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Abstract

A remarkable demonstration of the flexibility of mammalian motor systems is primates’ ability to learn to

control brain-machine interfaces (BMI’s). This constitutes a completely novel and artificial form of motor

behavior, yet primates are capable of learning to control BMI’s under a wide range of conditions. BMI’s

with carefully calibrated decoders, for example, can be learned with only minutes to hours of practice.

With a few weeks of practice, even BMI’s with random decoders can be learned. What are the biological

substrates of this learning process? This thesis proposes a simple theory of the computational principles

underlying BMI learning. Through comprehensive numerical and formal analysis, we demonstrate that

this theory can provide a unifying explanation for various disparate phenomena observed during BMI

learning in three different BMI learning tasks. By explicitly modeling the underlying neural circuitry,

the theory reveals an interpretation of these phenoema in terms of the biological non-linear dynamics of

neural circuits.
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Impact Statement

The mammalian brain is an astonishingly flexible and adaptive organ. An extraordinary demonstration

of this is offered by brain-machine interfaces, in which an external device is artificially controlled by

activity in a neural population. Using such a device constitutes a completely novel and artificial form

of “behavior”, yet primates are able to learn to use brain-machine interfaces under a wide range of

conditions. This thesis proposes a theory of the computations underlying this remarkable learning

process.

From a practical perspective, brain-machine interfaces have several real-world uses. First and fore-

most, they hold great promise for restoring movement to individuals with movement disorders or injuries

to the limbs or spinal cord. But they also have potential for amplifying and augmenting the way healthy

individuals interact with digital devices. Many of the insights gleaned from the theory developed in

this work may prove useful for improving the design of brain-machine interfaces with these goals in

mind. The theory moreover provides a general framework for modeling how users’ brains interact with

brain-machine interfaces during learning.

From a more academic perspective, this work puts forward a re-interpretation of various pheneomena

observed during BMI learning, providing a unifying explanation for these previously unrelated observa-

tions. Moreover, by explicitly modeling the underlying neural circuitry, the theory permits an under-

standing of these phenomena in terms of biological principles. This relies on the simulation and analysis

of a class of non-linear dynamical systems called recurrent neural networks. In the elaboration of our

theory, we thus develop a number of novel analytical and numerical tools for analyzing this class of

models, which could prove useful for future theoretical research.
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“No hay consuelo más hábil que el pensamiento de que hemos elegido nuestras

desdichas; esa teleoloǵıa individual nos revela un orden secreto y prodigiosa-

mente nos confunde con la divinidad.”

Jorge Luis Borges, Deutsches Requiem (1946)
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Introduction

At the core of any nervous system is its capacity to generate and control movement. Without this critical

ability, any other information processing would remain superfluous in the quest for survival [?]. It is the

production of coordinated and purposeful movement that endows prey the capacity to avoid predators

and predators the capacity to hunt prey. It thus goes without saying that one of the critical functions of

vertebrate and invertebrate nervous systems is to generate goal-directed movement.

What is remarkable about mammalian nervous systems in particular is their ability to do so across

an astonishingly wide variety of contexts. Through learning, mammals are able to adapt their move-

ments to previously unexperienced environments or perturbations [Shadmehr and Mussa-Ivaldi, 1994,

Li et al., 2001, Paz et al., 2005, Lopes et al., 2017, Kawai et al., 2015, Mathis et al., 2017, Perich et al., 2018,

Sun et al., 2020]. Critically, they are able to do so flexibly and rapidly: learning a new motor behavior

often requires relatively little practice, and newly learned motor behaviors rarely interfere with older

ones. These two properties are crucial for intelligent and adaptive behavior. Moreover, they remain elu-

sive in modern artificial intelligence systems, which still today struggle with generalizing their behavior

to novel domains and with continual learning [Hassabis et al., 2017]. Understanding the algorithms and

biological mechanisms by which mammalian brains support such motor learning is thus a central aim of

neuroscience.

A typical neuroscientific approach to sudying motor learning is to record neural activity while an ani-

mal learns to perform a physical motor behavior [Li et al., 2001, Ungerleider et al., 2002, Yin et al., 2009,

Chen et al., 2015, Cichon and Gan, 2015, Hayashi-Takagi et al., 2015, Vyas et al., 2018, Perich et al., 2018,

Sun et al., 2020]. The idea is that, by characterizing the changes in a neural population over learning,

we can hopefully glean some insight into the algorithms driving the behavioral improvements accom-

panying them. A major challenge to this approach, however, is that the functional roles of the various

circuits underlying motor control are not well understood [Lopes et al., 2017]. Even the direct contri-

butions of corticospinal tract neurons remain unresolved [Lemon, 2008], as they incorporate a myriad

of downstream processes from the richly recurrent circuitry in the spinal cord [Brownstone et al., 2015]

to the non-linear dynamics of muscle contraction [Todorov, 2000]. Consequently, while the teleology of

the changes in behavior during motor learning may often be transparent, that of the changes in the

underlying neural activity and circuitry typically remain unknown.

This makes it difficult to derive concrete conclusions about how these changes support learning and
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what the computational principles behind them are. Are changes in activity driving improvements in

the actual execution of the motor behavior? Are they instead driving modifications to a preparatory

plan? Are they updates to an internal forward model? Or, on the other hand, do they simply reflect

new memories of past errors, and have no direct role in driving the changes in behavior? While clever

experimental paradigms have been developed to tease these possibilities apart, it is often impossible to

do so since multiple such components are typically engaged by any given motor learning task.

If we perfectly understood the downstream consequences of the neural population in question, these

ambiguities could potentially be resolved. But this is further comlpicated by the massively modular and

distributed architecture of mammalian motor systems [Dum and Strick, 2002, Shadmehr and Krakauer, 2008,

Lemon, 2008, Cisek and Kalaska, 2010], which obscures the biological susbstrates of learning-related

changes in a given population and its downstream consequences. Local changes in activity could arise

via modifications in either local or distal circuitry, and teasing these two possibilities apart is challenging

without a precise understanding the roles of the relevant population(s). In sum, these considerations

suggest that, to study the neural substrates of motor learning, we must first understand the long and

winding road from neural activity to movement.

A unique way to address this challenge is to replace this serpentine road with a simpler and more

transparent alternative. Indeed, circumventing this pathway is a necessary treatment for patients with

tetraplegia, for whom alternative routes to movement must be developed to allow them to move. With

this goal in mind, biomedical engineers and clinicians have developed brain-machine interfaces (BMIs)

that transform internally generated neural activity (recorded through an implant) into movement of an

external effector. Critically, this novel mapping from neural activity to movement, termed the BMI

decoder, must be learned by the user. This provides an opportunity to study motor learning under

complete knowledge and control of how the activity of the recorded population translates to movement

[Golub et al., 2016]. Moreover, by making these mappings simple, we can invert them and make explicit

statements about how neural activity must be reshaped over learning in order to support BMI movements

[Athalye et al., 2017, Golub et al., 2018, Hennig et al., 2018]. This in turn allows us to make concrete

hypotheses about how such learning might be implemented. This is exactly the approach we will exploit

in the research presented in this doctoral thesis.

While motor control with a BMI is not exactly the same as natural motor control, there are many

reasons to expect that similar mechanisms are engaged by both types of motor behaviors. Substantial

evidence suggests that BMI control employs many of the same computations associated with natural

motor control, such as sensory prediction errors [Vendrell-Llopis et al., 2019], state estimation with for-

ward models [Golub et al., 2015], online error correction using sensory feedback [Stavisky et al., 2017],

and motor planning [Vyas et al., 2018]. Additionally, the basal ganglia – a structure classically associ-

ated with motor learning in mammals and other phylogenetic classes – seem to play a direct causal role
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in BMI learning [Koralek et al., 2012, Neely et al., 2018]. At the behavioral level, BMI learning occurs

on a similar timescales as manual motor adaptation [Shadmehr and Mussa-Ivaldi, 1994, Li et al., 2001,

Paz et al., 2005, Mathis et al., 2017, Perich et al., 2018, Sun et al., 2020] when the BMI decoder is care-

fully calibrated [Sadtler et al., 2014], and knowledge acquired during BMI learning can carry over to

manual movements [Vyas et al., 2018]. These observations strongly suggest that the processes underly-

ing BMI learning at the very least overlap with those driving natural motor learning.

Most importantly, many of the characteristic properties of mammalian motor learning are conserved

in BMI learning:

. adaptability : human and non-human primates are able to learn to use completely novel decoders

[Oby et al., 2019], even randomly generated ones [Ganguly and Carmena, 2009]

. efficiency : when the BMI decoder is carefully calibrated, they can do so on relatively fast timescales,

with only minutes to hours of practice [Jarosiewicz et al., 2008, Chase et al., 2012, Gilja et al., 2012,

Sadtler et al., 2014, Sakellaridi et al., 2019]

. flexibility : they can learn to control a new decoder without forgetting an old one [Ganguly and Carmena, 2009]

and without forgetting how to control their natural limbs. They can also seamlessly switch back

and forth between different BMI decoders [Ganguly and Carmena, 2009] and between BMI and

manual control [Ganguly et al., 2011].

A comprehensive understanding of BMI learning thus has the potential to provide insight into the

biological machinery giving rise to each of these aspects of natural motor learning.

This doctoral thesis presents the development of a theory of the biological structures underlying BMI

learning. We will in particular focus on properties 1 and 2 above, by developing a theory that can

capture both the efficiency with which carefully calibrated decoders can be learned and the adaptability

with which non-human primates can learn arbitrary unstructured decoders when they are given enough

practice to do so. We will apply this theory to model BMI learning across three different BMI tasks, pro-

viding a unifying explanation for BMI learning phenomena that had been previously treated completely

separately in the literature. We will explicitly focus on BMIs that record from motor cortex, although

many of the ideas we propose may be relevant to BMI’s in other brain areas as well.

The thesis follows a somewhat untraditionally asymmetric organization:

1. In chapter 1, we motivate the theory from first principles and present it in its simplest form. We

also demonstrates its ability to account for various phenomena observed during BMI learning in

the context of three different tasks. In the remaining chapters, we focus on only one of these three

tasks, so the first chapter comprises more than half of the thesis.

2. In chapter 2, we attempt to provide some mathematical grounding to the arguments made in

chapter 1, through formal analysis of a simple case. This reveals certain connections between our
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theory of BMI learning to classical concepts in control theory.

3. Finally, in chapter 3 we address one of the most substantial oversimplifications of the simpler models

analyzed in chapters 1 and 2. We show that many of the intuitions and results from the simpler

models extend to a more complex setting, and discuss connections to additional experimental

literature.
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Chapter 1

Previous models of motor cortical BMI learning have postulated that synaptic plasticity within motor

cortex underlies learning [Legenstein et al., 2010, Engelhard et al., 2019, Wärnberg and Kumar, 2019,

Feulner and Clopath, 2021]. Indeed, models of the synaptic connectivity required for a recurrent network

to solve a BMI reaching task [Wärnberg and Kumar, 2019] and the plasticity rules by which that con-

nectivity might be learned [Feulner and Clopath, 2021] can account for differences in learning between

certain classes of BMI decoders [Sadtler et al., 2014]. However, a fundamental limitation of synaptic

plasticity is the curse of dimensionality: mammalian cortical circuits contain billions to trillions of

synapses, meaning that learning via optimization of their weights would entail solving an extremely

high-dimensional optimization problem. In the best of cases – when the objective function and its gra-

dient are explicitly known – solving such problems typically requires vast amounts of training data. In

the BMI learning case, this difficulty is only exacerbated. Because the subject’s motor system has no

explicit access to the BMI decoder, the relationship between internal neural activity and movement –

and, by extension, task performance – is unknown. This means that gradients of task performance with

respect to internal biological parameters must be estimated through trial and error [Héliot et al., 2010,

Feulner and Clopath, 2021]. Moreover, this estimation problem is made even more difficult by the biolog-

ical constraints of neurons and synapses, which preclude synaptic plasticity rules from back-propagating

gradients through the neural circuitry [Crick, 1989, Bartunov et al., 2018, Lillicrap et al., 2020]. In sum,

these considerations suggest that BMI learning by synaptic plasticity should be slow and highly limited

(although see [Raman et al., 2019] for exceptions to parts of this argument).

This is inconsistent with the strikingly fast and flexible learning observed in many BMI experi-

ments, in which non-human primates are able to achieve proficient control with only 10s to 100s of

trials of practice [Fetz and Baker, 1973, Jarosiewicz et al., 2008, Chase et al., 2012, Gilja et al., 2012,

Sadtler et al., 2014]. Moreover, the hypothesis that motor cortex undergoes substantial synaptic changes

over learning is inconsistent with the observation that the statistical structure of motor cortical pop-

ulation activity remains remarkably conserved after learning. The repertoire of activity patterns em-

ployed for BMI control is unchanged after training on a new decoder for a few hours [Golub et al., 2018,

Hennig et al., 2018], and motor cortical neuron tuning to manual reaches remains largely fixed after per-

forming a BMI reaching task [Ganguly et al., 2011]. This preservation of motor cortical operation is also

consistent with the fact that learning a BMI task does not seem to interfere with natural limb control
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[Ganguly et al., 2011].

Together, these observations call into question the plausibility of synaptic plasticity in motor cortex as

the mechanism underlying BMI learning, at the very least for the short timescales of learning observed

in some of the studies cited above. These studies suggest instead that the brain might take a more

parsimonious learning strategy, whereby (1) the dimensionality of the learning problem is kept low to

enable fast learning, and (2) the motor cortical machinery for natural movements is kept intact.

A learning strategy that satisfies these two criteria is that of “re-aiming” [Jarosiewicz et al., 2008,

Chase et al., 2010, Chase et al., 2012] or “intrinsic variable learning” [Hwang et al., 2013, Sakellaridi et al., 2019].

Under this strategy, the animal exploits the pre-existing motor cortical circuitry by learning an asso-

ciation between intended BMI movements and motor commands that would otherwise be used dur-

ing natural motor behavior. For example, if the BMI decoder is such that motor cortical activity

generated during a leftward arm reach would lead to a rightward BMI movement, then the animal

would learn to employ the motor command usually reserved for leftward arm reaches in order to

achieve this rightward BMI movement (fig. 1a). This strategy easily satisfies criteria 1 and 2 above.

The dimensionality of the learning problem is kept low because both BMI movements – movements

of a 2D [Ganguly and Carmena, 2009, Chase et al., 2012, Sadtler et al., 2014, Oby et al., 2019] or 3D

[Taylor et al., 2002, Carmena et al., 2003, Jarosiewicz et al., 2008] effector – and natural motor com-

mands [d’Avella and Bizzi, 1998, d’Avella et al., 2003, Ivanenko et al., 2003, Todorov, 2004, Kutch and Valero-Cuevas, 2012,

Kuppuswamy and Harris, 2014] are low-dimensional. The motor cortical circuit can be kept intact be-

cause the patterns of activity used for manual and BMI control are the same.

There is substantial evidence both for and against the re-aiming strategy. [Jarosiewicz et al., 2008,

Chase et al., 2010, Chase et al., 2012, Hwang et al., 2013, Sakellaridi et al., 2019] However, previous treat-

ments have only considered the effects of re-aiming on individual neuron responses, relying on a feed-

forward tuning curve description of how re-aiming affects neural activity and behavior. Here, we re-visit

the re-aiming hypothesis at a more mechanistic level, by formulating a theory of how such a learning

strategy might shape population activity in a recurrent circuit model of primary motor cortex. Via sim-

ulation and analysis of this circuit, we derive predictions about how neural activity and behavior would

change under a pure re-aiming learning strategy in the context of four commonly employed BMI tasks.

This in turn will allow us to re-evaluate the extent to which various observations about BMI learning

are, or are not, consistent with re-aiming.
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Results

I.1.1 Re-aiming as optimization of low-dimensional inputs to motor cortex

We begin by modeling motor cortex as a recurrent neural network driven by an upstream population of

neurons (fig. 1b),

τ
dxi
dt

= −xi +

N∑
j=1

W rec

ij rj +

M∑
j=1

W in

ijuj (1)

ri = φ(xi) =


xi if xi > 0

0 else

where r1, r2, . . . , rN and u1, u2, . . . , uM denote the firing rates of the motor cortical and upstream neurons,

respectively. A rectified linear activation function φ(·) is used to ensure that firing rates are strictly non-

negative. In the simulations presented here, we assume that firing rates are low at the start of each trial of

BMI control, and thus set the initial conditions to 0, xi(0) = 0. The weights W rec
ij and W in

ij represent the

strengths of the synaptic connections between motor cortical neurons and from the upstream population,

respectively. To avoid making any strong commitments as to the structure of recurrent connectivity

within motor cortex, we use randomly connected networks throughout the results section of this chapter;

simulations with other relevant connectivity structures are presented in the supplementary results section

(fig. 9).

Inspired by recent models and theories of motor cortical function [Shenoy et al., 2013, Hennequin et al., 2014,

Sussillo et al., 2015], we assume that movements are executed by driving motor cortex with a temporally

simple upstream input. We assume that the rich intrinsic dynamics of the motor cortical circuit suffice

to generate the spatiotemporal patterns of cortical activity necessary for the execution of a given motor

behavior [Russo et al., 2018]. This leaves to the upstream inputs the role of simply selecting which pat-

terns to generate at which time in order to execute that behavior. Upstream firing rates are therefore

assumed to have little temporal structure, here fixed to be constant in time during the execution of the

behavior (more complex input dynamics are considered in chapter 2).

Most importantly, we assume that the spatial structure of the upstream inputs is modulated by a “mo-

tor command” representing the desired behavior to be executed. In accordance with the fact that motor

behaviors are generally low-dimensional [d’Avella and Bizzi, 1998, d’Avella et al., 2003, Ivanenko et al., 2003,

Todorov, 2004, Kutch and Valero-Cuevas, 2012, Kuppuswamy and Harris, 2014], we assume that the

space of all possible motor commands is low-dimensional as well. We formalize this by expressing the

motor command as a K-dimensional vector θ, parameterized by K � N motor variables θ1, θ2, . . . , θK .

These are encoded in the firing rates of the upstream population according to a set of encoding weights
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of learning as the extent to which BCI performance recovered from its
initial impairment to the level attained while using the intuitive map-
ping (Fig. 2c). For within-manifold perturbations, the animals regained
proficient control of the cursor (red histograms in Fig. 2d and Extended
Data Fig. 2), indicating that they could learn new associations between
natural co-modulation patterns and cursor kinematics. For outside-
manifold perturbations, BCI performance remained impaired (blue his-
tograms in Fig. 2d and Extended Data Fig. 2), indicating that it was
difficult to learn to generate new co-modulation patterns, even when
those patterns would have led to improved performance in the task.
These results support our hypothesis that the structure of a network

determines which patterns of neural activity (and corresponding behav-
iours) a subject can readily learn to generate.

Two additional lines of evidence show that BCI control was more learn-
able when using within-manifold perturbations than outside-manifold
perturbations. First, perturbation types differed in their after-effects. After
a lengthy exposure to the perturbed mapping, we again presented the
intuitive mapping (the second dashed vertical line in Fig. 2a, b). Follow-
ing within-manifold perturbations, performance was impaired briefly
(Extended Data Fig. 3, red histogram), indicating that learning had
occurred17. Following outside-manifold perturbations, performance was
not impaired, which is consistent with little, if any, learning having occurred
(Extended Data Fig. 3, blue histogram). Second, the difference in learn-
ability between the two types of perturbation was present from the earliest
sessions, and over the course of the study the monkeys did not improve
at learning (Extended Data Fig. 4).

These results show that the intrinsic manifold was a reliable predictor
of the learnability of a BCI mapping: new BCI mappings that were within
the intrinsic manifold were more learnable than those outside of it. We
considered five alternative explanations for the difference in learnabil-
ity. First, we considered the possibility that mappings which were more
difficult to use initially might be more difficult to learn. We ensured that
the initial performance impairments were equivalent for the two pertur-
bation types (Fig. 3a).
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Figure 1 | Using a brain–computer interface to study learning. a, Monkeys
moved the BCI cursor (blue circle) to acquire targets (green circle) by
modulating their neural activity. The BCI mapping consisted of first mapping
the population neural activity to the intrinsic manifold using factor analysis,
then from the intrinsic manifold to cursor kinematics using a Kalman filter.
This two-step procedure allowed us to perform outside-manifold perturbations
(blue arrows) and within-manifold perturbations (red arrows). D, dimensions.
b, A simplified, conceptual illustration using three electrodes. The firing rate
(FR) observed on each electrode in a brief epoch define a point (green dots)
in the neural space. The intrinsic manifold (yellow plane) characterizes the
prominent patterns of co-modulation. Neural activity maps onto the control
space (black line) to specify cursor velocity. c, Control spaces for an intuitive
mapping (black arrow), within-manifold perturbation (red arrow) and outside-
manifold perturbation (blue arrow). d, Neural activity (green dot) elicits
different cursor velocities (open circles and inset) under different mappings.
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Figure 2 | Better learning for within-manifold perturbations than
outside-manifold perturbations. a, b, Task performance during one
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trace, target acquisition time. Dashed vertical lines indicate when the BCI
mapping changed. Grey vertical bands represent 50-trial bins used to determine
initial (red and blue dots) and best (red and blue asterisks) performance with
the perturbed mapping. c, Quantifying the amount of learning. Black dot,
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(success rate and acquisition time are relative to performance with intuitive
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Figure 1: Modeling the re-aiming learning strategy.
(1a) Depiction of the re-aiming strategy for BMI learning. If activity evoked by imagining a leftward planar movement
moves the BMI cursor right, then the animal learns to use this motor command for moving the cursor to the right. Critically,
the space of imagined planar movements is low-dimensional.
(1b) Proposed model of re-aiming. Upstream inputs uj to motor cortex are modified within a low-dimensional space,
parameterized by a motor command vector θ. BMI readouts are a linear readout from motor cortical firing rates, through
a decoding matrix D. Re-aiming is formalized as identifying the motor command θ that will achieve some target BMI
readout y∗ at some future point in time.

Uij ,

ui(θ) = φ

(
K∑
j=1

Uijθj

)
, (2)

where the rectified linear activation function φ(·) is again used to ensure firing rates are non-negative.

For the sake of simplicity, we set the encoding weights Uij randomly.

During BMI control, motor cortical firing rates r(t) =

[
r1(t) · · · rN (t)

]
are directly translated to

behavior through the readout from a BMI decoder, here assumed to be linear,

y(t) = D (r(t)− µ) . (3)

The constant vector µ is included to center the strictly positive firing rates r(t) (see Methods). The BMI

readout y(t) could determine, for example, the position [Serruya et al., 2002, Hochberg et al., 2006] or

velocity [Velliste et al., 2008, Jarosiewicz et al., 2008, Ganguly and Carmena, 2009, Chase et al., 2012,

Sadtler et al., 2014] of the BMI effector. A subject learning to control a novel BMI decoder must find

a way to generate motor cortical activity patterns r(t) that will produce the target readouts y∗(t)

demanded by the task at hand.

Various components of the motor cortical circuit could be optimized to do so, such as its local recurrent

connectivity W rec
ij [Wärnberg and Kumar, 2019, Feulner and Clopath, 2020] or input connectivity from

the upstream population W in
ij [Legenstein et al., 2010, Engelhard et al., 2019]. The re-aiming hypothesis,

however, makes the strong commitment that the local motor cortical circuit structure remains intact,

and that instead only the upstream motor commands θ are optimized [Chase et al., 2010]. The same

motor cortical machinery used for natural motor control is thus exploited for BMI control.

This BMI learning strategy has a number of advantages, the primary of which is that it reduces the

dimensionality of the learning problem. Optimizing the recurrent weights of the motor cortical circuit,

for example, would require optimizing N2 synaptic weights, whereas optimizing the motor command θ
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only requires optimizing K � N motor variables. Moreover, not all K motor variables need to optimized

– we will argue below that, in certain settings, subjects may be optimizing only a subset of K̃ < K task-

relevant motor variables. Such a reduction in the number of optimized parameters may be critical for

efficient learning in the absence of gradient information.

However, while reducing the dimensionality of the learning problem may make it easier to find a

solution, it also reduces the space of available solutions. A reduction in the number of motor variables

that can be manipulated for BMI control constrains how motor cortical activity can be adjusted to

perform the BMI task. This reduction in flexibility implies limitations on the BMI problems that can

be learned via this low-dimensional learning strategy. Our goal here is to develop a formal theory of re-

aiming that will allow us to better understand these limitations, and evaluate whether they are consistent

with the limitations empirically observed in BMI learning experiments. What determines whether a BMI

decoder can or cannot be learned by re-aiming? To what extent can motor cortical population activity be

modified by re-aiming? How might this constrain behavior during BMI control? And, crucially, are these

neural and behavioral signatures of re-aiming consistent with empirical observation? In the following,

we address these questions in the context of four different BMI learning experiments.

To obtain general insights, we analyze a simplified model of re-aiming in which the motor command

is optimized to produce a target readout y∗ at some fixed future endpoint time tend,

θ̂(y∗) = arg min
θ1,θ2,...,θK̃

∥∥y(tend;θ
)
− y∗

∥∥2 +
γ

M

M∑
i=1

ui(θ)2. (4)

The vector y(tend;θ) denotes the BMI readout at time tend produced by driving the model motor cortical

network with the upstream inputs specified by the motor command vector θ (equation 2). This is

calculated by integrating the recurrent network dynamics (equation 1) to obtain the motor cortical firing

rates r(t;θ) generated by that motor command, and decoding from the firing rates at the endpoint time,

r(tend;θ), via equation 3. The second term in this cost function constitutes the metabolic cost of the

upstream firing rates induced by the motor command θ, included in the objective function to ensure that

only biologically plausible solutions are allowed. A quadratic cost is assumed for the sake of analytical

and numerical tractability (see Methods). Finally, K̃ denotes the number of motor variables optimized

under the re-aiming strategy. We call these the aiming variables, as these are the ones that will be

optimized by re-aiming. For simplicity, the remaining motor variables θK̃+1, θK̃+2, . . . , θK that are not

optimized are fixed at 0.

For a given decoding matrix D, solutions to this equation constitute a concrete hypothesis about

what subjects learn when learning to control that BMI decoder. In the following, we analyze these

solutions to evaluate whether this hypothesis is consistent with empirical observations from BMI learning

experiments. The question of how subjects might learn such re-aiming solutions is left for future work.
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Figure 2: BMI learning task of Sadtler et al. (2014) [Sadtler et al., 2014].
(2a) Task structure. Subjects are first submitted to a “calibration task” whereby they passively observe cursor reaches on
a screen. Recorded activity is used to estimate the intrinsic manifold and construct the baseline decoder. Subjects are
then instructed to perform center-out cursor reaches under BMI control, first using the baseline decoder and then with a
perturbed decoder constructed by perturbing the baseline decoder. This perturbation could be either a within-manifold
(WMP) or outside-manifold (OMP) perturbation.
(2b) Low-dimensional illustration of intrinsic manifold and its relationship to decoding matrices in this task. Colored dots
represent activity patterns recorded during different trials of the calibration task, colored by the cursor velocity presented
on that trial. These stimuli are depicted by the inset in the top right, with the presented cursor velocities depicted by
arrows color-matched to the activity patterns in the main figure, and the reach targets (for the subsequent center-out
cursor reaching task) depicted by green diamonds. The evoked neural activity patterns reside predominantly within the
two-dimensional plane depicted by the gray rectangle, the so-called intrinsic manifold in these data. Three hypothetical
one-dimensional decoders are depicted by colored arrows (labelled baseline decoder, WMP, and OMP). Linear readouts
from these decoders can be visualized by projecting individual activity patterns onto the corresponding decoder vector.
This is illustrated for one activity pattern marked in green, whose projections onto each of the three decoders is shown. A
projection far from the origin (the intersection of the three decoders) corresponds to a large absolute value of the readout.
Because this activity pattern resides close to the intrinsic manifold, it yields a large readout through the baseline decoder
and WMP, which are both well aligned with the intrinsic manifold. In contrast, the activity pattern’s readout through the
OMP is much weaker (i.e. its projection onto this decoder is much closer to the origin), since this decoder is oriented away
from the intrinsic manifold. It is important to keep in mind that this illustration is only a simplified cartoon of the true
task, in which more than three neurons are recorded, the intrinsic manifold is higher-dimensional (8-12D instead of 2D),
and the decoders constitute two-dimensional planes (cf. figure 5a) rather than one-dimensional vectors.

It is also important to acknowledge that equation 4 constitutes an incomplete description of the

true BMI learning problem. Controlling the BMI effector’s movement requires taking into account the

effector’s dynamics (e.g. the readout y(t;θ) might control the effector’s velocity rather than its position)

and specifying the entire sequence of readouts over time, rather than just the readout at one particular

time tend. Moreover, equation 4 ignores the role of sensory feedback in continuous closed-loop BMI

control [Golub et al., 2015, Stavisky et al., 2017, Shanechi et al., 2017]. That said, this simplified model

of re-aiming will prove useful to intuit general principles of the re-aiming learning strategy, which, as we

show in chapter 3, extend to more complex settings. After all, being able to produce a target readout at

a fixed future time is, in a loose sense, a pre-requisite to solving the full closed-loop control problem.

I.1.2 Re-aiming implies neural constraints on short-term learning

To illustrate the limitations of re-aiming, we begin by modelling a BMI learning task designed by Sadtler

et al. (2014) [Sadtler et al., 2014]. In this task, subjects learn to perform center-out reaches with a

cursor on a screen, whose velocity is controlled by the readout from a linear BMI decoder. The task

comprises two phases in which two different decoding matrices D are used (fig. 2a). In the first phase

of the task, a baseline decoder is used. This decoder is constructed based on neural responses during
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a prior calibration task, in which the subject passively views 2D cursor reaches to eight radial reach

targets presented on a screen. The decoding matrix is built so that the patterns of neural activity evoked

by these visual stimuli would suffice to move the cursor towards the corresponding reach targets (see

Methods). Importantly, neural responses during this task tend to occupy a low-dimensional subspace,

termed the “intrinsic manifold” [Sadtler et al., 2014]. The construction of the baseline decoder ensures

that it is highly aligned with the intrinsic manifold, so that activity patterns within this subspace can

produce large readouts through the decoder (fig. 2b). Sadtler et al. found that subjects could easily

perform center-out reaches with the baseline decoder, requiring only a few trials of practice to learn.

In the second phase of the task (fig. 2a), the decoding matrix D of the baseline decoder is perturbed,

and the subject must learn to perform the same center-out cursor reaches with the resulting perturbed

decoder. The key manipulation is that the decoding matrix can be perturbed in two different ways.

Within-manifold perturbations (WMP’s) consist of randomly re-orienting the baseline decoder within the

intrinsic manifold. WMP’s therefore alter how neural activity gets mapped to readouts while preserving

the decoder’s alignment with the intrinsic manifold (fig. 2b). Outside-manifold perturbations (OMP’s),

on the other hand, directly disrupt this alignment. Under OMP’s, activity patterns within the intrinsic

manifold do not suffice to move the cursor in the right direction, and new activity patterns outside of the

intrinsic manifold must be produced by the subject in order to successfully perform the task (fig. 2b).

Sadtler et al. found that, with 1-2 hours of practice (i.e. a few hundred trials), non-human primates

could generally learn to successfully perform cursor reaches with WMP’s. On the contrary, such short-

term learning did not seem to be possible with OMP’s, under which relatively little improvement was

observed over this training period. This was interpreted to reflect a “neural” constraint on learning,

whereby the local motor cortical population is unable to learn to produce the activity patterns necessary

to control OMP’s – that is, activity patterns outside of the intrinsic manifold. Here we argue that this

limitation of short-term learning could be a consequence of subjects using a re-aiming learning strategy.

Such a low-dimensional learning strategy could account for the incredible efficiency with which subjects

learn to control WMP’s, and in the following we show that it can also explain the lack of learning under

OMP’s.

To simulate this BMI learning task, we begin by simulating the calibration task. We simulate motor

cortical responses to the visually presented cursor reaches by driving the model motor cortical network

with motor commands θ that depend on the cursor’s velocity on each trial (a constant vector pointing in

the direction of the reach target on that trial). Reflecting the two-dimensional nature of these stimuli, we

set the first two motor variables θ1, θ2 to the 2D coordinates of this cursor velocity, and set the remaining

motor variables θ3, θ4, . . . , θK to 0. We find that driving the network with these motor commands leads

to population activity occupying an eight-dimensional subspace (fig. 3a), which we define as the intrinsic

manifold. Following the methods of [Sadtler et al., 2014], we then use this subspace to construct the
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baseline decoder and sample within- and outside- manifold perturbations (see Methods).

We next postulate that subjects learn to control these decoders by re-aiming with the same two motor

variables driving motor cortex during the calibration task. Because the motor system has been exposed

to fluctuations in only these two motor variables, we hypothesize that the motor system determines them

to be the most relevant to the task at hand and therefore exploits them for re-aiming. We thus model

BMI learning by optimizing θ1 and θ2 with respect to the re-aiming objection function (equation 4, with

K̃ = 2), leaving the remaining motor variables fixed to 0 as in the calibration task (θ3 = θ4 = . . . = θK =

0). Under this learning strategy, learning can proceed extremely efficiently, as only two variables need

to be optimized. The motor commands available for BMI control, however, are now severely restricted:

only two motor variables are free to change, and they are furthermore bounded by the metabolic cost

incurred on the upstream firing rates (cf. equation 4).

Critically, these restrictions on the upstream motor commands induce restrictions on the motor

cortical activity patterns available for BMI control. To understand exactly how motor cortical activity is

restricted, we consider the set of all motor cortical activity patterns r(tend;θ) that can be reached at a fixed

endpoint time tend by a motor command θ permissible under this learning strategy. We term this set the

“reachable repertoire.” To visualize its structure, we select a large sample of permissible motor commands

and compute the activity patterns they generate at tend = 1000ms. The selected motor commands are

plotted in figure 3b; recall that only the first two motor variables, θ1, θ2, are allowed to change, so we

can plot these motor commands in θ1 − θ2 space. The motor cortical activity patterns they generate

are plotted in figure 3c, projected down to three dimensions via Principal Components Analysis (PCA)

and plotted with markers matched in size and color to the motor commands in figure 3b that generated

them. We emphasize that the points in this figure should not be thought of as spatiotemporal trajectories

of activity; rather, they depict activity patterns generated at the same timepoint tend = 1000ms, with

different activity patterns generated by different motor commands.

Despite these motor commands being two-dimensional, the network’s dynamics generate population

activity occupying more than three dimensions of state space. The three-dimensional projection in figure

3c in fact contains about 80% of the variance over the plotted N -dimensional activity patterns, revealing

that the reachable repertoire resides within a subspace of moderately low dimensionality, higher than

that of the motor commands giving rise to it (two-dimensional) but significantly lower than that of

its ambient state space (N -dimensional). In fact, the reachable repertoire turns out to be completely

contained within the intrinsic manifold. This can be seen by calculating the amount of variance across

activity patterns in the reachable repertoire that is contained within each dimension of the intrinsic

manifold. This is plotted in figure 3a with a purple curve, which reveals that the eight dimensions of

the intrinsic manifold capture almost 100% of the variance in reachable activity patterns. The reason

for this is that both the activity patterns in the reachable repertoire and the activity patterns evoked by
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Figure 3: Re-aiming with two motor variables suffices to learn good solutions for within- but not outside- manifold
perturbations.
(3a) Gray curve shows the variance of the calibration task neural response within each dimension of the intrinsic manifold.
By construction, about 95% of the total variance is contained within the intrinsic manifold. Purple curve shows the variance
over all activity patterns in the reachable repertoire that is contained within each dimension.
(3b) Motor commands used to generate activity patterns from the reachable repertoire. These comprise a dense range
of angles on the θ1 − θ2 plane and 5 distinct motor command norms, ‖θ‖, corresponding to each ring (see Methods for
how these norms were picked). The motor commands used to simulate the calibration task are highlighted by the orange
squares, picked to be unit norm, ‖θ‖ = 1. All other motor variables θ3, θ4, . . . , θK are fixed to 0 under our model of
re-aiming.
(3c) Activity patterns from the reachable repertoire at endpoint time tend = 1000ms. Each activity pattern is color- and
size- matched to the motor command in the previous panel that generated it; each ring of activity patterns is generated
by the corresponding ring of motor commands in the previous panel. This ensemble of N -dimensional activity patterns is
projected onto its top three principal components. Black line marks the apical axis of this conical manifold, drawn only to
facilitate visualization.
(3d) Readouts from each of the reachable activity patterns plotted in figure 3c, through the baseline decoder and one
example WMP and OMP. Marker colors and sizes are matched to the corresponding activity patterns in figure 3c. Green
diamonds mark the eight radial target readouts for the cursor reaching task, set to the directions of the eight radial reach
targets used in [Sadtler et al., 2014].

(3e) Re-aiming solutions θ̂(y∗) for each decoder, plotted in θ1 − θ2 space. Recall that only θ1 and θ2 are optimized under
our model of re-aiming; all other motor variables θ3, . . . , θK are fixed to 0. The re-aiming solution to each target readout
is matched in color to its corresponding diamond in figure 3d.
(3f) The colored circles show the readouts y

(
tend; θ̂(y∗)

)
generated by the optimal re-aiming solutions shown in figure 3e,

under the same three BMI decoders. The diamonds denote the eight radial target readouts as in figure 3d. Note that
these readouts aren’t necessarily the reachable readouts closest to the targets, as the re-aiming solutions generating them
minimize the metabolic cost of the input as well the error (cf. equation 4).
(3g) Distribution of mean squared error achieved by the re-aiming solutions for 100 randomly sampled WMP’s and OMP’s.
The mean squared error achieved by the re-aiming solutions for the baseline decoder is marked by the vertical dashed black
line. Target readouts are unit norm, so a mean squared error of 1.0 is equivalent to producing a readout at the origin.
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the calibration task – which define the intrinsic manifold – are generated by similarly low-dimensional

motor commands θ, in which only two motor variables (θ1, θ2) are non-zero (fig. 3b). Consequently,

all the activity patterns in the reachable repertoire reside within the same eight-dimensional subspace

occupied by the calibration task responses.

The behavioral repercussions of this low-dimensional structure can be understood by looking at the

BMI readouts from these reachable activity patterns – that is, the set of readouts reachable at time tend

by re-aiming. These readouts will, of course, depend on the BMI decoder, which specifies how activity

patterns get translated to BMI readouts. In figure 3d, we visualize these reachable readouts under the

baseline decoder, a WMP, and an OMP. Specifically, we calculate each decoder’s readouts from each

of the reachable activity patterns plotted in figure 3c and plot them in the 2D readout space. This

reveals that the readouts reachable under the baseline decoder and under the WMP are much larger

than those reachable under the OMP. Overlaid as solid green diamonds are the target readouts of the

task, matching the eight radial reach targets in the center-out reaching task of [Sadtler et al., 2014].

While these lie firmly within the scope of the readouts reachable under the baseline decoder and the

WMP, they are out of reach of any of the readouts reachable under the OMP. This entails that the re-

aiming learning strategy is bound to fail for this OMP – under this decoder, none of the motor commands

permissible by this learning strategy are able to produce the readouts demanded by the task at hand.

We confirm this by simulating re-aiming under each decoder. For each of the three decoders, we

solve equation 4 for each target readout (using tend = 1000ms) and drive the motor cortical network with

the resulting optimal re-aiming solutions θ̂(y∗). The solutions for each target readout y∗ are plotted

in figure 3e as 2D vectors in θ1 − θ2 space, color-matched to the target readouts in figure 3d. Note

that the solutions for the perturbed decoders can be quite complex, beyond a simple rotation or scaling

of the target readouts. The readouts produced by these optimal re-aiming solutions at the optimized

endpoint time tend are shown directly below in figure 3f. These optimal readouts necessarily reside within

the manifold of reachable readouts visualized in figure 3d. As a result, only those under the baseline

decoder and WMP reach the targets, with the optimal readouts under the OMP falling far short. Under

this OMP, the re-aiming learning strategy evidently fails to provide an effective solution to the cursor

reaching task.

The reason behind this can be immediately intuited from the aforementioned fact that the reachable

repertoire only includes activity patterns within the intrinsic manifold. In other words, the reachable

repertoire excludes activity patterns outside of the intrinsic manifold, which therefore are not reachable

by re-aiming. Producing the target readouts under an OMP requires generating such activity patterns,

and therefore re-aiming cannot succeed for these decoder perturbations. To check that this indeed

holds for any OMP, we sampled 100 random WMP’s and OMP’s (see Methods) and repeated the above

simulation for each of them. For each decoder, we quantify the success of re-aiming by the mean squared

23



error between the target readouts and the readouts generated by the re-aiming solutions to these targets.

Figure 3g shows the distribution of this mean squared error over all the sampled WMP’s and OMP’s.

As expected, we find that the re-aiming solutions for OMP’s consistently result in higher mean squared

error than do their WMP counterparts. Only the re-aiming solutions for WMP’s are able to achieve

mean squared error as low as that achievable under the baseline decoder.

We conclude that the re-aiming learning strategy, as formalized here, can only succeed for WMP’s.

This offers an explanation for why only these decoder perturbations seem to be learnable on the short

timescale of a single experimental session. Because re-aiming can’t succeed for OMP’s, subjects must

resort in these cases to an alternative – and presumably higher-dimensional – learning strategy, explaining

why learning these decoders requires substantially more training [Oby et al., 2019]. We thus briefly

remark that, during OMP control, subjects are likely to produce readouts differing markedly from those

seen in figure 3d, which constitute predictions for what they would produce under the inadequate, and

presumably quickly abandoned, re-aiming strategy.

I.1.3 Re-aiming predicts biases in short-term learning

A close look at figure 3d reveals an important difference between this WMP and the baseline decoder.

Whereas the readouts reachable under the baseline decoder cover the workspace symmetrically, those

reachable under the WMP are much larger in western than in eastern directions of the workspace (fig.

3dii). This explains why the optimal re-aiming solutions for the eastern targets in fact produce readouts

that fall short of their targets (fig. 3fii). Such biases are not unique to this WMP, figure 4a reveals

similar biases in the readouts reachable under an additional three other representative WMP’s that we

sampled.

This leads to an experimental prediction: if subjects are learning WMP’s by re-aiming, then the BMI

readouts they produce should be biased, even at the end of learning. To rigorously quantify the degree

of bias predicted by our model, we calculated the maximal readout strength achievable in each target

direction. We define a readout y’s strength in a given target direction y∗ by the alignment between these

two vectors,

ρ (y; y∗) = y · y∗, (5)

where the vector y∗ is taken to be unit norm (‖y∗‖ = 1). The maximal readout strength in that target

direction is then given by the reachable readout with highest readout strength in that direction (i.e. by

taking the maximum of ρ (y; y∗) over all reachable readouts y, cf. Methods equation 20). The strongest

reachable readouts in each of the eight target directions are marked by green circles in figure 4a, color-

matched to the target readouts in figure 3f. The readout strengths of the maximal readouts in each

direction are then plotted below in figure 4b, revealing a smooth unimodal bias: the maximal readout
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Figure 4: Re-aiming predicts biases in readouts after short-term learning of within-manifold perturbations.
(4a) Readouts reachable under four representative WMP’s, using the same color conventions as in figure 3d. In each
case, each of the four loops correspond to four distinct motor command norms, picked to aid visualization. The leftmost
panel corresponds to the same example WMP shown in the previous figure. The reachable readouts with largest readout
strengths in each target direction are overlaid, color-matched to the target readouts shown in figure 3d. The readouts with
largest readout strengths in the east (E), north (N), west (W), and south (S) target directions are additionally marked by
the corresponding letter. The projection of the reachable repertoire mean, Dr̄, is overlaid as an open arrow, arbitrarily
rescaled for visibility.
(4b) Maximal readout strengths in each target direction, for each of the same four example WMP’s. These are the readout
strengths of the readouts marked by the green circles in the corresponding panel above. The vertical purple line indicates
the direction of the projection of the reachable repertoire mean, Dr̄.
(4c) Solid curve is the mean maximal readout strength over all 100 sampled WMP’s, obtained by horizontally centering the
maximal readout curves (i.e. the curves in panel 4b, for all sampled WMP’s) at their peaks and then averaging. Dashed
line shows the mean readout strength during best trials of WMP control in the data of Sadtler et al. (2014), obtained by
horizontally centering the readout strength curves for 46 experimental sessions and then averaging, exactly as was done
with the simulated data. Both curves are normalized to their peaks to aid comparison of model and experimental data.
Error bars show standard error of the mean.

strength is consistently highest for one target direction and then decays smoothly as a function of target

direction angle from the strongest one. To characterize the shape of this bias for any generic WMP, we

measured these maximal readout strength curves for each of the 100 WMP’s we sampled, horizontally

centered them at their peaks, and then averaged. The resulting curve of mean maximal readout strengths

is shown in figure 4c, revealing a consistent smooth unimodal bias in the reachable readouts. In figure 9,

we show that the shape of this bias is in fact highly conserved across several different models of motor

cortical connectivity, indicating that it is an unavoidable consequence of the re-aiming learning strategy.

The absence of such a bias in data would provide strong evidence against this theory of BMI learning.

To check whether such a bias was present in the data of [Sadtler et al., 2014], we identified the

window of trials with best reaching performance under WMP control and calculated the average BMI

readout strengths in each reach direction over this window (see Methods). This provided us with a

curve of estimated maximal readout strengths for each session of WMP control. We then horizontally

centered and averaged these curves over all sessions and subjects. The resulting curve of empirical

readout strengths is overlaid in figure 4c with a dashed line. This curve reveals a smooth unimodal bias

in the experimental data that is remarkably similar to that predicted by our model. Note that the decay

in readout strengths from the peak is steeper in the data than in the model, which is consistent with

the fact that our model’s maximal readout strengths should provide an upper bound on the readout
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strengths achievable under the re-aiming learning strategy. It is worth noting that no parameters of our

model were fit to these data.

To check whether this average bias in the data arises via the same mechanisms as in the model, we

next attempt to exploit our mechanistic understanding of the model to predict the direction of the bias

in individual experimental sessions. In our model, biases in the readouts reachable under a given decoder

stem from the geometric relationship between the decoding matrix and the reachable repertoire. This

is illustrated in figure 5a using a simplified 3D caricature of the reachable repertoire. The reachable

repertoire is depicted here by a purple cone, emulating its conical structure evident in figure 3c. The

set of readouts reachable under a specific decoder can be thought of as a two-dimensional projection of

the reachable repertoire onto the plane spanned by the rows d1,d2 of the decoding matrix D. If, as in

the illustration, this decoding plane is aligned with the apical axis of the cone (i.e. the axis going from

the origin to the cone’s base), then it is easy to appreciate that this projection will form a triangular

manifold of reachable readouts, asymmetrically covering the workspace.

Crucially, this manifold need not be centered at the origin of the workspace. From equation 3, we

have that the centroid of the reachable readouts is given by

ȳ = D (r̄− µ) , (6)

where r̄ is the reachable repertoire mean. The centroid of the reachable readouts is thus determined by

the projection of the difference r̄−µ onto the decoding plane. This is depicted in the illustration by the

arrow going from the orange circle to the purple one. The reachable readouts will thus only be centered

at the origin of the workspace if the reachable repertoire mean r̄ exactly matches the centering vector

µ, or if their difference is orthogonal to the decoding plane so that its projection onto it is zero. In the

illustration, r̄ and µ differ in a direction that is parallel to the depicted decoding plane, so the centroid

of the reachable readouts is non-zero, offset to the right of the workspace origin. This leads to a bias in

the reachable readouts, whereby larger readouts are reachable on that side of the workspace than on the

other.

If this is how the bias arises in our model, we should be able to predict the direction of the bias

from the relationship between r̄ and µ. Recall that the centering vector µ is fit to the calibration task

neural responses. More specifically, it is set to the vector of mean responses over all time and stimuli (see

Methods). This same centering vector is then used for all within- and outside- manifold perturbations,

which perturb the decoding matrix D only. Recalling that the calibration task neural responses are driven

by motor commands similar to those underlying the reachable repertoire (fig. 3b), it is easy to intuit that

their mean µ should bear a strong relationship to the reachable repertoire’s mean r̄. This relationship is

visualized in figure 5b, where we plot simulated calibration task responses together with activity patterns
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from the reachable repertoire, projected down to the same subspace. Both the calibration task mean

and the reachable repertoire mean point roughly in the same direction (at least within this subspace),

differing mainly in their norms – because the reachable repertoire includes activity patterns generated by

motor commands with stronger magnitudes than those driving the calibration task responses (fig. 3b),

the reachable repertoire mean lies further away from the origin than the calibration task mean. Since r̄

and µ point in the same direction, their difference does too, so we can write

r̄− µ ≈ ar̄, a > 0. (7)

Plugging this into equation 6, we have that the centroid of the reachable readouts is approximately given

by

ȳ ≈ aDr̄, a > 0. (8)

This implies that the readouts reachable under the decoding matrix D will be biased in the direction of

the reachable repertoire mean’s projection through that decoder, Dr̄.

We can see that this is the case in the example WMP’s shown in figure 4a. First note that, in reality,

the reachable repertoire forms a higher-dimensional structure than the simple 3D cone illustrated in figure

5a. Moreover, linear decoding (equation 3) may comprise a complex mixture of reflections, scalings, and

rotations in addition to the simple projection operation depicted in the illustration of figure 5a. For

these reasons, the readouts reachable under each of these decoders form intricately twisted loops (fig.

4a), rather than simple circular rings like in the illustration. However, in each case the full manifold of

readouts formed by the union of these loops conserves the key geometric properties caricatured in the

illustration: it is asymmetric and biased to one side of the workspace. The side to which it is biased

is moreover predicted by the projection of the reachable repertoire mean, marked by the arrow. The

direction of this projection is marked by a vertical line in figure 4b, which reveals that the target direction

with highest maximal readout strength is typically near it.

Does this also hold true in the WMP readouts produced by subjects in the experiment? Unfortunately,

we cannot directly test this prediction because we have no way of measuring the reachable repertoire

of a subject’s motor cortex. However, we can estimate it from motor cortical activity during center-out

reaches with the baseline decoder. The mean population activity generated by the re-aiming solutions

for this decoder, r̄est, is highly correlated with the reachable repertoire mean, r̄, so we can estimate the

latter with the former. Maximal readout strengths under a given WMP thus tend to be highest for target

directions pointing in the direction of the projection of r̄est through that decoder, Dr̄est, exactly as we

observed to be the case for the true repertoire mean, r̄. We can see that this is the case in figure 5c, which

plots maximal readout strengths in each target direction as a function of its angle with the projection of

r̄est through the decoder, for each of the 100 sampled WMP’s. This reveals a strong negative correlation
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Figure 5: The geometry of the reachable repertoire predicts the direction of biases after short-term learning of within-
manifold perturbations.
(5a) Illustration of how the conical structure of the reachable repertoire gives rise to biases in reachable readouts. The
purple cone depicts the reachable repertoire, with purple rings depicting activity patterns generated by aiming variable
pairs with constant norm, analagous to those seen in figure 3c. The red rectangle depicts the plane spanned by the two
rows of the decoding matrix d1,d2. The reachable readouts are visualized as the projection of the reachable repertoire
onto this decoding plane. The two open orange dots depict the calibration task mean, µ, and its readout, D(µ− µ) = 0.
Its readout marks the origin of the owrkspace, depicted by the intersection of the two red lines. The two open purple dots
depict the reachable repertoire mean r̄ and its readout, D(r̄−µ). Its readout marks the centroid of the reachable readouts,
ȳ. The difference r̄− µ and its projection onto the decoding plane are highlighted by the white arrows.
(5b) Simulated motor cortical responses in the calibration task, color-matched to the motor commands in figure 3b driving
these responses. These are plotted together with the same reachable activity patterns from figure 3c, projected onto the
same three dimensions. The open dots in the interior of this conical structure show the calibration task mean µ in orange
and the reachable repertoire mean r̄ in purple. Note that, by definition, the calibration task neural responses at time
tend = 1000ms (the last point in each trajectory) lie almost exactly on the reachable repertoire (offset slightly only because
of noise in the dynamics).
(5c) Maximal readout strength in each target direction for each sampled WMP, plotted as a function of the angle between
the target direction and Dr̄est, the projection of the mean population activity during simulated reaches with the baseline
decoder (see text and Methods for details). A total of 8 target directions × 100 sampled WMP’s = 800 points are plotted.
(5d) Average readout strengths in each target direction over late trials of WMP control for each WMP session in the data
of Sadtler et al. (2014), plotted as a function of the angle between the target direction and the projection of the mean
population activity during reaches with the baseline decoder. A total of 8 target directions × 46 experimental sessions =
368 points are plotted.

between these two quantitites (Pearson r = −0.66, p < .001): the larger the angle between the target

direction and the projection of r̄est, the lower the maximal readout strength in that direction and under

that decoder.

This is a prediction we can now test in the experimental data. If we assume subjects are re-aiming to

perform cursor reaches with the baseline decoder during the initial phase of the experiment (fig. 2a), then

the average population activity over these trials, r̄est, should provide a good estimate of the reachable

repertoire mean. We can then repeat the analysis outlined above to test for the same negative correlation

between WMP maximal readout strengths in each target direction and target direction alignment with
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the projection of r̄est through the decoder. For each experimental session with a WMP, we measured

r̄est using the neural activity during the first phase of the task, and calculated its projection through

the WMP used in the second phase. We then calculated the average readout strengths in each target

direction over the best trials of WMP control, and plotted them as a function of target direction angle with

this projection. The data over all experimental sessions are plotted in figure 5d, revealing a significant

negative correlation akin to that observed in our model (Pearson r = −0.41, p < .001). This shows that

empirical biases in individual sessions of WMP learning are consistent with those that would be expected

from the geometric properties of the reachable repertoire in our model of re-aiming.

It is worth noting that this result is also consistent with, and predicted by, the neural re-association

model of BMI learning postulated by [Golub et al., 2018]. In this model, a fixed repertoire of motor

cortical activity patterns – termed the “neural repertoire” – is used for BMI control with the baseline

decoder as well as with the WMP’s. The mean activity during center-out reaches with the baseline

decoder, r̄est, thus corresponds to the mean of the neural repertoire. Under any decoder, the readouts

produced by activity patterns in the neural repertoire will therefore be biased in the direction of the

projection of its mean, r̄est, through that decoder. Indeed, our model of re-aiming can be seen simply

as a particular implementation of neural re-association, whereby the restricted motor commands restrict

the motor cortical activity patterns available for BMI control to a fixed repertoire. Neural re-association,

however, is a statistical model of how population activity changes after learning, and thus makes no claims

as to the actual algorithms or mechanisms underlying these changes. Our model, on the other hand,

makes a concrete claim about the learning algorithm being used by the subjects in this task, providing a

mechanistic and normative rationale for the structure of the neural repertoire and the behavioral biases

that arise from it. Moreover, it leads to natural extensions to other BMI tasks, which we turn to next.

I.1.4 Long-term BMI learning by generalized re-aiming

Although Sadtler et al. (2014) showed that non-human primates could not learn to control OMP’s

within the short time period of a single experimental session (a few hundred trials), a subsequent study

by Oby et al. (2019) showed that such decoder perturbations could be learned over multiple days of

training [Oby et al., 2019]. The authors observed that by the end of about 5-10 training sessions over

multiple days, new motor cortical activity patterns emerged that allowed the subject to produce strong

BMI readouts through the trained OMP. Could re-aiming play a role in the emergence of novel activity

patterns over these longer timescales of learning?

In our simulations of short-term learning, we noted that re-aiming with only the two motor variables

θ1, θ2 is not sufficient to produce the activity patterns required for OMP control. Because these two motor

variables are the same ones driving motor cortex during the calibration task, the reachable repertoire

under this learning strategy only contains activity patterns inside the intrinsic manifold (fig. 3a). Re-
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aiming with a different set of motor variables, however, would completely change the reachable repertoire,

possibly leading to the inclusion of new activity patterns outside of the intrinsic manifold. Here we

consider the possibility that, over longer timescales of learning, subjects re-aim with K̃ > 2 motor

variables, extending the set of motor variables used for re-aiming to additional variables beyond those

evoked by the calibration task. We refer to this learning strategy as “generalized re-aiming”. Because

more motor variables need to be optimized under this strategy, it is natural that learning should be

slower.

To simulate generalized re-aiming, we simply increase K̃ in equation 4 and solve the resulting K̃-

dimensional optimization problem. Figure 6a quantifies the effectiveness of this learning strategy for

OMP learning. The mean squared error achieved by the re-aiming solutions is plotted as a function of

the number of motor variables used for re-aiming (the “aiming variables”), K̃. As expected, we find

that re-aiming with more motor variables leads to a lower mean squared error. For this model motor

cortical network, about 15-20 aiming variables suffice to achieve a mean squared error as low as that

achievable under WMP’s with K̃ = 2. For other motor cortical models with different connectivity, fewer

than 10 aiming variables suffice (fig. 9e). These values of K̃ comfortably fit within the total number of

extrinsic motor variables known to influence motor cortical activity [Thach, 1978, Fetz, 1992, Fetz, 2007,

Scott, 2008, Omrani et al., 2017, Gallego et al., 2017, Willett et al., 2020]. However, they may be too

high for näıve gradient-free optimization to succeed in solving equation 4 under biological limitations

(e.g. on memory, motivation, and noise), which might explain why primates seem to be able to learn

OMPs only under a highly structured incremental training paradigm [Oby et al., 2019].

Why the generalized re-aiming strategy works can be understood by looking at how increasing the

number of aiming variables changes the reachable repertoire. A larger number of aiming variables permits

a more diverse set of upstream inputs, which in turn implies that a more diverse set of activity patterns

are reachable. This diversity is quantified in figure 6b by the participation ratio of the covariance over

all reachable activity patterns (see Methods). The participation ratio measures the extent to which

variability is spread out over many dimensions (high participation ratio) or concentrated to only a few

(low participation ratio) [Gao et al., 2017]. Figure 6b shows that, as the number of aiming variables rises,

the participation ratio of the reachable repertoire covariance increases; in other words, the reachable

activity patterns occupy more and more dimensions of state space as K̃ gets larger. That said, the

participation ratio does begin to saturate at around K̃ = 20, reflecting the fact that the reachable

repertoire is ultimately limited by the motor cortical circuit dynamics.

This expansion in the reachable repertoire leads to the inclusion of new activity patterns that are

useful for OMP control. We can see this in figure 6c, which shows the readouts reachable under the

same OMP visualized in figure 3diii. The readouts reachable under different values of K̃ are shown by

different colors, revealing how a larger number of aiming variables leads to reachable readouts closer to
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Figure 6: Generalized re-aiming yields good solutions for outside-manifold perturbations.
(6a) Mean squared error achieved by generalized re-aiming solutions to all sampled OMP’s, plotted as a function of the

number of motor variables used for re-aiming (the “aiming variables”), K̃. Lighter blue points show the mean squared error
for individual OMP’s, darker points on top show the median over all sampled OMP’s. For reference, dotted horizontal lines
show the mean squared error achieved by re-aiming solutions with K̃ = 2 for the baseline decoder (black) and for WMP’s
(red); the red dotted line shows the median over all sampled WMP’s with shading marking the upper and lower quartiles
(matching the statistics of the red histogram in figure 3g).
(6b) Participation ratio of the reachable repertoire covariance as a function of the number of aiming variables (see Methods).
(6c) Readouts from the reachable repertoire through the same OMP shown in figure 3d, for different numbers of aiming

variables K̃. For the sake of visibility, only readouts from activity patterns genereated by motor commands with unit norm
(‖θ‖ = 1) are shown. The innermost ring (for K̃ = 2) thus corresponds to one of the rings of readouts plotted in figure
3diii.

the target readouts. As the reachable repertoire expands, more and more activity patterns occupying

dimensions relevant to OMP control become reachable, ensuring the readouts reachable under this OMP

cover a wider region of the workspace.

An experimental prediction of the generalized re-aiming learning strategy is that long-term BMI

learning should manifest itself via a transient rise in the dimensionality of population activity. Note first

that, regardless of the number of motor variables used for re-aiming, the re-aiming solutions for a 2D

reaching task will always live on a low-dimensional manifold: the continuum of solutions to equation 4

for all possible 2D target readouts y∗ necessarily lies on a manifold of intrinsic dimension 2. At the end

of learning, motor cortical population activity should therefore remain relatively low-dimensional. But

during learning, a much larger space of inputs may be explored en route to identifying the optimal re-

aiming solutions. Consequently, motor cortical population activity should exhibit a rise in dimensionality

during this time period, until it gradually coalesces to a low-dimensional manifold tailored to the geometry

of the BMI decoder. This gradual refinement of motor cortical population activity is consistent with

observations of long term BMI learning in primates and rodents, where it has been observed that motor

cortical activity during BMI control gradually reshapes over the course of days of training in such a

way that independent variability in single neuron firing rates decays as correlated variability over the

population grows [Athalye et al., 2017, Athalye et al., 2018, Athalye et al., 2020]. Our results suggest

that this apparently independent variability present early in learning may be a manifestation of subjects’

search for generalized re-aiming solutions. An important analysis we leave for future work is to test

whether a transient rise in dimensionality is present in the data of Oby et al. (2019). It is worth

noting, however, that the predicted increase in dimensionality may be difficult to detect under the
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incremental training paradigm used in this experiment, since population activity will converge to a

low-dimensional manifold whenever a satisfactory re-aiming solution is obtained for a given incremental

decoder perturbation.

I.1.5 Illusory credit assignment by generalized re-aiming

We next turn to a different class of BMI decoder perturbation, termed the credit assignment rotation

perturbation [Zhou et al., 2019]. We can think of the readout from a linear BMI decoder (equation 3)

as summing together the N columns of the decoding matrix D, each one weighted by the activity of

the corresponding neuron (fig. 7a). The contribution of each recorded neuron’s activity to the BMI

readout y is thus determined by its corresponding column in D, which we refer to as its “decoding

vector”. Under a credit assignment rotation perturbation, the decoding vectors of a random subset of

neurons (the “rotated neurons”) are rotated by a given angle (fig. 7a). The contributions of each of

these neurons to the BMI readout are therefore altered by this decoder perturbation. The contributions

of each of the remaining “non-rotated” neurons, on the other hand, remain the same. Errors induced

by this decoder perturbation can thus be corrected by selectively adjusting the responses of the rotated

neurons only. But doing so requires identifying exactly which neurons’ decoding vectors were rotated –

a tall order given that the subject has no explicit knowledge about the BMI decoder or the few motor

cortical neurons (among millions) it records from.

Despite these challenges, multiple studies have shown that non-human primates can learn to control

such decoder perturbations, and that this learning is accompanied by selective changes in the responses

of rotated neurons [Jarosiewicz et al., 2008, Chase et al., 2012, Zhou et al., 2019]. These studies used a

center-out cursor reaching task akin to that described above (fig. 2a), in which the cursor’s velocity is

initially controlled by the readouts from a baseline decoder that is fit to motor cortical activity recorded

during a prior calibration task. After an initial phase of cursor reaching with this decoder, the baseline

decoder is perturbed by rotating a random subset of its columns, and subjects have to learn to control

the cursor with this new perturbed decoder. Subjects’ motor cortical activity naturally changes after

learning this novel BMI decoder, and this can be quantified by comparing individual neurons’ tuning

to reach direction during each of the two phases of the task. Each of the aforementioned studies found

that, after learning, tuning curves of both rotated (fig. 7b) and non-rotated neurons (fig. 7c) shift in a

direction congruent with the rotation of the decoding vectors. For example, if the decoding vectors are

rotated counter-clockwise, tuning curves shift counter-clockwise, on average. Notably, however, tuning

curves of rotated neurons shift more on average than those of non-rotated neurons (compare figs. 7b

and 7c). This observation has previously been interpreted to support the hypothesis that the motor

system is indeed able to single out the rotated neurons, solving the so-called credit assignment problem

[Minsky, 1961] by learning individual neurons’ contributions to the BMI readout under each decoder

32



y =
[
D11

D21

]
r1+

[
D12

D22

]
r2+

[
D13

D23

]
r3 . . . +

[
D1N

D2N

]
rN

decoding vectors

D11

D21

75o

D12

D22

D13

D23

75o

D1N

D2N

baseline
decoderperturbed

decoder

a

b c

d

e

Figure 7: Generalized re-aiming solutions replicate motor cortical tuning changes observed under credit assignment
rotation perturbations.
(7a) A linear BMI readout (equation 3) can be seen as summing together columns of the decoding matrix D, each weighted
by the firing rate of the corresponding neuron (the centering term µ has been dropped here for simplicity). These columns
are called the neurons’ decoding vectors, and they are plotted on the axes below the equation. Under a credit assignment
rotation perturbation, the decoding vectors of a subset of neurons (marked in purple) are rotated by a fixed angle (in this
case, 75o). The neurons’ decoding vectors under this perturbed decoder are shown by dashed green arrows. The neurons
whose decoding vectors are rotated are termed “rotated” neurons (in purple), the rest of the neurons that are recorded
by the BMI are termed “non-rotated” neurons (in pink). Neurons that are not recorded by the BMI (i.e. whose decoding
vectors are just a vector of 0’s, not depicted here) are termed “indirect” neurons.
(7b) Tuning curve of a representative example rotated neuron of our model, during cursor reaching with the baseline
decoder (black) and with a credit assignment rotation perturbation (green). Each dot shows the time-averaged activity of
this neuron during a simulated reach in each target direction, simulated by driving the motor cortical network with the
re-aiming solutions for these targets, under the given decoder (using K̃ = 2 for the baseline decoder and K̃ = 6 for the
perturbed decoder). Curves show tuning curves fit to these responses via linear regression (see Methods). The vertical
dotted gray lines mark the preferred direction under each decoder, with an arrow labeling the change in preferred direction.
(7c) Tuning curve of a representative example non-rotated neuron of our model, under the same two decoders. All con-
ventions exactly as in the previous panel. Note that this neuron’s preferred direction changes less than that of the rotated
neuron in the previous panel.
(7d) Mean squared error achieved by generalized re-aiming solutions for 100 random credit assignment rotation perturba-
tions. Light green dots denote individual decoder perturbations, overlaid darker open dots denote medians over all 100
sampled decoder perturbations. Dotted horizontal line shows the mean squared error achieved by re-aiming solutions to
the unperturbed baseline decoder with K̃ = 2.
(7e) Average change in preferred direction of rotated, non-rotated, and indirect neurons after learning by generalized
re-aiming. For each decoder perturbation, the changes in preferred direction are averaged over all neurons in each sub-
population. The lines show the median over all sampled decoder perturbations, with error bars marking the upper and
lower quartiles. Positive angles indicate a counter-clockwise rotatation, consistent with the direction of rotation of the
decoding vectors of the rotated neurons.

[Legenstein et al., 2010]. Here we consider whether this pattern of results could instead be accounted for

by generalized re-aiming, a global learning strategy entirely unconcerned with learning about individual

neurons.

To simulate generalized re-aiming in this task, we simulate motor cortical activity during the calibra-

tion task, use this to construct a baseline decoder, and then sample 100 random credit assignment rotation

perturbations, following closely the experimental procedures of Zhou et al. (2019) [Zhou et al., 2019] (see

Methods). As in this study, each perturbed decoder is constructed by randomly rotating 50% of the

columns of the decoding matrix by 75o counter-clockwise. We then simulate motor cortical activity
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during cursor reaching with each decoder by driving the motor cortical network with the re-aiming so-

lutions for that decoder (equation 4). By comparing neurons’ directional tuning under the re-aiming

solutions for the baseline decoder and under those for a given perturbed decoder, we can then predict

how directional tuning would change after learning that decoder by re-aiming.

Reflecting the fact that the baseline decoder is easy to learn, we used K̃ = 2 to compute re-aiming

solutions for it. For the perturbed decoders, we simulated generalized re-aiming with 2 to 6 aiming

variables. We find that re-aiming with about K̃ = 6 aiming variables is necessary to achieve the same

mean squared error achievable under the baseline decoder (fig. 7d). However, re-aiming with only K̃ = 2

aiming variables suffices to achieve a relatively low mean squared error (compare to fig. 3g), suggesting

ordinary 2D re-aiming could still be a viable learning strategy for this task.

To quantify how neurons’ directional tuning changes under these various re-aiming strategies, we

measured neurons’ preferred reach directions (i.e. the reach direction at which the tuning curve peaks, cf.

figures 7b, 7c) under the re-aiming solutions for the baseline decoder and the re-aiming solutions for each

perturbed decoder. For each perturbed decoder, we then calculated each neuron’s change in preferred

direction relative to the baseline decoder, and averaged this over all rotated and non-rotated neurons.

Figure 7e shows this average change in preferred direction for all sampled perturbed decoders, as a

function of the number of motor variables used for re-aiming. Consistent with the experimental results,

we find that re-aiming consistently leads to a global counter-clockwise shift in motor cortical tuning

curves, congruent with the direction of rotation of the decoding vectors. Importantly, we additionally find

that generalized re-aiming with K̃ > 2 aiming variables replicates the aforementioned credit assignment

effects, whereby the preferred directions of rotated neurons shift on average more than their non-rotated

counterparts. This is true despite the fact that the credit assignment problem was never truly solved –

no neuron-specific parameters were modified under this learning strategy.

Because we have complete access to the full population of neurons in our motor cortical model, we

can also measure tuning changes in the sub-population of “indirect” neurons not recorded by the BMI

(i.e. neurons whose decoding vectors in D comprise a vector of 0’s). These are plotted in figure 7e

with a gray line. Under generalized re-aiming, indirect neurons’ tuning curves shift less on average than

rotated neurons’. Whether they shift more or less than non-rotated neurons’ tuning curves, on the other

hand, depends on the specific value of K̃ and varies substantially across different decoder perturbations.

These two results are roughly consistent with the observations of Zhou et al. (2019) [Zhou et al., 2019].

This study found that, in two non-human primate subjects, the average change in indirect neuron tuning

curves was smaller than that measured for the rotated neurons. However, this change was larger than

that measured for the non-rotated neurons in one subject but smaller in the other, consistent with the

variability observed in our simulations. To our knowledge, this is the only systematic study on indirect

neurons’ responses before and after learning a credit assignment rotation perturbation; more studies are
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needed to fully test the predictions of our model.

An important additional prediction of our model is that credit assignment effects do not arise under

ordinary 2D re-aiming (fig. 7e, K̃ = 2). This is consistent with prior modeling work showing that

two-dimensional re-aiming does not suffice to account for empirically observed changes in motor cortical

tuning curves [Chase et al., 2010]. Interestingly, it is also consistent with recent experimental work

showing that differences between rotated and non-rotated neurons seem to arise gradually over multiple

days of training [Zhou et al., 2019]. Our model suggests that this timecourse of learning might reflect

a change in learning strategy, whereby subjects initially engage in low-dimensional re-aiming to rapidly

reduce gross reaching errors before subsequently turning to generalized re-aiming to further refine BMI

control over a longer timescale, thus giving rise to more marked credit assignment effects later in learning.

We briefly remark, however, that Zhou et al. did not observe changes in the preferred directions of

non-rotated neurons after the first day of training. In our simulation, on the other hand, the preferred

directions of non-rotated neurons shift back to their starting values under the baseline decoder as the

number of aiming variables increases. This discrepancy between our model and the experimental data

could be explained by subjects using suboptimal re-aiming solutions deviating from the optimal solution

of equation 4, possibly due to the difficulty of solving this equation when K̃ > 2. This possibility is also

consistent with the fact that the amount of change in preferred directions is significantly larger in our

simulation (30− 60o) than in the experimental data (20− 40o).

I.1.6 Operant conditioning of single neurons by re-aiming

A final BMI task we consider is the operant conditioning of motor cortical neurons. In this task, the

subject is rewarded for simply increasing the activity of one group of motor cortical neurons over an-

other [Fetz, 1969, Fetz and Baker, 1973, Koralek et al., 2012, Clancy et al., 2014, Athalye et al., 2018].

Experiments showing that primates and rodents are capable of solving such tasks are often cited as

evidence that the motor system can learn to specifically modulate the responses of individual neurons.

Classical models of operant conditioning have argued that these changes happen via reward-modulated

plasticity at their synapses [Legenstein et al., 2008]. Here we explore the extent to which these results

could be explained by re-aiming instead.

We begin by investigating re-aiming solutions to the classic operant conditioning task of Fetz and

Baker (1973). In this task, the subject is rewarded for increasing the firing rate of one neuron – termed

the “target” neuron – while simultaneously decreasing that of another neuron – termed the “distractor”

neuron. Remarkably, Fetz and Baker found that non-human primates are able to do this with only

minutes of practice, regardless of which of two nearby recorded neurons is designated the target neuron.

The identity of the target and distractor neurons could be flipped midway through a recording session, and

the subject would subsequently adapt to this new reward contingency within tens of minutes, increasing
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the activity of the neuron whose activity was previously suppressed (fig. 8a). Could low-dimensional

re-aiming support the generation of these two opposing patterns of activity?

We can directly answer this question with our model by inspecting the reachable repertoire. If the

reachable repertoire contains activity patterns in which neuron a is more active than neuron b as well as

activity patterns in which neuron b is more active than neuron a, then good re-aiming solutions will exist

for both reward contingencies. This is visualized in figure 8b, where we have plotted the firing rates of two

neurons in the network across a large number of activity patterns in the reachable repertoire (following

the same conventions as figure 3c for plotting the reachable repertoire). On this plane, deviations

from the diagonal indicate good solutions for one of the two reward contingencies: motor commands

generating activity patterns below the diagonal are good solutions when neuron a is the target neuron;

motor commands generating activity patterns above the diagonal are good solutions when neuron b is

the target neuron. For this particular pair of neurons, good solutions for both contingencies exist. The

activity patterns generated by these solutions are marked with correspondingly colored circles.

More generally, we can think of this plane as a particular two-dimensional projection of the reachable

repertoire, specified by the pair of neurons recorded in this task. A given pair of neurons thus admits

good re-aiming solutions to both reward contingencies whenever the corresponding projection of the

reachable repertoire covers both sides of the diagonal. Framed in this way, it is straight-forward to intuit

that such solutions will generally exist for most random pairs of neurons – there is no reason to expect

random two-dimensional projections of the reachable repertoire to lie exactly on the diagonal. Solving

for the re-aiming solutions to 100 random pairs of neurons (see Methods), we indeed find that good

solutions exist in most cases. This is shown in figure 8c, which shows the firing rates generated by the

optimal re-aiming solution to each reward contingency, for each sampled pair of neurons. The marginal

histograms on the top and the right of the scatter plot show the distribution of firing rates under each

reward contingency, demonstrating firing rates are consistently higher when the neuron is the target than

when it is the distractor.

That said, substantial variability exists – for some pairs of neurons, the optimal re-aiming solutions

don’t produce very high firing rates for the target neuron. These infelicitous neuron pairs are ones where

the two neurons are highly correlated across all reachable activity patterns in the repertoire, such that the

relevant projection hardly deviates from the diagonal and no good re-aiming solutions exist. This reveals

a tight relationship between neural correlations and operant conditioning performance. Experimentally,

such correlations were studied in the context of operant conditioning by Clancy et al. (2014), who

trained mice on a single reward contingency of this operant conditioning task [Clancy et al., 2014]. In

this experiment, “baseline correlations” between the two conditioned neurons were measured during a

period of spontaneous behavior just prior to the operant conditioning task. The authors found that the

degree to which individual mice successfully learned the task was in fact predictable from this baseline
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Figure 8: Operant conditioning of single neurons via re-aiming.
(8a) Caricature of operant conditioning task (these are not real data). Initially, neuron 1 is designated the “target” neuron,
and the subject is rewarded when neuron 1 fires more than neuron 2. Accordingly, the subject learns to increase the
firing rate of neuron 1 while simultaneously decreasing the firing rate of neuron 2, leading to reward delivery (marked by
dark vertical lines). Fetz and Baker (1974) observed that non-human primates could learn to do this with only minutes of
practice, and that they could appropriately adapt the firing rates of the two neurons even when the identity of the target
neuron switched from neuron 1 to neuron 2 and back (transition from green to orange and back).
(8b) Activity of two neurons in activity patterns within the reachable repertoire. Each activity pattern is sized and colored
according to the pair of aiming variables (θ1, θ2) that generated it, following the same conventions as figure 3c. In activity
patterns below the diagonal, neuron a is more active than neuron b, thus providing good solutions to the reward contingency
where neuron a is the target neuron; the reverse holds for activity patterns above the diagonal. The green and orange
circles denote the activity patterns generated by re-aiming solutions for the two respective reward contingencies.
(8c) Activity driven by re-aiming solutions to each reward contingency, for 100 random pairs of neurons. For each pair of
neurons, an orange and green point are plotted showing their activity at tend = 1000ms generated by the re-aiming solutions
for each of the two reward contingencies. Following the convention in the previous panel, green points corresponds to the
reward contingency in which neuron a is the target neuron and orange to the other. The axes at the top and the right show
the marginal distribution of activity of neuron a and neuron b over all 100 pairs of neurons, in each reward contingency.
Comparison of the green and orange histograms reveals how the activity changes from one reward contingency to the other
under the re-aiming strategy.
(8d) Difference in activity (at tend = 1000ms) between the target neuron (neuron a) and the distractor neuron (neuron b)
generated by the re-aiming solutions for the same 100 random pairs of neurons, plotted as a function of baseline correlation
between the two neurons during simulated spontaneous behavior. Only a single reward contingency (in which neuron a is
the target) is shown.
(8e) Activity of indirect neurons (at tend = 1000ms) generated by re-aiming solutions for the 100 random pairs of neurons
(for the same reward contingency shown in the previous panel), plotted as a function of baseline correlation between each
indirect neuron and the target neuron during simulated spontaneous behavior.

correlation: the stronger the baseline correlation, the worse the mice tended to perform the operant

conditioning task. To the extent that this baseline correlation between the two neurons matches their

correlation over the reachable repertoire, this observation is exactly in agreement with our model, where

a stronger correlation over the repertoire leads to worse re-aiming solutions.

But under what conditions would these two correlation measurements match? One possibility is

that subjects re-aim with the same motor variables that happened to be driving motor cortex during
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behavior prior to the BMI task, much like we hypothesized occurs with the calibration task of Sadtler

et al. (2014). Indeed, in a recent operant conditioning study with non-human primates, Engelhard et

al. (2019) found that subjects seem to utilize the same patterns of activity evoked by the task they were

engaged in just prior to the operant conditioning task [Engelhard et al., 2019]. If the motor variables

used for re-aiming are the same ones driving motor cortical activity during the period of spontaneous

behavior prior to operant conditioning, then the activity patterns measured during this period would

strongly resemble those in the reachable repertoire. In this case, baseline correlations measured during

spontaneous behavior would approximately match correlations over the reachable repertoire.

To quantitatively test this, we simulated motor cortical activity during spontaneous behavior by driv-

ing the model motor cortical network with random low-dimensional motor commands, constructed by as-

signing random values to the two aiming variables θ1, θ2 and fixing all other motor variables θ3, θ4, . . . , θK

to 0. We used these random motor commands to simulate one hundred trials of spontaneous activity

and then measured the correlation between each conditioned pair of neurons over these data. Mirroring

the experimental results of Clancy et al., we find that this baseline correlation is weakly but significantly

predictive of re-aiming success (fig. 8d; 9% variance explained in our model vs. 8% in the experimental

data, cf. supplementary figure 8a in [Clancy et al., 2014]).

Finally, we consider what happens to the remaining “indirect” neurons not included in the pair

of neurons being conditioned. The activity of these indirect neurons during operant conditioning was

also studied by Clancy et al., who found that, after learning, indirect neurons that had a strong baseline

correlation with the target neuron remained highly active during performance of the operant conditioning

task (supplementary figure 9a in [Clancy et al., 2014]). This is consistent with our model of re-aiming,

in which re-aiming solutions tend to drive indirect neurons proportionally to their baseline correlation

with the target neuron (fig. 8e).

Another noteable observation of [Clancy et al., 2014] was that indirect neurons that showed a mod-

erate baseline correlation with the target neuron were highly active during early stages of learning but,

by the end of learning, became as silent as those with much weaker baseline correlations. This is in-

consistent with our model of re-aiming: figure 8e predicts that, at the end of learning, indirect neurons

with moderate baseline correlations should be more active than those with weak baseline correlations

with the target neuron. A possible explanation for this inconsistency is that subjects in fact reaim with

K̃ > 2 motor variables. Supposing that they re-aim with the same motor variables driving spontaneous

behavior prior to the task, it would be hardly surprising if these encompassed more than 2 motor vari-

ables – sponteanous behavior is likely driven by independent changes in many motor variables. Here we

chose K̃ = 2 because it allowed for a particularly efficient method for calculating re-aiming solutions

and because the reachable repertoire in this case is easier to visualize. We leave for future work a more

comprehensive study of K̃-dimensional generalized re-aiming in operant conditioning tasks.
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Discussion

Much like playing an instrument or mastering a new sport, producing movements with a brain-machine

interface (BMI) constitutes a completely novel motor behavior that the motor system did not evolve

to perform. Despite this, humans are able to learn to play new instruments and sports, and multiple

studies have shown that multiple mammals are able to learn to control BMI’s. These studies have also

shown that if the BMI decoder is constructed in the right way [Gilja et al., 2012, Sadtler et al., 2014],

then BMI control can in fact be learned with only hours of practice – a much shorter timescale than the

years of practice it takes to learn to produce the fine movements required to play a new instrument or

sport. What does this tell us about the learning strategies that might underlie BMI learning? And what

might these strategies have in common with more natural forms of motor learning?

Here, we have proposed that motor cortical BMI learning proceeds via re-aiming. Under this learning

strategy, internal motor variables are manipulated to control the BMI effector using the same motor

cortical circuitry usually used to control the limbs. Because only a few motor variables need to be

optimized for this goal, learning can proceed rapidly and flexibly. Because the motor cortical circuitry

is conserved, the operation of motor cortex during natural motor control is conserved as well.

To understand the implications of this learning strategy, we formulated a mechanistic model of re-

aiming in which the internal motor variables specify low-dimensional upstream inputs to motor cortex.

By analyzing how these inputs get transformed into motor cortical activity patterns through the cir-

cuit’s non-linear recurrent dynamics, we were able to demonstrate that re-aiming can in fact account

for a wide range of experimental observations about BMI learning. This model provides a mechanistic

account of the different timescales of learning required for different BMI decoders [Sadtler et al., 2014,

Oby et al., 2019], selective changes in motor cortical tuning curves over learning [Jarosiewicz et al., 2008,

Chase et al., 2012, Zhou et al., 2019], and the astonishing ability of mammals to flexibly modulate the ac-

tivity of single neurons via operant conditioning [Fetz, 1969, Fetz and Baker, 1973, Clancy et al., 2014].

The model also makes a novel experimental prediction about behavioral biases during short-term learn-

ing of a certain class of decoders (fig. 4c), which we were able to corroborate in previously published

data. Because the model is posed at the level of a neural circuit, its success at replicating these empir-

ical phenomena allows us to understand them in terms of the biological non-linear dynamics of neural

circuits.

I.2.1 Intrinsic variable learning vs. independent neuron learning

An important debate in the BMI learning literature has been whether human and non-human primates

are able to precisely learn the contributions of individual neurons to BMI control. Several studies have

been directly aimed at answering this question, leading to evidence in favor [Jarosiewicz et al., 2008,
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Chase et al., 2010, Chase et al., 2012, Zhou et al., 2019] and against [Hwang et al., 2013, Sakellaridi et al., 2019]

this “individual neuron learning” hypothesis. The alternative hypothesis is often referred to as “intrinsic

variable learning” [Andersen et al., 2019], whereby subjects learn to control the BMI using the same con-

strained set of activity patterns usually used for natural motor control, unable to independently control

individual neurons. Our model of re-aiming is an instantiation of this latter hypothesis, with the aiming

variables θ1, θ2, . . . , θK̃ acting as the so-called intrinsic variables.

Our simulations of generalized re-aiming show that many of the experimental results traditionally

attributed to some form of individual neuron learning ([Legenstein et al., 2008, Legenstein et al., 2010])

can in fact can be accounted for by intrinsic variable learning. In particular, even classical single neuron

operant conditioning results can be reproduced by our model. Our simulations show that recurrent

dynamics within motor cortex can generate the activity patterns required by these BMI tasks, without

ever needing to learn neuron-specific parameters. This suggests caution in underestimating the role of

macroscopic cognitive strategies when observing what may look like highly specific microscopic changes

to the activity of single neurons.

Of course, these results and conclusions by no means rule out the possibility that individual neuron

learning plays an important role in BMI learning. Indeed, all the results we have replicated have been

replicated in the past by various models of synaptic plasticity, in which parameters of individual neu-

rons are explicitly learned [Legenstein et al., 2008, Legenstein et al., 2010, Wärnberg and Kumar, 2019,

Engelhard et al., 2019, Feulner and Clopath, 2020]. As argued in the introduction, however, learning

about individual neurons entails solving an extremely high-dimensional optimization problem with no

access to explicit gradients, which could limit learning to be slow and brittle. Several of these stud-

ies worked around this problem by using small and simplified feed-forward models of motor cortex

[Legenstein et al., 2010] or biologically implausible learning rules [Wärnberg and Kumar, 2019, Feulner and Clopath, 2020].

That said, a few theoretical studies have demonstrated that biologically plausible learning rules can in fact

succeed in biologically relevant regimes despite these obstacles [Legenstein et al., 2008, Raman et al., 2019,

Engelhard et al., 2019].

As is typically the case in complex biological phenomena like BMI learning, the true underlying

mechanisms most likely comprise a mixture of both classes of hypotheses. As has been discussed at

length in the literature, a variety of learning mechanisms are likely at play during motor learning of

any kind [Shadmehr et al., 2010, Costa, 2011, Orsborn and Pesaran, 2017, Krakauer and Mazzoni, 2011,

Athalye et al., 2020]. Many of these are likely to involve synaptic plasticity in motor cortex, which scant

evidence suggests is ever switched off [Rokni et al., 2007, Peters et al., 2017]. The present study should

be seen as an investigation into the properties of the solutions that can be learned by a pure re-aiming

strategy. An important line of future work will be to study the solutions that can be learned by pure

synaptic plasticity, so as to hopefully be able to dissociate the contributions of these two distinct learning
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strategies.

Our theory may also provide a useful starting point for beginning to model and understand how

re-aiming and synaptic plasticity might proceed concurrently in a coordinated and synergistic fashion.

One straight-forward possibility is that synaptic plasticity operates on a much slower timescale than

re-aiming. This could help explain selective changes to motor cortical responses that arise only late in

learning and are not replicated by our re-aiming model. For example, Ganguly et al. (2011) observed that

indirect neurons become less tuned to reach direction after days of practice with a given BMI decoder

[Ganguly et al., 2011]. Jarosiewicz et al. (2008) observed a similar effect in rotated neurons after a credit

assignment rotation perturbation [Jarosiewicz et al., 2008] (although note this was not replicated in

subsequent experiments with such decoder perturbations [Chase et al., 2012, Zhou et al., 2019]). These

selective changes in tuning strength are not reproduced by the re-aiming model presented here (fig. 12a),

but can be reproduced by models of synaptic plasticity [Legenstein et al., 2010]. In the context of operant

conditioning, our re-aiming model does not reproduce the experimental observation that indirect neurons

moderately correlated with the target neuron become silent late in learning [Clancy et al., 2014]; it is

certainly possible that concurrent synaptic plasticity would suffice to do so. Interestingly, these highly

specific changes that our model does not reproduce seem to only arise late in learning, consistent with

the idea that they might be brought about by a distinct learning process that operates on a slower

timescale than the rapid improvements in performance that occur within a single experimental session

[Kleim et al., 2004, Zhou et al., 2019].

I.2.2 What and where are the motor variables?

Our theory of re-aiming postulates the existence of a low-dimensional set of abstract motor variables that

are represented in areas upstream to motor cortex. During BMI control, these motor variables can be

volitionally controlled on a trial-by-trial basis to execute the desired movements, eventually converging to

the learned re-aiming solutions defined in equation 4. These postulates raise three important questions.

First, what role do the motor variables play during natural motor control? In our model of motor

cortex, the motor variables select and trigger particular spatiotemporal patterns of activity in the motor

cortical population, which are then shaped and driven by the intrinsic recurrent dynamics of the motor

cortical circuit. This is in line with modern views of motor cortex as a pattern generator, in which an up-

stream motor command specifies the patterns to be generated at any given time [Churchland et al., 2010,

Shenoy et al., 2013, Hennequin et al., 2014, Sussillo et al., 2015, Kao et al., 2020]. In our model, the mo-

tor variables parametrize these upstream motor commands. By controlling specific dimensions of the up-

stream input, they can parametrically modulate the motor command to selectively engage specific modes

of motor cortical operation relevant to the task at hand. Importantly, these modes of operation need not

evoke overt limb movements. It is well known that motor cortical activity is not alway accompanied by
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movement, such as during the preparation of a movement [Churchland et al., 2010, Kaufman et al., 2014,

Vyas et al., 2018], during motor imagery [Jeannerod and Frak, 1999, Munzert et al., 2009, Rastogi et al., 2020],

or during passive observation of movement [Fadiga et al., 1995, Hari et al., 1998, Tkach et al., 2007,

Dushanova and Donoghue, 2010, Vigneswaran et al., 2013, Jiang et al., 2020]. It is these modes of op-

eration that are presumably engaged by the calibration task and by the motor variables used for BMI

control. This could explain how BMI control could be achieved by re-aiming without overt limb move-

ments [Taylor et al., 2002, Carmena et al., 2003].

Under this model of natural motor control, the aiming variables corresponding to overt movement

parameters will determine how these are represented in motor cortical activity during movement. In con-

trast to classical tuning curve models [Georgopoulos et al., 1986, Moran and Schwartz, 1999], however,

this representation will generally have complex spatiotemporal structure [Churchland and Shenoy, 2007,

Churchland et al., 2012, Omrani et al., 2017]. Moreover, all the aiming variables contribute non-linearly

to this representation, so that the representation of movement direction, for example, could be modu-

lated by other movement-related variables such as posture or load [Thach, 1978, Fetz, 1992, Scott, 2008].

Our simple model of upstream activity, on the other hand, really is a tuning curve model. Nevertheless,

because the tuning depends non-linearly on all the aiming variables, many of these properties still hold

even in that population. Complex and mixed representations of movement variables in these populations

[Zhang et al., 2017] are perfectly consistent with our theory, whose strongest commitment is that these

be spatiotemporally separable (even this is relaxed in the more elaborate model of re-aiming considered

in chapter 2, section II.2.2).

An important limitation of this model of motor control is that it excludes the role of sensory feedback

[Todorov and Jordan, 2002, Scott, 2004, Shadmehr et al., 2010]. Substantial evidence suggests that pri-

mates continuously use sensory feedback to make corrective movements in standard BMI reaching tasks

[Stavisky et al., 2017, Shanechi et al., 2017], and that these corrective movements are constructed ac-

cording to a forward model of the BMI cursor dynamics [Golub et al., 2015]. None of these components

of BMI control can be captured by the simple open-loop model presented here. We attempt to address

some of these concerns in chapter 3, where we construct a model of closed-loop feedback control in which

the motor variables are continuously updated in response to sensory feedback. Because they remain

low-dimensional, BMI learning remains limited much like in the open-loop model.

A second important question regards the anatomical substrates of the motor variables; that is, where

in the brain the upstream inputs representing these these variables are. In primates, a good candi-

date area is the posterior parietal cortex, known to play an important role in processing information

relevant to visually guided reaching [Mountcastle et al., 1975, Snyder et al., 1997, Batista et al., 1999,

Buneo et al., 2002, Andersen and Buneo, 2002, Mulliken et al., 2008], as well as other more abstract

movement-related signals [Musallam et al., 2004, Aflalo et al., 2015, Zhang et al., 2017, Andersen et al., 2019].
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Importantly, parietal cortex is known to have a number of direct anatomical connections with pri-

mary motor cortex in primates [Johnson et al., 1996, Wise et al., 1997]. Another obvious candidate

with strong anatomical connections to primary motor cortex is the dorsal premotor cortex (PMd)

[Dum and Strick, 2002], which has been shown to contain neurons sensitive to a wide variety of movement-

related variables during movement execution and preparation [Moran and Schwartz, 1999, Cisek and Kalaska, 2005,

Kaufman et al., 2014, Perich et al., 2018], during observation of movements [Cisek and Kalaska, 2004],

and during movement-related decisions [Wise et al., 1997, Cisek and Kalaska, 2005]. Moreover, data

from simultaneous recordings of PMd and primary motor cortex indicate that changes in the inputs from

PMd to primary motor cortex play an important role during short-term motor learning [Perich et al., 2018].

A final candidate area is the motor thalamus, known to be a primary driver of motor cortical activity in

rodents [Sauerbrei et al., 2020] and hypothesized to play an important role in the generation of movement

[Kao et al., 2020, Logiaco et al., 2019] and in learning novel motor behaviors [Logiaco and Escola, 2020,

Murray and Escola, 2020].

A third and final question concerns how the re-aiming solutions are computed and stored during learn-

ing. The theory presented here only treats the question of what solutions subjects learn, and makes no

claims about how they are learned and subsequently maintained. That said, a strong assumption we made

in motivating the re-aiming learning strategy was that learning could operate within the low-dimensional

space of the aiming variables. It is this low dimensionality that we claimed would be critical for efficient

learning; if the aiming variables were learned by simply optimizing the connectivity of an upstream cir-

cuit, then the same limitations of learning that we argued apply to learning by synaptic plasticity would

also apply to learning by re-aiming. One intriguing resolution to this problem would be that the aiming

variables are stored and updated via the intrinsic dynamics of an upstream circuit, as in the pre-frontal

cortex model of Wang et al. (2018) [Wang et al., 2018]. In this model, a recurrent neural network implic-

itly stores a behavioral policy in its internal state, which is adaptively updated over time by the network’s

internal dynamics. A similar architecture might be operating upstream of motor cortex, in which an up-

stream population continually stores and updates a sensorimotor policy that maps external reach targets

to internal motor commands. Through instruction and practice, the dynamics of this circuit would ulti-

mately converge to a policy implementing the optimal re-aiming solutions of equation 4. These dynamics

could moreover implicitly mimic the dynamics of standard gradient-free optimization algorithms, such

as the node perturbation algorithm shown by [Héliot et al., 2010] to reproduce empirical BMI learning

curves. This complex learning circuit would likely encompass additional populations beyond those di-

rectly driving motor cortex, such as the basal ganglia, which are well known to play an important role in

BMI learning [Koralek et al., 2012, Neely et al., 2018, Vendrell-Llopis et al., 2019, Athalye et al., 2020].
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I.2.3 The “intrinsic manifold” of population activity

A simple but important takeaway from this study is that the low-dimensional structure of activity in

a population depends not only on the intrinsic dynamics and connectivity within that population but

also on the spatial structure of its upstream input. This is simply a mechanistic realization of the sta-

tistical theory of Gao & Ganguli (2017) [Gao et al., 2017]. The observation that population activity

is confined to a low-dimensional subspace – often termed the “intrinsic manifold” [Sadtler et al., 2014,

Wärnberg and Kumar, 2019, Kao and Hennequin, 2019] or the “neural modes” [Gallego et al., 2017] –

thus does not necessarily indicate that the circuit connectivity prevents it from generating activity pat-

terns outside of this subspace. It might be the case that many more activity patterns outside of this

subspace are accessible, but that only a low-dimensional subset are evoked by the subjects’ behavior

during the recording session [Gao et al., 2017]. This may be particularly true for output areas tightly

linked to behavior, like motor cortex. For these brain areas, it stands to reason that if the behavior is

low-dimensional, then the upstream inputs driving it will be low-dimensional as well. In this light, the

fact that motor behaviors are generally low-dimensional [d’Avella and Bizzi, 1998, d’Avella et al., 2003,

Ivanenko et al., 2003, Todorov, 2004, Kutch and Valero-Cuevas, 2012, Kuppuswamy and Harris, 2014]

explains why motor cortical activity recorded in the lab is often observed to be low-dimensional [Gao and Ganguli, 2015,

Gallego et al., 2017], both during during BMI control [Athalye et al., 2017, Athalye et al., 2018, Golub et al., 2018]

and natural motor control [Churchland et al., 2012, Kaufman et al., 2016, Gallego et al., 2018]. In short,

the so-called intrinsic manifold is not just intrinsic to the circuit’s structure, but also to the behavioral

task evoking the activity patterns used to measure it [Gao and Ganguli, 2015, Gao et al., 2017].

This simple insight leads to a novel interpretation of the observation that substantially longer train-

ing is required to learn OMP’s than WMP’s [Sadtler et al., 2014, Oby et al., 2019]. Previous models

of this phenomenon have assumed that the longer learning time reflects the challenge of modifying the

motor cortical connectivity to allow the production of activity patterns outside the intrinsic manifold

[Wärnberg and Kumar, 2019, Feulner and Clopath, 2021]. Our simulations suggest that this isn’t nec-

essary; in fact, it suffices to simply exploit additional input dimensions beyond those evoked by the

calibration task (fig. 6a). Under this model of learning, the longer learning time required for OMP’s

reflects the fact that these new input dimensions need to be discovered from scratch, as the calibration

task provides no prior information about them.

It is important to note that, to a certain extent, this particular result presupposes the specific con-

nectivity structure we assume in our model of motor cortex. Because we use random connectivity, a

rich space of activity patterns is accessible via the recurrent dynamics, so that driving the network with

new input dimensions generally leads to the generation of new activity patterns. A network with low-

rank connectivity, on the other hand, might not share this property [Mastrogiuseppe and Ostojic, 2018,
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Wärnberg and Kumar, 2019]. We consider one such example in figure 9, where we compare simu-

lations of re-aiming with a network with random connectivity and with a network with connectiv-

ity optimized to perform center-out reaches with a biomechanical arm model. As is often observed

in networks trained to perform a single task [Schuessler et al., 2020], the optimized connectivity has

low rank (fig. 9a). The network’s activity is consequently constrained to a lower-dimensional sub-

space [Mastrogiuseppe and Ostojic, 2018], such that even re-aiming with K̃ = 20 aiming variables does

not suffice to produce good solutions for OMP control (fig. 9e). It is important to keep in mind,

however, that in reality motor cortical connectivity is likely optimized to perform a wide variety of

motor behaviors, rather than a single center-out reaching task. This assumption is implicit in our

choice of high-rank connectivity structure, as in several other recent models of motor cortical function

[Hennequin et al., 2014, Logiaco et al., 2019, Kao et al., 2020]. We moreover find that such high-rank

connectivity is necessary to produce calibration task responses with dimensionality near that observed

by Sadtler et al. (2014) (fig. 9c).

Another important aspect of the intrinsic manifold that this study highlights is its non-linear struc-

ture. Because firing rates are bounded from below by 0, activity patterns are confined to the positive

orthant of state space. These bounds can impose strong constraints on the structure of population activ-

ity within the intrinsic manifold, resulting in asymmetries like those present in the reachable repertoire

of our model (fig. 3c). Importantly, we showed that these asymmetries can actually have behavioral

repercussions for BMI control. Understanding and identifying such non-linear structure in motor cortical

activity may thus prove crucial both for (1) designing better BMI decoders and (2) understanding BMI

learning.

From the perspective of designing BMI decoders, it is important to realize that typical linear Gaussian

models of the intrinsic manifold cannot capture the kinds of non-linear asymmetries we observed in our

model. For example, classic linear dimensionality reduction methods like Principal Components Analysis

and Factor Analysis assume elliptical symmetry, and are thus incapable of revealing this structure. This

may limit the extent to which decoders built using such methods are able to avoid asymmetries in learning

and control. In the simple case of a 2D cursor reaching task, we found that they actually were able to

avoid these issues – the baseline decoder, which was built from a PCA approximation to the intrinsic

manifold, was able to largely avoid the behavioral biases that WMP’s suffered from (fig. 11). But this

may not always be the case, particularly in more complex tasks incorporating BMI effectors with more

than two degrees of freedom.

From the perspective of understanding BMI learning, our model illustrates the importance of taking

into account the non-linear dynamics of motor cortex. The asymmetry of the reachable repertoire arose

precisely because of the non-linear activation function we used in our recurrent network model. Linear

network dynamics in fact fail to replicate the behavioral biases observed in the data, since the reachable
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repertoire is elliptically symmetric in this case (fig. 14a). It was only by enforcing positive firing rates

in the motor cortical dynamics that we were able to reproduce the experimental data.

Indeed, the particular structure induced by these dynamics may help explain a recent puzzling ob-

servation about WMP learning. In a re-analysis of the data of Sadtler et al. (2014), Hennig et al. (2020)

observed strong transient fluctuations in motor cortical activity at behaviorally salient moments during

the experiment, such as at a pause in the recording or at the moment in which the baseline decoder was

perturbed [Hennig et al., 2020]. Of relevance here is that these transient fluctuations were found to have

strong low-dimensional structure. They were confined to a few dimensions, termed the “neural engage-

ment axes”, that pointed in the general direction of the positive orthant of state space (i.e. they were

vectors with entries of the same sign). Strong fluctuations in this direction are also present in our model

of motor cortex. In figure 5b, for example, it can be easily appreciated that the calibration task responses

are highly spread out in the direction of the reachable repertoire mean – a vector of non-negative entries

that points in the direction of the positive orthant of state space. The high variability in this direction

is due to the non-linear dynamics imposed by the positivity constraint on the firing rates. This suggests

that the particular structure of the neural engagement axes measured by Hennig et al. (2020) may be a

consequence of the non-linear dynamics of motor cortex. Hennig et al. (2020) moreover went on to show

that fluctuations along the neural engagement axes had behavioral consequences, and that this affected

how quickly particular reach directions could be learned. This result further underscores the role that

non-linear dynamics might play in shaping BMI learning.

Because no changes are made to the motor cortical circuit, a key prediction of our model of re-

aiming is that the intrinsic manifold measured during the calibration task should remain the same after

learning. Unfortunately, the calibration task was not repeated at the end of learning in the experiments

of [Sadtler et al., 2014] or [Oby et al., 2019], so this cannot be tested with existing data. However, in

both of these experiments subjects did perform a “washout” block at the end of learning, where they

returned to controlling the unperturbed baseline decoder. The authors found that population activity

during this block was in fact changed relative to the initial pre-learning block of baseline decoder control,

reflecting a “memory trace” of the decoder perturbation learned in between these two blocks of baseline

decoder control [Losey et al., 2020]. This observation can be accomodated in our model through a change

in the re-aiming solutions used for baseline decoder control. As discussed in the context of generalized

re-aiming, many motor-relevant variables are likely represented in the upstream inputs to motor cortex.

One of these may reflect a kind of “context” signal that could change after learning a new sensorimotor

mapping [Heald et al., 2020], thus giving rise to a memory trace of the newly learned BMI decoder. An

important future line of work will be to investigate what changes in the aiming variables could give rise

to the particular changes in population activity observed in the washout block.
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I.2.4 The role of the calibration task in BMI design

From a more practical perspective, our theory of re-aiming highlights the role of the calibration task in

BMI design. The calibration task is typically seen as a way to calibrate the decoding parameters; that is,

as a source of information for optimizing the BMI decoder. Here we suggest that it additionally serves as a

source of information for the subject herself, for optimizing the BMI learner [Shenoy and Carmena, 2014,

Perdikis and Millan, 2020]. For example, in modeling short-term learning of WMP’s we assumed that

subjects re-aimed by optimizing the two motor variables modulated by the calibration task. If any other

two motor variables had been optimized instead, the re-aiming solutions would not have succeeded in

solving the task – the prior information provided by the calibration task allows efficient learning by

telling the subject which motor variables to re-aim with.

This predicts that careful design of the calibration task may help optimize subjects’ learning. For ex-

ample, the calibration task should evoke changes in as few motor variables as necessary, so that subjects

subsequently re-aim by optimizing only those K̃ < K motor variables and avoid wasting time explor-

ing modifications to other motor variables. Another important factor to consider is the relationship

of these motor variables to natural motor control. For example, if the calibration task requires mak-

ing overt manual movements [Jarosiewicz et al., 2008, Ganguly and Carmena, 2009, Gilja et al., 2012,

Shenoy and Carmena, 2014], then re-aiming with the motor variables it evokes might not allow for BMI

control without simultaneous overt movements. Learning might thus be slower in this case, as the subject

would have to resort to identifying new motor variables that don’t evoke overt movement.

It is also important to note that other inductive biases unrelated to the calibration task may play

a role in determining which motor variables are used for re-aiming. For example, because primates are

accustomed to using their arms to move objects in front of their face, they might automatically resort

to re-aiming with arm-related motor variables to move a BMI cursor on a screen directly in front of

them. Such prior biases might in fact be particularly strong in the BMI learning studies reviewed here,

in which the non-human primate subjects typically had years of experience learning and using BMIs.

More generally, these considerations suggest that learning might be improved by ensuring the calibration

task provides information complimentary to the subject’s prior biases.

These insights into the role of the calibration task in BMI learning provide a novel perspective

on the classic “two-learners” problem in BMI design [Orsborn et al., 2014, Shenoy and Carmena, 2014,

Merel et al., 2015, Perdikis and Millan, 2020]. In our model, the calibration task drives both the exper-

imenter’s (or BMI designer’s) “learning” of a good decoder and in the subject’s (or user’s) “learning” of

good motor commands for controlling that BMI decoder. In the experiments simulated here, the decoder

is learned only from the calibration task data and then fixed during the user’s learning. But recent stud-

ies have aimed to close this loop by continuously adapting the BMI decoder while the user is learning,
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with promising results [Orsborn et al., 2014, Shenoy and Carmena, 2014, Silversmith et al., 2020]. Our

model provides a theoretical framework for modeling how such closed-loop decoder adaptation might

improve learning by facilitating the acquisition of re-aiming solutions. As opposed to previous such

models [Merel et al., 2015], ours incorporates mechanistic principles of neural circuit dynamics. Using

our model to understand how these might influence the effects of closed-loop decoder adaptation is a

fascinating and important direction for future research.

I.2.5 Re-aiming and naturalistic sensorimotor learning

We can think of re-aiming as learning a sensorimotor map: a mapping from externally determined sensory

goals, y∗, to internally generated motor commands, θ̂(y∗). Viewed in this way, it stands to reason that

the algorithms by which subjects learn the re-aiming solutions in equation 4 might be the same ones

underlying sensorimotor learning more generally. Studies of sensorimotor learning might thus provide

important insights into the algorithms underlying BMI learning by re-aiming.

Of particular relevance to the BMI tasks considered here are classic studies of sensorimotor adap-

tation, where subjects have to overcome a force-field or visuomotor transformation in reaching towards

a target [Shadmehr et al., 2010, Krakauer and Mazzoni, 2011]. Learning in these motor adaptation

tasks often occurs on a timescale of 100’s of trials in both primates [Li et al., 2001, Perich et al., 2018,

Sun et al., 2020] and rodents [Mathis et al., 2017], similar to the timescales of learning observed in short-

term BMI learning tasks (e.g. WMP learning). Neural recordings during learning in motor adaptation

tasks show motor cortical tuning curve shifts largely in agreement with what would be predicted by a

re-aiming strategy [Li et al., 2001, Sun et al., 2020], and suggest that these shifts arise from changes to

the preparatory input from dorsal pre-motor cortex to primary motor cortex [Perich et al., 2018]. Indeed,

changes in the preparatory state of motor cortex (presumably set by upstream inputs [Hennequin et al., 2014,

Sussillo et al., 2015, Kao et al., 2020]) have been shown to play a critical role in adaptation to visuomo-

tor rotations both under manual and BMI control [Vyas et al., 2018, Vyas et al., 2020]. These results

are consistent with the idea that inputs to motor cortex are modified during learning while motor cortex

itself remains unchanged, much like in our theory of re-aiming.

So what do we know about the algorithms underlying sensorimotor adaptation? A large body

of work on sensorimotor adaptation in humans points to the existence of multiple learning processes

[Smith et al., 2006, Mazzoni and Krakauer, 2006, Taylor et al., 2014]. Of relevance to re-aiming is the

role of explicit cognitive strategies [Taylor and Ivry, 2012, McDougle et al., 2016], which seem to drive

the faster timescales of learning [McDougle et al., 2015]. Such strategies generally consist of the ma-

nipulation of a few task-relevant abstract variables. For example, using a 2D reaching task with vi-

suomotor rotations, McDougle & Taylor (2019) showed that humans’ behavior during learning is con-

sistent with a low-dimensional strategy in which subjects memorize corrective movements in the 2D
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workspace while simultaneously learning a parametric map from 2D reach directions to 2D movements

[McDougle and Taylor, 2019].

Such low-dimensional learning strategies are consistent with our model of BMI learning, and evidence

exists that explicit cognitive strategies play an important role during BMI learning. Sakellaridi et al.

(2019) reported the use of an explicit re-aiming strategy by a tetraplegic human learning to control a

BMI [Sakellaridi et al., 2019]. Additionally, fMRI studies suggest that learning to volitionally modulate

activity in a target brain area is only possible when subjects are instructed to use an explicit strategy

tailored to that brain area [Scharnowski et al., 2015, Sitaram et al., 2017]. In non-human subjects, the

role of certain strategies could be dissociated by examining differences in learning of different kinds of

decoder perturbations. For example, some WMP’s may be much easier to learn than others: a WMP

inducing a pure visuomotor rotation on the readouts from the baseline decoder is likely much easier to

learn than the WMP’s in figure 4a, which induce much more complex visuomotor transformations.

In the wider motor learning literature, a distinction is often made between sensorimotor adaptation

and skill learning, whereby the latter happens on much longer timescales than the former [Krakauer and Mazzoni, 2011,

Krakauer et al., 2019]. The correspondence between our model of re-aiming and sensorimotor adapta-

tion suggests a simple hypothesis about the mechanistic underpinnings of this distinction: sensorimotor

adaptation is implemented through modifications of internal motor variables whereas skill learning is im-

plemented through synaptic plasticity within motor cortex. As already mentioned above, an important

future line of work will be to flesh out the different behavioral predictions these two models of learning

make, and whether these match up with the behavioral signatures of sensorimotor adaptation and skill

learning.

Methods

I.3.1 Motor cortical dynamics

The motor cortical network model was simulated by integrating equation 1 using a standard 4th order

Runge-Kutta method with step size 0.1ms, implemented with the torchdiffeq Python package [Chen et al., 2018].

In all simulations presented above, only 10% of the recurrent weights were set to non-zero values, which

were independently sampled from a zero-mean Gaussian, N (0, 1/N). Input weights were all sampled

from a zero-mean Gaussian, W in
ij ∼ N (0, 1/M). Encoding weights were sampled randomly from the

standard Gaussian distribution, Uij ∼ N (0, 1) (any normalization is taken care of by the metabolic cost

term in 4 when computing re-aiming solutions). Other connectivities are considered in figure 9. We

used τ = 200ms, as in Hennequin et al. (2014) [Hennequin et al., 2014]. To enable efficient numerical

simulation, network size was set to N = M = 256. We found that simulations with larger networks (up

49



to 2048 neurons) produced similar results.

I.3.2 Computing re-aiming solutions

Concatenating the aiming variables into a K̃-dimensional vector that contains only the motor vari-

ables being optimized, θ̃ =

[
θ1 θ2 . . . θK̃

]
, we can treat equation 4 as an optimization over all

K̃-dimensional vectors θ̃ in RK̃ . Under the assumptions of our model of motor cortical dynamics, how-

ever, we can simplify this problem by analytically solving for the optimal magnitude of θ̃, ‖θ̃‖, given its

direction. Once we have this optimal magnitude, all that remains is an optimization over its direction –

an optimization over unit vectors on the K̃-dimensional unit hypersphere. This is a (K̃− 1)-dimensional

manifold that, importantly, is bounded, so we can hope to find the optimal direction efficiently by brute

force search, avoiding the difficulties of non-convex gradient-based optimization in high dimensions (e.g.

local optima).

More formally, we decompose the re-aiming optimization (equation 4) into an optimization of the

norm s and direction θ̃0 of the aiming vector θ̃,

θ̂(y∗) = ŝ

ˆ̃
θ0

0


ŝ,

ˆ̃
θ0 = arg min

s>0, ‖θ̃0‖=1

∥∥y(tend; sθ̃0
)
− y∗

∥∥2 +
γ

M

M∑
i=1

ui(sθ̃0)2, (9)

The vector of zeros in the first equation denotes the values of all the motor variables not used for

re-aiming (θK̃+1, θK̃+2, . . . , θK), which in our simulations are always fixed to 0. We next proceed to

analytically solve for the optimal magnitude ŝ by exploiting two simplifications afforded to us by the

rectified linear activation function φ(·) of the motor cortical dynamics. The first is the scale-invariance of

linear rectification (φ(sx) = sφ(x) for any s ≥ 0), which accordingly endows the motor cortical dynamics

with scale invariance,

r(t; sθ) = sr(t;θ), s > 0 (10)

It is straight forward to prove that this holds true whenever xi(0) = 0, which we assumed to be the case

in our simulations. The second simplification is to approximate the quadratic cost term by its large M

limit

1

M

M∑
i=1

ui(θ)2 ≈ lim
M→∞

1

M

M∑
i=1

ui(θ)2 =
‖θ‖2

2
. (11)

The equality holds whenever the encoding weights are randomly and independently distributed with zero

mean and unit variance, as they are here, so that the central limit theorem can be invoked to replace

the sum with an expectation (the factor of 1/2 arises from the fact that only half of each axis counts

towards the expectation due to the rectification). Plugging these two equations into equation 9 together
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with the BMI readout equation 3, we obtain

ŝ,
ˆ̃
θ = arg min

s>0, ‖θ̃‖=1

∥∥sDr
(
tend; θ̃

)
−Dµ− y∗

∥∥2 +
γ

2
s2. (12)

It is then straight forward to solve for ŝ in terms of
ˆ̃
θ, yielding the following closed set of equations fully

specifying the re-aiming solution

ŝ(θ̃) = φ

(
(Dµ + y∗) ·Dr

(
tend; θ̃

)∥∥Dr
(
tend; θ̃

)∥∥2 + γ
2

)
(13a)

ˆ̃
θ = arg min

‖θ̃‖=1

∥∥ŝ(θ̃)Dr
(
tend; θ̃

)
−Dµ− y∗

∥∥2, (13b)

where the notation · denotes the standard Euclidean dot product. We have thus reduced what was

an optimization over all vectors in RK̃ (equation 4) to an optimization over all vectors living on the

K̃-dimensional unit hypersphere (equation 13b).

We can solve this new optimization problem by brute force search, by simply uniformly sampling a

large number of vectors θ̃ on the hypersphere and identifying the one that produces the smallest value

of the right-hand side of equation 13b. Evaluating r(tend, θ̃) for a large number of different θ̃ vectors

can be done efficiently by using a GPU to simulate in parallel the recurrent network dynamics driven by

each of the sampled motor commands. Note that, once these activity patterns have been calculated, the

brute force search can be performed for any value of γ, without having to again simulate the dynamics.

For simulations with K̃ = 2, this sufficed to produce good re-aiming solutions. In this case, the

relevant hypersphere is the unit circle, from which it is straight forward to sample densely and uniformly.

For simulations of generalized re-aiming, however, we took an additional step to ensure the obtained

solutions were as good as they could be even for the larger values of K̃ where it becomes more difficult

to sample densely from the corresponding unit hypersphere. We first performed a brute force search

over 217 vectors sampled uniformly from the unit hypersphere, as was just described, to obtain an initial

estimate of the re-aiming solution. This initial estimate was then used as a starting point for the L-

BFGS algorithm [Byrd et al., 1995], which was applied to directly optimize the raw aiming variables

θ1, θ2, . . . , θK̃ . We found that this additional step was essential for values of K̃ greater than around 10.

In all simulations in the results section, we used an endpoint time of tend = 1000ms, reflecting the typi-

cal time it takes for trained primates to complete center-out reaches under BMI control [Sadtler et al., 2014,

Jarosiewicz et al., 2008]. The results of simulations with other endpoint times are shown in the supple-

mentary results section (fig. 9b). To emulate a center-out reaching task, the target readouts y∗ were set
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to eight equally spaced unit vectors on the unit circle (cf. fig. 3d). Mean squared error is calculated as

mean squared error =
1

8

8∑
i=1

∥∥y(tend; θ̂(y∗i )
)
− y∗i

∥∥2, (14)

where y∗1,y
∗
2, . . . ,y

∗
8 correspond to the eight radial target readouts. In the case of operant conditioning,

there is no “target readout” per se, as subjects are simply instructed to modulate firing rates as much

as possible in a given direction. In this case, a different re-aiming objective was used, see the section

“Simulation of operant conditioning” for details.

I.3.3 Setting the metabolic cost weight

The metabolic cost weight parameter γ was picked to ensure that low mean squared error would be

achieved under the baseline decoder with K̃ = 2. Specifically, we calculated re-aiming solutions with

K̃ = 2 for the baseline decoder under a wide and dense range of values of γ. We took advantage of

the fact that the brute-force search algorithm outlined above allows us to easily evaluate solutions for

different values of γ with only a single forward pass of the model. Once we had re-aiming solutions for

each value of γ, we calculated the error achieved by these re-aiming solutions for each target readout,

and found the largest value of γ that permitted an error of less than .05 for all eight targets.

I.3.4 Characterizing the reachable repertoire

The reachable repertoire is the set of activity patterns at time tend that can be generated by any motor

command admissible under the re-aiming strategy. We assume that these admissible motor commands

are bounded, reflecting the fact that (i) actual extrinsic motor variables are finite and bounded and (ii)

upstream firing rates are bounded. Formally, we enforce this by assuming an upper bound on the motor

command norm, ‖θ‖ ≤ smax. In our simulations of short-term learning of WMP’s and OMP’s, we set the

value of this bound to the maximum norm over all 2D re-aiming solutions to this equation. Specifically,

we computed re-aiming solutions with K̃ = 2 to each target readout for all decoder perturbations (8

target readouts × (100 WMP’s + 100 OMP’s + baseline decoder) = 1,608 re-aiming solutions), calculated

their norms, and set smax to their maximum. For the randomly connected network presented above, we

found this value to be approximately 1.25.

In figure 3c, we drove the motor cortical network with motor command vectors with five distinct

norms, ‖θ‖ ∈ {0.1, 0.4, 0.7, 1.0, smax} (see fig. 3b), chosen to aid visualization of the reachable repertoire.

These were constructed by picking 256 2D vectors equally spaced on the unit circle, uniformly re-scaling

them by each norm, and using these values to set the two aiming variables θ1, θ2 (all other motor variables

were set to zero). We then simulated the motor cortical network with each of these motor commands,

resulting in 5×256 = 1, 280 activity patterns, r(tend;θ). We then applied Principal Components Analysis
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(PCA) to this ensemble of activity patterns, and projected them onto the top three PC’s to obtain the

visualization in figure 3c. The exact same projection was used to simultaneously visualize the calibration

task activity in figure 5b. These same activity patterns were used in figure 3d, where their readouts

through three different decoders are plotted. In figure 4a, we used only four motor command norms

(thus producing four loops of readouts), equally spaced between 0.1 and smax. In figure 8b, five norms

equally spaced between .1 and the maximum norm of the re-aiming solutions for that pair of neurons

were used. These choices were all made to aid visualization of the reachable repertoire’s structure.

To obtain the mean and covariance of the reachable repertoire for K̃ = 2 (figs. 5b and 3a, respec-

tively), we computed expectations over a uniform distribution on the reachable repertoire manifold. Note

that this is not the same as an expectation over activity patterns generated by uniformly distributed

aiming variables. Rather, these two distributions of activity patterns are related via the Jacobian of the

mapping from aiming variables, θ̃, to activity patterns, r(tend; θ̃). In section I.4.4, we derive the structure

of this Jacobian matrix in terms of the polar coordinates of the two aiming variables,

θ1
θ2

 = s

cosϕ

sinϕ

 . (15)

Defining r0(ϕ) as the activity pattern at time tend generated by a pair of aiming variables θ1, θ2 with

angle ϕ and unit norm s = 1, we obtain the following expressions for the mean r̄ and covariance Σr of

the uniform distribution on the reachable repertoire manifold,

r̄ =
2

3
smax

∫ 2π

0
r0(ϕ)‖r0(ϕ)‖‖r′0(ϕ)‖ sinω(ϕ) dϕ∫ 2π

0
‖r0(ϕ)‖‖r′0(ϕ)‖ sinω(ϕ) dϕ

(16)

Σr =
1

2
s2max

∫ 2π

0
r0(ϕ)r0(ϕ)T ‖r0(ϕ)‖‖r′0(ϕ)‖ sinω(ϕ) dϕ∫ 2π

0
‖r0(ϕ)‖‖r′0(ϕ)‖ sinω(ϕ) dϕ

− r̄r̄T , (17)

where r′0(ϕ) denotes the partial derivative with respect to ϕ and ω(ϕ) denotes the angle between r0(ϕ)

and r′0(ϕ). Because we have no analytical access to r0(ϕ), we performed these integrals numerically and

used a finite-differences approximation for the derivative r′0(ϕ). This is how the reachable repertoire

mean plotted in figure 5b (and its projection in figures 4a and 4b) was calculated. This estimate of its

covariance was used for figure 3a (see equation 28).

Analagous calculations for K̃ > 2 quickly become numerically intractable, as a dense sample of

activity patterns from the reachable repertoire are required to numerically estimate the derivatives and

integrals. We thus chose to characterize the dimensionality of the reachable repertoire under generalized

re-aiming by the covariance over activity patterns generated by uniformly distributed motor commands,

Σθ. As noted, this is not the same as the covariance over activity patterns uniformly distributed on the

reachable repertoire manifold, but these two covariances are strongly related. To calculate the covariance
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over activity patterns generated by uniformly distributed motor commands, we first re-parameterized

the aiming variables θ̃ = sθ̃0 in terms of a norm s ≥ 0 and a unit vector θ̃0 ∈ RK̃ . Assuming a uniform

distribution over s and θ̃0, we have that this covariance is given by

Σθ =
〈〈

r(tend; sθ̃0)r(tend; sθ̃0)T
〉
s

〉
θ̃0

−
〈〈

r(tend; sθ̃0)
〉
s

〉
θ̃0

〈〈
r(tend; sθ̃0)

〉
s

〉T
θ̃0

=
〈
s2
〉
s

〈
r(tend; θ̃0)r(tend; θ̃0)T

〉
θ̃0

− 〈s〉2s
〈
r(tend; θ̃0)

〉
θ̃0

〈
r(tend; θ̃0)

〉T
θ̃0

=
s2max

3

〈
r(tend; θ̃0)r(tend; θ̃0)T

〉
θ̃0

− s2max

4

〈
r(tend; θ̃0)

〉
θ̃0

〈
r(tend; θ̃0)

〉T
θ̃0

, (18)

where we used the scale invariance of the motor cortical dynamics (equation 10) to write r(tend; sθ̃0) =

sr(tend; θ̃0) in the second line, and in the third line we simply plugged in expressions for the first and

second moments of s under a uniform distribution between 0 and smax. The expectations in the last

line were estimated numerically by sampling 217 aiming variable vectors θ̃0 uniformly from the K̃-

dimensional hypersphere with unit radius, calculating the activity patterns r(tend; θ̃0) generated by these

aiming variables at time tend = 1000ms, and then calculating sample averages over the resulting ensemble

of activity patterns. In figure 6c, the readouts from a random subset of these activity patterns are shown.

In figure 6b, the participation ratio of this covariance is plotted as a function of K̃,

participation ratio of Σθ =
Tr[Σθ]

2

Tr [Σ2
θ]

=

(∑N
i=1 λi

)2
∑N
i=1 λ

2
i

(19)

where λi are the eigenvalues of Σθ.

I.3.5 Predicting behavioral bias with maximal readout strength

To quantify biases in readouts, we used the readout strength metric ρ (y; y∗) defined in equation 5,

with the target readout vector y∗ enforced to be unit norm. This metric is exactly equivalent to the

cursor progress metric used by Golub et al. (2018); we have simply renamed it for a clearer exposition

in the context of our notation and terminology. This metric was chosen for consistency with previous

analyses of the data of Sadtler et al. ([Golub et al., 2018, Hennig et al., 2020]). By depending both on

the angle and norm of the readout direction y (through the Euclidean dot product), the readout strength

ρ (y; y∗) measures the extent to which the readout y points in the same direction as the target readout

y∗. Readout strength is highest when the readout (i) points in the same direction as the target and (ii)

has a large norm. The readouts with highest readout strength in a given target direction are thus those

with largest norm that point in that direction (cf. fig. 4a).

We used the reachable readouts with highest readout strengths in each target direction to quantify

biases imposed by the reachable repertoire. We termed the readout strengths of these readouts the
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maximal readout strengths (used in figures 4b, 4c, and 5c), formally defined as

ρmax (y∗) = max
‖θ̃‖≤smax

ρ
(
y(tend; θ̃); y∗

)
, (20)

where θ̃ ∈ R2 is a vector containing the aiming variables θ1, θ2 (recall that K̃ = 2 in these simulations).

The inequality constraint enforces that the maximization is only over readouts from activity patterns

within the reachable repertoire (see section “Characterizing the reachable repertoire” for how smax is set).

This maximization problem was solved by again exploiting the same re-parameterization of the aiming

variables used for calculating re-aiming solutions (equation 9). Specifically, we decompose the vector of

aiming variables θ̃ into a magnitude and direction θ̃ = sθ̃0 (where ‖θ̃0‖ = 1). Plugging in the readout

equation (equation 3) into the definition of the readout strength (equation 5) and exploiting the scale

invariance of the motor cortical dynamics (equation 10), we derive that the maximal readout strength is

given by

ρmax (y∗) = max
‖θ̃0‖=1

{
D
(
ŝρ(θ̃0)r

(
tend; θ̃0

)
− µ

)
· y∗
}
, (21)

where

ŝρ(θ̃0) = arg max
0<s<smax

{
sDr

(
tend; θ̃0

)
· y∗
}

=


smax if Dr

(
tend; θ̃0

)
· y∗ > 0

0 else

. (22)

The optimization in equation 21 was performed by brute force search; recall that θ̃0 is just a 2D unit

vector (since K̃ = 2 in these simulations), so that the brute force search is simply over vectors on the

unit circle.

I.3.6 Re-analysis of data from Sadtler et al. (2014)

To measure maximal readout strengths in the data of Sadtler et al., we first identified the trials with

largest readout strengths in each session of WMP control. Specifically, for each session we identified

the 50 adjacent trials in which the center-out reaches were completed in the shortest amount of time.

This provided a window of peak WMP control performance during that session. We then calculated the

readout strength in the direction of the target at each timestep in each trial. Note that the direction of

the target can change continuously over time as the cursor moves, so we binne together target directions

in 45o bins centered at each of the eight reach target angles. This resulted in eight bins of readout

strengths, across many timesteps and trials. The readout strengths in each bin were then averaged, to

produce readout strength curves for each session, analagous to those plotted in figure 4b. These readout

strength curves were then horizontally centered at their peaks and averaged to obtain the light dashed

curve in figure 4c. The error bars in this figure reflect the standard error of the mean. Data from a total

of 46 sessions were used.
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For figure 5d, the average readout strength in each bin for each session is plotted as a function of the

projection of r̄est through the WMP decoder from that session. The estimate of the reachable repertoire

mean, r̄est, was measured from motor cortical activity during the first phase of the task, in which the

subject performed center-out cursor reaches with the baseline decoder. We calculated target-specific

means by averaging motor cortical activity over all trials and time during reaches to each target, and

then averaged these target-specific means over targets to obtain r̄est. In the case of the theoretical model,

r̄est was measured by simulating reaches to each target under the baseline decoder: we drove the motor

cortical network with the re-aiming solutions for the baseline decoder, and then averaged the motor

cortical activity over all time and over all eight reach directions to obtain r̄est.

I.3.7 Simulation of the calibration task

The calibration task was simulated by setting the first two motor variables θ1, θ2 to the coordinates of

the reach direction y∗i being presented in each trial (a 2D unit vector pointing in one of eight equally

spaced angles, cf. equation 14), and setting all other motor variables to zero (θ3 = θ4 = . . . = θK = 0).

To simulate noise in the neural responses, we added noise in the dynamics and in the initial conditions

on each trial. At each timestep, zero mean Gaussian noise with standard deviation 0.05 was sampled

and added to the single neuron potentials xi(t) and to the two motor variables θ1, θ2. Initial conditions

in each trial were sampled randomly from a 0-mean isotropic Gaussian with standard deviation 0.1. The

network was driven for 1000ms in each trial, matching the duration of each trial in the experiment.

For simulations with WMP’s and OMP’s, we simulated 10 trials of each reach direction, replicating

the structure of the calibration task used by [Sadtler et al., 2014]. For simulations with credit assignment

rotation perturbations (fig. 7), the calibration task was identical except that only a single trial of each

reach direction was simulated, to mimic the decoder initialization procedure of [Zhou et al., 2019]. Note

that in all cases re-aiming with K̃ = 2 aiming variables implies re-aiming with the same two motor

variables driving the calibration task neural responses, θ1, θ2.

I.3.8 Within- and outside- manifold perturbations

In the BMI system used by Sadtler et al. (2014) and Oby et al. (2019), 96-channel microelectrode

arrays were used to record neural activity [Sadtler et al., 2014, Oby et al., 2019]. Spikes were detected

by threshold crossings in the recorded voltage signals at each electrode, resulting in a series of spike trains

at each electrode. Spike trains at each electrode could therefore contain spikes from multiple neurons

near the electrode site, as no spike sorting was performed. In total, about 100 neurons were likely to

have been recorded, constituting a small fraction of the total population of neurons in motor cortex. To

simulate this, we ensured that the BMI decoder in our simulations only had access to a linear mixture

of firing rates from Nr = 99 neurons. This was done by first multiplying the firing rates with a Nr ×N
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“recording matrix” H, which had the following tri-diagonal structure

Hij =


0 if j > Nr

ξij ∼ Unif(0, 1) if i− 3 ≤ j ≤ i+ 3

0 else

(23)

Thus, each “neural unit” in the vector Hr is composed of a linear mixture of three neurons, with neural

units with adjacent indices mixing together overlapping sets of neurons. Following Sadtler et al., we next

z-scored the activity recorded by each neural unit with respect to its statistics during the calibration

task. We concatenated mean raw firing rates during the calibration task into an N -dimensional centering

vector µ, and concatenated the standard deviation of the neural units (i.e. standard deviation of each

entry in Hr) into a Nr ×Nr diagonal matrix Sr. The readout was then obtained by decoding from the

Nr-dimensional vectors of z-scored mixed firing rates,

y = D0S
−1
r H︸ ︷︷ ︸

D

(r− µ) (24)

We refer to the 2×Nr matrix D0 as the effective decoding matrix. It is this matrix that is perturbed by

the decoder perturbations of [Sadtler et al., 2014]. Note that the resulting full decoding matrix D is such

that only its first Nr columns are non-zero, reflecting the fact that only a subset of the full population

of motor cortical neurons is recorded by the BMI.

The effective decoding matrix D0 was constructed following the methods of Sadtler et al., with the

exception that we used PCA instead of Factor Analysis to estimate the intrinsic manifold. This choice

was made purely for the sake of numerical convenience, as PCA has a closed-form solution that can

be computed much more efficiently. Moreover, the neurons in our network do not have Poisson-like

variability, so the added benefits of Factor Analysis are not required here [Yu et al., 2009]. The full

procedure for estimating the intrinsic manifold and constructing the baseline decoder is outlined in

detail in section . In short, the baseline decoder effective decoding matrix can be expressed as a product

of a 2× ` matrix K and an `×Nr matrix L,

Dbase

0 = KL, (25)

where ` equals the dimensionality of the intrinsic manifold. The matrix L projects Nr-dimensional

activity patterns down to this `-dimensional manifold; its rows span the subspace defined by the intrinsic

manifold (cf. section I.4.2.1). In our simulations we used ` = 8, as we found that the top 8 principal

components contained 95% of the variance in calibration task responses. The matrix K then translates

the resulting `-dimensional dimensionality-reduced activity patterns into 2-dimensional BMI readouts.

57



This matrix is fit to the calibration task data; it is fit to decode the calibration task stimuli from the

dimensionality-reduced neural responses at each timestep and trial (cf. section I.4.2.2).

Within-manifold perturbations (WMP’s) perturb the baseline decoder in such a way that the row

space of L remains intact, so as to conserve the decoder’s relationship with the intrinsic manifold. This

is done by simply shuffling the rows of L without modifying them, via pre-multiplication with a random

`× ` permutation matrix P,

DWMP

0 = KPL. (26)

Outside-manifold decoders, on the other hand, directly disrupt the row space of L. This is done by

randomly shuffling the components of each of its rows, via post-multiplication with a random Nr ×Nr

permutation matrix P,

DOMP

0 = KLP. (27)

It is important to keep in mind that both WMP’s and OMP’s can change the readouts in complex ways

(see fig. 4a, supplementary figure 2 in [Golub et al., 2018] for examples), beyond a simple rotation like

that depicted by the cartoon in figure 2b. Once the baseline decoder was constructed, we randomly

sampled 100 within-manifold and 100 outside-manifold perturbations by randomly selecting 100 ` × `

and Nr ×Nr permutation matrices, respectively.

To minimize any differences between these two types of decoder perturbations that would go beyond

their opposing relationship to the intrinsic manifold, we imposed several restrictions on the selected

permutation matrices, as was done by Sadtler et al. (see section I.4.2.3) for details). First, we enforced

that the mean principal angle between the row space of the baseline effective decoding matrix and the

row space of each perturbed effecitve decoding matrix fell within 60o and 80o. Second, we enforced that

the re-aiming solutions for the baseline decoder would generate readouts through each perturbed decoder

that resulted in a mean squared error between 0.6 and 0.8. Finally, we fit tuning curves to the neural

activity generated by the re-aiming solutions for the baseline decoder, and asked how much the preferred

directions would need to change to produce the same readouts under the perturbed decoder, using the

same procedure utilized by Sadtler et al. We enforced that this change be between 30o and 45o. We

typically found that about 100-200 permutations out all possible permutation matrices satisfied these

criteria. We then randomly sampled 100 of them.

Following the procedure used by Sadtler et al. with monkey L, we did not actually consider all

possible Nr × Nr permutation matrices for OMP’s. Rather, we grouped all Nr neural units into `

groups, and then considered all `-dimensional permutations of these groups. In other words, rather than

permuting all Nr columns of L, ` groups of columns were permuted. This ensured that the total number

of possible decoder perturbations was the same for WMP’s and OMP’s. The ` groups were assigned

as follows: for each neural unit in Hr, we fit a cosine tuning curve to the calibration task responses to
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obtain its modulation depth (cf. section I.4.2.3). The `/Nr neurons with smallest modulation depths

were then assigned to one group, while the remaining neurons were randomly assigned to the remaining

`− 1 groups.

In figure 3a, we define the “dimensions” of the intrinsic manifold as a set of orthonormal basis

vectors f1, f2, . . . , f` spanning the intrinsic manifold (cf. section I.4.2.1). We then calculated the variance

explained by each dimension by

variance explained by dimension i =
fTi Σfi
Tr[Σ]

. (28)

For the gray curve, Σ was set to the sample covariance of the simulated calibration task responses. For

the purple curve, Σ was set to the reachable repertoire covariance Σr (defined in equation 16). In each

case, the cumulative variance explained was calculated by ordering the dimensions by variance explained

and then summing them in that order.

I.3.9 Credit assignment rotation perturbations

In the BMI system used by Zhou et al. (2019), the activity of 10–12 individual neurons was recorded,

sorted by matching spike waveforms to identify spikes from single neurons [Zhou et al., 2019]. Impor-

tantly, each neuron had reliable tuning to reach direction during the calibration task. In our simulation,

we modelled this by randomly choosing 80 neurons, fitting tuning curves to their activity during the

calibration task, and keeping only those with modulation depth greater than 0.5 (see below for how this

is measured). This typically resulted in 10–15 neurons being included in the BMI decoder (i.e. being

assigned non-zero weights in the decoding matrix D). For the network used in the simulations reported

in section I.1.5, this selection procedure resulted in Nr = 11 neurons being included.

Modulation depths were extracted from tuning curves fit to the calibration task data. Specifically,

tuning curves were fit to time-averaged firing rates r̄j in each trial j = 1, . . . , 8 of the calibration task. We

modelled these average firing rates as depending linearly on the corresponding reach targets y∗1, . . . ,y
∗
8

in each trial through an N × 3 matrix of tuning weights T,

r̄j = Tỹj + ε, ε ∼ N (0, 1) (29)

where ε is 0-mean Gaussian noise and ỹj is a 3D vector with the coordinates of the direction of the jth

reach target, y∗j , as its first two components and a constant 1 in its third component, included to model

baseline tonic firing rates of each neuron. Thus, only the first two columns of the tuning weight matrix T

model how the ith neuron’s firing rate depends on the reach target’s direction, whereas its third column

models activity independent of the reach target. We fit these tuning weights by maximum liklihood (i.e.
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least squares regression),

T̂ = arg max
T

8∑
j=1

logP (r̄j |T, ỹj) = arg min
T

8∑
j=1

‖r̄j −Tỹj‖2 =

 8∑
j=1

r̄jỹ
T
j

 8∑
j=1

ỹjỹ
T
j

−1 . (30)

To extract from these weights the directional tuning of neuron i, we take the 2D vector comprising the

first two components of the ith row of T̂. We notate this 2D vector by mipi, where pi is a unit vector

pointing in its direction and mi is its norm. The angle of pi is neuron i’s preferred direction, and mi is

its modulation depth.

Following the methods of Zhou et al., the baseline decoder was constructed from these tuning curve

parameters. First, raw firing rates were baseline-subtracted and normalized by their modulation depths,

rnorm = M (r− µ) , (31)

where µ is given by the third column of T̂, containing the baseline firing rates estimated from the linear

regression fit (equation 30), and M is an N × N diagonal matrix containing the inverse modulation

depths m−1i for each of the Nr neurons recorded by the BMI and a 0 otherwise. These normalized firing

rates were then transformed into 2D readouts by a 2×N effective decoding matrix Dbase
0 containing the

preferred direction vectors pi of each of the Nr recorded neurons in their corresponding columns and 0’s

everywhere else. More precisely, the ith column of Dbase
0 , di, is given by

di =


k
Nr

pi if neuron i is recorded by BMI

0 else,

(32)

where the scaling constant k is chosen to minimize the mean squared error between the readouts from the

calibration task activity and the target readouts. This is the classic population vector algorithm (PVA)

[Georgopoulos et al., 1986]. The full decoding matrix of the baseline decoder was thus D = Dbase
0 M.

Credit assignment rotation perturbations were constructed by simply picking a random subset of

the Nr non-zero columns of Dbase
0 and rotating them. In our simulations, we picked a random 50% of

these columns and rotated them 75o counter-clockwise, as was done in the decoder perturbations used

by Zhou et al. We sampled 100 random perturbations in this way, in each case rotating a different subset

of columns. The normalization matrix M and baseline subtraction parameters µ are kept the same for

all decoders.

To measure the tuning changes predicted by re-aiming, we simulated cursor reaches with each decoder

by driving the motor cortical network with the re-aiming solutions for that decoder. In each case, noise

was applied to the dynamics, exactly as in the calibration task. We then fit tuning curves to each neuron’s

time-averaged activity, using linear regression exactly as described in equation 30, and extracted the
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preferred direction of each rotated, non-rotated, and indirect neuron. For each perturbed decoder, we

then determined each neuron’s change in preferred direction by calculating the difference between its

preferred direction under the re-aiming solutions for the perturbed decoder and its preferred direction

under the re-aiming solutions for the baseline decoder (cf. figures 7b, 7c). These changes were then

averaged over all neurons in each sub-population (rotated, non-rotated, or indirect).

Figure 7e shows the percentiles (median and quartiles) of the distribution of this average tuning

change over all 100 sampled decoder perturbations. An analagous analysis of the changes in modulation

depth is shown in figure 12a.

I.3.10 Simulation of operant conditioning

In an operant conditioning task, there is no “target readout” per se. The objective is to simply increase

the activity of one neuron over another, as much as possible. We can thus express the objective as

maximizing the difference in firing rate between the two neurons, which can be thought of as a one-

dimensional linear readout from the population. Formally, we calculate readouts in this task by a dot

product between the firing rate vector r and a decoding vector d which has a +1 for the target neuron,

a −1 for the distractor neuron, and 0’s everywhere else. This one-dimensional readout indicates how

much more active the target neuron is than the distractor neuron. The goal in an operant conditioning

task is to maximize this readout.

Adding in a metabolic cost, the objective function we use for re-aiming is

θ̂ = arg max
θ1,θ2,...,θK̃

d · r
(
tend;θ

)
− γ

M

M∑
i=1

ui(θ)2. (33)

By again applying the re-parameterization in equation 9, we can decompose this optimization problem

into an optimization over the direction θ̃0 and norm s of the aiming variable vector θ̃ =

[
θ1 θ2 . . . θK̃

]
,

ŝ,
ˆ̃
θ0 = arg max

s>0, ‖θ̃0‖=1

d · r
(
tend; sθ̃0

)
− γ

M

M∑
i=1

ui(sθ̃0)2

≈ arg max
s>0, ‖θ̃0‖=1

sd · r
(
tend; θ̃0

)
− γ

2
s2, (34)

where in the second line we plugged in equation 10 and used the mean-field approximation from equation

11. This approximation allows us to analytically solve for the optimal magnitude ŝ,

ŝ(θ̃0) = arg max
s>0

sd · r
(
tend; θ̃0

)
− γ

2
s2 =

1

γ
φ
(
d · r

(
tend; θ̃0

))
, (35)

which in turn allows us to solve for the optimal direction
ˆ̃
θ0 via optimization over the K̃-dimensional
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unit hypersphere,

ˆ̃
θ0 = arg max

‖θ̃0‖=1

ŝ(θ̃0)d · r
(
tend; θ̃0

)
= arg max
‖θ̃0‖=1

φ
(
d · r

(
tend; θ̃0

))
. (36)

In all our operant conditioning simulations, we used K̃ = 2. We thus solved the above optimization by

brute force search over the unit circle. As in previous simulations, we used tend = 1000ms.

Note that the optimal readout achieved by this re-aiming solution is

d · r
(
tend; θ̂

)
=

1

γ
φ
(
d · r

(
tend; θ̃0

))2
. (37)

Changing the metabolic cost weight γ thus has no other effect on re-aiming other than re-scaling the

re-aiming solutions and the readouts they produce. We thus simply set it to 1 in all our simulations.

In classic operant conditioning experiments [Fetz and Baker, 1973], neurons selected for operant con-

ditioning had to be active prior to the conditioning task to be identified by the recording electrode.

We imposed a similar constraint in our simulation by first driving the network with 500 random K-

dimensional motor commands, and identifying the 50% of neurons with highest average firing rate over

motor commands and time. The neuron pairs used for operant conditioning were sampled from this

sub-population.

To simulate a baseline period of spontaneous behavior prior to operant conditioning, we used a similar

procedure but now driving the network with 500 random K̃-dimensional motor commands, with K̃ = 2.

This allowed us to ask whether operant conditioning performance under re-aiming could be predicted

from correlations arising during behavior driven by the same motor variables used for re-aiming. In

figure 8d, correlations were measured by correlation coefficient between the two conditioned neurons. In

figure 8e, correlation coefficients between each indirect neuron and the target neuron are plotted, against

the firing rate of the indirect neuron at tend = 1000ms when driving the network with the re-aiming

solution.

Supplementary Methods and Results

I.4.1 Simulations with different motor cortical connectivity

In addition to the randomly connected network architecture used in the results presented above, we

simulated re-aiming in the task of Sadtler et al. (2014) with alternative motor cortical connectivity

profiles, described below. In each case, we simulated the calibration task, sampled decoder perturbations,

and computed re-aiming solutions exactly as described above (subject to minor exceptions noted below).

Results of these simulations are shown in figure 9.
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a

b

c

d

e

random network
(from main text)

random network
(different seed)

random E/I
network

inhibition-stabilized
network

optimized
network

Figure 9: Each column shows simulation results for a different network: (1) the randomly connected network used in
the main text; (2) another randomly connected network, with weights sampled in exactly the same way; (3) a network
with random E/I connectivity; (4) a network with inhibition-optimized E/I connectivity; (5) network with connectivity
optimized for delayed center-out reaching.
(9a) Eigenspectra of recurrent weight matrices of each network, plotted on the complex plane. Note that the optimized
network has low-rank connectivity: almost all eigenvalues are clustered at 0.
(9b) Mean squared error achieved by re-aiming solutions for different endpoint time, tend, for each decoder. Lighter
markers correspond to individual decoders, darker open markers (connected by lines) show medians over all decoders. Note
that the metabolic cost weight, γ, is chosen to ensure low error under the baseline decoder for tend = 1000ms only (cf.
Methodssection “Setting the metabolic cost weight”)
(9c) Cumulative variance of calibration task responses and reachable repertoire in each dimension of the intrinsic manifold.
Intrinsic manifold was found to be about 12-dimensional with stability-optimized connectivity and about 6-dimensional
with connectivity optimized for delayed center-out reaching.
(9d) Average maximal readout strength, as in figure 4c. Experimental data overlaid for reference.
(9e) Mean squared error achievable with different numbers of aiming variables, for each OMP. Same conventions followed
as in figure 6a.

Random excitatory/inhibitory (E/I) connectivity We constructed a random sparse and balanced

E/I recurrent connectivity matrix following the sampling procedure described in [Hennequin et al., 2012].
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In short, all excitatory weights had the same strength, all inhibitory had the same strength (re-scaled

relative to the excitatory weights to account for the different number of excitatory and inhibitory neu-

rons), and each row of the weight matrix was enforced to be 0 mean. We used a sparsity of 10% (i.e.

only 10% of weights were non-zero), with 80% of the neurons in the population being excitatory. Input

and encoding weights were sampled randomly as for the randomly connected network (cf. section I.3.1).

Inhibition-optimized excitatory/inhibitory connectivity We constructed a spare and balanced

E/I recurrent connectivity matrix following the optimization procedure described in [Hennequin et al., 2014].

In short, the excitatory weights were initialized to be very strong, and then inhibitory weights were

optimized to ensure the dynamics were stable (by minimizing the spectral abscissa of the full connec-

tivity matrix). Half of the neurons were assigned to be excitatory, and the inhibitory weights were

enforced to be on average three times stronger than the excitatory weights. The only difference with

[Hennequin et al., 2014] was that we initialized the weight matrices with a spectral radius of 5. This

was necessary as we found that using an initial spectral radius of 10 (as was used in the original study)

lead to chaotic dynamics under the rectified linear activation function and sustained input. Input and

encoding weights were sampled randomly as for the randomly connected network (cf. section I.3.1).

Because of their highly non-normal dynamics, we found that these networks remained highly sensitive

to changes in initial conditions, even with the reduced initial spectral radius. We therefore reduced the

standard deviation of the initial conditions by half when simulating the calibration task (see Methods).

We also found that these networks produced much higher-dimensional calibration task responses than

the randomly connected network. We therefore used a 12-dimensional intrinsic manifold (i.e. ` = 12) for

constructing WMP’s and OMP’s.

Connectivity optimized for delayed center-out reaching Finally, we constructed a network op-

timized to output joint torques for delayed center-out reaching with a biomechanical arm model. We

used an architecture and optimization scheme inspired by [Sussillo et al., 2015], in which the recurrent

network is driven by two distinct inputs. The first input is a one-dimensional signal reflecting a go cue

that indicates when the reach should be performed (go time). This is constructed by setting θK to 1 at

the start of the trial and then setting it to 0 at go time, 1000ms after trial start. The other input is a

two-dimensional signal reflecting the visual presentation of the target to reach towards, presented prior to

go time to prepare the subject (or network) to perform the delayed center-out reach. This is constructed

by setting θ1, θ2 to the coordinates of the reach target at a randomly sampled target presentation time

before the go cue, and then setting it back to 0 at the same time the go cue input is shut off. All other

motor variables are set to 0 (θ3 = θ4 = . . . = θK−1 = 0). We chose to use the very last motor variable θK

for the go cue to reflect the hypothesis that subjects would not re-aim with this non-directional motor

variable.
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Two joint torques were read out from the network through a set of readout weights, which were

optimized along with the network parameters (input, recurrent, and encoding weights). These parameters

were optimized to produce the joint torques required to move the endpoint of a planar two-link arm model

(taken from [Todorov and Li, 2003]) to the cued reach target, in 500ms with a bell-shaped speed profile.

Following the methods of [Kao et al., 2020], these target joint torques were computed by backpropagating

through the arm model dynamics to minimize mean squared error between the arm endpoint velocity and

the desired velocity profile for each reach target. We then trained the network’s parameters so that in

each trial it would produce 0 torque until go time, followed by the optimal reaching torque corresponding

to the reach target on that trial.

The loss function minimized was a combination of the mean squared error plus L2 regularization

on all parameters as well as on network firing rates (to encourage naturalistic solutions to this task

[Sussillo et al., 2015]). This was minimized via stochastic gradient descent using the Adam optimization

algorithm (initial learning rate set to .001) [Kingma and Ba, 2017]. Since only three motor variables

were non-zero during this task, only the first two columns of the encoding weights Uij were optimized by

this procedure. The remaining columns were thus set randomly, as for the randomly connected network

(cf. section I.3.1).

We found that the resulting optimized network produced much lower-dimensional calibration task

responses than randomly connected networks did. We therefore used a 6-dimensional intrinsic manifold

(i.e. ` = 6) for constructing WMP’s and OMP’s in simulations with this network. This meant only 6!−1 =

719 possible decoder perturbations existed (as opposed to 40,319), so far fewer decoder perturbations

satisfied the stringent criteria outlined in section I.4.2.3 for WMP’s and OMP’s. We thus loosened these

criteria to include WMP’s and OMP’s with mean squared error going up to 1.2. These networks were also

found to be highly sensitive to noise, so we reduced the standard deviation of the noise in the dynamics

and in the initial conditions during simulation of the calibration task to 0.02 and 0.005, respectively.

I.4.2 Construction of Sadtler et al. (2014) BMI decoders

I.4.2.1 Estimating the intrinsic manifold

To estimate the intrinsic manifold, we fit a Probabilistic PCA (PPCA) model [Tipping and Bishop, 1999]

to the mixed and z-scored calibration task responses,

rmixed

i = S−1r H(ri − µ). (38)

Here, i indexes a particular timestep and trial during the calibration task. The PPCA generative model

assumes that each of these data points are generated from a corresponding set of ` uncorrelated latent
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variables zi =

[
zi1 zi2 . . . zi`

]
as follows,

zi ∼ N (0, I) , (39a)

rmixed

i |zi ∼ N
(
Fzi, σ

2I
)
. (39b)

The model thus assumes that the activity patterns rmixed
i are concentrated within the column space of

the factor loading matrix F – it is the columns of this matrix that define the intrinsic manifold.

However, this defines the dimensions of the intrinsic manifold in mixed and z-scored neural activity

space (i.e. the space defined by the coordinates of the rmixed
i vectors). To convert these to dimensions of

the full N -dimensional state space, where each coordinate corresponds to the activity of an individual

neuron (i.e. the space defined by the coordinates of the ri vectors), we invert equation 38 to obtain

ri = H−1Srr
mixed

i + µ,

where we define H−1 as the N × Nr matrix containing the inverse of the tri-diagonal component of H

in its first Nr rows and 0’s filling all subsequent rows. We then apply this linear transformation to the

columns of F to obtain an analagous N × ` factor loading matrix Fr defined in the full N -dimensional

state space,

Fr = H−1SrF.

Note that, since the bottom N −Nr rows of H−1 are filled with 0’s, those same rows of Fr are also filled

with 0’s. This reflects the fact that the intrinsic manifold is orthogonal to the dimensions of activity

corresponding to neurons not recorded in the experiment. Finally, we defined an orthonormal basis

f1, f2, . . . , f` ∈ RN for the intrinsic manifold by taking the left singular vectors of Fr. These are the

vectors used in equation 28 for figure 3a.

The parameters F and σ2 are set to their maximum likelihood estimates under the calibration task

data, given by

F =

[
√
λ1 − σ2v1

√
λ2 − σ2v2 . . .

√
λ` − σ2v`

]
σ2 =

1

Nr − `

Nr∑
i=`+1

λi

where λ1, λ2, . . . , λNr are the eigenvalues of the sample covariance of the mixed and z-scored calibra-

tion task activity {rmixed
i } ordered from largest to smallest (i.e. λ1 is the largest eigenvalue), and

v1,v2, . . . ,vNr are their associated eigenvectors (i.e. the principal components, ordered from most to

least variance explained).
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This method for estimating the intrinsic manifold is almost the same as that used by Sadtler et al.,

which differs only in that a Factor Analysis model was used rather than a PPCA model. In that case,

the maximum likelihood estimates of the model parameters cannot be evaluated in closed form and must

be computed via an iterative optimization algorithm (the Expectation Maximization algorithm). We

found that using a Factor Analysis model instead of PPCA had no noticeable effects on our results, so

we reported only results with the more easily fit PPCA model.

I.4.2.2 Construction of the baseline decoder

As mentioned in the Methods section, the baseline decoder has the following form

Dbase

0 = KL

K ∈ R2×`, L ∈ R`×Nr .

We term L the dimensionality reduction matrix and K the velocity readout matrix. Here we describe in

greater detail how these two matrices are fit to the calibration task data. Unless otherwise noted, these

procedures are exactly as those described in [Sadtler et al., 2014] and [Golub et al., 2018].

The dimensionality reduction matrix L is chosen by asking what setting of the latent variables ẑi

under the PPCA model (equation 39) would have been most likely to have generated a given mixed and

z-scored activity pattern rmixed
i ; that is, the mode of the posterior distribution P (zi|rmixed

i ). It is straight

forward to derive that, under the PPCA generative model, this is given by

ẑi =
(
FTF + σ2I

)−1
FT︸ ︷︷ ︸

L̂

rmixed

i .

The Nr × ` matrix L̂ thus yields a linear transformation from Nr dimensions to ` dimensions. The z-

scored and mixed activity patterns {rmixed
i } from the calibration task can thus be reduced to ` dimensions

via multiplication with L̂, resulting in a corresponding set of dimensionality-reduced activity patterns

{ẑi} (as above, here and in the rest of this section the index i jointly indexes a timestep and trial of the

calibration task).

To complete the construction of the dimensionality reduction matrix L, these dimensionality-reduced

activity patterns are then z-scored. The standard deviations of each component of the ẑi vectors are

calculated over all timesteps and trials of the calibration task, and collected in a diagonal matrix Sz.

Note that mean subtraction is not necessary since the activity vectors rmixed
i have already been z-scored

so are mean 0. The final dimensionality reduction matrix is then given by

L = S−1z L̂
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This second z-scoring step is necessary to ensure that controlling the BMI does not require neurons to

produce firing rates beyond the range exhibited during the calibration task.

The dimensionality reduction matrix used by Sadtler et al. differed from ours in that L̂ was con-

structed from the posterior distribution under a Factor Analysis generative model, rather than a PPCA

generative model. Like in PPCA, the mode of the posterior distribution of a Factor Analysis model can

also be expressed as a linear transformation of rmixed
i , yielding a very similar expression for L̂.

The velocity readout matrix K is also chosen by maximum likelihood fit of a generative model. In

this case, we assume that the z-scored dimensionality-reduced activity patterns from the calibration task,

ẑz-scored
i = Lrmixed

i , depend on the observed cursor velocities yi via the following latent Gaussian state

space model,

yi|yi−1 ∼ N (yi−1,Q)

ẑz-scored

i |yi ∼ N (Byi,R)

where i−1 indexes the previous timestep in the same trial. Note that the cursor velocities yi are constant

within each trial of the calibration task. As was done in the original experiment of Sadtler et al., we set

Q = 2k2I,

where k = 1/.15 denotes the ratio of the cursor speeds used in our simulation (‖yi‖ = 1) and the cursor

speeds used in the original experiment (‖yi‖ = .15 m/s). Maximum likelihood estimates of the remaining

parameters are given by

B =

(∑
i

ẑz-scored

i yTi

)(∑
i

yiy
T
i

)−1
R =

1

T

∑
i

ẑz-scored

i ẑz-scored

i
T − ẑz-scored

i (Byi)
T

where T denotes the total number of data points in the calibration task data: the number of timesteps

in each trial times the total number of trials.

The velocity readout matrix is then obtained by asking what cursor velocity ŷi would have most likely

generated a given low-dimensional activity pattern ẑz-scored
i , given observations of all previous activity

patterns; that is, the mode of the posterior distribution P (yi|ẑz-scored
i , ẑz-scored

i−1 , ẑz-scored
i−2 , . . .), where the

ellipses go back to the first timestep of the given trial. We use the posterior distribution at steady state,

whose mode is given by

ŷi = (I−KB) ŷi−1 + Kẑz-scored

i ,
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a b c

Figure 10: Differences between sampled decoder perturbations and the baseline decoder.
(10a) Distribution of mean principal angle between row space of baseline decoder and each decoder perturbation.
(10b) Distribution of mean squared error achieved by mean calibration task responses, under each decoder perturbation.
(10c) Distribution of minimal absolute change in preferred direction needed to produce the same readouts with each decoder
perturbation as with the baseline decoder.

where K is the so-called steady-state Kalman gain matrix. This matrix is given by

K = ΣssB
T (BΣssB

T + R)−1

where Σss is the steady-state posterior covariance, given by the solution to the discrete-time algebraic

Riccatti equation

0 = ΣssB
T (BΣssB

T + R)−1BΣss −Q

The 2 × ` velocity readout matrix used for the baseline decoder is thus set to the steady-state Kalman

gain matrix, K.

I.4.2.3 Subsampling WMP’s and OMP’s

As mentioned in the methods, we attempted to minimize any differences between within- and outside-

manifold perturbations that would go beyond their opposing relationship to the intrinsic manifold. To do

this, we first calculated every possible WMP and OMP, corresponding to each `-dimensional permutation.

Since we set ` = 8, this resulted in `!−1 = 40, 319 decoder perturbations of each type (minus 1 to exclude

the identity permutation). We then quantified how different each of these perturbations were from the

baseline decoder with three different metrics, and eliminated all decoder perturbations for which one or

more of these metrics fell outside a specific range.

The first metric is the angle between the perturbed decoder’s row space and the baseline decoder’s. For

each decoder perturbation, DWMP
0 or DOMP

0 , we calculated the two principal angles [Björck and Golub, 1973]

between its row space and that of the baseline decoder effective decoding matrix, Dbase
0 , and averaged

these two angles. Any decoder perturbations for which this mean principal angle was greater than 80o

or less than 60o was eliminated (fig. 10a).

The second metric is the mean squared error that would be achieved if the subject were to simply

reproduce the neural activity from the calibration task. Analagous to the procedure followed by Sadtler
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et al., we averaged the calibration task responses over time and over trials for each reach target,

r̄calib

j = 〈ri〉i∈time points in calibration task trials with reach target j

and then computed the readouts from these time- and trial- averaged firing rate vectors under each

decoder perturbation, DWMP
0 or DOMP

0 . We then discarded all decoder perturbations where the mean

squared error between these readouts and the target readouts was greater than 0.8 or less than 0.6 (fig.

10b).

The third metric is to ask how much the mean calibration task responses would have to change

to produce the same readouts under the perturbed decoder as under the baseline decoder. We first

calculated the time- and trial- averaged z-scored and mixed firing rates from the calibration task

r̄mixed

j = S−1r H(r̄calib

j − µ).

For each perturbed decoder, D̃0 = DWMP
0 or DOMP

0 , we then computed the activity patterns closest to

r̄mixed
j that would produce the same readouts through that decoder as the original activity patterns would

through the baseline decoder,

r̂mixed

j

(
D̃0

)
= arg min

r
‖r− r̄mixed

j ‖2 subject to D̃0r = Dbase

0 r̄mixed

j

= r̄mixed

j + D̃T
0

(
D̃0D̃

T
0

)−1 (
Dbase

0 − D̃0

)
r̄mixed

j .

We then quantified the difference between r̄mixed
j and r̂mixed

j (D̃0) by fitting tuning curves and asking

how much the preferred direction changed. Tuning curves were fit by least-squares regression, exactly

as described in Methodsequation 30 (but with r̄mixed
j or r̂mixed

j (D̃0) plugged in for r̄j), and preferred

directions were extracted from the fitted tuning weights as described in that section. For each decoder

perturbation, we then computed the mean absolute difference between the preferred directions fitted to

the computed activity patterns {r̂mixed
j (D̃0)}8j=1 and the preferred directions fitted to the true calibration

task mean responses {r̄mixed
j }8j=1. Any perturbed decoders that resulted in a mean absolute difference of

more than 45o or less than 30o were discarded (fig. 10c).

We typically found that about 100-200 permutations out all possible decoder perturbations satisfied

these criteria. We then randomly sampled 100 of them. The distributions of these three merics for the

100 sampled WMP’s and OMP’s used in sections I.1.2, I.1.3, I.1.4 are shown in figures 10a, 10b, and

10c.
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Figure 11: Geometry of the readouts reachable under the baseline decoder.
(11a) Cartoon of the reachable repertoire, the decoding plane of the baseline decoder, and the readouts reachable under
this decoder. All formatting conventions exactly as in figure 5a, see caption of that figure for further details.
(11b) Histogram of the norm of the projection of reachable repertoire mean through each of the 100 sampled WMP’s. The
dashed black line shows the same for the baseline decoder.

I.4.3 Geometry of the readouts reachable under the baseline decoder

In our analysis of biases in the readouts reachable under WMP’s, we completely ignored the fact that

the readouts reachable under the baseline decoder do not seem to be biased at all (fig. 3di). Rather,

the readouts reachable under this decoder are both centered at the origin and symmetrically distributed

around it. Why is this the case for the baseline decoder, but not for WMP’s?

Recall that the centroid of the reachable readouts depends on the difference between the reachable

repertoire mean and the centering vector (equation 6), and that in our model this difference is non-zero,

r̄ − µ 6= 0 (fig. 5b). For the centroid to be at the origin (i.e. ȳ ≈ 0), then, it must be that this

difference is orthogonal to the decoding plane of the baseline decoder, so that its projection onto the

decoding matrix is near 0, ȳ = D(r̄ − µ) ≈ 0 (equation 6). This is illustrated in the cartoon in figure

11a, which depicts the relationship between the reachable repertoire (a purple cone, as in figure 5a) and

the decoding plane of the baseline decoder (the subspace spanned by the two rows d1,d2 of the decoding

matrix D). The purple and orange circles on the left depict the reachable repertoire mean, r̄, and the

centering vector, µ, respectively. Note that their difference – depicted by the open arrow – is largely

orthogonal to the decoding plane. As a result, the centroid of the reachable readouts, ȳ, lies almost

exactly at the origin, and the rings of reachable activity patterns generated by different motor command

magnitudes form concentric rings of readouts around it.

To understand why this specific geometric arrangement would hold for the baseline decoder, we must

turn to the details of how it is constructed. The baseline decoder is built to decode from the calibration

task neural responses the identities of the stimuli driving them (cf. section I.4.2.2). It thus ignores any
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dimensions of calibration task activity that do not provide information about the stimulus. One of these

dimensions happens to be the reachable repertoire mean, r̄. This can be appreciated from looking at the

projection of the calibration task responses visualized in figure 5b, which shows that the trajectories of

activity during different trials of the calibration task all evolve identically along this direction, despite

being evoked by different stimuli. This means that decoding from this dimension is useless for decoding

stimulus identity from the neural responses, so the baseline decoder ignores it. This is confirmed in

figure 11b, where we plot the norm of the projection of the reachable repertoire mean, Dr̄, through the

baseline decoder and all sampled WMP’s. The reachable repertoire mean is evidently almost orthogonal

to the baseline decoder, producing a projection with near 0 norm (i.e. ‖Dr̄‖ ≈ 0). Since the centroid

of the reachable readouts is proportional to this projection (equation 8), this implies that the reachable

readouts will be centered at the origin of the workspace.

The reachable repertoire mean does, on the other hand, have a strong projection through most WMP’s

(i.e. ‖Dr̄‖ > 0), explaining why there are strong biases in readouts reachable under these decoders (fig.

4c). That this is the case can also be traced back to the geometry of the calibration task responses.

While the direction of the reachable repertoire mean may not contain information about the stimuli

driving these responses, it still contains a lot of their variance. Consequently, this dimension forms part

of the intrinsic manifold. Since WMP’s are essentially randomly oriented within the intrinsic manifold,

they are likely to decode from it by chance.

I.4.4 Derivation of reachable repertoire mean and covariance

To calculate expectations over a uniform distribution on the reachable repertoire manifold, we require an

expression for the probability density function of this distribution. This is given by the volume element

of the manifold divided by its total volume.

The reachable repertoire can be formalized as the following manifold,

R = {r(tend; θ̃) : ‖θ̃‖ ≤ smax}

That is, the set of all activity patterns that can be generated by a K̃-dimensional motor command

θ̃ =

[
θ1 θ2 . . . θK̃

]
with norm less than or equal to smax. The function r(tend; θ̃) can be thought of

as a mapping from K̃-dimensional aiming variable vectors, θ̃ ∈ RK̃ , to N -dimensional firing rate vectors,

r ∈ RN , on the reachable repertoire. Mathematically, the mapping θ̃ → r(tend; θ̃) essentially defines

the manifold, constituting the so-called inverse coordinate map from Euclidean space onto the manifold

[Lee, 2012]. The volume element of this manifold, dV (θ̃), can be derived from the Jacobian, J, of this

inverse coordinate map,

dV (θ̃) =

√
det[J(θ̃)TJ(θ̃)],
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where det[·] denotes the matrix determinant and the N × K̃ Jacobian matrix is given by

Jij(θ̃) =
∂

∂θj
ri(tend; θ̃).

The total volume of the manifold is given by the integral of the volume element over all allowable aiming

variables, i.e. all aiming variable vectors θ̃ ∈ RK̃ satisfying ‖θ̃‖ < smax. The probability density function

of the uniform distribution on R is given by the volume element divided by the total volume.

For the case of K̃ = 2, these quantities can be easily expressed in terms of the polar coordinates of

the aiming variables,

θ̃ =

θ1
θ2

 = s

cosϕ

sinϕ

 .
To facilitate the treatment of this change of variables, we introduce the notation

r (tend; s, ϕ) := r

tend; s

cosϕ

sinϕ


 ,

i.e. r(tend; s, ϕ) denotes the activity pattern at time tend generated by a pair of aiming variables θ1, θ2

with angle ϕ and norm s. By the scale invariance of the RNN dynamics (equation 10), we have that

r(tend; s, ϕ) = s r(tend; 1, ϕ)︸ ︷︷ ︸
r0(ϕ)

= sr0(ϕ)

where we define r0(ϕ) as the activity generated by a pair of aiming variables with angle ϕ and unit norm.

In polar coordinates, then, the reachable repertoire manifold is given by

R = {r(tend; s, ϕ) : s ∈ [0, smax], ϕ ∈ [0, 2π]} ,

The Jacobian of the inverse coordinate map, (s, ϕ)→ r(tend; s, ϕ), is the N × 2 matrix

J(s, ϕ) =

[
∂
∂sr(tend; s, ϕ) ∂

∂ϕr(tend; s, ϕ)

]
=

[
r0(ϕ) sr′0(ϕ)

]
=

[
r0(ϕ) r′0(ϕ)

]1 0

0 s


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where r′0(ϕ) denotes the derivative of r0(ϕ) evaluated at ϕ. The volume element is then given by

dV (s, ϕ) =

√√√√√√det

1 0

0 s

det

 ‖r0(ϕ)‖2 r0(ϕ) · r′0(ϕ)

r0(ϕ) · r′0(ϕ) ‖r′0(ϕ)‖2

det

1 0

0 s


= s

√
‖r0(ϕ)‖2‖r′0(ϕ)‖2 − (r0(ϕ) · r′0(ϕ))

2

= s‖r0(ϕ)‖‖r′0(ϕ)‖
√

1− cos2 ω(ϕ)

= s‖r0(ϕ)‖‖r′0(ϕ)‖| sinω(ϕ)|

where ω(ϕ) is the angle between r0(ϕ) and its derivative there r′0(ϕ). The total volume V of the manifold

is thus given by

V =

∫ smax

0

∫ 2π

0

s‖r0(ϕ)‖‖r′0(ϕ)‖| sinω(ϕ)|dϕds

=
1

2
s2max

∫ 2π

0

‖r0(ϕ)‖‖r′0(ϕ)‖| sinω(ϕ)|dϕ

The probability density function of the uniform distribution on the reachable repertoire for K̃ = 2 is

thus given by

p (r(tend; s, ϕ)) =
dV (s, ϕ)

V

The mean of this distribution, r̄, is thus

r̄ =

∫ smax

0

∫ 2π

0

r(tend; s, ϕ)p (r(tend; s, ϕ)) dsdϕ

=
1

V

∫ smax

0

∫ 2π

0

sr0(ϕ)dV (s, ϕ) dsdϕ

=
1

V

∫ smax

0

∫ 2π

0

s2r0(ϕ)‖r0(ϕ)‖‖r′0(ϕ)‖| sinω(ϕ)|dsdϕ

=
1

V

1

3
s3max

∫ 2π

0

r0(ϕ)‖r0(ϕ)‖‖r′0(ϕ)‖| sinω(ϕ)|dϕ

=
2

3
smax

∫ 2π

0
r0(ϕ)‖r0(ϕ)‖‖r′0(ϕ)‖| sinω(ϕ)|dϕ∫ 2π

0
‖r0(ϕ)‖‖r′0(ϕ)‖| sinω(ϕ)|dϕ

The covariance is

Σ = rrT − r̄r̄T ,
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where rrT is the matrix of second moments,

rrT =

∫ smax

0

∫ 2π

0

r(tend; s, ϕ)r(tend; s, ϕ)T p (r(tend; s, ϕ)) dsdϕ

=
1

V

∫ smax

0

∫ 2π

0

s2r0(ϕ)r0(ϕ)T dV (s, ϕ) dsdϕ

=
1

V

∫ smax

0

∫ 2π

0

s3r0(ϕ)r0(ϕ)T ‖r0(ϕ)‖‖r′0(ϕ)‖| sinω(ϕ)|dsdϕ

=
1

V

1

4
s4max

∫ 2π

0

r0(ϕ)r0(ϕ)T ‖r0(ϕ)‖‖r′0(ϕ)‖| sinω(ϕ)|dϕ

=
1

2
s2max

∫ 2π

0
r0(ϕ)r0(ϕ)T ‖r0(ϕ)‖‖r′0(ϕ)‖| sinω(ϕ)|dϕ∫ 2π

0
‖r0(ϕ)‖‖r′0(ϕ)‖| sinω(ϕ)|dϕ

Under linear dynamics, we have an explicit expression for the reachable repertoire so we can actually

analytically evaluate these moments. From equation 45, we have that, with K̃ = 2 aiming variables,

the activity patterns on the reachable repertoire can be expressed in the polar coordinates of the aiming

variables as follows,

r(tend; s, ϕ) = Nendr(0) + sMend

cosϕ

sinϕ

 .
The Jacobian of the inverse coordinate map is given by1

J(s, ϕ) =

Mend

cosϕ

sinϕ

 sMend

− sinϕ

cosϕ


 = Mend

cosϕ − sinϕ

sinϕ cosϕ


1 0

0 s

 ,
yielding the volume element

dV (s, ϕ) = det

1 0

0 s

det

cosϕ − sinϕ

sinϕ cosϕ

√det MT
endMend = sσM

1 σM
2 ,

where σM
1 , σM

2 are the singular values of the reachable repertoire matrix Mend. The volume of the

reachable repertoire is thus

V =

∫ smax

0

∫ 2π

0

sσM
1 σM

2 dϕds = πs2maxσ
M
1 σM

2 ,

yielding the following probability density function for the uniform distribution on the reachable repertoire,

p (r(tend; s, ϕ)) =
dV (s, ϕ)

V
=

s

πs2max

1Note that if r(0) = 0 then this exactly matches the above expression in terms of r0(ϕ).
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Figure 12: Changes in modulation depth under generalized re-aiming.
(12a) Average change in modulation depth of rotated, non-rotated, and indirect neurons after learning by generalized
re-aiming. As in figure 7e, the changes in modulation depth under each perturbed decoder are averaged over all neurons
in each sub-population. The lines show the median over all perturbed decoders, with error bars marking the upper and
lower quartiles.
(12b) Average modulation depth of direct neurons (i.e. neurons recorded by the BMI, with non-zero decoding weights in
D) and indirect neurons (neurons not recorded by the BMI) under generalized re-aiming solutions for OMP’s. Modulation
depths were extracted following the same procedure used to fit tuning curves in our simulation of re-aiming under credit
assignment rotation perturbations (cf. equation 30 and surrounding text). For each OMP, modulation depths were averaged
over all neurons in each sub-population; plotted markers show the median of these averages over all 100 sampled OMP’s,
error bars show upper and lower quartiles.

It is then straight-forward to derive that the mean and covariance of this distribution are given by

r̄ =

∫ smax

0

∫ 2π

0

r(tend; s, ϕ)p (r(tend; s, ϕ)) dsdϕ

= Nendr(0) +
smax

3π
Mend

∫ 2π

0

cosϕ

sinϕ

 dϕ

= Nendr(0)

Σ =

∫ smax

0

∫ 2π

0

(r(tend; s, ϕ)− r̄) (r(tend; s, ϕ)− r̄)
T
p (r(tend; s, ϕ)) dsdϕ

=
1

πs2max

∫ smax

0

∫ 2π

0

s3Mend

 cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

MT
end dsdϕ

=
s2max

4π
Mend

∫ 2π

0

 cos2 φ cosφ sinφ

cosφ sinφ sin2 φ

 dϕMT
end

=
s2max

4
MendM

T
end

This result is referenced in section II.2.3.

I.4.5 Learning-related changes in modulation depth

In a study employing credit assignment rotation perturbations in a 3D cursor reaching task, it was ob-

served that both non-rotated and rotated neurons reduced their modulation depth after learning the per-

turbed decoder, and that rotated neurons reduced their modulation depth more [Jarosiewicz et al., 2008]
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(see text surrounding Methodsequation 30 for how modulation depth is defined and measured). Figure

12a reveals that our model of generalized re-aiming does not reproduce this result, at least for the values

of K̃ we tested. Generalized re-aiming with up to 6 motor variables seems to lead to slight increases

in the modulation depths of both rotated and non-rotated neurons, with marginal differences between

rotated and non-rotated neurons. It is possible that using a larger number of aiming variables would

lead to decreases in modulation depth consistent with the findings of this experiment; we did not test

this.

Another possible resolutions to this inconsistency is that changes in modulation depth arise via

synaptic plasticity, which we do not model here. This explanation is consistent with the separate obser-

vation that indirect neurons show selective decreases in modulation depth after days of practice with a

given BMI decoder, but not within a single session [Ganguly et al., 2011] (although we show in figure

12b that, at least with OMP’s, this phenomenon can in fact be replicated by generalized re-aiming).

That changes in modulation depth only arise on longer timescales of training may also account for the

fact that this phenomenon has been reported by some studies employing credit assignment rotation

perturbations [Jarosiewicz et al., 2008] but not others [Chase et al., 2012, Zhou et al., 2019]. Note that

differential changes in preferred direction between rotated and non-rotated neurons did replicate across

these various studies. The fact that changes in modulation depth did not replicate but changes in pre-

ferred direction did possibly suggests that two distinct learning mechanims might underlie these two

types of changes in motor cortical tuning curves.
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Chapter 2

In this chapter, we provide a deeper mathematical analysis of our results on re-aiming in the BMI learning

task of Sadtler et al. (2014). An important difficulty in doing this is that the differential equations

defining our model’s dynamics (equation 1) cannot be solved analytically. However, if we remove the

rectified non-linearity in the dynamics, φ(·), and replace it with an identity activation function so that

ri = xi, these differential equations become purely linear in the dynamical variables and can be solved.

This allows us to derive exact analytical expressions for the instantaneous population activity, r(t), the

network’s reachable repertoire and intrinsic manifold, and the re-aiming solutions to any given target

readout and decoder (equation 4). This in turn will permit a transparent analysis of the properties of

the re-aiming learning strategy in the context of this task.

Of course, an identity activation function isn’t biologically realistic for a number of reasons, the

most obvious of which being that it admits negative firing rates. Addressing the extent to which this

shortcoming affects our results will in fact be a primary goal of our analysis in this chapter – this is

explicitly discussed in section II.2.3. Analyzing the simplified linear network dynamics will in fact provide

valuable insight into how exactly the rectified linear activation function used in chapter 1 influences the

network’s reachable repertoire, intrinsic manifold, and, by extension, the re-aiming learning strategy.

A second shortcoming of the identity activation function – which is actually shared with the rectified

linear activation function – is that firing rates don’t saturate and can therefore be unbounded. This

shortcoming is easily addressed by ensuring that firing rates in our model are bounded within a reasonable

range, simply done by enforcing stable network dynamics and bounded inputs. In this regime, the

network provides a reasonable model of biological firing rates in the unsaturated regime of activity,

which is typically that observed in in vivo recordings like those in the BMI experiments relevant here.

Analysis of linear networks has a rich tradition in theoretical neuroscience [Hennequin, 2019, Dayan and Abbott, 2001a].

Linear network dynamics have been successfully employed to model and interpret neural dynamics across

a wide variety of brain areas and behavioral tasks. Various brain areas modeled with linear systems

include the oculomotor integrator [Seung, 1996], the lateral intraparietal area [Ganguli et al., 2008a],

and, of course, primary motor cortex [Churchland et al., 2010, Hennequin et al., 2014]. Linear net-

works have also been used to study the dynamics of circuits with excitatory and inhibitory populations

[Murphy and Miller, 2009, Hennequin et al., 2012], to model the circuit mechanisms underlying short

term memory [White et al., 2004, Ganguli et al., 2008b, Goldman, 2009, Ganguli and Latham, 2009] and
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evidence integration [Ganguli et al., 2008a], and to study computational bottlenecks in reservoir com-

puting [Susman et al., 2021].

Standing on these shoulders, in this chapter we will use linear networks to study certain properties

of the re-aiming learning strategy. The mathematical muscle afforded to us by this simplification of the

motor cortical dynamics will allow us to better understand some of the results in chapter 1 as well as

understand how they extend to more complex settings. The chapter’s results are organized into three

sections, in which we will analyze the re-aiming solutions of a linear network to respectively

1. provide mathematical grounding to the the arguments presented in chapter 1 for why re-aiming

fails for OMP’s but succeeds for WMP’s

2. connect the concept of the reachable repertoire to classical control-theoretic analyses of linear

time-invariant systems, in particular to the controllability Gramian

3. illustrate the role of non-linear dynamics in producing the behavioral biases after WMP learning

Preliminary notation

Before going ahead with our analysis, we first introduce some new notation for the linear network, follow-

ing standard control-theoretic conventions for linear time-invariant systems [Kao and Hennequin, 2019].

Plugging in an identity activation function, φ(xi) = xi, into the dynamics (eqn. 1) yields the following

firing rate dynamics:

τ
dri
dt

= −ri +

N∑
j=1

W rec

ij rj +

M∑
j=1

W in

ijuj (40)

Putting this in matrix/vector notation, we arrive at the linear system

τ
dr

dt
= −r + Wrecr + Winu. (41)

We next plug in φ(xi) = xi into the inputs equation (eqn. 2) to obtain, in vector notation,

u(θ) = Uθ.

We next recall that, when re-aiming with K̃ motor variables, we assume that θi = 0 for all i > K̃.

We can therefore reduce this expression by dropping all the components of θ that are zero, along with

the corresponding columns of U. We define the K̃-dimensional vector θ̃ that contains only the aiming

variables θ1, θ2, . . . , θK̃ , and the M × K̃ matrix Ũ obtained by dropping columns K̃ + 1, K̃ + 2, . . . ,K of

U, to write

u(θ) = Ũθ̃. (42)
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Plugging this into equation 41, we arrive at the following linear system driven by a K̃-dimensional motor

command

dr

dt
= Ar + Bθ̃ (43)

A =
1

τ
(Wrec − I)

B =
1

τ
WinŨ.

Results

II.2.1 Properties of the reachable repertoire relevant for re-aiming

We begin by solving equation 43 to obtain

r(t; θ̃) = eAt︸︷︷︸
N(t)

r(0) +
(
eAt − I

)
A−1B︸ ︷︷ ︸

M(t)

θ̃, (44)

where eAt denotes the matrix exponential (a matrix of the same shape as A). Given a fixed initial

condition r(0), we can thus see that the reachable repertoire at time tend comprises a K̃-dimensional

plane centered at N(tend)r(0),

r(tend; θ̃) = N(tend)︸ ︷︷ ︸
Nend

r(0) + M(tend)︸ ︷︷ ︸
Mend

θ̃. (45)

Under silent initial conditions, r(0) = 0, the dimensions occupied by the reachable repertoire are those

spanned by the K̃ columns of Mend, which we thus term the reachable repertoire matrix. In this case,

then, the reachable repertoire’s dimensionality exactly matches the number of motor variables used for

re-aiming (see fig. 14b). We briefly note that this differs from the non-linear network dynamics used in

chapter 1 (compare to fig. 5b), in which we found that the reachable repertoire’s dimensionality exceeded

the number of aiming variables (fig. 3a, in which the reachable repertoire is about eight-dimensional

with K̃ = 2). This highlights how the non-linear dynamics can warp the reachable repertoire to occupy

more dimensions than there are aiming variables.

Armed with an analytical expression for the reachable repertoire, we now set out to formalize the

conditions under which the re-aiming strategy can succeed under linear dynamics. We first use equation

43 to evaluate the BMI readout at the endpoint time tend,

y
(
tend; θ̃

)
= DMend︸ ︷︷ ︸

Λend

θ̃ + D (Nendr(0)− µ)︸ ︷︷ ︸
y(tend;0)

. (46)
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We have defined here two quantities. The 2D vector y(tend; 0) is the BMI readout at the endpoint time

in the absence of any input, θ̃ = 0 (in which case r(tend; θ̃) = N(tend)r(0)). The 2× K̃ matrix Λend is the

alignment matrix, composed of the product between the decoding matrix D and the reachable repertoire

matrix Mend. Its name derives from the fact that each of its elements are dot products between the

dimensions of the reachable repertoire (the columns of Mend, which we notate by m1,m2, . . . ,mK̃) and

the decoding dimensions of the BMI decoder (the rows of D, which we notate by d1,d2),

Λend,ij = di ·mj .

Thus, if the reachable repertoire spans dimensions orthogonal to the decoder’s, the elements of the

alignemnt matrix will be 0. On the other hand, if they are aligned, then the elements of Λend will be

large. This alignment is thus critical for the re-aiming strategy to succeed: the K̃-dimensional motor

command θ̃ only influences the BMI readout at time tend via the alignment matrix Λend, so if the

alignment is low then these low-dimensional motor commands won’t be able to sufficiently modulate the

readouts to solve the task at hand.

To quantify this precisely in the context of a specific task, we next evaluate the mean squared error

achieved by the optimal re-aiming solutions for a center-out reaching task. We first plug in equations 46

and 42 into equation 4 to solve for the re-aiming solution to a given target readout y∗,

ˆ̃
θ(y∗) = arg min

θ̃

∥∥∥Λendθ̃ + y(tend; 0)− y∗
∥∥∥2 +

γ

M
‖Ũθ̃‖2

=
(
ΛT

endΛend +
γ

M
ŨT Ũ

)−1
ΛT

end (y∗ − y(tend; 0))

=

(
1

M
ŨT Ũ

)−1
ΛT

end

(
Λend

(
1

M
ŨT Ũ

)−1
ΛT

end + γI

)−1
(y∗ − y(tend; 0)) , (47)

where the last line follows from the Woodbury Matrix Inversion Lemma. The squared error achieved by

this optimal re-aiming solution is then given by

error w.r.t. y∗ =
∥∥∥Λend

ˆ̃
θ(y∗) + y(tend; 0)− y∗

∥∥∥2
=

∥∥∥∥∥∥
Λend

(
1

M
ŨT Ũ

)−1
ΛT

end

(
Λend

(
1

M
ŨT Ũ

)−1
ΛT

end + γI

)−1
− I

 (y∗ − y(tend; 0))

∥∥∥∥∥∥
2

=
∥∥∥− ( 1

γ
Λend

(
1

M
ŨT Ũ

)−1
ΛT

end︸ ︷︷ ︸
Σy

+I
)−1

(y∗ − y(tend; 0))
∥∥∥2.

Averaging this quantity over target readouts on the unit circle (reflecting the radial arrangement of the
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reach targets in a center-out reaching task), we obtain the mean squared error,

mean squared error =

〈∥∥∥− ( 1

γ
Σy + I

)−1
(y∗ − y(tend; 0))

∥∥∥2〉
y∗

=

〈∥∥∥( 1

γ
Σy + I

)−1
y∗
∥∥∥2〉

y∗
+
∥∥∥( 1

γ
Σy + I

)−1
y(tend; 0)

∥∥∥2
=

1

2

∥∥∥( 1

γ
Σy + I

)−1∥∥∥2
F

+
∥∥∥( 1

γ
Σy + I

)−1
y(tend; 0)

∥∥∥2
where ‖ · ‖F denotes the Frobenius norm. In the second line and third lines above we respectively used

the following properties of the uniform distribution on the unit circle:

〈y∗〉 = 0〈
y∗y∗T

〉
=

1

2
I.

Noting that the mean squared error is minimized when the initial conditions are zero (so that the second

term above goes to 0), we can derive the following lower bound on the mean squared error, in terms of

the eigenvalues σ2
1 , σ

2
2 of the matrix Σy,

mean squared error ≥ 1

2

∥∥∥( 1

γ
Σy + I

)−1∥∥∥2
F

=
1

2

2∑
i=1

1(
1
γσ

2
i + 1

)2 . (48)

In other words, the larger the eigenvalues of Σy, the lower the mean squared error.

What does this mean in terms of the reachable repertoire and its alignment with the decoder? We can

get some intuition for this equation by exploiting the random structure of the encoding weight matrix

U to simplify our expression for Σy. When the encoding weights are identically and independently

distributed with 0 mean and unit variance (as they were in our simulations), the central limit theorem

gives us that

1

M

[
ŨT Ũ

]
ij

=
1

M

M∑
k=1

ŨkiŨkj = 〈ŨkiŨkj〉+O
(

1√
M

)
= δij +O

(
1√
M

)
,

where the angular brackets 〈·〉 here denote an expectation over the distribution of the encoding weights

and δij denotes the Kronecker delta (δij = 1 if i = j, else δij = 0). In the large M limit, then, we can

make the approximation 1
M ŨT Ũ ≈ I, which implies

Σy ≈ ΛendΛ
T
end

In other words, the eigenvalues of Σy are approximately equal to the squared singular values of the

alignment matrix Λend. Thus, the larger the singular values of the alignment matrix – that is, the larger
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the alignment between D and Mend – the lower the mean squared error achievable by the re-aiming

strategy. This is simply a mathematical formalization of the same argument expressed in chapter 1:

because the reachable repertoire is limited to a subspace of the full population activity state space, it

must be well aligned with the decoding matrix for re-aiming to succeed.

Another way to interpret Σy is as the covariance of the readouts reachable with K̃ aiming variables.

We can quantify this by the covariance of readouts generated by 0-mean independently distributed aiming

variables with unit variance, cov[θ̃] = I, in which case we have that

cov
[
y
(
tend; θ̃

)]
= D

(
cov

[
r
(
tend; θ̃

)])
DT = DMendM

T
endD

T = ΛendΛ
T
end ≈ Σy. (49)

The eigenvalues of Σy thus approximately quantify how spread out the reachable readouts are over the

workspace. More precisely, σ1, σ2 approximately equal the standard deviation of the reachable readouts

along two orthogonal dimensions of the workspace (given by the eigenvectors of Σy). If the reachable

readouts are spread over a large region of the workspace, then σ1 and σ2 will be large and the right-hand

side of equation 48 will be small – the widely spread out reachable readouts will include the target

readouts so the minimal mean squared error will be low. If, on the other hand, the reachable readouts

are concentrated in a small region of the workspace, the standard deviations σ1 and σ2 will be small and

the minimal mean squared error will be high – the limited set of reachable readouts does not include the

target readouts, which therefore can’t be reached.

Equation 48 accounts for why low-dimensional re-aiming fails for OMP’s, which are less aligned

with the reachable repertoire and therefore lead to reachable readouts confined to a small region of the

workspace (cf. fig. 3d in chapter 1). In figure 13a we quantify this alignment using the singular values of

the alignment matrix, σ1, σ2, which we refer to as the reachable readout standard deviation (as per the

discussion in the preceding paragraph). This figure shows the reachable readout standard deviation for

the baseline decoder and several sampled WMP’s and OMP’s (fit to a randomly connected linear network,

see figure caption for further details), under re-aiming with K̃ = 2 motor variables. As expected, the

reachable repertoire is more aligned with WMP’s than OMP’s, such that the reachable readouts under

OMP’s have much smaller standard deviation, well below those under the baseline decoder alignment

matrix. This entails that, with OMP’s, much stronger inputs are needed to reach the target readouts.

As a result, given a fixed metabolic cost γ, the minimal mean squared error achievable by re-aiming is

necessarily higher for OMP’s than for the baseline decoder or WMP’s. This is quantified in figure 13b,

where we plot the theoretical lower bound on the MSE given by equation 48 as a function of γ, for the

baseline decoder, an example WMP, and an example OMP (whose alignment matrix singular values are

marked by stars in figure 13a). The dashed gray line marks the value of γ for which the minimal mean

squared error under the baseline decoder is equal to .05; the minimal mean squared error at this value
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of γ is substantially higher for the OMP than for the WMP and baseline decoder.

What happens under generalized re-aiming? Formally, as we increase the number of motor variables

used for re-aiming, K̃, we add columns to the N×K̃ reachable repertoire matrix Mend. This corresponds

to an expansion in the subspace occupied by the reachable repertoire, thus increasing its overlap with the

rows of any given decoding matrix D. This is shown in figure 13c, where we plot the reachable readout

standard deviation under each sampled OMP as a function of K̃. Evidently, the standard deviation of

the reachable readouts increases monotonically with the number of motor variables used for re-aiming,

K̃. This means that, at high values of K̃, low mean squared error can be achieved for these OMP’s. This

is illustrated in figure 13d, which shows the resulting change in the lower bound on the mean squared

error for the same example OMP shown in figure 13b.

We briefly remark that the theoretical bounds on the mean squared error shown in figures 13b and

13d are approximate, as we approximated Σy with ΛendΛ
T
end when evaluating equation 48. As discussed

above, this approximation is only exact in the limit of M →∞. However, we verified in simulations (not

shown) that this approximation is a good one even for finite M (we used M = 256), at least when the

encoding weights are identically and independently distributed, Uij ∼ N (0, 1). We did not test other

distributions of encoding weights. The encoding weights effectively determine the directional tuning

curves of the neurons, so this assumption is equivalent to assuming a uniform distribution of preferred

directions in the motor cortical population. When encoding weights are not uniformly distributed, some

individual aiming variables can incur higher costs than others (through the quadratic penalty term

‖Ũθ̃‖2 = θ̃T ŨT Ũθ̃), in which case the reachable repertoire covariance, Σy, – which is evaluated as an

expectation over a uniform distribution on the reachable repertoire – no longer suffices to explain the

mean squared error. Concetpually, however, all of the above insights remain true.

Finally, we note that these theoretical results immediately extend to any spatiotemporally separable

inputs of the form

u(θ) = Ũθ̃a(t), (50)

where a(t) determines the temporal profile of each input. In our simulations, this was a constant,

a(t) = 1. But other reasonable choices might be a transient delta function a(t) = δ(t) (effectively

setting the initial conditions of the network [Hennequin et al., 2014, Sussillo et al., 2015]), or a slower

transient like a difference of exponentials a(t) = e−t/τ1 − e−t/τ2 (resembling the shape of a post-synaptic

current [Dayan and Abbott, 2001b]). Ultimately, however, the choice of a(t) only influences the reachable

repertoire matrix, but does not alter equation 48 – the lower bound on the mean squared error still

depends on the alignment between the decoder and the reachable repertoire in exactly the same way.

To see this, note that the only step that changes in the above derivation is the solution to the RNN
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Figure 13: Theoretical bounds on re-aiming under linear dynamics.
(13a) Reachable readout standard deviation under the baseline decoder, 20 WMP’s, 60 OMP’s, with K̃ = 2 aiming variables

(square root of eigenvalues of Σy under large M approximation 1
M

ŨT Ũ ≈ I). We order the standard deviations by their
magnitude, so in each case σ1 is larger and σ2 is smaller. For WMP’s and OMP’s, the bar height shows the median
and the overlaid data points correspond to individual decoders. The stars mark example representative decoders analyzed
in subsequent panels. All decoders were fit to the same randomly connected network using exactly the same procedure
described in chapter 1. The network was constructed exactly as that used in the results section of chapter 1, but with
an identity activation function, φ(x) = x, and a smaller time constant, τ = 50ms, chosen to ensure the linear dynamics
yield more realistic calibration task responses (slower time constants lead to extremely low-dimensional responses under
linear dynamics). These responses were significantly lower-dimensional than those of the non-linear network, so we used
` = 5 dimensions for defining the intrinsic manifold and correspondingly adjusted the criteria for subsampling WMP’s
and OMP’s (cf. section I.4.2.3). This lower dimensionality of the intrinsic manifold meant that there were fewer possible
within- and outside- manifold perturbations to choose from, so we found only 20 WMP’s and 60 OMP’s satisfying these
criteria.
(13b) Theoretical lower bound on mean squared error (MSE) in a center-out reaching task (equation 48), for the baseline
decoder, one WMP, and one OMP (whose reachable readout standard deviations are marked by stars in previous panel),

with K̃ = 2. This lower bound is plotted as a function of the metabolic cost weight γ. The vertical gray dashed line shows
the metatbolic cost weight at which the minimal MSE is .05 for the baseline decoder. The open circles on this line mark
the minimal MSE achievable under each decoder at this value of γ. Note that this is much lower for the WMP than the
OMP.
(13c) Reachable readout standard deviation for OMP’s, with different numbers of aiming variables, K̃. As in previous
panel σ1 denotes the larger of the two standard deviations, and σ2 the smaller one. Each line corresponds to a different
OMP, with the darker line marking the example OMP shown in previous panel.
(13d) Theoretical lower bound on mean squared error for example OMP (same one as in previous panels), under different

numbers of aiming variables, K̃. The minimal mean squared error for the baseline decoder with K̃ = 2 is overlaid as a
dotted black curve. The vertical gray line is the same as that shown in panel 13b.
(13e) Reachable readout standard deviation under the same decoders as in previous panels, with K̃ = 2 time-varying

aiming variables (square root of eigenvalues of Σ̃y under large M approximation 1
M

ŨT Ũ ≈ I). Stars mark the same
example decoders as in previous panels.
(13f) Theoretical lower bound on mean squared error under time-varying aiming variables (equation 60), for the same three
example decoders. The vertical gray dashed line again shows the metabolic cost weight at which the minimal MSE is .05
for the baseline decoder, now a much larger value than in panel 13b because allowing the aiming variables to vary freely in
time permits much more energy-efficient control.

dynamics (eqn. 44), which now takes the form

r
(
t; θ̃
)

= eAtr(0) +

(∫ t

0

eA(t−t′)a(t′)dt′
)

Bθ̃.

Thus, we simply re-define the reachable repertoire matrix by Mend =
∫ tend
0

eA(tend−t′)a(t′)dt′B and the
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rest of the derivation follows.

II.2.2 Time-varying motor variables: the reachable repertoire and the con-

trollability Gramian

Equation 50 is a severe constraint on the upstream input to motor cortex. It assumes that each input ui

has exactly the same temporal profile, and that learning comprises optimizing only the spatial pattern

of input (determined by the motor variables in θ̃), while keeping its temporal evolution fixed. This helps

keep the dimensionality of the learning problem low: if the full timecourses of each motor variable or

input had to be individually optimized, there would be many more parameters to learn in addition to the

K̃ aiming variables parameterizing the spatial distribution of the input. We reiterate the fact that high-

dimensional optimization is particularly difficult in the BMI learning setting, in which the motor system

has to learn to control a novel effector for which no explicit information is available (unlike in natural

motor learning, in which case the motor system has available to it vast information about its effectors from

centuries of evolution, years of experience controlling them, and instantaneous proprioceptive feedback).

That said, we consider here the case where we allow each optimized motor variable to independently

vary in time, to obtain a more complete understanding of the limits of the re-aiming learning strategy.

This will moreover reveal connections between our formalism of the reachable repertoire and standard

mathematical formalisms in optimal control.

When we allow the aiming variables to vary in time, our re-aiming optimization problem (eq. 4),

which originally required optimizing over the space of K̃-dimensional vectors, now becomes a variational

optimization problem, in which we optimize over the space of K̃-dimensional functions of time,

ˆ̃
θ(t; y∗) = arg min

θ̃(t)

∥∥y(tend; θ̃
)
− y∗

∥∥2 +
γ

M

M∑
i=1

1

tend

∫ tend

0

ui
(
θ̃(t)

)2
dt, (51)

where y
(
tend; θ̃

)
now indicates the readout at time tend after driving the motor cortical network with the

full timecourses of the aiming variables, θ̃(t) =

[
θ1(t) θ2(t) . . . θK̃(t)

]
(as before, we will assume

that any motor variables not used for re-aiming are fixed to 0, i.e. θK̃+1(t) = θK̃+2(t) = . . . = θK(t) = 0).

Note that we have changed the metabolic cost term to be an average over time, imposing a constraint

on their entire timecourses. We can solve this problem using the calculus of variations. The result is

Pontryagin’s minimum principle, which states that the solution can be expressed in terms of the so-called

control Hamiltonian,

H
(
r, θ̃,λ

)
= λT

dr

dt
+

γ

tendM
‖u(θ̃)‖2.

The first term depends on the network’s dynamics (eqn. 1), and the second term depends on the time-

dependent components of the cost function (namely, the second term on the right-hand side of equation

86



51). The N -dimensional vector λ(t) is a vector of time-varying Lagrange multipliers called the costate

vector, with dynamics given by

− dλ

dt
=
∂H

∂r
=

(
∂

∂r

dr

dt

)T
λ, (52)

and boundary conditions determined by the terminal cost component of the cost function (the first term

on the right-hand side of equation 51, i.e. the endpoint error),

λ(tend) =
∂

∂r

[∥∥y(tend; θ̃
)
− y∗

∥∥2] . (53)

Pontryagin’s minimum principle states that the solution to equation 51 is given by the global minimum

of the control Hamiltonian at each point in time. If the control Hamiltonian has a unique optimum, we

can find it by solving the equation

∂H

∂θ̃

∣∣∣∣∣
r(t;

ˆ̃
θ),

ˆ̃
θ(t),λ̂(t)

= 0, (54)

where r(t;
ˆ̃
θ) and λ̂(t) correspond to the network and costate dynamics under the optimal aiming vari-

ables,
ˆ̃
θ(t).

Under linear dynamics, the control Hamiltonian indeed has a unique optimum and we can derive it

analytically. Plugging in the linear dynamics (eqn. 43) and inputs (eqn. 42) into the control Hamiltonian,

we can derive from equations 52, 53, and 54 the following system of equations,

−dλ

dt
= ATλ (55a)

λ(tend) = 2DT (y
(
tend; θ̃

)
− y∗) (55b)

ˆ̃
θ(t) = − tend

2γ

(
1

M
ŨT Ũ

)−1
BT λ̂(t), (55c)

which, together with the equation for the network dynamics (eqn. 43), form a complete set of self-

consistent equations that we can solve for
ˆ̃
θ(t). We first solve equation 55a to obtain

λ̂(t) = eA
T (tend−t)λ̂(tend) (56)

⇒ ˆ̃
θ(t) = − tend

2γ

(
1

M
ŨT Ũ

)−1
BT eA

T (tend−t)λ̂(tend). (57)

To evaluate the boundary condition, λ̂(tend), we derive an expression for y
(
tend;

ˆ̃
θ
)

in terms of λ̂(tend),

which we can then plug into equation 55b to obtain a self-consistent equation in λ̂(tend) that we can

solve. Plugging in our expression for the aiming variables (eqn. 57) into the network dynamics (eqn. 43)
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and solving the resulting ordinary differential equation, we obtain

r(tend;
ˆ̃
θ) = Nendr(0)− tend

2γ

∫ tend

0

eA(tend−t)B

(
1

M
ŨT Ũ

)−1
BT eA

T (tend−t)dt︸ ︷︷ ︸
P

λ̂(tend). (58)

The matrix P can be exactly evaluated by solving a Lyapunov equation2. Plugging this into the BMI

readout equation (eqn. 3) to obtain y
(
tend;

ˆ̃
θ
)
, plugging this into equation 55b, and solving for λ̂(tend),

we then obtain

λ̂(tend) = 2DT

(
tend
γ

DPDT + I

)−1
(y(tend; 0)− y∗) . (59)

We can then plug this into equation 57 to obtain our final solution for
ˆ̃
θ(t).

To quantify the effectiveness of these optimal inputs, we next derive the minimal mean squared error

achievable in a center-out reaching task, as we did in the previous section. We first derive an expression

for y
(
tend;

ˆ̃
θ
)

in terms of the target readout, y∗, by plugging in equation 59 into equation 58 and plugging

this into the BMI readout equation (eqn. 3). Plugging this into the squared error, we obtain

error w.r.t. y∗ =

∥∥∥∥∥
(
tend

γ
DPDT

(
tend
γ

DPDT + I

)−1
− I

)
(y∗ − y(tend; 0))

∥∥∥∥∥
2

=
∥∥∥− ( tend

γ
DPDT︸ ︷︷ ︸

Σ̃y

+I
)−1

(y∗ − y(tend; 0))
∥∥∥2

Averaging this quantity over radial reach targets (cf. derivation of equation 48), we arrive at the following

lower bound on the mean squared error,

mean squared error ≥ 1

2

∥∥∥( tend
γ

Σ̃y + I
)−1∥∥∥2

F
=

1

2

2∑
i=1

1(
tend
γ σ2

i + 1
)2 , (60)

where σ2
1 , σ

2
2 are the eigenvalues of the 2× 2 matrix Σ̃y. This is an analagous result to equation 48, but

with the eigenvalues of the matrix Σ̃y = DPDT taking the place of those of the matrix Σy = ΛendΛ
T
end

2Using the change of variables t′ = tend − t, we can express the matrix P as

P =

∫ tend

0
eAt′B

(
1

M
ŨT Ũ

)−1

BT eA
T t′dt′

=

∫ ∞
0

eAt′B

(
1

M
ŨT Ũ

)−1

BT eA
T t′dt′︸ ︷︷ ︸

P∞

−
∫ ∞
tend

eAt′B

(
1

M
ŨT Ũ

)−1

BT eA
T t′dt′

= P∞ −
∫ ∞
0

eA(t′′+tend)B

(
1

M
ŨT Ũ

)−1

BT eA
T (t′′+tend)dt′′

= P∞ − eAtendP∞e
AT tend ,

where in the penultimate line we used the substitution t′′ = t′ − tend. The matrix P∞ is then given by the solution to the
Lyapunov equation

AP∞ + P∞AT + B

(
1

M
ŨT Ũ

)−1

BT = 0,

which we solved using the Python function solve lyapunov from the scipy linalg subpackage.
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(note also the presence of tend on the right-hand side, which we will return to below).

This result accordingly carries an analagous interpretation in terms of the readouts reachable with K̃

variables. Recall that the matrix Σy is approximately given by the covariance of the readouts reachable

with K̃ spatiotemporally separable aiming variables, quantified by averaging over readouts produced by 0-

mean independently distributed aiming variables with a fixed temporal profile (eqn. 49). The matrix Σ̃y

is its analog in the case of aiming variables varying freely in time: the covariance of the readouts reachable

with K̃ time-varying aiming variables, quantified by averaging over readouts produced by aiming variables

following independent 0-mean white noise processes. To see that this is the case, note that, if we take

the approximation 1
M ŨT Ũ ≈ I, then the N × N matrix P is the so-called finite-time controllability

Gramian. Under the dynamics in equation 43, this matrix is equal to the covariance of the network

activity at time tend, r(tend; θ̃), when driven by independent white noise processes θ1(t), θ2(t), . . . , θK̃(t)

[Kwakernaak and Sivan, 1972, Kao and Hennequin, 2019]. The matrix DPDT is thus the covariance of

the readouts at that time, y(tend; θ̃).

The controllability Gramian P thus takes the place of the matrix MendM
T
end. This latter matrix can

be seen as the covariance over activity patterns in the reachable repertoire (eqn. 49; see also section I.4.4

for a more formal derivation of this fact). The matrix P is thus its analog when the aiming variables are

allowed to vary freely in time, providing an extension of the reachable repertoire formalism to this more

complex setting.

Recently, Kao & Hennequin (2019) proposed to use the controllability Gramian to quantify the

“directions in state space that the network activity is most inclined to visit.” Our analysis reveals that

using the controllability Gramian to model the reachable repertoire implicitly assumes that no constraints

are placed on the spatiotemporal structure of the upstream inputs. This may not be the case during

learning, in which such constraints may play a critical role in reducing the number of parameters to

be learned to facilitate efficient learning. In our model of re-aiming, this is done by enforcing that the

aiming variables be spatiotemporally separable, in which case the matrix MendM
T
end, rather than P,

provides the correct description of the directions encompassed by the network’s reachable repertoire.

Similarly, the spatiotemporal structure of the inputs driving motor cortex during the calibration task

will affect the shape of the so-called intrinsic manifold estimated from the population activity evoked

by this task. Since the calibration task typically comprises viewing spatiotemporally simple stimuli or

executing simple behaviors, it stands to reason that the inputs will also be spatiotemporally simple. This

suggests the controllability Gramian might not be a good model of the intrinsic manifold either.

We can see how removing constraints on the aiming variables affects the re-aiming strategy by com-

paring the readouts reachable with aiming variables constant in time (equation 48) and aiming variables

varying freely in time (equation 60). Figure 13e shows the standard deviation of the readouts reachable

with K̃ = 2 time-varying aiming variables, under the same baseline and perturbed decoders used in figure
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a b c

Figure 14: Re-aiming under linear dynamics does not replicate empirical biases in short-term learning.
(14a) Mean maximal readout strength over all 20 sampled WMP’s, obtained following the same procedure used in figure
4c. Dashed line shows the mean readout strength during best trials of WMP control in the data of Sadtler et al. (2014),
and curves are normalized to their peaks to aid comparison of model and experimental data, exactly as in figure 4c. Error
bars show standard error of the mean.
(14b) Activity patterns from the reachable repertoire with K̃ = 2 aiming variables, at endpoint time tend = 1000ms
(following the same procedure as in chapter 1 for selecting the maximum accessible motor command magnitude smax,
cf. section I.3.4). Calibration task responses to each of the eight radial reach stimuli are overlaid in shades of orange.
Formatting conventions exactly as in figures 3c and 5b. These N -dimensional activity patterns are projected onto the top
two principal components of the reachable repertoire (PC1 and PC2) and the orthogonal dimension capturing the most
calibration task response variance (PC3). The reachable repertoire is exactly 2D, so PC1 and PC2 capture 100% of the
variance in activity patterns within it (cf. equation 45). The small open black circle at the center marks the origin of the
state space. The orange and purple open circles at the origin mark the calibration task mean µ the reachable repertoire
mean r̄ in purple, respectively. The latter is barely visible because they overlap almost completely.
(14c) Readouts reachable through the example WMP from figure 13. The reachable readouts with largest readout strengths
in each target direction are marked in green, following the same conventions as figure 4a. Maximal readout strengths are
evidently much higher for the western and eastern target directions than the northern and southern targets, yielding a
bimodal bias.

13a, now quantified by the square roots of the eigenvalues of Σ̃y instead of Σy. Note that the reachable

readout standard deviation under OMP’s is more similar to that under the baseline decoder in this case

(compare to fig. 13a). This reflects the fact that the extra flexibility in the spatiotemporal structure of

the aiming variables permits the production of activity patterns outside the intrinsic manifold even with

only K̃ = 2 aiming variables. Recall that the intrinsic manifold is measured from activity generated by

the calibration task stimuli, which are modelled by driving the network with constant motor variables

mirroring the spatiotemporal structure of the stimuli. Permitting the motor variables to vary in time for

re-aiming naturally allows the production of novel activity patterns not evoked by the calibration task.

The behavioral outcome is that the minimum achievable mean squared error with OMP’s is substantially

lower with time-varying aiming variables than with constant aiming variables (compare blue curves in

figures 13b and 13f).

Note as well that lower mean squared error is achievable with much higher metabolic cost weights

(compare horizontal axes of figures 13b and 13f). Mathematically, this is due to the presence of the factor

of tend in the denominator on the right-hand side of equation 60. Conceptually, this reflects the fact that

the aiming variables are being used much more efficiently. The extra flexibility provided by allowing the

aiming variables to vary freely in time permits much more efficient control of the network’s dynamics.
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II.2.3 Linear dynamics predict biases not present in empirical data

These simple linear network dynamics are able to successfully model differences in WMP and OMP

learning. Can they also reproduce the biases observed in short term learning of WMP’s? It turns out

the answer is no: instead of a unimodal bias, the linear network produces a bimodal bias (fig. 14a). We

dedicate this section to discussing why, as the reasons behind this reveal the key geometric properties of

the reachable repertoire needed to replicate the unimodal bias observed in the data. These properties

highlight the important role played by the rectified linear activation function, φ(·), in the dynamics of

the motor cortical model presented in chapter 1 (equation 1).

We begin by recalling that the unimodal bias observed in chapter 1 arises from a particular geometric

relationship between the reachable repertoire and the calibration task responses (via equations 6 and 7).

Because firing rates are strictly positive under the rectified linear activation function, these two ensembles

of activity patterns reside strictly within the all-positive orthant of state space. Their means, r̄ and µ,

are thus non-zero vectors, also residing within this orthant. Both point in this similar direction but differ

in their magnitudes (fig. 5b) because the reachable repertoire includes activity patterns generated by

motor commands with stronger magnitudes (fig. 3b).

Under linear dynamics, in contrast, activity patterns are not isolated to a single orthant of state

space. Because firing rates can be positive or negative, activity patterns can be displaced from the

origin along any direction in state space, making it possible for them to average to 0. In fact, under

silent initial conditions (r(0) ≈ 0), both the reachable repertoire and calibration task responses are mean

03. Notably, this is the case independently of the magnitudes of the motor commands used to generate

the activity patterns in the reachable repertoire. This is visualized in figure 14b, in which we plot a

PCA projection of the reachable repertoire under linear dynamics and silent initial conditions, with the

network’s responses to each calibration task stimulus overlaid. Both of these ensembles of activity are

centered at the origin, with stronger motor command magnitudes producing activity patterns further

away from the origin but still evenly distributed around it.

The result is that the two means match, r̄ ≈ µ ≈ 0 (cf. footnote 3), so the reachable readouts are

centered at the origin (equation 6),

ȳ = D (r̄− µ) ≈ 0

3 From our above expression for the reachable repertoire (equation 45) it is straight-forward to see that the reachable
repertoire mean is centered at the propagated initial conditions,

r̄ = N(tend)r(0)

(this is more rigorously derived in section I.4.4). The mean of the calibration task responses is given by

µ = 〈〈r(t; θ̃)〉t〉θ̃ = 〈N(t)〉tr(0) + 〈M(t)〉t〈θ̃〉θ̃ = 〈N(t)〉tr(0)

where 〈·〉t is an expectation over the duration of each calibration task trial (from t = 0 to t = 1000ms), and 〈·〉
θ̃

is an
expectation over the 2D motor commands elicited by the calibration task stimuli. These are given by the coordinates of
the eight radial reach targets, which are evenly distributed on the unit circle (see Methods) and therefore have zero mean,

〈θ̃〉
θ̃

= 0. It thus follows that, if r(0) ≈ 0, then r̄ ≈ µ ≈ 0.
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This can be seen in figure 14c, where we plot the readouts reachable through one example WMP. Unlike

with the non-linear network analyzed in chapter 1, the readouts reachable under linear dynamics are

centered at the origin (compare to figs. 4a, 5a), eliminating the source of the unimodal bias observed in

chapter 1. However, it is evident in figure 14c that biases still exist, as larger readouts can be produced

in some directions than others4. But note the elliptical symmetry of the reachable readouts: the readout

strengths that can be produced in one direction match those in the opposite direction. Indeed, it is

easy to verify that, under linear dynamics and silent initial conditions, the maximal readout strength

satisfies5

ρmax (y∗) = ρmax (−y∗) .

Any biases in maximal readout strength are thus necessarily bimodal, with peaks separated by 180o.

This is exactly what we see in the maximal readout strength curve in figure 14a.

In sum, the absence of a rectified linearity permits activity patterns to live anywhere in state space,

which in turn means that the reachable repertoire and calibration task responses both average to 0

under silent initial conditions. This eliminates the source of the unimodal bias exhibited by the non-

linear dynamics analyzed in chapter 1. Our model of re-aiming only captures the empirical pattern

of biases during short-term WMP learning when positive firing rates are enforced via a rectified linear

activation function in the dynamics. This restricts the generated activity patterns to the positive orthant

of state space, ensuring that the reachable repertoire mean and calibration task mean differ when the

magnitudes of the motor commands underlying these two ensembles of activity do, shifting the centroid

of the reachable readouts away from the origin.

Discussion

As the saying goes, “all models are wrong, but some are useful” [Box, 1976]. In this chapter we analyzed

a simple model that we knew was wrong – a model of motor cortical population activity that admitted

negative firing rates. But due to its simple linear dynamics, we were able to deeply understand it through

mathematical analysis. First, this allowed us to more precisely state and derive the geometric arguments

made in chapter 1 about why the re-aiming strategy succeeds for WMP’s but not for OMP’s. Second,

4We can quantify this by the covariance of the reachable readouts, ΛendΛT
end (equation 49), which tells us how spread out

the readouts are along each direction in the workspace; the directions with strongest/weakest readouts are the directions
with highest/lowest spread. These two directions are the eigenvectors of the covariance, and the spread of the readouts
along these two directions are the (square roots of the) associated eigenvalues, σ1, σ2. If these two eigenvalues are the
same, then the readouts are equally spread out along the two directions, and equally strong readouts can be produced in
both direction. If, on the other hand, they are different, then the readouts are more spread out in one direction than the
other, meaning that stronger readouts can be produced in that direction. Indeed, we find that the two eigenvalues of the
reachable readout are typically very different under WMP’s, but less so under the baseline decoder (fig. 13a).

5

ρmax (y∗) = max
‖θ̃‖≤smax

y∗ · y(tend; θ̃) = max
‖θ̃‖≤smax

y∗ ·Λendθ̃ = smax‖ΛT
endy∗‖ = smax‖ −ΛT

endy∗‖ = ρmax (−y∗)

The first equality follows by definition (equation 20) and the second equality from equation 46 with r(0) = 0. The third
equality assumes that Λend has full rank 2.
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this allowed us to easily extend the concept of the reachable repertoire to a more complex setting, in

which the aiming variables are allowed to fluctuate in time. In addition to extending the validity of

our arguments from chapter 1 to this new setting, mathematical analysis of the re-aiming solutions in

this case revealed deep connections to classical control-theoretic concepts and previous approaches to

modeling the intrinisc manifold [Kao and Hennequin, 2018, Kao and Hennequin, 2019].

Most importantly, analysis of this simplified linear model actually provided insight into the properties

of the non-linear model from chapter 1. By analyzing the reachable reperotire under linear dynamics,

we were able to tease out the precise influence of the rectified linear activation function on its geometry.

This revealed the importance of modeling the non-negativity of firing rates for capturing the behavioral

biases present in the WMP learning data from Sadtler et al. (2014).

It is important to acknowledge, however, that many more assumptions beyond a linear activation

function were implicit in our analyses in this chapter. One of the most important such assumptions

was that of silent initial conditions, r(0) = 0. This assumption made both in the linear analyses in

this chapter as well as in our simulations of the non-linear network in chapter 1. Assuming completely

silent initial conditions is a strong assumption, but it is a well motivated one: the primate does not

know what the reach target will be at the start of the trial (so the initial conditions should be roughly

the same across all trials), and, under linear dynamics, the mean squared error is minimized when the

initial conditions are silent (cf. derivation of inequality 48). On a more practical note, numerical and

analytical treatment of the non-linear network becomes substantially more difficult under non-zero initial

conditions (cf. equation 10), so we leave a deeper analysis along these lines for future work.
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Chapter 3

All of the models we have considered so far are models of open-loop control: once the optimal aim-

ing variables are specified (i.e. by solving equation 4), they are used to drive the motor cortical

population for the duration of the movement, unchanged until the pre-specified endpoint time tend.

Any errors encountered along the way – either due to noise or suboptimal specification of the motor

commands – are thus ignored. A better strategy would be closed-loop control, wherein errors ob-

served through sensory feedback are used to adaptively modify the aiming variables online. Under

this strategy, errors that are encountered along the way can be corrected, thus improving the accu-

racy of the desired BMI output. Such closed-loop control strategies are well known to be optimal in

the presence of noise [Kwakernaak and Sivan, 1972], and humans motor behavior exhibits hallmarks of

(often optimal) closed-loop control [Keele and Posner, 1968, Todorov and Jordan, 2002, Todorov, 2004,

Scott, 2004, Shadmehr et al., 2010].

Of particular relevance here is evidence that non-human primates engage in closed-loop control in

BMI tasks [Golub et al., 2015, Stavisky et al., 2017, Shanechi et al., 2017]. This is perhaps most evident

in the experiments done by Stavisky et al. (2017), who studied motor cortical dynamics following a

sudden perturbation of the cursor position during a center-out BMI reaching task. The authors observed

that motor cortical activity was modulated about 80ms after the perturbation, in a perturbation- and

decoder- specific manner. This indicates that sensory feedback indeed influences motor cortical activity

in a closed-loop manner over the course of a BMI reach. Moreover, the authors found that the way

in which this sensory information was fed back to motor cortex was tailored specifically to the task at

hand: the population response to the cursor perturbation was initially isolated to a subspace orthogonal

to the BMI decoder, requiring about 50ms to align itself with the BMI decoder’s decoding space so as to

produce a corrective movement of the BMI cursor. These observations provide strong evidence that the

motor system is indeed exploiting continuous sensory feedback to adaptively modify the BMI readouts.

In this chapter, we consider re-aiming-based models of closed-loop control, in which the aiming

variables are continuously updated in response to sensory feedback. We first derive a model of closed-

loop control from our original re-aiming objective, yielding a simple and intuitive architecture for closed-

loop re-aiming, under linear dynamics. We will find that the model derived from this objective in fact

suffers from severe suboptimalities, which can be readily understood from its transparent analytical

derivation. In the next part, we attempt to address these suboptimalities by parameterizing the closed-
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loop architecture of the first model and optimizing its parameters for center-out reaching. This will allow

us to build models of closed-loop control under non-linear dynamics that are tailored to a given BMI

decoder. We will evaluate these models of closed-loop re-aiming on the BMI learning task of Sadtler et

al. (2014), and find that the same differences between WMP and OMP learning identified in the previous

chapters hold even in this more complex – and biologically relevant – setting.

Results

III.1.1 The limit of tend → 0: myopic closed-loop re-aiming

Consider what happens after executing a movement according to our simple open-loop control model of

re-aiming. First, the subject’s motor system computes the optimal motor command, θ̂(y∗), according

to equation 4. This motor command is then used to drive the motor cortical population, leading to

the production of the BMI readout y(tend; θ̂(y∗)) at the endoint time tend. Suppose now that, due to

noise or metabolic constraints, this readout does not exactly match the target readout, y∗. A reasonable

action to take at this point might be to compute a new motor command that will produce a readout

closer to the target. One possible strategy is to simply re-aim again: solve equation 4 again, but now

with the initial conditions, r(0), fixed to the current motor cortical firing rates, r(tend). This will yield

a new motor command that guarantees to produce a readout at time 2tend near the target, hopefully

closer than it was at time tend. Iterating this over and over again leads to a kind of intermittent closed-

loop control strategy, whereby motor commands are updated every tendms. We refer to this strategy as

intermittent re-aiming. There is evidence that humans engage in such forms of intermittent closed-loop

control [Gross et al., 2002, Gawthrop et al., 2011].

To get a better handle of what this strategy entails, we consider the case of linear dynamics (i.e.

an identity activation function, φ(x) = x), for which we have an explicit expression for the optimal

aiming variables,
ˆ̃
θ(y∗) =

[
θ̂1 θ̂2 . . . θ̂K̃

]
. Specifically, we have that, for a given target y∗ and

initial condition r(0), the optimal aiming variables take the form

ˆ̃
θ = G(tend)

(
y∗ −D (N(tend)r(0)− µ)

)
, (61)

where the N×N matrix N(tend) and K̃×2 matrix G(tend) depend on the endpoint time tend, the network’s

intrinsic dynamics, and the BMI decoding matrix (see equations 47, 44). From a biological perspective,

this solution contains two distinct components:

1. a sensory input component, G(tend)y∗, that depends only on the visually presented reach target,

and

2. a neural input term, G(tend)D(N(tend)r(0)− µ), that depends on the current motor cortical state
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prior to driving the network, r(0).

In the open-loop control model discussed previously, the neural input term can be treated as effec-

tively constant, since we assume that the motor cortical initial conditions, r(0), are fixed across trials.

Learning the full mapping from reach targets y∗ to optimal aiming variables
ˆ̃
θ thus requires learning a

low-dimensional sensorimotor mapping, G(tend), together with a single low-dimensional vector of con-

stants, G(tend)D(N(tend)r(0)−µ). Such a low-dimensional learning problem is amenable to gradient-free

optimization, permitting efficient learning in the context of BMI control.

Under the intermittent re-aiming strategy, on the other hand, motor cortical firing rates change as

new re-aiming solutions are computed, so the neural input term DN(tend)r(0) can no longer be treated

as constant. More concretely, the intermittent re-aiming strategy requires computation of the following

sequence of aiming variables:

ˆ̃
θ(y∗) =



G(tend)
(
y∗ −D (N(tend)r(0)− µ)

)
for t ∈ [0, tend)

G(tend)
(
y∗ −D (N(tend)r(tend)− µ)

)
for t ∈ [tend, 2tend)

G(tend)
(
y∗ −D (N(tend)r(2tend)− µ)

)
for t ∈ [tend, 3tend)

...

At each iteration of re-aiming, the optimal motor command needs to take into account the current state

of the system in order to drive the network towards a better state. Information about the current state

comes in the form of the neural input term, G(tend)D(N(tend)r(t)−µ). Learning the full mapping from

reach targets y∗ to optimal aiming variables
ˆ̃
θ thus now requires additionally learning a high-dimensional

mapping from motor cortical firing rates to aiming variables, the K̃ ×N matrix G(tend)DN(tend). This

increases the dimensionality of the learning problem by a factor of N , making efficient learning much

more challenging.

A simple – yet näıve, as we’ll see below – fix to this problem is to update the motor commands

continuously in time, rather than updating them intermittently every tendms. To see why, note the precise

role played by the neural input term in a given iteration of re-aiming. The 2D vector D(N(tend)r(t)−µ)

on which it depends is the readout that would be produced at time t + tend in the absence of input

(cf. equation 46 and surrounding text). The neural input term thus in some sense “looks ahead” to

compensate (or exploit) the readout that would be autonomously produced tendms from now through

the motor cortical network’s dynamics alone, without any upstream input. In the limit of tend → 0,

however, such prescient information is obviated, as one need only look at the instantaneous state of the

BMI readout, y(t), to see what it will be at time t + tend. Indeed, in this limit, N(tend) = eAtend → I,

so that the neural feedback term becomes purely sensory, depending only on the current BMI readout,
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y(t),

lim
tend→0

G(tend)D(N(tend)r(t)− µ) = GD(r(t)− µ) = Gy(t)

The optimal sensorimotor map in this limit, G, is given by6

G = lim
tend→0

G(tend) =
1

γτ

(
1

M
ŨT Ũ

)−1
ŨTWinTDT ,

where Ũ is the M × K̃ matrix including only the first K̃ columns of the full M ×K encoding matrix U.

Plugging these limits back into equation 61 yields the following optimal time-varying aiming variables:

ˆ̃
θ(t; y∗) = G(y∗ − y(t)). (62)

The result is an intuitive error feedback control strategy, whereby the instantaneous error, y∗ − y(t), is

continually fed back to the motor system to modify the aiming variables online. Learning this strategy

simply requires learning a low-dimensional sensorimotor mapping, the K̃ × 2 matrix G, which maps 2D

sensory inputs (the displacement of the current readout from the target readout) to K̃ aiming variables.

We refer to this strategy as myopic closed-loop re-aiming ; the rationale behind this name will become

evident below.

Results from simulation of this control strategy are shown in figure 16. In figure 15a, we plot the

squared error achieved by myopic closed-loop re-aiming with K̃ = 2 aiming variables, for a single target

readout and under each BMI decoder. Under the baseline decoder, this control strategy succeeds: the

squared error quickly falls to a low value and remains low for the duration of this time window. Under

OMP’s, on the other hand, the error never falls below about 0.3, indicating that the target readout

is never reached. Under WMP’s, we observe an entirely different phenomenon: the error quickly falls

to a low value but subsequently rises to very high values above 1.0. This indicates that, under these

decoders, this target readout can be reached, but it cannot be maintained beyond a short period of

time. To confirm that this is the case for all other target readouts as well, we calculate the minimal

error achieved over this time window for each of the eight radial target readouts, and then average. This

6To derive this, we first use the Taylor series expansion of the reachable repertoire matrix (equation 44) around tend = 0
to write

M(tend) = tendB +O(t2end)⇒ Λend = tendDB +O(t2end)

Plugging this into the re-aiming solution (equation 47), we get that, to first order in tend, the optimal sensorimotor map is
given by

G(tend) = tend

(
1

M
ŨT Ũ

)−1

BT DT
(
γI +O(t2end)

)−1
+O(t2end)

In the limit of tend → 0, then G(tend) → 0. This is because, as tend → 0, infinitely strong input is needed to move the
readout towards the target in tendms. Under any non-zero metabolic cost weight, γ > 0, then, the metabolic cost term will

dominate the loss function and the minimum will be at
ˆ̃
θ = 0. A simple way to get around this is to let the metabolic cost

weight scale with tend, so that it gets infinitesimally small as we take the limit of tend → 0. This results in

G = lim
tend→0

{
tend

(
1

M
ŨT Ũ

)−1

BT DT
(
tendγI +O(t2end)

)−1
+O(t2end)

}
=

1

γ

(
1

M
ŨT Ũ

)−1

BT DT
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Figure 15: Simulation of the myopic closed-loop re-aiming strategy.
(15a) Squared error achieved by myopic closed-loop re-aiming under each decoder, for a single target readout. The black
line corresponds to the baseline decoder, whereas the red and blue lines correspond to each sampled WMP and OMP,
respectively. These are exactly the same decoders used in the simulations presented in figure 13. The thicker red and blue
lines correspond to the example WMP and OMP analyzed in that figure. The open circles overlaid on each trajectory show
the minimum squared error acheived within this time window.
(15b) Minimum squared error achieved over this time window, averaged over all eight radial reach targets. Each point
corresponds to a different decoder, with medians over all decoders in each class marked by the height of the bars. The
stars correspond to the example decoders corresponding to the highlighted trajectories in the previous panel.
(15c) Mean minimum error under myopic re-aiming for each OMP, with 2, 4, 6, 8, and 10 aiming variables. Light blue points
denote this quantity for individual OMP’s, larger open circles on top show the median. For reference, dotted horizontal
lines show the mean minimum error achieved by myopic re-aiming with K̃ = 2 aiming variables for the baseline decoder
(black) and WMP’s (red); the red dotted line shows the median over all sampled WMP’s with shading marking the upper
and lower quartiles.
(15d) Spectral abscissa – that is, the maximum of the real parts of its eigenvalues – of the closed-loop dynamics matrix,

Wrec−WinŨGD, for each decoder D (note that G implicitly depends on D). As in the previous panel, bars mark medians
and the stars mark the example decoders highlighted in previous panels. Values above the dashed horizontal line at 1.0
imply that the closed-loop dynamics under myopic re-aiming will be unstable.

mean minimum error is plotted in figure 15b for each decoder. In general, the mean minimum error is

substantially lower for WMP’s than for OMP’s, revealing that the myopic closed-loop re-aiming strategy

generally succeeds in producing readouts near the target under WMP’s and the baseline decoder, but

not under OMP’s.

In chapter 1, we found that open-loop re-aiming could succeed for OMP’s if we increased the number

of motor variables used for re-aiming, K̃. Might such a generalized re-aiming strategy also succeed in

this closed-loop setting? The answer is yes: figure 15c shows that, as we increase K̃, myopic re-aiming

can achieve low mean minimum error even under OMP’s. For K̃ = 10 this quantity reaches the same

level that can be generally achieved under WMP’s using K̃ = 2 aiming variables.

It is important to note, however, that this metric only tells us whether the readout reaches the target

at a single point in time; it tells us nothing about whether the readout can then be kept near the target

for longer than that instant. Figure 15a suggests that this is actually impossible under WMP’s, as the
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error typically remains low only transiently under these decoders. This phenomenon can be understood

by analyzing the closed-loop dynamics under myopic closed-loop re-aiming. When the aiming variables

are set according to equation 62, the network dynamics reduce to the following (obtained by plugging in

equation 62 into equations 41 and 42)

τ
dr

dt
= −r + (Wrec −WinŨGD)r + WinŨG(y∗ + Dµ).

Because these dynamics are linear, the stability of this system is completely determined by the eigenvalues

of the matrix Wrec −WinŨGD. If any of the eigenvalues of this matrix have a real part larger than 1,

then the system will be unstable, and it won’t be possible to maintain a fixed readout for an extended

period of time. In figure 15d we plot the maximum of the real parts of the eigenvalues of this matrix

(i.e. its spectral abscissa), for each decoder D. The fact that this quantity is greater than 1.0 for most

WMP’s reveals that the closed-loop dynamics under myopic re-aiming are typically unstable for these

decoders. This explains why the error does not remain low in figure 15a for WMP’s.

The reason why this happens can be understood in terms of our derivation of this closed-loop control

strategy, in which took the limit of tend → 0 to avoid having to “look ahead”. In this limit, the controller’s

objective is narrowed down to getting the readout closer to the target only at this current instant in

time, putting aside any concerns about where the readout will be in the future. Indeed, it is straight-

forward to verify that the myopic closed-loop controller of equation 62 can be equivalently derived from

the objective

ˆ̃
θ(t; y∗) = arg min

θ̃

d

dt

∥∥y(tend; θ̃
)
− y∗

∥∥2 +
γ

M

M∑
i=1

ui(θ̃)2. (63)

This strategy risks putting the network in a state that, while greedily reducing the error right now,

might make it more difficult to keep the error low later. It is this short-sightedness that leads to unstable

dynamics under certain decoders, prompting us to call this control strategy “myopic”.

The behavioral implication of this result is that, under certain decoders, the myopic re-aiming strategy

can’t maintain a given target readout for a long period of time. This is reminiscent of the observation that

non-human primates are typically unable to hold a BMI cursor still (see [Golub et al., 2014] for a brief

review of such observations). It is possible that, on short timescales, they learn by myopic re-aiming,

and thus have a hard time producing constant BMI readouts. Over time, however, the sensorimotor

transform G might be further optimized to stabilize control, both by directly modifying the parameters

of this transformation and by increasing the number of motor variables used for re-aiming.

III.1.2 Optimized closed-loop re-aiming

We next ask whether these instabilities can be avoided by simply modifying the weights of the error

feedback loop, G. In the myopic closed-loop re-aiming model, these were derived from taking the limit
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of tend → 0. This leads to instabilities because it implicitly optimizes a greedy short-sighted objective

(equation 63). Moreover, under non-linear dynamics, this approach leads to a more complex architecture

that requires learning a high-dimensional ON mapping from errors to population activity7, defeating the

point of using this strategy to reduce the dimensionality of learning. So here we take inspiration from

the simple error feedback control architecture derived in the previous section to construct closed-loop

controllers that (1) are stable and (2) work under non-linear dynamics.

We begin by simply assuming the error feedback architecture of equatiion 62 with the minor addition

of a constant drive term g ∈ RK̃ ,

ˆ̃
θ(t; y∗) = G(y∗ − y(t)) + g. (64)

For simplicity, we assume linear encoding in inputs,

u(θ̃) = Ũθ̃.

Plugging these two equations (along with the readout equation 3) into the RNN dynamics (equation 1),

we arrive at the following closed-loop dynamics,

τ
dx

dt
= −x + (Wrec −WinŨGD)r + WinŨ (G(y∗ + Dµ) + g) .

Rather than prescribing the feedback weights G,g ourselves as we did in chapter 1, we will then numer-

ically optimize them by minimizing the objective function

Ĝ, ĝ = arg min
G,g

1

T

∫ T

0

∥∥y(t; G,g
)
− y∗

∥∥2dt+ γ
(
‖g‖2 + ‖G‖2F

)
, (65)

7Plugging in equation 1 into equation 63, with φ(·) set to the rectified linear activation function used in chapter 1, we

get the following equation for
ˆ̃
θ(t; y∗),

0 =
1

τ
ŨT Φ′

(
Ũ

ˆ̃
θ(t; y∗)

)
WinT Φ′ (x(t)) DT (y(t)− y∗) +

γ

M
ŨT Φ′

(
Ũ

ˆ̃
θ(t; y∗)

)
φ

(
Ũ

ˆ̃
θ(t; y∗)

)
,

where Φ′(x) is a diagonal matrix with the derivative of the activation function φ(·) evaluated at each coordinate of x. For a
rectified linear activation function, this matrix has only 1’s and 0’s on its diagonal, effectively acting as a multi-dimensional

gate. This equation is non-linear in
ˆ̃
θ(t; y∗) and is unclear how to solve it. If we instead assume the upstream inputs to

be linear in the motor variables, u(θ̃) = Ũθ̃, this simplifies substantially (namely, Φ′
(

Ũ
ˆ̃
θ(t; y∗)

)
= I) and the following

analytical solution can be derived,

ˆ̃
θ(t; y∗) = G(t)(y∗ − y(t))

G(t) =
1

γτ

(
1

M
ŨT Ũ

)−1

ŨT WinT Φ′ (x(t)) DT .

Note that, unlike the case of linear dynamics (equation 62), in this case the optimal feedback weights G(t) change in
time. Importantly, they change in time as a function of the full network state x(t). From a circuit perspective, this
creates the difficulty of looping back this state to gate the pathway that maps sensory inputs (y∗−y(t)) to internal motor

variables (
ˆ̃
θ(t; y∗)). From a learning perspective, note that this gating operates on an N -dimensional intermediate sensory

representation, DT (y∗ − y(t)). Learning the low-dimensional K̃ × 2 optimal feedback loop, G(t), thus requires learning
the high-dimensional N × 2 sensory mapping DT .
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Figure 16: Simulation of optimized error feedback control under non-linear dynamics.
(16a) Mean squared error (mean over all eight radial target readouts) achieved by error feedback controllers with K̃ = 2
aiming variables optimized for each decoder, plotted over a 1000ms time window. Each line corresponds to a different set
of feeedback weights, optimized for a given decoder (equation 65).

(16b) Mean squared error (mean over target readouts and over time) achieved by error feedback controllers with K̃ = 2
aiming variables optimized for each decoder. As in previous figures, each point corresponds to a different decoder, with
medians over all decoders in each class marked by the height of the bars.
(16c) Mean squared error (mean over target readouts and over time) achieved by error feedback controllers optimized for

each OMP, with K̃ = 2, 4, 6, 8 and 10 aiming variables. Light blue points denote this quantity for individual OMP’s, larger
open circles on top show the median. For reference, dotted horizontal lines show the mean squared error achieved by
optimized error feedback with K̃ = 2 aiming variables for the baseline decoder (black) and WMP’s (red); the red dotted
line shows the median over all sampled WMP’s with shading marking the upper and lower quartiles.

where ‖G‖2F =
∑K̃
i=1

∑2
j=1G

2
ij is the squared Frobenius norm, and y

(
t; G,g

)
denotes the readout

produced at time t under the closed-loop dynamics.

We performed this optimzation for the non-linear network analyzed in chapter 1, with a rectified

linear activation function ri = φ(xi) (equation 1) and deterministic dynamics (no noise in the dynamics,

initial conditions fixed to 0). We used the Adam optimization algorithm with an initial learning rate

of .01 [Kingma and Ba, 2017]. A separate optimization was done for each of the baseline/WMP/OMP

decoders fit to this network (the same decoders used in chapter 1, cf. section I.3.8). Following an

analagous procedure to that used in chapter 1 (cf. section I.3.3), for the baseline decoder we performed

this optimization over multiple values of the metabolic cost weight γ so as to identify the largest value of

γ that permitted a time-averaged squared error of less than .05 for all eight target readouts under this

decoder. We then used this value of γ to optimize the feedback weights for each decoder perturbation.

Results from simulating center-out reaching with each of the optimal feedback weights for K̃ = 2

aiming variables are shown in figure 16a, where we plot the mean squared error over all eight target

readouts over time. We find that for almost all decoders, the mean squared error decreases to a certain

level and remains low for the rest of this time window of 1000ms. Notably, this is the case for most

WMP’s, for which the myopic re-aiming model struggled to keep the error low. Because we optimized the

error feedback loop to minimize the error over the full 1000ms window, it is able to effectively take into

account the future dynamics of the network to maintain a low error level, overcoming the instabilities

inherent to the myopic re-aiming model.

Importantly, the mean squared error to which these decoder-specific closed-loop controllers converge

to is typically higher for OMP’s than for WMP’s (fig. 16c), extending our results on open-loop control
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from chapter 1 (fig. 3g) to the closed-loop setting. This again reflects the limitations of re-aiming with

K̃ = 2 motor variables. In this case, this manifests itself in restricting how the error can be fed back

into the network: the error gets mapped to a K̃-dimensional vector through equation 64 before being fed

back into the network. As we saw occurs for the open-loop controller, this results in a restriction of how

population activity can be modulated, making it difficult to generate the patterns of activity required to

produce the target readouts under OMP’s. Figure 16c show that these restrictions can again be relaxed

by increasing the number of motor variables used for re-aiming, K̃. In this case, re-aiming with only

K̃ = 6 motor variables suffices to obtain a mean squared error less than 0.1 with OMP’s (as opposed to

K̃ > 10 under open-loop re-aiming, cf. fig. 6a), reflecting the benefits of closed-loop control.

It is worth noting, however, that for K̃ = 2, performance is highly variable across different decoder

perturbations of the same class. In particular, it’s substantially more variable than was the case for

the open-loop controller analyzed in chapter 1, particularly for WMP’s (compare fig. 16b to fig. 3g).

It is unclear if this is actually a property of the error feedback architecture used here or, rather, a

property of our optimization procedure, which we indeed observed often converged to bad local optima

especially for WMP’s (a problem we tried to avoid by repeating the optimization from five different

random initializations and keeping only the feedback weights from the best of these five runs). For what

it’s worth, substantial variability was also observed in the results of Sadtler et al. (2014).

Discussion

In this chapter we constructed and analyzed closed-loop variants of the re-aiming strategy. Concretely,

we analyzed two variants based on an error feedback architecture, whereby the displacement between the

current readout y(t) and the target readout y∗ is fed back to the network at each timestep. Critically,

it is fed back by first being mapped to a set of K̃ motor variables. This means that all that needs to be

learned to implement this closed-loop strategy is a low-dimensional mapping from the two-dimensional

workspace in which the readouts are observed to the K̃-dimensional space of motor variables used for

re-aiming. The low dimensionality of this mapping facilitates efficient learning but restricts the flexibility

of this control strategy, manifested through differences in its effectiveness at solving a center-out reaching

task with within- vs. outside- manifold decoder perturbations. This extends our results from chapter 1,

where we considered only models of open-loop control, to the context of closed-loop control.

While we found that the myopic closed-loop re-aiming model explored in the first part suffered

from problematic instabilities, we noted an intriguing connection to the observation that non-human

primates typically struggle to keep the BMI cursor still in traditional 2D cursor reaching BMI tasks

[Golub et al., 2014]. The myopic closed-loop control strategy was derived by taking the limit of tend → 0,

raising the intriguing possibility that non-human primates may take a similarly myopic approach to BMI
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control early in learning. This connection certainly warrants further exploration.

Omitted from this chapter is an exploration into the biases that might exist under the closed-loop

re-aiming strategies analyzed here. Given our insights in chapter 2 into the structure of the reachable

repertoire under linear dynamics, there is little reason to expect the linear myopic re-aiming model to

demonstrate unimodal biases. But it is certainly possible that such biases might arise under the non-

linear dynamics endowed by the rectified linear activation function considered in the second part of this

chapter. This remains an important line of future research on closed-loop re-aiming.

Another important line of future research is to extend these models to address some glaring oversimpli-

fications implicit in their construction. The most obvious one is that sensory feedback is instantaneously

available to the motor system. In both of the models considered in this chapter, we assumed that the

aiming variables at time t,
ˆ̃
θ(t; y∗), had access to the readout at that time, y(t). In reality, this is impos-

sible, as sensory information takes time to be communicated from the sensory periphery to the central

motor system. This is particularly true for visual information – which is the sensory information relevant

to the BMI tasks considered here –, which is known to require at least about 80-100ms to influence motor

cortical activity [Golub et al., 2015, Stavisky et al., 2017].

These latencies are thought to be addressed by the motor system through internal predictive models of

how its outputs influence the environment (often referred to as “forward models”) [Wolpert et al., 1995,

Shadmehr et al., 2010]. Such internal models are thought to be learned and exploited by the motor

system to estimate the current state of the environment (e.g. the current BMI readout or cursor posi-

tion) based on past observations of the environment together with afferent copies of its motor outputs

[Shadmehr and Krakauer, 2008]. Indeed, Golub et al. (2015) found that non-human primates’ motor

cortical activity during a BMI task was highly consistent with predictions from a simple predictive model

of the BMI effector’s dynamics [Golub et al., 2015]. These authors found that, despite clear sensory de-

lays evident in the subjects’ reaction times to target presentation, their motor cortical activity was able

to compensate for these delays during the reach by producing activity patterns that would move the

cursor in the right direction under an imperfect yet adequate predictive model of the motor cortical

activity’s influence on the BMI cursor position. Such an internal predictive model is entirely missing

from the theoretical models of closed-loop control presented here. Closed-loop re-aiming should be seen

as a theory of how the predictions of such an internal predictive model (i.e. of the current BMI readout,

y(t)) would be used during BMI control.

That said, the parcellation of the BMI learning problem into learning a control strategy and learning

an internal predictive model is completely artificial – in reality, both the control strategy as well as

the internal predictive model are learned simultaneously. An important and surely fruitful direction of

future research will be to investigate how internal sensory prediction models might also be learned in a

low-dimensional manner to enable efficient learning. Understanding how such constraints might influence
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motor cortical activity and behavior during BMI control could lead to complementary insights on the

limits of BMI learning and the related phenomena discussed and studied in chapter 1.

One important improvement (relative to our open-loop models) implicit in our approach to modeling

re-aiming in a closed-loop setting is that the re-aiming objective takes into account the whole timecourse

of readouts, rather than just the readout at a single endpoint time (compare equation 4 to equation 65).

This is important when considering situations in which the BMI readout does not directly specify the

BMI effector’s movement. In fact, this is the case in the experiments of Sadtler et al. (2014), where the

BMI readout in fact specifies the velocity of the BMI cursor rather than its position. In this case, just

optimizing the readout at a single future time does not suffice to move the cursor to the right place –

you need to ensure that all the readouts produced at each point in time integrate to the desired target

cursor position. The true re-aiming objective should thus take into account all readouts produced at

each point in time. It should also permit the target readouts to change in time during the course of a

movement or trial, as fluctuations in the cursor position would require changes in the cursor velocities

needed to reach to the same target. While this is an important limitation of all the models presented

here, it is worth noting that there is little reason not to expect that most of the intuitions provided by

the simple models explored in this study remain true when considering time-varying target readouts and

alternative BMI effector dynamics.
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General Discussion

“Since all models are wrong the scientist must be alert to what is importantly wrong. It is

inappropriate to be concerned about mice when there are tigers abroad.”

George Box, Science and Statistics (1976)

In this thesis, we have outlined a theory of brain-machine interface learning based on what we have

called the re-aiming learning strategy. We demonstrated in chapter 1 that a simplified open-loop real-

ization of this theory can provide a unifying explanation for disparate phenomena across three different

BMI learning tasks: (i) two-dimensional cursor reaching under within- and outside- manifold decoder

perturbations [Sadtler et al., 2014, Oby et al., 2019], (ii) two-dimensional cursor reaching under credit

assignment rotation perturbations [Jarosiewicz et al., 2008, Chase et al., 2012, Zhou et al., 2019], and

(iii) operant conditioning of individual neurons [Fetz, 1969, Fetz and Baker, 1973, Koralek et al., 2012,

Clancy et al., 2014, Athalye et al., 2018]. We moreover argued that this explanation is a normative one,

as learning by re-aiming is a potentially data-efficient learning strategy whereby the learning process is

constrained to a low-dimensional optimization space; this stands in stark contrast to learning strategies

based solely on synaptic plasticity. In chapter 2 we further grounded the arguments and intuitions de-

rived from our simulations in chapter 1 through mathematical analysis of a simple case (namely, linear

dynamics). This revealed deep connections between our analysis of the re-aiming learning strategy and

standard concepts from classical linear control theory. Finally, in chapter 3 we extended a subset of these

results to a more complex but biologically realistic setting, in which re-aiming happens continuously in

real time via closed-loop interaction with the environment.

We highlight here what we believe to be the main contributions of this work:

A novel perspective on the low dimensionality of population activity in motor cortex and

its implications for BMI control. Our model of re-aiming can be seen as a mechanistic realization

of the statistical theory of Gao and Ganguli (2017), whereby the dimensionality of population activity

is limited by behavior [Gao et al., 2017]. In our theory, these limits are imposed by the dimensionality

of the motor variables represented in the upstream populations driving motor cortex.

Theoretical tools for analyzing the structure of low-dimensional population activity during

motor control. In particular, we introduced the concept of the reachable repertoire. As discussed at
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length in chapters 1 and 2, this theoretical construct bears a complementary relationship to the simi-

lar theoretical constructs in the literature, such as the so-called intrinsic manifold [Sadtler et al., 2014,

Wärnberg and Kumar, 2019, Feulner and Clopath, 2021] and the controllability Gramian [Kao and Hennequin, 2019].

Analytical and numerical tools for analyzing the properties of recurrent neural networks

with a rectified linear activation function. Of particular note is our analysis of the reachable

repertoire’s geometry in section I.4.4 and our algorithm for efficiently computing re-aiming solutions

(section I.3.2).

The demonstration that classical observations about changes to individual neurons can be

attributed to global changes in the motor system. We show that apparent so-called credit assign-

ment effects [Jarosiewicz et al., 2008, Chase et al., 2012, Zhou et al., 2019] can arise naturally without

solving the credit assignment problem [Legenstein et al., 2010]. Our theory also reveals that the abil-

ity of primates [Fetz, 1969, Fetz and Baker, 1973, Engelhard et al., 2019] and mice [Koralek et al., 2012,

Clancy et al., 2014, Athalye et al., 2018] to modulate the firing rates of specific neurons does not neces-

sarily indicate their motor systems are capable of identifying and directly manipulating the properties

of individual neurons in isolation.

The construction of circuit models of closed-loop BMI control. While we only scratch the

surface in chapter 3, these provide the groundwork for future elaborations, such as including a predictive

model for state estimation.

In striving for transparent explanation and intuitive understanding, we focused on developing simple

models of re-aiming. It is this simplicity that lead us to obtain strong intuitions in chapter 1 that carried

over to more complex settings like time-varying inputs (section II.2.2) and closed-loop control (sections

III.1.1, III.1.2). However, a number of important limitations remain that should be addressed in future

work. Three particular future lines of work along these lines that are worth mentioning are:

Extending these results to take into account the BMI effector dynamics. For example, in

the experiments of Sadtler et al. (2014), the BMI readout determines the velocity of the cursor rather

than its position. That means that simply producing a target readout y∗ matching a given reach target

isn’t enough to solve the task – a whole timecourse of readouts needs to be produced that will integrate

over time to move the cursor to the reach target. It is straight-forward to extend the theoretical results

from section II.2.1 to this setting, by simply replacing the reachable repertoire matrix, M(tend), with its

integral over time,
∫ tend

0
M(t)dt. Accordingly adapting the remaining simulations and derivations for the

non-linear network has not been attempted. However, there is little reason not to expect the results and

intuitions elaborated in this thesis to extend to this mathematically less tractable setting.
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Analyzing the case of non-silent initial conditions. It is straight-forward to incorporate the case

of non-zero initial conditions under linear dynamics – this boils down to simply adding an extra term (cf.

equation 44) that requires extra algebra to deal with. Under non-linear dynamics, on the other hand,

non-zero initial conditions can change things in non-trivial ways. In particular, the scale-invariance

property of the dynamics under a rectified linear activation function (equation 10) no longer holds when

the initial conditions are non-zero. It will be interesting to investigate how non-zero initial conditions

could potentially alter the goemetry of the reachable repertoire, although again there is little reason to

expect this would fundamentally alter our conclusions regarding the limitations of the re-aiming strategy.

Incorporating delayed sensory feedback into closed-loop models of BMI control. A future

line of research inspired by the closed-loop models considered in chapter 3 is to consider how predictive

models for state estimation could be used to account for latencies in sensory feedback for error feedback

control. Three fascinating questions along these lines are

. How can such predictive models be parametrized in low-dimensions so that learning can be efficient?

. How would concurrent state estimation interact with low-dimensional error feedback control?

. How might both of these components be learned simultaneously? And how would these two learning

processes interact with each other?

Finally, like any worthwhile piece of research should, this thesis raises more questions than it answers.

We highlight here what we believe to be the most promising aveneus of future research going beyond the

scope of the theory and empirical phenomena discussed in this thesis:

How are re-aiming solutions learned without synaptic plasticity? A significant shortcoming

of the theory presented here is that it only concerns hypotheses about what subjects learn during BMI

learning, rather than how they learn it. Assuming subjects do engage in re-aiming, a crucial avenue of

future research will be to understand the algorithms and circuitry underlying how re-aiming solutions

are computed by the motor system. Critically, for the advantages of re-aiming to be maintained, these

must operate within the low-dimensional space of the motor variables. As discussed at the end of section

I.2.2, one intriguing approach is for the motor variables to be stored and updated in the internal state

of an upstream recurrent circuit, which, through its dynamics, implicitly implements a gradient-free

optimization scheme [Wang et al., 2018]. Testing this simple idea, and to what extent it may be a good

model of BMI learning and/or classical motor adaptation, is a natural next step from this work.

How do re-aiming solutions differ from and interact with synaptic plasticity solutions?

Our analysis of the re-aiming learning strategy does not rule out the possibility that BMI learning might

instead proceed solely on the basis of changes in neural connectivity within or outside of motor cortex.
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In chapter 1, we argued that the pitfalls of high-dimensional optimization would ensure that such a

learning strategy would be slow and brittle, unlike what we see in (at least short-term) BMI learning.

That said, we did not prove or concretely demonstrate that this is true, and it is worth noting that a few

previous theoretical studies have argued that this intuition might be wrong [Raman et al., 2019]. A useful

avenue of future research along these lines will be to develop a theory of how synaptic plasticity within

motor cortex during BMI learning might reshape the reachable repertoire [Wärnberg and Kumar, 2019,

Feulner and Clopath, 2021], and how such signatures might enable us to disambiguate between re-aiming-

based learning strategies and plasticity-based learning strategies. A second related line of research is

to build models in which synaptic plasticity within motor cortex occurs concurrently with re-aiming, to

understand how these two learning processes might interact.

Low-dimensional learning strategies in more complex tasks. Finally, we note here that the

idea of optimizing a low-dimensional set of internal variables to drive a downstream network could

be applied to learning any other task outside of the context of BMI control. In preliminary work

[Zhou et al., 2021], we recently applied this idea successfully to the ready-set-go task of Jazayeri &

Shadlen (2010) [Jazayeri and Shadlen, 2010]. By learning an appropriate low-dimensional representation

of the sensory cues in the task, we were able to drive a chaotic reservoir [Jaeger, 2001, Sussillo and Abbott, 2009]

to produce the correct responses in this task. The resulting solution moreoever produced rational re-

sponse biases resembling primates’ behavior and population dynamics in the reservoir resembling neural

activity recorded in primate frontal cortex [Sohn et al., 2019]. This raises the possibility that such low-

dimensional learning strategies might be employed by subjects across a wide variety of neuroscience

tasks, and during natural learning in the real world. Such a modular approach to learning might support

successful transfer across tasks, whereby the same downstream motor network is shared across tasks

and the “motor variables” stored upstream change. This provides a novel perspective on the teleology

of central motor circuits directly driving movement (such as motor cortex) [Lopes et al., 2017] and the

macrostructure of mammalian motor systems [Dum and Strick, 2002, Shadmehr and Krakauer, 2008].
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