analysis, I used flexible parametric survival models 

for the prediction modelling in order to facilitate estimation of baseline risk 

throughout the duration of follow-up208, using the rstpm2 package in R209. I 

examined a range of degrees of freedom for the baseline hazard, using 

proportional hazards and odds scales, and selected the final model parameters 

based on the lowest AIC across the imputed datasets. Visual inspection of 

survival curves suggested non-proportional hazards for the composite exposure 

category; I therefore assessed whether including this variable as a time-varying 
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covariate (by including an interaction between the composite exposure covariate 

of interest and time) improved model fit210. Since the AIC for the time-varying 

covariate model was lower across all imputed datasets, this time-varying 

covariate approach was used for the final model.  

4.2.4.5 Internal-external cross-validation 

Following selection of the final model, I used the internal-external cross-validation 

(IECV) framework for model validation211. In this process, one entire contributing 

study dataset is iteratively discarded from the model training set and used for 

external validation. This process is repeated until each dataset has been used 

once for validation. Compared to an approach of splitting the full dataset into 

development and validation cohorts, this framework has the advantage of utilising 

all contributing data for final model development, while facilitating concurrent 

assessment of between-study heterogeneity and generalisability across 

contributing studies211,212.  

The primary outcome for IECV was two-year risk of incident TB. I included 

datasets with a minimum of five incident TB cases, and where participants had 

been included regardless of LTBI test result, as the primary validation sets. 

During validation, I assessed discrimination (how well the predictions differentiate 

incident TB cases from non-progressors), and calibration (how well predicted risk 

matched observed risk)197.  

I assessed model discrimination using the C-statistic, equivalent to the AUROC 

(as discussed in Chapter 2.2.3), for two-year TB risk. Model calibration was 

assessed by visually examining calibration plots of predicted risk vs. Kaplan 

Meier estimated observed two-year risk in quintiles, and using the calibration 

slope and calibration-in-the-large statistics177. Calibration slopes >1 suggest 

under-fitting (predictions are not varied enough), while slopes <1 indicate over-

fitting (predictions are too extreme). Slopes were calculated by fitting survival 

models with the model linear predictor as the sole predictor; the calculated 

coefficient for the linear predictor provides the calibration slope. Calibration-in-

the-large indicates whether predictions are systematically too low (calibration-in-

the-large >0) or too high (calibration-in-the-large <0). I calculated calibration-in-

the-large for each validation set by fixing all model coefficients from model 
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development (including the baseline hazard terms), and re-estimating the 

intercept. The difference between the development model and recalculated 

validation model intercepts provided the calibration-in-the-large statistic213.  

4.2.4.6 Pooling of IECV parameters and random-effects meta-analysis 

IECV was performed on each imputed dataset. Validation set C-statistics, 

calibration slopes and calibration-in-the-large metrics were pooled for each study 

across imputations using Rubin’s rules207. I then meta-analysed these metrics 

across validation studies with random-effects, using logit-transformed C-statistics 

as previously recommended214, to derive pooled discrimination and calibration 

estimates. The IECV validation sets were also pooled, with averaging of the 

predicted two-year risk of TB for each individual in the validation sets across 

imputations, for downstream decision curve analyses as described below. 

4.2.4.7 Decision curve analysis 

Decision curve analysis extends the evaluation of prediction model validation 

parameters by assessing the potential clinical utility of a model to inform medical 

decision-making in practice215–217. The key metric in decision curve analysis is 

‘net benefit’. This measure quantifies the proportion of true positive cases 

detected minus the proportion of false positives, with weighting by the ‘threshold 

probability’215.  

Net benefit, calculated as per the equation shown in Figure 4-5, is plotted across 

a range of ‘threshold probabilities’. The threshold probability reflects the 

percentage cut point for the prediction model, above which an intervention (such 

as treatment initiation) is recommended. The threshold probability also reflects 

the risk (or cost) / benefit ratio of initiating treatment. For example, a threshold 

probability of 1% corresponds to a risk: benefit ratio of 1:99 (whereby the benefit 

of the intervention for true positive patients is considered to be 99 times greater 

than the risk for false positive patients). Another way to interpret this is as a 

number willing to treat. For example, a threshold probability of 1% reflects a 

number willing to treat of 100. Overall, clinicians and patients who are more 

concerned about a disease endpoint are more likely to have lower threshold 

probabilities, while those more concerned about adverse effects of medical 

interventions (such as drug side-effects) will have higher threshold probabilities. 
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These complementary interpretations can be illustrated by relabelling the 

threshold probability axis, as in the Figure 4-5 schematic.  

Figure 4-5: Decision curve analysis schematic showing net benefit equation 

and comparison of multiple decision curves. 

Adapted from Vickers et al (2016) 217. Net benefit approaches to the evaluation of 

prediction models, molecular markers, and diagnostic tests BMJ; 352 :i6 

https://doi.org/10.1136/bmj.i6 under CC BY-NC 3.0 license. pt = threshold probability; N 

= total sample size. 

 

Since threshold probabilities can vary between clinicians and patients according 

to their preference, net benefit can be calculated across a range of clinically 

relevant threshold probabilities and plotted as decision curves. Figure 4-5 

demonstrates example decision curves for a variety of strategies including: 

intervening for all people; using a risk prediction model to guide decisions; using 

a single biomarker; or intervening for none. In general, the best approach is the 

https://doi.org/10.1136/bmj.i6
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one that leads to highest net benefit across a clinically plausible range of 

threshold probabilities.  

In my analysis, I compared the approaches of using the final prognostic model to 

guide preventative treatment decisions to the default strategies of treating either 

all or no patients with a positive LTBI test across a range of threshold probabilities 

of 0-25% (reflecting a number willing to treat range of ≤4 to prevent one incident 

TB case). I analysed net benefit using the stdca function from the ddsjoberg/dca 

package in R218, using the stacked validation sets of untreated participants with 

positive LTBI tests from IECV (to ensure that each individual for whom a 

prediction was generated had not been included in the model development set 

used to derive that prediction).  

The full prediction modelling workflow in summarised in Figure 4-6. 

Figure 4-6: Flowchart summarising prediction modelling analysis pipeline. 

 

4.2.5 Sensitivity analyses 

Sensitivity analyses included:  

• Recalculating prediction model parameters using:  

Data cleaning and mapping

A priori variable selection

Define spline knots and generate transformations for continuous variables

Multi-level multiple imputation x 10

Develop flexible parametric survival model on each imputed dataset, comparing AICs:

- Log odds vs log hazards

- Number of knots for baseline hazard / odds

- Lowest AIC across MI datasets -> chosen model

Consider adding pre-specified time varying covariates, comparing AICs

Develop final model on each MI full dataset

Combine final model coefficients using Rubin’s rules

Internal-external cross validation on each MI dataset

Combine validation set calibration and discrimination parameters using Rubin’s rules

Random effects meta-analysis for combined calibration and discrimination parameters

Decision curve analysis
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(a) alternative definitions of prevalent TB (ranging from diagnosis 

within 0 to 90 days of recruitment);  

(b) a complete case approach (for all variables except for HIV status, 

which was assuming negative where this was missing);  

(c) exclusion of participants who received preventative treatment. 

Parameters for each of these models were compared with the primary 

model (without time-varying covariates to facilitate interpretation).  

 

• Examining IECV discrimination parameters for validation datasets when: 

(a) restricted to participants with positive binary LTBI tests;  

(b) excluding those who received preventative treatment;  

(c) imputing an average quantitative positive or negative LTBI test 

result (based on the medians among the study population), 

according on the binary result. This was done to assess model 

performance in situations where the quantitative test result is not 

available.  

4.2.6 Ethics 

This study involved analyses of fully depersonalised data from previously 

published cohort studies, with data pooling via a safe haven. Ethical approvals 

for sharing of data were sought and obtained by contributors of individual 

participant data, where required.  

4.3 Results 

4.3.1 Systematic review 

I identified 26 studies that aimed to assess the risk of progression to TB disease 

among individuals tested for LTBI in low TB transmission settings; corresponding 

authors of these studies were invited to contribute individual level data (Figure 

4-7). Of these, I received 18 individual level datasets, including participants 

recruited in 20 countries. 
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Figure 4-7: Flow chart for systematic review and IPD-MA of studies 

examining risk of TB among people tested for LTBI in low incidence 

settings.  

Material from 203. 

 

The pooled dataset included a total of 82,360 individual records, of whom 51,697 

had evidence of LTBI and 826 were diagnosed with TB. Of the received data, 

80,468 participants (including 803 TB cases) had sufficient data for inclusion in 

the primary analysis (Figure 4-8). The characteristics of the included study 

datasets are summarised in Table 4-5. Additional characteristics are shown in the 

Supplementary Material (Chapter 8.1). Characteristics of the eight eligible studies 

for which individual participant data were not obtained were similar to those 

included in the analysis (Table 4-6). 
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Eight studies recruited adults only; the remainder recruited both adults and 

children. The target population was recent TB contacts in nine 

studies87,88,187,189,190,192,219–221, people living with HIV in two studies222,223, mixed 

immunocompromised groups in two studies224,225, transplant recipients in one 

study226, mixed population screening in two studies191,227, recent migrants in one 

study228, and a combination of recent contacts and migrants in one study80. 

Median follow-up of all participants was 3.7 years (IQR 2.1-5.3). All contributing 

studies reported baseline assessments for prevalent TB through routine clinical 

evaluations, and all included culture-confirmed and clinically diagnosed TB cases 

in their case definitions. Four studies had a proportion of participants lost to follow 

up >5%88,192,223,224; baseline characteristics of those lost to follow-up were similar 

to those followed-up in each of these studies (Supplementary Material; Chapter 

8.1). All contributing studies achieved quality assessment scores of 6 or 7/7 (full 

quality assessments shown in Supplementary Material; Chapter 8.1). Four 

studies did not have data on microbiological confirmation. Where available, 

culture confirmation was reported for 69.3% of TB cases. 
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Figure 4-8: Flow chart showing inclusion of participants in the population-level and prediction modelling analyses. 

Material from 203. 
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Table 4-5: Characteristics of contributing studies included in Chapter 4 IPD-MA. 

Authors Publication 
Year 

Country N (total) Adults / children Population Follow-up 
years 
(median 
(IQR)) 

TB cases Loss to 
follow-up 

Included in 
prediction 
modelling 

NOS^ 

Abubakar et al.80 2018 UK 10,045 Adults Contacts & migrants 4.7 (3.7-5.5) 147 10 (0.1%) Yes 7/7 

Aichelburg et al.222 2009 Austria 830 Adults PLHIV 1.2 (0.7-1.4) 11 25 (3%) Yes 7/7 

Altet et al.219 2015 Spain 1,339 Adults & children Contacts 4 (4-4) 95 0 (0%) Yes 7/7 

Diel et al.192 2011 Germany 1,414 Adults & children Contacts 3.5 (2.5-4.2) 19 381 (26.9%) Yes 7/7 

Dobler & Marks220 2013 Australia 12,212 Adults & children Contacts 4.2 (2-6.9) 94 351 (2.9%) No* 7/7 

Doyle et al.223 2014 Australia 919 Adults PLHIV 2.9 (1.7-3.6) 2 47 (5.1%) Yes 7/7 

Erkens et al.191 2016 Netherlands 14,241 Adults & children Mixed population screening 5.5 (3-7.4) 134 NA No* 6/6 

Geis et al.87 2013 Germany 1,283 Adults & children Contacts 0.8 (0.4-1.1) 33 62 (4.8%) Yes 6/6 

Gupta et al.187 2020 UK 623 Adults Contacts 1.9 (1.6-2.2) 13 0 (0%) Yes 7/7 

Haldar et al.190 2013 UK 1,411 Adults & children Contacts 1.9 (1.3-2.4) 37 30 (2.1%) Yes 7/7 

Lange et al.224 2012 Germany 456 Adults Immunocompromised 2.8 (2-3.1) 1 42 (9.2%) Yes 7/7 

Munoz et al.226 2015 Spain 76 Adults Transplant recipients 4.3 (3.6-4.8) 2 0 (0%) Yes 7/7 

Roth et al.227 2017 Canada 22,949 Adults & children Mixed population screening 3 (1.8-4.3) 58 NA Subset* 6/6 

Sester et al.225 2014 Multiple European countries 1,464 Adults Immunocompromised 2.7 (1.5-3.5) 11 7 (0.5%) Yes 7/7 

Sloot et al.189 2014 Netherlands 5,895 Adults & children Contacts 5.9 (3.6-7.7) 81 NA Yes 7/7 

Yoshiyama et al.221 2015 Japan 625 Adults & children Contacts 1.8 (1.4-2) 12 0 (0%) Yes 6/7 

Zellweger et al.88 2015 Multiple European countries 5,237 Adults & children Contacts 2.6 (1.9-3.5) 55 1339 (25.6%) Yes 7/7 

Zenner et al.228 2017 UK 1,341 Adults Migrants 3.7 (3-4.8) 21 NA No* 7/7 

Total 
  

82,360 
  

3.7 (2.1-5.3) 826 2294 (2.8%) 
  

*Not included in prediction modelling due to lack of data on proximity or infectiousness of index cases220, or absent quantitative LTBI test data191,228. A subset of the 

dataset was included in the prediction model for the Roth et al study227; contacts and migrants were excluded due to no data being available on country of birth or 

infectiousness of index cases, respectively.  

^Modified version of the Newcastle Ottawa Scale for cohort studies 
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Table 4-6: Characteristics of eligible studies that did not contribute individual participant data. 

Authors Publication 

Year 

Country N (total) Adults / children Population Follow-up  (years) Incident TB 

cases 

Reason for exclusion 

Bergot et al.229 2012 France 687 Adults & children Contacts Mean 2.8 (SD 0.9) 2 Unable to contact authors 

Blount et al.230 2016 USA 1,152 Adults & children Migrants with suspected TB, 

previous TB, TB contact, or LTBI 

Median 6.7 (IQR 5.1 - 8.2) 7 Pending dataset receipt at 

database closure 

Hand et al.231 2018 USA 148 Adults Transplant recipients Median 2.5 4 Unable to contact authors 

Harstad et al.232 2010 Norway 823 Adults Migrants Range 1.9 - 2.7 9 Data no longer available 

Kik et al.233 2010 Netherlands 339 Adults Contacts who are migrants (TST 

≥5mm) 

Median 1.8 (IQR 1.3 - 2.0) 6 Pending dataset receipt at 

database closure 

Pullar et al.234 2014 Norway 298 Adults PLHIV 2 0 Unable to contact authors 

Reichler et 

al.235 

2018 USA and Canada 4,490 Adults Contacts 2 77 Governance approvals not 

possible 

Winje et al.*85 2018 Norway 44,875 Adults & children Mixed population screening Median 3.6 (IQR 2.4 - 5.1) 257 Pending governance approvals at 

database closure 

SD = standard deviation; IQR = interquartile range 

*Only a subset of the cohort were eligible for inclusion, since indication for LTBI screening was not available for most participants.
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4.3.2 Population-level analysis 

In the pooled dataset, the two-year cumulative risk of incident TB was estimated 

as 4.0% (95% CI 2.6-6.3) among people with LTBI who did not receive 

preventative therapy, 0.7% (0.4-1.3) in people with LTBI who commenced 

preventative therapy and 0.2% (0.1-0.4) in people without LTBI (Figure 4-9; Table 

4-7). The corresponding five-year risk of incident TB among these groups was 

5.4% (3.5-8.5), 1.1% (0.6-2.0) and 0.3% (0.2-0.5), respectively.  

Among untreated people with LTBI, two-year risk of incident TB was 14.6% (7.5-

27.4) among recent child (<15 years) contacts, 3.7% (2.3-6.0) among adult 

contacts, 4.1% (1.3-12.0) among migrants, and 2.4% (0.8-6.8) among people 

screened due to immunocompromise (without an index exposure). 

Corresponding five-year risk was 15.6% (8.0-29.2) among recent child contacts, 

4.8% (3.0-7.7) among adult contacts, 5.0% (1.6-14.5) among migrants, and 4.8% 

(1.5-14.3) among people screened due to immunocompromise.  

Among recent child contacts, risk was markedly higher among those aged <5 

years, compared to those aged 5-14 years (two-year risk 26.0% (9.4-60.1) vs. 

12.4% (5.7-25.6); Figure 4-9), with 85.4% and 93.7% of cumulative risk being 

accrued in the first one and two years of follow-up, respectively. Among adult 

contacts and migrants, the annual risk also declined markedly with time. Of the 

cumulative five-year risk, 58.0% and 77.5% was accrued in the first one and two 

years of follow-up for adult contacts, with corresponding values among migrants 

of 66.4% and 81.6%. There was a more even distribution of risk during follow-up 

in the immunocompromised group.
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Figure 4-9: Population-level cumulative TB incidence during follow-up.  

Cumulative incidence curves are derived from flexible parametric survival models fitted to each risk group with random-effect intercepts by source 

study. PT = preventative treatment. Material from 203. 
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Table 4-7: Cumulative risk of incident tuberculosis during follow-up.  

Cumulative incidence estimates are derived from flexible parametric survival models fitted to each risk group with random-effect intercepts by source 

study. PT = preventative treatment. 

Group n TB Studies Cumulative risk of incident TB by follow-up year (shown as risk (95% CI); cumulative proportion) 

        1 2 3 4 5 

No latent infection 29215 71 15 0.2 (0.1-0.3); 52.7% 0.2 (0.1-0.4); 71.9% 0.3 (0.2-0.4); 83.7% 0.3 (0.2-0.5); 92.6% 0.3 (0.2-0.5) 

Latent infection, PT commenced 19032 125 15 0.5 (0.3-0.9); 46.3% 0.7 (0.4-1.3); 66.1% 0.9 (0.5-1.6); 79.9% 1 (0.6-1.8); 90.7% 1.1 (0.6-2) 

Latent infection, no PT 32221 607 18 3 (1.9-4.7); 54.7% 4 (2.6-6.3); 74% 4.6 (3-7.2); 85.3% 5.1 (3.2-7.9); 93.5% 5.4 (3.5-8.5) 

Adult contacts 10529 366 11 2.8 (1.7-4.5); 58.2% 3.7 (2.3-6); 77.6% 4.2 (2.6-6.8); 87.9% 4.6 (2.8-7.3); 94.7% 4.8 (3-7.7) 

All child contacts 551 119 9 13.3 (6.8-25.2); 85.4% 14.6 (7.5-27.4); 93.7% 15.1 (7.8-28.2); 96.6% 15.4 (7.9-28.7); 98.5% 15.6 (8-29.1) 

Child contacts <5 110 38 7 24.6 (8.8-57.9); 88.6% 26 (9.4-60.1); 93.7% 26.7 (9.7-61.4); 96.5% 27.3 (9.9-62.4); 98.4% 27.7 (10-63.2) 

Child contacts 5 to 14 441 81 8 11.1 (5.1-23.2); 82.5% 12.4 (5.7-25.6); 92.2% 12.9 (6-26.6); 95.8% 13.2 (6.1-27.2); 98.2% 13.4 (6.2-27.7) 

Migrants 1719 48 2 3.3 (1.1-9.9); 66.4% 4.1 (1.3-12); 81.6% 4.5 (1.5-13.1); 89.8% 4.7 (1.6-13.9); 95.5% 5 (1.6-14.5) 

Immunocompromised 459 18 6 1.4 (0.4-4.4); 29.6% 2.4 (0.8-6.8); 49.9% 3.2 (1.1-9.3); 68% 4 (1.3-11.8); 84.5% 4.7 (1.5-14.3) 
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TB incidence rates in years 0-2 and 2-5 of follow-up among people with untreated 

LTBI, stratified by risk group for LTBI screening, are shown in Figure 4-10 and 

Figure 4-11. Within each of the risk groups assessed, incidence rates among 

untreated people with LTBI were markedly higher in the 0-2 year interval, 

compared to the 2-5 year interval, but were highly heterogeneous across studies 

(I2 statistics, representing the proportion of variance that is considered due to 

between-study heterogeneity, ranged from 54-91% for incidence rates during the 

0-2 year interval among untreated people with LTBI, when stratified by indication 

for screening). These findings suggest highly variable TB risk among people with 

LTBI, even within risk groups. 
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Figure 4-10: TB incidence rates by source study among people with 

untreated LTBI, during 0-2 year interval following LTBI testing. 

Pooled estimates calculated using random effect Poisson models, without continuity 

correction for studies with zero events. Material from 203. 
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Figure 4-11: TB incidence rates by source study among people with 

untreated LTBI, during 2-5 year interval following LTBI testing. 

Pooled estimates calculated using random effect Poisson models, without continuity 

correction for studies with zero events. Material from 203. 
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4.3.3 Prediction model development 

The observed heterogeneity in TB incidence rates across studies, even after 

stratification by binary LTBI result, commencement of preventative treatment and 

indication for screening, suggests that an individual level approach to risk-

stratification may be of benefit. I therefore developed a personalised risk 

prediction model using a subset of the received data (where sufficient individual 

level variables were available) including 528 TB patients among 31,721 

participants from 15 studies (Figure 4-8). All 15 of these datasets were used for 

model development and validation, using the IECV framework211.  

Characteristics of the studies included in prediction model development and 

validation were similar to those that were not (Table 4-5). I selected a flexible 

parametric survival model with two degrees of freedom on a proportional hazards 

scale for the final model, since this showed the best fit (as measured by AIC) in 

each imputed dataset. From the nine candidate predictors (Table 4-4), only 

previous BCG vaccination and gender were not retained following backward 

elimination. The final prognostic model therefore included: age, a composite ‘TB 

exposure’ variable (modelled with time-varying covariates to account for non-

proportional hazards), time since migration for migrants from countries with high 

TB incidence, HIV status, solid organ or haematological transplant receipt, 

normalised LTBI test result and preventative treatment commencement. 

Associations between each of these predictors and incident TB risk are shown 

visually in Figure 4-12 to aid interpretation; the final model coefficients and 

standard errors, pooled across multiply imputed datasets, are provided in Table 

4-8.   
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Figure 4-12: Adjusted predictor effects for each predictor in final prognostic 

model. 

Plots demonstrate associations between each predictor and incident TB risk. Illustrative 

estimates are shown for a 33-year old migrant from a high TB burden setting. The 

example ‘base case’ patient does not commence preventative treatment, is not living 

with HIV, has not received a previous transplant, and has an ‘average’ positive latent 

TB test. One of these predictors is varied in each plot. Panel (b) indicates latent TB test 

result, normalised to a percentile scale. Material from 203. 
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Table 4-8: Final coefficients for PERISKOPE-TB prognostic model. 

Coefficients were pooled across multiple imputed datasets using Rubin’s rules.  

 
Coefficient Standard error Relative hazard  

(95% CI) 

Age 
  

 

Age spline 1 -0.070 0.017 0.93 (0.9 - 0.97) 

Age spline 2 0.129 0.100 1.14 (0.94 - 1.38) 

Age spline 3 -0.407 0.619 0.67 (0.2 - 2.24) 

Age spline 4 0.266 0.854 1.3 (0.24 - 6.96)    
 

Exposure 
  

 

Household, smear positive contact 0.867 1.472 2.38 (0.13 - 42.61) 

Other contacts -1.165 1.659 0.31 (0.01 - 8.06) 

Migrant from high TB burden country 0.803 1.717 2.23 (0.08 - 64.61) 

Months since migration* -0.003 0.002 0.997 (0.99 - 1) 
   

 

Immune function 
  

 

HIV positive 1.072 0.288 2.92 (1.66 - 5.14) 

Transplant received 1.490 0.486 4.44 (1.71 - 11.5)    
 

LTBI test result 
  

 

Normalised test result spline 1 0.065 0.050 1.07 (0.97 - 1.18) 

Normalised test result spline 2 -0.505 0.344 0.6 (0.31 - 1.18) 

Normalised test result spline 3 1.796 0.979 6.03 (0.88 - 41.03) 

Normalised test result spline 4 -2.438 1.036 0.09 (0.01 - 0.67) 
   

 

Preventative therapy 
  

 

Received preventative therapy -2.081 0.222 0.12 (0.08 - 0.19)    
 

Baseline hazard 
  

 

Intercept -10.520 1.384  

γ1 5.784 2.272  

γ2 4.323 0.810  
   

 

Time-varying covariates (non-proportional hazards) 
  

 

γ1*Household, smear positive contact 3.327 2.503  

γ1*Migrant from high TB burden country 1.721 2.948  

γ1*Other contacts 5.103 2.834  

γ2*Household, smear positive contact -1.371 0.850  

γ2*Migrant from high TB burden country -1.502 0.939  

γ2*Other contacts -0.757 0.912  

*for migrants from high TB burden countries who are not recent contacts only. 

4.3.4 Internal-external cross-validation 

Model discrimination and calibration parameters for two-year risk of incident TB 

from the primary validation studies from IECV are shown in Figure 4-13. C-

statistics ranged from 0.78 (95% CI 0.47-1.0) in a study of immunocompromised 

participants with a small number of incident TB cases225 to 0.97 (0.94-0.99) in a 

study of TB contacts192. The random-effects meta-analysis estimate of the C-

statistic was 0.88 (0.82-0.93). Visual calibration plots suggested reasonable 
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calibration in most studies (Figure 4-14). Since incident TB is an infrequent 

outcome, predictions were appropriately low, with average predicted risk <10% 

in all quintiles of risk. The pooled random-effects meta-analysis calibration-in-the-

large estimate was 0.14 (-0.24-0.53), with evidence of systematic under-

estimation of risk in one study (calibration-in-the-large 1.02 ; 0.61-1.43)), and 

over-estimation in one study (calibration-in-the-large -0.64 (-1.09-0.19)). The 

pooled random-effects meta-analysis calibration slope estimate was 1.11 (0.83-

1.38). Slopes appeared heterogeneous, though visual assessment of calibration 

plots suggested that these were prone to being extreme due to the skewed 

distribution of predicted and observed risk, likely reflecting the relatively rare 

occurrence of incident TB events. 
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Figure 4-13: Forest plots showing model discrimination and calibration metrics for predicting two-year risk of incident TB from 

internal-external cross-validation. 

Shown for each study as point estimate [95% CI]. Pooled estimates derived from random effects meta-analysis. Material from 203. 
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Figure 4-14: Calibration plots from internal-external validation of prediction 

model, stratified by validation study. 

X-axis shows predicted risk, in quintiles, with corresponding Kaplan Meier two-year risk 

of incident TB on the Y-axis. Material from 203. 

 

4.3.5 Distribution of predicted risk and individual predictions 

Figure 4-15 shows the distributions of predicted TB risk among participants who 

did not commence preventative treatment from the pooled IECV validation sets, 

stratified by: (a) binary LTBI test result; and (b) indication for screening (among 

those with a positive test). The median predicted two-year TB risk was 2.0% (IQR 

0.8-3.7) and 0.2% (0.1-0.3) among participants with positive and negative binary 

LTBI test results, respectively. I then examined incident TB risk in four quartiles 

of predicted risk among untreated participants with positive LTBI tests from the 

pooled validation sets. Kaplan-Meier plots of the four quartiles showed clear 

separation of observed risk among these four groups (Figure 4-15).  
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Figure 4-15: Distribution of predictions and risk of incident tuberculosis in 

four quartiles of risk for people with positive latent TB tests.  

Stratified by (a) binary latent TB test result and (b) indication for screening among 

untreated people with positive LTBI tests. (c) Randomly sampled individual patients 

from each risk quartile (characteristics shown in Table 4-9). (d) Shows Kaplan-Meier 

plots for quartile risk groups (1=lowest risk) of untreated individuals with positive LTBI 

tests. P value represents Log-rank test. Material from 203. 

 

Table 4-9: Characteristics of sampled participants shown in Figure 4-15c. 

Patient Age Exposure Test result 

(percentile) 

QFT 

equivalent 

(IU / mL) 

T-SPOT.TB 

equivalent 

(spots) 

TST 

equivalent 

(mm) 

Predicted 2 

year risk 

(%) 

1 22 No contact, 

non-migrant 

68 0.10 to 0.12 2 10 0.2 (0.1-0.4) 

2 41 Migrant (3.8 

years since 

entry) 

80 0.52 to 0.60 7 14 1.4 (0.9-2.1) 
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3 51 Household, 

smear+ 

contact 

79 0.45 to 0.52 6 14 3.1 (2.1-4.4) 

4 33 Household, 

smear+ 

contact 

94 5.10 to 6.29 50 to 58 21 8.7 (6.4-11.7) 

4.3.6 Decision curve analysis 

Among untreated participants with LTBI from the pooled validation sets in IECV, 

net benefit for the prediction model was greater than either treating all LTBI 

patients, or treating none, throughout a range of threshold probabilities from 0-

25% (reflecting a range of clinician and patient preferences) (Figure 4-16).  

Figure 4-16: Decision curve analysis for PERISKOPE-TB prognostic model. 

Shown as net benefit of the prediction model among untreated participants from the 

stacked validation sets with positive binary latent TB tests (n=6,418 participants), 

compared to ‘treat all’ and ‘treat none’ strategies across a range of threshold 

probabilities (x-axis). Material from 203. 
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4.3.7 Sensitivity analyses 

Model parameters for a range of sensitivity analyses are presented in Table 4-10. 

Recalculation of model predictor parameters revealed similar directions and 

magnitudes of effect to the primary model when using shorter and longer 

temporal definitions of prevalent TB, though baseline risk was expectedly higher 

with shorter definitions. Model parameters also appeared similar to the primary 

analysis when excluding participants who received preventative treatment. Model 

parameters were more extreme when using a complete case approach.  

The pooled random-effects meta-analysis C-statistic from IECV when limiting to 

participants who did not receive preventative treatment was 0.89 (95% CI 0.82-

0.93), similar to the primary analysis and suggesting consistent discrimination 

when restricted to untreated participants (Figure 4-17a). The pooled random-

effects meta-analysis C-statistic including only participants with a positive binary 

LTBI test was 0.77 (0.70-0.83; Figure 4-17b). This finding indicates good 

discrimination even among participants with a conventional diagnosis of LTBI, 

albeit lower than discrimination when also including participants with a negative 

binary LTBI test, likely reflecting the high negative predictive value of a negative 

result 

Finally, in order to assess model performance in situations where the quantitative 

test results are not available, I assumed an average quantitative positive or 

negative LTBI test result (based on the medians among the study population), 

according to the binary result in the validation sets. This analysis provided a 

pooled random-effects meta-analysis C-statistic of 0.86 (0.76-0.93; Figure 

4-17c), and net benefit appeared higher when using this model than either the 

strategies of treating all patients with evidence of LTBI, or no patients, across the 

range of threshold probabilities (Figure 4-17d). However, the model using a 

binary test result had a lower C-statistic, and slightly lower net benefit across 

most threshold probabilities, compared to the full model using quantitative test 

results. 
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Table 4-10: Recalculation of PERISKOPE-TB model parameters in sensitivity analyses. 

Using: alternative definitions of prevalent TB; a complete case approach (for variables other than HIV, which was assumed negative where missing); 

and excluding participants who received preventative therapy (PT), with comparison to primary model. All coefficients are shown on relative hazards 

scale, without time-varying covariates to aid interpretation. 

 Primary Alternative prevalent TB definitions Complete case Excluding patients receiving PT 
  

0 days <28 days <56 days <90 days 
  

Age 
       

Age spline 1 0.932 0.907 0.932 0.936 0.967 0.942 0.923 

Age spline 2 1.137 1.289 1.168 1.097 0.967 1.072 1.182 

Age spline 3 0.674 0.338 0.547 0.879 1.550 1.064 0.519 

Age spline 4 1.271 2.914 1.712 0.870 0.486 0.648 1.868 
        

Exposure 
       

Household, smear positive contact 5.961 7.440 6.124 5.919 5.863 8.351 6.591 

Other contacts 2.575 2.773 2.529 2.522 2.426 3.333 2.761 

Migrant from high TB burden country 2.335 3.036 2.441 2.333 2.466 2.672 2.454 

Months since migration* 0.997 0.997 0.996 0.996 0.996 0.996 0.997 
        

Immune function 
       

HIV positive 2.803 2.710 2.777 2.799 2.893 5.475 3.114 

Transplant received 4.520 4.385 4.331 4.562 5.176 5.637 5.061 
        

LTBI test result 
       

Normalised test result spline 1 1.068 1.083 1.052 1.063 1.057 1.060 1.080 

Normalised test result spline 2 0.602 0.561 0.667 0.622 0.663 0.585 0.557 

Normalised test result spline 3 6.087 7.324 4.502 5.430 4.362 7.330 7.593 

Normalised test result spline 4 0.086 0.073 0.120 0.102 0.138 0.060 0.068 
        

Preventative therapy 
       

Received preventative therapy 0.124 0.096 0.122 0.117 0.120 0.097 NA 

*for migrants from high TB burden countries who are not recent contact. 
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Figure 4-17: Model validation sensitivity analyses. 

Material from 203. Recalculation of the C-statistics from internal-external cross 

validation, limiting validation sets to: 

(a) participants who did not receive preventative therapy;  

(b) participants with a positive LTBI test;  

(c) binary LTBI test results (using an average quantitative positive or negative LTBI test 

result as appropriate, based on the medians among the study population).  

Panel (d) shows decision curve analyses when using the prediction model using a 

binary LTBI test result, compared to the full prediction model, ‘treat all’ and ‘treat none’ 

strategies across a range of threshold probabilities (x-axis).  
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4.4 Discussion 

4.4.1 Summary of key findings 

In this study, I examined population-level incident TB risk in a pooled dataset of 

>80,000 individuals tested for LTBI in 20 countries with low M. tuberculosis 

transmission. I found cumulative five-year risk of incident TB among people with 

untreated evidence of LTBI approaching 16% among child contacts, and 

approximately 5% among recent adult contacts, migrants from high TB burden 

settings, and immunocompromised individuals. A majority of cumulative five-year 

risk was accrued during the first year among risk groups with an index exposure, 

supporting previous data suggesting that risk of progressive TB declines 

markedly with increasing time since infection16. However, there was substantial 

variation in incidence rates even within these risk groups.  

I therefore developed a directly data-driven model that incorporates the 

magnitude of the T cell response to M. tuberculosis with readily available clinical 

variables in order to capture heterogeneity within risk groups, and generate 

personalised risk predictions for incident TB in settings aiming towards pre-

elimination. Clinical covariates in the final model included age, recent contact 

(including proximity and infectiousness of the index case), migration from high TB 

burden countries (and time since arrival), HIV status, solid organ or 

haematological transplant receipt, and commencement of preventative treatment. 

The model was validated by quantifying the meta-analysis C-statistic for 

predicting incident disease over two years, and by evaluating its calibration, using 

recommended methods212. Most importantly, the model showed clear clinical 

utility for informing the decision to initiate preventative treatment, compared to 

treating all or no patients with LTBI. 

The results of the current analyses are consistent with, and extend existing 

evidence. Recent analyses report similar population-level TB incidence rates 

among adult contacts76, with markedly higher risk among young children165. 

Moreover, these recent meta-analyses confirm highly heterogeneous population-

level estimates, thus justifying an individual-level approach to risk estimation76,165. 

Previous models developed and validated in Peru, a high transmission setting, 

have generated individual or household-level TB risk estimates for TB 
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contacts236–238. Another model (“TSTin3D”), parameterised using aggregate data 

estimates from multiple global sources, seeks to estimate TB risk following LTBI 

testing in all settings166. However, it is currently validated only in Canada, with 

evidence moderate discrimination and overestimation of risk168, and the model 

omits key predictor variables identified in the current study (including the 

magnitude of the T cell response and infectiousness of index cases)166. TSTin3D 

includes relative risk estimates for a wide range of co-morbidities. Future studies 

could compare the performance of PERISKOPE-TB and TSTin3D for predicting 

incident TB using simulated or real patient cohorts. In addition, TSTin3D also 

provides estimates of serious hepatotoxicity risk to further facilitate risk: benefit 

discussions regarding preventative treatment initiation. Such estimates could be 

added to PERISKOPE-TB in future iterations, ideally using personalised toxicity 

estimates based on age, comorbidities and preventative treatment regimen 

(Chapter 1.7.3).  

4.4.2 Policy implications 

The personalised predictions from the PERISKOPE-TB model may enable more 

precise delivery of preventative treatment to those at highest risk of TB disease, 

while concurrently reducing toxicity and costs related to treatment of people at 

lower risk. Moreover, the model may allow clinicians and patients to make more 

informed and individualised choices when considering initiation of preventative 

treatment, through shared decision-making. The PERISKOPE-TB model also 

challenges the fundamental notion of an arbitrary binary test threshold for 

diagnosis of LTBI. By incorporating a quantitative measure of 

immunosensitisation to M. tuberculosis, we facilitate a shift from the conventional 

paradigm of LTBI as a binary diagnosis, towards personalised risk-stratification 

for progressive TB. This approach takes advantage of stronger T cell responses 

being a correlate of risk, while guarding against a loss of sensitivity by arbitrarily 

introducing higher test thresholds programmatically176.  

The PERISKOPE-TB model has been made available at http://periskope.org. 

Following user input of the required variables, the tool presents incident TB risk 

estimates numerically and graphically. Importantly, the tool is currently intended 

to be clinician-facing. Future qualitative work with both clinicians and patients 

could be undertaken to optimise the tool to ensure optimal risk communication 
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with appropriate contextualisation, and to facilitate development of a patient-

facing interface239.   

4.4.3 Strengths of the study 

Strengths of the current study include the size of the dataset, curated through 

comprehensive systematic review in accordance with Preferred Reporting Items 

for a Systematic Review and Meta-analysis of Individual Participant Data 

standards195, and with individual participant data obtained for 18/26 (69%) eligible 

studies. I conducted population-level analyses using both one- and two-stage 

IPD-MA approaches in order to present both cumulative TB risk and time-

stratified incidence rates, respectively, with consistent results from both. I 

adhered to TRIPOD200 standards, using the recommended approach of IECV212. 

The coefficients presented in the model are clinically plausible and have been 

made publicly available to facilitate further independent external validation. 

Moreover, the contributing datasets included heterogeneous populations of 

adults, children, recent TB contacts, migrants from high TB burden countries, and 

immunocompromised groups from 20 countries across Europe, North America, 

Asia and Oceania, thus making our results potentially generalisable to settings 

aiming towards pre-elimination globally.  

I also used multi-level multiple imputation to account for missing data in the 

primary analysis, assuming missingness at random and in keeping with recent 

guidance204,211. This approach facilitated imputation of variables that were 

systematically missing from some included studies. Previous BCG vaccination 

and HIV status were noted to be missing from a large proportion of participants 

and were systematically missing from some contributing studies. This 

missingness may have reduced our power to detect associations between these 

variables and incident TB along with interactions between BCG vaccination and 

HIV status and quantitative LTBI test results. BCG vaccination was notably not 

included in the final prognostic model. While increasing data support a role for 

BCG vaccination in reducing sensitisation to M. tuberculosis182,240, additional data 

are required to further assess the association between BCG vaccination and 

incident TB risk, after adjustment for other covariates including quantitative T cell 

responses.  
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I supported the primary multiple imputation approach using a complete case 

sensitivity analysis. This sensitivity analysis revealed similar findings to the 

primary analyses, though effect estimates were noted to be more extreme in the 

complete case approach, likely owing to a degree of bias in the latter, since 

complete cases analysis assumes no association between the pattern of 

missingness and the incident TB outcome after adjusting for all other 

covariates206. Given that TB incidence and predictor missingness both varied 

according to contributing study, this assumption is unlikely to be valid in the 

current context.  

4.4.4 Study limitations 

Individual participant data were not obtained for eight eligible studies. Reasons 

for this included loss of original data, inability to obtain required governance 

approvals and failure to engage corresponding authors of eligible studies. This 

highlights a ubiquitous challenge facing IPD-MA studies, which are known to be 

resource-intensive and dependent on effective engagement with primary study 

authors241.  While systematic differences between included and excluded studies 

were not obvious, it should be acknowledged that the downstream impact of any 

subsequent selection bias (in addition to publication bias) is difficult to predict.   

While overall quality of the included cohort studies was reasonable, there is a 

potential risk of differential work-up bias since LTBI test results were likely to be 

available to clinicians to guide decision-making for participants in most included 

studies. In addition, there is also a risk of incorporation bias, where the LTBI test 

result may be used to make a diagnosis of TB disease, particularly in young 

children among whom obtaining microbiological confirmation is more challenging. 

These considerations could have led to an exaggerated association between 

LTBI test results and incident TB in the final model if those with positive results 

were more likely to have been investigated or followed-up for disease.  

A further limitation of the current study is that model calibration was observed to 

be imperfect during external validation, with evidence of underestimation190 and 

overestimation88 of risk in some studies. This may reflect systematic differences 

between study populations that are not sufficiently captured by the variables 

included in the model. For example, a UK study among TB contacts found that 
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14 of 112 (12.5%) untreated IGRA positive adults developed TB, which may 

suggest inclusion of a particularly high risk population in this study. However, 

conventional calibration metrics (such as the calibration slope) may not be 

entirely appropriate in this context, which has a highly skewed distribution of 

predicted and observed risk, reflecting the rare occurrence of incident TB events. 

Reassuringly, in decision curve analysis, which accounts for both discrimination 

and calibration performance in quantifying net benefit, the model showed clinical 

utility215.  

Due to a lack of data from contributing studies, other potential predictors that may 

be associated with incident TB risk (including diabetes, malnutrition, fibrotic chest 

x-ray lesions and other immunosuppression)7 were not evaluated. These 

unmeasured covariates may have contributed to imperfect discrimination and 

calibration, along with residual heterogeneity in model performance between 

datasets. As additional studies are published, the prognostic model can be 

prospectively evaluated and updated as required.  

I also note that offer and acceptance of preventative treatment may be more likely 

among people at higher risk of TB. I therefore accounted for preventative 

treatment provision in the model by including it as a co-variate along with our 

other predictors of interest, as widely recommended242. However, residual 

confounding by indication cannot be excluded in observational studies. 

Reassuringly, discrimination of the final prognostic model was consistent when 

restricted to untreated participants in my sensitivity analyses.  

In addition, the present model is not applicable for patients commencing biologic 

agents since no datasets were identified that examined the natural history of LTBI 

in the context of biologic therapy, in the absence of preventative treatment for TB. 

A ‘hybrid’ modelling approach, with mathematical parameterisation of relative risk 

for any given biologic agent, may be required to extend its application to these 

therapies. Since the quantitative LTBI test result is a strong predictor in our 

model, predictions may also be attenuated in the context of advanced 

immunosuppression66. Reassuringly. performance appeared adequate in a 

dataset of immunocompromised individuals during validation225.  
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Finally, in some circumstances, full quantitative LTBI test results may not be 

available. In my sensitivity analyses, I evaluated performance of the prognostic 

model when using a median quantitative value based on binary results. In 

decision curve analysis, this approach appeared to have higher net benefit than 

using binary LTBI results alone, but lower net benefit than using full quantitative 

results. Therefore, median values based on binary results may be used in the 

prognostic value if full quantitative results are unavailable.  

4.4.5 Conclusions 

In summary, I have developed a freely available and directly data-driven 

personalised risk predictor for incident TB (PERISKOPE-TB; periskope.org). This 

tool may facilitate a more individualised approach for TB prevention services in 

settings aiming towards pre-elimination, by facilitating shared decision-making 

between clinicians and patients for preventative treatment initiation. 

4.5 Contribution statement 

This chapter included a systematic review and pooled IPD-MA of 18 previously 

reported cohort studies. I led the work from conception to completion and 

dissemination.  

4.6 Outputs relating to this chapter 

This study is published in Nature Medicine: 

Gupta, R.K., Calderwood, C.J., Yavlinsky, A… Lipman M., Noursadeghi M., 

Abubakar I. (2020) Discovery and validation of a personalized risk predictor for 

incident tuberculosis in low transmission settings. Nature Medicine 26, 1941–

1949. https://doi.org/10.1038/s41591-020-1076-0 

I also presented this work at the British Thoracic Society Winter Meeting 2020.   

http://periskope.org/
https://doi.org/10.1038/s41591-020-1076-0
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5 Objective 4: Concise whole blood transcriptomic 

signatures for incipient TB: a systematic review and 

participant-level pooled meta-analysis 

5.1 Introduction 

Multiple studies have discovered changes in the host transcriptome in association 

with TB disease, compared to healthy controls, individuals with LTBI or other 

diseases104–110,121,243–245. More recently, perturbation in the transcriptome has 

been found to predate the diagnosis of TB118,120,121,246, suggesting that 

transcriptomic signatures may offer an opportunity to diagnose incipient TB and 

potentially fulfil the WHO TPP. However, independent validation of each 

signature is still limited. It remains unclear which of the multiple candidate 

transcriptomic signatures performs best for the identification of incipient TB, or 

whether any signatures meet the WHO diagnostic accuracy benchmarks.  

To address these knowledge gaps, I performed a systematic literature review to 

identify concise whole blood transcriptomic signatures for incipient TB, along with 

whole blood transcriptomic datasets, with sampling prior to TB diagnosis. I then 

performed an IPD-MA of genome-wide transcriptomic data to compare the 

diagnostic accuracy of the identified candidate transcriptomic signatures for 

detection of incipient TB among people at risk of disease over a two-year horizon. 

Finally, I evaluated the diagnostic accuracy of the best performing transcriptomic 

signatures, stratified by pre-defined time intervals to TB, in order to assess 

whether they meet the WHO TPP specifications for incipient TB tests. 

5.2 Methods 

5.2.1 Overview of systematic review 

I hypothesised that any biomarker that distinguishes incipient or active TB from 

healthy people may detect incipient disease. I therefore performed a systematic 

review and IPD-MA, in accordance with Preferred Reporting Items for a 

Systematic Review and Meta-analysis of Individual Participant Data standards195, 

to identify candidate concise whole blood transcriptomic signatures for incipient 

or active TB. I then examined the performance of eligible signatures in published 
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whole blood transcriptomic datasets where sampling prior to TB diagnosis was 

performed and interval time to disease was available. The study was registered 

at PROSPERO (CRD42019135618).  

5.2.2 Search strategy 

I searched Medline and Embase on 15/04/2019, with no language or date 

restrictions. The Medline search strategy is outlined in Table 5-1.I included 

comprehensive terms for ‘biomarkers’ (terms 1-11); ‘tuberculosis (term 12); 

‘transcriptome’ (terms 13-19); and ‘blood’ (terms 20-22). I consolidated the search 

by also hand-searching reference lists of relevant review articles and consulting 

experts in the field.  

Table 5-1: Medline search strategy for systematic review of concise RNA 

biomarkers for incipient TB.  

1. Biomarkers/  

2. Diagnostic Tests, Routine/  

3. "Predictive Value of Tests"/  

4. diagnostic test*.mp.  

5. biomarker*.mp.  

6. ppv.mp.  

7. npv.mp.  

8. sensitivit*.mp.  

9. specificit*.mp.  

10. signature*.mp.  

11. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10  

12. exp TUBERCULOSIS/ or tuberculosis.mp. or exp MYCOBACTERIUM TUBERCULOSIS/ 

or tb.mp.  

13. RNA/  

14. Transcriptome/  

15. rna.mp.  

16. transcript*.mp.  

17. gene expression.mp.  

18. Gene Expression Profiling/ or RNA, Messenger/ or Transcription, Genetic/ or Gene 

Expression/ 

19. 13 or 14 or 15 or 16 or 17 or 18  

20. blood/  
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21. blood.mp.  

22. 20 or 21  

23. 11 and 12 and 19 and 22  

24. remove duplicates from 23  

25. limit 24 to "humans only (removes records about animals)" 

5.2.3 Eligibility criteria for candidate signatures 

I included whole blood messenger RNA signatures that met the following eligibility 

criteria: 

• Discovered with a primary objective of diagnosis of active or incipient TB, 

compared to controls who were either deemed healthy, or had latent TB 

infection.  

• Signatures should be ‘concise’: In the absence of a standardised 

definition, I defined concise as signatures that used a defined approach to 

feature selection to reduce multidimensionality and the number of 

constituent genes, thus leading to biomarkers that may be more amenable 

to clinical translation.  

• Gene names that comprise the signature, along with the corresponding 

equation or modelling approach, must be available.  

• Signature (including component genes, and modelling approach) must be 

validated in at least one independent test or validation set, in order to 

enable reliable signature reconstruction and prioritise the most promising 

candidate signatures from higher quality studies.  

• Signature must be discovered from training sets that included controls who 

were either deemed healthy, or had latent TB infection, since 

discriminating incipient TB from healthy or latently infected people is the 

primary aim of incipient TB diagnostics.  

• Where multiple signatures were discovered for the same intended purpose 

and from the same training dataset, I included the signature with greatest 

accuracy (as defined by the AUROC in the validation data). Where 

accuracy was equivalent, I included the signature with fewest number of 

component genes. 
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5.2.4 Eligibility criteria for transcriptomic datasets 

I included published whole blood transcriptomic datasets (RNA sequencing or 

microarray) where sampling prior to TB diagnosis was performed and interval 

time to disease was available. I specified a minimum median duration of follow-

up of one year to reduce the risk of outcome misclassification. For studies where 

preventative TB therapy was offered, individual level data was required to identify 

the treated cases, who were excluded in the analysis. 

5.2.5 Screening and data extraction 

Two independent reviewers screened titles and abstracts identified in the search, 

and determined eligibility for final inclusion following full-text review. Gene lists 

and corresponding equations or modelling approaches were extracted for each 

eligible candidate signature and verified by a second reviewer. Disagreements 

regarding study inclusion or signature calculations were resolved through 

arbitration by a third reviewer. Quality assessment and risk of bias were assessed 

for the studies corresponding to included transcriptomic datasets, using modified 

versions of the Newcastle-Ottawa scale (using the cohort or case-control version 

as appropriate to each contributing study)196. 

5.2.6 Extension of UK cohort of TB case contacts 

In preparation for this meta-analysis the follow-up of a previously published cohort 

of London TB contacts with RNA sequencing data (described in Chapter 3)120 

was extended by re-linking the full cohort to national TB surveillance records (until 

31/12/2017; median follow up increased from 0.9 in original RNA sequencing 

report to 1.9 years) held at Public Health England using a validated algorithm184. 

An additional 27 samples and individuals were also available for inclusion in the 

present analysis, compared to the originally reported RNA sequencing 

analysis120. The full updated data set for this study is available in ArrayExpress 

(Accession number E-MTAB-6845).  

The London contacts study was approved by the UK National Research Ethics 

Service (reference: 14/EM/1208)120. No other ethical approvals were sought for 

this meta-analysis, since all other included patient-level datasets were 

depersonalised and publicly available.  
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5.2.7 RNA data processing 

Individual level RNA sequencing data were first downloaded for eligible studies, 

and mapped to the reference transcriptome (Ensembl Human GRCh38 release 

95) using Kallisto247. The transcript-level output counts and transcripts per million 

(TPM) values were summed on gene level and annotated with gene symbols 

using tximport and BioMart248,249. Only protein-coding genes were selected for 

downstream processing, and TPM and counts per million (CPM) values <0.001 

were set to 0.001 prior to log2 transformation to act as a lower limit of detection.  

I used principal component analysis (PCA) to visualise the TPM data, stratified 

by source study, in order to examine for between-study technical heterogeneity 

and determine the need for batch correction. PCA enables visualisation of 

multidimensional data through dimensionality reduction, while preserving as 

much information as possible, by creating new uncorrelated variables (principal 

components) that maximise variance sequentially250. PCA also requires no 

distributional assumptions for descriptive purposes and is therefore a flexible 

approach to exploratory visualisation of high-dimensional data. My PCAs 

included (a) genome-wide protein coding genes; (b) selected genes comprising 

only the candidate signatures included in the analysis; and (c) the intersect of 

invariant genes that were in the lowest quartile of genes ranked by variance within 

each of the contributing datasets. The latter PCA focusing on invariant genes was 

done in order to examine whether observed differences in genome-wide PCAs 

were likely to be attributable to technical, as opposed to biological, differences 

between datasets.  

Batch correction was performed using the COmbat CO-Normalization Using 

conTrols (COCONUT) package in R251. This approach applies the ComBat 

function, which adjusts the mean and variance of each gene in each contributing 

study dataset to minimise batch effect parameters252. Unlike the ComBat 

function, using COCONUT facilitated calculation of batch correction parameters 

based on the TB-free controls only, which was then applied to those who 

developed TB disease. I chose this approach, as opposed to applying batch 

correction regardless of outcome classification, in order to reduce the risk of 

biasing the distributions of gene expression between datasets, which could 
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otherwise occur due to differing disease prevalence between the study 

populations included.  

5.2.8 Definitions and sample inclusion 

Only samples obtained prior to the diagnosis of TB were included in the analysis. 

‘Prevalent’ TB was defined as a TB diagnosis within 21 days of sample collection, 

as previously80. ‘Incipient TB’ cases were defined as individuals diagnosed with 

TB >21 days from blood RNA sample collection. Culture-confirmed and clinically 

or radiologically diagnosed pulmonary or extra-pulmonary TB cases were 

included in the primary analysis. ‘Non-progressors’ were defined as those who 

remained TB disease free during follow-up; those with less than six months’ 

follow-up from the date of sample collection were excluded due to risk of outcome 

misclassification. Participants with prevalent TB and those who commenced 

preventative therapy were excluded. For studies with longitudinal samples from 

the same individuals, serial samples were included provided that they met these 

criteria, and that they were collected at least six months apart. Serial samples 

were handled as being independent in the primary analysis. 

5.2.9 Calculation of signature scores 

Gene symbols of the original signatures were updated to Ensembl Human 

GRCh38 release 95. Genes that were not present in the RNA sequencing data, 

including withdrawn genes and non-coding genes, were omitted from score 

calculations. Unless otherwise stated, log2-transformed TPM values were used 

for score calculations. 

I sought to use the authors’ original described methods to calculate scores from 

component genes for each signature. ‘Disease risk scores’ were calculated as 

difference of sums between upregulated and downregulated signature genes107. 

‘Modified’ disease risk scores121 and ‘unsigned sums’245 were calculated as the 

sum of expression levels, regardless of the direction of regulation in TB. ‘Sum of 

standardised expression’ scores 253 were calculated by standardising expression 

values for each component gene and then summing. ‘Difference in geometric 

means’ scores were calculated by subtracting the mean expression of 

downregulated genes from the mean of upregulated genes, on the log2 scale. For 

regression models where the coefficients were publicly available, scores were 
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calculated as sum of weighted gene expression values, using the regression 

coefficients from the original publication.  

Random forest models were constructed with the randomForest package in R, 

using the original standardised training data. Support vector machine (SVM) 

models were constructed with a linear kernel in the ksvm function of the kernlab 

package in R, using the original training data for the respective signature. My 

reconstructed random forest and SVM models were validated against the original 

data where possible, by comparing AUROCs to the original authors’ descriptions.  

Batch-corrected signature scores were transformed to Z scores (by subtracting 

the control mean, and dividing by standard deviation), using a pre-defined 

‘control’ population (including only participants with negative LTBI tests among 

the pooled dataset), in order to standardise scaling across signatures120.  

5.2.10 Statistical analysis 

All analyses were performed using R (version 3.5.1), unless otherwise specified. 

ROC curves for each signature for the identification of incipient TB were first 

plotted, for a two-year time horizon. Any data that was originally used to derive 

specific signatures were excluded from the pooled dataset used to test the 

performance of the relevant signature to reduce the risk of observing overly 

optimistic validation performance.  

ROC curves and AUROCs for separate contributing study datasets were initially 

examined to assess the degree of between-study heterogeneity. Since little 

heterogeneity was observed after stratification by interval to disease, a one-stage 

IPD-MA, assuming common signature performance across studies, was 

performed for the primary analysis. AUROCs for each signature were directly 

compared in a pairwise approach, using the DeLong method178. The best 

performing signature available from all samples in the pooled dataset was used 

as the reference for comparison with all other signatures; signatures with 

AUROCs lower than the reference, with p<0.05, were deemed statistically 

inferior.  

Correlation between signature scores was assessed using Spearman rank 

correlation. Pairwise Jaccard similarity indices between signatures were 



156 
 

calculated using lists of their constituent genes. Clustered co-correlation and 

Jaccard index matrices were generated in Morpheus254 using average Euclidean 

distance. Upstream analysis of transcriptomic regulation was performed using 

Ingenuity Pathway Analysis (Qiagen, Venlo, The Netherlands) and visualized as 

network diagrams in Gephi v0.9.2, depicting all statistically overrepresented 

molecules predicted to be upstream of more than two target genes. This 

upstream analysis was done in order to highlight the predicted regulators shared 

by the constituents of the transcriptomic signatures. 

ROC curves and AUROCs were then assessed for the best performing 

(statistically equivalent) signatures, using pre-specified intervals to TB of <3 

months; <6 months; <1 year; and <2 years from sample collection. Sensitivity and 

specificity for each of these time intervals were determined at pre-defined cut-offs 

for each signature, defined as a standardised score of two (Z2), representing the 

97.7th percentile of the control population with negative LTBI tests, assuming a 

Normal distribution, as in previous work120. These estimates were used to model 

the estimated predictive values for incident TB across a range of pre-test 

probabilities. Sensitivity and specificity for the best performing signatures were 

also examined using cut-offs defined by the maximal Youden index179, in order to 

achieve the highest accuracy within each time interval. The full analysis pipeline 

is summarised visually in Figure 5-1. 

Figure 5-1: Flowchart depicting analysis pipeline for RNA sequencing data. 

 

Raw RNA data

Mapped to reference transcriptome (Kalisto)

Batch correction (COCONUT)

Signature scores calculated (original authors’ methods, excluding training sets)

ROC curves for incipient TB over 2 year interval (separate + pooled datasets)

Pairwise comparisons to signature with highest AUROCC -> ‘Best’ signatures 

ROC curves, sensitivity & specificity for pre-defined intervals to TB diagnosis
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5.2.11 Sensitivity analyses 

Sensitivity analyses included: 

• Restricting inclusion of TB cases to those with microbiological 

confirmation.  

• Including only one blood RNA sample per participant by randomly 

sampling one blood sample per individual, in studies which included serial 

sampling, in order to evaluate potential bias caused by inclusion of 

differing numbers of samples per participant.   

• Recomputing the ROC curves using mutually exclusive time intervals to 

TB of 0-3, 3-6, 6-12 and 12-24 months, for each curve excluding 

participants who had developed TB in an earlier interval.  

• Performing a two-stage IPD-MA to complement the primary one-stage 

IPD-MA. To do this, I calculated AUROCs for each signature, stratified by 

interval to disease, in each contributing dataset separately, prior to batch 

correction. I then derived pooled AUCs and 95% CIs for each signature 

across studies using random-effects meta-analysis of logit-transformed 

AUROCs, using the metamisc package in R214. I also calculated sensitivity, 

specificity and predictive values at Z2 score cut-offs for each signature 

within each batch-corrected dataset, and derived pooled estimates using 

bivariate random-effects meta-analysis in the mada package in R255. 

5.3 Results 

5.3.1 Systematic review process and summaries of included datasets and 

signatures 

A total of 643 unique articles were identified in the systematic review (Figure 5-2). 

Four RNA datasets and 17 signatures met the criteria for inclusion. The RNA 

datasets included the Adolescent Cohort Study (ACS) of South African 

adolescents with LTBI118, the Bill and Melinda Gates Foundation Grand 

Challenges 6-74 (GC6-74) household TB contacts study in South Africa, the 

Gambia and Ethiopia246, a London TB contacts study120, and a Leicester TB 

contacts study121(Table 5-2). All four eligible datasets were publicly available. The 

ACS and GC6-74 studies were nested case-control designs within larger 

prospective cohort studies, while the London and Leicester TB contacts studies 
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were prospective cohort studies, with RNA sequencing performed for all 

participants. All four studies were done in HIV-uninfected participants. The 

London TB contacts study included only baseline samples, while the ACS, GC6-

74 and Leicester TB contacts studies included serial sampling. All four studies 

assessed participants for evidence of prevalent TB at enrolment through clinical 

evaluation, while the London and Leicester TB contacts studies also performed 

chest radiographs. The GC6-74 and ACS studies excluded participants with TB 

diagnosed within three or six months of enrolment, respectively. All four studies 

achieved maximal quality assessment scores (full quality assessments shown in 

Supplementary Material, Chapter 8.2). 

Figure 5-2: Flowchart showing systematic review process for review and 

meta-analysis of concise RNA signatures for incipient TB. 

Material from 256. 
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Table 5-2: Characteristics of the datasets included in meta-analysis of candidate RNA signatures for incipient TB. 

Study Samples 

included 

Study 

design 

Population Setting HIV status Sampling Follow-up 

duration 

and method 

TB case 

definition 

RNAseq 

methods 

NOS score^ Baseline TB 

assessment 

London TB 

contacts120 

324 (8 TB; 

316 healthy)  

Cohort Adult TB 

contacts 

London Negative Baseline Median 1.9 

years, 

record 

linkage 

Culture-

confirmed, 

or clinically 

diagnosed 

15-20 million 

41 base pair 

paired end 

reads 

7 (/7) Clinical evaluation 

and chest radiograph  

Adolescent 

Cohort 

Study118 

287 (73 TB; 

214 healthy) 

Nested 

case-control 

Adolescents 

with latent 

TB infection 

South Africa Negative Serial (0, 6, 

12, 24 

months) 

2 years, 

active 

Intrathoracic 

disease with 

2 positive 

smears, or 1 

positive 

culture 

30 million 50 

base pair 

paired end 

reads 

9 (/9) Clinical evaluation. 

TB <6 months from 

enrolment excluded. 

Chest radiograph not 

specified 

Grand 

Challenges 

6-74246 

412 (98 TB; 

314 healthy) 

Nested 

case-control 

Adult 

household 

pulmonary 

TB contacts 

South 

Africa, The 

Gambia, 

Ethiopia 

Negative Serial (0, 6, 

18 months) 

2 years, 

active 

Culture-

confirmed, 

or clinically 

diagnosed 

60 million 50 

base pair 

paired end 

reads 

9 (/9) Clinical evaluation. 

TB <3 months from 

enrolment excluded. 

Chest radiograph not 

specified 

Leicester TB 

contacts121 

103 (4 TB; 

99 healthy) 

Cohort Adult TB 

contacts 

Leicester Negative Baseline + 

serial for a 

subset* 

2 years, 

active 

Culture- or 

Xpert 

MTB/RIF-

confirmed 

25 million 75 

base pair 

paired end 

reads 

7 (/7) Clinical evaluation 

and chest radiograph 

RNAseq = RNA sequencing. 

*Due to the high frequency of serial sampling (<6-monthly), only baseline samples were included.  

^NOS = Newcastle-Ottawa Scale (denominators shown in brackets).
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A total of 1,126 samples from 905 patients met my criteria for inclusion (flowchart 

shown in Supplementary Material, Chapter 8.2). Characteristics of participants 

are shown in Table 5-3. I included 183 samples from 127 incipient TB cases, of 

which 117 (92.1%) were microbiologically confirmed. Only 8/127 TB cases (6.3%) 

were known to be extra-pulmonary, without pulmonary involvement. Of note, a 

large proportion of participants in the London (112/324; 34.6%) and Leicester 

(86/103; 83.5%) contact studies were of South Asian ethnicity.  

PCAs revealed clear separation of samples by dataset when including (a) the 

entire transcriptome; (b) selected genes comprising only the candidate signatures 

included in the analysis; and (c) invariant genes, indicative of batch effects in the 

data due to technical variation in RNA sequencing (Figure 5-3a-c)257. These batch 

effects were eliminated after batch correction (Figure 5-3d), while preserving the 

distributions of expression for target genes within each contributing dataset 

(Supplementary Material; Chapter 8.2).
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Table 5-3: Baseline characteristics of participants in meta-analysis of concise whole blood transcriptomic signatures for incipient 

TB, stratified by study.  

ACS = adolescent cohort study; GC6-74 = Bill and Melinda Gates Foundation Grand Challenges 6-74 TB contacts study; IGRA = interferon gamma 

release assay; IQR = interquartile range. Data shown as n(%) unless otherwise specified. 

Category Level London contacts Leicester contacts GC6-74 ACS All 

Participants n 324 103 334 144 905 

Age Median (IQR) 34 (26, 47) 35 (24, 45.5) 23 (19, 35) 16 (15, 17) 26 (18, 40) 

Gender Female 153 (47.2)     43 (41.7)    197 (59.0)     97 (67.4)    490 (54.1)  

  Male 166 (51.2)     60 (58.3)    137 (41.0)     47 (32.6)    410 (45.3)  

  Missing     5 (1.5)      0 (0.0)      0 (0.0)      0 (0.0)      5 (0.6)  

Ethnicity White    75 (23.1)      6 (5.8)      0 (0.0)      0 (0.0)     81 (9.0)  

  Black African or Caribbean    66 (20.4)     10 (9.7)      0 (0.0)     12 (8.3)     88 (9.7)  

  South Asian   112 (34.6)     86 (83.5)      0 (0.0)      0 (0.0)    198 (21.9)  

  Mixed     0 (0.0)      0 (0.0)      0 (0.0)    132 (91.7)    132 (14.6)  

  Other    61 (18.8)      1 (1.0)      0 (0.0)      0 (0.0)     62 (6.9)  

  Missing    10 (3.1)      0 (0.0)    334 (100.0)      0 (0.0)    344 (38.0)  

IGRA Negative   219 (67.6)     50 (48.5)      0 (0.0)      3 (2.1)    272 (30.1)  

  Positive   105 (32.4)     53 (51.5)      0 (0.0)     36 (25.0)    194 (21.4)  

  Missing     0 (0.0)      0 (0.0)    334 (100.0)    105 (72.9)    439 (48.5)  

Country Ethiopia     0 (0.0)      0 (0.0)     36 (10.8)      0 (0.0)     36 (4.0)  

  South Africa     0 (0.0)      0 (0.0)    180 (53.9)    144 (100.0)    324 (35.8)  
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  The Gambia     0 (0.0)      0 (0.0)    118 (35.3)      0 (0.0)    118 (13.0)  

  UK   324 (100.0)    103 (100.0)      0 (0.0)      0 (0.0)    427 (47.2)  

Outcome Non-progressor   316 (97.5)     99 (96.1)    259 (77.5)    104 (72.2)    778 (86.0)  

  Incipient TB     8 (2.5)      4 (3.9)     75 (22.5)     40 (27.8)    127 (14.0)  

Months from recruitment to TB Median (IQR)  8.6 (6.4, 11.1)  1.9 (1.0, 3.2) 10.5 (5.5, 17.5) 14.4 (8.8, 18.6) 10.3 (5.5, 17.5) 

Microbiological confirmation No 5 (62.5)  0 (0.0)   5 (6.7)   0 (0.0)   10 (7.9)  

  Yes 3 (37.5)  4 (100.0)  70 (93.3)  40 (100.0)  117 (92.1)  

Pulmonary No 7 (87.5)  1 (25.0)   0 (0.0)   0 (0.0)    8 (6.3)  

  Yes 1 (12.5)  3 (75.0)  75 (100.0) 40 (100.0)  119 (93.7) 

Samples n 324 103 412 287 1126 

  Non-progressor 316 (97.5)   99 (96.1)  314 (76.2)  214 (74.6)   943 (83.7)  

  Incipient TB   8 (2.5)    4 (3.9)   98 (23.8)   73 (25.4)   183 (16.3)  

Months from sample to TB Median (IQR) 8.6 (6.4, 11.1) 1.9 (1.0, 3.2) 7.5 (5.5, 15.5) 9.3 (6.6, 15.0) 8.5 (5.5, 15.1) 

  <3    1 (12.5)     3 (75.0)     6 (6.1)    11 (15.1)    21 (11.5)  

  3 to 6    1 (12.5)     1 (25.0)    35 (35.7)     3 (4.1)    40 (21.9)  

  6 to 12    5 (62.5)     0 (0.0)    23 (23.5)    28 (38.4)    56 (30.6)  

  >12    1 (12.5)     0 (0.0)    34 (34.7)    31 (42.5)    66 (36.1)  

Samples per patient 1   324 (100.0)    103 (100.0)    262 (78.4)     78 (54.2)    767 (84.8)  

  2     0 (0.0)      0 (0.0)     66 (19.8)     22 (15.3)     88 (9.7)  

  3     0 (0.0)      0 (0.0)      6 (1.8)     11 (7.6)     17 (1.9)  

  4     0 (0.0)      0 (0.0)      0 (0.0)     33 (22.9)     33 (3.6)  
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Figure 5-3: Principal component analysis of RNA sequencing data before and after batch correction.  

Plots pre-batch correction show (a) genome-wide protein-coding transcriptome; (b) selected genes comprising only the candidate signatures included 

in the analysis; and (c) invariant genes, stratified by source study. Panel (d) shows PCA following batch correction. ACS = adolescent cohort study; 

GC6-74 = Bill and Melinda Gates Foundation Grand Challenges 6-74 TB contacts study. Material from 256. 
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The 17 identified eligible signatures are summarised in Table 5-4 and are referred 

to by combining the first author’s name of the corresponding publication as a 

prefix, with number of constituent genes as a suffix.  All 17 signatures were 

discovered from distinct publications, apart from Suliman4 and Suliman2, which 

were derived from differing discovery populations within the same study. A total 

of five studies used existing published datasets for discovery105,106,120,253,258, with 

the remainder exploiting novel data. Two signatures were discovered from 

paediatric populations108,110. Four signature discovery datasets included HIV-

infected and -uninfected participants105–108, one was discovered in an exclusively 

HIV-infected population for the purpose of active case finding245, while the 

remainder were discovered in HIV-negative populations. Four signatures were 

discovered with the intention of diagnosis of incipient TB118,120,246. The remaining 

13 discovered for diagnosis of active TB disease. Of these, five105,110,121,253,258 

targeted discrimination of TB from other diseases in addition to discriminating 

people who were healthy or with LTBI. Of the 17 included signatures, only three 

were not discovered through a genome-wide approach110,244,253.  



165 
 

Table 5-4: Characteristics of candidate whole blood transcriptomic signatures for incipient TB included in systematic review and 

meta-analysis. 

Signature Original no. 
of genes 

Model Discovery 
population 

Discovery 
HIV status 

Discovery 
setting 

Discovery approach Intended 
application 

Discovery 
TB cases 

Discovery 
non-TB 
controls 

Eligible 
signatures 
discovered+ 

Anderson38108# 42 Disease risk 
score+ 

Children  HIV positive 
and negative 

South Africa, 
Malawi 

Elastic net using 
genome-wide data 

TB vs LTBI 87 43 1 

BATF2109 1 N/A Adults  HIV negative UK SVM using genome-
wide data 

TB vs healthy (acute 
vs convalescent 
samples) 

46 31 1 

Gjoen7110 7 LASSO 
regression* 

Children  HIV negative India LASSO using 198 pre-
selected genes 

TB vs healthy 
controls and other 
diseases 

47 36 2 

Gliddon3106 3 Disease risk 
score+ 

Adults  HIV positive 
and negative 

South Africa, 
Malawi107 

Forward Selection-
Partial Least Squares 
using genome-wide 
data 

TB vs LTBI 285 (TB + 
non-TB) 

 
1 

Huang11258# 13 SVM (linear 
kernel) 

Adults  HIV negative UK243 Common genes from 
elastic net, L1/2 and 
LASSO models, using 
genome-wide data 

TB vs healthy 
controls and other 
diseases 

16 79 1 

Kaforou25107# 27 Disease risk 
score+ 

Adults  HIV positive 
and negative 

South Africa, 
Malawi 

Elastic net using 
genome-wide data 

TB vs LTBI 285 (TB + 
non-TB) 

 
1 

Maertzdorf4244 4 Random 
forest^ 

Adults  HIV negative India Random forest using 
360 selected target 
genes 

TB vs healthy 113 76 2 

NPC2112 1 N/A Adults Not stated Brazil Differential expression 
using genome-wide 
data 

TB vs healthy 6 28 3 

Qian17253 17 Sum of 
standardised 
expression 

Adults  HIV negative UK243 Differential expression 
of nuclear factor, 
erythroid 2-like 2)-
mediated genes 

TB vs healthy 
controls and other 
diseases 

16 69 1 

Rajan5245 5 Unsigned 
sums+ 

Adults  HIV positive Uganda Differential expression 
using genome-wide 
data 

TB vs healthy (active 
case finding among 
PLHIV) 

80 totals (1:2 
cases: 
controls) 

 
1 

Roe3120 3 SVM (linear 
kernel) 

Adults  HIV negative UK Stability selection, 
using genome-wide 
data 

Incipient TB vs 
healthy 

46 31 1 
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Singhania20121 20 ‘Modified’ 
disease risk 
score%+ 

Adults  HIV negative UK, South 
Africa 

Random forest using 
modular approach 

TB vs healthy 
controls and other 
diseases 

Discovery set 
not explicitly 
stated 

 
1 

Suliman27 2 ANKRD22 - 
OSBPL10 

Adults  HIV negative Gambia, 
South Africa, 
Ethiopia 

Pair ratios algorithm 
using genome-wide 
data 

Incipient TB vs 
healthy 

79 328 4 

Suliman47$ 4 (GAS6 + 
SEPT4) - 
(CD1C + BLK) 

Adults  HIV negative Gambia, 
South Africa 

Pair ratios algorithm 
using genome-wide 
data 

Incipient TB vs 
healthy 

45 141 4 

Sweeney3105 3 (GBP5 + 
DUSP3) / 2 – 
KLF2 

Adults  HIV positive 
and negative 

Meta-analysis Significance 
thresholding and 
forward search in 
genome-wide data 

TB vs healthy 
controls and other 
diseases 

266 931 1 

Walter45111# 51 SVM (linear 
kernel) 

Adults  HIV negative USA SVMs, using genome-
wide data 

TB vs LTBI 24 24 1 

Zak16118 16 SVM (linear 
kernel) 

Adolescents  HIV negative South Africa SVM-based gene pair 
models using genome-
wide data 

Incipient TB vs 
healthy 

37 77 1 

For signatures where not all constituent genes were identifiable in the RNAseq data (e.g., due to records being withdrawn), the suffix indicates the number of 

identifiable genes included in the current analysis.  

SVM = support vector machine; LASSO = least absolute shrinkage and selection operator.  

#Anderson38, Huang11, Kaforou25 and Walter45 included 42, 13, 27 and 51 genes in the original descriptions, respectively (genes not included in current models 

were either duplicates, or not identifiable in RNAseq data).  

*Calculated using non-log transformed data using model coefficients from original publication. 

%Calculated using non-log transformed counts per million data with trimmed mean of M-values normalization, as per original description. 

^Required normalisation of the training and test sets. This was performed for each gene by subtracting the mean expression across all samples in the dataset, and 

dividing by the standard deviation. 

$Modelling approach was not clear from the original description. I recreated this using two approaches; (1) as a simple equation of gene pairs ((GAS6 + SEPT4) - 

(CD1C + BLK)); and (2) as an SVM using the four constituent gene pairs, as previously described124. Since the former approach achieved marginally better 

performance that was closer to the authors’ original description in their test set, this was included in the final analysis. 

+Indicates total number of eligible signatures discovered in each study.  
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Four signatures required reconstruction of SVM models111,118,120,258, and one 

required reconstruction of a random forest model244. My reconstructed models 

were validated against the authors’ original descriptions by comparing AUROCs 

in common datasets (Table 5-5). No validation was possible for the Huang11 

model as no AUROC was reported by authors in their original training or test set. 

The Suliman4 signature was reconstructed as a simple equation and as an SVM 

model using gene pairs. Since performance was marginally better and closer to 

the authors’ AUROC in their own test set using the simple formula ((GAS6 + 

SEPT4) - (CD1C + BLK); AUROC=0.66), compared to the gene pairs SVM 

(AUROC=0.65), the simple formula approach was used in the final analysis.  

Table 5-5: Validation of reconstructed signature models against the 

authors’ original descriptions in common datasets. 

Signature Original AUROC Reconstructed AUROC Common dataset 

Zak16 0.69 0.71 Zak test (GSE79362) 

Suliman4 0.67 0.66 Suliman test (GSE94438) 

Walter45 0.98 0.98 Walter test (GSE73408) 

Maertzdorf4 0.98 1.00 Maertzdorf training (GSE74092) 

 

5.3.2 Comparison of candidate signatures for detection of incipient TB 

over 2-year time-horizon 

I first examined ROC curves and corresponding AUROCs for the identification of 

incipient TB by all 17 signatures over a two-year period in the separate 

contributing study datasets. This analysis initially suggested overall lower 

AUROCs in the GC6-74, compared to the ACS dataset (Supplementary Material; 

Chapter 8.2). However, the distribution of TB events during follow-up differed 

between these studies. Following stratification by interval to disease, similar 

AUROCs were observed between studies, suggesting that interval to disease 

confounded the association between source study and discriminatory 

performance (Supplementary Material; Chapter 8.2). Since little residual between 

study heterogeneity was observed and PCAs post-batch correction showed no 

clustering by study (Figure 5-3), I proceeded to perform a pooled data analysis 

without further adjustment for source study as the primary analysis. 
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I omitted scores for the Suliman2, Suliman4 and Zak16 signatures for samples 

comprising their corresponding original training sets within the GC6-74 and ACS 

datasets, but included scores for these signatures for all other samples. The 

signature with highest AUROC for the identification of incipient TB over a two-

year period and that was available in pooled data from all 1,126 samples was 

BATF2 (AUROC 0.74; 95% CI 0.69-0.78; Table 5-6). BATF2 was therefore used 

as the reference standard for paired comparisons of the other 16 candidate 

signatures. I found that eight signatures had equivalent discrimination to BATF2. 

These were Suliman2, Kaforou25, Gliddon3, Sweeney3, Roe3, Zak16 and 

Suliman4. The remaining nine signatures had significantly inferior AUROCs.  

Table 5-6: Receiver operating characteristic areas under the curve showing 

diagnostic accuracy of candidate transcriptomic signatures for incipient 

TB, stratified by time interval to disease, among pooled dataset.  

P values represent comparisons against the best performing signature available for all 

participants (BATF2) over two years, using paired DeLong tests.  

 Interval to disease (months) 

Signature 0 to 24 p 0 to 12 0 to 6 0 to 3 

Suliman2 0.77 (0.71-0.82) 0.36 0.82 (0.76-0.88) 0.85 (0.74-0.95) 0.91 (0.86-0.96) 

BATF2 0.74 (0.69-0.78) ref 0.77 (0.72-0.82) 0.78 (0.7-0.85) 0.87 (0.79-0.95) 

Kaforou25 0.73 (0.69-0.78) 0.85 0.78 (0.73-0.83) 0.79 (0.72-0.86) 0.88 (0.8-0.97) 

Gliddon3 0.73 (0.68-0.77) 0.58 0.77 (0.72-0.82) 0.78 (0.71-0.85) 0.85 (0.74-0.96) 

Sweeney3 0.72 (0.68-0.77) 0.44 0.77 (0.71-0.82) 0.77 (0.69-0.84) 0.91 (0.84-0.97) 

Roe3 0.72 (0.67-0.77) 0.11 0.77 (0.71-0.82) 0.77 (0.7-0.84) 0.88 (0.79-0.97) 

Suliman4 0.7 (0.64-0.76) 0.26 0.73 (0.66-0.8) 0.78 (0.68-0.89) 0.82 (0.69-0.94) 

Zak16 0.7 (0.64-0.76) 0.94 0.76 (0.69-0.82) 0.79 (0.71-0.86) 0.86 (0.71-1) 

NPC2 0.68 (0.64-0.73) 0.012 0.71 (0.66-0.77) 0.75 (0.69-0.82) 0.78 (0.66-0.9) 

Maertzdorf4 0.68 (0.63-0.73) 0.001 0.73 (0.68-0.78) 0.71 (0.64-0.79) 0.8 (0.69-0.91) 

Gjoen7 0.67 (0.63-0.72) 0.001 0.69 (0.64-0.75) 0.7 (0.62-0.77) 0.75 (0.61-0.88) 

Singhania20 0.67 (0.62-0.72) 0.006 0.68 (0.62-0.73) 0.72 (0.65-0.78) 0.74 (0.6-0.87) 

Huang11 0.66 (0.61-0.71) 0.007 0.7 (0.65-0.75) 0.67 (0.6-0.75) 0.75 (0.63-0.86) 

Qian17 0.66 (0.61-0.71) <0.0001 0.71 (0.66-0.76) 0.69 (0.62-0.77) 0.79 (0.7-0.88) 

Anderson38 0.65 (0.61-0.7) 0.002 0.68 (0.62-0.73) 0.68 (0.6-0.75) 0.74 (0.63-0.85) 

Rajan5 0.55 (0.5-0.6) <0.0001 0.59 (0.53-0.65) 0.57 (0.49-0.66) 0.68 (0.56-0.81) 

Walter45 0.55 (0.5-0.6) <0.0001 0.58 (0.52-0.64) 0.62 (0.54-0.69) 0.47 (0.35-0.6) 
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5.3.3 Correlation, Jaccard indices and upstream analysis of candidate 

signatures 

Next, I examined the correlation between the 17 candidate signature scores in 

the pooled dataset, as defined by Spearman rank correlation (Figure 5-4). The 

eight signatures identified with equivalent performance demonstrated moderate 

to high correlation. In contrast, Singhania20, Anderson38, Huang11 and 

Walter45 showed little correlation with any other signature. The correlation matrix 

dendrogram showed closest relationships between signatures identified by the 

same research group. To assess whether correlation was driven by overlapping 

constituent genes, I calculated pairwise Jaccard Indices. There was a weak 

positive association between Spearman rank correlation and Jaccard Index, 

suggesting that overlapping constituent genes may partially account for their 

correlation. The 40 genes comprising the eight signatures with equivalent 

AUROCs are demonstrated in Figure 5-5a. Upstream analysis predicted that 

interferon-gamma, interferon-alpha, STAT1 (the canonical mediator of interferon 

signalling), and tumour necrosis factor were the strongest predicted 

transcriptomic regulators of these constituent genes (Figure 5-5b).
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Figure 5-4: Relationships between 17 candidate transcriptomic signatures for incipient TB. 

Displayed as: (a) Spearman rank correlation matrix heatmap; (b) Jaccard similarity index heatmap showing overlapping constituent genes; and (c) 

Jaccard index vs. Spearman correlation coefficient for pairwise signature comparisons. Material from 256. 

A               B       C 
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Figure 5-5: Genes comprising the top eight blood transcriptomic signatures for incipient TB. 

Shown as (a) chessboard matrix; and (b) network diagram. Network diagram shows predicted upstream regulators of the 40 genes. Coloured nodes 

represent the predicted upstream regulators, grouped by function (red=cytokine, blue=transcription factor, green=other). Grey nodes represent the 

transcriptomic biomarkers downstream of these regulators. Size of the nodes is proportional to the number of downstream genes associated with 

each regulator and the thickness of the edges is proportional to the -log10 P value for enrichment of each of the upstream regulators. Material from 
256. 
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5.3.4 Diagnostic accuracies of candidate signatures decline with interval 

to disease 

The distributions of the eight best performing signatures among the IGRA-

negative control population followed an approximately Normal distribution prior to 

Z score transformation (Supplementary Material; Chapter 8.2). Z scores for the 

eight best performing signatures, stratified by interval to disease, are shown in 

Figure 5-6 and Figure 5-7. AUROCs of these signatures declined with increasing 

interval to disease (Figure 5-8), ranging 0.82-0.91 for 0-3 months vs. 0.70-0.77 

for 0-24 months.  
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Figure 5-6: Scatterplots showing scores of eight best performing 

transcriptomic signatures for incipient TB, stratified by interval to disease.  

Dashed horizontal lines indicate Z2 thresholds for each signature. NP = non-

progressors, who remained healthy during follow-up. Material from 256. 
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Figure 5-7: Expression of eight best performing transcriptomic signatures 

among participants progressing to TB by days from sampling to disease.  

Horizontal dashed line indicates cut-off defined by two standard deviations above the 

mean of control population. Vertical grey dashed line indicates the initial 90 day interval 

after sampling. Material from 256. 
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Figure 5-8: ROC curves showing diagnostic accuracy of eight best performing transcriptomic signatures for incipient TB.  

Curves are shown stratified by months from sample collection to disease. Material from 256. 
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Figure 5-9a demonstrates diagnostic accuracy of the eight best performing 

candidates using pre-specified Z2 cut-offs based on the 97.7th percentile of the 

IGRA-negative control population, stratified by interval to disease and 

benchmarked against positive predictive value estimates based on a pre-test 

probability of 2%. At this threshold, test sensitivities over 0-24 months of the eight 

best performing signatures ranged from 24.7% (16.6-35.1) to 39.9% (33.0-47.2) 

for the Suliman2 and Sweeney3 signatures, respectively, while corresponding 

specificities ranged from 92.3% (89.8-94.2) to 95.3% (92.3-96.9). In contrast, 

over a 0-3 month interval, sensitivities ranged from 47.1% (26.2-69.0) for the 

Suliman4 signature to 81.0% (60.0-92.3) for the Sweeney3 signature, with 

corresponding specificities of 90.9% (88.9-92.6) to 94.8% (93.0-96.2). For each 

of the time points, the eight signatures had overlapping confidence intervals, and 

largely fell in the same positive predictive value plane (5-10% over 0-24 months 

vs. 10-15% over 0-3 months). Using cut-offs defined by the maximal Youden 

index for each time interval, sensitivity and specificity estimates fell below the 

minimum WHO TPP criteria for incipient TB tests over a 0-24 month period, but 

met or approximated the minimum criteria over 0-3 months (Figure 5-9b). 
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Figure 5-9: Diagnostic accuracy of eight best performing transcriptomic signatures for incipient TB.  

Shown in receiver operating characteristic space, stratified by months to disease. Grey shaded zones indicate 95% CIs for each signature. (a) 

Dashed lines represent positive predictive value planes of 5, 10 and 10%, respectively, based on 2% pre-test probability, and using Z2 cut-offs. (b) 

Secondary analysis presented using biomarkers cut-offs defined by the maximal Youden indices for each time period, benchmarked against minimal 

(grey dashed box) and optimal (black dashed box) criteria from the WHO Target Product Profile for incipient TB biomarkers. Material from 256. 

(a) 
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(b) 
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5.3.5 Predictive values for incipient TB 

Positive- and negative-predictive values, using Z2 cut-offs and modelled across 

a range of pre-test probabilities, are shown in Figure 5-10. Based on pre-test 

probability of 2% all eight top performing signatures achieved a positive predictive 

value marginally above the WHO benchmark of 5.8% for a 0-24 month period, 

ranging from 6.8% for Suliman2 to 9.4% for Kaforou25, with corresponding 

negative predictive values of 98.4% and 98.6%, respectively. For the 0-3 month 

time period, positive predictive values ranged from 11.2% for Gliddon3 to 14.4% 

for Zak16, with corresponding negative predictive values of 99.0% and 99.3%, 

respectively. 

Figure 5-10: Positive- and negative-predictive values (PPVs/NPVs) for best 

performing transcriptomic signatures for incipient TB. 

Shown stratified by months to disease, using pre-specified Z2 cut-offs based on the 

97.7th percentile of the control population, across a range of pre-test probabilities. 

Dashed line indicates 2% pre-test probability. Material from 256. 

 



180 
 

5.3.6 Sensitivity analyses 

Restricting inclusion of incipient TB cases to those with documented 

microbiological confirmation and including only one blood RNA sample per 

participant (by random sampling) produced no significant change to the main 

results (Figure 5-11, Figure 5-12). Re-analysis of the ROC curves using mutually 

exclusive time periods of 0-3, 3-6, 6-12 and 12-24 months magnified the 

difference in performance between the intervals, with performance declining 

more markedly with increasing interval to disease (Table 5-7). AUROCs in the 

12-24 month interval ranged from 0.60 (0.50-0.70) to 0.67 (0.60-0.75) for the top 

eight equivalent signatures. Finally, the two-stage meta-analysis approach (using 

data without batch correction) showed similar findings to the primary analysis 

(Figure 5-13).
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Figure 5-11: ROC curves showing diagnostic accuracy of eight best performing transcriptomic signatures for incipient TB - 

sensitivity analysis restricting incipient TB cases to microbiologically confirmed. 

Stratified by months from sample collection to disease. Material from 256. 
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Figure 5-12: ROC curves showing diagnostic accuracy of eight best performing transcriptomic signatures for incipient TB - 

sensitivity analysis including only one blood RNA sample per participant. 

One sample per participant selected using random sampling. Performance stratified by months from sample collection to disease. Material from 256. 
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Table 5-7: AUROCs (95% CIs) showing diagnostic accuracy of eight best performing transcriptomic signatures for incipient TB 

using mutually exclusive time periods. 

Stratified by months from sample collection to disease. 

Signature 0 to 3 3 to 6 6 to 12 12 to 24 

Suliman2 0.91 (0.86 - 0.96) 0.66 (0.29 - 1) 0.8 (0.74 - 0.87) 0.67 (0.58 - 0.76) 

Sweeney3 0.91 (0.84 - 0.97) 0.69 (0.59 - 0.8) 0.76 (0.69 - 0.83) 0.63 (0.56 - 0.71) 

Kaforou25 0.88 (0.8 - 0.97) 0.74 (0.65 - 0.83) 0.78 (0.71 - 0.85) 0.63 (0.55 - 0.71) 

Roe3 0.88 (0.79 - 0.97) 0.71 (0.61 - 0.81) 0.77 (0.69 - 0.84) 0.64 (0.56 - 0.72) 

BATF2 0.87 (0.79 - 0.95) 0.73 (0.63 - 0.82) 0.76 (0.69 - 0.84) 0.67 (0.6 - 0.75) 

Zak16 0.86 (0.71 - 1) 0.77 (0.68 - 0.85) 0.71 (0.6 - 0.82) 0.6 (0.5 - 0.7) 

Gliddon3 0.85 (0.74 - 0.96) 0.75 (0.66 - 0.84) 0.76 (0.69 - 0.83) 0.62 (0.55 - 0.7) 

Suliman4 0.82 (0.69 - 0.94) 0.75 (0.59 - 0.91) 0.69 (0.6 - 0.78) 0.63 (0.53 - 0.73) 

Maertzdorf4 0.8 (0.69 - 0.91) 0.67 (0.57 - 0.76) 0.75 (0.67 - 0.82) 0.59 (0.51 - 0.67) 

Qian17 0.79 (0.7 - 0.88) 0.64 (0.54 - 0.74) 0.73 (0.66 - 0.8) 0.57 (0.48 - 0.65) 

NPC2 0.78 (0.66 - 0.9) 0.74 (0.66 - 0.82) 0.67 (0.59 - 0.76) 0.62 (0.55 - 0.7) 

Huang11 0.75 (0.63 - 0.86) 0.63 (0.54 - 0.73) 0.73 (0.67 - 0.79) 0.55 (0.47 - 0.63) 

Gjoen7 0.75 (0.61 - 0.88) 0.67 (0.59 - 0.76) 0.69 (0.6 - 0.77) 0.62 (0.55 - 0.69) 

Anderson38 0.74 (0.63 - 0.85) 0.64 (0.55 - 0.74) 0.68 (0.6 - 0.76) 0.6 (0.52 - 0.68) 

Singhania20 0.74 (0.6 - 0.87) 0.7 (0.63 - 0.77) 0.64 (0.56 - 0.72) 0.64 (0.56 - 0.72) 

Rajan5 0.68 (0.56 - 0.81) 0.52 (0.42 - 0.62) 0.6 (0.52 - 0.68) 0.5 (0.43 - 0.58) 

Walter45 0.47 (0.35 - 0.6) 0.66 (0.58 - 0.75) 0.54 (0.46 - 0.62) 0.49 (0.41 - 0.57) 
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Figure 5-13: Diagnostic accuracy of eight best performing transcriptomic signatures for incipient TB from two-stage IPD-MA 

sensitivity analysis. 

Calculated using bivariate random effects meta-analysis. Shown in receiver operating characteristic space, stratified by months to disease. Grey 

shaded zones indicate 95% Cis for each signature.  Cut-offs derived from two standard scores above the mean of control population. Dashed lines 

represent positive predictive value planes of 5, 10 and 10%, respectively, based on 2% pre-test probability. Material from 256. 
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5.4 Discussion 

5.4.1 Summary of key findings 

In a pooled dataset from four published genome-wide RNA sequencing studies, 

I have demonstrated that eight candidate transcriptomic signatures performed 

with equivalent diagnostic accuracy for detection of incipient TB over a two-year 

time horizon. These signatures ranged from a single transcript (BATF2) to 25 

genes (Kaforou25). The accuracy of all eight signatures declined markedly with 

increasing intervals to disease. These signatures only marginally surpassed the 

WHO target positive predictive value of 5.8% over two years, assuming 2% pre-

test probability and using a cut-off of two standard scores (Z2). However, 

sensitivity at the Z2 threshold was only 24.7-39.9%, missing the majority of cases. 

No signature achieved the WHO target sensitivity and specificity of ≥75% over 

two years, even when using the cut-off with maximal accuracy. In contrast, using 

Z2 cut-offs over a 0-3 month period, the eight best performing signatures 

achieved sensitivities of 47.1-81.0% and specificities >90%. This led to positive- 

and negative-predictive values of 11.2-14.4% and >98.9%, respectively, when 

assuming 2% pre-test probability, suggesting that the minimum WHO TPP may 

be achieved over shorter time intervals. These findings are consistent with the 

recently reported CORTIS trial, which showed that the performance of a 

transcriptomic signature was highly time-dependent when implemented for 

general population screening123. 

5.4.2 Policy implications 

In order to achieve the WHO TPP, a screening strategy that incorporates serial 

testing on a 3-6 monthly basis may therefore be required for transcriptomic 

signatures. Such a strategy, however, is unlikely to be feasible or cost-effective 

at general population level, where the pre-test probability of incident TB is 

relatively low. Instead, high-risk groups such as household contacts could be 

targeted. However, even this may be challenging in high transmission settings, 

given the limited global coverage of contact-tracing programmes. In lower 

transmission, higher resource settings, serial blood transcriptomic testing for risk-

stratification over a defined 1-2 year period may be more achievable, particularly 

among recent contacts or new entry migrants from high transmission countries, 
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for whom risk of disease is highest within an initial two year interval16,80,120. 

Integral to scale-up of these biomarkers is translation of transcriptomic 

measurements from genome-wide approaches to the reproducible quantification 

of selected signature genes, with appropriately defined cut-offs. This is underway 

for the Sweeney3 signature, using the GeneXpert platform259.  

5.4.3 Characteristics of best performing signatures and implications for 

biomarker discovery 

The eight signatures that achieved equivalent performance were discovered with 

the primary intention of diagnosis of incipient TB118,120,246, or differentiating active 

TB from people who are healthy or with LTBI105–107,109. Discovery populations for 

these eight signatures included adults or adolescents from the UK or sub-

Saharan Africa106,107,109,118,120,246, or a meta-analysis of microarray data from 

multiple studies105, including a minimum of 37 incipient or active TB cases. All 

eight signatures were discovered using genome-wide approaches. In contrast, 

the nine signatures with inferior performance included two discovered from 

children108,110, one study that prioritised discrimination of active TB from other 

bacterial and viral infections121, and one study that conducted active case-finding 

for TB among people living with HIV245. The differences in primary intended 

applications, which are reflected in the study populations used for biomarker 

discovery, may account for their inferior performance when evaluated solely for 

identification of incipient TB in a predominantly healthy, HIV-negative adult 

population. The signatures with inferior performance also included three 

discovered from panels of pre-selected candidate genes, rather than a genome-

wide approach110,244,253, and four with only 6-24 TB cases in the discovery 

sets111,112,253,258. Taken together, these findings suggest that using a genome-

wide approach and including adequate numbers of diseased cases are important 

considerations during signature discovery.  

Previous reviews have also highlighted that original biomarker discovery studies 

often produce optimistic discrimination measures, which cannot be replicated in 

independent validation studies, thus meaning that the vast majority of biomarkers 

never reach clinical implementation103. In addition to ensuring adequate sample 

size, future biomarker studies should also ensure that study cohorts included in 

discovery and validation are representative of target populations for 
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implementation. Such studies should also ideally be performed using a cohort 

study, as opposed to case-control, design to reduce risk of spectrum bias caused 

by the inclusion of more extreme healthy and diseased phenotypes122. 

The eight best performing signatures were derived from the application of 

different computational approaches, but showed moderate to high levels of co-

correlation, with closest relationships between signatures identified by the same 

research group. This likely reflects common discovery datasets and modelling 

approaches used within research groups. Overlapping constituent genes only 

partially accounted for correlation between signatures, suggesting that they 

reflect different dimensions of a common host response to infection with 

M. tuberculosis. This hypothesis was strongly supported by the identification of 

interferon and tumour necrosis factor signalling pathways as statistically-enriched 

upstream regulators of the genes across the eight signatures. Whilst these host 

response pathways are not likely to be specific to TB, the application of these 

biomarkers for incipient TB mitigates against the limitations of imperfect 

specificity by focusing on asymptomatic individuals in which the prior probability 

of other diseases is low. The time-dependent sensitivity of the signatures 

suggests that the duration of the incipient phase of TB is typically 3-6 months. 

However, even within the <3 month time interval, the sensitivity of the best 

performing transcriptomic signatures ranged from 47.1-81.0%, indicating that the 

biomarkers may genuinely have imperfect sensitivity for incipient TB, or that the 

incipient phase can progress very rapidly among a subset of cases. Importantly, 

each signature did exhibit an AUROC >0.5 for discriminating incipient TB from 

non-progressors even 12-24 months after sampling, suggesting that the incipient 

phase may be more prolonged in some cases. This may reflect cases in which 

the host response initially achieves mycobacterial control in dynamic host-

pathogen interactions260. Of interest, these findings are generally mirrored in 

proteomic and metabolomic data from similar cohorts126,127. 

5.4.4 Strengths of this study 

Strengths of this study include the size of the pooled dataset, including 1,126 

samples from 905 patients, and 183 samples from 127 incipient TB cases. 

Participant-level data were available for all four eligible studies, all of which 

achieved maximal quality assessment scores and were performed in relevant 
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target populations of either recent TB contacts, or people with LTBI. This 

facilitated a robust analysis of diagnostic accuracy of the candidate signatures, 

stratified by interval to disease. Second, I performed a comprehensive systematic 

review, and identified 17 candidate signatures. For each of these signatures, 

gene lists and modelling approaches were extracted and verified by independent 

reviewers. Moreover, for signatures that required model reconstruction, my 

models were cross-validated against original models by comparing AUROCs 

using the same dataset wherever possible. This allowed us to perform a 

comprehensive, head-to-head analysis of candidate signatures for incipient TB, 

ensuring that each head-to-head comparison was performed on paired data. 

Finally, my meta-analytic methods ensured a standardised approach to 

processing of raw RNA sequencing data, with consistent results obtained from 

one-stage and two-stage IPD-MA approaches.  

5.4.5 Study limitations 

A weakness of my analysis is that the total sample size included 183 samples 

from 127 incipient TB cases and I was unable to perform subgroup analyses by 

age, ethnicity or country, since the contributing studies largely defined these 

strata. Reassuringly, there were no clear differences in performance by study, 

supporting the generalisability of the results, although additional validation 

studies are required. Targeted PCR-based approaches to quantity the most 

promising candidate signatures could supplant use of genome-wide RNA 

sequencing to reduce costs and increase scalability. The accuracy of transcript 

measurements using near-patient technology, such as the GeneXpert platform, 

could also be evaluated259. I was also unable to account for prior BCG vaccination 

status, though I anticipate that BCG coverage would likely be very high among 

the study populations included.  

Having observed little heterogeneity between studies, I conducted a pooled 

analysis, assuming common diagnostic accuracy between studies. The precision 

of my estimates therefore may be slightly overstated and statistical tests may be 

anti-conservative. However, sensitivity analysis using a two-stage meta-analysis 

approach with random effects yielded similar findings, supporting the robustness 

of my results. Likewise, treating serial samples as independent was anti-

conservative and may have led to bias if participants with serial samples were 
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systematically different from those with single samples. However, my findings 

were similar in my sensitivity analysis when including only one sample per 

individual at random.  

All included datasets were from sub-Saharan Africa and the UK, where a 

significant proportion of participants were of Asian ethnicity. No data were 

available for PLHIV or children under 10, among whom different blood 

transcriptomic perturbations may occur in TB108,131. Prospective validation studies 

in other world regions and among these specific target populations are needed, 

and could be used to periodically update the current meta-analysis to further 

increase generalisability.  

There were only eight TB cases known to be extra-pulmonary, thus precluding 

assessment of diagnostic accuracy stratified by TB disease site. In addition, the 

majority of incipient TB cases were contributed from the African datasets, with 12 

cases from the UK studies. Nevertheless, the UK studies were done in 

appropriate target populations of close contacts of TB index cases and were 

performed as cohort studies, as opposed to the African study case-control 

designs. High specificity for correctly identifying non-progressors among contacts 

is a key attribute in improving positive predictive value, compared to existing 

tests. Hence, these UK datasets were useful additions to the pooled meta-

analysis, though further data are required to confirm that signature sensitivities 

observed in the African case-control studies generalises to settings with lower TB 

incidence. 

Non-progressor samples with less than 6 months’ follow-up were excluded due 

to risk of outcome misclassification, since I considered 6 months to be an 

insufficient follow-up duration for TB development. Finally, participants who 

received preventative treatment were also excluded, which may have led to 

selection bias if they were systematically different from those who did not. 

However, these exclusions applied to only 30 and 35 samples, respectively. The 

impact of any selection bias is likely small, although the potential directions of 

these biases are difficult to predict and could have led to under- or over-

estimation of accuracy for detecting incipient TB. 
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5.4.6 Conclusion 

In summary, I have demonstrated that eight transcriptomic signatures, including 

a single transcript (BATF2), have equivalent diagnostic accuracy for identification 

of incipient TB. Performance appeared similar across studies, including 

participants from the UK and sub-Saharan Africa. Signature performance was 

highly time-dependent, with lower accuracy at longer intervals to disease. A 

screening strategy that incorporates serial testing on a 3-6 monthly basis among 

carefully selected high-risk groups may be required for these biomarkers to 

surpass the WHO TPP benchmarks. 

5.5 Contribution statement 

This chapter included a systematic review and pooled analysis of four publicly 

available RNA sequencing datasets. I led the work from conception to completion 

and dissemination.  

5.6 Outputs relating to this chapter 

This study is published in The Lancet Respiratory Medicine: 

Gupta RK, Turner CT, Venturini C, Esmail H, Rangaka MX, Copas A, Lipman 

M, Abubakar I, Noursadeghi M (2020). Concise whole blood transcriptional 

signatures for incipient tuberculosis: A systematic review and patient-level 

pooled meta-analysis. The Lancet Respiratory Medicine. 

https://doi.org/10.1016/S2213-2600(19)30282-6 

I also presented this work at the: 

• TBScience Symposium (pre-conference to the Union World TB 

Conference) in Hyderabad, India, October 2019 - receiving a Gates 

Foundation Award. 

 

• British Thoracic Society Winter Meeting, London, December 2019. 

In addition, the systematic review and analysis pipeline underpinning this work 

directly led to a second paper evaluating the performance of candidate blood 

transcriptomic signatures for diagnosis of TB disease in the publication below in 

The Lancet Respiratory Medicine: 

https://doi.org/10.1016/S2213-2600(19)30282-6
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Turner CT, Gupta RK, Tsaliki E, Roe J, Mondal P, Nyawo G, Palmer Z, Miller 

RF, Reeve B, Theron G, Noursadeghi M (2020). Systematic validation of blood 

transcriptional biomarkers for active pulmonary tuberculosis in a high-burden 

setting: a prospective diagnostic accuracy study. The Lancet Respiratory 

Medicine. https://doi.org/10.1016/S2213-2600(19)30469-2 

https://doi.org/10.1016/S2213-2600(19)30469-2
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6 Discussion 

6.1 Summary of key findings in context of wider literature 

In this thesis, I evaluated a range of methods to facilitate more precise targeting 

of preventative treatment for TB, using existing and next generation biomarkers. 

The key findings are summarised in the paragraphs below. Detailed critique of 

the strengths and limitations of these analyses were discussed in the relevant 

chapters.  

6.1.1 Prognostic value of TST and IGRAs for incident TB 

In Chapters 2 and 4, I demonstrated that the TST and IGRAs (including QFT-GIT 

and T-SPOT.TB) have similar predictive ability for incident TB when using either 

binary cut-offs (particularly for TST15 or TST5/15) and quantitative results in 

settings with low TB incidence. For both TST and IGRAs, stronger T cell 

responses are associated with higher risk of incident TB, in keeping with previous 

data84,85. However, implementation of higher cut-offs is not likely to be a tractable 

approach in settings aiming towards pre-elimination due to a marked loss of 

sensitivity, with only modest gain in positive predictive value when compared to 

standard thresholds. The newer generation QFT-Plus assay is also likely to 

perform similarly to existing iterations, in view of strong agreement and correlation 

between the two TB antigen response tubes (Chapter 3).  

It is widely accepted that both TSTs and IGRAs do not discriminate persistent 

from cleared M. tuberculosis infection (Chapter 1.4.7); both tests therefore have 

limited specificity for detecting people at highest risk of progression to disease. 

In addition, they also have imperfect sensitivity for detecting people who progress 

to incident TB, as demonstrated in Chapters 2 and 3. This finding is consistent 

with previous data describing TST and IGRA sensitivities ranging from 65-90% 

even in the context of prevalent TB disease (Chapter 1.4.3). Negative TST and 

IGRAs in these examples may reflect susceptibility to TB disease among a 

subgroup of exposed individuals who either fail to mount any adaptive immune 

response to M. tuberculosis, or develop an immune response that is independent 

of interferon-gamma75. Taken together, the evidence suggests that TST and 

IGRA should be considered as useful but imperfect correlates of risk when used 
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for TB diagnosis, prognostication, or as outcome measures in vaccine efficacy 

studies240. 

6.1.2 Interpreting the quantitative T cell response in context 

Consistent with findings from previous systematic reviews and meta-analyses76–

78, I found that the risk of TB among people with a conventional diagnosis of LTBI 

was highly variable, even when stratified by indication for screening (Chapter 4). 

By integrating quantitative T cell responses (measured by TST or IGRA) with 

demographics, history of exposure to M. tuberculosis and measures of 

immunocompromise, the PERISKOPE-TB multivariable prognostic model 

facilitates interpretation of LTBI test results within the context of individual 

patients in settings with low TB incidence. Despite differences in baseline risk 

across studies resulting in imperfect calibration estimates, decision curve 

analyses demonstrate that the tool is likely to have clinical utility to guide shared 

decision making regarding the initiation of preventative treatment, across a broad 

range of clinician and patient preferences. 

6.1.3 Blood transcriptomic signatures for incipient TB 

In Chapter 5, I showed that eight blood transcriptomic signatures have similar 

accuracy for detection of incipient TB. These signatures reflect a common 

underlying host response in TB, predominantly driven by interferon and tumour 

necrosis factor-inducible gene expression, suggesting that there are multiple 

transcriptomic targets that could be amenable to translation to clinical 

diagnostics. However, since these signatures reflect the host immune response 

in early TB, they also reflect short-term risk of disease and only meet the WHO 

TPP benchmarks for an incipient TB test over a 3-6 month interval (as opposed 

to the 2-year time horizon specified in the original TPP11).  

In addition, two of the contributing studies in my IPD-MA were case-control 

designs, which may be prone to spectrum bias due to inclusion of severe 

phenotypes, thus leading to optimistic accuracy estimates122. Additional cohort 

studies with study populations that are representative of target populations for 

implementation have been required. Reassuringly, my results are supported by 

recently published data from the CORTIS study, which demonstrated that the 

WHO incipient test TPP were only met for a six-month time horizon when 
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implemented for general population screening123. Taken together, these data 

suggest that optimal implementation of these biomarkers will require careful 

selection of target populations who are at highest risk of disease in the short-

term, to maximise prior probability and thus positive predictive value for incident 

disease. 

Translation of blood transcriptomic signatures to near-patient diagnostic 

platforms is underway and one prototype is under evaluation, although further 

validation is required and appropriate test thresholds must be defined259. An 

additional challenge to implementation is the cost of these assays. This is likely 

to far exceed the $2 target specified by the WHO TPP for a non-sputum triage 

test for TB disease101, but may achieve the WHO target price to identify incipient 

TB for <$100, using the price of IGRAs as an initial benchmark11. Importantly, the 

fact that a number of different signatures show similar performance may 

encourage market competition to drive down costs. 

6.1.4 Implications for global TB control 

My findings further highlight the limitations of current LTBI assays and RNA 

biomarkers as next generation incipient TB tests for predicting TB development. 

In countries with low TB incidence, TB prevention through LTBI screening is 

widely implemented among risk groups such as recent TB contacts, migrants 

from countries with high TB incidence and immunocompromised groups (Chapter 

1.8). My analyses in Chapter 2 suggest that current TST and IGRA thresholds 

are appropriate and should not be increased programmatically. The 

PERISKOPE-TB prognostic tool developed in Chapter 4 may allow more precise 

targeting of preventative treatment in such settings by facilitating individualised 

risk: benefit assessments. In addition, the utility of RNA biomarkers to stratify 

preventative treatment in risk groups such as recent contacts could be evaluated 

in future studies (discussed in Chapter 6.2.4). However, it should be noted that 

approaches that facilitate intentional targeting of preventative treatment towards 

people at higher risk of incident TB may perversely undermine TB pre-elimination 

efforts in low incidence settings, when compared to a utilitarian approach that is 

willing to accept the risk of individual-level net harm in order to pursue the long-

term goals of reducing TB incidence261. A utilitarian approach may be more 

acceptable when individual-level harms are minimised through discovery and 
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implementation of ultra-short preventative treatment regimens that are safe and 

effective. 

In higher transmission settings, LTBI screening is much less widely implemented; 

scale-up of preventative treatment therefore represents an important component 

of the End TB Strategy (Chapter 1.2.3). In these settings, TST remains the most 

widely available prognostic test, due to the higher cost and requirement of 

laboratory infrastructure for IGRAs. As discussed in Chapter 6.1.3, blood RNA 

biomarkers are being commercialised using near-patient platforms, but their cost 

may be prohibitive for widespread implementation as screening tests in low- and 

middle-income countries, particularly given that they only reflect short-term risk 

of disease. This means that future investments in screening using prognostic 

tests for TB may require careful consideration of potential opportunity costs when 

compared to alternative investments in emerging vaccines and truncated 

preventative treatment regimens.  

Moreover, even in 2019, a large diagnosis and notification gap of “missing 

millions” (estimated as 2.9 million cases) remained between annual TB 

notifications and the true number estimated to have developed TB, while only 

38% of multi-drug resistant cases were estimated to be notified and enrolled in 

treatment21. When combined with ongoing gaps in the cascade of TB care, these 

sobering statistics highlight a critical need to improve detection and treatment of 

global TB disease. In the absence of a widely available, affordable, accurate and 

rapid prognostic test for future TB development, strengthening of TB disease 

detection and treatment programmes may currently represent a more urgent 

public health priority, when compared to preventative treatment scale-up, in the 

highest burden settings. As progress is made towards closing the case 

notification gap and strengthening cascades of care, increasing investments may 

follow in TB prevention, focusing on highest risk groups such as recent household 

contacts (particularly young children) and PLHIV. Nevertheless, investments in 

TB prevention should ideally occur alongside strengthening of TB detection and 

treatment programmes where possible.  



196 
 

6.2 Future research priorities 

My findings give rise to a number of subsequent research questions that are 

summarised by the hypotheses below.  

6.2.1 Hypothesis 1: Binary and quantitative TST and IGRAs have 

equivalent prognostic ability for incident TB in high-incidence 

settings 

The prognostic ability of TST and IGRAs from head-to-head studies has been 

consistently observed to be lower in settings with high TB incidence, with pooled 

incidence rate ratios of 1.35-2.1679, compared to 5.4-8.8 in the UK PREDICT 

study80. This is likely to be explained by lower TST and IGRA specificity in high 

M. tuberculosis transmission settings, where the majority of the population 

demonstrate evidence of sensitisation, along with higher risk of future infection 

among people without sensitisation62,79. While I have found that quantitative TST 

and IGRA results have equivalent prognostic ability in head-to-head analyses in 

low incidence settings, it therefore remains unclear whether this observation 

extends to countries with higher TB burdens. This important question will be 

addressed by an underway systematic review and IPD-MA that seeks to compare 

the predictive ability of the TST and IGRAs for incident TB globally (PROSPERO 

CRD42020205667), as an extension of my work in Chapter 4.  

6.2.2 Hypothesis 2: The PERISKOPE-TB prognostic model can be tailored 

to improve prognostic ability of TST and IGRA in moderate- and high- 

burden settings 

A limitation of PERISKOPE-TB is that its generalisability as currently configured 

is restricted to low transmission settings (annual incidence ≤20/100,000 persons). 

The rationale for limiting to such settings was, firstly, to examine progression from 

LTBI to TB disease with a low risk of re-infection with M. tuberculosis during 

follow-up. Secondly, the majority of the population in high transmission settings 

are likely to have a positive LTBI test result62. Since the quantitative LTBI test 

result is a strong predictor in PERISKOPE-TB, a tailored prediction model may 

therefore be required in such settings. Future studies could evaluate 

PERISKOPE-TB for use in high transmission settings, updating the parameters 

as necessary, in order to assess whether a multivariable approach may improve 
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the discrimination and clinical utility of TST and IGRAs. A particular challenge 

when updating the model is likely to be incorporating the quantitative LTBI test 

result, since the distribution of quantitative responses is likely to be very different 

in higher TB burden settings, where the majority of population may be sensitised 

to M. tuberculosis. Thus, a large-scale multi-site dataset is likely to be required in 

order to update and validate the model for use in such settings.  

6.2.3 Hypothesis 3: PERISKOPE-TB can facilitate more precise delivery of 

preventative treatment, compared to TST or IGRAs alone 

As shown in Chapter 4, the PERISKOPE-TB demonstrates potential clinical utility 

for guiding decisions to initiate preventative treatment. The aim of this approach 

would be to target treatment to people at higher risk of TB disease, while reducing 

the burden of unnecessary treatment among people at lower risk. This hypothesis 

could be evaluated in a future RCT. Such a trial could compare systematically 

offering preventative treatment in an intervention arm to people with two-year 

incident TB risk (as determined by PERISKOPE-TB) above a set threshold 

probability, to a standard care arm where treatment is offered to all people with a 

positive TST or IGRA result. The outcome of this evaluation should consider 

whether the PERISKOPE-TB approach is non-inferior to using binary TST or 

IGRA cut-offs with respect to incident TB outcomes, while being superior in 

reducing the number of people receiving preventative antimicrobials. 

Alternatively, a composite outcome related to decision theory could be 

considered, similar to the net benefit metric used in decision curve analysis in 

Chapter 4. Specifically, a composite ‘net harm’ outcome could be incorporated, 

reflecting the cumulative incident TB risk plus the number of people receiving 

preventative treatment, weighted by w, where w is a weighting factor that 

considers the relative importance of each adverse outcome262. Qualitative work 

is likely to be required to define an acceptable range of weighting factors.  

Future trials may also evaluate the potential health economic impact of 

programmatic implementation of the model, along with the impact of this 

approach on the pursuit of TB pre-elimination.  
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6.2.4 Hypothesis 4: Blood transcriptomic biomarkers can facilitate more 

precise delivery of preventative treatment, compared to TST or 

IGRAs, among recent TB contacts 

Blood transcriptomic biomarkers also show promise as a method to facilitate 

more precise administration of preventative treatment, when compared to 

existing LTBI tests. However, since they only reflect short-term risk of disease, 

careful selection of target populations is likely to be required in order to achieve 

impact. Recent TB contacts represent a tractable target population, since the risk 

of TB decreases with increasing time since infection, with approximately 80% of 

cumulative five-year risk accrued in the first two years (Chapter 4). Future cohort 

studies could assess the performance of the best performing transcriptomic 

signatures, with direct head-to-head comparison to the other most promising 

candidate biomarkers (e.g., proteomic, metabolomic and antigen candidates), 

alone and in combination with TST or IGRA to stratify preventative treatment 

among recent TB contacts. Such studies should include study populations 

representative of target populations for implementation and could assess clinical 

utility using decision curve analysis, in addition to standard assessments of 

diagnostic accuracy and prognostic ability.  

An RCT could also be conducted to assess whether implementing blood 

transcriptomic biomarker-stratified preventative treatment is non-inferior to 

standard care (using TST or IGRA) with respect to incident TB outcomes, while 

achieving superiority in reducing the number of people receiving preventative 

treatment and improving cost-effectiveness. Similarly to the RCT theme proposed 

in Chapter 6.2.3, a composite ‘net harm’ endpoint could also be considered. Such 

a trial design would also have to take into account the need for serial 

transcriptomic testing, given the time-dependent accuracy of these biomarkers. 

Since TST and IGRAs are less affected by interval to disease, one potential 

approach would be a combined testing strategy with both IGRA and RNA 

biomarkers; serial RNA testing on a six-monthly basis for 1-2 years could then be 

considered for people who are IGRA positive but RNA signature negative at 

baseline (Figure 6-1). Such a trial could take place in low TB incidence settings, 

where there is likely to be a low risk of re-exposure to M. tuberculosis during 

follow-up; though also in higher burden settings where coverage of contact 

tracing is generally poor21. In addition, the feasibility of implementing blood 
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transcriptomic biomarkers (including acceptability of serial testing) and their 

impact on preventative treatment acceptance and completion could be evaluated 

in parallel to assess the likely downstream effects on the cascade of LTBI care.   

Figure 6-1: Proposed trial design for RCT comparing blood transcriptomic 

(RNA) biomarker-stratified preventative treatment to standard care among 

recent contacts.  

PT = preventative treatment; m = month; y = year. 

 

6.2.5 Hypothesis 5: The diagnostic and prognostic ability of blood 

transcriptomic biomarkers can be improved by integration into 

multivariable prediction models 

My work in Chapter 5 demonstrates that transcriptomic biomarkers meet or 

approximate the minimum WHO TPP benchmarks over a 3-6 months interval, but 

do not meet optimal performance targets. These findings were mirrored in a 

parallel analysis to which my work contributed, comparing the diagnostic 

accuracy of candidate transcriptomic biomarkers among adults presenting with 

symptoms compatible with TB disease in South Africa263. In this analysis, four 

candidate signatures had equivalent accuracy and met or approximated the WHO 

minimum, but not optimum, targets for a triage test. As demonstrated in Chapter 

4, the discrimination and clinical utility of TST and IGRA results can be improved 

by integration into a multivariable prognostic model. Thus, future studies could 

consider integration of blood transcriptomic biomarkers with other clinical 

 symptomatic adult contact of pulmonary TB   IG     blood    test

 linical follow up at months  , 12, 18, 24   lin age to TB register

IG   ve IG   ve

Offer PT  o PT

     ve      ve

IG   veIG   ve

Offer PT
 epeat     at 

 , 12   18m
 o PT

 ontrol arm Intervention arm

                     
                                              

                                                

                   
                                    



200 
 

variables in order to assess whether a multivariable approach improves 

discrimination and clinical utility for detection of incipient TB and triaging risk of 

prevalent TB disease.  

6.2.6 Hypothesis 6: Incipient TB requires a stratified treatment approach 

With increasing recognition of the continuum of M. tuberculosis infection, the 

previously binary distinctions between prevalent vs incident, and latent vs active 

TB are becoming increasingly blurred, and appropriate treatment regimens for 

incipient TB are yet to be defined (as discussed in Chapter 1.7.4). Recent 

evidence from the CORTIS trial found that 3HP did not reduce incident TB over 

a 15-month interval among people with a positive blood transcriptomic 

biomarker123. However, the trial was limited by power, with only six incident TB 

events occurring in the 3HP+ arm, and no cases occurring before nine months’ 

follow-up among adherent participants suggesting possible contributions of non-

adherence and re-infection with M. tuberculosis for incident cases.  

The incipient phase, between latent infection and TB disease, is likely to be 

heterogeneous, with increasing mycobacterial burden as it progresses (Figure 

1-2). Notably, previous studies have shown that shorter treatment regimens are 

non-inferior to standard six-month treatment for people with non-severe, 

paucibacillary TB disease (defined by low grade positive or negative sputum 

smear status and absence of cavitation)139,140. Thus, it follows that a stratified 

approach to incipient TB treatment may be required. Future RCTs could evaluate 

such an approach (Table 6-1), possibly in combination with the diagnostic trial 

design proposed in Figure 6-1.  

Table 6-1: Possible stratified treatment approach for people with incipient 

TB or drug-susceptible pulmonary TB disease.  

Incipient 

TB test 

Symptoms Sputum 

smear 

Xpert / 

Culture 

Chest radiograph 

abnormalities* 

Proposed treatment 

+ - - - - Preventative therapy 

+ - - Either but not both + 2-4 month regimen 

+ - - + + 4 month regimen 

+ + - + + 4 month regimen 
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+ + + (or 

CXR 

cavities) 

+ + 6 month regimen 

CXR = chest x-ray 

*Excludes cavitatory disease. 

Preventative treatment may include any regimen approved in WHO LTBI guidance81. 

Two month regimen could consist of intensive phase treatment only, or regimens under 

evaluation in treatment shortening trials143. 

Four month regimen could include fluoroquinolones139,141. 

6.3 Wider relevance and applications of methodology used in this thesis 

In this thesis, I have used a range of methodological approaches - spanning 

epidemiological analyses, evaluation of prognostic tests, IPD-MA, multivariable 

risk prediction, whole blood transcriptomics and systematic head-to-head 

evaluation of candidate biomarkers. These methods are likely to be transferrable 

to the study of a range of infectious diseases, as demonstrated in the examples 

below for COVID-19. 

6.3.1 Systematic head-to-head external validation 

In Chapter 5, I performed a head-to-head external validation study of 17 

systemically-identified candidate transcriptomic signatures for TB for detection of 

incipient TB. In parallel, my systematic review and head-to-head analysis 

contributed towards a second study, which compared the diagnostic accuracy of 

transcriptomic signatures for TB disease among symptomatic adults in South 

Africa, as described in Chapter 6.2.5263.  

I have subsequently applied similar methods in COVID-19 by systematically 

evaluating the diagnostic accuracy of candidate transcriptomic signatures for viral 

infection for detection of early and pre-symptomatic SARS-CoV-2 infection, in a 

nested case-control study among healthcare workers264. I found that four 

signatures reflecting type 1 interferon signalling (including a single transcript 

IFI27) demonstrated high accuracy for detecting contemporaneous PCR-

positivity, with AUROCs 0.91-0.95.  These signatures also showed some, albeit 

lower, discrimination a week prior to PCR positivity, with AUROCs 0.75-0.80. My 

findings suggest that host response blood biomarkers warrant further evaluation 

for potential application alongside viral PCR to facilitate early SARS-CoV-2 case 

detection, particularly if translated to near-patient platforms.  
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I have also used the framework of systematic head-to-head evaluation to 

evaluate the performance of a range of clinical prognostic models to predict 

clinical outcomes among adults hospitalised with COVID-19. Upon evaluation of 

the discrimination, calibration and clinical utility of 22 candidate prognostic 

models early in the pandemic, I found that none offered incremental value over 

and above simple univariable predictors of age to predict in-hospital mortality and 

admission peripheral oxygen saturation on air to predict in-hospital 

deterioration265. Thus, none of the models evaluated could be recommended for 

clinical use.  

6.3.2 Prediction model development and validation 

Prediction models seek to make inherently subjective medical decision-making, 

which may vary markedly between clinicians, more objective by providing data-

driven risk estimates. In Chapter 4, I developed and validated a prognostic model 

for incident TB, and sought to align with best practice standards in prediction 

modelling throughout. This included: adherence to TRIPOD reporting; using 

multiple imputation to deal with missing data; accounting for non-linear 

associations with restricted cubic splines; assessing validation through 

discrimination and calibration parameters; and evaluating clinical utility using 

decision curve analysis197,200. In addition, I used an IPD-MA approach with the 

IECV framework in order to assess between-study heterogeneity and further 

evaluate potential generalisability.  

I have subsequently applied these methods in response to the COVID-19 

pandemic by leading development and validation of the International Severe 

Acute Respiratory and Emerging Infections Consortium Coronavirus Clinical 

Characterisation Consortium (ISARIC4C) Deterioration model for adults 

hospitalised with COVID-19. In this work, I sought to address the weaknesses of 

previously derived clinical prognostic models for COVID-19, which were often 

limited to small, inadequately powered samples from single centres and were 

deemed to be at high risk of bias with overly optimistic performance metrics in 

original reports during comprehensive quality assessment266. I used ISARIC4C 

data from approximately 75,000 adults from >250 hospitals across the UK to 

develop and validate a prognostic model for in-hospital clinical deterioration 

(defined as any requirement of ventilatory support or critical care, or death). I 
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used the IECV approach to explore heterogeneity in model performance across 

nine NHS regions, and found strong evidence of consistent performance and 

greater clinical utility to inform medical decision-making than other prognostic 

scores across all regions. The prognostic tool is now implemented for NHS use 

at https://isaric4c.net/risk/.  

6.4 Conclusion 

In this thesis, I have developed and evaluated a range of approaches to facilitate 

more precise targeting of TB preventative treatment. While TST and IGRAs have 

limitations, their prognostic value can be optimised for use in settings with low TB 

incidence by incorporating quantitative results into a multivariable prognostic 

model along with routinely measured clinical covariates. Multiple blood 

transcriptomic signatures appear promising as biomarkers for incipient TB but 

only reflect short-term disease. Carefully considered implementation among 

selected high-risk populations, such as recent TB contacts, is therefore likely to 

be required to achieve impact. I have highlighted future research priorities in the 

context of specific hypotheses arising from this work, including a need to evaluate 

the impact of implementing the PERISKOPE-TB prognostic model and blood 

transcriptomic biomarkers on individual-level clinical outcomes, along with 

population-level trends in TB incidence, through interventional trials. Future 

approaches could also consider integration of next generation biomarkers and 

clinical variables into multivariable models to assess whether their diagnostic and 

prognostic value may be further improved. In parallel, I have shown that the 

methods applied in this thesis are transferable to the study of other infectious 

diseases, as demonstrated through specific applications in COVID-19.  

6.5 Outputs relating to this chapter 

I applied the methodology used in this thesis in the following publications to study 

COVID-19: 

• Gupta RK, Harrison EM, …, Noursadeghi M on behalf of the ISARIC4C 

Investigators (2021). Development and validation of the ISARIC 4C 

Deterioration model for adults hospitalised with COVID-19: a prospective 

cohort study. The Lancet Respiratory Medicine. 

https://doi.org.10.1016/S2213-2600(20)30559-2 

https://isaric4c.net/risk/
https://doi.org.10.1016/S2213-2600(20)30559-2
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• Gupta RK, Marks M, Samuels T, Luintel A, Rampling T, 

Chowdhury H, Quartagno M, Nair A, Lipman M, Abubakar I, van 

Smeden M, Wong WK, Williams B, Noursadeghi M (2020). Systematic 

evaluation and external validation of 22 prognostic models among 

hospitalised adults with COVID-19: An observational cohort 

study. European Respiratory Journal. 

https://doi.org.10.1183/13993003.03498-2020 

• Gupta RK, Rosenheim J, Bell LC, …, Noursadeghi M (2021). Blood 

transcriptional biomarkers of acute viral infection for detection of pre-

symptomatic SARS-CoV-2 infection. medRxiv 2021.01.18.21250044; 

https://doi.org/10.1101/2021.01.18.21250044 

• Knight SR, Ho A, Pius R, Buchan I, Carson G, Drake TM, Dunning J, 

Fairfield CJ, Gamble C, Green CA, Gupta RK, …, Openshaw PJ, Baillie 

JK, Semple MG, Docherty AB, Harrison EM (2020). Risk stratification of 

patients admitted to hospital with covid-19 using the ISARIC WHO 

Clinical Characterisation Protocol: development and validation of the 4C 

Mortality Score. BMJ. https://doi.org.10.1136/bmj.m3339 

  

https://doi.org.10.1183/13993003.03498-2020
https://doi.org/10.1101/2021.01.18.21250044
https://doi.org.10.1136/bmj.m3339
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8 Appendix: Supplementary material 

8.1 Supplementary material for Chapter 4 

Table 8-1: Look-up table for transformation from raw latent TB test results 

to normalised percentile scale.  

Percentile QuantiFERON  (IU / mL) T-SPOT.TB (spots) TST (mm) 

1 0 to 0 0 to 0 0 to 1 

39 0.001 to 0.009 
  

40 0.01 to 0.019 
  

48 
 

1 to 1 
 

49 0.02 to 0.029 
  

52 
  

2 to 2 

53 
  

3 to 3 

54 0.03 to 0.039 
  

55 
  

4 to 4 

57 0.04 to 0.049 
 

5 to 5 

60 0.05 to 0.059 
 

6 to 6 

62 0.06 to 0.069 
 

7 to 7 

63 0.07 to 0.079 
  

64 
 

2 to 2 8 to 8 

65 0.08 to 0.089 
  

66 0.09 to 0.099 
 

9 to 9 

67 0.1 to 0.119 
  

68 
  

10 to 10 

69 0.12 to 0.129 
  

70 0.13 to 0.149 3 to 3 
 

71 0.15 to 0.169 
  

72 0.17 to 0.199 
 

11 to 11 

73 0.2 to 0.219 
  

74 0.22 to 0.259 4 to 4 12 to 12 

75 0.26 to 0.299 
  

76 0.3 to 0.349 5 to 5 
 

77 0.35 to 0.399 
 

13 to 13 

78 0.4 to 0.449 6 to 6 
 

79 0.45 to 0.519 
 

14 to 14 

80 0.52 to 0.599 7 to 7 
 

81 0.6 to 0.689 8 to 8 15 to 15 

82 0.69 to 0.809 9 to 9 
 

83 0.81 to 0.919 10 to 10 
 

84 0.92 to 1.069 11 to 11 16 to 16 

85 1.07 to 1.269 12 to 13 
 

86 1.27 to 1.519 14 to 15 17 to 17 

87 1.52 to 1.769 16 to 17 
 

88 1.77 to 2.059 18 to 20 18 to 18 

89 2.06 to 2.479 21 to 24 19 to 19 

90 2.48 to 2.939 25 to 28 
 

91 2.94 to 3.549 29 to 34 20 to 20 

92 3.55 to 4.279 35 to 40 
 

93 4.28 to 5.099 41 to 49 
 

94 5.1 to 6.289 50 to 58 21 to 21 

95 6.29 to 7.589 59 to 70 22 to 22 

96 7.59 to 9.179 71 to 87 23 to 24 

97 9.18 to 9.999 88 to 109 25 to 26 

98 ≥10 110 to 152 27 to 30 

99 
 

≥153 ≥31 
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Table 8-2: Data missingness of candidate predictors considered for inclusion in prognostic model, stratified by source study. 

Numbers and colours indicate % missing for each variable. 

 

  

Study Age Sex BCG Exposure Months since migration Quantitative test result LTBI treatment HIV

Abubakar 2018 0.2 0.7 15.7 22.3 1.2 0.0 0.0 6.9

Aichelburg 2009 0.0 0.0 100.0 0.0 13.5 94.9 0.0 0.0

Altet 2015 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.0

Diel 2011 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Doyle 2014 0.0 0.1 100.0 5.0 20.6 0.0 0.0 0.0

Geis 2013 0.9 2.5 50.0 6.6 0.0 0.0 0.1 100.0

Gupta 2020 0.9 1.9 21.1 46.5 0.0 0.0 0.0 4.1

Haldar 2013 0.0 0.0 28.1 0.0 0.0 9.9 0.0 100.0

Lange 2012 0.0 0.0 100.0 29.4 30.6 0.0 0.0 0.3

Munoz 2015 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0

Roth 2017 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Sester 2014 0.7 0.0 26.1 0.0 1.0 0.0 0.3 0.0

Sloot 2014 0.1 1.8 75.2 21.3 0.0 0.0 0.0 100.0

Yoshiyama 2015 0.8 100.0 100.0 0.8 0.0 21.3 1.3 100.0

Zellweger 2015 0.5 0.0 100.0 0.0 0.0 4.1 0.0 100.0

All 0.3 2.7 44.0 12.4 1.6 3.5 0.1 46.5
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Table 8-3: Further characteristics of contributing studies included in IPD-MA.  

Shown as n (%) or median (interquartile range (IQR)) as appropriate. 

(a)  Demographics, latent TB testing and follow-up. 

Authors Age  

(median 

(IQR)) 

Female (%) LTBI positive 

(%) 

LTBI tests used LTBI treatment 

(%) 

TB cases Culture 

confirmed 

Days to TB Pulmonary TB Prevalent TB 

definition 

(days)^ 

Abubakar et al. 32 (26-46) 5007 (50.2%) 4003 (40.7%) TST, QFT-GIT, T-SPOT.TB 260 (2.6%) 147 61 (54%) 112 (21-366) 63 (48.1%) 21 

Aichelburg et al. 39 (32-47) 249 (30%) 44 (5.6%) QFT-GIT 0 (0%) 11 10 (90.9%) 0 (0-253) 10 (90.9%) N/A 

Altet et al. 23 (11-36) 665 (49.7%) 807 (60.3%) TST, QFT-GIT, T-SPOT.TB 625 (46.7%) 95 78 (83%) 0 (0-0) 90 (94.7%) 48* 

Diel et al. 30 (20-40) 684 (48.4%) 511 (36.1%) QFT-GIT, T-SPOT.TB 67 (4.7%) 19 Not recorded 490 (112-560) Not recorded N/A 

Dobler & Marks 29 (17-45) 6458 (54.8%) 4067 (33.3%) TST 499 (4.1%) 94 Not recorded 42.5 (12-109) 24 (70.6%) 90 

Doyle et al. 41 (33-48) 110 (12%) 29 (3.2%) QFT-Gold 18 (2%) 2 2 (100%) 277.5 (10-545) 2 (100%) N/A 

Erkens et al. 33 (22-47) 7245 (50.9%) 14241 (100%) TST, IGRA for subset 10038 (70.5%) 134 76 (56.7%) 280 (105-647) 113 (84.3%) 28 

Geis et al. 35 (23-49) 589 (46.9%) 1283 (100%) QFT-GIT, TST 277 (21.7%) 33 15 (100%) 133 (49-287) Not recorded N/A 

Gupta et al. 33 (25-46) 308 (50.5%) 180 (33.8%) QFT-Plus 39 (6.3%) 13 7 (53.8%) 222 (182-342) 3 (23.1%) 21 

Haldar et al. 21 (9-31) 683 (48.4%) 287 (20.7%) QFT-GIT 170 (12%) 37 16 (43.2%) 87 (12-141) 20 (54.1%) N/A 

Lange et al. 51 (40-62) 201 (44.1%) 42 (10.5%) QFT-GIT 0 (0%) 1 1 (100%) 746 (746-746) 0 (0%) N/A 

Munoz et al. 56 (49-63) 30 (39.5%) 37 (48.7%) QFT-GIT, TST 0 (0%) 2 2 (100%) 324 (116-532) 0 (0%) N/A 

Roth et al. 39 (29-49) 14432 (62.9%) 22949 (100%) TST, IGRA for subset 5895 (25.7%) 58 58 (100%) 871.1 (478.5-1278.4) 45 (77.6%) 30 

Sester et al. 48 (38-61) 549 (37.5%) 374 (25.6%) TST, QFT-GIT, T-SPOT.TB 126 (8.6%) 11 8 (72.7%) 653 (61-1068) 9 (81.8%) N/A 

Sloot et al. 32 (18-45) 3015 (52.1%) 876 (14.9%) TST, QFT-GIT for subset 380 (6.4%) 81 Not recorded 63 (4-123) Not recorded 138* 

Yoshiyama et al. 40 (30-50) Not recorded 144 (23%) QFT-GIT 115 (18.6%) 12 7 (100%) 375.5 (110.5-843) 11 (91.7%) N/A 

Zellweger et al. 34 (24-46) 2829 (54%) 1457 (28%) QFT-GIT, T-SPOT.TB 1054 (20.3%) 55 Not recorded 25 (4-97) Not recorded 39* 

Zenner et al. 25 (22-29) 620 (46.3%) 366 (27.3%) QFT-GIT 243 (18.1%) 21 13 (100%) 86 (50-716) 10 (47.6%) 60 

Total 34 (24-47) 43674 (53.9%) 51697 (63.1%) 
 

19806 (24.1%) 826 354 (69.3%) 98 (12-392) 400 (71.2%) 39 (28-60) 

^Defined as days from LTBI testing to TB diagnosis. Some studies (indicated by *) reported definitions in days from index case diagnosis for recent TB contacts. 42 

days has been subtracted from the prevalent TB definition for these studies, based on the assumption that contacts are screened at least 6 weeks from exposure. 

Median (IQR) shown in ‘Total’ column.   
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(b)   Indication for latent TB testing 

Authors Contacts High risk 

contacts* 

Migrants TB incidence in country of 

birth (migrants)^ 

HIV Viral Load 

(log10 

copies/mL) 

CD4 

(cells/mm3) 

ART status Other 

immunocompromise 

Abubakar et al. 5095 (51.3%) 494 (16.7%) 4845 (48.7%) 254 (223-289) 0 (0%) N/A N/A N/A 0 (0%) 

Aichelburg et al. 0 (0%) N/A 0 (0%) 219 (215-366) 830 (100%) 1.7 (1.7-4.4) 392.5 (264-566) 495 (59.6%) 0 (0%) 

Altet et al. 1339 (100%) 609 (45.5%) 0 (0%) N/A 0 (0%) N/A N/A N/A 0 (0%) 

Diel et al. 1414 (100%) 514 (36.4%) 0 (0%) N/A 0 (0%) N/A N/A N/A 0 (0%) 

Dobler & Marks 12212 (100%) Not recorded 0 (0%) N/A 0 (0%) N/A N/A N/A 0 (0%) 

Doyle et al. 0 (0%) N/A 0 (0%) 366 (240-559) 919 (100%) 1.7 (1.7-4.3) 490.6 (348-676.8) N/A 0 (0%) 

Erkens et al. 8499 (91.9%) Not recorded 0 (0%) N/A 0 (0%) N/A N/A N/A 745 (8.1%) 

Geis et al. 1283 (100%) 173 (14.4%) 0 (0%) N/A 0 (0%) N/A N/A N/A 0 (0%) 

Gupta et al. 623 (100%) 76 (23.9%) 0 (0%) N/A 0 (0%) N/A N/A N/A 0 (0%) 

Haldar et al. 1411 (100%) 183 (13%) 0 (0%) N/A 0 (0%) N/A N/A N/A 0 (0%) 

Lange et al. 0 (0%) N/A 0 (0%) 137.5 (132-175) 45 (9.9%) N/A N/A N/A 411 (90.1%) 

Munoz et al. 0 (0%) N/A 0 (0%) 120 (120-120) 0 (0%) N/A N/A N/A 76 (100%) 

Roth et al. Not recorded 0 (0%) Not recorded N/A Not recorded N/A N/A N/A Not recorded 

Sester et al. 0 (0%) N/A 0 (0%) 219 (176-327) 713 (48.7%) 2.5 (1.7-4.3) 399.5 (227-598) 486 (68.2%) 751 (51.3%) 

Sloot et al. 5895 (100%) 1272 (27.4%) 0 (0%) N/A 0 (0%) N/A N/A N/A 0 (0%) 

Yoshiyama et al. 625 (100%) 116 (18.7%) 0 (0%) N/A 0 (0%) N/A N/A N/A 0 (0%) 

Zellweger et al. 5237 (100%) 839 (16%) 0 (0%) N/A 0 (0%) N/A N/A N/A 0 (0%) 

Zenner et al. 0 (0%) N/A 1341 (100%) 276 (254-276) 0 (0%) N/A N/A N/A 0 (0%) 

Total 43633 (80.3%) 4276 (21.5%) 6186 (11.4%) 261 (228-282) 2507 (4.6%) 1.7 (1.7-4.3) 431 (284.9-616) 981 (63.6%)$ 1983 (3.7%) 

*Defined as household contacts of sputum smear positive index cases. Percentage reflects proportion of contacts who are high risk, where known. 

^Annual incidence per 100,000 persons. 

$Percentage reflects percentage of those living with HIV
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Table 8-4: Baseline characteristics of participants lost to follow-up in 

studies with >5% lost. 

    Lost to follow-up 
 

  
 

No Yes 

Diel 2011 n 1033 381 

Age Median (IQR) 28.00 [19.00, 38.00] 35.00 [24.00, 42.00] 

Sex Female 503 (48.7) 181 (47.5) 

  Male 530 (51.3) 200 (52.5) 

Exposure Household, smear+ 365 (35.3) 149 (39.1) 

  Other contacts 668 (64.7) 232 (60.9) 

LTBI Negative 670 (64.9) 233 (61.2) 

  Positive 363 (35.1) 148 (38.8) 

LTBI treatment No 982 (95.1) 365 (95.8) 

  Yes 51 ( 4.9) 16 ( 4.2) 

Doyle 2014 n 872 47 

Age Median (IQR) 40.95 [33.48, 48.40] 38.10 [29.20, 45.20] 

Sex Female 101 ( 11.6) 9 ( 19.1) 

  Male 770 ( 88.3) 38 ( 80.9) 

  Missing 1 (  0.1) 0 (  0.0) 

Exposure No contact, migrant 143 ( 16.4) 11 ( 23.4) 

  No contact, non-migrant 686 ( 78.7) 30 ( 63.8) 

  Missing 43 (  4.9) 6 ( 12.8) 

LTBI Negative 842 ( 96.6) 42 ( 89.4) 

  Positive 26 (  3.0) 3 (  6.4) 

  Missing 4 (  0.5) 2 (  4.3) 

LTBI treatment No 850 ( 97.5) 43 ( 91.5) 

  Yes 17 (  1.9) 1 (  2.1) 

  Missing 5 (  0.6) 3 (  6.4) 

HIV Yes 872 (100.0) 47 (100.0) 

Lange 2012 n 414 42 

Age Median (IQR) 51.00 [41.00, 63.00] 47.00 [37.00, 59.00] 

Sex Female 177 ( 42.8) 24 ( 57.1) 

  Male 237 ( 57.2) 18 ( 42.9) 

Exposure No contact, migrant 6 (  1.4) 2 (  4.8) 

  No contact, non-migrant 281 ( 67.9) 17 ( 40.5) 

  Missing 127 ( 30.7) 23 ( 54.8) 

LTBI Negative 332 ( 80.2) 25 ( 59.5) 

  Positive 35 (  8.5) 7 ( 16.7) 

  Missing 47 ( 11.4) 10 ( 23.8) 

LTBI treatment No 414 (100.0) 42 (100.0) 

HIV No 368 ( 88.9) 42 (100.0) 

  Yes 45 ( 10.9) 0 (  0.0) 

  Missing 1 (  0.2) 0 (  0.0) 

Transplant No 189 ( 45.7) 34 ( 81.0) 

  Yes 221 ( 53.4) 8 ( 19.0) 

  Missing 4 (  1.0) 0 (  0.0) 

Zellweger 2015 n 3898 1339 

Age Median (IQR) 34.00 [23.00, 46.00] 34.00 [24.00, 48.00] 

Sex Female 2171 (55.7) 658 (49.1) 

  Male 1727 (44.3) 681 (50.9) 
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Exposure Household, smear+ 653 (16.8) 186 (13.9) 

  Other contacts 3244 (83.2) 1153 (86.1) 

  Missing 1 ( 0.0) 0 ( 0.0) 

LTBI Negative 2706 (69.4) 1045 (78.0) 

  Positive 1170 (30.0) 287 (21.4) 

  Missing 22 ( 0.6) 7 ( 0.5) 

LTBI treatment No 3087 (79.2) 1059 (79.1) 

  Yes 811 (20.8) 243 (18.1) 

  Missing 0 ( 0.0) 37 ( 2.8) 
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Table 8-5: Quality assessment of studies contributing individual participant 

data.  

 

Using modified version of Newcastle-Ottawa Scale for cohort studies.  

Selection A
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1) Representativeness of the exposed cohort

a) truly representative of the target population in the community Ø ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

b) somewhat representative of the target population in the community Ø

c) selected group of users eg nurses, volunteers

d) no description of the derivation of the cohort

2) Selection of the non exposed cohort

a) drawn from the same community as the exposed cohort Ø ✓ ✓ ✓ ✓ ✓ ✓ N/A N/A ✓ ✓ ✓ ✓ N/A ✓ ✓ ✓ ✓ ✓

b) drawn from a different source

c) no description of the derivation of the non exposed cohort

3) Ascertainment of LTBI test result

a) secure record Ø ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

b) structured interview Ø

c) written self report

d) no description

4) Assessment for prevalent TB at start of study

a) yes Ø ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

b) no

Comparability

1) Comparability of cohorts on the basis of the design or analysis N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Outcome

1) Assessment of outcome

a) independent assessment blinded to LTBI test resultØ

b) data available on microbiological confirmationØ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

b) record linkage Ø ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

c) self report

d) no description

2) Was follow-up long enough for outcomes to occur

a) yes (median >1 year) Ø ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

b) no

3) Adequacy of follow up of cohorts

a) complete follow up - all subjects accounted for Ø ✓ ✓ ✓ ✓ ✓ ✓ ✓

b) subjects lost to follow up unlikely to introduce biasØ: 

- small number lost (<5%);

- or characteristics of those lost similar to those followed-up) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

c) follow up rate < 95% and no description of those lost ✓

d) no statement

Total 7 7 7 7 7 7 6 6 7 7 7 7 6 7 7 6 7 7

Maximum score 7 7 7 7 7 7 6 6 7 7 7 7 6 7 7 7 7 7
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8.2 Supplementary material for Chapter 5 

Table 8-6: Quality assessment of studies included in RNA biomarkers IPD-

MA.  

Quality assessment of four studies representing datasets included in IPD-MA, using 

Newcastle-Ottawa scale for (a) case-control studies; or (b) cohort studies, as 

appropriate. ACS = adolescent cohort study; GC6-74 = Bill and Melinda Gates 

Foundation Grand Challenges 6-74 TB contacts study. Material from 256. 

(a) 

 

Case-control studies GC6-74 Comments ACS Comments 

Selection         

1) Is the case definition adequate?         

 a) yes, with independent validation Ø ✓ Detailed data available ✓ 
Microbiologically 

confirmed only 

b) yes, eg record linkage or based on self reports         

c) no description         

2) Representativeness of the cases         

a) consecutive or obviously representative series of cases 
Ø ✓   ✓   

b) potential for selection biases or not stated         

3) Selection of Controls         

a) community controls Ø ✓   ✓   

b) hospital controls         

c) no description         

4) Definition of Controls         

a) no history of disease (endpoint) Ø ✓   ✓   

b) no description of source         

     

Comparability         

1) Comparability of cases and controls on the basis of the 

design or analysis         

a) study controls for age Ø ✓   ✓   

b) study controls for any additional factor Ø ✓ 
Recruitment region, 
sex, enrolment year ✓ 

Gender, ethnicity, 
school, previous TB 

     

Exposure         

1) Ascertainment of exposure ✓ 
Raw RNAseq data 

available ✓ 
Raw RNAseq data 

available 

a) secure record (eg surgical records) Ø         

b) structured interview where blind to case/control status 

Ø         

c) interview not blinded to case/control status         

d) written self report or medical record only         

e) no description         

2) Same method of ascertainment for cases and controls         

a) yes Ø ✓ 
Calculated using 

RNAseq data ✓ 
Calculated using 

RNAseq data 

b) no         

3) Non-Response rate         

a) same rate for both groups Ø ✓   ✓   
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(b) 

 

Selection 

London 

Contacts Comments 

Leicester 

Contacts Comments 

1) Representativeness of the exposed cohort         

a) truly representative of the average TB contact in the 

community Ø ✓   ✓   

b) somewhat representative of the average TB contact in 
the community Ø         

c) selected group of users eg nurses, volunteers         

d) no description of the derivation of the cohort         

2) Selection of the non exposed cohort         

a) drawn from the same community as the exposed cohort 

Ø ✓ 
Based on RNAseq 

data ✓ 
Based on RNAseq 

data 

b) drawn from a different source         

c) no description of the derivation of the non exposed 

cohort         

3) Ascertainment of exposure         

a) secure record (eg surgical records) Ø ✓ 
Based on RNAseq 
data ✓ 

Based on RNAseq 
data 

b) structured interview Ø         

c) written self report         

d) no description         

4) Demonstration that outcome of interest was not present 

at start of study         

a) yes Ø ✓   ✓   

b) no         

          

Comparability         

1) Comparability of cohorts on the basis of the design or 

analysis N/A   N/A   

          

Outcome         

1) Assessment of outcome         

a) independent blind assessment Ø     ✓   

b) record linkage Ø ✓       

c) self report         

d) no description         

2) Was follow-up long enough for outcomes to occur         

a) yes (>1 year) Ø ✓ Median 1.9 years ✓ 
2 years (clarified with 

authors) 

b) no         

3) Adequacy of follow up of cohorts         
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Figure 8-1: Inclusion of samples from contributing datasets in RNA biomarkers IPD-MA. 

ACS = adolescent cohort study; GC6-74 = Bill and Melinda Gates Foundation Grand Challenges 6-74 TB contacts study. Material from 256. 

 

$Prevalent TB defined as TB diagnosed within 21 days of sample collection. *Indicates >1 sample collected from the same participant within a 6-month interval.
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Figure 8-2: Density plots of RNA signature expression (a) before and (b) after batch correction, stratified by source study.  

ACS = adolescent cohort study; GC6-74 = Bill and Melinda Gates Foundation Grand Challenges 6-74 TB contacts study. Material from 256. 

A          B 
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Table 8-7: AUROCs (95% CIs) for 17 RNA signatures for identification of incipient TB over a two-year period, stratified by (a) 

study, and (b) study and time interval to disease.  

ACS = adolescent cohort study; GC6-74 = Bill and Melinda Gates Foundation Grand Challenges 6-74 study.  

(a) 

Signature ACS GC6-74 London contacts Leicester contacts 

Anderson38 0.71 (0.63 - 0.79) 0.63 (0.56 - 0.7) 0.72 (0.56 - 0.88) 0.66 (0.41 - 0.9) 

BATF2 0.81 (0.74 - 0.88) 0.68 (0.61 - 0.76) 0.81 (0.61 - 1) 0.71 (0.33 - 1) 

Gjoen7 0.72 (0.64 - 0.8) 0.64 (0.57 - 0.71) 0.83 (0.71 - 0.94) 0.66 (0.28 - 1) 

Gliddon3 0.72 (0.64 - 0.8) 0.74 (0.67 - 0.8) 0.84 (0.62 - 1) 0.66 (0.21 - 1) 

Huang11 0.69 (0.61 - 0.77) 0.67 (0.6 - 0.74) 0.66 (0.46 - 0.85) 0.62 (0.25 - 0.98) 

Kaforou25 0.79 (0.72 - 0.86) 0.7 (0.63 - 0.77) 0.84 (0.64 - 1) 0.66 (0.22 - 1) 

Maertzdorf4 0.75 (0.68 - 0.83) 0.63 (0.56 - 0.7) 0.81 (0.67 - 0.95) 0.66 (0.23 - 1) 

NPC2 0.64 (0.55 - 0.72) 0.69 (0.62 - 0.75) 0.84 (0.71 - 0.97) 0.8 (0.64 - 0.96) 

Qian17 0.7 (0.62 - 0.78) 0.61 (0.54 - 0.68) 0.77 (0.61 - 0.94) 0.71 (0.44 - 0.97) 

Rajan5 0.7 (0.62 - 0.78) 0.54 (0.47 - 0.61) 0.45 (0.17 - 0.72) 0.53 (0.32 - 0.74) 

Roe3 0.83 (0.76 - 0.89) 0.64 (0.56 - 0.71) 0.79 (0.6 - 0.99) 0.74 (0.33 - 1) 

Singhania20 0.69 (0.61 - 0.77) 0.66 (0.6 - 0.73) 0.73 (0.61 - 0.85) 0.45 (0.12 - 0.78) 

Suliman2 0.8 (0.74 - 0.87) NA 0.8 (0.63 - 0.98) 0.62 (0.21 - 1) 

Suliman4 0.75 (0.67 - 0.83) 0.63 (0.52 - 0.74) 0.85 (0.72 - 0.98) 0.7 (0.28 - 1) 

Sweeney3 0.78 (0.71 - 0.85) 0.69 (0.62 - 0.76) 0.75 (0.55 - 0.95) 0.65 (0.22 - 1) 

Walter45 0.59 (0.5 - 0.68) 0.54 (0.47 - 0.62) 0.49 (0.27 - 0.71) 0.53 (0.35 - 0.71) 

Zak16 0.69 (0.5 - 0.88) 0.67 (0.6 - 0.74) 0.79 (0.59 - 0.99) 0.76 (0.43 - 1) 
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(b) 

Months to TB 12 to 24 6 to 12 3 to 6 0 to 3 

Study GC6-74 ACS GC6-74 ACS GC6-74 ACS GC6-74 ACS 

Anderson38 0.58 (0.47 - 0.69) 0.71 (0.59 - 0.82) 0.72 (0.6 - 0.85) 0.65 (0.54 - 0.77) 0.64 (0.54 - 0.75) 0.59 (0.26 - 0.92) 0.61 (0.35 - 0.88) 0.8 (0.68 - 0.93) 

BATF2 0.62 (0.5 - 0.74) 0.72 (0.61 - 0.83) 0.73 (0.6 - 0.86) 0.8 (0.7 - 0.9) 0.72 (0.62 - 0.83) 0.82 (0.57 - 1) 0.79 (0.55 - 1) 0.9 (0.82 - 0.98) 

Gjoen7 0.58 (0.47 - 0.7) 0.69 (0.58 - 0.8) 0.7 (0.57 - 0.83) 0.68 (0.56 - 0.81) 0.68 (0.58 - 0.77) 0.76 (0.6 - 0.93) 0.68 (0.37 - 1) 0.74 (0.55 - 0.94) 

Gliddon3 0.64 (0.53 - 0.76) 0.6 (0.49 - 0.7) 0.8 (0.68 - 0.92) 0.73 (0.64 - 0.82) 0.76 (0.67 - 0.85) 0.76 (0.45 - 1) 0.81 (0.57 - 1) 0.85 (0.7 - 1) 

Huang11 0.56 (0.43 - 0.68) 0.59 (0.47 - 0.7) 0.78 (0.68 - 0.88) 0.72 (0.63 - 0.81) 0.6 (0.49 - 0.71) 0.69 (0.25 - 1) 0.92 (0.85 - 0.99) 0.7 (0.53 - 0.87) 

Kaforou25 0.61 (0.49 - 0.73) 0.69 (0.58 - 0.79) 0.78 (0.65 - 0.91) 0.79 (0.71 - 0.87) 0.73 (0.64 - 0.83) 0.81 (0.57 - 1) 0.84 (0.63 - 1) 0.89 (0.78 - 1) 

Maertzdorf4 0.55 (0.43 - 0.67) 0.66 (0.56 - 0.77) 0.76 (0.64 - 0.88) 0.74 (0.62 - 0.86) 0.65 (0.54 - 0.75) 0.86 (0.73 - 0.98) 0.71 (0.4 - 1) 0.85 (0.73 - 0.97) 

NPC2 0.61 (0.5 - 0.71) 0.59 (0.47 - 0.72) 0.68 (0.53 - 0.83) 0.63 (0.52 - 0.75) 0.73 (0.64 - 0.81) 0.67 (0.32 - 1) 0.9 (0.8 - 1) 0.69 (0.5 - 0.89) 

Qian17 0.55 (0.43 - 0.67) 0.57 (0.45 - 0.7) 0.7 (0.58 - 0.82) 0.74 (0.64 - 0.85) 0.62 (0.51 - 0.73) 0.76 (0.39 - 1) 0.78 (0.58 - 0.99) 0.78 (0.64 - 0.91) 

Rajan5 0.55 (0.44 - 0.66) 0.6 (0.49 - 0.71) 0.48 (0.34 - 0.61) 0.72 (0.62 - 0.82) 0.52 (0.41 - 0.62) 0.68 (0.31 - 1) 0.64 (0.35 - 0.93) 0.77 (0.61 - 0.93) 

Roe3 0.55 (0.43 - 0.67) 0.75 (0.65 - 0.84) 0.7 (0.56 - 0.84) 0.83 (0.75 - 0.91) 0.71 (0.6 - 0.81) 0.82 (0.53 - 1) 0.77 (0.51 - 1) 0.91 (0.85 - 0.98) 

Singhania20 0.64 (0.53 - 0.75) 0.66 (0.53 - 0.78) 0.63 (0.51 - 0.76) 0.65 (0.53 - 0.77) 0.7 (0.62 - 0.78) 0.65 (0.44 - 0.86) 0.65 (0.37 - 0.93) 0.81 (0.65 - 0.98) 

Suliman4 0.61 (0.42 - 0.81) 0.68 (0.56 - 0.8) 0.66 (0.47 - 0.84) 0.7 (0.58 - 0.82) 0.75 (0.56 - 0.93) 0.83 (0.58 - 1) 0.81 (0.64 - 0.97) 0.91 (0.84 - 0.97) 

Sweeney3 0.59 (0.48 - 0.71) 0.7 (0.6 - 0.8) 0.78 (0.66 - 0.89) 0.73 (0.62 - 0.83) 0.69 (0.58 - 0.8) 0.81 (0.5 - 1) 0.91 (0.77 - 1) 0.9 (0.79 - 1) 

Walter45 0.54 (0.43 - 0.65) 0.45 (0.33 - 0.57) 0.53 (0.4 - 0.65) 0.57 (0.44 - 0.69) 0.69 (0.58 - 0.79) 0.55 (0.31 - 0.79) 0.53 (0.19 - 0.87) 0.47 (0.3 - 0.64) 

Zak16 0.58 (0.46 - 0.69) 0.42 (0.19 - 0.65) 0.71 (0.57 - 0.85) 0.67 (0.36 - 0.99) NA NA 0.76 (0.47 - 1) 0.94 (0.86 - 1) 
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Figure 8-3: Density plots of signature expression of eight best performing RNA signatures for incipient TB, among control 

population.  

Plots include participants with negative interferon-gamma release assay tests only, with approximately Normal distributions. Material from 256. 
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Table 8-8: Number of incipient tuberculosis and non-progressor samples included in analysis. 

Stratified by (a) primary analysis; (b) sensitivity analysis including only TB cases with microbiological confirmation; (c) sensitivity analysis including 

only one sample per participant; (d) sensitivity analysis with mutually exclusive time intervals to TB. Data presented as n (% of all available samples 

per time interval). NP = non-progressor. 

Timeframe Signature 0 to 24 months 0 to 12 months 0 to 6 months 0 to 3 months 

    NP Incipient TB NP Incipient TB NP Incipient TB NP Incipient TB 

(a) Primary analysis Zak16 489 ( 87.5)  119 ( 66.9)  723 ( 85.1)   80 ( 68.4)  777 ( 82.4)  49 ( 80.3)  777 ( 82.4)  12 ( 57.1)  

  Suliman4 444 ( 79.4)  122 ( 68.5)  706 ( 83.1)   81 ( 69.2)  771 ( 81.8)  34 ( 55.7)  771 ( 81.8)  17 ( 81.0)  

  Suliman2 351 ( 62.8)   81 ( 45.5)  584 ( 68.7)   53 ( 45.3)  629 ( 66.7)  20 ( 32.8)  629 ( 66.7)  15 ( 71.4)  

  All other signatures 559 (100.0)  178 (100.0)  850 (100.0)  117 (100.0)  943 (100.0)  61 (100.0)  943 (100.0)  21 (100.0)  

                    

(b) Microbiological confirmation Zak16 489 ( 87.5)  106 ( 64.2)  723 ( 85.1)   70 ( 65.4)  777 ( 82.4)  44 ( 78.6)  777 ( 82.4)  11 ( 55.0)  

  Suliman4 444 ( 79.4)  111 ( 67.3)  706 ( 83.1)   73 ( 68.2)  771 ( 81.8)  30 ( 53.6)  771 ( 81.8)  16 ( 80.0)  

  Suliman2 351 ( 62.8)   76 ( 46.1)  584 ( 68.7)   49 ( 45.8)  629 ( 66.7)  18 ( 32.1)  629 ( 66.7)  14 ( 70.0)  

  All other signatures 559 (100.0)  165 (100.0)  850 (100.0)  107 (100.0)  943 (100.0)  56 (100.0)  943 (100.0)  20 (100.0)  

                    

(c) One sample per participant Zak16 463 ( 91.3)   94 ( 74.6)  676 ( 91.8)  64 ( 73.6)  704 ( 90.5)  41 ( 85.4)  704 ( 90.5)  10 ( 66.7)  

  Suliman4 406 ( 80.1)   81 ( 64.3)  609 ( 82.7)  58 ( 66.7)  638 ( 82.0)  24 ( 50.0)  638 ( 82.0)  11 ( 73.3)  

  Suliman2 319 ( 62.9)   51 ( 40.5)  504 ( 68.5)  37 ( 42.5)  519 ( 66.7)  14 ( 29.2)  519 ( 66.7)  10 ( 66.7)  

  All other signatures 507 (100.0)  126 (100.0)  736 (100.0)  87 (100.0)  778 (100.0)  48 (100.0)  778 (100.0)  15 (100.0)  

                    

(d) Mutually exclusive time periods   12 to 24 months 6 to 12 months 3 to 6 months 0 to 3 months 

  Zak16 489 ( 87.5)  39 ( 63.9)  723 ( 85.1)  31 ( 55.4)  777 ( 82.4)  37 ( 92.5)  777 ( 82.4)  12 ( 57.1)  

  Suliman4 444 ( 79.4)  41 ( 67.2)  706 ( 83.1)  47 ( 83.9)  771 ( 81.8)  17 ( 42.5)  771 ( 81.8)  17 ( 81.0)  

  Suliman2 351 ( 62.8)  28 ( 45.9)  584 ( 68.7)  33 ( 58.9)  629 ( 66.7)   5 ( 12.5)  629 ( 66.7)  15 ( 71.4)  

  All other signatures 559 (100.0)  61 (100.0)  850 (100.0)  56 (100.0)  943 (100.0)  40 (100.0)  943 (100.0)  21 (100.0)  

 


