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Abstract

This thesis presents our work investigating the nature of and interactions be-

tween processes underlying causal attributions and the formation and updat-

ing of beliefs. The two research directions that constitute the main inspiration

for our work - research in psychiatry and computational accounts of decision-

making - have traditionally been separate; however there has recently been

a growing effort to bridge the gap by bringing computational tools to bear

on fundamental research questions in psychiatry. We contribute to this ef-

fort by designing a quantitative framework for phrasing, exploring and testing

hypotheses associated with the attribution-self-representation cycle theory.

We developed a novel task, in which attributions and beliefs about the

self are measured repeatedly, producing the time series data necessary to in-

vestigate interactions between these two variables on a trial-by-trial basis.

Importantly, subjects’ beliefs and causal attributions are probed with regard

to real outcomes, experienced in the context of learning a skill task, and in the

absence of any manipulation targeting their content.

We present evidence of effects consistent with the cycle postulated by

the theory, namely trial-level effects of attributions on beliefs about skill and

effects of beliefs about skill on attributions, neither of which can be reduced

to the effect of objective performance.

The richness of the task enabled the revelation of substantial behavioural

complexity, suggesting testable hypotheses for future work. Of note among

these are questions about the modulation of attribution-belief interactions by

outcome valence, and the factors governing differential processing of various
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task features.

In sum, our work proposed and implemented a novel framework for in-

vestigations into the dynamics of beliefs and causal attributions, and com-

pleted the first steps towards a precise formalisation and testing of the theo-

retical proposal in this framework, while providing novel evidence in support

of the theory.



Impact statement

This thesis presents our work investigating the interactions between causal at-

tributions for outcomes and the updating of beliefs about oneself. Affectively

catastrophic positive feedback processes by which otherwise surmountable

negative life events turn into major psychological hurdles constitute an im-

portant aspect of psychiatric dysfunctions, which are associated with huge

psychological, health and economic costs (WHO, 2008). We aimed to con-

tribute to a better understanding of these processes by designing and using a

quantitative framework for phrasing, exploring and testing hypotheses asso-

ciated with the attribution-self-representation cycle theory.

This thesis presents a review of ample research literature on attribution,

and provides a unifying perspective on research from diverse fields, along

with illustrating the use of computational approaches in data analysis and in

the framing of new hypotheses. As such, it can have a direct and immedi-

ate impact by serving as a valuable resource for students and early career

researchers in the field, and by encouraging similar integrative approaches.

We provide a novel task that can be used to probe attribution making and

its relationship with beliefs, present new evidence in support of the theoretical

proposal, and suggest testable hypotheses for future work. We therefore hope

our work has a broader impact in the field, by encouraging further research

on testing and developing the theory, and more widespread development and

deployment of complex tasks to investigate these phenomena.

Finally and most importantly, we hope this work contributes to the pur-

suit of a better understanding of the dynamics of causal attribution, beliefs
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about the self (and others), and their interactions. By uncovering mecha-

nisms associated with psychiatric disorders onset and maintenance, as well

as protective factors that could be used to design targeted interventions, such

understanding would undoubtedly have a real and important impact in society

at large.
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Glossary

• skill estimates: subjects’ estimates of their own (or the “other”’s) skill;

raw values coded on a continuous scale in [0,1];

• skill updates: differences between two successive skill estimates;

• session break effect: large difference between the last skill estimate

from the first session and the first one from the second session;

• attributions: subjects’ causal attributions for the outcomes they (or the

“other”) just experienced; provided as a choice among the following

options: {internal(I),maze(M), rotations(R), luck(L)};

• external attributions: attributions to maze, rotations and luck;

• pl: path length; length of correct path through a maze;

• pnu: proportion of non up orientations; proportion of time within a trial

during which the maze orientation is not the normal UP orientation;

• pc: proportion correct; proportion of correct key presses out of all key

pressed by the subject during a trial;

• pp: proportion pauses; proportion of time spent not pressing any key

out of all time available for a trial;

• pwcu: proportion wrong, correct for up; proportion of wrong key

presses that would have been correct in the normal UP orientation;

• mathematical notation will be defined as it is introduced in the text.



Introduction

This thesis presents our work investigating the interactions between causal

attributions for outcomes and the updating of beliefs about oneself. The two

research directions that constitute the main inspiration for our work - research

in psychiatry and computational accounts of decision-making - have been tra-

ditionally separate; however recently there has been a growing effort to bridge

the distance, and bring computational tools to bear on fundamental research

questions in psychiatry. Our aim has been to contribute to this effort, by

attempting to formalise and quantify aspects of the interaction between attri-

butions and beliefs about the self.

The first chapter reflects the dual nature of the research that inspired this

work: we present the decision-making framework within which attribution

and beliefs about the self are conceptualised in our analyses, focusing on the

challenges of making decisions and learning from experience in complex en-

vironments and on the role that attributions and beliefs about the self have

in these processes. We present previous work investigating the way artificial

agents, animals and humans address these challenges, and review theoretical

accounts pertaining to attributions and beliefs about the self in the psychiatric

context, with an emphasis on the research that constituted the background

and inspiration for this work. Finally, we present an overview of the compu-

tational modelling approach which has been successfully applied in decision-

making research, and on which our analyses rely to a large extent.

In the second chapter we present a detailed description of the experiment,

highlighting our aims and how they shaped our experimental choices, as well
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as the challenges that our choices pose for data analysis, and the suggested

improvements for future work.

The third and fourth chapters - the core of this work - are dedicated to

the presentation of analyses performed on the two main aspects of the data:

subjects’ attribution responses and their skill estimates responses, and of the

results of these analyses and their interpretation.

The fifth chapter presents analyses of the relationship between be-

havioural measures and questionnaire scores.

The work concludes with a final chapter, in which we summarise our

contribution and present our conclusions, as well as the directions for future

work that our results suggest.



Chapter 1

Literature review

The structure of this chapter reflects the dual nature of the research that in-

spired our work: we begin by presenting the reinforcement learning (RL)

framework in which we conceptualise decision making, and provide a simple

concrete example of a learning problem in such an environment. We then re-

view literature on balancing exploration and exploitation and assigning credit

for experienced rewards and punishments in RL environments and decision-

making studies. These are two fundamental problems that RL agents face,

and they can be interpreted as concrete and formal instantiations of complex

real-world phenomena involving attributions and beliefs about the self. We

then review theoretical accounts of attribution that inspired this work, and ev-

idence uncovered by research prompted by these theories. Finally, we present

an overview of the computational modelling approach which we use in our

subsequent analyses.

1.1 Decision making - a reinforcement learning

framework

1.1.1 Environment set-up

Our conceptualization of a decision-making environment is drawn from the

reinforcement learning (RL) literature (Sutton and Barto, 2018).

There are a number of elements that are necessary to define a decision-
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making environment: first, there is the set of states that it can be in at each

moment in time (S ), and the set of actions that agents in the environment

can perform (A ); secondly, there is the mechanism specifying how the en-

vironment transitions between states, due to its internal dynamics and/or as

a result of actions performed by the agents; finally there are internal mecha-

nisms within the agents which evaluate the desirability -or rewarding value- of

the environmental states, or aspects of them (in this formulation, undesirable

or punishing states are characterised by negative rewarding values). Agents

are assumed to be gathering evidence and adapting their behaviour as a result

of interactions with the environment, with the aim of maximising the amount

of reward they receive in the environment.

In all but the simplest of cases, irreducible randomness in the world

makes both the transitions between states and the effects of actions proba-

bilistic, and in particular also affects the gaining of reward and avoidance of

punishment. Therefore the transition mechanism and the gaining of reward

are represented as sets of probability distributions: distributions over the next

state value, given the current state and current agent actions - P(st+1|st ,At =

{actions of all agents at time t}); and distributions over the reward, given the

current state and actions - P(rt |st ,At = {actions of all agents at time t}). In

addition, environments can be more or less stable over time - reward and tran-

sition probability distributions can change more or less frequently.

Any of the essential defining components of the environment (including

the available actions) could be partially or totally unknown to the agents, im-

posing therefore the need to learn about it from experience, as well as the

need to act in the presence of incomplete information. The fact that environ-

ments can change implies that agents cannot exclusively rely on remote past

experience as being accurate, but need to be able to detect changes and up-

date their knowledge accordingly. In particular, the range of available actions,

and the extent to which they can effect changes in the environment, leading

to the gaining of reward or avoidance of punishments, are of fundamental im-
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portance to the agent, since knowledge about these aspects of their agency

influence the agent’s decision-making process. They are, therefore, prime tar-

gets of learning. This aspect of learning about the environment is of particular

interest in this work, as it is closely linked with attribution.

It is important to note that along with information gained by interaction

with the environment, agents might also have prior beliefs or expectations

about relevant, but unknown aspects of the environment – this is often the

case in real life. Such prior beliefs can encode knowledge that is valid across

environments, and thus be beneficial in shaping evidence accumulation and

decision-making in new environments. However, they can also hinder learn-

ing, if they are inadequate in the new circumstances.

Note that in the discussion above, priors can refer to explicit beliefs,

which human subjects can report, but also to implicit expectations that both

animals and humans can have, acquired through evolution or during their own

lifetime, as a result of prior learning (see our discussion of learned helpless-

ness in section 1.3.2 below).

In the next section we discuss the formalisation of the process of learning

from experience in decision-making environments, highlighting some of the

challenges that learning agents face in such environments.

1.1.2 A concrete learning problem

The precise formalisation of learning in a decision making environment de-

pends on the particular environment structure, state and action representa-

tions and the choice of learning algorithm to be implemented. In this chapter,

we seek to illustrate general principles, and so do not present specific details

about these elements. However, in order to illustrate how learning from ex-

perienced outcomes can be formalised, and how attributions, beliefs and their

interactions can be accounted for in the present framework, we will use as a

running example a simple concrete learning problem, described below1.

1This example is a tool to illustrate the concepts we are interested in, and their importance;
it is not a toy representation of our experiment.
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We will use one of the simplest types of decision-making environments,

namely one in which there is only one state and two actions, each action ai

providing a reward ri > 0 with a given probability pi, and no reward otherwise.

An agent placed in this environment, and allowed to repeatedly take actions

and obtain rewards, will aim to gain as much reward as possible, by choosing

appropriately among the two actions to perform on any given trial. This setup

is known in RL literature as a “2 armed bandit” problem.

We assume that the agent maintains and updates an internal estimate of

the value of each action, and denote by Qt
1 and Qt

2 the estimates of these values

at the beginning of any given trial t. We assume that on every trial the agent

chooses which action at to perform by using a softmax function, according to

which the probability of choosing action 1 is

p(at = 1|Qt
1,Q

t
2) =

exp(βQt
1)

exp(βQt
1)+ exp(βQt

2)
.

According to this action choice mechanism, the action with the highest cur-

rent estimated value is more likely to be chosen, but occasionally the action

estimated to be less valuable can also be taken; the β parameter captures the

sensitivity of choices to action values: the higher β is, the more pronounced

is the preference for the action currently appearing to be better.

We assume that the agent updates the estimated value of the chosen ac-

tion after every experienced outcome, by using a simple learning algorithm:

it computes the difference between the reward it obtained and its estimate of

the value of the action it took, and uses this difference to adjust the estimated

value of the action:

δ = rt−Qt
at

Qt+1
at = Qt

at +αδ ,

where at and rt are the action taken (at ∈ {1,2}) and reward obtained in trial

t, and Qt
at and Qt+1

at are the old and updated estimates of the value of action
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at . The learning rate parameter α controls the weight that new information

has, and therefore the speed of learning, higher α meaning higher sensitiv-

ity to new information and faster changes in estimated values as a result of

experience.

Intuitively, the agent’s causal attribution for the experienced outcome is

an important determinant of the learning rate. In order to illustrate this, let

us assume there is some degree of variability in action execution, and crite-

ria for registering actions as valid: let us assume that the actions are reach

movements towards two given targets, and only movements ending within a

given area around the targets are recognised as valid. In this case, an action

followed by no reward could be due to a probabilistic omission of reward

as per the reward schedule of the chosen target (outcome attributed to action

choice), but it could also be a result of the movement not reaching the chosen

target region (outcome attributed to action execution) (see our discussion of

Parvin et al’s study (Parvin et al., 2018) in 1.2.2, and section 1.4.2 for further

considerations on the distinction between action choice and action execution).

An outcome of no reward conveys different amounts of information

about the value of the chosen action, depending on the causal attribution:

if it is attributed to the action choice, it is informative about the reward fre-

quency associated with the chosen target; if, however, it is attributed to action

execution, it is not informative about the chosen action. We formalise this by

using At to denote the causal attribution the agent makes on a given trial t,

At ∈ {choice (c), execution (e)}, and by assuming that the two possible attri-

butions correspond to different learning rates αc,αe.

The value update therefore becomes:

δ = rt−Qt
at

Qt+1
at =

 Qt
at +αcδ if At = c

Qt
at +αeδ if At = e.

We now specify the way causal attributions are generated, which will
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also illustrate the effect that beliefs have on this process. We assume that

along with estimates of the values of the two actions, the agent also maintains

and updates an estimate of its reach accuracy, or skill, and that it uses this

estimate, along with the experienced outcome, when making causal attribu-

tions2. Specifically, if a reward is obtained, the agent infers that its action

was registered as valid, and attributes the outcome to the action choice; if no

reward is obtained, the agent bases its attribution on its current belief about

its skill, such that the more skilled it believes itself to be, the more likely it is

to assume that the reach movement was accurate, and therefore attribute the

outcome to the action choice:

P(At = c) =

 1 if rt 6= 0

σ(st) if rt = 0
,

where st is the skill estimate at the beginning of trial t and σ is the sigmoid

function, σ(x) = ex

ex+1 . Note that this is a cartoon example, containing the

minimum complexity needed to illustrate relationships between variables of

interest; causal attributions in realistic scenarios can be based on several di-

verse sources of information, and beliefs about the situation, the context, other

agents etc.

Finally, we need to specify the update mechanism for the agent’s belief

about skill. We will assume that this is done in a way similar to the value up-

dates: the agent computes a difference between the experienced and expected

accuracy of the reach movement, and uses this error to update its skill value:

2Beliefs are usually represented via probability distributions, however in keeping with the
point estimate representation of action values which we have used above, we will consider
the belief about skill to also be encoded by a point estimate. In this case, the agent’s prior
experience of agency is only encoded in the initial value of the skill estimate; richer accounts
of the agent’s belief, such as including the strength of the belief, or indeed representing it as
a full probability distribution, can account for more complex effects of prior beliefs, more
complex belief dynamics, and richer effects of beliefs on learning, than our current choice
allows.
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δs =

 1−σ(st) if At = c

−σ(st) if At = e

st+1 = st +αsδs,

where αs is a learning rate for skill. We assume the experienced accuracy is 1

if At = c, as attributing the outcome to the action choice means the action was

performed successfully; conversely the experienced accuracy is 0 if At = e, as

attributing the outcome to execution means the action was not registered due

to inaccurate reach movement.
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Figure 1.1: Simulation results: mean ± s.d. computed over 100 simulations of the
agent described in the text. Task: r1 = 10, p1 = 0.5,r2 = 15, p2 = 0.33;
the two actions have equal expected values, but action 1 yields reward
more reliably (‘safe’ action). Agents: two agents were simulated, with
identical parameters β = 0.8,αc = 0.01,αe = 0,αs = 0.01, identical ini-
tial estimates for the two action values, Q1 = Q2 = 0, and different initial
estimates for skill:s= 1.5 (high initial skill estimate; green) and s=−1.5
(low initial skill estimate; red). Top: evolution of action values for the
two agents; continuous lines are used for the ‘safe’ action, dotted lines
for the ‘risky’ one. Bottom: left: evolution of skill estimates; right: evo-
lution of the proportion of outcomes attributed to action choice.
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Figure 1.1 shows the evolutions of skill and action value estimates ob-

tained by simulating the agent described above. These simulations illustrate

one effect of the difference in beliefs: agents believing they have low skill dis-

count the frequency of non-rewards, as failure to obtain reward is more likely

to be attributed to action execution; hence the “risky” action, which yields

more reward, but with lower probability, is estimated as being more valuable.
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Figure 1.2: Effect of attributions on belief and action value evolutions, agent start-
ing with low initial skill estimate (see caption in figure 1.1 for simulation
details). Median split of simulation runs based on percentage of attribu-
tions to action choice in the first 125 trials. Black: high percentage of
attributions to action choice. Magenta: low percentage of attributions to
action choice. Top: evolution of action values; left: ‘safe’ action; right:
‘risky’ action. Bottom: evolution of skill belief.

Figure 1.2 illustrates the effect of attributions on beliefs and action val-

ues. We split simulation runs for the agent starting with low initial skill values

according to the percentage of outcomes attributed to action choice in the first

125 trials (first quarter of whole simulated experiment). More attributions to

action choice in the first quarter of trials lead to higher skill estimates. Fur-

thermore, action value estimates also evolved differently, as simulation runs
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with more attributions to action choice produced a preference for the “safe”

action, unlike runs with less attributions to action choice in the initial quarter

of the experiment, which displayed the opposite pattern.

Thus, due to the coupling between attributions and beliefs, early dif-

ferences between attributions are amplified, leading to different patterns of

behaviour.

These simulation results suggest that even in very simple situations, in-

teractions between variables, particularly “loopy” interactions, which involve

bidirectional influences between variables, can produce relatively complex

behaviour (see 1.3.3 and 1.3.4 for further discussion). Effects similar to the

ones illustrated in this cartoon scenario have been experimentally observed

in humans (see our discussion of (McDougle et al., 2016, 2019) and (Parvin

et al., 2018) in 1.2.2).

The purpose of the above example was to provide, in the simplest setting,

a concrete instance of learning in the RL framework introduced previously, as

well as to show how some of the effects that beliefs and causal attributions

have on learning can be quantified and accounted for in this framework, and

illustrate their importance. The example is not meant as a model for our

task; we provide a complete account of the precise formalisation of these

phenomena in our analyses in the relevant chapters of this thesis (see 3.3 and

4.3). For further discussion on modelling in this framework, see section 1.4

below.

Learning in a decision-making environment can be challenging in many

ways. Two of the common problems agents need to solve in decision-making

environments, balancing exploration and exploitation and assigning credit for

experienced rewards, are intimately related to the evolution of beliefs, and to

causal attribution. In the following section we briefly review research into

how artificial agents, animals and humans solve these problems in relatively

simple settings, before focusing on research on attribution and beliefs about

the self.
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1.2 Difficulties of learning in RL environments:

literature review

1.2.1 Exploration and exploitation

One of the best-known problems that agents need to solve is the “exploration-

exploitation dilemma”: in an environment that is only partially known to the

agent there might well be states and actions as yet unexplored, yielding more

reward than the states and actions the agent has already experienced and found

to be desirable; furthermore, states and actions that had in the past been unde-

sirable and have thus not been recently visited might have undergone changes

making them more rewarding.

The agent therefore has to find a balance between exploiting states and

actions which it already knowns to be rewarding, and exploring the environ-

ment, or exploring its own repertoire of actions, in order to allow the discovery

of better states or actions. Exploration is potentially rewarding, but also risky,

as the agent does not know whether better options exist, how much explo-

ration is needed to find them, and what the cost of this exploration will be.

Exploiting the known rewarding states and actions provides, instead, a safe,

but potentially less valuable course of action. Previous experience and the

resulting beliefs and expectations are important in shaping behaviour, partic-

ularly as the agent faces this dilemma in the absence of complete information.

In the case of artificial RL agents, there are a number of techniques de-

signed to provide solutions for the exploration-exploitation dilemma (Sutton

and Barto, 2018), such as adapting the agent’s learning rate, injecting a small

amount of randomness in the agent’s policy, directly rewarding exploration,

adopting optimistic initial guesses for the values of available actions. One

solution which efficiently balances exploration and exploitation is Thompson

sampling (Thompson, 1933; Russo et al., 2018; Thompson, 1935) - a method

which directs exploration towards actions that are likely to be optimal (Russo

et al., 2018).



1.2. Difficulties of learning in RL environments: literature review 34

Choice patterns produced by this method are similar to “probability

matching” behaviour observed in animals (Herrnstein, 1961; Lau and Glim-

cher, 2008) and humans (Vulkan, 2000): in a two armed bandit task where the

two arms give reward with given probabilities summing to 1, an agent which

does probability matching chooses each action with a frequency proportional

to its probability of yielding reward; while this behaviour is not optimal in

the given task, where the optimal policy would always choose the action most

likely to produce reward, it can be advantageous in imperfectly known or

changing environments (Sugrue et al., 2004).

Studies with human subjects have shown that subjects’ beliefs about the

underlying mechanisms of the experiment have an effect on whether sub-

jects probability match or not, people showing less probability matching

when they had stronger beliefs in the randomness of the outcomes (Vulkan,

2000; Morse and Runquist, 1960), and when the task was framed as a gam-

bling, versus a skill task (Goodnow, 1955). Research on humans subjects has

also uncovered relationships between exploration behaviour and impulsivity

(Sadeghiyeh et al., 2020), compulsivity and addiction (Addicott et al., 2014,

2017; Morris et al., 2016).

Disruptions in explorative behaviours have been documented in patients

suffering from psychiatric disorders: schizophrenia patients showed less ex-

ploration than controls in situations where uncertain options could prove bet-

ter than the known ones, and the impairment correlated with anhedonia scores

(Strauss et al., 2011); patients with depression have been found to explore

more than controls in a task involving only gains (Blanco et al., 2013), but

also to show less adaptive exploration (Cella et al., 2010; Huys et al., 2012),

in tasks involving both gains and losses, hinting at the complexity and subtle

dependencies of these effects.

1.2.2 Credit assignment

Another major and multifaceted challenge that agents face in learning in

decision-making environments is correctly assigning credit (Minsky, 1961)
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for experienced rewards or punishments. There are multiple levels and di-

mensions along which credit assignment needs to happen.

Time is one of the dimensions, as often rewards or punishments are not

the direct consequence of only the most proximal action that an agent took, but

are the result of their behaviour over a longer time period; credit for the expe-

rienced outcome therefore needs to be divided among the several actions in the

chain of behaviour leading to it, which is not a trivial problem to solve. An-

other dimension refers to the extent to which the agent’s actions contributed

to producing the outcome, as opposed to it being a result of environment dy-

namics, or a consequence of irreducible randomness; in environments where

multiple agents interact, this problem is further complicated by the possibil-

ity of outcomes being the result of another agent’s actions, or the result of a

combination of actions performed by a group of agents. This aspect of the

problem is intimately related to the notions of control and responsibility, and

particularly relevant for attribution.

Another, perhaps more subtle dimension of credit assignment, corre-

sponds to the distinction between action identity and action performance and

is more obviously relevant for the assignment of blame: when one action fails

to elicit reward, is that due to the action identity or to the way the agent exe-

cuted it? The distinction is often absent from simplified experimental setups

involving button presses as actions, but is present in real-life situations, and

has been studied in motor learning tasks (Parvin et al., 2018; McDougle et al.,

2016, 2019).

In Temporal credit

assignment:

theoretical solutions

artificial RL agents, there are two kinds of solutions to the temporal

credit assignment problem: temporal difference learning (TD) allows agents

to learn the values of states and actions, including correctly assigning credit

over time, through multiple repetitions of pairings between states and actions;

in contrast, eligibility traces allow reward information for each outcome to

be propagated back (to varying depths) through the succession of actions and

states visited, thus enabling the agent to learn faster (Sutton and Barto, 2018;
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Lehmann et al., 2019).

Consistent Temporal credit

assignment:

behaviour

with the existence of a time-window during which past ac-

tions are eligible for reinforcement (Yagishita et al., 2014), research in both

animals and humans has found effects of the delay between action and reward

on the reinforcement of the action, whereby increasing the delay between

reward and action or stimulus preceding it produces diminishment in the re-

inforcing effect of the reward (Kamin, 1961; Dickinson et al., 1992). Con-

versely, temporal proximity between an action and a subsequent reward has

been found to produce reinforcing effects even in the absence of contingency,

a phenomenon known as “spread of effect” (Thorndike, 1933), observed in

both animals and humans, leading in some cases to the acquisition of “super-

stitious behaviours” (Skinner, 1992). Thus in an experiment by Jocham et al

(Jocham et al., 2016) with human subjects, subjects’ preference for actions

performed shortly before the delivery of rewards increased even when ac-

tions and rewards were not contingently linked (note that in this case subjects

were informed about the contingency structure of the task, and their behaviour

showed significant effect of contingency on choices). This coarse form of

credit assignment based only on temporal proximity might be constantly in

use, but kept in check by more accurate credit assignment mechanisms, and

revealed through subtle analyses (Walton et al., 2010), or becoming apparent

when these more precise mechanisms are impaired (Devenport, 1979; Kovach

et al., 2012; Noonan et al., 2017).

There Temporal credit

assignment: neural

implementation

is ample evidence that the phasic activity of dopamine neurons

in a range of mammalian species presents crucial functional similarities with

TD error signals (Schultz et al., 1997; Dayan and Niv, 2008; Glimcher, 2011;

Schultz et al., 1993; Takikawa et al., 2004; O’Doherty et al., 2003). A num-

ber of candidate mechanisms for neural implementation of eligibility traces

(indeed the concept of eligibility traces in RL was inspired by ideas from

neuroscience (Klopf, 1972, 1982) in the first place) have been proposed, from

spiking activity patterns (Asaad et al., 2017) to synaptic plasticity, notably
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the reward-modulated spike-timing-dependent-plasticity (STDP) (Izhikevich,

2007; Reynolds and Wickens, 2002; Pawlak et al., 2010; Pawlak and Kerr,

2008).

Credit Structural credit

assignment

assignment among multiple simultaneous cues, or among stimuli

or actions varying along multiple dimensions is both particularly difficult and

particularly relevant to attribution, since most real world problems in which

attribution is relevant involve complex, high dimensional situations, stimuli or

actions. In such cases, even when only some of the features are relevant, their

identity is unknown, and therein lies the difficulty. RL agents often benefit

from a setting of the environment in which state and action representations,

hand-crafted by humans based on knowledge of the relevant task-aspects, only

incorporate relevant features. However this is not the case for animals and hu-

mans, who also need to solve such problems. One relatively simple strategy

involves reducing complexity by focusing on a low number of features at a

time and testing hypotheses about their relevance, perhaps using prior expe-

rience or emotional salience (Heider, 1982; Bentall, 2003; Kelley, 1967) to

guide this serial hypothesis testing process. Recent studies investigating this

problem quantitatively in simplified settings (Akaishi et al., 2016; Wilson and

Niv, 2012) found evidence suggesting that humans employ a serial hypothe-

sis testing strategy, focusing on one hypothesis at time, which is then either

confirmed or disproved, in which case attention switches to other hypotheses.

Evidence Action identity vs

action execution

for the complexities of credit assignment when a distinction

between action identity and action execution is possible is provided by recent

research on credit assignment for failures in the context of motor learning

(McDougle et al., 2016; Parvin et al., 2018; Mushtaq et al., 2019; McDougle

et al., 2019). In a typical two armed bandit context where choices were ex-

pressed through button presses and the two arms had equal expected value,

subjects displayed a marked preference for the safe option, yielding less re-

ward, but doing so more reliably (Niv et al., 2012; McDougle et al., 2016,

2019); however in a second condition where choice was expressed through a
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reach movement towards one of the two targets, therefore allowing variabil-

ity in movement execution accuracy, subjects preferred to aim for the riskier

target, which yielded more reward, but less frequently3 (the reward probabil-

ities and magnitudes for the two targets were predetermined, and feedback

was provided accordingly, irrespective of subjects’ real movements; care was

taken for the feedback to be credible).

It is important to note that this risk preference was only displayed when

subjects were provided veridical visual feedback about the accuracy of their

reach movements; in another condition (C3), where choice was also expressed

through reaching, but visual feedback was not provided, subjects displayed no

preference for either option. This is consistent with a scenario where subjects

have optimistic beliefs about their ability to reach a given target, as well as

a prior belief that reaching any of the targets is equally difficult; under such

assumptions, given information about their movement execution errors, they

can try again and do better, hit the more valuable target and get more reward.

Additional Action identity vs

action execution:

beliefs about agency

evidence for the importance of subjects’ belief in their agency

is provided by a follow-up study by Parvin et al (Parvin et al., 2018). In this

case subjects’ choices were always expressed through reach movements, but

task instructions were manipulated, such that subjects were told either that

hitting the target depended on their reach accuracy, or that it was indepen-

dent of it. It is important to note that feedback on miss trials was either not

provided at all, or provided as a non-informative display of the aiming dot, al-

ways placed in the middle between the two targets. Parvin et al found an effect

of the agency manipulation, but no effect of the feedback manipulation. Thus,

when they were instructed that movement execution was irrelevant, therefore

effectively removing movement accuracy as a possible explanation for failure

to obtain reward, subjects preferred the safe option. However, this preference

was abolished when subjects were instructed that outcomes depended on ac-

3Note similarities with our simulations for the bandit example in 1.1.2. Our model could
be extended to suit these experiments, by allowing it to account for feedback on reach accu-
racy and subjects’ expectations about the way their ability can evolve.
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tion execution; in this case subjects displayed no preference for either option.

Given Action identity vs

action execution:

nature of feedback

and interaction with

beliefs

that subjects were instructed that the accuracy of their reach move-

ment determined whether they hit the target or not, a preference for the risky

choice might have been expected in this condition. The lack of preference for

the risky choice in this case can be attributed to the fact that subjects were not

provided with veridical feedback as to the quality of their reach movements;

as such this condition is equivalent to the C3 condition in the first experiment,

as were the observed effects. This scenario is consistent with evidence from

more recent research (Uludag, 2019), investigating the effect of the nature of

feedback on learning and decision making in tasks involving motor control to

express choices.

These results illustrate the importance of subjects’ beliefs about agency

during learning and decision making, and provide a quantitative measure of

this effect in the particular context of motor learning. They also highlight the

complex nature of these beliefs, of their relationship with feedback and of

their effects on behaviour: a combination of belief in agency and feedback

that they could use to improve their performance was necessary in order for

subjects to display perseverance for the risky choice. Furthermore, they pro-

vide evidence for the sensitivity of these effects: relatively subtle variations

between conditions could lead to qualitatively different behaviour.

As the research summarised above illustrates, credit assignment prob-

lems are hard to solve, and they are further complicated by the fact that agents

do not have complete information about the environment, the other agents,

and even potentially about their own abilities. In such cases agents need to

rely heavily on their beliefs and expectations in order to simplify the problem.

Therefore beliefs, which are reinforced or changed based on experience, also

contribute, via their influence on credit assignment, to the evolution of the

agent’s policy, and therefore to shaping the agent’s experience. Such “loopy”

situations - where variables are mutually connected - can support complex dy-

namics, and also create the potential for the apparition of vicious circles (see
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our discussion of learned helplessness in section 1.3.2 below).

1.3 Attribution and self-beliefs
We have provided the description of the general framework in which we con-

sider decision-making, and we have presented challenges that agents face

when they need to choose actions and learn from their experience in such envi-

ronments. We have also succinctly illustrated the importance of expectations

or beliefs, and of assigning credit for the experienced rewards or punishments.

We now turn to the concepts of attribution and beliefs about the self,

which are central to this work. We begin this section with general consider-

ations about the relevance of attributions and beliefs about the self and about

the importance of the relationships between them. We then review the phe-

nomenon of learned helplessness, which was of fundamental importance in

the emergence and development of the theories of attribution which have in-

spired this work: we provide an account of the discovery of learned helpless-

ness, of the mechanisms that have been proposed to account for it, and of

the current understanding of it, gained as a result of detailed neurobiological

investigations. We continue with a review of the theoretical accounts of at-

tribution which have evolved out of the learned helplessness hypothesis: the

revised learned helplessness hypothesis, the learned hopelessness theory, and

the attributional self-representation cycle theory. Finally, we review empirical

evidence uncovered by research designed to explore and test these hypothe-

ses.

1.3.1 Relevance of attributions and beliefs about the self

As illustrated above for more general aspects of credit assignment, attribu-

tions are essential in interpreting experience and making sense of the world

and oneself in it; as such, they are crucial determinants of one’s expectations

about the future, as well as of one’s beliefs about the self. In turn, beliefs

about one’s abilities are likely to influence the evaluation of available actions

and their likelihood of success and therefore the decision-making process;
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they are also able to influence the post-decision credit-assignment process -

the way one makes attributions for one’s experience.

Note that while attributions and beliefs about the self are ingredients of

decision-making problems, and are relevant as carriers of information, they

are also likely to carry important emotional charges, as they directly involve

the self. As such, they can be subject not only to constraints related to infor-

mation processing, but also to constraints of a different nature, related to as-

pects of (emotional) well-being or motivation. Indeed there is ample research

- some of which we discuss below- on biases related to these processes, and

the extent to which they can best be interpreted in motivational, rather than

strictly information processing terms (Miller and Ross, 1975; Campbell and

Sedikides, 1999; Dunning et al., 1995; Zuckerman, 1979). Furthermore, a

broad range of external sources of information or decisional factors can be

limited to particular circumstances or temporal contexts. In contrast, attribu-

tions and beliefs involving the self are more likely to reveal or encapsulate

knowledge which is embedded in an individual’s identity or self-construct,

and thus have a more general impact on behaviour. That is not to say that

attributions or beliefs involving the self are necessarily fixed; rather our aim

is to highlight that the stakes involved are likely to be higher when the self is

concerned than when it is not.

A simple concrete example can be used to clearly illustrate these two

processes and their interactions, as well as their emotional and motivational

valence: consider a student who finds out their result at a math test – a low

mark. If the student has a strong belief in their mathematical ability or gen-

eral intelligence they might assign this low grade to the test being excessively

difficult, to the questions being confusingly expressed, to having had trou-

ble focusing due to tiredness or to some other external or transient potential

cause. In contrast, a student who is hesitant about their ability in maths, or

who harbours a belief that they are stupid, might interpret the low grade as a

result of their poor performance, reflecting their lack of ability or stupidity.
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These two alternative scenarios illustrate the effect of beliefs on causal attri-

bution. Consider now the effect of different attributions on beliefs about the

self: assigning the low grade to external factors or to tiredness will most likely

not affect the subject’s estimation of their ability in math, however attributing

the low grade to stupidity or lack of ability is more likely to strengthen the

student’s belief in their inability, and impact their motivation for studying this

topic in the future.

This is a clearly a very simplified view of the situation, and these pro-

cesses can be much more complex and nuanced in practice. Aspects such as

whether the cause is transitory or not, the student’s belief about whether math-

ematical ability is something that they can change or not, the importance that

math skill has to them personally etc all contribute to the effect of this expe-

rience on the student and on their subsequent expectations and behaviour. If,

rather than inferring they are stupid, the student believes that ability to solve

math problems is not a given trait, but can be acquired, a low grade might

be particularly motivating, determining them to work harder and do better in

future tests.

This simplified example is meant to illustrate the importance of attribu-

tions and beliefs about self for learning and decision-making and the ways

in which the two interact. It also shows that these are processes happening

constantly in everyday situations, and that even in apparently simple such sit-

uations there is potential for a great deal of complexity and variability in the

mechanisms of attribution and in their effects.

Both attribution and beliefs about the self are very general concepts, and

have been investigated in a huge amount of studies, and in multiple diverse

research areas.

Concepts of self are fundamental, but difficult to define and measure, due

to the complexity involved. A number of methods have been used to measure

aspects of beliefs related to the self, from explicit questionnaires measuring

self-esteem, or perceptions and expectations about the self (Rosenberg, 1965;
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Higgins, 1987) to more implicit methods such as measuring reaction time for

the recall of self-related words (Lyon et al., 1999), or measuring impairment

in color-naming self-related words - “the emotional Stroop” effect (Bentall

and Thompson, 1990; French et al., 1996).

Attribution-making has also been studied in diverse areas: it is related to

general causal inference mechanisms, of which it constitutes a particular case

(Heider, 1982); as a key part of the process of forming judgments about others

and about their responsibility in different circumstances, it has been a topic of

research focused on the assignment of blame (Lagnado and Channon, 2008;

Kominsky et al., 2015); to the extent that it is related to the appraisal of im-

portant life events, and to the forming and maintenance of expectations about

agency and control, it has been investigated in relation with carreer success

(Lyons et al., 2020) and health outcomes (Thompson, 1981; Berglund et al.,

2014) and constitutes a topic of particular interest in research on psychiatric

disorders. This last conceptual framework is the one that we will focus on,

due to our interest in the interaction between attributions and beliefs about the

self.

One research direction which occupies a central role in the theory of attri-

bution, and has prompted ample empirical research efforts, concerns accounts

of the links between depression and attributions and beliefs about the self and

the world. In the following sections we review the development of these the-

oretical accounts, from their start in the learned helplessness phenomenon,

through later refinements and expansions. We then review evidence uncov-

ered by the empirical research that these theoretical accounts have inspired.

1.3.2 Learned helplessness

Learned helplessness is a phrase coined by Seligman and Meier (Seligman

and Maier, 1967), which refers to the effects that experiencing uncontrollable

aversive events has on subsequent avoidance and escape behaviour. Inspired

by observations on the effect of strong inescapable stressors on rats (Richter,

1957), as well as by studies documenting effects of Pavlovian fear condition-
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ing on subsequent acquisition of escape/avoidance responses (Leaf, 1964),

Overmier and Seligman (Overmier and Seligman, 1967) gave a group of dogs

held in a harness electric shocks which they could do nothing to prevent or

stop; they then placed the same animals in a shuttle box in which they were

also administered electric shocks, however these shocks the dogs could escape

by jumping in the opposite side of the shuttle box. Overmier and Seligman

observed significant differences in escape behaviour between dogs that had

been exposed to inescapable shocks previous to the shuttle box testing and

dogs which had not. Previously shocked animals were slower to escape, and

also presented dramatic changes in behaviour when encountering shocks in

the shuttle box: unlike non-shocked animals, which barked and moved ag-

itatedly in the box prior to escaping, the pre-shocked animals soon gave up

and passively waited for the shock to finish; in addition, while in non-shocked

animals an accidental successful jump over the shuttle box barrier, resulting

in shock termination, was reliably followed by faster subsequent escape re-

sponses, in pre-shocked animals successful accidental escapes did nor reliably

predict future escape responses.

In a series of studies aimed at uncovering the mechanisms responsible

for these differences, Seligman and Meier introduced an additional control

group - animals given escapable shocks previous to shuttle box testing; thus

the refined version of the experiment involved three groups of animals: one

group given no shock prior to shuttle box testing, one group given shocks

which they could end by pressing a lever, and a yoked group, experiencing

exactly the same shocks as the previous group, but for which shock termina-

tion was independent of their own behaviour. Seligman and Maier (Seligman

and Maier, 1967) observed that the inescapably shocked animals were later

impaired in avoiding and escaping shocks in the shuttle box, unlike the other

two groups. When experiencing shocks in the shuttle box, animals previously

given no shock and animals previously given escapable shocks moved franti-

cally and, after stumbling upon the correct escape response, quickly learned
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from it. In contrast, animals given inescapable shock quickly gave up mov-

ing in the shuttle box, and even if they occasionally produced the correct

response, they did not learn from these instances of success, but continued

to passively accept shocks. These results were interpreted as proof that it

was the inescapable nature of the shocks, rather than the shocks themselves,

that produced the dramatic behavioural changes. A large number of studies

by Seligman, Meier and Miller as well as by other groups showed the effect

to be robust and reproducible across different species (Maier and Seligman,

1976) - rats (Seligman et al., 1975), fish (Padilla et al., 1970), cats (Thomas

and Baiter, 1974), humans (Hiroto, 1974; Miller and Ross, 1975; Miller and

Seligman, 1976) - in experiments involving a range of uncontrollable stres-

sors(swim, restraint, electrical shocks, noise, unsolvable anagrams) and test

behaviours (anagram solving, competition for food, dominant behaviour etc).

Seligman and Meier (Maier and Seligman, 1976) proposed the learned

helplessness theory to account for these phenomena: in contrast with as-

sociative theories of learning, they postulated that animals are able to de-

tect and learn not only contingency between responses and outcomes, but

also the lack of it - uncontrollability - whereby p(outcome|response) =

p(outcome|absence of response). They further postulated that the cognitive

and motivational effects of this learning were responsible for the impairments

observed in these animals’ escape response: having detected that it has no

control over the outcomes, the animal expects the lack of control to be present

in the future; this reduces the motivation to initiate escape responses, since the

animal expects responses to be useless; in addition, the active learning about

uncontrollability interferes with subsequent learning, and animals who have

learned helplessness are unable to learn from occasional successful escape

responses in the way that normal animals do. Drawing on similarities be-

tween the cognitive, motivational and emotional effects of learned helpless-

ness and symptoms of depression, the learned helplessness theory of depres-

sion was proposed (Seligman, 1972; Miller and Seligman, 1975; Abramson
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et al., 1978), which gave rise to a research direction we review in the following

section.

A number of alternative interpretations for the learned helplessness phe-

nomena were proposed: adaptation or sensitisation to shocks, movement im-

pairment due to depletion of neurotransmitters during initial uncontrollable

stress, accidental learning of associations between some responses and shock

termination during inescapable stress, responses which then contradict the

ones necessary for escape in the shuttle box. However, a number of targeted

studies seemed to conclusively prove that the explanation based on learning

of uncontrollability better accounted for the facts (see Maier and Seligman,

1976, for review) for review.

However later investigations into the neural basis of learned helpless-

ness, which uncovered some of the mechanisms underlying it, showed that

Seligman and Meier’s initial explanations were only partially correct. The

picture that emerged as a result of these later studies suggests that while it is

true that the controllability dimension is essential, it is not uncontrollability

that is learned, but control. According to this latter view, prolonged aversive

experiences lead by default to passivity, as well as increased vulnerability to

stress in the future; detecting control over aversive stimuli counteracts this de-

fault reaction, protecting from impairments in escape learning and promoting

expectations of control for future experiences. The neural implementation

of these processes involve the dorsal raphe nucleus (DRN) and its connec-

tions with the frontal cortex. Intense aversive stimuli produce an increase

in the activity of serotonin neurons in the DRN, producing two effects. The

immediate effect is inhibition of the periacqueductal gray (PAG), a structure

responsible for generating the fight and flight response, leading to immedi-

ate passivity. A second effects involves a longer timescale, and manifests

as a persistent generalisation of passivity across contexts; this is produced

due to sensitization of the DRN to stress, which facilitates the heightened in-

hibition response to later stressful events. However detection of control by
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a circuit involving the ventro-medial prefrontal cortex and the dorso-medial

striatum inhibits the DRN activity, thus preventing both immediate passivity

and sensitisation to later stress. In addition, detection of control over aversive

stimulation strengthens the vmPFC to DRN pathway, such that it becomes ac-

tivated by aversive stimuli alone, producing the immunisation seen in animals

previously exposed to controllable shock (see Maier and Seligman, 2016, for

a detailed review).

A connection between learned helplessness and depression remains rel-

evant, despite the fact that the initially postulated connection between them

needs to be reappraised in view of the current understanding of the mecha-

nisms involved in learned helplessness. Furthermore, our current and future

understanding of these mechanisms could suggest treatment approaches. We

review the evolution of the learned helplessness theory in depression research

in the following section.

1.3.3 Attributional patterns and inferences about the self:

theoretical accounts

Similarities Learned

helplessness theory

of depression

between learned helplessness in animals and depression in hu-

mans lead Seligman (Seligman, 1972) to hypothesize a link between the two

phenomena. The resulting learned helplessness theory of depression postu-

lated as a central cause of depression the cognitive (expectation of lack of

control in the future), motivational (impairment in action initiation, due to

expectation of failure) and emotional (heightened stress, depressed mood) ef-

fects of the belief that one is unable to control (important) outcomes (Maier

and Seligman, 1976). There followed a series of studies (Miller and Seligman,

1973, 1975, 1976) aiming to establish the validity of this hypothesis, by com-

paring the effects of learned helplessness and depression in humans (though

note that depressed subjects were defined as such based on their BDI scores

(Beck et al., 1961), rather than through a clinical diagnostic). The results of

these studies were to some extent consistent with the theory’s predictions, but
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also hinted at more complex phenomena, which the theory did not account for

(Miller and Seligman, 1973, 1976).

Abramson Reformulated

learned helplessness

theory of depression

et al (Abramson et al., 1978) proposed a refinement of the the-

ory, featuring attribution as a key ingredient that mediates the effect of lack

of control on later behaviour. According to this reformulation, once failure

to exert control over aversive outcomes has been detected, it is attributed to

a cause, which can be internal to the subject or external, stable or transitory,

global or specific. It is the nature of this attribution that determines the extent

of expectations of helplessness in the future, with attribution globality deter-

mining the generality of helplessness deficits, attribution stability determining

the chronicity of helplessness deficits, and attribution internality determining

the effect on self-esteem. Abramson et al further postulated that people have

stable patterns of attribution-making - “attributional styles”, and that people

with an internal, global and stable attributional style for negative events would

be most vulnerable to depression.

The Hopelessness theory

of depression

theory was further revised by Abramson, Metalsky and Alloy

(Abramson et al., 1989), who postulated the existence of a subtype of de-

pression - hopelessness depression - and articulated a causal chain of events

producing it. According to the theory, hopelessness - defined as an expecta-

tion that negative outcomes will occur, while positive ones will not, and that

there is nothing that one ca do to change this- is a sufficient proximal cause

of hopelessness depression symptoms. The causal chain leading to hopeless-

ness starts with negative life events, or the absence of positive ones, which

trigger inferences about their causes and their consequences, and inferences

about the self; these inferences, potentially modulated by additional factors,

ranging from genetic factors to the presence or absence of a social support

network, can produce hopelessness.

In keeping with the previous version of the theory, inferring stable and

global causes for important negative events increases the likelihood of hope-

lessness. Unlike the previous version of the theory, inferences about the
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consequences of negative events are postulated to influence the likelihood

of hopelessness depression independent of causal inferences, but in paral-

lel ways: inferring that an important negative event will have general con-

sequences unlikely to be averted increases the likelihood of people becoming

hopeless. Finally, the revised version of the theory emphasises the importance

of inferences about the self as a distinct factor, albeit one potentially related

to causal attributions: inferences about one’s worth, abilities, desirability etc

increase the likelihood of hopelessness to the extent that the individual in-

fers that they have negative characteristics which are important, unlikely to

change, and affecting many areas of their life. Individual differences in cog-

nitive styles - encompassing differences in the tendency to make stable and

global attributions for negative events and differences in the tendency to infer

bad things about oneself- contribute, along with situational information, ex-

pectations, motivation, attention etc to inferences about causes and the self,

and thus act as distal causes of hopelessness.

One Hopelessness theory

of depression:

diathesis-stress

model

of the key aspects of the theory is that it postulates a diathesis-stress

model, according to which it is the conjunction of negative life events and

predispositions for negative inferences which produces hopelessness, rather

than any of these factors in isolation. As a corollary, the theory postulates

a titration model of this interaction: people who are very prone to making

negative inferences might become hopeless as a result of relatively benign

negative life events, whereas people who are less prone to making negative

inferences only become vulnerable to hopelessness when experiencing severe

negative life events.

By laying out a causal chain leading to hopelessness and hopeless-

ness depression, the theory also indicated protective factors and interven-

tions which could contribute to prevention and improvement of symptoms,

such as protective cognitive styles and attitudes towards the self, and inter-

ventions aimed at changing disfunctional attitudes and depressogenic attribu-

tional styles. We review findings consistent with and supporting of the theory
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in the next section.

The The attribution-self-

representation cycle

theory

theories we have just reviewed assume stable mechanisms are in-

volved in generating causal attributions and inferences about the self and pro-

pose a “feed-forward” causal chain linking negative events to symptoms of

depression. Bentall et al (Bentall et al., 2001; Bentall, 2003) proposed a the-

oretical account including interactions between attributions and beliefs about

the self, and emphasising the dynamic nature of the processes involved - the

attribution-self-representation cycle theory. Bentall et al (Bentall et al., 2001)

postulate that rather than having a trait-like attributional style, individuals use

current beliefs about the self, or readily available stored knowledge about

the self, along with attributional signposts in situational information (Kel-

ley, 1967) when making causal attributions. Bentall et al propose that the

process of attribution formation involves a search for explanations that starts

with explanations involving the self and terminates when a suitable expla-

nation is found; on the other hand, once an attribution is formed, it primes

representations of the self that are consistent with it. Thus, along with effects

of attributions on beliefs about the self, Bentall et al recognise the possibil-

ity of effects in the opposite direction, leading to a system with fluctuating

components and potentially complex effects of interactions between them -

the attribution-self-representation cycle (Bentall, 2003). The system can be

influenced by relatively stable factors, such as individual differences in stored

knowledge about the self, motivational biases, tendency to attend to specific

types of information or ability to understand others, as well as variable factors

determining the relative availability of information in different circumstances.

Within this framework, self-serving or self-enhancing attributional bi-

ases that healthy people display function as homeostatic mechanisms for the

maintenance of beliefs about the self within healthy parameters; the absence

or disruption of these homeostatic mechanisms leaves people vulnerable to

aberrant protective mechanisms or vicious cycles (where negative internal at-

tributions lead to a worsening of self-beliefs, leading to further negative at-
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tributions), producing and or maintaining depressive or paranoid symptoms.

The dynamic nature of both attributions and self-beliefs, and the fact that they

exert reciprocal influences on each other can be expected to produce complex

patterns of relationships between them; the inherent difficulty of predicting

such relationships can account for some of the inconclusive or contradictory

findings of studies aimed at testing previous theories, which suggested poor

predictive power (see Robins and Hayes, 1995; Liu et al., 2015, for reviews).

1.3.4 Attributional patterns and inferences about the self:

empirical evidence

Investigations into learned helplessness and the emergence of various theories

postulating links between this phenomenon and depression prompted a large

amount of research in the area, producing a complex pattern of findings, not

entirely explained by either theory, which highlights the importance of longi-

tudinal studies, and the need for a complex and nuanced approach. We review

some of the empirical results in this section.

Early Depressive realisminvestigations into potential differences between the way depressed

and non-depressed subjects perceive the amount of control they have over out-

comes (a key determinant of learned helplessness phenomenon, as well as an

important factor contributing to the formation of causal attributions) uncov-

ered a surprising result: according to learned helplessness theory, depressed

subjects were expected to underestimate the extent to which they were in

control of outcomes, unlike controls. However this is not what Alloy and

Abramson (Alloy and Abramson, 1979) found in their study investigating the

perception of contingency between outcomes and behaviour in normal and

depressed subjects. Instead, depressed subjects turned out to be accurate in

their perception of contingency, unlike normal subjects, who showed a dou-

bly inaccurate pattern of contingency perception, overestimating contingency

when appetitive outcomes were involved, and underestimating it for aversive

outcomes. These results have been replicated (Martin et al., 1984; Vázquez,

1987) and they are consistent with amply documented self-serving biases in
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normal subjects (see Campbell and Sedikides, 1999, for a review).

However Depressive realism

challenged

other studies have failed to find associations between depres-

sive symptoms and higher accuracy, or have found only partially consistent

results (Alloy et al., 1981; Alloy and Abramson, 1982; Benassi and Mahler,

1985; Presson and Benassi, 2003) (and Allan et al., 2007; Moore and Fresco,

2012, for reviews). Note that most of the above mentioned studies did not use

clinically depressed subjects, but subjects labeled as such based on BDI in-

dexes; studies involving depressed patients challenged the depressive realism

view, providing evidence that depressed patients have negative biases in their

judgements which are not incompatible with them appearing more accurate

in some cases (Carson et al., 2010; Kaney and Bentall, 1992), and that they

share with non-depressed subjects the illusion of control bias - a tendency to

estimate they have some degree of control when none is present (Venkatesh

et al., 2018; Carson et al., 2010; Moore and Fresco, 2012; Vázquez, 1987;

Presson and Benassi, 2003; Kaney and Bentall, 1992).

A Depression and

negative biases

range of studies found associations between depression and negative

biases, with people presenting depressive symptoms also showing more pes-

simism, lower expectations of competency (Golin et al., 1977; Miller and

Seligman, 1973; Garber and Hollon, 1980), more negative evaluation of the

self and negative self-reinforcement (Rozensky et al., 1977; Lobitz and Post,

1979; Gotlib, 1981; Roth and Rehm, 1980), and higher recall and endorse-

ment of negative self-descriptive words (Lyon et al., 1999; Gotlib and Mc-

Cann, 1984) than healthy subjects. Depressive symptoms have also been re-

peatedly found to be associated with a negative attributional style (Peterson

and Seligman, 1984; Lyon et al., 1999) involving internal, stable and global at-

tributions for negative events (see Sweeney et al., 1986; Robins, 1988; Robins

and Hayes, 1995, for reviews). Note however that results of studies with clin-

ically depressed subjects and those with subjects showing mild to moderate

depressive symptoms were not always consistent, and a number of studies

have failed to find these effects (see Coyne and Gotlib, 1983, for review).
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More generally, associations between depressive symptoms and a tendency

to make negative inferences has been observed both in clinically depressed

samples and in subjects with mild to moderate depression symptoms (see Liu

et al., 2015, for a review).

One Diathesis-stress

model

of the key aspects of the hopelessness theory of depression is the

diathesis-stress nature of the vulnerability to hopelessness, according to which

it is the conjunction of negative life events and negative attributional style that

increases the risk of depression, rather than each of these two factors on its

own. This aspect of the theory has been tested in numerous studies, both

as a risk factor, when negative life events and negative inference styles are

concerned (Metalsky et al., 1987; Alloy et al., 1999), and as a protective one,

when positive life events and a positive inferential or attributional style are

involved (Needles and Abramson, 1990; Kleiman et al., 2013; Haeffel and

Vargas, 2011; Johnson et al., 2017), and generally found to be valid (see (see

Abramson et al., 1989; Robins and Hayes, 1995; Liu et al., 2015; Johnson

et al., 2017, for reviews).

Much Dynamics of

attributions

of the research we reviewed so far assumed attributional styles

to be stable, trait-like characteristics. However more recent research investi-

gating the effect of experience manipulation on subsequent attributions chal-

lenged this view, producing evidence that this phenomenon is more dynamic

than previously considered (Forgas et al., 1990; Bentall and Kaney, 2005).

In a series of experiments in which subjects’ mood was manipulated (either

through false feedback in an experimental task or through exposure to emo-

tionally charged short films) Forgas et al (Forgas et al., 1990) measured attri-

butions made by healthy subjects either for hypothetical situations or for their

own real exam results and found that subjects given a positive mood made

more internal and stable attributions for positive outcomes, and less internal

and stable attributions for negative outcomes, than subjects given negative

mood. In a study involving clinical populations, Bentall and Kaney (Ben-

tall and Kaney, 2005) administered the expanded ASQ questionnaire to de-
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pressed, paranoid and normal subjects and asked them to judge contingency

between their actions and outcomes in a computer-based task before and after

exposing them to a mild failure experience (an anagram solving task which

included unsolvable items); negative internality scores increased after the fail-

ure experience for both groups of patients, although not for the healthy con-

trols, who might be less vulnerable to the effects of such mild failure expe-

riences. These studies indicate that attribution-making tendencies can vary

rapidly, and that factors such as mood and achievement can exert an effect on

them.

Beliefs Dynamics of beliefs

about the self

about the self - and their fluctuations - might represent another

important source of dynamics in attribution-making. Research involving rela-

tionships between attributions and beliefs about the self has found that mea-

sures of self-esteem can account for variation in attributional styles in both the

general population and in psychiatric patients (Tennen et al., 1987; Tennen

and Herzberger, 1987; Romney, 1994), and that situations involving poten-

tial threats to self-esteem promoted self-serving attributions (Dunning et al.,

1995). These results highlight the need for more precise investigations specif-

ically designed to uncover the dynamics of attributions and beliefs about

the self, allowing for quantitative testing of theoretical accounts based on

time-varying interactions between these variables, such as the attribution-self-

representation cycle (Bentall, 2003; Bentall et al., 2001; Bentall and Kaney,

2005). This need has inspired the work presented in this thesis, our aim being

to draw upon precise quantitative measuring techniques typically used in re-

inforcement learning and decision making research in order to develop a task

that would allow such precision to be used in the attribution research domain.

Having reviewed the theoretical accounts of attribution developed based

on the learned helplessness hypothesis, along with empirical evidence uncov-

ered by research inspired by these hypotheses, we conclude this chapter with

an overview of the technical tools we have employed in this work. Most of the
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research we have reviewed so far utilised statistical analyses using averages,

rather than trial by trial data. Our purpose in the experiment described in this

thesis was to provide a task in which the attributions and self beliefs variables

could be measured repeatedly, allowing for investigations of their dynamics

by use of more recent trial by trial modelling techniques. We provide a dis-

cussion of this approach in the next section.

1.4 Computational modelling - theoretical as-

pects
To a large extent, the research on attributions and beliefs about the self which

we have reviewed above relied, from a technical point of view, on classical

statistical techniques such as analysis of variance (ANOVA) and hypothesis

testing. We have also consistently employed these techniques in our analyses,

as described in later chapters. One of the aims of the work presented in this

thesis has been to complement this classical approach by also including in

our analyses the powerful and flexible tools of computational modelling, a

framework which is particularly well suited to quantify and reveal aspects of

the processes underlying phenomena of interest.

Computational modelling has been very popular in research on reward

learning and decision making (see Dayan and Abbott, 2001; Dayan and Niv,

2008; Dayan and Daw, 2008; Daw and Doya, 2006; Rushworth et al., 2011;

Behrens et al., 2009, for reviews), including work that we reviewed above

in section 1.1.2, and has recently been increasingly viewed as a useful frame-

work for psychiatry research (Montague et al., 2012; Huys et al., 2015; Adams

et al., 2016; Hauser et al., 2019). It constitutes the theoretical foundation upon

which our model-dependent analyses are based. In this section we present an

overview of the probabilistic computational modelling framework, highlight

the two core components of this approach - parameter estimation and model

comparison, and briefly discuss modelling decisions involved in applying the

approach at the population level. Detailed accounts of implementation in our



1.4. Computational modelling - theoretical aspects 56

work are presented in the subsequent relevant chapters.

In computational modelling approaches, hypotheses about the mecha-

nisms producing the observed data are encoded into precise mathematical for-

mulations involving observable variables, or variables set by the experimenter,

and unknown or unobservable variables. Given a setting of all variables in-

volved, the model can be used to generate predictions, which can then be

compared with the real, observed data, and discrepancies between prediction

and reality can be measured. Typically, at least some of the model param-

eters represent unobservable variables of particular interest, which are to be

inferred from data: assuming the observed data has been generated according

to a given model, this inference corresponds to finding the setting of the cor-

responding parameters that minimises the discrepancy between predicted and

real data. The approach can also be used to answer questions of a different

nature: the extent to which different models account for the observed data

can be used to evaluate the corresponding hypotheses that the models encode.

These two kinds of problems are known as parameter estimation and model

comparison respectively.

One key advantage of using generative models compared to classical sta-

tistical tools is that they can encode theories accounting for the dynamics of

the variables of interest at the trial by trial level. This feature is particularly

relevant in the case of learning theories which explain how feedback is related

to trial by trial changes in behaviour or neural activity, and the increasing use

of such models has enriched our understanding of trial by trial dynamics.

1.4.1 Specifying a probabilistic model

The computational models we use in this work are probabilistic models

(MacKay and Mac Kay, 2003; Bishop, 2006; Koller and Friedman, 2009):

while some of the relationships between variables in these models can be

deterministic, they also allow for the presence of noise, represented through

probability distributions, and accounting for inherent uncertainty and or for

the effects of nuisance variables.
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Noise terms can be included in the relationships between unobserved

variables, as well as in the relationships between these and observable data.

In addition, these models include uncertainty over parameters (as well as pa-

rameter variability between subjects, as discussed below), also encoded as

probability distributions. A probabilistic model is therefore formally specified

by two such distributions: the likelihood function p(D|θ ,M), which encodes

the probability of data D given a setting of the model parameters θ , and the

prior distribution over parameter values under the model, p(θ |M)4.

To illustrate this5, let us return to the 2-armed bandit problem that we

discussed previously from the agent’s perspective (see section 1.1.2), and

present it from the point of view of an experimenter using a computational

approach to analyse the behaviour of a subject. Let us assume the exper-

imenter postulates the subject uses a simple, deterministic learning model,

Qnew
at = Qold

at + α(rt −Qold
at ), with one learning rate parameter α . In oder

to generate predictions, the experimenter’s model needs to also account for

the link between action value estimates and the choice of action on ev-

ery trial. This link we assume to be a probabilistic one, namely the soft-

max function introduced before, p(at = 1|Qt
1,Q

t
2) =

exp(βQt
1)

exp(βQt
1)+exp(βQt

2)
, where

p(at = 1|Qt
1,Q

t
2) is the probability of choosing action 1 at trial t, given the

current estimates of the values of the two actions; this choice introduces the

additional parameter β , modelling the sensitivity of choices to action values
6. Considering the data to be the series of actions the subject chose on ev-

ery trial, a1,a2, ...aN , and assuming that choices are independent given model

4Note that here we use the most abstract representation of these distributions, our purpose
being to illustrate the theoretical foundations; in practice, these distributions can be arbitrarily
complex objects, depending on the specific details of the modelling problem.

5We use this example here merely for illustration purposes; the models we use in chapter
3, which are built on a similar structure, are described in detail in the appendix J.

6Note that in this case the experimenter’s modelling choices match the action selection
mechanism that the agent uses, but not the learning model.
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parameters, the term p(D|θ ,M) becomes

p(a1, ...aN |α,β ) = Πt p(at |Qt
1,Q

t
2)

= Πt
exp(βQt

at
)

exp(βQt
1)+ exp(βQt

2)
,

where we use Qt
at to denote the current estimated value of the action took at

trial t, at .

1.4.2 Parameter estimation

Parameter inference is most often conceived as an optimisation problem

which consists in finding θ such that p(D|θ ,M) is maximised - the max-

imum likelihood estimator 7. Finding the maximum likelihood estima-

tor is equivalent to finding θ that minimises the negative log-likelihood,

− log(p(D|θ ,M)); this formulation is preferred due to its advantages for nu-

merical optimisation procedures, which are generally used to implement pa-

rameter estimation.

In the 2-armed bandit example above, the corresponding optimisation

objective is − log(Πt p(at |Qt
1,Q

t
2)) =−Σt log(

exp(βQt
at )

exp(βQt
1)+exp(βQt

2)
), and solving

this optimisation problem would produce estimates of α and β for the given

subject.

Our purpose being to illustrate this process in the simplest possible con-

text, we have so far discussed parameter estimation as applied to data from

one subject. However real data typically involves not one, but a number of

subjects: questions of interest, such as determining whether attributions have

an effect on subsequent beliefs about self, or comparing this effect in healthy

7An optimisation problem more consistent with a Bayesian approach is maximising
p(θ |D,M), the result of which is known as the maximum a posteriori estimator. The two
optimisation objectives are linked through Bayes’ rule p(θ |D,M) = p(D|θ ,M)p(θ |M)

p(D|M) , therefore
the distinction between the two optimisation problems is relevant only if the model includes
a non-uniform prior distribution over the parameters. Such distributions can be used to en-
code parameter constraints, or assumptions about likely values, based on prior knowledge.
A fully Bayesian approach involves manipulations of the posterior probability distribution,
p(θ |D,M), rather than the use of point estimates of parameters. However for the benefit of
clarity and brevity we use point estimates in this discussion, and we assume uniform prior
distributions, allowing us to focus on p(D|θ ,M).
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and depressed people, are generally not questions about one individual; rather

they are naturally formulated as questions about one or more populations.

There are several approaches for modelling data from multiple subjects.

One approach consists in fitting each subject individually, by solving the

corresponding optimisation problem, which results in a pair of α,β values for

each subject, and then applying classical statistical methods to the resulting

samples for α and β .

To illustrate the process in our 2-arm bandit problem, let us assume the

experimenter asks subjects to report, on every trial, whether they believe their

reach movement to have landed in the target region or not. And let us further

assume the experimenter postulates a slightly more complex learning model

than the one discussed above, namely one which has two learning rate pa-

rameters, αinacc - corresponding to trials in which subjects judge their per-

formance of the reach movement to have been inaccurate, and αacc, corre-

sponding to trials where subjects judge their movement to have been accu-

rate. Having obtained parameter estimates for all subjects, the experimenter

can test whether the two learning rates are different in the subject population,

or whether the αinacc learning rate is different from 0. (Note that we use this

example as a very simple and concrete illustration of the way in which model

parameters can be used to address questions of interest; the process of build-

ing computational models of behaviour in cognitive tasks is generally a more

complex endeavour.)

We have used this approach repeatedly throughout this work, as detailed

in the following chapters, where we present our analyses and results. Wether

subjects use different learning rates for accurate and inaccurate reach trials is

a question that can also be framed in model comparison terms, which will be

the topic of the next section.

A different, and, from a model fitting perspective, a slightly more so-

phisticated, method of dealing with population data consists in explicitly ac-

counting for variability between subjects in the generative model. This is
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µθ, σθ

θ1 θ2 θs θS

d1 d2 ds dS

Figure 1.3: Graphical representation of an abstract hierarchical population model:
µθ ,σθ represent population parameters; θ1,θ2, ...θS represent individual
parameters for S subjects; d1,d2, ...dS represent data for subjects 1, 2, ..
and S respectively; arrows represent probability distributions encoded by
the model: individual parameters are assumed to be drawn from a Gaus-
sian distribution specified by population parameters, θs ∼ N (µθ ,σθ );
the link between θs and ds is given by the likelihood in the model,
p(ds|θs).

achieved by augmenting the model with a set of population-level parameters,

and with the assumption that individual parameters are drawn from a prob-

ability distribution - often assumed to be Gaussian- characterised by these

(unknown) population-level parameters. Thus in addition to individual pa-

rameters and the likelihood of individual data given individual parameters,

the model will also include a term defining the likelihood of individual pa-

rameters given population ones (see figure 1.3 for a graphical representation

of this more complex model).

In our 2-armed bandit example, this would correspond to the addition

of population level parameters µαinacc,µαacc,µβ ,σαinacc,σαacc,σβ , represent-

ing the mean and standard deviation of the Gaussian distributions of the

three parameters at the population level, such that each individual subject

parameter is assumed to be drawn from the corresponding distribution (e.g.

βi ∼N (µβ ,σβ )). In this case, the parameter estimation step would corre-
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spond to finding population-level parameters that maximise the likelihood of

the data. Testing wether αinacc is different from 0, or wether the two learn-

ing rate parameters are different from each other, would be performed on the

population distributions defined by the estimated population level parameters.

While the process is theoretically straightforward, in practice it gener-

ally involves complications due to the need to integrate out individual-level

parameters in order to compute the likelihood function. The correspond-

ing integral is often intractable, as is the case in the example used above,

where the population distributions are Gaussian, but the individual likelihood

functions are not. In these cases, sampling or analytical approximations are

needed (MacKay and Mac Kay, 2003; Bishop, 2006; Gelman et al., 2013).

Our aim here being to present the general theoretical aspects of our modelling

approach, we do not discuss these issues in further detail at this point. We

have used this hierarchical modelling approach in some of the analyses pre-

sented in this work, and we provided a more detailed discussion in the relevant

sections (see 4.3).

1.4.3 Model comparison

As mentioned above, determining if subjects use different learning rates for

accurate and inaccurate reach trials is a question that can also be framed in

model comparison terms, an issue to which we now turn.

Model comparison refers to evaluating the extent to which different mod-

els capture the mechanisms producing the observed data. It is a fundamental

aspect of computational modelling, as it underlies its two key goals: evaluat-

ing alternative hypotheses about the phenomena of interest - which translates

directly into comparison of the corresponding models, and inferring hidden

variables- inferences about parameters are only informative to the extent that

the chosen model represents a good approximation of the real data generating

process.

Note that a good model is one that captures relevant aspects of the un-

derlying data generating process, rather than the observed data itself: simply
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using the quality of model fit to the data as the comparison variable is not a

suitable approach. This can be easily illustrated by considering two nested

models, such as the two models we described for the 2-armed bandit task, one

including only one learning rate parameter, the other including two. As the

second model is an expansion of the first one, it will inevitably fit any given

data at least as well as the first one, because optimisation is performed over

a larger set of parameters. As this is merely an automatic result of the way

the comparison is framed, it does not constitute evidence that subjects use

different learning rates for the two different types of trials.

One way to perform a fair and informative comparison of the two mod-

els consists in comparing their prediction accuracies on new data from the

same source. This illustrates a general, straightforward but computationally

expensive, approach to model comparison: separating the available data into

a training set used for model fitting, and a held-out set, to be used for com-

puting the model accuracy. Comparison between alternative models can then

be performed based on their accuracy on held-out data.

Alternatively, in the probabilistic framework, model comparison is per-

formed by computing, for all the different candidate models, a quantity known

as the model evidence; the model with the highest model evidence is pre-

ferred. Model evidence is defined as the likelihood of the data given the

model, and it is computed by integrating over the model parameters accord-

ing to Bayes’ rule: p(D|M)=
∫

p(D|θ ,M)p(θ |M)dθ , where p(D|θ ,M) is the

likelihood of the data given parameters, and p(θ |M) is the prior likelihood of

the parameters included in the model.

Comparison via the model evidence constitutes an automatic implemen-

tation of Occam’s razor, preferring a model that is “just right” for the data: for

a model that is too simple to produce the observed data, the likelihood term

is low for any setting of the parameters; for a model that is too complex, and

could produce the observed data, along with a large number of other potential

datasets, prior probability density is spread out over many possible settings
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of the parameters, out of which only few correspond to accurate predictions

on the observed data; a preferred model is one which lies in between these

extremes, being just flexible enough to capture the data (see figure 1.4 for a

cartoon illustration).
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Figure 1.4: Model evidence implementing Occam’s razor: for dataset D model ev-
idence favours model M2, which is complex enough to fit the data,
and not spreading its probability distribution over too large a family
of datasets; model M1 assigns higher probability to the datasets that
it can fit, but D is not among them; model M3 can fit a larger family
of datasets, including D , but assings smaller likelihood to each of these
than model M2 does.

In practice, integrals involved in computing the model evidence are of-

ten intractable, and approximation is needed (MacKay and Mac Kay, 2003;

Bishop, 2006; Gelman et al., 2013). One of the most frequently used solu-

tions is the use of theoretically derived approximations of the model evidence

(Schwartz, 1978; Akaike, 1974; Watanabe, 2013), such as the Bayesian In-

formation Criterion (Schwartz, 1978), BIC = k ln(N)−2ln(L̂), where k is the

number of model parameters, N is the number of data points being fitted, and

L̂ = p(D|θ̂ ,M) is the likelihood corresponding to the parameters obtained by

fitting; lower BIC scores correspond to better models. This quantity can be

intuitively interpreted to counterbalance the quality of fit to the observed data

- the−2ln(L̂) term, and the model complexity - the k ln(N) term: compared to

a model that is “just right”, a too complex model is likely to produce a smaller
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negative log likelihood value, but is penalised more for the larger number of

parameters; a too simple model will have a higher value of the negative log

likelihood. We discuss information criteria that we used in our analyses in

more detail in the relevant sections (3.3 and 4.3).

Finally, paralelling the above discussion about parameter fitting, there are

various approaches to model comparison for populations of subjects. When

models have a hierarchical structure, model comparison is automatically per-

formed at the population level. When fitting is performed for each subject

individually, model comparison can proceed under the assumption that the

same model is valid for all subjects, in which case evidence for each model

is summed across the population, or under the assumption that different sub-

jects can be characterised by different models, in which case model compar-

ison involves determining model prevalence across the population (Stephan

et al., 2009; Rigoux et al., 2014). We provide details of our implementation

of model comparisons across our population of subjects in our analyses re-

ports in following chapters.



Chapter 2

Experiment and task: concept,

implementation, quantification

challenges

In this chapter we provide a detailed presentation of the experiment from

which the data analysed in subsequent chapters has been obtained. We be-

gin by presenting our concept and goals, and the way they have informed

our design of the experiment; we then present the task and the nature of the

responses that we collected, briefly mentioning aspects of the data that consti-

tute direct measures of the extent to which experimental manipulations were

successful. Finally, we present some of the quantification challenges that we

faced due to the nature and novelty of the task, and our approaches for dealing

with them.

Our analyses suggested a number of task improvements that could be

implemented in future work; we discuss them in the final chapter of this thesis

(see section 6.2).

2.1 Concept, experiment goals
This experiment was conceived as an exploratory attempt to bring together

two approaches in the study of attributions and the formation, maintenance

and updating of beliefs about the self, which have complementary advantages.
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One is the qualitative approach that has a long tradition of use in psychology

and psychiatry (see review in chapter 1), which has the advantage of dealing

directly with highly relevant concepts and questions, immediately meaning-

ful on a human level; however these concepts are not easily amenable to the

mathematical formalism that could provide a quantitative understanding of

the underlying mechanisms. The other is the quantitative, often normative

approach that the computational neuroscience and computational cognitive

science fields have been more recently employing (e.g. (Behrens et al., 2007;

FitzGerald et al., 2015; Daw et al., 2011), see also review in chapter 1); this

has the advantage of elegantly designed, well controlled experiments, based

on solid mathematical formulation of theories; however if often involves dras-

tic simplifications of the concepts and phenomena of interest.

There are a number of criteria that we aimed for our task to satisfy: it

needed to provide subjects with real, experienced outcomes, engaging enough

to produce relevant attributions and relevant beliefs about the self; do so re-

peatedly, in order to allow for potential interactions between these two phe-

nomena to manifest themselves; to control the subjects’ experience and pro-

duce outcomes based on objective, measurable and controllable parameters;

to involve learning, in order to allow for natural dynamics of belief updating

and attributions. Finally, to enable investigation of whether these mechanisms

are exclusive to the self, the task needed to be suitable for both actor and ob-

server conditions.

2.2 Implementation

For these purposes, we implemented the task as a game of skill, providing sub-

jects with an engaging and relevant context, and eliciting real attributions and

beliefs about self. Subjects were asked to provide three kinds of responses: a

causal attribution for the outcome they just experienced, an estimate of current

skill and a bet on performance on the following trial. The task was presented

to the subjects in two conditions, which we refer to as the “self” and “other”
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condition, always presented in this order. In the “self” condition subjects

played the game themselves and the attribution, skill report and bet questions

referred to their own performance. In the “other” condition, subjects watched

recorded trials, and answered the three types of questions about the recorded

agent’s performance. Subjects were told recorded performances belonged to

another subject having previously completed the task, but were, in fact, pre-

sented with their own previous performance from the “self” condition.

2.2.1 The game

The task was implemented as a game of skill, inspired by the “Penguin Pur-

suit” game on the infamous Lumosity “brain training” platform https:

//www.lumosity.com/en/. While these games’ claimed benefits on

“brain power” are debatable, the games are undoubtedly engaging, challeng-

ing, motivating and entertaining. These are all qualities that we hoped would

make the artificial lab context more relevant to our subjects, motivate them

when performing the task and make them genuinely care about their perfor-

mance, which is a prerequisite to obtain relevant, authentic attributions and

beliefs about themselves.

In our visually simplified version of the game, subjects are presented, on

every trial, with a maze they need to navigate through. They do so by using

the arrow keys to guide a token red square from the starting position to the

finish position marked by a trophy (see figure 2.1). If the red square reaches

the goal in the limited allocated time, the win is indicated by the appearance

of a smiley face; otherwise a frowning one appears to indicate loss.

The task is challenging because during each trial, repeatedly and unpre-

dictably, the maze rotates and the correspondence between arrow keys and

the direction of movement on the screen changes, according to the following

rules. The maze is equipped with a “North” direction, marked on the screen

by a compass needle; the arrow keys always move the red square toward the

corresponding cardinal directions of the maze (Up towards “North”, down to-

wards “South” etc); initially, the maze’s “North” correspond to the top of the
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In this experiment, you will learn how to navigate a maze under unusual conditions. The
experiment involves two related tasks, which you'll perform around a week apart. Each of the tasks
is  about 1.5-2 hours long, so it will be divided in two parts, which you can do on the same day, with
a break of a few hours, or on two successive days. 

In the first task, which you're starting now, you will navigate the maze and make decisions
based on your own performance. In the second task, which will take place later, you will watch and
make decisions based on someone else navigating the maze. We will tell you about that then.

THE TASK

On each trial, you have to move a red square through a maze towards a goal marked by a
trophy. Each trial uses a different maze, some of which are more difficult than others; the difficulty
is randomly chosen on every trial. You win if you manage to get to the goal in the available time,
otherwise you lose.  

At the end of the session, 5 out of all the trials will be picked randomly. Your trial payment
will be £1 for each trial that you won out of these 5.  You will be offered the opportunity to gain
additional bonus reward, as detailed below.

You move the red square by using the arrow keys on the keyboard. Each key moves the red
square in a cardinal direction: the UP key moves the red square to the North, the RIGHT key moves
it to the East, the DOWN keys moves it to the South, the LEFT key moves it to the West. There is a
compass needle in the corner of the screen, marking North. Every once in a while during a trial, the
screen will  rotate.   When this  happens,  the compass needle will  rotate together with the maze.
Pressing the arrow keys will still move the red square towards the cardinal directions indicated by
the compass, but now North  might no longer be UP on the screen. 
Here are two screen shots, one at the beginning of the trial (A)  and one later in the trial, after a
rotation (B). 

                               A                                                                                            B

In screen shot B,  pressing UP moves the red square North, which is to the left, pressing
DOWN moves it to the right, pressing RIGHT moves it up and pressing LEFT moves it down.

You will practise 10 trials before the start of the experiment, so that you can become familiar
with the task and the rules of the navigation problem. Whether you win or lose on these trials won't
count towards your final payment. 

Figure 2.1: Task game illustration: two screenshots during one trial. Left: screenshot
at the beginning of the trial (trials always start with mazes oriented up-
wards); pressing the up key moves the red square upwards on the screen,
as indicated by the compass needle; the correct key to press in this case
is down, moving the red square downwards on the screen. Right: later
screenshot, the maze has rotated; pressing the up key now moves the red
square towards the left on the screen, as indicated by the current orien-
tation of the compass needle; the correct key to press in this case is also
down, but it now results in moving the red square towards the right on
the screen.

screen; however when the maze rotates, the compass needle rotates with it,

such that “North” can point to any of the four directions on the screen, and

accordingly pressing the up key no longer moves the red square up on the

screen, but towards the maze’s “North”, wherever that is during each rota-

tion. Subjects therefore have to learn to quickly adapt to the change in the

correspondence between key presses and resulting movements on the screen.

Trial difficulty is controlled by a double staircase procedure, in order

to prevent subjects from detecting the staircase pattern and having their re-

sponses or their performance during the trials affected by this knowledge.

The staircase determining the parameters to be used is randomly chosen on

every trial, the two stairs having equal probability, and is then updated ac-

cording to the trial outcome. Both stairs have maze size, rotation frequency

and available time as variables (see appendix F for a detailed description).The

rather complicated stair structure and update mechanism encapsulates the in-
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tuitive aspects of what constitutes difficulty in this game, as we were not in

possession of a well established and calibrated one-dimensional measure of

difficulty for this novel task (see sections 2.3.2 and 2.3.3 for an account of our

work on extracting such one-dimensional measures of difficulty and objective

skill from the data).
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Figure 2.2: Evolution of performance and proportion of trials won, mean ± s.e.m.
across subjects. Top left: speed of movement through the maze. Top
right: proportion of trials won out of the last 20 trials. Bottom left:
evolutions of proportions of key presses out of all key presses in every
trial: types of key presses labeled as correct, wrong, wrong but correct
for the normal UP orientation, wrong but correct for the previous maze
orientation.

The practical goals of the staircase procedure were met, subjects dis-

playing increasing performance, while also experiencing a relatively steady

ratio of wins to losses (see figure 2.2). However, as discussed below (2.3.2

and 2.3.3) the procedure did not result in optimal adaptation to subjects’ skill

level, and its use inadvertently introduced confounds in the data, which we

discuss in later sections dedicated to presenting data analysis and results (see

4.2.3.2).
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2.2.2 Attributions, skill reports and bets

Questions about attributions and beliefs about skill were asked as follows:

every two trials1, immediately after feedback on the trial outcome, subjects

were asked to provide a causal attribution for the outcome, to estimate their

current skill in playing the game, and to bet on performance on the next trial,

in this order. Subjects were informed of the time available to answer these

questions (20 s), and that reward for the following trial would be withheld if

they failed to provide an answer in this time limit.

Figure 2.3: Left: Attribution question, self condition; Right: Skill question, self con-
dition

Attributions were elicited with multiple-choice questions with the fol-

lowing response options(see figure 2.3): “simple maze”, “few/ simple rota-

tions”, “luck”, “my ability”2; the corresponding version for the ability option

in the “other” condition was “their ability”3. These options reflected the in-

ternal vs external aspect of attribution (“self”/“other” vs other options), two

different quantifiable parameters of the task (maze complexity vs rotations),

and the option of blaming or crediting luck.

1We decided against asking these questions after every trial due to time constraints, and
because the repetition might reduce subjects’ attention and motivation in answering them. We
note however that having measured these variables only every other trial introduced particular
challenges for data analysis (see chapters 3 and 4 and discussion in 6).

2For losses, the options were “complex maze”, “many/difficult rotations”, “bad luck”,
“my lack of skill”, respectively.

3And “their lack of skill” for losses.
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This choice of response options was due to several factors: the internal-

external distinction has been a central distinction in attribution theory and

previous research (see review in chapter 1); the two specific task-related op-

tions allow quantification of relationships between attributions and objective

task features; and causal explanations involving chance have been of interest

in research on control and in studies of attributional patterns of psychiatric pa-

tients (Levenson, 1974; Kinderman and Bentall, 1996). However our choice

of response options also introduced an undesirable availability bias toward

external attributions (see discussion in sections 4.1 and 4.6.5).
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Figure 2.4: Bet vs skill responses, subjects settling on a constant betting response, in
contrast with evolving skill responses. Red: skill responses; black: bet
responses. Left: responses in the ‘self’ condition; right: responses in the
‘other’ condition. Subject ids, from top to bottom: 01060318, 01220218,
02210318, 04050318.

Subjects’ beliefs about skill were probed with two questions. The first

asked subjects to report how good they think they are (the “other” is) at the

task by sliding a bar on a continuous scale between the “very bad” and “very

good” extremes(see figure 2.3); responses were converted to values in [0,1].

The second question was aimed at eliciting an indirect assessment of

skill, by asking subjects to bet on their (the “other”’s) performance on the
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next trial. This was done through a Becker - DeGroot - Marschak (BDM)

auction procedure (Becker et al., 1964), which guarantees that the optimal

behaviour for the subject is to report their true estimate of the probability of

winning (of the “other” winning) the next trial; this probability corresponds to

the estimated skill level. The BDM procedure had been thoroughly explained

to subjects prior to the start of the experimental session (see appendix A).

Note that while, in theory, subjects were expected to provide their true

skill estimate as the BDM bet, in practice taking in the BDM procedure was

challenging for most subjects. And while it is possible to verify that they

understood it theoretically and were able to correctly answer questions about

BDM auctions prior to the start of the experiment(see appendix A), in practice

they might not access this knowledge while giving quick answers during the

experiment, and might fall back on other patterns of betting. Indeed we found

evidence of this in the data, with several subjects settling on a constant bet,

unrelated to their concurrent skill responses(see figure 2.4). We have therefore

discarded bets from subsequent analyses, and report only analyses of skill

estimates in the rest of this work.

In contrast with the BDM procedure, there is no theoretical guarantee

that the optimal behaviour is for subjects to answer the skill and attribution

questions truthfully, nor any monetary incentive for them to do so (indeed the

same is true for questionnaire responses).

There is, however, also no monetary incentive for them to respond

falsely; their responses have no real influence on subsequent trials, and there

is nothing in the instructions or in the task that might suggest a strategy of

“gaining the system” by not replying truthfully. Note that this does not ex-

clude other motivations to respond falsely, such as self-serving biases (see

discussion in section 4.6 of chapter 4). The extent to which subjects answered

these questions honestly in our case cannot be established, as there is no nor-

mative account of what the answers should have been, but our data indicates

that subjects did not provide random answers even in the absence of enforcing
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factors (see chapters 3, 4).

2.2.3 Conditions

As mentioned above, the experiment involved two conditions: first subjects

played the game themselves and answered questions related to their perfor-

mance - “self” condition; then subjects were instructed that they would watch

trials recorded from another subject having previously participated in the ex-

periment and they were asked to make attributions, evaluate skill and bet on

this “other”’s performance - “other” condition. The claim about another sub-

ject was misleading: in fact, each subject was shown their own recorded trials

from the “self” condition. In order to reduce the likelihood of participants

recognising their own performance, mazes were left-right mirrored when they

were played back.

Establishing the extent to which this manipulation succeeded is challeng-

ing, as questions to this effect risk alerting subjects to the deceit. Responses

in the debriefing questionnaire (see appendix D) indicated that subjects did

register similarities between their own and the “other”’s trials, however dif-

ferences between responses in the two conditions were consistently present

(see discussions in chapter 3 for skill and chapter 4 for attribution). Observed

differences between responses in the two conditions can be due to the distinc-

tion between acting and watching, as well as to the distinction between self

and non-self, and the present design cannot disentangle the contributions of

these two factors. Improving this aspect of the experiment remains a goal for

future work (see 4.6 and 6.2).

2.2.4 Payment

Subjects were payed a fixed amount for their time (£7.5 per hour) and they

could gain additional monetary reward based on their performance: 5 trials

were randomly picked out of trials in each session (“self” and “other”); sub-

jects gained an additional £1 for each trial won out of the 5 selected; if selected

trials included trials for which they had placed a bet, bet results were added
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to subjects’ earnings. Subjects were informed of the payment schedule prior

to the start of the experiment (see appendixes A and B).

2.2.5 Questionnaires

In order to investigate relationships between behaviour in our task and well-

established questionnaire-based measures of related psychological dimen-

sions, we administered three questionnaires: the Attributional Style ques-

tionnaire (ASQ) (Peterson et al., 1982), the Levenson Locus of control scale

(Levenson, 1974) and the Rosenberg Self esteem scale (Rosenberg, 1965)

(see appendix E). Questionnaires were administered once, at the beginning of

the experiment. We discuss the questionnaire responses and their relationship

with the task responses in chapter 5.

2.2.6 Session timing

Pilot data indicated an average task duration of two hours per condition for a

total of 320 trials, corresponding to 160 attribution and skill responses. To re-

duce the risk of subjects becoming fatigued or bored, each condition was split

into two one hour sessions; these could be played (watched, in the “other”

condition) either on the same day, with a few hours’ pause, or on successive

days, according to subjects’ time availability. The resulting break between

sessions was in some cases reflected in subjects’ responses (see chapter 3).

2.2.7 Subjects

Subjects (n= 31, 9 males) were recruited through the UCL Institute for Cogni-

tive Neuroscience (ICN) subject database4 and were healthy, 18-35 year-olds

( 24± 3.9 ), fluent English speakers, with no history of neurological disor-

ders. Subjects were required not to have used cannabis in the previous 31

days, not to have used any other recreational drugs in the week prior to their

participation and not to have drank alcohol 24 hours before the study. The

experiment was conducted under the ethics approval of UCL Departmental

Research Ethics Committee, as Project ID Number fMRI/2013/005.

4http://groupspaces.com/ICNSubjectDatabase/
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2.2.8 Experiment timeline

On their first lab visit, after signing the informed consent form, subjects com-

pleted the three questionnaires, on paper. They were then presented with the

detailed instructions for the task, and answered test questions to ensure under-

standing of the game and BDM procedure (see appendix C). They then played

5 practice trials and the experimental trials began. The second session in the

“self” condition started with experimental trials directly.

On their next visit a week later, subjects were provided with detailed in-

structions for the “other” condition (see appendix B) and then the first session

in this condition started. The last session’s experimental trials started directly.

After the end of the last session subjects were payed and provided with a

feedback questions form, then with a separate question asking them to com-

pare the two sessions (see appendix D). They were then fully debriefed.

2.3 Quantification challenges
Since our task is novel, there was no previously validated measure of either

difficulty or skill.

Difficulty should integrate various objectively measurable features of the

task into a one-dimensional score. It is important, since we expect it to be per-

ceived by subjects and to affect their causal attributions and belief updating:

winning a trial perceived as very simple might have less impact on a subject’s

belief about how good they are than winning a trial perceived as being very

difficult.

Likewise, skill should combine different measurable aspects of perfor-

mance into a one-dimensional objective score. Being able to objectively mea-

sure subjects’ skill would be useful for establishing the degree to which their

beliefs about their own skill were accurate and for investigating relationships

between subjects’ accuracy and their pattern of making attributions.

In this section we present our approach aimed at extracting such mea-

sures from the data, and analyses evaluating the quality of the measures we
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obtained.

Difficulty and skill both contribute to determining outcomes, indeed to

some extent they can be seen as opposite sides of a same coin; in addition, the

staircase introduces dependencies between the evolution of skill and that of

difficulty. It is therefore not obvious whether their contributions can be dis-

entangled under these circumstances. We begin with presenting simulations

which prove that recovering both skill and difficulty from data is possible,

despite this recursive definitional complexity.

We then present the analyses we performed on the real data, and the

resulting measures of difficulty and skill.

2.3.1 Simulations

Our simulations formalized a very simple case in which the outcome on trial

t, o(t), arose probabilistically from the interaction between an evolving scalar

skill, s(t), and an evolving scalar difficulty5, d(t), according to a Bernoulli

distribution: o(t)∼ Bernoulli(σ(s(t)−d(t))6.

Difficulty was generated as d(t) = 1.7 fd(t), a linear transformation of a

1-dimensional difficulty feature, fd , whose evolution was determined by the

simulated staircase7:

fd(0) = 0

fd(t +1) =

 fd(t)+δ (t) if o(t) = 1

fd(t)−δ (t) if o(t) = 0,

where δ (t)≥ 0 is the staircase step on trial t.

(2.1)

The staircase step δ (t) was sampled from a probability distribution, which

5We also simulated the case of two difficulty features, with similar results.
6Complexities in the recovery of difficulty and skill that arise in this simple framework

will surely only be exacerbated in the real data. We conceived of these simulations as proof
of concept for the validity of our approach.

7Note that the relationship between difficulty and the difficulty feature was fixed across
subjects, as we assumed was the case in the real data, whereas the difficulty feature evolved
for each subject as a function of their own outcomes, in accordance to the way the staircase
worked in the real data.
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varied among the different simulations, as detailed in the following sections.

In addition to time series of outcomes, o(t), difficulty features, fd(t) and

difficulty, d(t), simulated data also included time series of performance fea-

tures, fp(t) and skill, s(t), which were generated in different ways in different

simulations, as detailed below. We used the number of subjects and the num-

ber of trials of our real dataset.

In all simulations, the aim was to recover difficulty and skill – the vari-

ables which in our real data were latent – using the series of outcomes and the

series of difficulty and performance features, which correspond to observable

variables in the real data.

Difficulty and skill recovery was performed in the same way in all sim-

ulations. This was done according to the approach that we intended to use

when extracting difficulty and skill from real data. Specifically, we would

first obtain a measure of difficulty by exploiting the relationship between dif-

ficulty features and outcomes as revealed by time series of outcomes and task

features from the whole population of subjects; this would thus capture a

“general” measure of difficulty, valid for our population. We would then use

this difficulty measure as a reference point with respect to which we would

infer skill for each subject, using their own time series of outcomes and per-

formance features8.

Thus for all simulations difficulty was inferred first, as the linear trans-

formation of the difficulty feature that best predicted outcomes in data pooled

at the population level, according to the model p(o(t) = 1) = σ(−d(t)) on

every trial. In order to exclude any effects of a subject’s skill on the recov-

ery of difficulty for their own trials, difficulty recovery for every subject was

performed by fitting outcomes from all remaining subjects. Skill was then

defined, for each subject, as the linear transformation of their time series of

performance feature that best explained their outcomes while accounting for

difficulty, according to the model p(o(t) = 1) = σ(s(t)−d(t)) on every trial.

8Note that other approaches, such as directly inverting the model including both skill and
difficulty, are possible.
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Skill was recovered independently for each subject, using the difficulty values

recovered in the first step9.

We performed three types of simulations, investigating the effect of sev-

eral factors on the recovery of difficulty and skill, which we now present in

turn.

2.3.1.1 Staircase step size and variability

The first factor that we examined concerned the step-size of the staircase.

Because of the specific nature of our staircase procedure, we were worried

that instead of closely tracking subjects’ skill levels, the resulting difficulty

changes were imprecise, leading to large difficulty steps from one trial to the

next. We therefore first investigated the effect of the size of the staircase step

on difficulty and skill recovery.

Difficulty changes generated by the staircase procedure in our task are

also likely to vary significantly from trial to trial. This is due to several factors:

the fact that we used two staircases, the hierarchical nature of the staircase

changes, as well as the nature of the staircase levels, which involved available

ranges, rather than unique feature values. We therefore also checked difficulty

and skill recovery when large variability between step sizes was present.

For these simulations we assumed skill to be a linear transformation of a

1-dimensional performance feature, generated for each simulated subject as a

4-parameter sigmoidal function of time. The parameters of the sigmoid used

to generate the performance feature, as well as those of the linear transforma-

tion from performance feature to skill, were chosen independently for each

subject (see figure 2.5 for a plot of the resulting skill values).

The staircase step on every trial was drawn randomly from a narrow

Gamma distribution; we compared the effects of a range of step sizes by using

distributions with varying modes, ranging from 0.05 to 8.

9Note that because difficulty is obtained by predicting outcomes in the absence of skill,
we expect difficulty to be recovered, at best, up to a scaling of the real values. The same is
true for skill, as it is recovered with respect to the recovered difficulty. However the analyses
involving objective difficulty and skill that we are interested in performing would not be
impaired by such scaling.
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Figure 2.5: Simulated skill values. Each curve corresponds to one simulated subject.

We found that difficulty and skill recovery were successful – by which

we mean difficulty and skill were recovered up to a scaling factor – for all but

the extreme cases (see appendix G for details) of step size distributions (see

figures 2.6 and 2.7 for an example, showing a summary of the simulated data

and the quality of difficulty and skill recovery, respectively).

We also investigated the effect of using highly variable step sizes by

generating staircase steps from an exponential distribution. We found that in

this case too difficulty and skill recovery were successful (see figure G.4 in

G). We used exponential distributions for all remaining simulation analyses.

We concluded from this set of simulations that difficulty and skill recov-

ery work in this setup, for a large range of staircase updating parameters.
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Figure 2.6: Example summary of simulated data for step size drawn from Gamma
distribution (parameters used: θ = 0.007,k = 151). Top left: difficulty
evolution for all simulated subjects. Top right: running average of the
proportion of trials won, mean ± s.e.m across subjects, filtering win-
dow: 20 trials. Bottom left: evolution of difference between skill and
difficulty, mean ± s.e.m across subjects. Bottom right: relationship be-
tween difficulty and the proportion of wins, overall and as a function of
skill level; mean± s.e.m across subjects; black: overall, red to green: 1st

to 4th skill quartiles; difficulty z-scored within subject.
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Figure 2.7: Difficulty and skill recovery for data in figure 2.6. Top difficulty and
skill recovery, each color represents one simulated subject. Bottom: rela-
tionship between recovered difficulty and the proportion of wins, overall
and as a function of recovered skill level; mean ± s.e.m across subjects;
black: overall, red to green: 1st to 4th recovered skill quartiles; recovered
difficulty z-scored within subject.
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2.3.1.2 Non-monotonic skil

In the simulations described above, we used monotonically increasing perfor-

mance feature profiles for all subjects. However this is not what we observed

in the performance measures we collected from subjects. While performance

and skill can be expected to have a tendency to improve throughout the task,

local variations from this pattern are also likely, and there is no guarantee

that subject’s underlying skill monotonically increased throughout the task.

We therefore performed a next set of simulations using performance features
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Figure 2.8: Example summary of simulated data, performance measures drawn from
a Gaussian Process. Top left: skill evolutions for all simulated subjects.
Top right: running average of the proportion of trials won, mean± s.e.m
across subjects, filtering window: 20 trials. Bottom left: evolution of
difficulty for all simulated subjects. Bottom right: relationship between
difficulty and the proportion of wins, overall and as a function of skill
level; mean ± s.e.m across subjects; black: overall, red to green: 1st to
4th skill quartiles; difficulty z-scored within subject.

drawn from a Gaussian Process (GP) (Rasmussen and Williams, 2006) whose

mean increased monotonically as a function of time. Specifically, we used

the sigmoid performance feature profiles from previous simulations as the GP

mean for each simulated subject and a Gaussian kernel. Skill measures were
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linear transformations of the performance features, as in previous simulations.

See figure 2.8 for a summary of the simulated data. We found difficulty and

skill recovery to be successful in this case as well (see figure 2.9).
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Figure 2.9: Difficulty and skill recovery for data in figure 2.8. Top: difficulty and
skill recovery; each color represents one simulated subject. Bottom: re-
lationship between recovered difficulty and the proportion of wins, over-
all and as a function of recovered skill level; mean ± s.e.m across sub-
jects; black: overall, red to green: 1st to 4th recovered skill quartiles;
recovered difficulty z-scored within subject.

2.3.1.3 Different generating and recovery models

In the simulations described previously, skill was generated as a linear trans-

formation of the performance feature, and skill recovery proceeded under the

same assumption. However this simplifying assumption might not be accu-

rate, as it is likely that a more complex model underlies the relationships be-

tween task features, performance features, difficulty and skill in the real data.

We therefore investigated the effect that using a different recovery model, in-

stead of the real generating model, has on skill and difficulty recovery.

Rather than an integrated measure of performance, skill could also be

conceived as a latent variable generating various observable, but noisy vari-
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ables which constitute measurable performance features. The last type of sim-

ulation that we performed involved using this latter model to generate the data,

while using the same procedure as in previous simulations for difficulty and

skill recovery. Specifically, we used draws from a GP (with means generated

as described before, and the same Gaussian kernel) as underlying measures of

skill, and generated performance features as noisy linear transformations of

these, for every simulated subject. Figure 2.10 shows a summary of the data

obtained from one such simulation.
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Figure 2.10: Summary of simulated data, skill measures drawn from a Gaussian Pro-
cess, performance features as noisy linear transformations of skill. Left:
evolutions of skill (top), performance(middle) and difficulty (bottom)
for all simulated subjects. Right: Top: running average of the propor-
tion of trials won, mean ± s.e.m across subjects, filtering window: 20
trials. Middle: relationship between difficulty and the proportion of
wins, overall and as a function of skill level; mean ± s.e.m across sub-
jects; black: overall, red to green: 1st to 4th skill quartiles; difficulty
z-scored within subject. Bottom: relationship between difficulty and
the proportion of wins, data pooled from all subjects.

For difficulty and skill recovery we used the same procedure as above;

however as the recovered skill inherits the noisy nature of the performance

feature, in this case we performed an additional filtering step, aimed at

smoothing the recovered skill.
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Figure 2.11: Difficulty and skill recovery for data in figure 2.10. Top: difficulty and
skill recovery; each color represents one simulated subject. Bottom:
relationship between recovered difficulty and the proportion of wins,
overall and as a function of recovered skill level; mean ± s.e.m across
subjects; black: overall, red to green: 1st to 4th recovered skill quartiles;
recovered difficulty z-scored within subject.

We found that in this case too difficulty and skill could be recovered (see

figure 2.11).

We concluded from these simulations that in this very simple setting, the

interdependency between skill and difficulty introduced by the use of a stair-

case does not necessarily prevent recovery of both difficulty and skill from the

data, in the absence of external calibration. This does not guarantee success-

ful recovery of difficulty and skill in our data, which involves complexities

that were not present in our simulations – difficulty and performance features

were not multi-dimensional and, more importantly, dependencies might exist

between difficulty and performance features– however it constitutes a proof

of concept for the validity of our approach. We therefore proceeded to define
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difficulty and skill post hoc in our real data, which we describe next10.

2.3.2 Empirical difficulty

As mentioned above, our strategy for extracting objective measures of both

difficulty and skill from our data was to first establish a measure of difficulty,

and then define skill with respect to it. Intuitively, this corresponds to the

following cartoon scenario: a difficult trial is one that a randomly picked sub-

ject in the population is likely to lose, while an easy trial is one that subjects

are likely to win; subjects’ skill is measured with respect to this difficulty -

the more likely subjects are to win difficult trials, the more skilled they are

considered to be. In this section we present the construction of the difficulty

measure.

The staircase controls several objective dimensions along which trials

vary, and which could contribute to their objective difficulty(see figure 2.12).

Different factors might be weighted differently in an integrated difficulty

score, and we had no a priori knowledge about these individual contribu-

tions. Our approach, described below, consisted in inferring the identities and

weights of the different factors from data, i.e. from subjects’ performance.

In order to do so, we made a number of assumptions: specifically, we as-

sumed difficulty to be a linear combination of objectively measurable factors,

with unknown weights; we further assumed the factors’ weights to be stable

across time; finally, we assumed that the resulting difficulty measure predicts

trial outcome, allowing weights to be inferred from outcome prediction.

Specifically, given a set of objectively measurable task aspects that might

act as factors in determining difficulty, f1, f2, .. fk , we assumed that there is

a stable set of weights, w1,w2, ..,wk, representing the contribution that they

10Note that in all simulation analyses we assumed the relationships between difficulty fea-
tures and difficulty, as well as those between performance feature and skill, to be stable across
time. This is a key ingredient of the success of difficulty and skill recovery, and an assump-
tions that we made in analyses of real data. It is an important limitation of our approach;
future work producing larger data sets that could be used for calibration would remove the
necessity for this assumption.



2.3. Quantification challenges 86

7 26 45

Path length

0

.5

1

Fr
e
q
u
e
n
ci

e
s

7 26 45

Path length

0

.5

1

P
ro

p
 w

in
s

0 .5 1

Prop non up orientation

0

.5

1

Fr
e
q
u
e
n
ci

e
s

0 .5 1

Prop non up orientation

0

.5

1

P
ro

p
 w

in
s

10 12 14

Time available

0

.5

1

Fr
e
q
u
e
n
ci

e
s

10 12 14

Time available

0

.5

1

P
ro

p
 w

in
s

Figure 2.12: Objective task features controlled by the staircase procedure and their
relationship with outcomes; data pooled from all subjects. Left: fre-
quency histograms of the three features. Right: proportion of trials
won as a function of the three features. Top: length of correct path
through the maze. Middle: proportion of maze orientations within a
trial different from the normal UP orientation. Bottom: available time.

each have towards determining the outcome, such that on any trial t

p(o(t) = 1;w) = σ(wT
d fd(t)),where

wT
d = (w0,w1, ...wk)

fT
d (t) = (1, f1(t), ... fk(t))

fi(t) = the measured value of factor fi at trial t

o(t) = outcome at trial t, and

σ(x) =
1

1+ exp(−x)
, the sigmoid function.

Given wd , difficulty for trial t can be computed as

d(t) =−wT
d fd(t). (2.2)

Under these assumptions, obtaining a measure of difficulty is equivalent

to identifying wd , which can be inferred from outcome prediction. In order
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to obtain, for each subject, an objective, external difficulty measure11, not

influenced by their own skill, we inferred wd separately for each subject, by

predicting outcomes for all remaining subjects12.

In order to choose among the measurable aspects of the task that con-

tribute to difficulty, we fitted all outcomes from all subjects with logistic re-

gression models with different combinations of regressors and their interac-

tions. We compared 9 models based on combinations of the following regres-

sors: length of correct path to maze exit, proportion of non UP orientations,

time available, necessary minimum speed (itself a combination of path length

and time available). See figure 2.12 for the distribution of the basic factors

(length of correct path to maze exit, frequency of rotations, time available)

and their relationship with outcomes.

Based on the cross-validation score, the model which best explained

outcomes across subjects using only objective information about the trial in-

cluded length of correct path to maze exit, proportion of non UP orientations,

path length×orientation interaction, time available and necessary minimum

speed as features. We therefore used the same regressors for building a work-

ing measure of difficulty for each subject.

The distribution of difficulties we obtained satisfies the two properties

that we used as sanity checks:

• the probability of winning decreases with increasing difficulty across

subjects

• subjects’ difficulty indifference points(the difficulty for which they are
11We also computed an alternative, ‘individual’ difficulty measure for each subject, using

exclusively information from their own trials. In this case weights for each subject were
inferred by predicting their own outcomes only. As this measure uses information from all
trials, it is still unrealistic as a ‘subjective’ measure : subjects do not have access to informa-
tion from later trials when perceiving difficulty at any given time during the experiment. The
‘individual’ and external measures of difficulty we obtained were different, but highly corre-
lated, with an average correlation coefficient ρ = 0.98. Unless otherwise stated, in the rest of
this work ‘difficulty’ will be used to refer to the external, objective measure of difficulty.

12We compared two ways of integrating data from remaining subjects, pooling subjects
together and modelling variability between subjects with a hierarchical model, with very
similar results; see appendix H for details. In the rest of this work we will use the difficulty
measure obtained by pooling.
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equally likely to win or lose the trial) correlate with overall performance

in terms of their total number of wins and losses.

Indeed as can be seen from figure 2.13, a sigmoid shaped relationship

exists between difficulty and the proportion of wins vs losses across subjects.

This relationship is also preserved at the individual subject level; in addition,

if a sigmoid is fitted to each subject to predict outcome based on difficulty,

the inflexion point of the fitted sigmoid, which constitutes the difficulty value

for which the subject is equally likely to win or lose the trial, correlates with

the subject’s overall proportion of wins.
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Figure 2.13: Difficulty measure: summary and sanity check. Left: data pooled from
all subjects; top: distribution of difficulty values; bottom: relationship
between difficulty and the proportion of wins. Right: relationship be-
tween difficulty indifference point - difficulty value for which subject
is equally likely to win or lose the trial - and the proportion of trials
won out of all trials; each dot represents a subject; r2 = 0.6, p-value
= 3∗10−7.

Due to the adaptive stimulus presentation, we expected difficulty to in-

crease over time as subjects got better at the task. We therefore also tested

wether this is the case for the difficulty measure we obtained, by comparing

the average difficulty of the first and last quarter of trials across subjects. We

found that the average difficulty indeed increases for most subjects(2 sample
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t test t = −4.78, p-value = 10−5). In addition, difficulty variability also in-

creases (s.d comparison between first and last quarter of trials: t = −6.42,

p-value = 2 ∗ 10−8); this is an undesired result of the way we designed the

step changes in our staircase procedure: the staircase steps did not control

difficulty directly, but only changed maze dimensions, average rotation fre-

quency and time available. Thus, rather than directly shifting the distribution

of difficulty up or down, the effect of a staircase step was in some cases to

extend (or contract) the range of difficulties available. Consider for instance

a step up on the staircase consisting in a larger available maze size; this in-

creases the likelihood of mazes with long paths to exit, but very simple mazes

with a short, direct path to exit are still possible, even though more unlikely;

the result is therefore a broadening of the range of possible difficulties.

This aspect of the staircase design is not ideal, and could be improved in

future work: an optimal functioning of the staircase would track the subject’s

skill, such that trials are neither too difficult, not too easy. Analysis of the

accuracy of difficulty as a predictor of outcome suggests that the staircase

might indeed have failed to track subjects’ skill levels: outcome prediction

based only on difficulty values, according to the simple model p(o(t) = 1) =

σ(−d(t)), is highly accurate, ranging from 0.69 to 0.91, with an average of

0.84 and s.d. of 0.04 across subjects(see figure 2.14). Tracking the subject’s

skill level would explore difficulty ranges where difficulty alone is insufficient

as a predictor(see figure G.2 in appendix G). The fact that difficulty alone is

such a good predictor of outcomes implies that little room is left for skill; this

is indeed what we found in our analyses aimed at defining skill, to which we

turn next.

2.3.3 Empirical skill

We consider objective skill to be the evolving factor that intermediates be-

tween the objective difficulty of a trial and success. We therefore sought a

validated way of integrating our various objective measurementsof subjects’

performance into this latent construct. We attempted to extract an objective
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measure of skill from data, following an approach similar to the one we em-

ployed for difficulty. We note, however, that due to factors discussed below,

we were not able to obtain a satisfactory measure of skill, and therefore did

not use it in further analyses as initially planned.

Our approach to defining objective skill relied on the following assump-

tions: we assumed skill to be a linear combination of objectively measurable

performance features, with unknown weights; these weights we assumed to be

stable across time; finally we assumed a linear combination of objective dif-

ficulty (as previously defined) and skill predicts trial outcome. In this setup,

identifying objective skill is equivalent to finding the linear combination of

measured performance features that can best predict trial outcomes over and

above difficulty. Formally, this corresponds to the following model for out-

comes:

p(o(t) = 1;wp) = σ(wT
p fp(t)+wd(t)), where

o(t) = outcome of trial t

fp(t) = vector of performance regressors at trial t

d(t) = difficulty at trial t

wp = performance weights, parameters

wd = difficulty weight, fixed

For a given value of wd , fitting the above model to trials from one subject

produces performance weights wp; these can then be used to obtain the trial by

trial skill measure, computed as the performance contribution to the outcome

prediction:

s(t) = wpfp(t)

We used three performance features, computed on a trial-by-trial basis,

namely the proportion of pauses, the proportion of correct key presses, and the

proportion of wrong key presses that would have been correct in the normal
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UP orientation13. Finally, as the recovered skill inherits the noisy nature of

the performance features, we performed an additional filtering step, aimed at

smoothing the recovered skill.

We compared the model’s prediction accuracy for a range of negative

values for wd , as well as for wd = 0, which is equivalent to using only per-

formance features to predict outcomes ( see figure 2.14); we also compared

these accuracies with that obtained when using difficulty as the only predictor

of outcomes. Note that the accuracy of the models including performance fea-

tures is a training accuracy (and therefore likely an overestimation), as these

models were fitted on the same individual subject data on which accuracy was

computed; this is not the case for the difficulty-only model (see section 2.3.2).
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Figure 2.14: Accuracy for outcome prediction: difficulty only vs difficulty and skill
models. Colours correspond to different wd values in the skill and dif-
ficulty models; note that wd = 0 (purple) is equivalent to a model with
skill only; black is used for the model with difficulty only. Top: overall
accuracy; each dot represents one subject. Bottom: accuracy per dif-
ficulty level; mean ± s.e.m across subjects; difficulty was z-scored for
each subject and discretised in 10-quantiles.

As illustrated in figure 2.14, this comparison showed that difficulty alone

13Note that this trial-wise summary represents a coarse view of subject’s performance,
which, given the complexity of task, presents reach within-trial dynamics. See appendix I for
more details.
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is overall more predictive of outcome than performance features alone, and

that adding performance features to the difficulty-only model only marginally

improves overall accuracy. Computing outcome prediction accuracy as a

function of difficulty level provides a more detailed account of the models’

performance, showing that there is only a narrow range of difficulty values

for which difficulty alone fails to predict outcome, and where including per-

formance features significantly improves prediction accuracy.

This observation indicates that the staircase procedure did not suffi-

ciently adapt difficulty to subjects’ skill level, exploring, instead, more ex-

treme difficulty ranges. Since it is mainly trials with intermediate levels of

difficulty that are informative about subjects’ skill levels, it is difficult to es-

tablish to what extent our assumption of a constant relationship between per-

formance features and skill is valid in our data.
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Figure 2.15: Relationship between difficulty and the proportion of wins, overall and
as a function of skill level; mean ± s.e.m across subjects; black: over-
all, red to green: 1st to 4th skill quartiles; recovered difficulty z-scored
within subject. Left: extracted skill measure before smoothing. Right:
extracted skill measure after smoothing, filtering window size = 5 trials.

We used the effect of skill on the relationship between difficulty and out-
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comes as a sanity check of the resulting skill measure: for a valid measure

of skill, increasing skill would shift the sigmoid-shaped curve relating diffi-

culty with the probability of winning towards the right, such that the higher

the skill, the higher the difficulty level for which p(win) = 0.5 (see simulation

summary figures in 2.3.1, e.g. 2.10 bottom right) .

This pattern was not convincingly displayed by the skill measured we ob-

tained. Specifically, while the integrated performance measure resulting from

the above skill recovery procedure displayed the expected pattern, the smooth-

ing step dampened the effect (see figure 2.15). This was the case even when

narrow filtering windows were used, presumably due to high levels of trial-to-

trial variability in the raw (non-smoothed) integrated performance measure.

We did not encounter this phenomenon in our simulations using noisy perfor-

mance features (see 2.3.1.3), even when using large amounts of noise. This

difference might be due to the fact that unlike simulated performance features,

which were generated independently of difficulty, the real performance fea-

tures that we used in the above analyses might reflect influences of difficulty

as well as skill, and thus include additional trial-to-trial variability resulting

from large staircase steps.

Due to these issues, we did not to use the skill measure resulting from

analyses presented in this section in our subsequent analyses. However re-

lationships between objective reality and subjects’ subjective assessment of

their skill are of particular interest for the study of self-beliefs and their re-

lationships with attributions, and improving the staircase procedure to allow

for a more accurate tracking of subjects’ skill remains an important goal for

future work (see 6.2).



Chapter 3

Skill estimates

Beliefs about skill and causal attributions are the two fundamental variables

of interest in this study. In this chapter, we present our analyses of subjects’

responses to the questions asking them to estimate their own/the “other”’s

skill.

The chapter is structured as follows. The first section contains a sum-

mary presentation of the relevant data. The second and third sections present

our analyses of skill estimates - model agnostic analyses in the second section

and model-dependent analyses in the third; in both types of analyses effects

of attributions on skill estimates were of particular interest, but we also inves-

tigated relationships between the evolution of skill estimates and several other

variables of interest. The fourth section contains analyses of subjects’ reac-

tion times for providing answers to the skill questions. The chapter concludes

with a summary and discussion.

3.1 Data summary
The data of interest in this chapter are skill estimates - the estimates provided

by subjects for their own/the “other”’s skill, and skill updates - differences

between successive skill estimates.

Figure 3.1 shows the evolution over trials of skill estimates in the “self”

and “other” conditions, for all subjects; figure 3.2 shows the distribution of

skill estimates provided in each condition, for all subjects. These figures il-
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Figure 3.1: Time evolution of skill estimates, all subjects, both conditions.
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Figure 3.2: Distributions of skill estimates for self and other, all subjects. Overlap-
ping density histograms.
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lustrate the fact that there are common patterns in subjects’ responses, but

also significant variability between subjects.

In most cases, skill estimates for “self” and “other” appear to follow very

similar trajectories, but there are subjects for whom the “self” and “other” skill

estimates follow visibly different patterns (e.g. in figure 3.1, 01060218: row

1, column 3, 03070218: row 4, column 3, 03050318: row 4, column 2, and

01200318: row 2, column 5).

In general, skill estimates increase gradually, but there are also cases of

large up and down variations between successive estimates (e.g. 01080218:

row 1, column 7 and 02190318: row 3, column 6); there are also cases (e.g.

01050218: row 1, column 1 and 01190318: row 2, column 3) where there

is a drop in skill estimates corresponding to the break between sessions(see

chapter 2).
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Figure 3.3: Skill estimates for self and other averaged over all subjects ± s.e.m

Trial by trial averaging over subjects shows that both the session break

effect and the difference between “self” and “other” are present across sub-

jects (see figure 3.3). Skill estimates for “other” were on average higher than

for “self”, particularly in the second session, despite the fact that subjects’

answers to our debriefing questions (D) showed that subjects had some suspi-
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cion that they were watching, at least partially, their own performance. This

pattern of apparent bias in favour of the “other” is consistent with what we

observed in subjects’ attribution responses (see section 4.2.2 in chapter 4) and

with observations from previous research in various contexts (Crockett et al.,

2014; Rand et al., 2014) (see Rand and Nowak, 2013, for a review). See below

and sections 4.2.2, 4.6 for analysis and discussion of this effect.

Figure 3.4 shows the distributions of skill updates for “self” and “other”

for all subjects. With few exceptions (e.g. 01080218: row 1, column 7,

01200218: row 2, column 4, 02190318: row 3, column 6, 02210318: row

4, column 1) - updates were narrowly distributed around 0. However, the dis-

tribution across subjects of the average skill update is shifted to the right of

0 both for “self” and for “other” (“self”: 1 sample t(30) = 7.28, p < 0.01 ,

“other”: 1 sample t(30) = 6.79, p < 0.01). This is consistent with the fact

that skill estimates displayed learning curve-like trajectories at the individual

subject level (see figure 3.1) and with the fact that, averaged over subjects,

skill estimates increased over time (figure 3.3).
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Figure 3.4: Distribution of skill updates, all subjects. Densities approximated with a
Gaussian kernel density approximation, bandwidth = 0.03.

In order to investigate the mechanisms driving the evolution of skill es-
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timates, and in particular their relationship with attributions, we performed

both model-agnostic and model-based analyses. In the next section we present

model-agnostic analyses.

3.2 Model agnostic analyses
There are four main factors that we expected would influence the evolution of

skill estimates: trial outcome, trial difficulty, the subject’s performance and

the subject’s causal attribution for the outcome. In this section we present

model-agnostic analyses of skill updates, which we performed in order to de-

termine whether these factors have detectable effects on a trial-by-trial basis.

We tested for the effects of interest as follows: for discrete variables (out-

come and attribution), we computed the average skill update corresponding to

each level of the factor of interest for every subject and tested for differences

between the resulting distributions across subjects; for continuous variables

(difficulty, performance measures) we computed the correlation between skill

updates and the variable of interest for every subject, then tested whether the

resulting distribution across subjects is shifted with respect to 0.

All continuous variables were z-scored within subject; skill updates were

computed as variations in the z-scored values. Attribution options were rela-

belled as “internal” vs “external”, as this was the distinction of interest. We

applied the Benjamini-Hochberg procedure for multiple comparisons (Ben-

jamini and Hochberg, 1995) to all but the post hoc tests, and all results re-

ported as significant survived the correction procedure.

Note that due to our decision to only ask subjects for a skill estimate

every two trials (see 2), we did not have access to the finest granularity of

skill updates, but only to the aggregate effect of pairs of trials.

3.2.1 Outcome

Figure 3.5 illustrates the effect of the immediately preceding outcome, and

the effect of the pair of outcomes from the previous skill estimate, on skill

updates.
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As expected, we found that skill updates immediately following a win are

significantly higher than updates following a loss, for both “self” and “other”

(“self”: paired t(15) = 6.43, p < 0.01, Hedge’s corrected d = 2.24, “other”:

paired t(15) = 6.08, p < 0.01, d = 2.12).

Pairs of outcomes experienced between skill estimates fall in one of 4

categories: (loss, loss), (win, loss), (loss, win), (win, win). Comparisons be-

tween the distributions of skill updates corresponding to the 4 categories also

confirmed our expectations. These distributions were ordered as expected,

indicating that the latest outcome carried more weight than the outcome one

trial back, but also that the first outcome in the pair did matter (“self”: WW

vs LW paired t(15) = 5.19, p < 0.01, d = 0.87, LW vs WL paired t(15) =

4.14, p < 0.01, d = 1.34, WL vs LL paired t(15) = 3.58, p < 0.01, d = 0.49;

“other”: WW vs LW paired t(15) = 2.6, p = 0.01, d = 0.47, LW vs WL paired

t(15) = 3.87, p < 0.01, d = 1.27, WL vs LL paired t(15) = 3.13, p < 0.01, d

= 0.58).
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Figure 3.5: Distributions of skill updates, subject-level average z-scored data. Left:
updates labelled according to immediately preceding outcome. Right:
updates labelled according to the pair of outcomes experienced from pre-
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3.2.2 Attribution

We hypothesised that trials attributed internally (to self in the “self” condition,

to other in the “other” condition) would contribute more to skill updating than

trials attributed externally(to task aspects or luck) and that attributions would

interact with the outcome, such that wins attributed internally would improve

skill estimates more than wins attributed to the task, and losses attributed

internally would reduce skill estimates more than losses attributed externally.

We performed 2-way repeated measures ANOVA (Howell, 2012) (see

appendix O for details), with outcome (win vs loss) and attribution (internal

vs external) as fixed within subject factors, and subject as a random factor (see

figure 3.6)1. For the “self” condition we found no significant main effect of at-

tribution, but a significant interaction with outcome (FA(1,28)= 1.62, p= 0.21,

FAxO(1,28) = 9.05, p < 0.01). For the “other” condition, we found both a sig-

nificant main effect of attribution, and significant interaction with outcome

(FA(1,31) = 10.46, p < 0.01, FAxO(1,31) = 16.51, p < 0.01). In both cases

the ANOVA also identified the significant main effect of outcome (“self”:

FO(1,28) = 35.35, p < 0.01, “other”: FO(1,31) = 38.47, p < 0.01).

We performed post hoc repeated measures t-tests to test for a secondary

effect of attribution conditioned on outcome. In the “self” condition we found

no significant effect of attribution for wins, but a significant effect for losses

(“self” internal vs external attributions: wins paired t(14) = 1.25, p = 0.12,

d = 0.23; losses paired t(14) = −2.45, p = 0.01, d = -0.45). In the “other”

condition we found significant effects for both wins and losses (wins: paired

t(15) = 2.19, p = 0.02, d = 0.41, losses paired t(15) = −4.46, p < 0.01, d

= -0.89). Direct comparisons of the absolute values of the effects for wins

vs losses revealed that the effect for losses was significantly stronger in both

conditions (wins vs losses “self”: paired t(14) = −1.89, p = 0.03, “other”:

paired t(15) =−2.54, p = 0.01).

1For these analyses we excluded from the “self” condition 2 subjects who provided no
internal attribution for wins.
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Figure 3.6: Attribution and outcome effects on skill updates, within-subject average
data. Each dot represents a subject. Bold lines represent mean ± s.e.m.
across subjects.

Finally, we performed direct comparisons between the strength of effects

of attribution in the two conditions. We found no significant difference either

for wins or for losses (“self” vs “other” wins: paired t(14) =−0.89, p = 0.2,

losses: paired t(14) =−1.5, p = 0.07). However in all of the above analyses

effect sizes were higher for “other” than for “self”, which suggests a differ-

ence might be present; a larger data set is needed to convincingly determine

whether the effect is real.

To conclude, these analyses provided evidence for the hypothesised in-

teraction between attributions and outcomes, with secondary effects of attri-

bution conditioned on outcome in the expected directions. Unexpectedly, we

found the effect of attribution to be stronger for losses than for wins and pos-

sibly stronger for “other” than for “self”. These observations provide testable

hypotheses for future work, which we discuss in sections 3.6 and 6.3.

3.2.3 Difficulty

We hypothesised that difficulty interacts with outcome in influencing skill

updates, such that winning a difficult trial is perceived to reveal higher skill
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than winning an easy one, and therefore would lead to a larger increase in skill

estimates; conversely losing a difficult trial would be less indicative of low

skill than losing an easy trial, and would therefore lead to a smaller decrease

in skill estimates.

Since our task is novel, we did not have a previously validated measure of

difficulty, and instead used a difficulty measure constructed from our data, as

discussed in 2.3.2. One important analytical caveat for assessing the relation-

ship between difficulty and skill estimates is that difficulty was constructed so

as to best predict outcomes, and outcomes themselves were associated with

changes in skill estimates. We therefore checked for an effect of difficulty

over and above outcome by investigating the relationship between difficulty

and skill updates separately for wins and losses.

We computed, for each subject, the Spearman correlation between diffi-

culty and skill updates, and tested whether the resulting distributions across

subjects are shifted with respect to 0. We used the t-test statistic, but estimated

p-values from permutation tests. We found a significant effect of difficulty on

skill updates for wins(“self”: 1 sample t(30) = 2.79, p < 0.01, “other”: 1

sample t(30) = 2.92, p < 0.01), but not for losses(“self”: 1 sample t(30) =

−0.49, p= 0.68, “other”: 1 sample t(30) = 0.5, p= 0.31). Direct comparison

between the effects for the two outcomes identified the difference as signif-

icant for “self”, but not for “other” (“self”: paired t(15) = 2.08, p = 0.03 ,

“other”: paired t(15) = 1.49, p = 0.07).

Direct comparison between the strength of the effect of difficulty be-

tween “self” and “other” found no significant difference for either wins

(paired t(15) =−0.86, p = 0.21) or losses (paired t(15) =−0.19, p = 0.43).

Thus an effect of difficulty on skill updates could be identified in the

data, over and above the effect of outcome. The analyses described above

also suggest there might be differences between processing difficulty for wins

and losses, as well as between the “self” and “other” conditions, however

evidence in this respect is inconclusive. There are a number of factors that
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future work might improve on, allowing for a clearer picture of the effects of

difficulty to emerge (see sections 3.6 and 6.3).

3.2.4 Performance

The last factor whose effect on skill updates we investigated in a model-

agnostic manner concerns the details of performance, separate from the out-

come. We expected better performance to be associated with higher skill

updates than lower performance, for both wins and losses.

As was the case with difficulty, we did not have a previously validated

integrated 1-dimensional measure of performance 2 Instead, we tested for

effects of three directly measurable performance variables on skill updates,

namely the proportion of correct presses out of all keys pressed during the

trial (pc), the proportion of time spent pausing during the trial (pp) , and the

proportion of wrong key presses which would be correct for the normal UP

orientation (pwcu). This last performance factor we chose because it is one

that could be particularly salient to subjects due to the nature of the task.

For each of these performance measures, we computed, for each subject,

the Spearman correlation between the performance measure and skill updates,

separately for wins and losses. We then tested whether the resulting distribu-

tions across subjects are shifted with respect to 0. We used the t-test statistic,

but estimated p-values from permutation tests.

We found significant effects of all three performance measures on skill

updates, in the expected direction3, for losses, but not wins. This was true

in both conditions (see table 3.1). Direct comparison between the effects for

the two outcomes identified the differences between the effects for wins and

losses as significant, with one exception (see table 3.1).

We further directly compared the strength of the effects for losses in the

“self” and “other” conditions, and found no significant difference for pc (self

2As discussed in 2.3.3, our attempt to extract an objective measure of skill from data
produced results that were not satisfactory.

3Thus positive correlation between skill updates and pc, and negative correlations between
skill updates and pp and pwcu.
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Self Other
t p t p

pc + 0.58 0.29 0.64 0.26
pp + 1 0.16 -0.73 0.77

pwcu + 0.97 0.16 0.48 0.32
pc - 3.99 <0.01 3.8 <0.01
pp - -2.86 <0.01 -2.1 0.02

pwcu - -3.12 <0.01 -2.5 0.01
pc + vs - -3.53 <0.01 -3.14 <0.01
pp +vs - 2.8 <0.01 1.17 0.12

pwcu + vs- 3.47 <0.01 2.71 <0.01

Table 3.1: Effect of performance measures (see text and glossary for abbreviations)
on skill updates. Top: testing whether the distribution across subjects of
the Spearman correlation coefficients between performance and skill up-
dates for wins (+) and losses (-) is shifted with respect to 0. Bottom: direct
comparison- testing whether the distribution of differences in correlation
coefficients between wins and losses is shifted with respect to 0. One
sample t-test statistics; p-values estimated from permutation tests.

vs other paired t(15) = 1.65, p = 0.06), and significant differences for pp

(paired t(15) = 1.81, p = 0.04) and pwcu ( paired t(15) = 1.91, p = 0.03).

The difference we found between wins and losses was unexpected, but

could be explained by the existence of an adaptive mechanism involving

higher discrimination in learning from losses than from wins. It is consistent

with our observations on the effect of attribution, and might reflect a focus on

learning from negative outcomes, in order to avoid them in the future, while

allocating less discriminative attention to positive outcomes, which can more

generally be used as a positive signal. The fact that the effect of performance

on skill updates after losses seems to be stronger for “self” than for “other” is

consistent with this view.

3.2.5 Model agnostic analyses: summary

Model agnostic analyses presented in this section identified significant effects

of outcome, attribution, difficulty and performance on skill updates in the

directions we had hypothesised. They also provided evidence for unexpected

differences between these factors’ relationships with skill updates post wins

vs post losses, which suggest further questions for future work (see discussion
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in 6.3).

Form an evolutionary perspective it is arguably more costly for an agent

to make wrong inferences about their ability in negative situations than it is in

positive ones. If a negative outcome is experienced, it is highly relevant for an

agent to determine whether the failure is due to its own actions, which can be

improved in order to avoid costly outcomes, or to the environment, in which

case other cost-minimising strategies could be pursued. In contrast, inaccu-

rately assigning responsibility for a positive outcome is unlikely to incur a

high cost(although it could lead to lesser gains). This view is consistent with

differences we observed between the effects of performance and attribution

on skill updates post wins vs losses.

While this perspective could be relevant for explaining and further inves-

tigating differences between processing of positive and negative outcomes in

the “self” condition (see discussion in section 3.6), it cannot explain why such

differences would also exist in the “other” condition; it is, however, consistent

with a scenario in which mechanisms used for updating beliefs about self and

those used for others share common elements.

Effects of attribution were generally larger for “other” than for “self”,

suggesting attributions might be processed differently in the two conditions,

however future work is needed to determine whether this is indeed the case.

If so, there are a number of factors that could explain such differences: be-

lief updating processes in the “self” condition might be more complex that

processes in the “other” condition, and people might be more honest when

reporting attributions and or skill estimates for “other” than they are when

reporting on their own performance, which is presumably more emotionally

salient and engaging. The difference between acting and watching might also

be responsible for observed differences between the “self” and “other” condi-

tions: in the “other” condition, subjects need only watch and evaluate , while

they need to also act, and do so under time pressure, in the “self” condition.

Task manipulations could be designed to tease these candidate explanations
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apart (see discussions in section 3.6 and 6.3).

Finally, it is worth emphasising two important differences between the

nature of the attributions involved in our analyses and that generally investi-

gated in previous research(see review in 1): previous research often manipu-

lated attributions by providing subjects with different cover stories in differ-

ent conditions; in our case attributions were actually reported by subjects, on

a trial-wise basis. Thus the above analyses provided evidence for an effect of

attribution on beliefs at a higher temporal resolution than that explored by pre-

vious research; and they provided evidence for an effect of directly expressed

individual attributions, rather than ones postulated based on condition-wise

manipulations across subjects.

These analyses provided a population-level view of the factors’ effects

on skill updates. However they did not account for the time structure of the

responses, nor for possible individual differences in mechanisms driving skill

updates. In order to obtain a finer grained understanding of the data at the

individual subject level, in particular taking into account the effect of time,

we next turned to model-dependent analyses, which we present in the next

section.

3.3 Model-dependent analyses

The aim of our model-dependent analyses was to investigate in more detail

the relationships between the evolution of skill estimates and the factors of

interest, particularly attribution, while accounting for the time-series nature

of our data and for potential individual differences between subjects.

The modelling approach to data analysis relies on encoding hypotheses

about the mechanisms underlying the observed data into precise mathematical

formulations; these are used to generate data sets according to different can-

didate models and compare them to real data. The extent to which different

models account for the observed data is used to evaluate the corresponding

hypotheses that the models encode (see section 1.4 for a detailed account of
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the theory). Ideally, different models vary significantly in how well they are

able to account for the data, and model comparison is highly informative.

In particular, we expected model comparison to be useful in answering

two types of questions: the first was to determine the contribution of indi-

vidual factors of interest by comparing the quality of models which included

them with that of models which did not; the second involved comparing mod-

els with different relationships between the factors on interest in order to study

interactions between them. We compared a large number of models, falling

under three main categories: purely descriptive models of the time evolution

of skill estimates (see 3.3.1), Rescorla-Wagner models (Rescorla, 1972) ( see

3.3.2), and “observing the observer” models (Daunizeau et al., 2010b,a) (see

3.3.3). The models included components which had different sources: some

where directly related to our hypotheses (e.g. attribution-dependent learn-

ing rates), some were inspired by the results of our model-agnostic analy-

ses (e.g. outcome modulation of attribution-dependent learning rates), others

were made necessary by practical aspects of our data collecting process (e.g.

effect of session break).

Despite between-subject variability in skill estimates, we expected the

underlying mechanisms to be at least partially shared. In the modelling frame-

work this would correspond to data from substantial numbers of different sub-

jects being generated from the same model (or similar models), albeit with

different individual parameters. In this case, model comparison would show

patterns of preference between models that would be consistent for differ-

ent subjects, thus revealing mechanisms valid at the population level (see

section 1.4 for a detailed discussion of ways to account for variability be-

tween subjects in model comparison). Indeed, while subject-level answers to

model-comparison questions are informative, their general relevance is natu-

rally related to the extent to which they are valid across subjects and can thus

generalise.

This, however, is not what we found in our case: both in terms of in-
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formative differences between models, and in terms of the extent to which

model comparison identified common mechanisms between subjects, results

of model-dependent analyses differed from out expectations.

Thus, rather than observing significant differences between different

models, we found that some subjects were poorly fitted by all models, while

many of them were quite well fitted by almost all models (see figure 3.7

which, setting aside, for the time being, the issue of penalising for complexity,

shows the pattern of r2 scores obtained by all models for all subjects in the

“self” condition). None of these patterns is as informative as we had originally

hoped.
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Figure 3.7: R2 scores for descriptive and Rescorla-Wagner models for skill esti-
mates, ‘self’ condition. Each bar represents a model, descriptive models
are coloured in green, RW models without attribution in blue, RW mod-
els with attribution in red. Note that many of the subjects were either
poorly fitted by all models, or quite well fitted by all models. Note that
no complexity correction has been applied.

In addition, contrary to our expectations, variability between subjects

was present not only in their patterns of skill estimates, but also in the models

which best accounted for this data (see section 3.3.4).

Because variability between models at the subject level was lower than

expected, we attempted to understand and clarify this more complex picture
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of the data by gradually expanding our model family. There were two main

mechanisms driving the expansion of the model family: one involved building

increasingly complex models in order to test wether more complex relation-

ships involving the factors of interest were able to better explain our data; the

other involved testing a number of models that could alternatively explain the

data without relying on the factors of interest.

Because variability between subjects in terms of preferred models was

higher than expected, we did not attempt to draw any general conclusion

about the belief updating mechanisms at the level of the population. The

small number of subjects available also precluded any attempt to investigate

the existence and nature of clusters in the population. Instead, we adopted

a different approach, focusing on the individual subject level in order to de-

termine whether there are any subjects for whom the factors of interest are

significant (see 3.3.4). This strategy is relatively unconventional, however

complex tasks can be expected to engage multiple mechanisms that are ex-

ploited in different ways by different individuals, and the strategy we have

adopted aimed to find statistically-convincing evidence for such mechanisms.

This section is structured as follows: we begin by presenting the models

we compared, with a focus on the processes driving the expansion of the

model family (subsections 3.3.1 - 3.3.3); we then present our approach for

performing model comparison, and its results (subsection 3.3.4). The section

ends with a summary (subsection 3.3.5).

3.3.1 Purely descriptive models

As noted previously, for most subjects the evolution of skill estimates seemed

to follow a learning-curve like profile, with a steep increase at the beginning

followed by levelling out in a plateau. In order to measure to what extent

incorporating hypotheses about the mechanisms driving skill updates enables

models to fit the data better than purely descriptive models lacking any mech-

anistic insights, we fitted a small number of purely descriptive models to our

data.
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We used variations of two common learning curve models: a logarithm

and a sigmoid shaped ones; models based on the two curves were labeled L

and S respectively. The variations we introduced were meant to account for

aspects of the data that our experimental procedure might have introduced.

Our model agnostic analyses revealed that the division of each condition

into two separate sessions produced an unexpected jump in some of our sub-

jects’ skill estimates, between the last response from the first session and the

first one from the second session. We refer to it as the session break effect

(see figure 3.3). One model variation was therefore whether models did or

did not have a parameter to account for this effect.

The existence of the break effect in some subjects also points to the fact

that belief updating mechanisms might proceed differently between the two

sessions. The second variation was therefore whether models were allowed

to use different parameters for the two sessions, or were limited to the same

parameters across sessions.

These variations led to 3 models for each underlying basic curve: no

effect of session break (coded L1 or S1), effect of session break but same

parameters across sessions (coded L2 or S2), effect of session break and dif-

ferent parameters for the two sessions (coded L3 or S3). The list of fully

specified models can be found in appendix J.1.

Figures 3.8 and 3.9 show the quality of model S3 fit to data for two

example subjects - the best fit and worst fit subjects.
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Figure 3.8: Example fit, model S3, subject with best fit. Green: real data, red: data
generated from best fit parameters.
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Figure 3.9: Example fit, model S3, subject with worst fit. Green: real data, red: data
generated from best fit parameters.
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3.3.2 Rescorla-Wagner models

Since we sought to investigate the mechanisms through which skill reports

evolve, we next turned to models specifying these mechanisms.

One type of such models are Rescorla-Wagner(RW) models. Introduced

(Rescorla, 1972) to explain learning curves for associability between stimuli

and rewards, these models rely on the assumption that changes in associa-

tive strength are related to prediction errors - differences between the reward

expected based on the current associative strength and the reward actually ob-

tained. Models based on prediction error mechanisms have been immensely

popular and successful in modelling animal and human behaviour in a wide

variety of tasks and contexts (Siegel and Allan, 1996) and prediction error-like

signals have been found in the activity of various brain regions, notably, but

not only, related to dopamine signalling (Garrison et al., 2013), (see review

in 1). In our task, rather than learning about reward, subjects can be assumed

to learn about their own skill - a hidden variable- from experience at different

levels of granularity, from key press to trial outcome.

All RW models were built on a common basic structure. Subjects’ re-

ported skill estimates,{rt}, are assumed to be noisy readings of an evolving

internal estimate of skill, {st}: rt ∼N (st ,σ)4. On every trial, the prediction

error δt between the experienced outcome ot and the one expected from the

current value of the internal skill estimate is computed, and used to update the

internal skill estimate. This basic model involves two parameters: the initial

value of the internal skill estimate, s0, and the learning rate used to weigh

the prediction error, α . Our baseline model, however, included an additional

parameter modelling the effect of the break between sessions, β , resulting in

the following model:

4All models were fitted separately for each subject in two ways: by minimising the sum
of squared differences between model predictions and data (a least squares approach), and
by fitting a full probabilistic version, including a noise response parameter. The list in J.2
contains the probabilistic versions. Results were similar between the two approaches, we
present the least squares version in the following.
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δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α ∗δt if t 6= tII
0

st−1 +β +α ∗δt otherwise, where

tII
0 = index of first trial of the second session.

Two mechanisms drove the expansion of the RW model family: we re-

fined models based on assumptions about the factors of interest in order to

test whether this enables them to better explain our data; and we built alter-

native models which ignored the factors of interest, in order to test to what

extent their contribution is essential to explaining the data. Some of the vari-

ations between the RW models we compared were formalised as modulations

of the learning rates by the factors of interest, or the introduction of separate

parameters for the two sessions. Other models included changes to the out-

come prediction in order to include difficulty information, or changes in the

response, in order to include effects at different timescales.

In this subsection we present some of the RW models we compared, fo-

cusing on the factors that were responsible for various changes or additions in

our models. See appendix J.2 for a complete list of the models, fully specified.

We Baselinestarted from the baseline model defined above, assuming learning

from outcomes, since this is the most salient source of information subjects

had about their own evolving skill. The baseline also took into account the

existence of the two sessions, by having a session break effect parameter.

We also fitted a richer version of this baseline, allowing learning rates to be

different between the two sessions - model S___5.

We then fitted more complex models, which included the factors that we

5For most of the models presented in this section, the naming convention reflects the
presence or absence of four orthogonal factors, labelled S,A,O,T (see this section’s text for
description). Other models, such as those including difficulty, follow slightly different nam-
ing conventions. All models are fully specified in appendix J.2
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were interested in, such as attribution, difficulty and timescale of updating.

There were large individual differences between the effects of these additions

on the quality of fit, which we illustrate below.
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Figure 3.10: Effect of adding attribution to baseline models. Black: baseline model
- one learning rate for both sessions, session break effect; red: baseline
+ different learning rates for the two sessions (A___); yellow: base-
line + different learning rates according to attribution (_A__); green:
baseline + different learning rates according to session and attribution
(SA__). Individual subjects scores, ordered according to the baseline
model scores, separately for ‘self’ and ‘other’.

First Baseline +

attribution

we augmented the baseline models by allowing learning rates to de-

pend on attribution (resulting models are _A__ and SA__). See figure 3.10,

which shows the r2 scores of the best fit for the baseline models and their

versions augmented with attribution information 6 Although in some cases

adding attribution to the baseline models significantly increased the quality

of fit, this was not a general pattern. Note that our way of augmenting mod-

els with attribution was by allowing different learning rates for outcomes at-

tributed internally, externally and for outcomes lacking attributions; this latter

parameter is one that we had to include due to our choice of only asking
6Note that this figure only shows the scores for the best fitting parameters, without any

model complexity penalty, and we wouldn’t use it as such for model comparison purposes.
We will present model comparison analyses later (see 3.3.4), but use r2 scores here since they
are more easily interpretable.
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subjects for an attribution every two trials. Thus an umbrella parameter was

used for potentially different real underlying attributions, which can impair

our ability to correctly identify the impact of attribution.

We Baseline +

attribution +

timescale

then considered the possibility of different timescales of belief up-

dating. To model this, in addition to the learning mechanism represented by

the prediction error learning, we augmented our attribution models by allow-

ing outcomes to have an effect on the immediately following skill estimate

(we refer to this as the outcome impulse), which does not propagate into fu-

ture estimates (models _A_T and SA_T). This is both a common sense idea,

and inspired by the response patterns of some of our subjects, who have high

variation between successive responses. We suspected these might be due to a

large effect of the just experienced outcome. Figure 3.11 shows the r2 scores

of these models compared with the baseline model and the enriched baseline

model with attribution information, SA__.

0

.5

1
SELF

baseline

SA _ _

 _A_T

 SA_T

0

.5

1
OTHER

0.0 0.2 0.4 0.6 0.8 1.0

Subject
0.0

0.2

0.4

0.6

0.8

1.0

R
2

 s
co

re

Figure 3.11: Effect of adding outcome impulse to attribution models. Black: base-
line model; green: baseline + different learning rates depending on ses-
sion and attribution (SA__); cyan: baseline + different learning rates
depending on attribution + outcome impulse (_A_T); orange: baseline
+ different learning rates depending on session and attribution + out-
come impulse (SA_T). Individual subjects scores, ordered according
to the baseline model scores, separately for ‘self’ and ‘other’.
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Adding this local effect of outcomes seems to have a significant effect

in improving the r2 score for a very small number of subjects, notably ones

with very low scores. However it seems to have little or no effect for subjects

which are already somewhat better fitted. Note that here as well, no penalty

has yet been applied for model complexity.

We checked whether the subjects for whom large improvements in r2

scores result from adding outcome impulses are the ones with highly variable

skill estimates, and this seems indeed to be the case. See figure 3.12 for an

example subject.
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Figure 3.12: Example subject for whom adding the outcome impulse improves qual-
ity of fit: best fit for model _A_T

Because Baseline + timescaleattribution on its own did not seem to significantly increase

quality of fit for these subjects, and in order to test if the outcome impulse

on its own is enough to produce this improvement, we also fitted baseline

models with an outcome impulse, but without attribution dependency (mod-

els __T and S__T). Figure 3.13 shows the best fit r2 for the baseline and for

models ___T, _A__ and _A_T.

Two general observations arise from figure 3.13: first, although gener-

ally adding the outcome impulse parameters to the baseline model(resulting

in ___T) increases its score, the further addition of attribution (model _A_T)

has, in most cases, a much smaller effect (although there are exceptions, most



3.3. Model-dependent analyses 117

0

.5

1
SELF

baseline

 _ _ _T

 _A_ _

 _A_T

0

.5

1
OTHER

0.0 0.2 0.4 0.6 0.8 1.0

Subject
0.0

0.2

0.4

0.6

0.8

1.0

R
2

 s
co

re

Figure 3.13: Effect of adding outcome impulse to baseline vs allowing learning rates
to depend on attribution. Black: baseline model; purple: baseline +
outcome impulse (___T); gold: baseline + different learning rates de-
pending on attribution (_A__); cyan: baseline + different learning rates
depending on attribution + outcome impulse (_A_T). Individual sub-
jects scores, ordered according to the baseline model scores, separately
for ‘self’ and ‘other’.

notably the “self” condition). Secondly, model ___T scores better than _A__

in general, indicating that in most cases outcome impulse has more explana-

tory power over the baseline model than attribution.

We note, however, that about a third of the subjects in both conditions

show the opposite pattern, again indicating variability in the mechanisms sub-

jects might be using (note that these two models have the same number of

parameters, and comparisons between their scores can meaningfully be made

without worrying about penalising complexity).

Adding an outcome impulse improves model fits despite the fact that a

mechanism for learning from outcomes is already included in the baseline

model. There are two ways in which the outcome impulse models are richer

than the baseline: they allow outcomes to influence skill estimates on two

different timescales, and they allow positive and negative outcomes to impact

learning differently. Indeed the fact that humans as well as animals learn dif-
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ferently from positive vs negative outcomes has been extensively documented

(Yacubian et al., 2006; Wrase et al., 2007; Frank et al., 2007; Seymour et al.,

2007; Cools et al., 2008; Sharot et al., 2011; Cazé and Van Der Meer, 2013;

Cox et al., 2015). This is consistent with some of our model agnostic analyses

results, that show the effect of attributions to be different for wins and losses.

We Baseline +

attribution +

outcome valence

therefore again expanded our model family, by fitting models which,

in addition to allowing attribution to modulate learning from outcomes, al-

lowed positive and negative outcomes to differently modulate learning, or to

modulate the effect of attribution (models _AO_ and SAO_). Figure 3.14

shows the best fit r2 comparison between adding attribution, outcome im-

pulse, and outcome-based learning rates to the baseline model.
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Figure 3.14: Effect of adding outcome impulse to baseline model vs allowing learn-
ing rates to depend on outcome vs allowing learning rates to depend
on attribution. Black: baseline model; purple: baseline + outcome im-
pulse (___T); gold: baseline + different learning rates depending on
attribution (_A__); blue: baseline + different learning rates depending
on outcome (__O_). Individual subjects scores, ordered according to
the baseline model scores, separately for ‘self’ and ‘other’.

Figure 3.14 shows that adding impulse response improves the baseline

model more than simply allowing differentiated learning from positive and

negative outcomes, on only one timescale. It also shows that in general allow-
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ing different learning rates for different attributions does better than allowing

different learning rates for wins and losses. Note, however, that as in all the

previous r2 comparison figures, there is no penalty for model complexity. We

will move on to model comparison shortly.

We Difficultyalso built a number of models to examine whether difficulty modu-

lates skill updating, for instance through changing learning rates on its own,

over different timescales, or interacting with attribution. Detailed descrip-

tions of these models can be found in appendix J.2). We do not illustrate them

in this section, because in terms of best fit r2 scores we observed similar pat-

terns with the previous models: there are subjects who are poorly fit, and none

of the models does much to improve this; there are subjects which are very

well fit by the baseline model, and any improvement is marginal, and there

are some subjects for whom accounting for difficulty does lead to significant

improvement, as indeed is the case with other model augmentations

To RW models

summary

summarize the model family we have presented in this section: there

are four factors that our models can independently account for or not: session,

outcome, timescale and attribution, resulting in 16 different models. Outcome

and attribution are accounted for by allowing learning rates to differ according

to the different values of these factors; timescale is encompassed by including

outcome impulse parameters; session is addressed by allowing parameters to

be different between sessions. In addition to these, we compared a number

of models including effects of trial difficulty, described in appendix J.2. We

introduced these factors into our models gradually, for different reasons: at-

tribution was our original interest; session effects might have appeared as an

artifact of our choices for practical experimental timing, outcome, difficulty

and timescale are both theoretically interesting and factors that emerged as

important in our model-agnostic analyses and early modelling work.
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3.3.3 Observing the observer models

Our RW family ended up being quite extensive, but models were closely re-

lated, having the same underlying principle. We also fit models of a differ-

ent family, observing the observer(OO) models (Daunizeau et al., 2010b,a),

which we describe in this section. As we have already illustrated the factors

driving the expansion of the model family in the case of the RW models, we

will not go through the same process here; instead, we present the resulting

models directly.

Observing the observer models rely on the following assumptions: sub-

jects have a model of how the data they can observe is generated (perceptual

model); they invert this model to compute the posterior belief on the underly-

ing causes conditioned on the data they observed; they then choose a response

based on their belief - this is the response model. Model comparisons between

different perceptual and response models can be made within this framework.

In such models, the propagation of subjects’ beliefs about the underlying

variables generating the observed data is a filtering process (Bishop, 2006),

which involves two steps for processing every trial. The first step is to turn a

prior belief propagated from the end of the previous trial into a posterior be-

lief by conditioning on the observations of the current trial. The second step

is to propagate this posterior belief forward through a function encapsulating

subjects’ expectations about how these variables evolve in time (the link func-

tion). This produces the prior belief appropriate to the next trial. Apart from

very particular cases, generally involving manipulations of Gaussian distri-

butions, this process is not straightforward. This was also the case with our

models, which involved both Gaussian and non-Gaussian distributions (see

below). See appendix K for a detailed account of the computations involved.

To rigorously define the OO models we fit and to illustrate the differences
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between them, the following notations will be used:

st : real, hidden value of skill at trial t

ot : outcome of trial t

dt : difficulty of trial t

rt : skill estimate at trial t (subject’s response)

N (µold,t ,σ
2
old,t)≈ p(st |o1, ...ot−1) : Gaussian approximation of subject’s

belief about skill before seeing trial t

N (µnew,t ,σ
2
new,t)≈ p(st |o1, ...ot) : Gaussian approximation of subject’s

belief about skill after seeing trial t .

The models that we compared were built on a common structure.

We assumed subjects’ perceptual model consists in a skill evolution

model, encapsulating their expectations about how skill evolves in time, and

a generative model for the outcome, representing their beliefs about how skill

and difficulty relate to outcome on a given trial. The skill evolution model

we assumed to be a Markov time series, but we allowed the link function

between the time steps to vary between different models (see below). In all

cases the generative model for outcomes was the same, namely assumed to be

a Bernoulli variable with the probability of winning dependent on the current

difficulty and skill level.

ot ∼ Bernoulli(σ(st−dt)).

The response model was also common to all models. We assumed sub-

jects compute the probability of winning based on their current belief about

skill and the difficulties they have recently encountered and respond with a
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Gaussian noise-corrupted report of this value.:

rt ∼N (σ(µnew,t−dt),σr), where

µnew,t = expected value of underlying skill, after trial t

dt =
dt +dt−1 + ...+dt−10

10

The models that we compared varied along three dimensions: subjects’

internal expectations about how their skill would evolve in time (the link func-

tion in the perceptual model), belief updating mechanisms reflecting some of

our factors of interest analysed with the RW models, namely attribution and

outcome valence, and whether model parameters were allowed to differ be-

tween sessions7.

The link function in the skill evolution model could be either a random

walk (coded R), in which case

st ∼N (st−1,σ
2
process)

or an additive (potentially subtractive) linear model (coded L), in which case

st ∼N (α + st−1,σ
2
process).

The belief updating - the process by which an experienced outcome

changes the distribution of beliefs over current skill - could be either an ap-

proximation to the normative Bayesian update (coded B)

σ
2
new =

1
1

σ2
old

+(1−σ(µold−dt))σ(µold−dt)

µnew =

µold +(1−σ(µold−dt))σ
2
new if ot = 1

µold−σ(µold−dt)σ
2
new otherwise,

7The naming convention reflects the presence of these three orthogonal factors, model
names being formed as OO followed by a three letter combination coding for session, belief
updating and link function, respectively. See text for details.
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or a modulation of it based on attribution (coded A) or outcome (coded O),

meant to model any additional effect of attribution or outcome over and above

the normative update( the detailed derivation of these is provided in appendix

K):

σ
2
new =

1
1

σ2
old

+α(1−σ(µold−dt))σ(µold−dt)

µnew =


µold +α ∗ (1−σ(µold−dt))

1
σ2

old
+(1−σ(µold−dt))σ(µold−dt)

if ot = 1

µold−α ∗ σ(µold−dt)
1

σ2
old

+(1−σ(µold−dt))σ(µold−dt)
otherwise, where

α varies according to attribution or according to outcome.

Finally, the two sessions could either share parameters (coded _) or were al-

lowed to have different parameters (coded S). In all cases an effect of session

break was included as follows: for the first trial of the second session in all

the updates σ2
old and µold were replaced by σ2

old +σ2
break and µold + µbreak

respectively.

The combination of these different model choice options resulted in 12

models, listed in table 3.2.

Random walk link Additive link
Same

params
Different
params

Same
params

Different
params

Bayesian update OO_BR OOSBR OO_BL OOSBL
Attribution modulation OO_AR OOSAR OO_AL OOSAL
Outcome modulation OO_OR OOSOR OO_OL OOSOL

Table 3.2: OO models. See text for description.

3.3.4 Model comparison

We used BIC scores for model comparison, see appendix J.3 for details related

to the BIC scores computation.

In general our RW and OO models did much better than the purely de-

scriptive ones, as expected, indicating that the mechanisms we postulated in-
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deed helped explain subject’s responses. Comparison of BIC scores summed

over subjects showed that for both “self” and “other”, none of the purely de-

scriptive models was among the top 10 models, with ∆BIC= 643.74 between

the best model and the best descriptive model for “self” and ∆BIC= 697.6 for

“other”. This pattern was also present at the individual subject level, model

comparison preferring one of the RW or OO models to the purely descriptive

models with a ∆BIC≥ 10 for 18 out of our 31 subjects in the “self” condition,

and for 20 out of the 31 in the “other” condition (see also figure 3.7).

For both conditions, the winning model according to the summed BIC

comparison was a RW model (see figure 3.15). For “self” the preferred model

was S_OT - including different learning rates for wins and losses, outcome

impulse effect and different parameters for the two sessions, but no effect of

attribution - with a difference of 111.11 in BIC score w.r.t the second best

model. For “other”, the winning model was model SA_T - including different

learning rates for different attributions, outcome impulse effect and different

parameters for the two sessions- with a difference of 72.25 in BIC score w.r.t

the second best model.
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Figure 3.15: Model comparison results: summed BIC score, top 5 models.

However establishing the importance of the different factors of interest



3.3. Model-dependent analyses 125

is more complicated that it would appear from the summed BIC comparison:

the winning model for the “self” condition at the population level was the

winning model at the individual level for only 1 subject, and was among the

top 5 for for only 3 subjects; for the “other” condition, the winning model at

the population level was not the winning model for any of the subjects, but

was among the top 5 models for 6 of the subjects.

As mentioned before, we found large variability between subjects, be-

yond that apparent in their patterns of skill estimates. Thus apart from varia-

tion in the extent to which our models managed to capture the data, there was

also variability in the models that were preferred for different subjects and in

the confidence with which they were preferred. For the “self” condition there

were only 6 out of 31 subjects for whom the BIC score difference between

the best and second best model was larger than 6 -indicating strong evidence

in favour of the winning models- and no subject showed a difference larger

than 10, indicating very strong evidence in favour of the best model. In the

“other” condition only 5 subjects had a difference larger than 6 between the

BIC scores for the best and second best models, and 2 of them had a differ-

ence larger than 10 between the two best models. In the “self” condition, 21

of the models that we compared (there were 47 in total) were the winning

model for at least one subject, and in the “other” condition, the number of

distinct models being the best model for at least one subject was 23.

These observations indicate that across subjects model comparison

would not be adequate; however our data are also not sufficient for perform-

ing subject clustering. The fact that we ended up with a large number of

models, varying along several independent dimensions (defined by the factors

that models took into account), also poses its problems, as it can become dif-

ficult to interpret model comparisons if a clear pattern does not emerge across

subjects, which seems to be our case. We do not therefore attempt to draw any

general conclusion about the belief updating mechanisms at the level of the

population, or about the existence and nature of different subgroups within it.
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Instead, we performed further analyses at the individual subject level,

aimed at determining whether any of the subjects showed significant effects

of the factors of interest (attribution, difficulty, outcome impulse, outcome

valence). As OO models did not generally do better than RW models, and

comparisons between RW models can be performed without any additional

complications introduced by structural differences, we limited these analyses

to the RW models only8. We present these analyses in the remaining part of

this section.

For this purpose we implemented the following pipeline of selection cri-

teria, such that we were satisfied that any subjects who passed through the

entire pipeline showed a convincing effect of the factor of interest: we first

selected subjects for whom at least some models achieved a best fit r2 score

of at least 0.6; out of these, we selected the subjects for whom the best model

included the factor of interest; we then selected the ones for whom the BIC

score difference between the best model and the best model without the factor

of interest was larger than 10. We then applied two more tests. The first was

a permutation-test -like analysis, in which we randomly chose 5000 permuta-

tions of the values of the factor of interest, and for each permutation refitted

the winning model and computed the BIC score. Our aim was to test if the

BIC score obtained for the real ordering of the values of the factor of interest

was different from the distribution of BIC scores obtained by permuting these

values. We rejected subjects for whom the approximated p-value was larger

than 0.05. Finally, for all remaining subjects we tested model identifiability,

by generating data from the best fit parameters of the best fitting model and

fitting both the best model and the best model without the factor of interest to

8We have, however, checked wether any subjects showed strong preference for the OO
models vs the RW ones (∆BIC≥ 10 in favour of an OO model) and found 5 such subjects for
“self” and one for “other”. We note that none of these were among the subjects for whom we
found significant effect of our factors of interest in the RW-only analyses(see below). This
suggests that subjects might differ with respect to the underlying mechanism of belief updat-
ing, and not only with respect to the factors influencing learning in a RW context. Further
investigation of this additional source of variability in the subject population remains a goal
for future work.
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this simulated data. Subjects for whom the correct model was not preferred

would be rejected.

We present below the results of applying these criteria for each factor of

interest in turn.

There were 19 subjects with a best r2 score larger than 0.6 for “self”, and

23 satisfying this criterion for “other”; these were the subjects included in the

analyses below.

Attribution: Applying the selection criteria above for attribution we

found 6 subjects for whom the winning model included attribution in the

“self” condition and 10 in the “other” condition. Out of these, in each con-

dition two had a ∆BIC > 10 between the best model and best model without

attribution. Both subjects for the “other” condition survived the attributions

permutation test and the model identifiability test. Only one of them survived

in the “self” condition, the other failed the attribution permutation test. We

note that in the “self” condition there was an additional subject for whom

the BIC score difference between the best model without attribution and the

best model was 9.98. We performed the attributions permutation test and the

model identifiability test for this subject as well and found that the subject

would have survived these.

Difficulty: Applying the selection criteria above for difficulty we found

that for both conditions 8 subjects had a winning model including difficulty.

Out of these, three had a ∆BIC > 10 between the best model and best model

without difficulty and all three survived the additional permutation and model

identifiability tests for the “self” condition. Only one subject in the “other”

condition passed the ∆BIC threshold, but failed the difficulty permutation test.

We note that we performed the difficulty permutation and model identifiability

tests for two additional subjects that did not pass the ∆BIC threshold, but had

∆BIC values of 9.6 and 9.5; one of these failed the difficulty permutation test,

but the other survived both additional tests.

Outcome impulse: Applying the selection criteria above for outcome
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impulse we found that 13 subjects had a winning model including outcome

impulse in the “self” and 11 in the “other” condition. Out of these, 8 passed

the ∆BIC selection criteria for “self” and 5 for “other”. All of these survived

the impulse permutation and model identifiability tests.

Outcome valence: Finally, for outcome valence there were 6 subjects

with a winning model including outcome valence in the “self” and 5 in the

“other” condition. Three of those in the “self” and two of those in the “other”

condition passed the ∆BIC criterion. They all survived the following two

tests.

We found therefore that for each of the factors of interest there were sub-

jects for whom these factors were an important part of the belief updating

mechanism. The precise values of our thresholds in the pipeline were some-

what arbitrary, but they were chosen so as to impose harsh thresholds in the

pipeline, and therefore assure that subjects surviving all tests show convincing

evidence in favour of the respective factors.
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Figure 3.16: Distribution of cross-validation r2 scores for best models, both condi-
tions. Left: score of best model for ‘self’ vs ‘other’. Right: distribution
of highest scores across subjects, counts.

Finally, as far as the comparison between the two conditions is con-

cerned, data from the “other” condition was in general better captured by

our models than data from “self” (cross-validation r2 scores of best models

for “self” vs “other”: paired t(15) =−2.32, p = 0.027); see figure 3.16.
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3.3.5 Model-dependent analyses: summary

In this section we presented model dependent analyses of subjects’ skill es-

timates. We compared a large number of models: purely descriptive models,

models based on prediction error updates (RW models) and models involving

more complex accounts of subjects’ internal beliefs and their evolution (OO

models).

Contrary to our expectations, rather than uncovering common patterns

underlying the evolution of subjects’ skill estimates, these revealed a large

amount of variability between subjects, both in the extent to which our models

could explain the data, and in the models which best did so. As a result, and

due to the size of our dataset, making any general inferences about the belief

updating mechanisms at the level of the population or about the existence and

nature of different subgroups within it was not possible.

Instead, we performed further analyses at the individual subject level,

aimed at determining whether any of the subjects showed significant prefer-

ence for models including each of the factors of interest (which, according to

model-agnostic analyses, had significant effects on skill estimates at the pop-

ulation level). This was checked by testing a series of conditions in a pipeline,

designed such that we could be satisfied that any subject resulting from this

selection process displayed convincing evidence of the use of the respective

factor of interest. The results of these further analyses showed that there were

indeed subjects whose responses were better explained by models including

difficulty information, subjects for whom learning from outcomes was modu-

lated by their reported attribution of the outcome, subjects who learned differ-

ently from wins vs losses, and subjects whose responses reflected short term

effects of outcome.

Models were generally better at explaining data from the “other” con-

dition than data from the “self” condition, which is consistent with model-

agnostic analyses, and suggests responses provided for “self” are noisier; this

might be due to the heightened relevance of the “self” condition, to differ-
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ences between acting and watching, or to the ordering of the two conditions.

These model-dependent analyses highlighted the variability between

subjects, emphasising the need for larger data sets that could be used to in-

vestigate potential clusters of subjects with common mechanisms. They also

showed that effects of the different factors of interest, and in particular attri-

bution, can be detected at the individual subject level.

3.4 Reaction times

In this section we present analyses of reaction times (RTs) for reporting skill

estimates, and their relationships with outcome, attribution, reported skill and

condition.

In addition to the deliberation associated with skill reporting, which is

what we are interested in investigating, RTs also reflect inter-individual and

trial by trial variability in movement speed and trial to trial variability in the

(randomly chosen) initial slider position(see 2). To control for these, we dis-

tinguished three components of the raw reaction time: the time until the first

key press, which marks the start of the response - we refer to this in the fol-

lowing as the “latency”; the total time of the slider movement; and the time

to submit the response by pressing the ENTER key -we refer to this as the

“submission time”.

The variables we analysed were the residual RTs, defined, for each trial

of a given subject, as the difference between the raw reaction time and the sum

of the subject’s median latency, the subject’s median submission time and the

time it would take to move the slider from the initial to the final position by

holding the correct arrow key pressed:
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rts
t = RT s

t − (ls + sts + f (∆xs
t )),where

rts
t = residual RT at trial t for subject s

RT s
t = raw RT at trial t for subject s

ls = median latency for subject s

sts = median submission time for subject s

f (∆xs
t ) = time to move the slider from the initial to the final position

by holding correct key pressed.

For each of the factors of interest, (outcome, attribution, condition, skill

estimates) we computed for each subject the average residual reaction time

for all trials corresponding to the relevant factor level (we used quartile dis-

cretization for skill estimates) and compared the resulting distributions across

subjects. Skill estimates and reaction times were z-scored within subject.

Overall, we found that subjects were significantly faster in responding

in the ’self’ vs the ’other’ condition (paired t(15) =−3.24, p < 0.01, Hedges

corrected d= 0.57). Such effects have been reported before (Jackson et al.,

2006; Kuiper and Rogers, 1979; Nowicka et al., 2018) and might be due to

subjects being more engaged when they are playing, compared to when they

are watching; alternatively, it could be due to higher uncertainty in the ’other’

condition, due to the lack of direct experience of the movements, or to con-

cerns coming into play when reporting evaluations of others (Crockett et al.,

2014; Rand et al., 2014), (see Rand and Nowak, 2013, for a review).

We found no significant difference in reaction times for responding after

wins vs losses in either condition (“self”: paired t(15) =−1.65, p = 0.11, d=

0.58; “other”: paired t(15) = 0.03, p = 0.98, d = 0.01).

We found that subjects were significantly faster in responding after out-

comes attributed internally vs externally in both conditions (“self”: paired

t(15) = −3.22, p < 0.01, d = 1.07; “other”: paired t(15) = −2.39, p = 0.02,
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Figure 3.17: Effects of outcome, attribution and skill estimate on RT, mean ± s.e.m
across subjects. Left: effect of outcome on RT. Middle: effect of attri-
bution (internal vs external) on RT. Right: effect of the provided skill
estimate on RT.

d = 0.8). This might reflect more engagement when assigning responsibil-

ity to oneself or another person, versus to more neutral circumstances, or

increased complexity in computing what the trials outcome implies for the

skill evolution when the outcome is perceived as being mainly due to external

circumstances.

We performed repeated measures 1-way ANOVA, with skill report as a

fixed factor and subjects as random factors to test whether there is any effect of

the skill report provided on the reaction time. We found a significant effect in

both conditions (“slef”: F(3,90) = 6.91, p < 0.01; “other”: F(3,90) = 5.76, p <

0.01), reaction times decreasing with increasing skill estimates (see figure

3.17). Thus subjects are faster when providing higher estimates of skill, for

both “self” and “other”, which is consistent with a preference toward positive

evaluation of both the self and others. Note, however, that skill estimates

generally increased across trials, and therefore time and skill estimate are

confounded.
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3.5 Summary
In this chapter we presented analyses of skill estimates, as well as the cor-

responding reaction times, investigating the effects of outcome, attribution

response, difficulty and performance on the evolution of skill estimates in the

two conditions.

Model agnostic analyses revealed, in both conditions, a significant effect

of the latest outcome on the change in reported skill estimates, in the expected

direction - higher increses after wins vs losses - as well as the presence of a

recency effect, with outcomes two trials back having a smaller effect on skill

updates than the immediately preceding outcome.

We also found significant effects of difficulty on skill updates after wins,

but not losses, and significant effects of several measures of performance on

skill updates after losses, but not wins, for both conditions.

Finally attribution - the factor of particular interest to us - had no main ef-

fect on skill updates, but significant interactions with outcome and secondary

effects in both conditions, in the expected directions: losses attributed exter-

nally lead to smaller decreases in skill reports than losses attributed internally,

with the opposite pattern being present for wins. Surprisingly, the effects of

attribution were stronger for losses than for wins in both conditions and ap-

peared consistently stronger for “other” than for “self”, although direct com-

parisons between conditions did not identify differences between conditions

as statistically significant.

We then presented our model-dependent analyses. We compared a large

number of models, fitted to individual data in its original time-series structure,

and aimed at allowing a more detailed investigation of the mechanisms of trial

by trial skill updating.

We expected model comparisons to produce evidence favouring one or

a small number of models at the population level, which would have allowed

us to draw general conclusions about the mechanisms subjects use, as well

as make comparisons between conditions based on parameter estimates for
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these putative winning models. This, however, is not what we found. Model-

dependent analyses highlighted the presence of large between-subject vari-

ability, indicating the importance of obtaining that larger data sets, which

would make clustering analyses possible. Explanatory models did performed

better than purely descriptive ones, however there was a high level of individ-

ual variability manifest at different levels: in the extent to which our models

were able to fit the data, in the models preferred, in the confidence of these

preferences and in the pattern of presence or absence of factors of interest in

well-performing models.

Therefore instead of performing model comparison and investigating the

effects of interest at the population level, we turned to the individual level

and applied a series of stringent selection criteria to establish wether any or

our subjects convincingly displayed any of the effects of interest. We found

that this was indeed the case for all the factors of interest, namely difficulty,

attribution, different learning from positive and negative outcomes and mo-

mentary, as well as longer-term effect of outcomes.

Finally, analyses of reaction times revealed that subjects were signifi-

cantly faster in responding in the “self” vs the “other” condition - a previously

documented effect (Jackson et al., 2006; Kuiper and Rogers, 1979; Nowicka

et al., 2018), as well as faster when providing higher vs lower estimates of

skill in both conditions. There was no significant difference in reaction times

after wins vs losses, but, surprisingly, subjects were significantly faster in re-

acting after trials attributed internally than after trials attributed externally, in

both conditions.

3.6 Discussion

Our analyses showed that an effect of attribution on belief updating is de-

tectable in our task and that it is consistent with our expectations. In addition,

attribution seems to have an effect on reaction times for providing skill esti-

mates, which we had not expected.
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Our analyses also revealed unexpected differences between the effect

that attributions have, conditioned on outcome. Different learning from dif-

ferent outcome valences has been extensively documented (Yacubian et al.,

2006; Wrase et al., 2007; Frank et al., 2007; Sharot et al., 2011; Cazé and

Van Der Meer, 2013; Cox et al., 2015), and indeed we found evidence of

it in our model-dependent analyses. Our observations about the differential

effect of attributions is consistent with the hypothesis that different valences

might also influence learning through different effects of causal attributions

on belief updates: under asymmetric weighting of losses vs gains, it might be

advantageous, when improving one’s model of the world, to focus on learn-

ing about one’s effectiveness in situations resulting in negative outcomes, and

less so in positive outcome situations. From this perspective, the fact that the

same pattern holds when observing others is puzzling.

A number of interesting questions spring from these observations, pro-

viding hypotheses for future work. One such question relates to the extent

to which the overall environmental rate of reward could skew these effects:

would safer and richer environments push subjects’ belief updates to be more

accurately related to causal attributions? Alternatively, in cases where sub-

jects could not benefit from improving their model of the world, or in sit-

uations where they could benefit only from improving their knowledge of

the positive outcome situations would these differences still be present? Fur-

thermore, to what extent does the general level of control that they have or

perceive to have over their environment modulate these effects, if at all? All

these questions could be tackled by relatively simple environment manipula-

tions (see 6.3).

Direct comparison between the effect of attribution in the “self” and

“other” conditions did not identify the differences as significant, however ef-

fects of attribution were consistently stronger for “other” than for “self”. If

that is indeed the case, there are a number of factors that could explain it.

Belief updating processes in the “self” condition might be more complex that
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processes in the “other” condition, and people might be more honest when

reporting attributions and or skill estimates for “other” than they are when

reporting on their own performance, which is presumably more emotionally

salient and engaging. However, these apparent differences might be merely a

spurious effect, due to the presence of more noise in the “self” condition.

Alternatively, the difference between acting and watching might be en-

tirely responsible for observed differences between the “self” and “other”

conditions: in the “other” condition, subjects need only watch and evaluate

, while they need to also act, and do so under time pressure, in the “self”

condition.

Further investigation is needed to establish whether attribution has differ-

ent effects when the self vs other people are involved. One simple manipula-

tion likely to shed some light on this matter would involve subjects evaluating

more external “others”, for instance a real other and the fake other we used in

this case, or a real other and a computer. Manipulating the in-group vs out-

group affiliation of the “other”, or the subject’s emotional connection with

them would also be useful in investigating this aspect’s contribution to any

self-other differences.

The role of difficulty and performance in driving skill updates also needs

to be further investigated. Since this was the first implementation of the task,

we did not have previously validated measures of performance and difficulty.

Our simulation analyses (see 2.3.1) indicate that difficulty recovery is pos-

sible using our approach; however further testing and external validation of

the difficulty measure we extracted is still needed, as is better calibration of

the staircase mechanism. Asking subjects to rate difficulty and performance

themselves would be a useful addition. It would allow comparisons with ob-

jective measures to be performed; it would also enable us to investigate rela-

tionships between estimated difficulty and performance and skill updates.

We found that performance has a stronger effect on skill updates follow-

ing losses. This difference between wins and losses might reflect an adaptive
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mechanism involving higher discrimination in learning from losses than from

wins. It is consistent with a focus on learning from negative outcomes, in or-

der to avoid them in the future, while allocating less discriminative attention

to positive outcomes, which can more generally be used as a positive signal.

In other words, it could be a sensible strategy to learn that something is good

and focus on learning why or how something is bad. The fact that the effect of

performance on skill updates after losses seems to be stronger for “self” than

for “other” is consistent with this view, however we cannot with the present

data establish whether differences between “self” and “other” are not merely

due to differences in the perception of performance when playing vs watch-

ing. Although not significantly different, effects of difficulty appeared instead

stronger for wins. This surprising observation hints at potentially different

mechanisms for the integration of these two sources of information into the

updating of beliefs, which future work could investigate.

The aim of our study was to propose a task for quantitatively investi-

gating the postulated dynamical interaction between causal attributions and

beliefs (Bentall et al., 2001; Bentall, 2003), which can be conceived as a loop

involving reciprocal effects of the two variables. Being able to identify and

investigate separately each of the two arrows constituting this loop is a nec-

essary first step towards understanding the complexities of the system. The

focus of our analyses in this chapter has been to establish whether our task is

suitable for the identification and investigation of one of these arrows, namely

the effect of attribution on belief updating. We conclude that this effect can

indeed be identified in our task. The next chapter is dedicated to the effect in

the opposite direction.



Chapter 4

Attributions

Causal attributions and beliefs about skill are the two main variables of inter-

est in this study. In this chapter we present subjects’ attribution responses and

our analyses of these data.

As we did in the previous chapter, we start by presenting a summary of

the data, focusing on the aspects that will be of interest in following analyses,

namely subjects’ preferences for the available response options, their evolu-

tion in time and the differences between responses in the “self” and “other”

conditions.

We present model agnostic analyses of these data, focusing on several

factors of interest: outcome, objective task and performance measures, sub-

jects’ skill estimates. We then move on to modelling and present model-

dependent analyses of these factors. Finally we also present analyses of reac-

tion times for the attribution responses.

The chapter ends with a discussion including our conclusions and direc-

tions for future work.

4.1 Data summary
Figure 4.1 shows all subject’s responses to the attribution questions, for both

conditions. As can be seen from figure 4.1 there is trial-to-trial variability

in subjects’ responses, and they use all the available options, although not

uniformly. Some subjects show a clear preference for some options, such
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Figure 4.1: All attributions, all subjects. Each subject’s attributions in each condition
are represented by a series of vertical coloured strips. Each vertical strip
represents the attribution response for a trial, color-coded according to
the attribution option chosen: red - internal attribution, blue - attribution
to maze, yellow - attribution to rotations, green - attribution to luck, black
- missing attribution. Responses for “self” are plotted directly above
responses for “other”, for comparison.
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Figure 4.2: Total number of attributions for each option. Each dot represents a sub-
ject, the x-positions have been jittered for visualisation purposes. The
red line indicates the number of attributions we would have seen, had
subjects divided their attribution responses equally between the 4 op-
tions. Left: attribution counts for the 4 options. Right: attribution counts
for relabelling the 4 options as ‘internal’ vs ‘external’.
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as subjects 01220218 (row 3, column 1) and 01190318 (row 2, column 3),

who attributed outcomes mostly internally (red) and to the maze (blue), while

others showed more mixed patterns, such as 01050318 (row 1, column 2)

and 01080318 (row 2, column 1). We also note that no systematic difference

between the two conditions is apparent.

Figure 4.2 shows the total number of attributions for each option, against

the number expected by chance. In both conditions, most subjects provided

more internal attributions (to “self” in the “self” condition, to “other” in the

“other” condition) and attributions to “maze”, and fewer attributions to “rota-

tions” and “luck” that expected from a uniform distribution over the 4 options.

One concern was whether we had (inadvertently) introduced an avail-

ability bias in subjects’ attribution responses, due to the fact that they were

provided with three external attribution options and only one related to them-

selves (or the “other”). Figure 4.2 also shows the overall number of choices

for “internal” vs “external” attributions obtained by relabelling the four avail-

able options accordingly. While subjects did indeed choose the three exter-

nal options more than they chose the one internal option, they displayed a

strong preference for making internal attributions, countering to some extent

the availability bias, especially in the “other” condition.

Direct comparison between the two conditions shows that subjects made

significantly more internal attributions for “other” than they did for “self”

(paired t(15) =−5.18, p = 10−5), consistent with the “actor-observer effect”

(Jones and Nisbett, 1987) (see discussion in section 4.6).

Figure 4.3 shows the evolution over time of the number of attributions for

each option. We note that while the average number of attributions for “self”

/ “other” is relatively constant in time, there is a slight increase, with time, in

the average number of attributions to “maze” and “luck” and a slight decrease

in the average number of attributions to “rotations”. This is consistent with a

scenario in which rotations’ influence on subjects’s performance decreases as

they learn the task better, and in which subjects detect this change and respond
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Figure 4.3: Total number of attributions for each option (top and middle), and for
attributions relabelled as ‘internal’ vs ‘external’ (bottom), across four
equal time periods in the task. “Self”: cyan, “other”: magenta. Faded
lines represent individual subjects, thick lines represent averages ±
s.e.m. across subjects. Black lines indicate the number of attributions we
would have seen, had subjects divided their attribution responses equally
between the 4 available options.

accordingly.

A final aspect of the data that we summarize in this section is the extent

to which attribution responses differ between the two conditions, on a trial-

by-trial basis. The top plot in figure 4.4 shows the proportion of mismatched

attributions between the two conditions, considering all 4 options (black), as

well as their relabelling as “internal” vs “external” (yellow). In both cases the

amount of difference between attribution responses in the two conditions is on

average relatively stable across time. Although the proportion of mismatches

is quite high, subjects show less differences between responses in the two

conditions than would be expected if their responses in the two conditions

were independent (see the bottom plots in figure 4.4).
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Figure 4.4: Differences in attribution responses between the two conditions. Black
is used for differences computed using all 4 attribution options, yellow is
used for differences computed after relabelling them as ‘internal’ vs ‘ex-
ternal’. Top: real proportion of differences, overall (left) and across time
(right). Dots and faded lines represent individual subjects. Think lines
represent averages ± s.e.m across subjects. Bottom: the real proportion
of differences vs the one expected if attributions in the two conditions
were independent, each response being drawn from the subject’s distri-
bution of preferences for the 4 options; left: overall, right: across time.

4.2 Model agnostic analyses

In this section we present the results of our model agnostic analyses, aimed at

identifying the effect that several factors of interest and their interactions have

on attributions. These factors are outcome, objective task measures, objective

performance measures and skill estimates.

Outcome was of interest to us because it is the most salient source of

information about their performance to which subjects have access, but also

because, in past studies, it has been repeatedly found to be related to sub-

jects’ causal attributions. Normal controls have been found to be biased to-

ward making internal attributions for positive outcomes and external attri-

butions for negative ones, as opposed to depressed patients, who displayed

no such biases, in accordance with the “depressive realism” theory (Alloy



4.2. Model agnostic analyses 143

and Abramson, 1979; Martin et al., 1984; Vázquez, 1987; Bentall and Kaney,

2005; Campbell and Sedikides, 1999) (see also the literature review in chapter

1). We expected to find the same self-enhancement bias in our subjects.

Objective task measures and performance measures were factors of in-

terest because they provided information about the aspects of the task refer-

enced in the available attribution options, and any rational response strategy

should reflect their influence. We do not propose a normative account of pre-

cisely how subjects should integrate these inputs into their causal attributions.

Rather, our aim is to establish whether subjects’ attribution responses reflect

reasonable use of available information, in which case effects of objective task

measures on attribution can be used as references against which to compare

any effects of skill estimates. Finally, previous skill responses were the main

Figure 4.5: Roadmap of model-agnostic analyses.

factor of interest, in accordance with our overarching goal of investigating

reciprocal influences between beliefs about the self and attributions.

We begin with a short presentation of the techniques we used for these

model agnostic analyses, the challenges we encountered, and caveats to keep

in mind, then proceed to presenting the results (see figure 4.5 for a visual
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roadmap). All subsections - each dedicated to one of the factors of interest

- share the same structure: we begin by briefly stating our expectations or

hypotheses we set out to test about the factor, if any; we illustrate the effects

we observed in the data; finally we report the results of statistical tests and

discuss them briefly1.

4.2.1 Technical aspects

Our dependent variables of interest were the attribution responses. For the

purposes of the analyses presented in this section, based on statistical tests

which involved no trial by trial modelling, we needed summary statistics of

these data.

For a given level of a factor of interest and a given attribution option, the

summary statistic we used was the proportion of attributions to the option, out

of all attributions provided for the factor level: e.g. for the effect of outcome

on internal attributions in the “self” condition we compared the proportions of

attributions to self out of all attributions provided for wins, vs the proportion

of attributions to self out of all attributions provided for losses.

Factors of interest other than outcome were continuous, and we chose to

test for their effect by discretising. Due to the fact that different factors pro-

vide evidence for competing response options, we expected u-shaped effects

of individual factors on attributions to corresponding options: values closer to

the extremes of the range could be salient enough to significantly increase (or

decrease) the likelihood of attributions to a given option, while intermediate

values would produce smaller effects (if any), as the factor influence would in

this case be diluted into the contribution of competing factors. In order to be

able to detect such u-shaped or inverse u-shaped effects, we chose a quartile

discretisation. For each subject and each factor of interest, discretisation was

performed on the z-scored factor values.

To test for the effects of interest, we performed permutation tests using

1In these model agnostic analyses we investigated each factor separately; see appendix L
for information about correlations between them.
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either repeated measures t-test statistics, or F statistics associated with the

relevant one or two-way repeated measures ANOVA (Howell, 2012) (see ap-

pendix O); reported p-values are estimates from these permutation tests. We

used the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) to

control FDR at level 0.05, and all results reported as significant survive the

correction, unless otherwise stated.

As described above, a measurement of the attribution variable for a given

subject and a given level of a factor of interest was the proportion of attri-

butions for a given option, computed over the relevant trials. As a result,

different measurements had different associated uncertainties, as if our mea-

surements were not single measurements, performed with the same instru-

ment, but averages over different number of raw readings. There are several

reasons why the numbers of relevant trials, and therefore the associated un-

certainties, can differ. For the case of outcome as the factor of interest, the

staircase procedure was aimed at maintaining roughly equal numbers of wins

and losses throughout the task, but it did not provide perfect equality between

the number of wins and losses, nor could it guarantee that the number of

validly expressed attributions would be equal for wins and losses; in prac-

tice, differences between these numbers did occur. The same is true for other

factors, where quartile quantisation resulted in close, but sometimes not iden-

tical, numbers of trials per quartile. The issue is also present in analyses of the

interaction between outcome and other factors: due to the coarseness of the

staircase adaptation mechanisms (see chapter 2), correlations between levels

of objective task measures and outcomes were not entirely removed, result-

ing in e.g. fewer wins than losses for high levels of the correct path length

variable (see figures in appendix P).

Not accounting for these measurement uncertainties when simply per-

forming t-tests or ANOVA might produce misleading results; however our

choice of using permutation tests to determine statistical significance guards

against this possibility. We did not account for uncertainties in the F-statistics
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computations (see appendix O for detailed information about the repeated

measures F-statistics that we used), which would have required more elabo-

rate corrections, but we did account for them in computing t-statistics2. See

appendix M for details.

4.2.2 Outcome

Previous studies (Alloy and Abramson, 1979; Tillman and Carver, 1980; Mar-

tin et al., 1984; Vázquez, 1987; Bentall and Kaney, 2005), (see Campbell and

Sedikides, 1999; Mezulis et al., 2004, for reviews) repeatedly found that nor-

mal subjects have a propensity to make internal attributions for positive out-

comes and external attributions for negative ones, despite having exercised

the same level of control over both types of outcome; we expected to find the

same effect in our task.
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Figure 4.6: Effect of outcome on attributions to the 4 available options. Each line
represents a subject, red is used for attributions post loss, green for attri-
butions post win. P-values from paired t-tests, see text.

However, in our dataset, even though subjects tended to make more in-

ternal attributions for wins than for losses, the effect was not significant in the

2Note that such corrections are not necessary for model-dependent analyses (see section
4.3), which deal with the issue of varying number of trials for the different levels of the factors
of interest by providing trial-by-trial predictions and likelihoods.
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“self” condition (paired t(15) = 0.7, p-value from permutation test p = 0.25).

However, we note that there were two subjects who made no attribution to

self for wins3, and that excluding these resulted in a significant effect of

outcome on the proportion of attributions to self for wins vs losses (paired

t(13.5) = 2.38, p = 0.01). In the “other” condition subjects also attributed

more wins to the “other” than they attributed losses, and the effect was sig-

nificant (paired t(15) = 4.02, p < 0.01). Direct comparisons between the two

conditions showed that subjects made more internal attributions in the “other”

condition for both wins and losses, with the difference being significant for

wins (paired t(15) = 3.62, p < 0.01), but not for losses (paired t(15) = 0.95,

p = 0.35).

Further tests for the effect of outcomes on specific external attributions to

maze, rotations and luck showed no significant effect in the “self” condition4,

and significant increases in attributions to rotations (paired t(15) = 1.95, p =

0.02) and luck (paired t(15) = 1.93, p < 0.01) after losses compared to wins

in the “other” condition (see figure 4.6; for the permutation distributions of

the statistics see figures in appendix N).

Due to the nature of the task, which was framed in terms of learning,

we expected to find effects of time, and interactions between time and out-

come might be related to the weakness of the effect of outcome on internal

attributions in the “self” condition.

Figures 4.7 and 4.8 suggest that interactions between time and outcome

were indeed present. We note that, surprisingly, subjects made more inter-

nal attributions for negative outcomes than for positive ones at the beginning,

and that this preference switched during the task, leading to the opposite pref-

erence by the end of the task. This was valid for both conditions, which

means that at the beginning of the “other” condition, which always followed

3We report results of tests excluding these two subjects when they are different from the
results of tests performed on data from all subjects.

4However excluding the two subjects who made no attribution to “self” for wins, we found
a significant increase in attributions to luck after losses compared to wins (paired t(13.5) =
1.62, p = 0.01).
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Figure 4.7: Effect of outcome and time on attributions in the “self” condition. Faded
lines: individual subjects; thick lines: mean ± s.e.m across subjects.
Greeen: attributions for wins, red: attributions for losses.
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the “self” condition, subjects’ responses again showed a tendency to attribute

negative outcomes internally, and the preference again flipped by the end of

the trials. This would suggest that, contrary to what we might expect from

previous research, people do not start from a default preference of making

internal attributions for positive outcomes.

As far as attributions to “rotations” are concerned, they seemed to be

decreasing, irrespective of outcome; this would be consistent with subjects

perceiving (or expecting) rotations to have less impact on their performance

as their skill improves.

We tested these effects by permutation tests, using the F-statistics em-

ployed in repeated measures two-way ANOVA, with outcome and time as

fixed factors and subjects as random factors; see appendix O for a detailed

description of the permutation tests. In the “self” condition we found signifi-

cant interactions between outcome and time for internal attributions (F(3,90) =

13.46, p < 0.01) and for attributions to “maze” (F(3,90) = 6.98, p < 0.01) and

“luck” (F(3,90) = 7.35, p< 0.01), and no significant interaction for attributions

to “rotations” (F(3,90) = 0.81, p = 0.49), but a significant effect of time for at-

tributions to “rotations” (F(3,90) = 7.22, p = 0.01). In the “other” condition,

we also found significant interaction effects for internal attributions (F(3,90) =

28.72, p < 0.01) and attributions to “maze” (F(3,90) = 15.25, p < 0.01) and

“luck” (F(3,90) = 5.41, p < 0.01), along with a significant main effect of out-

come for internal attributions (F(1,30) = 9.21, p < 0.01), and a main effect of

time for attribution to rotations which did not survive multiple comparison

corrections (F(3,90) = 3.54, p = 0.0145).

For a direct comparison between the two conditions, see figure 4.9,

which shows average attribution proportions for “self” and “other” in the same

figure.

As mentioned above, subjects made more internal attributions in the

“other” than in the “self” condition; this difference declined for losses, but

increased for wins (post hoc tests, internal attributions for wins “self” vs
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Figure 4.9: Effect of outcome and time on attributions, comparison between the
“self” and “other” conditions. Mean ± s.e.m across subjects. Green:
wins, red: losses. Plain line: self, dotted line: other.

“other”: 1st quarter paired t(15) = −1.92, p = 0.06, 2nd quarter paired

t(15) =−1.91, p = 0.06, 3rd quarter paired t(15) =−3.5, p < 0.01, 4th quar-

ter paired t(15) =−2.9, p < 0.01). Along with higher average skill estimates

for “other” (see 3), this pattern is consistent with people being “nicer” to oth-

ers than to themselves, which has been observed in other contexts (Crockett

et al., 2014; Rand et al., 2014) (see Rand and Nowak, 2013, for a review).

However, the fact that there are also, initially, more internal attributions for

losses in the “other” condition (post hoc test, internal attributions for losses

“self” vs “other”: 1st quarter paired t(15) = −2.23, p = 0.04) is not con-

sistent with a general tendency of judging the “other” more favourably. We

return to actor-observer effects and their relationship with outcome valence

and self-serving biases in more detail in the discussion section at the end of

this chapter (4.6).
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4.2.3 Objective task and performance measures

We offered subjects different response options for external attributions in or-

der to be able to test whether their responses reflected objective task mea-

sures. We do not propose a normative model of how this information should

be integrated in subjects’ attribution responses. Rather, our point is to es-

tablish that subjects’ attributions reasonably reflected measurable task or per-

formance variables; we present the effect of these measurable factors as a

background and context for the effect of subjects’ own skill estimates on at-

tribution responses.

In this section we present the results of these analyses with regard to two

objective task measures - the length of the correct path through the maze and

the proportion of unusual orientations - and one performance measure - the

average proportion of correct key presses.

4.2.3.1 Path length

We expected the length of the correct path through the maze to be linked

to subjects’ attributions to the “maze complexity” option. Specifically we

expected that trials for which the path length was in the extremes of the path

length distribution would be associated with more attributions for this option

than trials with intermediate values of path length. This is indeed what we

observed, for both conditions, see figure 4.10.

Rational attribution responses would also predict that,as the length of

the correct path increases, subjects would make more attributions to maze

for losses and less attributions to maze for wins, with the opposite pattern

for internal attributions. Figures 4.11 and 4.12 show these expectations were

confirmed, for both conditions.

We tested the significance of these effects by performing permutation

tests, using ANOVA F-statistics. Because the bottom quantile of path length

distribution was strongly associated with wins, and the top one strongly as-

sociated with losses (see figure P.1 in appendix P), we performed one-way

ANOVA tests for path length only and restricted two-way ANOVA tests for
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Figure 4.10: Effect of correct path length on attributions. Mean ± s.e.m across sub-
jects. Plain line:“self”, dotted line: “other”.

path length and outcome to the intermediate quantiles of the path length dis-

tributions.

Permutation tests using the F-statistic from one-way repeated measures

ANOVA with path length as a fixed factor confirmed that the effects of path

length on internal attributions (“self”: F(3,90) = 16.68, p < 0.01, “other”:

F(3,90) = 26.59, p < 0.01) and attributions to maze (“self”: F(3,90) = 25.6, p <

0.01, “other”: F(3,90) = 33.46, p < 0.01) were indeed significant. We also

tested for effects on the other attribution options and found no significant ef-

fect on attribution to rotations in either condition, but an effect on attributions

to luck, which was significant in the “other” condition (F(3,90) = 11.26, p <

0.01), but did not survive multiple comparisons correction for the “self” con-

dition.

Our hypothesis that the effects on internal attributions and attributions to

maze were due to an interaction between outcome and path length were also

confirmed by permutation tests using two-way repeated measures ANOVA

with outcome and path length as fixed factors, performed only for the two

intermediate path length levels. We found significant interactions between
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Figure 4.11: Effect of correct path length and outcomes on attributions, “self” con-
dition. Faded lines: individual subjects; thick lines: means ± s.e.m
across subjects. Green: wins, red: losses.
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Figure 4.12: Effect of correct path length and outcomes on attributions, “other” con-
dition. Faded lines: individual subjects; thick lines: means ± s.e.m
across subjects. Green: wins, red: losses..
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outcome and path length on internal attributions (“self”: F(1,30) = 17.85, p <

0.01, “other”: F(1,30) = 30.67, p< 0.01) and on attributions to “maze” (“self”:

F(1,30) = 45.14, p < 0.01, “other”: F(1,30) = 35.83, p < 0.01) in both condi-

tions, and no surviving main effect. As far as the other response options were

concerned, no effect or interaction survived multiple comparisons corrections

for attributions to rotations in either condition; the same is true for attributions

to luck in the “self” condition. For the “other” condition, we found a signifi-

cant effect of outcome on attributions to luck (F(1,30)= 27.1, p< 0.01), which,

together with the skewed distribution of outcomes per path length quantiles,

explains the effect of path length on attributions to luck in the “other” condi-

tion, mentioned above.

These results prove that subjects’ attribution responses were sensitive to

the path length manipulations, and suggest that subjects rationally integrated

path length and outcome information in their attribution responses.

4.2.3.2 Proportion of non-up orientations
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Figure 4.13: Effect of non-up maze orientations on attributions. Means ± s.e.m
across subjects. Plain line: “self”, dotted line: “other”.

As described previously in 2.3.2, we used the proportion of unusual (non-
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up) orientations of the maze within a trial (pnu) as a measure of the contri-

bution of rotations to the difficulty of the trial. We expected this variable to

be linked to subjects’ attributions to rotations in a pattern similar to the one

we postulated to connect path length with attributions to maze and internal

attributions. Specifically, we expected higher proportions of attributions to

rotations for the extreme quantiles of the prop non up orientations, and lower

attribution proportions for intermediate levels of this variable. We also ex-

pected the opposite pattern for internal attributions.

Unlike the case of the path length variable, however, this is not what

we observed (see figure 4.13). Subjects made fewer internal attributions for

trials in the bottom quartile of the pnu variable, but this was not the case

for the top quartile. There was also no u-shaped pattern for attributions to

rotations. There was, instead, a decrease in attributions to maze for increasing

proportions of unusual orientations, in both conditions.

We also expected interactions with outcome, with more unusual orien-

tations leading to more internal attributions for wins and more attributions to

rotations for losses. Figures 4.14, 4.15 show the effect of outcome and pro-

portion of non up orientations on subjects’ attribution responses in the two

conditions.

We performed permutation tests on the F statistic from a 2-way repeated

measures ANOVA with outcome and pnu as fixed factors. These tests in-

dicated that interactions between outcome and pnu were significant in the

“self” condition, both for internal attributions (F(3,90) = 6.76, p < 0.01) and

for attributions to rotations (F(3,90) = 17.9, p < 0.01 ). In the “other” con-

dition, the interaction was significant for attributions to rotations (F(3,90) =

4.65, p < 0.01), but not for internal attributions. In addition, for both condi-

tion there was a significant main effect of pnu on internal attributions (“self”:

F(3,90) = 19.09, p < 0.01, “other”: F(3,90) = 19.7, p < 0.01) 5.

5In addition, we found other main effects and interactions on attributions to maze and
luck, in both conditions, which we had not made any prediction about, as we do not have
a normative model of how subjects should distribute their attributions among the various
external options, in cases where none of the options is particularly salient.
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Figure 4.14: Effect of non-up maze orientations and outcomes on attributions, “self”
condition. Faded lines: individual subjects; thick lines: means ± s.e.m
across subjects. Green: wins, red: losses.
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Figure 4.15: Effect of non-up maze orientations and outcomes on attributions,
“other” condition. Faded lines: individual subjects; thick lines: means
± s.e.m across subjects. Green: wins, red: losses
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These results were only partially in accord with our predictions. As we

expected, subjects took more credit for wins with increased pnu; however

we also expected they would more strongly avoid responsibility for losses,

blaming them instead on rotations, which was not the case. Contrary to our

expectations, the patterns of effects on internal attributions were different be-

tween path length and orientation. In addition, orientation information seems

to have been processed differently for “self” and “other”.

4.2.3.3 Objective performance

We tested for subjects’ sensitivity to their own objective performance in their

attribution responses by considering the effects of the proportion of correct

key presses (pc) on attribution responses.

Subjects should make more internal attributions for wins and fewer in-

ternal attributions for losses with increased performance, if they are able to

monitor their performance and if they use this information rationally. It is

less clear what a signature of rational performance evaluation would involve

in terms of attributions to the other available options: we predicted that per-

formance would be reflected in subjects’ attributions to luck, in that the better

their performance, the more luck is to be blamed for losses, and the worse

their performance, the more luck is responsible for wins. However subjects

could, alternatively, assign losses associated with good performance to the

task difficulty, either to rotations or to maze, according to whichever aspect of

the trial was more salient.

Figures 4.16 and 4.17 show the average attribution proportions as a func-

tion of outcome and pc in the two conditions. In both conditions, higher

performance was associated with decreased internal attributions for losses,

increased internal attributions for wins and increased attributions to luck for

losses. For “self”, attributions to luck for wins decreased with performance,

which was not the case for “other”, perhaps due to a floor effect.

We performed permutation tests using the 2-way repeated measures

ANOVA F-statistic and found a significant interaction between outcome
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Figure 4.16: Effect of outcomes and proportion of correct key presses on attribu-
tions, “self” condition. Faded lines: individual subjects; thick lines:
means ± s.e.m across subjects.
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Figure 4.17: Effect of outcomes and proportion of correct key presses on attribu-
tions, “other” condition. Faded lines: individual subjects; thick lines:
means ± s.e.m across subjects.



4.2. Model agnostic analyses 159

and pc for internal attributions (F(3,90) = 13.73, p < 0.01) and attributions

to luck (F(3,90) = 13.17, p < 0.01) in the “self” condition, and no signifi-

cant main effects of the outcome or performance measure on these attribu-

tions. In the “other” condition there was a main effect of outcome (F(1,30) =

11.36, p < 0.01), as well as a significant interaction between outcome and pc

(F(3,90) = 26.49, p < 0.01), on internal attributions. As far as attributions to

luck are concerned, both main effects (outcome: F(1,30) = 35.43, p< 0.01, pc:

F(3,90) = 11.89, p< 0.01) and the interaction (F(3,90) = 12, p< 0.01) were sig-

nificant, due to subjects making almost no attributions to luck for wins in this

condition, and making increasing numbers of attributions to luck for losses

with increasing performance.

In addition, in both conditions attributions to rotations significantly

decreased with increased performance, irrespective of outcome, (“self”:

F(3,90) = 10.78, p < 0.01, “other”: F(3,90) = 13.33, p < 0.01), consistent with

the fact the correct key presses performance measure is related to subjects’

ability to deal with rotations.

These results showed that, both when evaluating themselves and when

evaluating the “other”, subjects were sensitive to performance, and integrated

this information along with the outcome in their reports of causal attributions.

4.2.4 Previous skill estimates

Our main question of interest concerning analyses of attribution responses

was wether subjects’ beliefs about their own skill had an effect on the way

they made causal attributions.

Other than being instructed to respond truthfully, subjects were in no way

incentivised to tell the truth in their attribution responses. However, model ag-

nostic analyses reported above showed that subjects’ attribution responses dis-

played reasonable effects of task manipulations and their own performance,

giving us reasons to believe that subjects’ responses were meaningful and

reflected plausible internal beliefs. We therefore assume that the influences

of their beliefs about their skill (as reflected in their skill estimates) on their
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attributions can also be revealed be the same approach.

Contrary to what we expected based on previous research (Alloy and

Abramson, 1979; Martin et al., 1984; Vázquez, 1987; Bentall and Kaney,

2005) (see Campbell and Sedikides, 1999, for a review), subjects did not

display a general pattern of making more internal attributions for positive

outcomes than for negative ones (see figures 4.18 and 4.19) . Instead, their

attributions were consistent with their skill responses, with negative internal

attributions for low skill levels, and positive ones for higher skill levels. The

opposite pattern was present for attributions to maze. However the switch

between more internal attribution for losses and more internal attributions for

wins (and the opposite for attributions to maze) happened at low levels of skill

estimates, suggesting that subjects do indeed display self-serving biases.

Permutation tests with outcome and skill estimate level as fixed factors

in a two-way repeated measures ANOVA revealed significant interactions be-

tween outcome and skill for internal attributions (F(3,90) = 9.08, p < 0.01)

and attributions to maze (F(3,90) = 6.65, p < 0.01) in the “self” condition. At-

tributions to luck also showed a switch similar to the one for attribution to

mazes, and attributions to rotations decrease with increasing skill estimates,

but these two effects were not significant in the “self” condition, according to

our permutation tests.

Surprisingly, but consistent with all previous analyses of skill estimates,

these effects of skill appear to be stronger in the “other” condition. In this

case as well subjects made fewer internal attributions for losses and more

internal attributions for wins as skill estimates increased, with an early cross

between the two curves. The opposite patterns were present in attributions

to maze and rotations, with an early cross between the descending curve for

maze attributions for wins and the ascending curve for maze attributions for

losses, and no cross for the rotation attribution curves. Attributions to luck for

losses increased with skill estimates, while attributions to luck for wins were

at floor irrespective of the skill level.
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Figure 4.18: Effect of outcomes and skill responses on attributions, “self” condition.
Faded lines: individual subjects; thick lines: means ± s.e.m across
subjects. Green: wins, red: losses.
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Figure 4.19: Effect of outcomes and skill responses on attributions, “other” condi-
tion. Faded lines: individual subjects; thick lines: means± s.e.m across
subjects. Green: wins, red: losses.
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Permutation tests for this condition identified significant interactions be-

tween outcome and skill estimates on all attributions (“other”: F(3,90)= 38.84,

p < 0.01, “maze”: F(3,90) = 10.39, p < 0.01, “rotations”: F(3,90) = 5.49, p <

0.01, “luck”: F(3,90) = 5.7, p < 0.01), but also significant main effects of out-

come on internal attributions (F(1,30) = 9.65, p < 0.01), and on attributions to

luck (F(1,30) = 29.54, p < 0.01).

In order to check whether subjects’ beliefs about skill had any effect on

internal attributions over and above objectively measured performance, we

also performed permutations tests for wins and losses separately, using the

statistics corresponding to repeated measures two-way ANOVAs with skill

and performance as fixed factors. Due to the small number of trials, for the

purposes of this analysis we quantised skill and performance in tertiles rather

than quartiles.

Figures 4.20 and 4.21 show the proportion of internal attributions as a

function of the performance level for each level of reported skill, separately

for wins and losses, for “self” and “other” respectively. These plots suggest

that skill estimates have an effect on internal attributions, over and above that

due to performance. Permutation tests performed to check the significance of

these effects revealed an effect of skill in the “self” condition for losses which

did not survive multiple comparisons corrections, and significant effects of

skill for both wins (F(2,60) = 20.56, p < 0.01) and losses (F(2,60) = 7.43, p <

0.01) in the “other” condition.

Our question of interest refers to relationships between self-beliefs and

causal attributions, so our purpose in this analysis was to investigate whether

the effect of reported skills on internal attributions could be reduced to the ef-

fect of performance. We found that at least in the “other” condition this is not

the case, and that beliefs about skill exerted an influence on internal attribu-

tions over and above performance. While the effect was not significant in the

data from the “self” condition, this might be due to the higher level of noise in

this condition, rather than the absence of the effect. These results do not ex-
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Figure 4.20: Effect of skill responses and performance on attributions, “self” condi-
tion. Means ± s.e.m across subjects.
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clude the possibility of a richer measure of performance being able to account

for the effect of skill, however they do point to the fact that subjects’ reported

beliefs contained additional information about internal attributions, compared

to simple objectively measurable aspects of performance. We provide more

evidence for the skill-performance distinction in the later model-dependent

analyses section (4.3.3.3).

4.2.5 Model agnostic analyses: summary

Model agnostic analyses presented in this section identified effects of out-

come, task features, performance and skill estimates on attributions. Some of

the identified effects confirmed out predictions, while others were unexpected,

suggesting questions for future work.

As Outcomefar as outcome is concerned, as predicted, subjects made more inter-

nal attributions for wins than for losses. This effect was significant for the

“other” condition, as well as for the “self” condition, when excluding two

subjects who made no internal attributions for wins. Direct comparison be-

tween “self” and “other” showed that subjects generally made more internal

attributions in the “other” condition than in the “self” condition, with the ef-

fect being significant for wins, but not losses. These results are consistent

with an actor-observer effect (Jones and Nisbett, 1987). They also suggest

that in our data the expected self-serving bias is weaker than a bias which is

“other-enhancing”, indicating that subjects tend to be nicer to others than they

are to themselves6. See section 4.6 for further discussion.

Interactions between outcome and time were significant for both condi-

tions, however contrary to our expectations subjects started by making more

internal attributions for losses, switching to the opposite pattern after some

experience with the task. This pattern might be due to differences between

our experimental context and the one of previous studies: our task was clearly

framed in a learning context, which might have lead subjects to assume that

6It is important to note that in our case the pretended “other” is in fact the subject, and
that it is difficult to establish to what extent and at what point subjects suspected this deceit.
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they would start by being bad at the task, and to expect they would get better

in time. We also note that in our experiment time and skill (both real and as

estimated by subjects) are inherently to a large degree confounded, such that

the pattern of preference changes in time might be due to subjects’ changing

beliefs about how good they are (see below).

As Task measuresfar as the objective task measures are concerned, we expected path

length and the proportion of unusual orientations (pnu) to have similar effects

on internal attributions, and equivalent effects on attributions to maze and ro-

tations respectively. Specifically, we expected that with increased path length

(orientations) subjects would take more credit for wins and would accept less

blame for losses, blaming them instead on maze (rotations).

Our expectations were confirmed for path length, but only partially for

pnu: subjects did indeed take more credit for wins as pnu increased, but there

was no decrease in internal attributions for losses associated with higher pro-

portions of unusual orientations. In addition, the effects of pnu on attributions

to rotations were qualitatively different for “self” and “other”. This might re-

flect differences in the way they were perceived or processed. We conceived

of path length and rotations as orthogonal potential causes, but subjects expe-

rienced rotations as nested within a frame provided by the maze, and might

therefore perceive these factors as being hierarchically organised.

In addition, subjects learn to deal with rotations, and therefore their

saliency is expected to evolve during the task. This is also true for path length,

but to a lesser extent: due to our choices for the range of path lengths and

available time and speed, there was very little subjects could do to improve

their speed through the maze over and above reducing rotation-induced errors

and or pauses. This difference can be interpreted in terms of different degrees

of control over the two aspects of the task, which is particularly relevant for

attribution.

As Objective

performance

far as objective performance is concerned, we found the expected

interactions with outcome regarding internal attributions and attributions to
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luck. Increased performance was associated with subjects taking more credit

for wins, accepting less responsibility for losses, and blaming bad luck more

for losses, in both conditions.

We Skill estimateswere particularly interested in relationships between skill estimates

and attributions, and we model agnostic analyses showed that subjects’ skill

estimates had significant effects on their attributions for subsequent trials. We

found the expected interactions between skill estimates and outcomes in at-

tributions for both conditions: subjects took more credit for wins, and less

responsibility for losses with increasing skill estimates, showing the opposite

pattern in attributions to maze. Further analyses performed with skill and per-

formance as factors indicated that skill influenced internal attributions over

and above performance, the effect being significant for “other”, although it

did not survive multiple comparison corrections for “self”.

4.3 Model-dependent analyses

In this section we present model-dependent analyses of attribution responses.

The goal of these analyses was two-fold: to identify and compare the con-

tributions of the different factors based on a more fine-grained, individual

level trial by trial prediction, and to provide subject-level parameter estimates

which can be analysed in connection with subjects’ questionnaire responses.

As before, we were particularly interested in the contribution of skill estimates

in predicting attribution responses.

This section is structured as follows. We begin with a technical sub-

section presenting the models we compared, the fitting procedure, and the

criterion used for model comparison. We then present the results of model

comparisons. Finally, we present analyses of the best model parameters, fo-

cusing, as in the model-agnostic section, on the effects of the factors of in-

terest: outcome, task and performance measures, skill estimates. The section

ends with a summary.
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4.3.1 Technical aspects

We used linear classification models. These assume that for each response

option, a linear combination of the features of interest provides a score for

that option; scores for the different options are then passed through a softmax

function, to provide response probabilities for the different response options:

st,o =wwwo · fff t∀o ∈ O

pt(o) =
exp(st,o)

Σo∈O exp(st,o)
, where

st,o = score of response option o on trial t

wwwo = feature weights for option o

fff t = feature values on trial t

O = set of available response options

pt(o) =probability of choosing option o on trial t

(4.1)

The models we compared varied along two dimensions: the features included,

and whether subjects were fitted independently or hierarchically. In terms

of the features that were included, models belonged to one of the following

six categories: no features - bias only; models including bias and one of the

following set of features: reported skill, performance features, performance

features and task features, reported skill and task features; and the full model:

reported skill, performance features, task features. For each of these cate-

gories, there was an independent and a hierarchical version, thus producing

twelve models to compare. Fitting and model comparison were performed

separately for “self” and “other”.

We compared models using the WAIC score (Watanabe, 2010), an ap-

proximation for the out-of-samples predictive log density,−EX [logEθ p(X |θ)],

the outer expected value being computed with respect to the real underlying

distribution of the data, and the inner expected value being computed with

respect to the posterior distribution over parameters, p(θ |X1,X2, ...XN).
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Assuming a model with parameters θ and data points {X1,X2, ...XN},

independent conditioned on parameters, WAIC is defined as

WAIC =− 1
N

Σ
N
i=1 log(Eθ p(Xi|θ))

+
1
N

Σ
N
i=1 [Varθ (log p(Xi|θ))] ,

(4.2)

where the expectations are taken with respect to the posterior distribution

over the parameters. Given a set of samples from this posterior distribution,{
θ 1,θ 2...θ S}, an estimator for WAIC can be computed using the sample av-

erages of the quantities involved:

ŴAIC =− 1
N

Σ
N
i=1 log(

1
S

Σ
S
s=1 p(Xi|θ s))

+
1
n

Σ
N
i=1

[
VarS

s=1(log p(Xi|θ s))
]
,

(4.3)

For comparison with other commonly used model scores, Gelman et al

(Gelman et al., 2014) recommend using a rescaled version of WAIC, denoted

in the following by WAICG, which corresponds to not dividing by the number

of data points and multiplying by 2. This is the version we used.

We obtained samples from the posterior distributions using the pystan

interface (https://pystan.readthedocs.io/en/latest/) to the

STAN probabilistic programming language (https://mc-stan.org/).

For all the models we compared, we fitted a hierarchical and a non hierarchi-

cal implementation. In the non hierarchical implementation each subject was

fitted independently of the others, while in the hierarchical implementation

the model was augmented with a set of “population parameters” determin-

ing a Gaussian population distribution, from which we assumed individual

subject parameters were drawn. This population distribution therefore acts

as a prior for the individual subject parameters and its influence is reflected,

alongside that of the data, in the posterior distribution over individual subjects

parameters (Gelman et al., 2013).

Computing predictive likelihood, particularly in hierarchical models, im-

https://pystan.readthedocs.io/en/latest/
https://mc-stan.org/
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plies deciding on the relevant level of prediction and therefore of data group-

ing (Gelman et al., 2014). In both the hierarchical and the non-hierarchical

setups, we were interested in the quality of prediction of new data from a

subject given their individual parameters, and Xi stands for data from subject

i.

All model dependent-analyses were performed separately for the “self”

and “other” conditions.

4.3.2 Model comparison results

For both conditions, the model preferred by the WAIC scores was the full

model, in its hierarchical version (see figure 4.22). This model was also pre-

ferred at the individual subjects level for most of the subjects: 23 out of 31

for the “self” condition and 16 out of 31 for the “other” condition. Of par-

ticular significance to us is that this indicates that previous skill responses do

contribute to explaining attributions, over and above task features and perfor-

mance features.
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Figure 4.22: Model comparison, raw 4-options attributions. Bar heights show 10+
∆WAICG with respect to the best model. We shifted ∆WAICG by 10 for
plotting purposes, to have a visible bar for the best model.

Figure 4.23 shows the match between real data and data obtained by
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picking the most likely response label from the best model’s prediction, for

each subject. Analysis of the misclassifications revealed no interesting pat-

tern: the model has a tendency to overpredict internal attributions and attri-

butions to maze, which is not suprinsing, given the non-uniform distributions

of subjects’ responses for the different options, together with the fact that the

cost of an error is the same, irrespective of the identities of the attribution

options counfounded. More responses for the less preferred options are re-

quired for more detailed analyses of the errors, which could provide insights

for more complex models. Task adaptation leading to more balanced attribu-

tion responses distributions is one of the goals for future work.
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Figure 4.23: Proportion of matches between real responses and data generated
greedily -by picking the most likely response- using the mean poste-
rior parameters of the winning model. Each dot represents a subject,
the x-axis coordinates have been jittered for plotting purposes. Left:
accuracy on raw data. Right: accuracy computed for relabelling attri-
butions as “internal” vs “external”.

While the best model does a relatively good job of capturing the data,

there is still room for improvement. The models we considered were all linear

in the selected features, and adding interactions might improve them. Another

avenue for more complex models is adding higher order effects of individual

features.
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One core goal of these analyses has been to establish whether previous

skill responses contribute to attribution responses. The model comparison

results showed that this is indeed the case. Further work, ideally on more - and

more balanced - data, will allow for more in-depth investigation of subjects’

attribution mechanism.

4.3.3 Model parameters

In this section we present analyses of the posterior parameters obtained from

the best model (see figure 4.24 for the distributions of mean posterior pa-

rameters, across subjects 7). The structure of the section mirrors that of the
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Figure 4.24: Distribution of mean posterior parameters, from best model for attri-
bution responses. Parameters are grouped according to the attribution
option. Only parameters for internal, maze and rotation options were
independent parameters in the model, but we include the resulting pa-
rameters for attributions to luck for visualisation purposes. Faded dots
represent individual subjects, thick lines show the mean ± s.e.m over
subjects; “self”- blue, ‘other’- yellow. In each axis, parameters for wins
are grouped on the left and parameters for losses are grouped on the
right. In all cases the order of the features is the same: bias, skill,
path length, proportion of non up orientations, proportion of correct
key presses, proportion of pauses post rotations. See appendix R for a
detailed description of the model and the meaning of each parameter.

7Note that in all plots in this section, parameter names in figures have been reduced to the
parameter name index, for convenience. Thus αx, the weight of feature x, is labelled as x.
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model-agnostic analyses: we present the effect of outcome, the effect of ob-

jective task and performance features and the effect of skill. As in previous

analyses, parameters related to the contribution of previous skill responses

to attribution, and comparisons between “self” and “other” are of particular

interest, being directly related to our main questions. All reported significant

effects survive the Benjamini-Hochberg procedure (Benjamini and Hochberg,

1995) for correcting for multiple comparisons, unless otherwise stated.

A further matter of interest is whether the influence of skill on attribu-

tions is related to subject’s responses to questionnaires. Analyses of the rela-

tionship between parameters and questionnaire measures are presented in the

dedicated chapter (5).

4.3.3.1 Outcome

We tested for the presence of any self-enhancing or other-enhancing biases by

comparing the model’s estimates of the general preference that subjects show

for making internal attributions after wins vs losses, in the absence of any ad-

ditional information. This involves comparing the respective bias parameters

in our model. However, because our model includes softmax transformations,

the magnitude of the bias parameter for any given option does not directly and

independently translate into the subject’s preference for that option. It is the

relationship between biases for the different options, entering into the softmax

function, that determines preferences for the different options. Since there are

separate softmax transformations for wins and losses, directly comparing the

magnitude of parameters capturing the bias toward a given attribution option

after wins vs losses is not meaningful. Instead, we applied the softmax trans-

formations to the model reduced to bias parameters only, clamping all feature

weights to 0, and compared the resulting probabilities. Table 4.1 shows the

results of comparisons, done by repeated measures t-tests.

Across subjects, probabilities for making internal attributions for wins

were significantly higher than their counterparts for losses for both “self” and

“other”. Consistent with our model-agnostic analyses results, we found that
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statistic p-value effect size
Self 2.72 (4.61) 0.01 (7∗10−5) 0.78 (1.2)
Other 7.5 2∗10−8 1.83

Table 4.1: Effect of outcome on bias toward internal attribution. Repeated measures
t-tests results: probability of making internal attributions for wins vs for
losses. Effect size computed as Hedge’s corrected Cohen d. Bracketed
values for ‘self’ were computed excluding the two subjects who provided
no internal attributions for wins in the ‘self’ condition. We did not exclude
these subjects from computations for ‘other’, as their responses in this
condition were not severely different from those of other subjects.

the effect of outcome was stronger for “other” than for “self”. Excluding

the two subjects who provided no internal attributions for wins in the “self”

condition increased the outcome effect for “self”, but it still remained lower

than for “other” (see table 4.1).

4.3.3.2 Objective task and performance measures

In our model-agnostic analyses we found several patterns of influence of the

objective task measures and objective performance measures on attributions

(see section 4.2.3). These analyses were performed separately for each vari-

able of interest, and responses were averaged over trials corresponding to dis-

cretised levels of the variable of interest. In contrast, posterior model param-

eters were obtained from trial-by-trial modelling which included all variables

of interest at once. It is therefore important to determine whether the pat-

terns we have observed in model-agnostic analyses are born out at the level of

model parameters as well. As we are about to show, this is largely the case.

Additionally, parameter analyses also reveal effects that the coarser model-

agnostic analyses could not detect, as we detail below.

The following analyses were restricted to external attributions to “maze”

and “rotations”, because we did not model weights for attributions to “luck”

as independent parameters8.

8We note that we present plots and results for the raw values of the weight parameters in
this section: that is, the contribution of each feature to the score for a given attribution, before
passing through the softmax; we also estimated the effects of each feature in the final space
of probabilities, post softmax (see chapter 5) and obtained generally consistent results.
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Figure 4.25: Mean posterior weights of path length for Internal, Maze and Rotation
attribution options. Each dot represents a subject. Green and red rep-
resent wins and losses respectively. Heavy line represents the mean
across subjects ± s.e.m. See appendix R for a detailed description of
the model and the meaning of each parameter.

As Path lengthfar as path length is concerned, we found that for both “self” and

“other” weights of this feature were positive for internal attributions after

wins (“self”: 1 sample t(30) = 22.2, p < 0.01, “other”: 1 sample t(30) =

5.12, p < 0.01) and negative for internal attributions after losses (“self”: 1

sample t(30) =−3.45, p < 0.01, “other”: 1 sample t(30) =−4.03, p < 0.01),

and the reverse for attributions to maze (wins: “self”: 1 sample t(30) =

−33.24, p< 0.01, “other”: 1 sample t(30) =−22.15, p< 0.01, losses: “self”:

1 sample t(30) = 27.21, p< 0.01, “other”: 1 sample t(30) = 16.78, p< 0.01),

see figure 4.25.

Therefore increased path length increases the likelihood of making inter-

nal attributions for wins and decreases the likelihood of making internal attri-

butions for losses, and produces the opposite effect on attributions to maze.

This is to be expected as a reasonable way of using path length information

and it is also consistent with what we found in our model-agnostic analyses.

Parameters Orientationassociated with the proportion of non up orientations (see fig-
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Figure 4.26: Mean posterior weights of the proportion of non up orientation for In-
ternal, Maze and Rotation attribution options. Each dot represents a
subject. Green and red represent wins and losses respectively. Think
line represents the mean across subjects ± s.e.m. See appendix R for a
detailed description of the model and the meaning of each parameter.

ure 4.26), which we included as a measure of the contribution of rotations to

the difficulty of the trial, show both expected and unexpected characteristics,

also recapitulating our model-agnostic observations (see section 4.2.3.2). We

expected that increasing unusual orientations would increase the likelihood of

internal attributions for wins and decrease the likelihood of internal attribu-

tions for losses, and that it would have the opposite effect on attributions to

rotations. In terms of model parameters, this corresponds to positive values

for αpnuI+ and αpnuR− and negative values for αpnuI− and αpnuR+.

What we found only partially matched these expectations, but was con-

sistent with our model-agnostic observations. Specifically, for the “self”

condition our predictions were confirmed (win internal: 1 sample t(30) =

19.71, p < 0.01, win rotations: 1 sample t(30) = −31.19, p < 0.01, loss ro-

tations: 1 sample t(30) = 16.2, p < 0.01), with the exception of the weights

for internal attribution for losses. These were, contrary to our expectation

but consistent with the ANOVA results in section 4.2.3.2, significantly larger
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than 0 (1 sample t(30) = 6.82, p < 0.01), indicating that experiencing more

unusual orientations increases the likelihood of internal attributions for losses,

all else being equal.

For the “other” condition, our predictions were confirmed (win internal:

1 sample t(30) = 33.07, p < 0.01, loss internal: 1 sample t(30) =−5.36, p <

0.01, loss rotations: 1 sample t(30) = 12.13, p < 0.01), with the exception

of the weights for attributions to rotations post wins, which were not signifi-

cantly different from 0.

Parameters Performanceassociated with performance (proportion of correct key

presses) also confirmed the predictions we had concerning internal attri-

butions (see figure 4.27), indicating that subjects monitored their and the

“other”’s performance and used this information in their attributions. Thus,

for both conditions, αpcI+ was significantly larger than 0 (“self”: 1 sample

t(30) = 16.35, p < 0.01, “other”: 1 sample t(30) = 3.39, p < 0.01) and αpcI−

significantly lower than 0 (“self”: 1 sample t(30) = −8.2, p < 0.01, “other”:

1 sample t(30) =−48.62, p < 0.01), which means that increasing numbers of

correct key presses are associated with increasing likelihood of internal attri-

butions for wins and decreasing likelihood of internal attributions for losses.

This is indeed consistent with our prediction that better performance would

increase the likelihood of subjects taking credit for wins and avoiding blame

for losses.

Analyses of the weights for external attributions revealed surprising, as

well as expected patterns. The likelihood of attributing losses to the maze does

increase with better performance (“self”: 1 sample t(30) = 2.28, p = 0.03,

“other”: 1 sample t(30) = 5.41, p < 0.01), however, surprisingly, so does the

likelihood of attributing wins to maze: for both conditions, the parameters

capturing the contribution of the proportion of correct key presses to attribu-

tions to maze after wins (αpcM+) were significantly greater than 0 (“self”: 1

sample t(30) = 6.23, p < 0.01, “other”: 1 sample t(30) = 41.96, p < 0.01).

indicating that subjects to some extent interpreted good performance as a re-
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Figure 4.27: Mean posterior weights of the proportion correct key presses for In-
ternal, Maze and Rotation attribution options. Each dot represents a
subject. Green and red represent wins and losses respectively. Heavy
line represents the mean across subjects ± s.e.m. See appendix R for a
detailed description of the model and the meaning of each parameter.

flection of the maze being easy, rather than taking credit for it (or giving credit

to the “other”).

As far as attributions to rotations are concerned, for both “self” and

“other” weights associated with attributions to rotations for wins are posi-

tive (“self”: 1 sample t(30) = 3.09, p < 0.01, “other”: 1 sample t(30) =

17.17, p < 0.01), while their counterparts for losses are negative (“self”: 1

sample t(30) = −24.02, p < 0.01, “other”: 1 sample t(30) = −34.63, p <

0.01). Thus, better performance is associated with an increase in the like-

lihood of attributing wins to rotations, and a decrease in the likelihood of

blaming rotations for losses. Therefore, just as in the case of parameters for

attributions to maze, subjects seem to credit the task for being easy when win-

ning. Unlike the case of attributions to maze, however, better performance

pushes blame for losses away from rotations. This might appear counterintu-

itive, but it is not unreasonable: since any contribution of rotations to losses

happens through impaired performance, the better the performance, the less
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rotations can be to blame for losses.

4.3.3.3 Previous skill report and comparison with performance

Parameters modelling the influence of previous skill reports on attributions

were of particular interest to us, as they were directly related to our main

question about the relationship between beliefs about self and causal attribu-

tions.

Model comparisons showed that previous skill reports contribute to ex-

plaining attributions responses over and above objective task and performance

features, and further tests confirmed that with very few exceptions, weights of

skill are significantly different from zero. Table 4.2 shows the detailed results

of the one samples t-tests we performed.

αsI+ αsI− αsM+ αsM− αsR+ αsR−

Self
statistic 4.64 -5.8 0.31 4.47 -4.07 -1.5
p < 0.01 < 0.01 0.76 < 0.01 < 0.01 0.14

Other
statistic 14.43 -16.31 -1.88 3.55 -20.28 23.75
p < 0.01 < 0.01 0.07 < 0.01 < 0.01 < 0.01

Table 4.2: One sample t-tests results: mean posterior parameters representing the
weight of previous skill report vs 0.

We expected subjects to be more likely to assume responsibility for wins,

and less likely to assume responsibility for losses, with increasing skill. This

is indeed what we found(see figure 4.28): skill weights for internal attribu-

tions for wins were significantly larger than 0 and skill weights for internal

attributions for losses were significantly lower than 0 for both conditions. This

pattern is the same as the one we expected and observed for the effect of per-

formance.

However the patterns for the parameters associated with external attri-

butions are different. Weights of the proportion of correct key presses for

attributions to maze showed that to some extent subjects explained their good

performance in terms of the maze being easy, rather than taking credit for it

(or giving credit to the “other”). This is not the case for skill, where αsM−

are significantly larger than 0, as expected, and αsM+ are not significantly dif-
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Figure 4.28: Mean posterior weights of the previous skill response for Internal, Maze
and Rotation attribution options. Each dot represents a subject. Green
and red represent wins and losses respectively. Heavy line represents
the mean across subjects ± s.e.m. See appendix R for a detailed de-
scription of the model and the meaning of each parameter.

ferent from 0. This suggests that unlike momentary performance, skill is less

likely to be explained away as an effect of maze simplicity.

The weights for attributions to rotations also reveal differences between

the effect of performance and that of skill. The pattern of weights for skill

is different from that of performance, and it is different in different ways

for “self” and “other”. Specifically, for “self”, skill weights for attributions to

rotations are negative for wins and negative, but not significantly so for losses,

indicating that as skill increases, the likelihood of attributions to rotations

decreases, irrespective of outcome. This is consistent with what skill means

in the context of our task, where subjects have to learn to deal with rotations:

as skill increases, rotations matter less.

For “other”, the pattern is exactly the opposite of the one found for the

parameters related to performance: higher skill is associated with decreased

likelihood of crediting rotations for wins, and increased likelihood of blaming

rotations for losses. Therefore for “other”, but not for “self”, the effect of
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skill on attributions to rotations is similar to the effect on attributions to maze

(see figure 4.28). This might be related to differences between watching and

playing the task: it is likely that the difference between the perceived effect

of rotations on performance when watching versus when actually playing is

much larger than the difference between the perceived effect of maze structure

in the two conditions.

These comparisons identified both expected and unexpected effects of

skill on attributions. They also revealed differences between the effect of trial

by trial performance (as measured by the proportion of correct key presses)

on attributions and the effect of previous skill responses, differences that pre-

vious model agnostic analyses were unable to detect. These differences are

consistent with a dissociation between a moment-by-moment measure of per-

formance, which is vulnerable to explaining away in terms of external task

features, and a measure of the less volatile underlying ability. This dissocia-

tion provides additional evidence for a specific effect of skill on attribution.

4.3.4 Model dependent analyses: summary

In this section we presented model-dependent analyses, investigating the ef-

fects of the factors of interest based on individual level, trial by trial prediction

of subjects’ attribution responses.

We compared classification models with a simple common structure, pre-

dicting attributions based on linear combinations of features. The preferred

model, both across subjects and at the individual level, was the full model

including all features - objective task and performance, as well as subjects’

skill estimates. Thus subjects’ skill estimates contributed to predicting their

attributions over and above task and performance measures.

Analyses of posterior parameters from the best model generally con-

firmed observations from model-agnostic analyses, and in some cases they

also provided additional insights. Note that while results of model-agnostic

analyses involved separately testing for the effects of the factors of interest

(with the exception of interactions with outcomes), the winning model ac-
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counted for all factors simultaneously, albeit only linearly.

Consistent with model-agnostic analyses, we found that subjects dis-

played a moderate self-serving bias, along with a stronger other-serving bias.

The distributions of parameters related to objective task features revealed

the expected effects for path length, and both expected and unexpected ones

for orientations, consistent with observations from model-agnostic analyses.

For both “self” and “other”, increasing path length was associated with

increased likelihood of attributing wins internally and decreased likelihood of

attributing losses internally, with the opposite patterns for attributions to maze

(see figure 4.29).

Figure 4.29: Weights of the path length (pl) feature on attributions to the maze (M)
and internal attributions (I). Green arrows: weights for wins; red ar-
rows: weights for losses. Pointed arrow heads: positive weights, blunt
arrow heads: negative weights. Weight signs were the same for both
conditions.

Parameters associated with orientations showed a similar pattern for the

“other” condition, but not for the “self” condition (see figure 4.30).

Figure 4.30: Weights of the proportion of non up orientations (pnu) feature on at-
tributions to rotations (R) and internal attributions (I). Green arrows:
weights for wins; red arrows: weights for losses. Pointed arrow heads:
positive weights, blunt arrow heads: negative weights. Missing arrows
indicate weights not significantly different from 0. Left: parameters for
‘self’; right: parameters for ‘other’.

Weights associated with internal attributions indicate that in the “other”

condition subjects treated this rotation-related feature similar to the way the

treated path length. However they processed it differently in the “self” condi-

tion, where an increase in the proportion of non up orientations was associated
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with more internally assumed responsibility for both wins and losses, consis-

tent with what we found in model-agnostic analyses. As we mentioned in our

discussion of this observation in the model-agnostic section, this difference

in the processing of the two features might reflect meaningful differences be-

tween their roles in the task. Subjects have direct control over the extent to

which orientation changes impact performance, since correct adaptation of

key presses can neutralise the effect of rotations. However they have less di-

rect control over the impact of the maze structure on their performance. It is

therefore not unreasonable that they would internalise responsibility for rota-

tions more than they do for path length.

As far as performance is concerned (see figure 4.31), parameters for in-

ternal attributions showed the expected effects, increased performance being

associated with increased likelihood of internal attributions for wins and de-

creased likelihood of internal attribution for losses in both conditions. How-

ever distributions of parameters for external attributions showed surprising

patterns, suggesting that increased performance increased the likelihood of

subjects crediting the task with being easy, while at the same time decreasing

likelihood of blaming rotations for losses.

Figure 4.31: Weights of the proportion of correct key presses (pc) on attributions to
the maze (M), rotations (R) and internal attributions (I). Green arrows:
weights for wins; red arrows: weights for losses. Pointed arrow heads:
positive weights, blunt arrow heads: negative weights. Weight signs
were the same for both conditions.

This was not the case for parameters associated with skill estimates (see

figure 4.32). In this case distributions of parameters for internal attributions

confirmed our expectations and results of model-agnostic analyses. However

distributions of parameters for external attributions showed a different pat-
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tern from the one associated with performance parameters. Differences were

consistent with a dissociation between a moment-by-moment measure of per-

formance, vulnerable to explaining away in terms of external task features,

and a less vulnerable measure of a more stable underlying ability. This disso-

ciation provides additional evidence for a specific effect of skill on attribution

and is consistent with results of model agnostic analyses indicating an effect

of skill over and above performance.

Figure 4.32: Weights of the skill (s) feature on attributions to the maze (M), rota-
tions (R) and internal attributions (I). Green arrows: weights for wins;
red arrows: weights for losses. Pointed arrow heads: positive weights,
blunt arrow heads: negative weights. Missing arrows indicate weights
not significantly different from 0. Left: parameters for ‘self’; right:
parameters for ‘other’.

4.4 Reaction times
In this section we present analyses of subjects’ reaction times when making

attributions. We tested for any effect of condition (“self” vs “other”), and,

separately for “self” and “other”, for main effects of outcome and attribution

(“internal” vs “external”) and their interaction, as well as for secondary effects

of skill.

Reaction times were significantly lower for “self” than for “other”

(paired t(15) = −4.06, p = 3 ∗ 10−4), which is consistent with what we ob-

served for skill responses reaction times, and with differences between re-

sponding for self vs other which have been documented in the past (Jackson

et al., 2006; Kuiper and Rogers, 1979; Nowicka et al., 2018).

Following the same methodology that we used in our model-agnostic

analyses of attribution responses (see section 4.2.3.2 and appendix O), we
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performed permutation tests for main effects of outcome and attribution, as

well as their interaction, separately for “self” and “other”. We used the F-

statistics employed in repeated measures two-way ANOVA, with outcome

and attribution as fixed factors and subjects as random factors.

For both conditions, we found no effect of outcome, but a significant

effect of attribution (“self” F(1,30) = 6.5, p-value from permutation test, cor-

rected for multiple comparisons p = 0.03, “other” F(1,30) = 21.38, p = 0)

and significant interaction (“self” F(1,30) = 6.95, p = 0.03, “other” F(1,30) =

13.21, p = 0). In both conditions subjects were faster in making external at-

tributions. When making internal attributions, they were faster for wins than

for losses, with the opposite pattern for external attribution. See figure 4.33.
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Figure 4.33: Attribution reaction times, effect of outcome, attribution and inter-
action. Mean and s.e.m across subjects. The value for each (out-
come,attribution) pair for each subject was computed by averaging RTs
from all relevant trials.

We expected that skill estimates would have an effect on RTs, condi-

tioned on outcome and attribution, such that, for instance, higher skill would

be associated with faster responses than slower skill, when making internal

attributions for wins. In order to test for this, we regressed RTs on skill for

each subject, separately for each condition and each (outcome, attribution)

pair of possible values. We then tested whether the means of the resulting
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distributions of skill weights across subjects were different from 0.

We found that skill had a significant effect on external attributions for

wins in the “self” condition (1 sample t(30) = −2.78, p-value corrected for

multiple comparisons p= 0.04) and a significant effect on internal attributions

for wins in the “other” condition (1 sample t(30) =−4.3, p = 0.001).

The effect for “other” was as expected, namely skill was negatively cor-

related with RTs for internal attributions for wins, such that the better subjects

reported the “other” to be, the faster they were in making internal attributions

for wins. However in the “self” condition, the effect on RTs for external at-

tribution was surprising, in that skill was also negatively correlated with RTs,

indicating that the higher the skill, the faster subjects were in making external

attributions for wins.

4.5 Summary

In this chapter we presented both model-agnostic and model dependent anal-

yses of subjects’ attribution responses.

Model agnostic analyses showed that subjects had a preference for at-

tributing positive outcomes internally and negative ones externally, prefer-

ence revealed in the proportions of respective attributions, as well as in reac-

tion times, and that this bias was stronger when evaluating the “other” than it

was when evaluating the self. Model-dependent analyses confirmed this ob-

servation. However, as far as proportions of internal vs external attributions

are concerned, model agnostic analyses further showed that this bias was not

present from the beginning of the task: in both conditions subjects started

from making more internal attributions for negative outcomes than for posi-

tive ones, and then switched their preferences. As our task was framed as a

learning task, we cannot determine to what extent this phenomenon was due

to subjects’ perception of improving at the task, rather than to their expecta-

tions about getting better.

We provided subjects with different options for task-related external at-



4.6. Discussion 186

tributions - “maze complexity” and “rotations” - and measured the relevant

task features - length of correct path through the maze, proportion of unusual

maze orientation within a trial - in order to identify wether subjects were sen-

sitive to variations along these dimensions. We found that subjects did display

rational use of the available information about task features: both model ag-

nostic and model-dependent analyses indicated that they made more internal

attributions for wins associated with higher vs lower levels of these markers

of task difficulty.

We also found evidence suggesting subjects processed these two aspects

of the task differently; this might reflect either the fact that rotations and maze

complexity are not orthogonal dimensions, as rotations are embedded within

the maze on each trial, or the fact that learning in the task allows improvement

in the management of rotations, while there is less room for improvement as

far as dealing with a complex maze is concerned.

We found that subjects were also sensitive to performance, which in-

fluenced their attribution responses as expected: high vs low performance

was associated with more internal responsibility for wins and less internal

responsibility for losses. These observations were consistent between model-

agnostic and model dependent analyses.

In addition, model agnostic analyses suggested the presence of an ef-

fect of skill over and above that of performance. Model dependent analyses

also indicated differences between parameters associated with performance

and those associated with skill estimates, consistent with different effects of

momentary performance and skill. See section 4.6.3 below for a summary of

results concerning the effect of skill.

4.6 Discussion

The impact of the various events one experiences on everything from one’s

mood to one’s future behaviour depends on various aspects of the context and

one’s momentary state, but also, crucially, on the way the event is interpreted,
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on what is believed to have caused it, and what it is believed to reveal about

the world, others, and ourselves. In particular, the extent to which one is

responsible for the outcome is an essential part of the event appraisal, and one

that is involved in a diverse range of phenomena, from questions of morality

to aspects of psychological well-being, to practical decision making.

The way humans make causal attributions has therefore been a topic of

interest for psychology, as well as psychiatry, and aspects of it have been

extensively studied( see literature review in chapter 1). Among them we men-

tion, since they are relevant to our discussion later on, the “actor-observer”

effect, according to which people tend to interpret the behaviours of others

as more indicative of internal traits, while reporting external causes to be

more important in explaining their own behaviour (Jones and Nisbett, 1987),

the self-serving bias prompting people to assume disproportionately more re-

sponsibility for positive outcomes than they do for negative ones (Alloy and

Abramson, 1979; Tillman and Carver, 1980; Martin et al., 1984; Vázquez,

1987; Bentall and Kaney, 2005) (see Campbell and Sedikides, 1999; Mezulis

et al., 2004, for reviews), along with its counterpart, the “depressive real-

ism” ((Alloy and Abramson, 1979; Martin et al., 1984; Vázquez, 1987), and

finally the association between a “negative attributional style” and depres-

sion (Peterson and Seligman, 1984; Lyon et al., 1999), (see Sweeney et al.,

1986; Robins, 1988; Robins and Hayes, 1995, for reviews). There are, how-

ever, many aspects of even these phenomena which remain controversial and

or poorly understood (Miller and Ross, 1975; Heine and Hamamura, 2007;

Robins et al., 1996; Malle, 2006) .

Our interest in this study was, in particular, the relationship between at-

tributions and beliefs about oneself, which might be a key ingredient in a

better understanding of both attribution and its effect on psychiatric disorders

(Bentall et al., 2001; Bentall, 2003). The main question we set out to address

was whether subjects’ beliefs about their own skill (as the relevant instantia-

tion, in our task, of the more general “belief about the self”) has an effect on
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the way they make attributions for the outcomes they experience in the task.

Additionally, we aimed to determine whether there are differences between

any such effect in the case of making attributions when oneself is involved, vs

making attributions when watching others (in our case the subjects watched

their own replayed trials, under the pretence of watching some other subject’s

previously recorded performance; see chapter 2).

We begin by discussing the presence or absence in our data of the often

observed effects mentioned above, then present a summary of our results con-

cerning the relationships between skill and attributions, and our conclusions

about the main questions of the study. We end this discussion by present-

ing some task improvements and directions and questions for future work,

directly related to the attribution data. Given the novel, exploratory nature

of the task, there are numerous design changes and questions that these data

suggest, and we come back to them in the final section of this thesis (see 6.3).

4.6.1 Actor-observer effect

The actor-observer effect (Jones and Nisbett, 1987) (AOE) has been observed

in experiments in which subjects were asked to perform a task and explain

their behaviour (actor condition), as well as to watch another person perform

the task and explain this other person’s behaviour(observer condition). The

effect refers to subjects’ tendency to rely more on external, situational factors

when explaining their own behaviour, and to rely more on factors internal to

the actors, rather than situational constraints, when explaining the behaviour

of the other person.

AOE has been investigated with a variety of tasks, such as ones in which

subjects had to associate state or trait-like words with themselves and the

actors (Nisbett et al., 1973), or tasks in which they were asked to evaluate

progress in the learning of a novel task (Miller, 1975), or predict future per-

formance (see Kelley and Michela, 1980; Malle, 2006, for reviews). Evidence

has, however, not all been consistent, and particular aspects of task framing,

design and implementation (such as focusing on trait inference vs explain-
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ing behaviour, the coding of subjects’ responses, the valence of the outcomes

used, between vs within subject design, using hypothetical vs real outcomes)

might have played a significant role in some of the studies establishing the

AOE (Robins et al., 1996) (see Malle, 2006, for a review).

The relationship between the actor-observer effect and self-serving bias

is also not straightforward. Malle’s review (Malle, 2006) indeed concludes

that, despite it being for a long while accepted as an established fact, there

is insufficient evidence for a general AOE, and that while negative outcomes

might be associated with the AOE, the reverse might be true for positive ones.

In our task, we found that subjects made significantly more internal at-

tributions for “other” than they did for themselves, thus providing evidence in

favour of the AOE. This is particularly interesting given that in this case sub-

jects were not watching a real other person, but only a behaviour, and there-

fore the effect cannot have been produced by confounds such as the saliency

of the actor in the observer condition. Other factors that might have con-

tributed to the AOE effect in previous studies were also absent in our task:

we used a within-subject design, attributions referred to real, not hypothetical

behaviour, and subjects were presented with the same visual input in the two

conditions.

Of note, the effect was significant for wins, but not for losses (internal

attributions “self” vs “other” wins: paired t(15) = 3.62, p = 0.001, losses:

paired t(15) = 0.95, p = 0.35). This model-agnostic observation is consistent

with the result of model-dependent analyses: we compared preferences for

internal attributions, computed from best model parameters, and found higher

preferences for internal attributions in the “other” than in the “self” condition

for both wins and losses, with the difference being significant for wins, but

not for losses.

These results are also consistent with a general positivity bias (Tillman

and Carver, 1980), and they indicate the presence of stronger other-serving

biases than self-serving ones, which we discuss further in the next section.
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4.6.2 Self-enhancement

People’s tendency to adopt and attempt to maintain a positive view of them-

selves - by selectively attending to positive vs negative information or by

overweighting positive information - has long been documented in a vari-

ety of tasks and contexts (Lyons et al., 2020) (see Blaine and Crocker, 1993;

Campbell and Sedikides, 1999; Mezulis et al., 2004, for reviews).

Such self-serving biases can be argued to be beneficial, since they con-

tribute to the maintenance of well being, as well as promoting persistence and

exploration in the face of negative feedback or failure. Indeed associations

between higher levels of such biases and external measures of success in very

competitive environments have been documented (Lyons et al., 2020), as has

their absence from depressed patients, an effect dubbed “depressive realism”

(Alloy and Abramson, 1979; Martin et al., 1984; Vázquez, 1987).

On the other hand, it could equally well be argued that heightened atten-

tion to negative feedback, particularly in harsh environments, can be essential

to survival, enabling animals to quickly learn from bad outcomes and avoid

them in the future. There is indeed ample evidence of the privileged status of

processing negative feedback, in animals as well as humans (Maier and Selig-

man, 2016; Müller-Pinzler et al., 2019). Negative, more than positive feed-

back, produces rapid and strong bodily responses, mobilising the organism for

reaction; negative emotions produce more arousal than positive ones; negative

events and information focus attention (see Taylor, 1991, for a review). In hu-

mans, concepts for negative actions and consequences form earlier than their

positive counterparts (Fincham, 1985), negative events are surveyed more for

potential causal information (Wong and Weiner, 1981; Bohner et al., 1988),

and they elicit more spontaneous causal attributional activity than positive

ones (Peeters and Czapinski, 1990).

Negativity bias - the tendency to overweight negative information - has

been documented in social judgements (Müller-Pinzler et al., 2019), as has

self-effacing (Akimoto and Sanbonmatsu, 1999; Deaux and Farris, 1977;
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Heine and Hamamura, 2007), particularly in non-western cultures. Indeed

the extent to which self-enhancing biases are a universal constant rather than a

culturally specific phenomenon has been much debated (Mezulis et al., 2004;

Heine and Hamamura, 2007).

“Other-serving” biases have also been documented, and people have

been observed to be “nicer” to other than to themselves in past studies, not

related to causal attributions (Crockett et al., 2014; Rand et al., 2014; Rand

and Nowak, 2013).

We found evidence for both self-enhancement and “other”-enhancement

in our data. The latter appeared stronger than the former, with subjects mak-

ing more internal attributions for wins in the “other” condition than in the

“self” condition, and showing a larger difference in the preference for inter-

nal attributions after wins vs after losses for “other” than for “self”. Results

of comparisons between parameters obtained through model-fitting were con-

sistent with these model-agnostic observations. Probabilities computed based

on bias parameters only revealed that the preference for making internal at-

tributions for wins was significantly higher than its counterpart for losses in

both conditions, and that this effect of outcome was stronger for “other” than

for “self”. We note that removing the two subjects who provided no internal

attributions for wins in the “self” condition lead to an increase of the effect of

outcome for “self”, but the effect remained stronger for “other”.

Analyses of reaction times also revealed biases for positive information:

subjects were faster in making internal attributions for wins than they were in

making internal attributions for losses, with the opposite pattern for external

attributions. This effect was present in both conditions, but also stronger for

“other” than for “self”.

Our data therefore provides evidence for “self-enhancing” biases, and

even stronger evidence for “other-enhancing” biases. This pattern was also

present in analyses of the skill responses, where effects were generally larger

for “other” than for “self”, so it might be due to a generally higher level of
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noise in the “self” condition.

The fact that there was no real other, and instead subjects watched their

own previous performance complicates matters. Debriefing questionnaires

responses showed that most subjects had some suspicions about the deceit,

but we do not have a clear picture of the extent to which subjects recognised

their own previous performance, and if they did, at what time in the task

this happened. Due to the body of literature providing evidence for dimin-

ished or absent self-enhancement, as well as the presence of its opposite -

self-effacement - in non-western cultures and particularly in East-Asian ones

(Akimoto and Sanbonmatsu, 1999; Heine and Hamamura, 2007), and given

that our subject population was drawn mostly from students at UCL, which

has a large East-Asian student population (https://www.ucl.ac.uk/

srs/student-statistics), it is unfortunate that we did not collect the

relevant information to establish whether such cultural patterns might help

explain the “other-enhancing” effect present in our data.

4.6.3 Effect of skill reports on attributions

Our main purpose was to investigate the following three questions: whether

subjects’ belief about their own skill at the task contribute to the way they

make causal attributions for their outcomes; how this contribution compares

with those of other relevant factors, such as outcome, objective measures of

task difficulty and objective performance; and whether there are differences

in the mechanisms through which belief about skill contributes to causal attri-

butions when the self is involved, vs when attributions are provided for events

involving another.

We found that skill does have an effect on attributions, as evidenced by

the results of model-agnostic tests, as well as model comparison, and analy-

sis of model parameters recovered from the best model. Model comparison

preferred the full model, which in addition to objective task and performance

measures included previous reported skill. Thus skill contributes to explain-

ing attribution responses, over and above outcome and measurable task and
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performance features. Both model-agnostic analyses and analyses of model-

parameters showed that increasing skill is associated with increasing likeli-

hood of internal attributions for wins and decreasing likelihood of internal

attributions for losses.

Model-agnostic tests showed that the effect of skill on internal attribu-

tions persists when controlling for performance. Model-dependent analyses,

which, being based on trial by trial modelling, can provide a finer-grained

picture of the data, also identified differences between the effect of skill and

that of moment-by-moment performance, specifically ones consistent with

reported skill being a more stable measure of ability. Thus, while model-

parameter analyses indicated that subjects to some extent explained away high

moment-by-moment performance in terms of the task being easy, no such pat-

tern was present for high skill.

These observations were valid for both conditions, but skill had different

effects in the two conditions as far as attributions to “rotations” were con-

cerned, pointing to differences between the way subjects perceive the effect

of rotations and/or the way they conceptualise skill when they are the agents

vs when they are merely watching.

4.6.4 Dynamic interactions between skill and attributions

The motivation for this work comes from Bentall’s theory of interaction be-

tween attributions and beliefs about the self (Bentall et al., 2001; Bentall,

2003) . This theory posits reciprocal influences exist between these two vari-

ables, which, under normal circumstances, contribute to maintaining psycho-

logical well-being; however significant negative events can push the system

out of this dynamically maintained balance and into catastrophic vicious cir-

cles, leading to psychiatric disorders.

We aimed for our task to provide time courses of attributions and belief

about skill, in order to be able to study the loop connecting the two variables.

In chapter 3 we have presented analyses aimed at identifying one of the arrows

in the system - the influence that attributions exert on beliefs about the skill.



4.6. Discussion 194

In the present chapter we have presented the opposing arrow - the effect of

beliefs about skill on attributions. The results we presented in this chapter

and in its counterpart dedicated to skill responses establish that effects in both

directions can be detected within our task.

However this separation of the two mechanisms constitutes only the first

steps towards the study of their potentially complex time-varying interactions.

A major limitation of our analyses has been the assumption that relationships

between these variables are stable in time and across levels of the two vari-

ables: we have not allowed for time varying effects, nor for potentially dif-

ferent regimes in different ranges of skill or attribution propensities. These

limitations are due to the novelty of the task and the nature of this experi-

ment, aimed chiefly at establishing a proof of concept and constitute a pilot

for future research. Additional data, including data from patients, as well

as task adaptation and more sophisticated analyses are needed to tackle such

complexities. We provide a more detailed discussion of the directions for

future work in the final chapter of this thesis (see 6.3).

4.6.5 Conclusions and future work

We conclude that subjects displayed reasonable integration of task and per-

formance measures in their causal attributions, and that their own previous re-

ports of skill contributed to explaining their responses, over and above other

such features. This work therefore provides evidence that in the context of

repeatedly experienced real outcomes, when subjects provide both causal at-

tributions and skill evaluations, reported skill (a proxy for subjects’ real un-

derlying belief about their ability) has an effect on causal attributions.

Differences between “self” and “other” are also present. These generally

involve stronger effects for “other” than for “self”, and in particular stronger

other-serving biases - biases towards positive information - however we can-

not with the present data determine whether this is not merely a consequence

of higher noise in the more emotionally salient “self” condition. Such self-

other differences could also reflect cultural components, however our present
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data is not suitable for investigating this hypothesis.

Due to the exploratory nature of the experiment, there are a number of

features that were not optimised, and that future work would need to improve

upon. We will come back to these in the more extensive discussion at the end

of this thesis (see 6), but we mention here some of the aspects particularly

relevant to attribution data.

The labelling of attribution response options was based on the need to

provide both internal and external options, and as far as the external options

were concerned, on the goal of providing options related to the different ob-

jectively measurable task features. However this introduced an unfortunate

availability bias, which future work should remove. We also note that provid-

ing subjects with discrete options might be less informative than asking them

to rank the potential explanations for the outcomes, or provide estimates of

the extent to which they would assign responsibility to each.

Our choice of the task aspects to mention in the external attribution op-

tions was based on our hypotheses about which features of the task would be

most relevant to subjects. However they included asymmetries in the natures

of the external options provided, as the maze and rotations contributed dif-

ferently to the task structure, with maze providing the context, and rotations

being the aspect most directly controllable by subjects.

Finally, we chose to only ask for attribution responses and skill responses

once every two trials, due to time constraints. However this had the undesir-

able effect of introducing gaps in our time-series of belief and attribution mea-

sures, without allowing for enough trials in-between measurements to allow

for an averaging effect.

These aspects introduced undesirable complexities in both performing

and interpreting analyses. However, despite these difficulties, we found con-

vincing evidence of skill effects of attributions, as well as interesting differ-

ences between the processing of different task aspects and between self and

other, which are worth investigating further, and provide hypotheses for more
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targeted future research. See the final section of this thesis for further discus-

sion.



Chapter 5

Questionnaire measures

In order to investigate relationships between behaviour in our task and well-

established questionnaire-based measures of related psychological dimen-

sions, we administered three questionnaires: the Rosenberg Self-Esteem

Scale(SE) (Rosenberg, 1965), the Levenson Locus of Control Scale (LC)

(Levenson, 1974) and the Attributional Style Questionnaire (ASQ) (Peter-

son et al., 1982)(see appendix E for the questionnaires as administered to

our subjects). In this section we present analyses of the questionnaire re-

sponses, and of their relationships with behavioural data from our task and

model parameters obtained in previously described model-dependent analy-

ses (see 4.3). Given the small number of subjects in our dataset, we conceive

of these analyses primarily as an explorative tool to generate hypotheses and

define questions for future work.

The chapter is structured as follows: we begin with an overview of re-

sponses on each questionnaire, and present the dimensionality reduction ap-

proach we used in subsequent analyses; we then present analyses of rela-

tionships between questionnaire responses and descriptive statistics of be-

havioural data; we then present analyses of their relationships with model

parameters obtained from the best model of attribution responses (see 4.3).

The chapter ends with a discussion.
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5.1 Questionnaire scores - overview

5.1.1 Self esteem

The Rosenberg Self Esteem Questionnaire (Rosenberg, 1965) is a ten-item

scale, each item being a positive or negative statement about oneself. Sub-

jects have to indicate the extent to which they agree with each of the state-

ments, choosing between 4 available options (Strongly Agree, Agree, Dis-

agree, Strongly Disagree, worth 4 to 1 points respectively; items containing

negative statements are reverse scored). The score is obtained by summing

the scores for all ten items. Higher scores indicate higher self-esteem.

We chose this scale because it has been extensively used and its consis-

tency and external validation have been established (Schmitt and Allik, 2005).

Scores obtained on this scale have been repeatedly and reliably found to be

negatively correlated with neuroticism, positively correlated with extraver-

sion, and positively correlated with positive self-models in the context of ro-

mantic attachment (Schmitt and Allik, 2005; Martı́n-Albo et al., 2007).
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Figure 5.1: Scores on the Rosenberg self-esteem scale. Possible scores range from
10 to 40. Higher scores indicate higher self-esteem. Mean 30.52, s.d.
4.65. Colours indicate individual subjects, and correspond to colors used
in figures 5.2 and 5.3.

Figure 5.1 shows the scores of our subjects. The mean and standard
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deviation of our sample (mean = 30.52, s.d. = 4.65) are similar with statistics

obtained for UK subjects in (Tafarodi and Walters, 1999) and Schmitt et al

(Schmitt and Allik, 2005), an extensive study across cultures, which had a

much larger population of respondents from the UK1.

Our subjects’ responses display a generally observed tendency toward

positive self esteem, in that the mean value is significantly higher than the

midpoint of the scale, 25 (1 sample t(30) = 6.5, p = 3 ∗ 10−7). This phe-

nomenon has been repeatedly observed in samples across cultures (Schmitt

and Allik, 2005).

5.1.2 Locus of Control

Levenson’s locus of control questionnaire (Levenson, 1974) contains 24 items

- statements about the control that oneself, others or chance have over events.

Subjects have to indicate the extent to which they agree with each of the

statements choosing one of 6 options (from “Strongly disagree”, coded -3, to

“Strongly agree”, coded 3). Scores for each subscale are obtained by adding

the responses for the eight relevant items and shifting the result by 24, to ob-

tain positive values. The possible range is therefore 0-48 for each subscale.

For each subscale, higher values indicate perception of higher levels of control

exercised by the respective agent.

The three factor structure of this questionnaire has been confirmed re-

peatedly (Levenson, 1973, 1974; Walkey, 1979; Brosschot et al., 1994; Pres-

son et al., 1997), and correlations with various psychological characteristics

(Brosschot et al., 1994),subjective stress, neuroticisn (Morelli et al., 1979),

depressive symptomatology (Moreira et al., 2020; Presson and Benassi, 1996;

Presson et al., 1997), and coping mechanisms (Vickers Jr et al., 1983; Butler

and Burr, 1980; Brosschot et al., 1994) have been found.

Figure 5.2 shows the scores of our subjects. Statistics of scores in our

sample (Internal: mean = 35.65, s.d. = 4.64, Others: mean = 18.87, s.d. =

1Note that this is the case despite the fact that our subjects were recruited through mailing
lists containing large numbers of students, many of them foreign, so our sample might not be
representative for the UK to the extent that the previous study’s sample was.
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7.81, Chance: mean = 20.16, s.d. = 7.85) agree with previously published

statistics for a variety of population samples (Hyman et al., 1991; Walkey,

1979; Levenson, 1974) and display the common pattern of significantly higher

score on the internal subscale than on the two external subscales (Internal vs.

Others2 paired t(15) = 9.24, p= 8∗10−10, Hedge’s corrected Cohen d = 2.54;

Internal vs. Chance paired t(15) = 7.71, p = 4 ∗ 10−8, d= 2.33; Others vs.

Chance paired t(15) =−0.85, p = 0.4, d = -0.16).
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Figure 5.2: Scores on the Levenson locus of control scales. Possible scores range
from 0 to 48. Higher scores indicate higher perceived control of the re-
spective agent. Subjects ordered according to internal lc scores. Internal:
mean = 35.65, s.d. = 4.64, Others: mean = 18.87, s.d. = 7.81, Chance:
mean = 20.16, s.d. = 7.85. Colours indicate individual subjects, and
correspond to colors used in figures 5.1 and 5.3.

5.1.3 Attributional Style

The Attributional Style Questionnaire (Peterson et al., 1982) includes 12

items. Each presents a situation and asks subjects to imagine themselves ex-

periencing it and to report what they feel would be the major cause if that

event happened to them. Subjects are then asked to rate, on a scale from 1

2P-value for results reported as significant have been Bonferroni-corrected (Bonferroni,
1936) for multiple comparisons.
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to 7, the following four aspects: how important that event would be for them

(importance), to what extent the cause was due to themselves or to “other peo-

ple or circumstances” (internality), to what extent the cause would again be

present in similar situations (stability) and to what extent the cause would af-

fect other areas of their lives, beyond the described situation (globality). Items

can be classified according to a number of subscales, but the ones relevant to

us in this work are the six subscales corresponding to positive and negative

internality, stability and globality. For each of these, the score is obtained

by averaging the corresponding responses, thus obtaining scores ranging be-

tween 1 and 7.

0.0

3.5

7.0 Internality +

0.0

3.5

7.0 Internality -

0.0

3.5

7.0 Stability +

0.0

3.5

7.0 Stability -

0.0

3.5

7.0 Globality +

0.0

3.5

7.0 Globality -

0.0 0.2 0.4 0.6 0.8 1.0

Subject
0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

Figure 5.3: Scores on the ASQ scales. Possible scores range from 1 to 7. Higher
scores indicate higher internality, stability and globality respectively.
Subjects ordered according to internality for positive items. Internality+:
mean = 5.02, s.d. = 0.77, Internality-: mean = 4.5, s.d. = 0.67, Stability+:
mean = 5.25, s.d. = 0.79,Stability-: mean = 3.95, s.d. = 0.73, Globality+:
mean = 4.77, s.d. = 1.1,Globality-: mean = 3.74, s.d. = 0.97. Colours
indicate individual subjects, and correspond to colors used in figures 5.1
and 5.2.

The ASQ was developed as a tool to measure cognitive vulnerability,

defined within the reformulated learned helplessness theory of depression

(Abramson et al., 1978)(see also literature review in chapter 1) as the ten-
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dency to attribute negative life events to internal, stable and global causes.

The ASQ’s psychometric characteristics have been widely studied (Peterson,

1991; Higgins et al., 1999; Hewitt et al., 2004) and both the ASQ and other

questionnaires developed from it (Meins et al., 2012), such as the Cognitive

Style Questionnaire (Haeffel et al., 2008), have been found to correlate with,

or predict with various degrees of success aspects of depressive symptoma-

tology (Alloy et al., 2000; Giuntoli et al., 2019) (see also literature review in

chapter 1).

Figure 5.3 shows the scores for our subjects; summary statistics (Inter-

nality+: mean = 5.02, s.d. = 0.77; Internality-: mean = 4.5, s.d. = 0.67;

Stability+: mean = 5.25, s.d. = 0.79; Stability-: mean = 3.95, s.d. = 0.73;

Globality+: mean = 4.77, s.d. = 1.1; Globality-: mean = 3.74, s.d. = 0.97)

are similar to the ones reported by Peterson et al (Peterson et al., 1982) in the

original paper.

Consistent with the positive shift with respect to the middle point of the

range that we saw in the self esteem scores, mean scores for the positive di-

mension were higher than the ones for the negative one for all subscales;

the difference was significant for stability and globality subscales(Internality

+ vs. -: paired t(15) = 2.5, p = 0.054, d = 0.7; Stability + vs.-: paired

t(15) = 7.45, p = 8 ∗ 10−8, d = 1.65; Globality + vs. -: paired t(15) =

4.53, p = 2∗10−4, d = 0.96). We do not know to what extent this is a general

pattern in normal controls: while there has been interest in using the ASQ in

relation with resilience (Needles and Abramson, 1990; Kleiman et al., 2013;

Haeffel and Vargas, 2011; Johnson et al., 2017), the ASQ was designed and

primarily used as an instrument to study aspects of depression and negative

mood (see literature review in chapter 1) . Therefore negativity and scores on

the negative subscales have generally been the focus of interest, rather than

relationships between negative and positive subscales.
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Figure 5.4: Correlation matrix, all questionnaire measures. Left: data correlation
matrix. Right: correlation matrix estimate from factor analysis.

5.1.4 Dimensionality reduction: factor analyses

The full set of questionnaire measures was a set of 10-dimensional observa-

tions. Figure 5.4 shows the correlation matrix of these data.

We performed factor analysis for dimensionality reduction. Compari-

son of models with one, two and three latent factors favoured the two factor

model: the first eigenvalue of the covariance matrix of the full questionnaire

data accounted for 58.77% of the variance, and the hypothesis of one factor

was rejected by a chi-squared test(χ(35) = 67.53, p= 7∗10−4); the first three

eigenvalues accounted for 91.3% of the variance, but three factors produced

overfitting, as indicated by vanishing specific variances; in contrast, the first

two eigenvalues accounted for 81.74% of the variance, and the chi-squared

test failed to reject the null hypothesis that the total number of factors was

two (χ(26) = 28.38, p = 0.34) (see figure 5.4 for comparison between the

real correlation matrix and the one estimated from factor analysis).

Table 5.1 shows the resulting factor loadings 3. Factor 1 (F1) has large

negative loadings from self esteem and internal control and large positive

loadings from powerful others, chance locus of control and the negative sta-

3Factors were rotated with the varimax rotation, an orthogonal rotation which tends to
produce sparse, and therefore more interpretable, factor loadings
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Factor loadings
Questionnaire
dimension Factor 1 (F1) Factor 2 (F2)

SE -0.55 0.22
LCi -0.44 0.62
LCo 0.64 -0.01
LCc 0.8 -0.15
I+ -0.28 0.75
I- 0.05 -0.29
S+ 0.23 0.82
S- 0.72 0.07
G+ 0.2 0.61
G- 0.39 0.24

Table 5.1: Factor loadings, questionnaire scores.

bility subscale; factor 2 (F2) has large positive loadings from internal control

and positive internality, stability and globality. We interpret F1 as capturing a

dimension of negativity and lack of control, and F2 as capturing a dimension

of internal control and generalised positivity.

5.2 Questionnaire scores and behaviour
There were a number of aspects of subjects’ behaviour that we hypothesised

would be correlated with their questionnaire scores.

Specifically, we expected subjects with higher self-esteem scores to pro-

vide higher estimates of skill, to display larger differences in skill updates

after wins vs after losses, and to display larger differences between the pro-

portions of internal attributions for wins vs losses, compared to subjects with

lower self-esteem. We also expected to find a correlation between scores for

internal locus of control and the proportion of internal attributions, as well as

between scores on the internality positive and internality negative subscales of

the ASQ and the proportions of internal attributions post wins and losses re-

spectively. We computed correlations between the relevant behavioural vari-

able and relevant questionnaire score for or each of these hypothesised rela-

tionships and tested significance by performing permutation tests.

With only one exception, our predictions were not confirmed, correla-
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tions being generally very weak (see figure 5.5). Only one of the correlations

was significant and remained so after correcting for multiple comparisons,

namely the correlation between the ASQ internality negative score and the

proportion of internal attributions for losses. (r2 = 0.19, permutation test p-

value corrected = 0.04)4.
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Figure 5.5: Hypothesised correlations between questionnaire scores and behavioural
variables of interest, “self” condition. Left hand side: correlations with
self esteem scores. Top row: average skill response. Middle row: aver-
age difference between skill updates post wins vs losses. Bottom row:
difference between the proportion of internal attributions post wins vs
losses. Right hand side: Top row: internal locus of control scores and
proportion of internal attributions, Middle row: internality positive ASQ
scores vs proportion of internal attributions post wins. Bottom row: in-
ternality negative ASQ scores vs proportion of internal attributions post
losses.

We also performed exploratory analyses5, investigating correlations be-

tween these behavioural measures and the questionnaire scores’ projections

on the latent factors identified through factor analysis. We found two vari-

ables with significant negative correlations with F1, which captures a dimen-

sion of negativity and lack of control: the proportion of internal attributions
4We also computed correlations with corresponding behavioural measures from the

“other” condition, as well as with differences between behavioural measures in the two con-
ditions, with similar results.

5We did not perform multiple comparisons corrections for exploratory analyses.
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(r2 = 0.24, p = 0.005), and the proportion of internal attributions for wins

(r2 = 0.13, p = 0.047). We repeated these analyses for behavioural measures

from the “other” condition, and found significant negative correlations be-

tween F1 and the proportion of internal attributions (r2 = 0.22, p = 0.01),

as well as between F1 and the proportion of internal attributions for losses

(r2 = 0.17, p = 0.02).

Finally we performed canonical correlation analysis between the be-

havioural measures from both conditions and the full set of questionnaire

scores, in order to determine whether any relationships exist between linear

combinations of the behavioural measures and linear combinations of ques-

tionnaire measures. We found no significant relationship.

5.3 Questionnaire scores and model parameters

In the remainder of this chapter we present analyses of relationships between

model parameters and questionnaire responses. Model-dependent analyses

of skill estimates did not provide a clear winning model (see 3.3), therefore

we did not perform any further parameter analyses. However this was not

the case for models of attribution responses, where we found a clear winning

model (see 4.3). In the following we present our analyses investigating re-

lationships between questionnaire measures and individual parameters of the

best attribution model.

We were a priori interested in relationships between questionnaire re-

sponses and the effect of reported skill on internal attributions in the “self”

condition. We begin by presenting the result of these analyses and discuss our

interpretation of them, caveats, and the merits of alternative explanations.

We then present results of exploratory analyses of the full set of corre-

lations between parameters and questionnaire measures. These do not corre-

spond to a priori questions, but are aligned with one of two directions. The

first involves comparisons that provide evidence for consistency between re-

sponse behaviour in our task and questionnaire-based measures. The second
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type of correlations point to further directions of study into the mechanisms

involved in attribution making.

We performed permutation tests to compute approximate p-values for all

tested correlations; we performed Bonferroni correction (Bonferroni, 1936)

for the a priori hypotheses, and all results reported as significant are reported

with Bonferroni-corrected p-values; we did not, however, correct for multiple

comparisons in the exploratory analyses, for which significance was estab-

lished using a threshold of 0.05. We report Pearson correlation coefficients,

but we repeated permutation tests for Spearman correlations, with similar re-

sults.

5.3.1 Relationships between skill effect and questionnaire

measures

In chapter 4 we presented evidence that subjects’ reported beliefs about skill

contributed to explaining their causal attributions for the outcomes they expe-

rienced. One of the purposes of modelling attribution data was to investigate

relationships between the effect of skill on subsequent attributions in the self

condition 6 and aspects of attribution-making measured by questionnaires.

For most subjects7, skill had a positive effect of internal attributions for

wins and a negative one on internal attributions for losses(see figure 5.6). As

increasing skill increases the likelihood of taking credit for wins and decreases

the likelihood of taking responsibility for losses, the effect of skill can be

6As discussed before (see 4.3.3), individual subject parameters corresponding to raw fea-
ture weights do not constitute meaningful measures of the effect of features on attribution
responses. This is because features do not exert their effect on attributions directly and inde-
pendently via the corresponding weights, but through the relationships between these weights
and other individual subject parameters (see model description in 4.3). We therefore quanti-
fied the subject-level effect of a given feature f on a given attribution option a by computing,
on every trial t, the derivative of the probability of response a with respect to f when all
remaining features are held constant, ∂ pt (a)

∂ f , and averaging over trials (see appendix S for a
detailed account). We used this approach to quantify the effect of skill on internal attribu-
tions for wins and losses and we computed correlations between these effects and the relevant
questionnaire measures, as well as correlations with latent factors.

7There were 4 subjects with the opposite effect for losses, and 8 with the opposite effect
for wins; due to the small number of subjects, we processed data from all subjects together in
the analyses reported below, however investigating differences between subjects with positive
and negative skill effects is an avenue for future work.
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interpreted as producing attributions that are more favourable to the self.

We were a priori interested in whether these effects are correlated with

self-esteem, LCi and the internality subscales of the ASQ questionnaire. We

found positive correlations of the effect of skill on internal attributions for

losses with LCi (r = 0.51, p = 0.02) and I+ (r = 0.49, p = 0.048), but none of

the other correlations survived corrections for multiple comparisons. Given

that skill effects on internal attributions for losses were negative, positive cor-

relations between skill effect and LCi and I+ mean that higher LCi and I+ are

associated with a weakening of the effect of skill, as illustrated in figure 5.6.

Figure 5.6: Relationships between questionnaire measures and effect of skill on in-
ternal attributions. s: skill; I: probability of making internal attributions;
LCI, I+, I-: the respective questionnaire measures. Green arrows: effects
for wins; red arrows: effects for losses. Pointed arrow heads indicate
an ‘excitatory’ effect (increasing skill increases the likelihood of internal
attributions for wins), while blunt arrow heads indicate an ‘inhibitory’
effect (increasing skill decreases the likelihood of internal attributions
for losses). Black and gray arrows: correlations between questionnaire
measures and effects; black: significant correlations; gray: correlations
that did not survive multiple comparisons corrections. Pointed black and
gray arrow heads indicate positive correlations between questionnaire
measures and effect strength, blunt arrow heads indicate negative corre-
lation between questionnaire measure and effect strength.

We note that both these correlations seem to be driven to a large extent

by three subjects (see figure 5.7). These do not appear to be clear outliers,

however we cannot rule out, with the present dataset, the possibility that the

connections between LCi and I+ scores and the effect of skill are spurious.

Larger datasets are needed to establish whether the relationship is indeed
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present, and to determine whether it is a continuous one, or it is due to the

existence of clusters of subjects with associated extreme values of LCi and I+

and slope effects.
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Figure 5.7: Scatter plot of the effect of skill on making internal attribution to losses
(sI-) vs the LCi and I+ scores, ‘self’ condition. Black dots represent the
subjects driving most of the correlations. Left: LCi vs sI- Pearson r =
0.51, p = 0.02 for all subjects, r = 0.26, p = 0.11 excluding the three
marked subjects. Right: I+ vs sI- r = 0.49, p = 0.048 for all subjects, r =
0.24, p = 0.21 excluding the three marked subjects.
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Figure 5.8: The effect of skill for internal attributions for losses (sI-) vs the prob-
ability of making internal attributions for losses as computed from the
bias term in the model (bI-). Each dot represents a subject, with subjects
coloured according to their LCi scores.

We also considered whether the association between LCi and the skill

effect might be a mere floor effect, driven by a negative correlation between
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LCi and the tendency to make internal attributions for losses: in this scenario,

subjects with high LCi scores would tend to make few internal attributions for

losses in general and therefore there would be little room for skill to reduce

this tendency even further. This does not seem to be the case, however, see

figure 5.8. The situation for the relationship with I+ is similar.

The association between LCi and skill effect could be interpreted in

terms of responsibility: the higher the score for internal control, the less sub-

jects used skill to decline responsibility for losses. However in this case, as-

suming that the I- subscale is related to the extent to which subjects perceive

internal control for negative outcomes, we would expect the relationship be-

tween skill effect and I- scores to mirror that between skill effect and LCi.

This is not what we observed (see 5.6): if anything, I- displayed the opposite

correlation with skill effect (r = −0.35, uncorrected p = 0.02), although it

did not survive corrections for multiple comparisons.

This pattern of results does not support a coherent interpretation of the

data, and further work, as well as a larger population of subjects, are needed

to understand the relationships between the two types of measures, and the

underlying phenomena. For further discussion, including discussion of alter-

native mechanisms suggested by the relationships we observed in the data,

see section 5.3.2.2.

5.3.2 Exploratory analyses

Relationships between questionnaire measures and the effect of skill on in-

ternal attributions were of particular interest to us. However, the way other

features (of the task or of performance) contribute to subjects’ causal attri-

butions could also potentially be related to the dimensions measured by the

questionnaires we administered. We therefore performed exploratory analy-

ses, investigating all possible correlations between the full set of questionnaire

measures (and their latent factors) and the effect of all features on all attribu-

tion options. We performed permutation tests to estimate the significance of

each of the 432 resulting correlations. Since these are exploratory analyses,
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we did not perform corrections for multiple comparisons.

We present in this section a selection of the relationships we identified

as significant, grouped into two categories: one includes correlations between

questionnaire measures and bias parameters capturing propensities for the dif-

ferent attribution options, which show consistency between questionnaire re-

sponses and responses in our task; the second includes correlations between

questionnaire measures and effects of features other than skill, which sug-

gest potential mechanisms involved in attribution-making. We speculate on

the interpretation of these relationships and discuss evidence for and against

potential explanations that further work could set out to test.

5.3.2.1 Consistency with questionnaire measures

Figure 5.9: Representation of relationships showing consistency between bias pa-
rameters in our model and questionnaire measures. bI-, bI+, bM+: bias
for making internal attributions for losses, internal attributions for wins
and attributions to maze for wins respectively. SE, LCo, I-: the respective
questionnaire measures. Pointed arrow heads indicate positive correla-
tions (the higher the SE score is, the higher the propensity for making
internal attributions for wins is): blunt arrow heads indicate negative
correlations (the higher the LCo score is, the lower the propensity for
making internal attributions for wins is).

We found that higher SE scores were associated with a stronger propen-

sity toward making internal attributions for wins -as captured by the bias

parameter- (r = 0.33, p = 0.03) and a weaker propensity towards attributing

wins to the maze (r = -0.36, p = 0.02). Conversely, higher LCo scores were

associated with weaker tendency toward attributing wins internally (r = -0.33,
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p = 0.04), as were higher scores on the latent factor F1 (the “external nega-

tive” factor) (r = -0.33, p = 0.04). Finally, higher I- scores were associated

with increased probability of attributing losses internally (r = 0.46, p < 0.01).

See figure 5.9 for an illustration of these relationships.

5.3.2.2 Candidate modulating mechanisms for attributions

In this section we present correlations between questionnaire measures and

feature effects that exploratory analyses identified as significant, and which

suggest potential mechanisms contributing to subjects’ attribution-making.

These are broadly grouped according to three main factors: responsibility,

maintaining positive beliefs about the self, the role of beliefs about the world.

Figure Feature effects

involved

5.10 shows the features effects involved in the following analyses,

namely effects of skill and performance features on attributions for losses

and effects of objective task features on attributions for wins. These effects

were consistent with our expectations, for both wins and losses. We briefly

review these effects before discussing their relationships with questionnaire

measures.

Figure 5.10: Features effects on attributions for losses. Left: attributions for losses.
Right: attributions for wins. I: internal attributions, M: attributions to
maze, R: attributions to rotations, s: skill, pc: proportion of correct
key presses, pp: proportion of pauses, pl: path length, pnu: proportion
of non-up orientations. Pointed arrow heads represent positive effects,
blunted arrow heads represent negative effects.

As far as attributions for losses are concerned, increasing skill or the pro-

portion of correct key presses (pc) decreases the likelihood of internal attri-

butions, and increases the likelihood of blaming the maze for these outcomes.

In addition, the pc feature decreases the likelihood of attributing losses to

rotations; since the only way rotations could affect performance is through
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making subjects press wrong keys, it is reasonable that losses associated with

high proportions of correct presses should not be blamed on rotations. The

proportion of pauses (pp) has positive effects on internal attributions and on

attributions to rotations for losses, consistent with the fact that higher pro-

portions of pauses can be seen to indicate both poor performance and more

disruption caused by rotations.

As far as attributions for wins are concerned, the effects involved are

the effect of path length (pl) and proportion of non-up orientations (pnu) on

internal attributions and attributions to maze and rotations respectively. Both

features had positive effects on internal attributions - the more difficult the

task, the more likely subjects were to take credit for wins. Both features had

negative effects on the corresponding attribution option: higher difficulty on

each direction was associated with lower likelihood of crediting the respective

task aspect for wins.

The Responsibilityfeature effects on attributions for losses displayed in figure 5.10 can

be interpreted as using performance features to divert blame for losses away

from self and towards external options. Subjects’ patterns of taking respon-

sibility for outcomes might be related to some of the correlations that we ob-

served between these effects and questionnaire measures. We would expect

responsibility to be associated with a weakening of effects related to avoid-

ance or deflection of blame, and a strengthening of effects related to assuming

blame internally (see figure 5.11).

We mentioned above the correlation between LCi and the effect of skill

on internal attribution for losses as a potential marker for the role of responsi-

bility in attribution making: higher LCi scores were associated with decreased

use of skill to avoid blame for losses. Exploratory analyses revealed other cor-

relations between feature effects and questionnaire measures, consistent with

this view: both LCi and I- were negatively correlated with the extent of using

performance to avoid internal blame for losses (see figure 5.12, left and right).

There were also significant correlations with the latent factor F2 (which has
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Figure 5.11: Representation of relationships that would reflect a responsibility
mechanism driving internal attributions. See figure 5.12 for the rela-
tionships we observed in our data.

Figure 5.12: Representation of observed relationships involving variables related to
responsibility. I: internal attributions, M: attributions to maze, R: attri-
butions to rotations, s: skill, pc: proportion of correct key presses, pp:
proportion of pauses. Pointed arrow heads represent positive effects,
blunted arrow heads represent negative effects. Black arrows represent
correlations between these effects and questionnaire measures. Left:
Higher LCi dampens the effect of skill (previously mentioned r = 0.51,
p = 0.02) and pc (r = 0.37, p = 0.02) on internal attributions; none
of the other correlations with LCi is significant. Middle: We found
several significant correlations between the latent factor F2 (the ‘inter-
nal positive’ factor, which has a large LCi loading) and these effects.
Thus F2 dampens the effect of skill on attributions to maze (r= -0.33,
p = 0.04 ) and the effects of the pc feature on both internal attributions
(r = 0.4, p = 0.01) and attributions to maze (r = −0.32, p = 0.04).
Finally F2 boosts the effect of the pc feature on attributions to rota-
tions (r =−0.34, p = 0.03). None of the other relationships involving
F2 is significant. Right: I- dampens the effects of the pc feature on
both internal attributions (r = 0.4, p = 0.01) and attributions to rota-
tions (r = −0.34, p = 0.03) and boosts the effect of pc on attributions
to maze (r = −0.4, p = 0.01). None of the other correlations with I-
is significant. We note that the thresholds for significance for relation-
ships with the effects of skill on internal attributions are more stringent
than the other thresholds, as they are Bonferroni corrected for multiple
comparisons.
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large loading from LCi) consistent with this view: negative correlations be-

tween F2 and the extent of using pc to avoid attributing losses internally, as

well as negative correlations between F2 and the extent of using skill and pc

to blame the maze for losses (see figure 5.12 middle).

However, we would expect responsibility to be associated with other cor-

relation patterns that we did not see in our data. See figure 5.11 for an illus-

tration of the relationships expected to arise from responsibility. First, if I-

can be interpreted as measuring subjects perception of their internal control

in situations producing negative outcomes, we would expect it to mirror LCi

in its correlations with the effects of the features of interest, which was not

the case. Secondly, we would expect responsibility to be correlated with the

effects of the pp feature on attributions, which was also not the case. Finally,

F2 has large loadings from questionnaire measures not related to responsibil-

ity, therefore further work is needed to disentangle the contributions that other

factors have in its relationships with the effects of various features.

Some Positive belief

maintenance

of the correlations we identified point to another set of mechanisms

which are likely to be involved in attribution making: processes maintaining

subjects’ positive beliefs about the self. From this perspective, there are two

types of patterns that we might expect. One includes positive correlations be-

tween markers of vulnerability such as low SE or high I- and taking credit for

wins or avoiding blame for losses; such associations might be interpreted as

revealing an increased need for the activation of processes that can maintain

a positive self-image. Alternatively, the second type involves positive corre-

lations between SE scores and patterns of taking credit for wins or avoiding

blames for losses; these might be interpreted as revealing the contribution of

causal attributions toward successful maintenance of positive beliefs.

We found evidence consistent with both of these phenomena. The cor-

relations between I- and the effect of skill and pc on internal attributions for

losses (see figure 5.12, right) are consistent with the first one, according to

which higher vulnerability of positive beliefs is associated with a heightened
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Figure 5.13: Representation of relationships that would reflect a mechanism for
maintaining positive beliefs about the self. Left: expected relation-
ships. Right: relationships observed in our data; gray arrows indicate
correlations that were not significant.

need to protect the self by deflecting blame: the higher the I- score, the more

subjects used skill and pc to deflect blame from themselves for losses.

We also found relationships consistent with the converse view, according

to which attributions supporting positive beliefs are associated with higher

self-esteem. One pattern of attribution which likely contributes to positive

self-image involves the effect of the proportion of unusual orientations (pnu

feature) on internal attributions and attributions to rotations: increasing the

proportion of unusual orientations increases the tendency to attribute wins

internally and decreases the tendency to attribute them to rotations. We found

significant positive correlations of SE with the strength of both these effects

(effect on internal attributions: r = 0.37, p = 0.02, effect on attributions to

rotations r =−0.47, p < 0.018); see figure 5.13. However we might expect a

similar relationship to hold for SE and the effect of the pl feature on internal

attributions and attributions to the maze, and this was not the case in our data.

See figure 5.13 for an illustration.

Finally Beliefs about the

world

, some of the correlations detected by exploratory analyses (see

figure 5.14) suggest a role of beliefs that subjects hold about the world in

modulating the way information about performance and task features is pro-

cessed for making causal attributions.

8Note that the effect of pnu on attributions to rotations is negative, therefore a negative
value of the correlation with SE indicates that higher SE scores are associated with stronger
effects.
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Figure 5.14: Representation of relationships suggesting a role of beliefs about the
world in attribution-making. Gray arrows indicate correlations that
were not significant.

We found that the extent to which the pc feature decreases internal at-

tribution for losses was negatively correlated with scores on both globality

subscales (G+ :r = 0.41, p = 0.01, G-: r = 0.53, p < 0.01), as well as with

the S+ subscale (r = 0.35, p = 0.029). The correlations with G+ and S+ could

be interpreted as a reflection of the effect that holding positive views about the

world has on causal attributions: an optimistic belief that the world is gener-

ally favourable and stable could make blaming external causes for failures

less likely.

Alternatively, holding pessimistic views about the world could be asso-

ciated with a depressive failure of the protective effect of pc, in which case

we would expect negative correlations between the strength of its effect on

internal attribution for losses and G-, S- and potentially I-. As mentioned

above, we found a significant correlation with G-, however correlations with

S- (r = 0.16, p = 0.2) and I- (r = −0.28, p = 0.06) did not support this ex-

planation.

We have presented in this section a number of correlations between ques-

9Note that the effect of pc on internal attributions for losses is negative, therefore a pos-
itive value of the correlation with questionnaire measures indicates that higher scores are
associated with weaker effects.



5.3. Questionnaire scores and model parameters 218

tionnaire measures and the effects of various features on attribution responses.

They provide inconsistent evidence, whose reliability and indeed validity is

difficult to establish given the limited amount of data available. We did not

have a priori hypotheses about these relationships, and we cannot, with the

present data, disentangle between the diverse potential factors contributing to

causal attribution making.

Rather, we conceived of these exploratory analysis as useful in suggest-

ing hypotheses that future analysis could set out to investigate in a targeted

way. The relationships that we observed indicate three such putative mech-

anisms as promising candidates for future research: responsibility, processes

maintaining positive beliefs about the self, subjects’ beliefs about the world.

Selective manipulation - of subjects’ control over the outcomes, the strength

of their belief in their own abilities, and the volatility of the task - is needed

to disentangle the contributions of the three putative mechanisms to causal

attributions.

5.3.2.3 ‘Self’ vs ‘other’

A priori, we were also interested in whether any putative relationship between

questionnaire responses and model parameters in the “self” condition would

be present in the “other” condition, or whether there is any systematic change

in such relationships between the two conditions. Therefore for all correla-

tions that exploratory or a priori analyses identified as significant in the “self”

condition, we tested their correspondents in the “other” condition.

We found that all but two of these relationships were not significant for

“other”, the two exceptions being a negative correlation between SE and the

effect of pnu on attributing wins to rotations (r = −0.52, p < 0.01) and a

negative correlation between F2 and the effect of pc on attributing losses to

rotations (r = −0.3, p = 0.05), both consistent with their counterparts for

“self”.

We note that there are two major difficulties in interpreting relationships

between questionnaire responses and parameters obtained by fitting data in
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the “other” condition.

The first is that the questionnaires that we used refer to attitudes and be-

liefs held by the self, and centered around the self; if others are referenced

(as is the case in the “others” subscale of the Levenson’s questionnaire), they

are referenced with respect to the self, which is unlike the situation in our

task, in which subjects are asked to evaluate the “other” as an independent

agent. This is why we did not have precise a priori expectations of particu-

lar relationships between questionnaire responses and parameters related to

attribution responses in the “other” condition.

The second difficulty is that we do not have a precise measure of the

extent to which subjects suspected our deceit about the “other”. Further stud-

ies of such differences are needed to establish to what extent they are indeed

present in the population, and to better understand them.

5.4 Discussion

There were three main reasons for administering questionnaires to our sub-

jects.

First we sought to determine whether responses in our task show mean-

ingful expected correlations with the respective questionnaires. Question-

naires involve hypothetical situations relating to self evaluation and causal

attributions, whereas our task involves making causal attributions for real ex-

perienced events, and reporting beliefs which should be forming and changing

during the task. Therefore relationships between task responses and question-

naire responses constitute both a test of the extent to which questionnaires

can be used to predict real responses in such a context, and, to the extent

that these questionnaires are accepted as tapping into meaningful and relevant

psychological dimensions of attribution making and belief updating, a test of

the extent to which our task allows access to some of the same phenomena.

Evidence about the expected relationships between descriptive statistics

of the data and questionnaire measures was mixed: we could identify some,
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but not all, as significant; however further model parameter analyses provided

additional evidence in favour of such links. As is the case with all results

obtained from these data, additional investigation on larger data sets are nec-

essary to fully establish the validity of these observations; we believe there is

enough evidence to suggests that such additional investigations are warranted.

Our second aim was to investigate whether attribution making, and in

particular the effect that belief about skill has on it, is modulated by any of

the dimensions measured by questionnaires. We found some evidence that

this is the case in the “self” condition, as indicated by significant correlations

between questionnaire measures (LCi and I+) and the effect of skill on internal

attributions. As noted before, this observation comes with the caveat that

these relationships seem to be mostly driven by a few subjects, and that, with

the present data, we cannot establish to what extent they are a mere artefact

or reveal real underlying mechanisms, perhaps driven by clusters of subjects.

This is one of the questions that additional data would be able to address.

Finally, in line with our conception of this experiment as a pilot for fu-

ture investigations, we aimed to identify potential mechanisms and formulate

more precise research questions that future research could directly address.

Exploratory analyses of relationships between model parameters in the “self”

condition and questionnaire measures indicated several potential mechanisms

that could contribute to or modulate attribution making.

Subjects’ patterns of internalising responsibility might be involved in the

processing of skill and performance information, modulating the extent to

which these features are used to blame external factors, instead of the self, for

bad outcomes.

Alternatively or additionally, blame avoidance might be related to the

need for preserving a set of positive beliefs about the self. This could either

be as a healthy mechanism, in which case it would be associated with high

scores on scales indicating positive beliefs about the self, or as an indication

of an increased need for preserving vulnerable self esteem, in which case it
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would be associated with other measures of vulnerability.

Our observations also hinted at the importance of more general beliefs

about the world: it might be more difficult to blame the external world for

one’s failures, if one holds the belief that the world is mostly benevolent.

Conversely, generally negative beliefs about the world are known to be asso-

ciated with a depressive mood, this being indeed one of the theories that the

ASQ was designed to test.

We found mixed evidence about some of these factors from our ex-

ploratory analyses of correlations between model parameters and question-

naire measures. Here, too, additional data would hopefully provide a clearer

picture, and manipulations could be used to disentangle the contribution of

different aspects. Manipulating the world volatility, for instance, would affect

the contribution that beliefs about the world have on blame assignment, while

having a lesser effect , if any, on the responsibility factor. Manipulating sub-

jects’ beliefs about themselves by exposing them to artificial experiences of

failure or success could be used to specifically affect the contribution that the

need for preservation of self esteem has on driving causal attributions. And

manipulating the extent of control that subjects have over their performance

could be used to specifically impact the contribution of the responsibility fac-

tor to attribution making.

We conclude that the current data obtained from this task shows promis-

ing consistency with existing validated questionnaire measures, and indicates

interesting avenues for future, more precisely targeted work.



Chapter 6

Conclusions and future work

In this chapter we present a summary of the thesis, highlighting the original

contributions of this work; we then present our perspectives on future work,

from task improvements that our analyses suggested to a broader outlook on

further reated research directions.

6.1 Summary and original contributions
The work presented in this thesis was inspired by the theoretical proposal put

forth by Bentall et al (Bentall et al., 2001; Bentall, 2003)- the attribution-

self-representation cycle theory, and rooted in the computational approach to

learning and decision making. Our aim was to provide a quantitative frame-

work for phrasing, exploring and testing hypotheses associated with this the-

ory. As such, this work is part of a larger recent effort to bring the powerful

approach and tools of computational neuroscience to bear on complex, high

level aspects of cognition and emotion, and their disruptions in psychiatric

disorders. This is to build on the successes of these methods in exploring and

explaining various fundamental aspects of decision making in animals and

humans (see review in chapter1).

We developed a novel task, in which subjects’ beliefs and causal attri-

butions are repeatedly probed with regards to real outcomes, experienced in

the context of learning a skill task. This framework allows the collection of

time series of attributions and beliefs, which are fundamentally necessary for
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investigating, on a trial-by-trial basis, the dynamic relationships postulated by

the theory.

We found evidence of effects consistent with the cycle postulated by the

theory, namely effects of attributions on beliefs about skill and effects of be-

liefs about skill on attributions, neither of which could be reduced to the effect

of objective performance. Crucially, in our work these effects were observed

at trial-level resolution, providing evidence for moment-by-moment interac-

tions that could support the sort of complex dynamics postulated by the theory

(Bentall et al., 2001; Bentall, 2003). In addition, the beliefs and causal attri-

butions involved were reported by subjects in the absence of any manipulation

aimed at biasing or otherwise controlling them1.

The attribution-self-representation cycle theory is fundamentally a the-

ory about the self, however the reasoning mechanisms that it postulates could

also be involved in the formation and maintenance of beliefs about others.

Our task provides a framework within which the dynamics of beliefs and at-

tributions about the self can be directly compared with their counterparts re-

garding another. We found evidence of the same interactions between beliefs

about skill and attributions in both conditions, although data from from the

“self” condition was generally noisier and some aspects of the task appeared

to be processed differently between the two conditions (see below).

Finally, we found novel evidence of consistency between patterns of

casual attributions provided for real outcomes experienced in the task and

questionnaire-based measures of control and attributional style, which rely on

appraisal of hypothetical situations.

Thus our work proposed and implemented a novel framework for inves-

tigations into the dynamics of beliefs and causal attributions, and completed

the first steps towards a precise formalisation and testing of the theoretical

proposal in this framework. Analyses of our data showed that naturally oc-

1Subjects were deceived about the identity of the “other”, in order to allow controlled
comparison with the “self” condition (see 2 for details), but no manipulation was aimed at
the content of their causal attributions, or their beliefs about skill, in either condition.
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curring beliefs and causal attributions interact on a moment-by-moment basis,

both when the self is concerned, and when appraising others, thus providing

novel evidence in support of the theoretical proposal’s validity.

6.2 Reflections on the task

Since our task is novel, there were a number design choices that we could not

readily base on evidence from previous work. Some of these inadvertently

introduced requirements for external validation, which we could only approx-

imate to a limited extent with our available data; others introduced confounds

or undesirable complications for data analysis. We reflect on these with the

benefit of hindsight, highlighting improvements that could be implemented

in future work. We discuss more general directions for future work in the

subsequent section.

To begin with, there were no previously validated objective measures of

difficulty and skill in our task. However adapting trial difficulty to subjects’

performance level was necessary in order to maintain the balance between

positive and negative outcomes, as well as to maintain subjects’ engagement

in the task. For this purpose we designed a rather complicated staircase proce-

dure, involving the various aspects of the task that were, intuitively, the most

relevant, and then extracted an objective measure of difficulty from the data.

We also attempted to extract an objective measure of skill from our data, but

not being satisfied with the quality of the resulting measure, we decided not

to use it further (see 2). The staircase procedure did achieve the practical

desiderata of satisfying time constraints and providing balanced numbers of

wins and losses, however it failed to closely track subjects’ performance level,

producing instead undesirably high trial-to-trial variations in difficulty(see 2).

In this work we focused on establishing that the overall framework is viable,

and did not pursue precise staircase calibration or the external validation of

an objective difficulty measure; these remain goals for future work. They

can both be achieved by systematically exploring the space of task variables
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acting as components of difficulty, and measuring the frequency of wins and

losses for each setting of these variables in a large population of subjects.

Using a precisely calibrated staircase in conjunction with an externally

validated measure of difficulty would allow skill to be objectively measured in

a relatively straightforward way, since in this case difficulty (as manipulated

by the staircase) could be assumed to closely track subjects’ true skill levels.

This would be a useful task improvement, allowing comparisons to be made

between subjects’ skill estimates and their real underlying skill. The accu-

racy of subjects’ beliefs about skill could then be investigated in relationship

with their patterns of attributing outcomes, or questionnaire-based psycholog-

ical measures. A number of questions that we could not address in this work

could then be asked, such as whether subjects display self-serving biases in

their skill estimates, and if that is the case, whether such biases are associated

with self-serving attribution patterns, or with higher self-esteem scores. In-

deed we observed large between-subjects variability in subjects’ reported skill

estimates, and model-dependent analyses indicated that variability persisted

in mechanisms underlying skill updates; having access to an objective mea-

sure of skill, along with larger datasets, would enable further investigations

into the nature and sources of this variability.

We probed causal attributions by multiple choice questions. The re-

sponse options for these questions were designed to allow investigation of

internal vs external attributions, as well as attributions to different aspects

of the task that we could objectively measure, such as maze complexity and

rotation frequency. However, the specific response options we provided in-

troduced an availability bias - there were three external, but only one internal

options, with the latter being unitary and the former being more fine-grained.

In addition, we provided response options for maze complexity and rotations

as independent candidate causes, however in hindsight this might not have

matched subjects’ perception. Subjects experiencing the task might have per-

ceived the corresponding task aspects as being of different natures, allowing
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different degrees of control and being hierarchically organised, rather than in-

dependent. Indeed both model agnostic and model-based analyses indicated

that there were differences in the way they were processed. Future task it-

erations could balance internal and external attribution options by providing

similarly fine-grained options for both, highlighting specific aspects of one’s

skill (or lack thereof) that mirror specific task difficulties: e.g. ‘my skill in

dealing with rotations’, ‘my lack of skill in following the correct path’ etc.

Furthermore, subjects could be asked to report the degree to which they at-

tribute the outcome to each of the available factors, rather than having to pick

one of them.

Truthful responding to the skill and attribution questions was not incen-

tivised. Our attempt to use an incentive-compatible measurement -BDM bet-

ting (Becker et al., 1964)- alongside the direct question about skill turned out

to be unsuccessful (see 2). In order to avoid subjects’ losing interest and be-

coming demotivated to respond truthfully to skill and attribution questions, as

well as due to time constraints, we only asked subjects for skill estimates and

attributions every second trial. We therefore did not have complete trial-by-

trial series of both attributions and skill estimates, which hindered some of

our analyses (see 3). Finer calibration of the staircase procedure resulting in

more precise tracking of subjects’ skill level would contribute to solving this

issue, by allowing trials to more efficiently explore the relevant regime. Re-

ducing trial numbers could allow us to solicit skill and attribution assessments

on every trial.

Finally, we introduced the “other” condition to allow direct comparison

of skill estimates and attributions for self with those provided for another,

while controlling for difficulty and trial order. We implemented this condition

by recording subjects’ trials and playing them back, with minimal modifica-

tions aimed at reducing the likelihood of their being recalled. This resulted

in a fixed “self” -“other” order which we could not control for, and in a need

to deceive our subjects. This latter aspect complicates interpretations of dif-
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ferences between the two conditions, as it is difficult to precisely establish

the extent to which subjects suspected deceit, and the timing of their suspi-

cions, if any. Future work is needed for thorough investigations of the psy-

chophysics of the task; this understanding, along with better calibration of

difficulty, could conceivably enable artificial simulation of agents with spec-

ified properties, removing present constraints on the “other” condition, and

enabling additional questions to be tackled.

6.3 Perspectives on future work

The work presented in this thesis proposes a framework in which the

attributional-self representation cycle theory (Bentall et al., 2001; Bentall,

2003) can be quantitatively defined, refined and tested. The theory postulates

the existence of two-way interactions between beliefs about the self and ap-

praisal of events, and highlights the dynamic nature of these variables, which,

if coupled, can give rise to complex dynamics. According to the theory, the

system is calibrated to maintain adaptive beliefs and causal attribution pat-

terns, enabling humans to deal with everyday adversities without significant

damage to their self esteem, self concept or mental health. It is, however, also

able to support aberrant dynamics: a combination of temporary vulnerability

and severe adversity can push the system out of its normal regime into vicious

circles, resulting in depression or paranoia.

As the name clearly states, the core concept of the theory is the cycle

linking the two variables. In this work we have investigated the two sides of

the cycle independently. We added to the existing evidence on the dynamic

nature of both beliefs and attributions (Forgas et al., 1990; Bentall and Kaney,

2005; Dunning et al., 1995), and we have provided evidence of one-way ef-

fects of each variable on the other, at the trial-level time resolution. These

are necessary first steps, laying the ground for further research aimed at un-

derstanding the cycle dynamics and their involvement in mental health and

disorders.
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One direction for future research, indeed perhaps the natural next step,

involves investigating the range of behaviours that the coupling between at-

tribution and beliefs about self can support, and the extent to which different

underlying mechanisms can be distinguished from observable patterns (Eldar

and Niv, 2015).

As the example in chapter 1 showed, coupling between variables can

amplify randomly occurring variations in the task and the agent’s behaviour,

producing qualitatively different behavioural patterns, even in very simplified

situations: in that case, random differences in attributions at the beginning of

the task were amplified by the 2-way connections between attributions and be-

liefs, leading to different preferences between the two available actions. The

complexity available in our task presumably allows for a broader spectrum of

behaviours: subjects can experience both wins and losses, and there are mul-

tiple causes they could attribute these outcomes to. Future work could explore

this space by simulating the interactions between the two variables while vary-

ing parameters such as sensitivity to positive and negative outcomes, levels of

noise in making internal and external attributions, levels of noise in estimating

skill, and the strength of the couplings between attributions and beliefs. Sim-

ulations could thus provide a better understanding of the observable effects

that various parameters can produce, and the nature of theoretical predictions

that can be tested within this context.

Analyses presented in this work were performed under the assumption

that the functional effects of the two variables on each other were constant in

time, as well as independent of the variables’ levels. Relaxing this assump-

tion is another goal for future work. Here as well, simulations and modelling

work could be used to explore the possible dynamics supported by interac-

tions which can themselves evolve in time, or depend on the values of the

interacting variables. This extension would allow the phrasing and testing of

hypotheses involving multiple time-scales of interaction, as well as hypothe-

ses involving threshold-like mechanisms that might be responsible for catas-
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trophic dynamics. As an example, one can imagine testing, in this context,

whether an association between particularly low levels of beliefs about self

and particularly strong effects of negative attributions on beliefs could model

the onset of depression (Bentall, 2003) .

This direction is naturally related to another goal for future research,

which is particularly relevant given the inspiration for this work: understand-

ing the effects of disruptions or interventions on the system. Simulation anal-

yses could be further expanded to investigate the nature of perturbations and

or environment manipulations that can impact agents’ beliefs and causal at-

tributions. Thus artificial experiments could be performed to study a number

of aspects of interest, such as the effects of repeated small losses vs isolated

exceptionally large losses, the effects of losses concentrated vs distributed in

time (and their analogues for wins), whether providing alternative attributions

for particularly significant events can change the dynamics etc. Factors push-

ing the system towards catastrophic vicious circles are of particular interest,

as are protective factors that prevent or dampen such dynamics (Robins and

Hayes, 1995; Liu et al., 2015; Haeffel and Vargas, 2011; Johnson et al., 2017).

Insights from such simulated experiments could be used to optimise ex-

periment design and test hypotheses in real populations.

The directions discussed above are directly suggested by the theory it-

self. The pattern of results we observed in our data also indicated interesting

avenues for future work.

We repeatedly observed differences between the processing of wins and

losses (Seymour et al., 2007; Frank et al., 2007; Cools et al., 2008; Sharot

et al., 2011), both in the updating of beliefs about skill, and in the effects of

attributions. These observations suggested that accurate assignment of blame

for losses might be privileged w.r.t. accurate assignment of credit for wins

- a plausible phenomenon from an evolutionary viewpoint, as the cost of

wrong inferences about negative outcomes can be significantly higher than

that incurred for inaccurate inferences about gains. Future work could test
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the merit of this hypothesis by manipulating the environment, in particular its

level of benevolence/danger, and the relative importance of accurate causal

attributions for positive and negative outcomes. Manipulations of the environ-

ment itself could include pre-exposure to hostile vs benevolent environments

(Iigaya et al., 2016), or rigging the task itself in favour or against subjects

(Forgas et al., 1990; Bentall and Kaney, 2005). The relevance of making cor-

rect inferences could be modified by allowing subjects to ask for changes in

particular aspects of the environment based on their causal attributions, or to

choose between alternative trials varying on the direction indicated by their

attributions; by making the effects of these choices on actual task changes

probabilistic, with varying levels of reliability for wins and losses, the relative

importance of accuracy for the two outcomes could be controlled.

In our task, we found differences between the effects of path length and

rotations on attributions to the relevant options, as well as differences between

these effects in the “self” vs “other” conditions (see 4). One candidate ex-

planation for these differences involves the degree of perceived control over

these task aspects, and the extent to which subjects estimate control differ-

ently when playing vs when watching. Control is intimately connected with

the core notion of attribution, and another avenue for future work involves di-

rectly manipulating the level of control subjects have in the task (Mancinelli

et al., 2020), and investigating the effects of such manipulations on subjects’

beliefs, attributions and interactions between them. This could be achieved

by introducing noise in the execution of subjects’ commands, as well as by

allowing subjects to directly control speed, e.g. by use of joystick rather than

key pressing. As far as differences between “self” and “other” are concerned,

introduction of multiple “other” conditions could be used to control for the

effect of watching vs playing.

We also observed systematic differences between data in the “self” and

“other” conditions, generally consistent with a noisier pattern of skill re-

sponses for self, alongside a pattern of more favourable judgement of the
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other. As mentioned above, task improvements could remove ordering con-

founds and the need for deceit, allowing further investigation to establish

whether these effects are indeed present. There are a number of additional

directions that future work could explore with regards to the “self”-“other”

distinction. One such direction involves the effect of the “otherness” of the

other on any differences with respect to self: thus evaluation of close others

vs indifferent, hostile or artificial others could be compared. Further expan-

sion into the social aspect of the processes involved can also be envisioned, by

introducing competition into the task, or by providing agents with a learning

environment populated by real or artificial peers.

Finally, exploratory analyses of the relationships between questionnaire

measures and mechanisms inferred from model-dependent analyses pointed

to three directions of interest: subjects’ patterns of internalising responsibil-

ity, pressures to maintain positive beliefs about the self and the importance

of beliefs about the world. Correlational analyses on larger datasets and ex-

perimental manipulations could be used to investigate these phenomena and

test alternative hypotheses about them. Responsibility mechanisms could be

probed by manipulating control, while pressure to maintain positive beliefs

could be altered via artificial success or failure experiences prior to the task.

The role of beliefs about the world could be investigated by manipulating

aspects of the task environment, such as its benevolence/malevolence (also

mentioned above in connection with learning from wins vs losses) and its

volatility.

We hope the work presented in this thesis proves useful to those investi-

gating these and other related questions, and provides motivation and inspira-

tion for future research.



Appendix A

Instructions condition self



In this experiment, you will learn how to navigate a maze under unusual conditions. The
experiment involves two related tasks, which you'll perform around a week apart. Each of the tasks
is  about 1.5-2 hours long, so it will be divided in two parts, which you can do on the same day, with
a break of a few hours, or on two successive days. 

In the first task, which you're starting now, you will navigate the maze and make decisions
based on your own performance. In the second task, which will take place later, you will watch and
make decisions based on someone else navigating the maze. We will tell you about that then.

THE TASK

On each trial, you have to move a red square through a maze towards a goal marked by a
trophy. Each trial uses a different maze, some of which are more difficult than others; the difficulty
is randomly chosen on every trial. You win if you manage to get to the goal in the available time,
otherwise you lose.  

At the end of the session, 5 out of all the trials will be picked randomly. Your trial payment
will be £1 for each trial that you won out of these 5.  You will be offered the opportunity to gain
additional bonus reward, as detailed below.

You move the red square by using the arrow keys on the keyboard. Each key moves the red
square in a cardinal direction: the UP key moves the red square to the North, the RIGHT key moves
it to the East, the DOWN keys moves it to the South, the LEFT key moves it to the West. There is a
compass needle in the corner of the screen, marking North. Every once in a while during a trial, the
screen will  rotate.   When this  happens,  the compass needle will  rotate together with the maze.
Pressing the arrow keys will still move the red square towards the cardinal directions indicated by
the compass, but now North  might no longer be UP on the screen. 
Here are two screen shots, one at the beginning of the trial (A)  and one later in the trial, after a
rotation (B). 

                               A                                                                                            B

In screen shot B,  pressing UP moves the red square North, which is to the left, pressing
DOWN moves it to the right, pressing RIGHT moves it up and pressing LEFT moves it down.

You will practise 10 trials before the start of the experiment, so that you can become familiar
with the task and the rules of the navigation problem. Whether you win or lose on these trials won't
count towards your final payment. 



PART 1: YOU PLAY

Once you finish the practice trials, the experimental trials start. From this moment on, any of
the  trials  could be  among the  5 trials  chosen randomly at  the  end,  which determine your  trial
payment.

Before one out of every 3 trials, you will be given the opportunity of winning an additional
bonus reward whose maximum value (£1) is equivalent to winning one trial. 

Normally, this bonus would depend on your success on the forthcoming trial (so £1 or £0 if
you win or lose, respectively). You can think of this opportunity of wining the bonus as a gamble.
We would like to know how much you value the possibility of winning this bonus, and so you will
engage in an auction. In the auction, you will specify the smallest amount between £0 and £1 that
you would accept as a sure amount in exchange for this gamble. We call this your 'minimum price'. 

The computer then draws randomly a value between £0 and £1.
 If the value is larger than your minimum price, then you 'sell' the gamble, and you get the

value the computer drew as a bonus, irrespective of whether you win or lose the trial. 
If the value the computer draws is smaller than your minimum price, then you don't 'sell' the

gamble, and then whether or not you gain the bonus will depend on whether you win or lose the
trial. 

In this kind of auction, the best thing for you is to tell us the true value that the gamble has
for you. Here's why:

Suppose the gamble is really worth 70p to you. 
If you say 50p, then if the computer draws 60p, you trade the gamble for the computer

value, and you end up with 60p, which is less that the value of the gamble itself. 
If, on the other hand, you tell us that your minimum price is 90p,  then if the computer's

value is 80p, you don't sell the gamble. So you end up with the gamble, which is worth 70p, instead
of winning the computer drawn 80p. 

If you tell us your real value, then there is no way for you to end up with something that is
worth less for you than the gamble, and you also don't miss any opportunity.  
 Here is an example of how this auction will look in the task. Suppose you say the minimum
price that you would accept is 70p. (C) After you play the trial, you get to see the result of the
auction. The computer generates 90p, which is larger than your minimum price. Then you have
traded the bonus for a sure amount, and you get the price drawn by the computer, which is 90p.  (D)

C       D

 



You will also be asked, from time to time, about how difficult or easy the task seems to you. 
You will enter all your responses by using the arrow keys.  Use the left and right arrow keys to
move the slider, then press Enter to save and move on. 



Appendix B

Instructions condition other



This  is  the  second task in  the experiment.  It  is  very similar  to  the task you performed
already. The only difference is that now instead of navigating the maze yourself, you will watch
someone else do it. Now it is the performance of this other person that determines your gains, and
so you will have to  make decisions based on their performance. 

THE TASK

On each trial, the subject whose performance you are watching, let's call him or her X,  has
to move a red square through a maze towards a goal marked by a trophy. Each trial uses a different
maze, some of which are more difficult than others; the difficulty is randomly chosen on every trial.
X wins if he/she manages to get to the goal in the available time, otherwise he/she loses.  

At the end of the session, 5 out of all the trials will be picked randomly. Your trial payment
will be £1 for each trial that X won out of these 5.  You will be offered the opportunity to gain
additional bonus reward, as detailed below.

Just as you did in the first task, X moves the red square by using the arrow keys on the
keyboard. Each key moves the red square in a cardinal direction: the UP key moves the red square
to the North, the RIGHT key moves it to the East, the DOWN keys moves it to the South, the LEFT
key moves it to the West. There is a compass needle in the corner of the screen, marking North.
Every once in a while during a trial, the screen will rotate.  When this happens, the compass needle
will rotate together with the maze. Pressing the arrow keys will still move the red square towards
the cardinal directions indicated by the compass, but now North  might no longer be UP on the
screen. 
Here are two screen shots, one at the beginning of the trial (A)  and one later in the trial, after a
rotation (B). 

                               A                                                                                            B

           
                                                                                        

In screen shot B,  pressing UP moves the red square North, which is to the left, pressing
DOWN moves it to the right, pressing RIGHT moves it up and pressing LEFT moves it down.



PART 2: X PLAYS

Before one out of every 4 trials, you will be given the opportunity of winning an additional
bonus reward whose maximum value (£1) is equivalent to winning one trial. 

Normally, this bonus would depend on X's success on the forthcoming trial (so £1 if  X
wins, £0 if X loses). You can think of this as a gamble.  We would like to know how much you
value the possibility of winning this bonus, and so you will engage in an auction. In the auction, you
will specify the smallest amount between £0 and £1 that you would accept as a sure amount in
exchange for this gamble. We call this your 'minimum price'. 

The computer then draws randomly a value between £0 and £1.
 If the value is larger than your minimum price, then you 'sell' the gamble, and you get the

value the computer drew as a bonus, irrespective of whether X wins or loses the trial. 
If the value the computer draws is smaller than your minimum price, then you don't 'sell' the

gamble, and then whether or not you gain the bonus will depend on whether X wins or loses the
trial. 

In this kind of auction, the best thing for you is to tell us the true value that the gamble has
for you. Here's why:

Suppose the gamble is really worth 70p to you. 
If you say 50p, then if the computer draws 60p, you trade the gamble for the computer

value, and you end up with 60p, which is less that the value of the gamble itself. 
If, on the other hand, you tell us that your minimum price is 90p,  then if the computer's

value is 80p, you don't sell the gamble. So you end up with the gamble, which is worth 70p, instead
of winning the computer drawn 80p. 

If you tell us your real value, then there is no way for you to end up with something that is
worth less for you than the gamble, and you also don't miss any opportunity.  
 Here is an example of how this auction will look in the task. Suppose you say the minimum
price that you would accept is 70p. (C) After X plays the trial,  you get to see the result of the
auction. The computer generates 90p, which is larger than your minimum price. Then you have
traded the bonus for a sure amount, and you get the price drawn by the computer, which is 90p.  (D)

C       D
 

You will also be asked, from time to time, about how difficult or easy you think the trials are for X
and how difficult or easy you would find them if you played yourself. 
You will enter all your responses by using the arrow keys.  Use the left and right arrow keys to
move the slider, then press Enter to save and move on. 



Appendix C

Verification questions



QUESTIONS

1. In the following situation, where does the red square move if you press the DOWN arrow key?

What happens if you press the RIGHT arrow key?

2. In the following situation, what key would you press to move the red square to the right?

Draw an arrow on the maze to indicate the correct first movement towards the goal.

What key would you press to move the red square towards the goal?



3. Suppose you choose 0.6  in the following situation and you win the trial.
If the computer generated random number is 0.8 do you win any bonus reward? If yes, how much?

4. What if you choose 0.4  and you lose the trial, but the computer generated number is 0.7?
Do you win any bonus then? If yes, how much?

What if the computer-generated number is 0.3?

 



Appendix D

Feedback questions



Debriefing questionnaire 

For each of the following statements, indicate the extent to which you agree or disagree by ticking 
the appropriate box.  

Strongly 
disagree  

-3

Disagree 

-2

Slightly 
disagree 

-1

Slightl
y agree 

+1

Agree 

+2

Strongly 
agree 

+3

1. I found watching more 
engaging than playing.

2.I did not use any strategy for 
betting on X's performance.  

3. I feel my performance and X's 
performance were similar. 

4. I felt I was evaluating myself 
more harshly than I was 
evaluating X.

5. I feel I became better and better 
at the task while playing it.

6. I felt I could predict quite 
accurately if I would win or lose 
the next trial.

7. I used a strategy for betting on 
my performance.

8.I found the task engaging. 

9. I feel I had easier trials than X.

10. I feel X was better than me at 
this task. 

11. I found the task boring.

12. I feel I was better than X at 
this task.

    

13.  I feel X didn't make much 
progress throughout the task.

14. I felt I was evaluating X more 
harshly than myself.

15. I often felt there was nothing I 
could do to win when I was 
playing.



Briefly describe your strategy for betting on your trials: 

Briefly describe your strategy for betting in X's trials. 

Mark your  overall estimates of your own and X's skills at this task: 

------------------------------------------------------------------------------------------------------------------------ 
very bad                                                                                                                                 very good 

16. I felt I could predict quite 
accurately if X would win or lose 
the next trial.

17. I found playing more 
engaging than watching.

18.  I found the task frustrating.

19. I felt I was evaluating myself 
in a fair way. 

20. I felt I was evaluating both X 
and myself fairly.

21. I felt the task was getting 
harder and harder for me.

22. I often felt I could win if I 
was focused enough when I was 
playing.

22. I felt the task was getting 
easier and easier for me.

23. I feel I had a more difficult 
job than subject X.

24. I felt I learned faster than X.



Do you have any other comments? Or questions? 



Some of our participants have thought that some of subject X's trials were actually played-back 
versions of their own trials. What percentage of subject X's trials did you think might  
have been your own? 

  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%



Appendix E

Questionnaires



ID: _______________

Questionnaire 1

For each of the following statements, indicate the extent to which you agree or disagree by ticking
the appropriate box. 

Strongly
disagree 

-3

Disagree

-2

Slightly
disagree

-1

Slightly
agree

+1

Agree

+2

Strongly
agree

+3

1. Whether or not I get to be a 
leader depends mostly on my 
ability.

2. To a great extent my life is 
controlled by accidental 
happenings.

3. I feel like what happens in my 
life is mostly determined by 
powerful people.

4. Whether or not I get into a car 
accident depends mostly on how 
good a driver I am.

5. When I make plans, I am almost
certain to make them work.

6. Often there is no chance of 
protecting my personal interests 
from bad luck.

7. When I get what I want, it’s 
usually because I’m lucky.

8. Although I might have good 
ability, I will not be given 
leadership responsibility without
appealing to those in positions of 
power.

9. How many friends I have 
depends on how nice a person I 
am.

10. I have often found that what is
going to happen will happen.

11. My life is chiefly controlled by
powerful others.



Strongly
disagree 

-3

Disagree

-2

Slightly
disagree

-1

Slightly
agree

+1

Agree

+2

Strongly
agree

+3

12. Whether or not I get into a car 
accident is mostly a matter of 
luck.

13. People like myself have very 
little chance of protecting our 
personal interests when they 
conflict
with those of strong pressure 
groups.

14. It’s not always wise for me to 
plan too far ahead because many 
things turn out to be a matter
of good or bad fortune.

15. Getting what I want requires 
pleasing those people above me.

16. Whether or not I get to be a 
leader depends on whether I’m 
lucky enough to be in the right
place at the right time.

17. If important people were to 
decide they didn’t like me, I 
probably wouldn’t make many 
friends.

18. I can pretty much determine 
what will happen in my life.

19. I am usually able to protect my
personal interests.

20. Whether or not I get into a car 
accident depends mostly on the 
other driver.

21. When I get what I want, it’s 
usually because I worked hard for 
it.

22. In order to have my plans 
work, I make sure that they fit in 
with the desires of people who 
have
power over me.

23. My life is determined by my 
own actions.

24. It’s chiefly a matter of fate 
whether or not I have a few 
friends or many friends.



ID: _______________

Questionnaire 2

Please try to vividly imagine yourself in the situations that follow. 

If such a situation happened to you, what would you feel would have caused it? While events may
have many causes, we want you to pick only one - the major cause if this event happened to you.
Please write this cause in the blank provided after each event. 

Next  we  want  you  to  answer  some  questions  about  the  cause and  a  final  question  about  the
situation.

 To summarize, we want you to: 

1. Read each situation and vividly imagine it happening to you. 
2. Decide what you feel would be the major cause of the situation if it happened 
to you. 
3. Write one cause in the blank provided. 
4. Answer three questions about the cause. 
5. Answer one question about the situation. 
6. Go on to the next situation.

Situation 1: You meet a friend who compliments you on your appearance.

1. Write down one major cause:

2. Is the cause of your friend's compliment due to something about you or to something about other
people or circumstances? (circle one number)

Totally due to other 
people or circumstances

1 2 3 4 5 6 7 Totally due to me

3. In the future when meeting your friend, will this cause again be present? (circle one number)

Will never again be
present

1 2 3 4 5 6 7 Will always be
present

4.Is the cause something that just influences this friend opinion on your appearance or does it also



influence other areas of your life? (circle one number)

Influences just this
particular situation

1 2 3 4 5 6 7 Influences all
situations in my

life

5.How important would this situation be if it happened to you?(circle one number)

Not at all 
important

1 2 3 4 5 6 7 Extremely
important

Situation 2:  You have been looking for a job unsuccessfully for some time.

1. Write down one major cause:

2. Is the cause of your unsuccessful job search due to something about you or to something about
other people or circumstances? (circle one number)

Totally due to other 
people or circumstances

1 2 3 4 5 6 7 Totally due to me

3. In the future when looking for a job, will this cause again be present? (circle one number)

Will never again be
present

1 2 3 4 5 6 7 Will always be
present

4.Is the cause something that just influences looking for a job or does it also influence other areas of
your life? (circle one number)

Influences just this
particular situation

1 2 3 4 5 6 7 Influences all
situations in my

life

5.How important would this situation be if it happened to you?(circle one number)

Not at all 
important

1 2 3 4 5 6 7 Extremely
important



  

Situation 3:  You become very rich.

1. Write down one major cause:

2. Is the cause of your richness due to something about you or to something about other people or
circumstances? (circle one number)

Totally due to other 
people or circumstances

1 2 3 4 5 6 7 Totally due to me

3. In the future, will this cause again be present? (circle one number)

Will never again be
present

1 2 3 4 5 6 7 Will always be
present

4.Is the cause something that just influences how rich you are or does it also influence other areas of
your life? (circle one number)

Influences just this
particular situation

1 2 3 4 5 6 7 Influences all
situations in my

life

5.How important would this situation be if it happened to you?(circle one number)

Not at all 
important

1 2 3 4 5 6 7 Extremely
important

 Situation 4:  A friend comes to you with a problem and you don't try to help.

1. Write down one major cause:

2. Is the cause of your not helping due to something about you or to something about other people
or circumstances? (circle one number)



Totally due to other 
people or circumstances

1 2 3 4 5 6 7 Totally due to me

3. In the future when friends come to you with their problems, will this cause again be present?
(circle one number)

Will never again be
present

1 2 3 4 5 6 7 Will always be
present

4.Is the cause something that just influences how you respond to friends' problems or does it also
influence other areas of your life? (circle one number)

Influences just this
particular situation

1 2 3 4 5 6 7 Influences all
situations in my

life

5.How important would this situation be if it happened to you?(circle one number)

Not at all 
important

1 2 3 4 5 6 7 Extremely
important

 

 Situation  5:    You  give  an  important  talk  in  front  of  a  group  and  the  audience  reacts
negatively.

1. Write down one major cause:

2. Is the cause of the audience's reaction due to something about you or to something about other
people or circumstances? (circle one number)

Totally due to other 
people or circumstances

1 2 3 4 5 6 7 Totally due to me

3. In the future when giving talks, will this cause again be present? (circle one number)

Will never again be
present

1 2 3 4 5 6 7 Will always be
present

4.Is the cause something that just influences your public speaking or does it also influence other
areas of your life? (circle one number)



Influences just this
particular situation

1 2 3 4 5 6 7 Influences all
situations in my

life

5.How important would this situation be if it happened to you?(circle one number)

Not at all 
important

1 2 3 4 5 6 7 Extremely
important

 
 Situation 6:   You do a project that is highly praised.

1. Write down one major cause:

2. Is the cause of the praise due to something about you or to something about other people or
circumstances? (circle one number)

Totally due to other 
people or circumstances

1 2 3 4 5 6 7 Totally due to me

3. In the future when working on projects, will this cause again be present? (circle one number)

Will never again be
present

1 2 3 4 5 6 7 Will always be
present

4.Is  the cause something that  just  influences how your projects  are  appreciated or does it  also
influence other areas of your life? (circle one number)

Influences just this
particular situation

1 2 3 4 5 6 7 Influences all
situations in my

life

5.How important would this situation be if it happened to you?(circle one number)

Not at all 
important

1 2 3 4 5 6 7 Extremely
important

Situation 7:    You meet a friend who acts hostilely toward you.

1. Write down one major cause:



2. Is the cause of your friend's hostility due to something about you or to something about other
people or circumstances? (circle one number)

Totally due to other 
people or circumstances

1 2 3 4 5 6 7 Totally due to me

3. In the future when meeting your friend, will this cause again be present? (circle one number)

Will never again be
present

1 2 3 4 5 6 7 Will always be
present

4.Is  the  cause  something  that  just  influences  your  interaction  with  your  friend or  does  it  also
influence other areas of your life? (circle one number)

Influences just this
particular situation

1 2 3 4 5 6 7 Influences all
situations in my

life

5.How important would this situation be if it happened to you?(circle one number)

Not at all 
important

1 2 3 4 5 6 7 Extremely
important

 Situation 8:     You can't get all the work done that others expect of you.

1. Write down one major cause:

2. Is the cause of your not getting all the work done due to something about you or to something
about other people or circumstances? (circle one number)

Totally due to other 
people or circumstances

1 2 3 4 5 6 7 Totally due to me

3. In the future when working, will this cause again be present? (circle one number)

Will never again be
present

1 2 3 4 5 6 7 Will always be
present

4.Is the cause something that just influences your work or does it also influence other areas of your
life? (circle one number)



Influences just this
particular situation

1 2 3 4 5 6 7 Influences all
situations in my

life

5.How important would this situation be if it happened to you?(circle one number)

Not at all 
important

1 2 3 4 5 6 7 Extremely
important

Situation 9:      Your spouse (boyfriend/girl friend)  has been treating you more lovingly.

1. Write down one major cause:

2. Is the cause of your spouse treatment of you due to something about you or to something about
other people or circumstances? (circle one number)

Totally due to other 
people or circumstances

1 2 3 4 5 6 7 Totally due to me

3. In the future in your relationship, will this cause again be present? (circle one number)

Will never again be
present

1 2 3 4 5 6 7 Will always be
present

4.Is the cause something that just influences your relationship or does it also influence other areas
of your life? (circle one number)

Influences just this
particular situation

1 2 3 4 5 6 7 Influences all
situations in my

life

5.How important would this situation be if it happened to you?(circle one number)

Not at all 
important

1 2 3 4 5 6 7 Extremely
important

Situation 10: You apply for a position that you want very badly (e.g., important job,
graduate school admission) and you get it.



1. Write down one major cause:

2. Is the cause of your getting the position due to something about you or to something about other
people or circumstances? (circle one number)

Totally due to other 
people or circumstances

1 2 3 4 5 6 7 Totally due to me

3. In the future when applying for positions, will this cause again be present? (circle one number)

Will never again be
present

1 2 3 4 5 6 7 Will always be
present

4.Is the cause something that just influences your applications or does it also influence other areas
of your life? (circle one number)

Influences just this
particular situation

1 2 3 4 5 6 7 Influences all
situations in my

life

5.How important would this situation be if it happened to you?(circle one number)

Not at all 
important

1 2 3 4 5 6 7 Extremely
important

Situation 11: You go out on a date and it goes badly.

1. Write down one major cause:

2. Is the cause of your date going badly due to something about you or to something about other
people or circumstances? (circle one number)

Totally due to other 
people or circumstances

1 2 3 4 5 6 7 Totally due to me

3. In the future when going on dates, will this cause again be present? (circle one number)

Will never again be 1 2 3 4 5 6 7 Will always be



present present

4.Is the cause something that just influences your dating or does it also influence other areas of your
life? (circle one number)

Influences just this
particular situation

1 2 3 4 5 6 7 Influences all
situations in my

life

5.How important would this situation be if it happened to you?(circle one number)

Not at all 
important

1 2 3 4 5 6 7 Extremely
important

Situation 12:   You get a raise.

1. Write down one major cause:

2. Is the cause of your getting a raise due to something about you or to something about other
people or circumstances? (circle one number)

Totally due to other 
people or circumstances

1 2 3 4 5 6 7 Totally due to me

3. In the future, will this cause again be present? (circle one number)

Will never again be
present

1 2 3 4 5 6 7 Will always be
present

4.Is the cause something that just influences your position at work or does it also influence other
areas of your life? (circle one number)

Influences just this
particular situation

1 2 3 4 5 6 7 Influences all
situations in my

life

5.How important would this situation be if it happened to you?(circle one number)

Not at all 
important

1 2 3 4 5 6 7 Extremely
important



ID: _______________

Questionnaire 3

 Below is a list of statements dealing with your general feelings about yourself. Please indicate how 
strongly you agree or disagree with each statement. 

 
Strongly Agree Agree Disagree Strongly disagree

1.  On  the  whole,  I  am
satisfied with myself. 

2. At times I think I am
no good at all. 

3.  I  feel  that  I  have  a
number  of  good
qualities. 

4. I am able to do things
as  well  as  most  other
people. 

5.  I  feel  I  do  not  have
much to be proud of. 

6. I certainly feel useless 
at times. 

7. I feel that I'm a person
of worth, at least on an 
equal plane with others. 

8. I wish I could have 
more respect for myself.

9. All in all, I am 
inclined to feel that I am 
a failure. 

10. I take a positive 
attitude toward myself. 



Appendix F

Staircase procedure

We used a double staircase procedure. Each stair is characterised by three

variables:

• the overall size of the maze, n: if the maze is conceived as a square

nXn matrix of “maze chambers”, with each chamber having four possi-

ble walls, which can be present or absent, all the combinations of wall

patterns that form a valid maze give the total set of available mazes for

a given maze size n; there are four possible “levels” of maze size on

our staircases, consisting in two values for n, one of which is randomly

drawn, with equal probability, before generating the maze on each trial:

level 0 has available n values {3,5}, level 1 has available n values {5,5}

level 2 has available n values {5,7} and level 3 has available n values

{7,7}.

• the average frequency of maze rotations during a trial ν : all trials start

in the normal upright position and the first rotation, resulting in a ran-

domly chosen orientation at an angle of 90, 180 or 270 degrees with

respect to the upright one, happens 30 frames (1.5 seconds) later; a ran-

dom number is then uniformly drawn from the interval (ν−10,ν+10),

representing the number of frames until the next rotation; the angle of

the rotation is drawn randomly with equal probability from the three

available options (90, 180, 270 degrees) every time a rotation happens.
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The available values for ν were between 20 and 140 frames, and a stair-

case step was 10 frames.

• the available time for the trial, t: the available values for t are 10, 12

and 14 seconds, with the staircase step being 2 seconds.

Both staircases started with the same value for the available time, the

maximum one of 14 seconds. One of the staircases started on level 1 of the

maze dimensions available and on ν = 30 frames, the other started on level

2 of the maze dimensions available and on ν = 80 frames. These values

were updated as follows: if still possible, ν was increased (decreased) by 10

for wins and losses respectively; when the upper (lower) limit was reached,

the maze dimension level was increased(decreased), if still possible; when

the upper (lower) limit was reached for this as well, the available time t was

decreased (increased) if possible.



Appendix G

Difficulty and skill recovery

simulations

As discussed in 2.3.1.1, we found that difficulty and skill recovery were suc-

cessful when simulated staircases used narrow distributions of step sizes, for

a large range of placements of these distributions’ modes.

In this very simplified, 1-dimensional case, it is only in extreme and un-

realistic regimes that recovery breaks down. Exceedingly small step sizes

cause difficulty to lag behind skill, which leads to an inversion of the nor-

mal relationship between difficulty and the probability of winning(see figure

G.1), impairing difficulty (and therefore skill) recovery. Exceedingly large

step sizes produce situations in which difficulty alone fully predicts outcomes,

and therefore impair skill recovery (see figure G.2 for an illustration of out-

come prediction accuracy for different staircase step sizes).

In order to investigate the effect of using highly variable step sizes, we

also generated staircase steps from an exponential distribution. We found that

in this case too difficulty and skill recovery were successful (see figures G.3

and G.4). We used the exponential distribution for all further simulations.
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Figure G.1: Effect of exceedingly small staircase steps (parameters used for Gamma
distribution: θ = 0.005,k = 11). Left: evolutions of skill and difficulty,
mean ± s.e.m across subjects. Right: relationship between difficulty
and outcome distribution, data pooled from all subjects.
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Figure G.2: Outcome prediction accuracy as a function of difficulty level for small
(top), intermediate (middle) and large (bottom) average step sizes, mean
± s.e.m. across simulated subjects. Colours correspond to predicting
outcome using difficulty only (black), using skill only (magenta) and
using both (cyan).
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Figure G.3: Example summary of simulated data for step size drawn from exponen-
tial distribution (parameter used: λ = 0.4). Top left: difficulty evolution
for all simulated subjects. Top right: running average of the proportion
of trials won, mean ± s.e.m across subjects, filtering window: 20 trials.
Bottom left: evolution of difference between skill and difficulty, mean
± s.e.m across subjects. Bottom right: relationship between difficulty
and the proportion of wins, overall and as a function of skill level; mean
± s.e.m across subjects; black: overall, red to green: 1st to 4th skill
quartiles; difficulty z-scored within subject.
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Figure G.4: Difficulty and skill recovery for data in figure G.3. Top difficulty and
skill recovery, each color represents one simulated subject. Bottom:
relationship between recovered difficulty and the proportion of wins,
overall and as a function of recovered skill level; mean ± s.e.m across
subjects; black: overall, red to green: 1st to 4th recovered skill quartiles;
recovered difficulty z-scored within subject.



Appendix H

Difficulty measure

As discussed in section 2.3.2, we inferred the weights representing the contri-

butions of different objective task factors to the integrated difficulty measure,

wwwd , separately for each subject, by predicting outcomes for all remaining sub-

jects. We compared two approaches for integrating data from remaining sub-

jects: pooling subjects together and modelling variability between subjects

with a hierarchical model. We describe the two approaches below.

Pooling subjects together In this case, in order to find wwws0
d for a particular

subject s0, we considered all trials from all other subjects, Ts6=s0 , as if they

were generated from the same set of parameters wwws0
d , which we inferred as:

wwws0
d = argmin

www
Σ

t∈Ts 6=s0

nllt(www), where

nllt(www) =

− log(σ(wwwT fff d)) if o(t) = 1

− log(1−σ(wwwT fff d)) if o(t) = 0

is the negative log likelihood for the outcome of trial t.

Hierarchical model In this case we again used only data from all remaining

subjects when inferring wwwd for a given subject s0, but we took into account

that parameters for different subjects can be different, and included a model

of how they might vary.

Specifically, we used a hierarchical generative model for outcomes, as-

suming data from each subject s 6= s0 to be generated using a set of parameters
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wwws
d and a Gaussian distribution of these parameters across the population:

wwws
d ∼N (µw,Σw),∀ subject s 6= s0

os(t)∼ Bernoulli(σ(wwwsT
d fff s

d(t)), where

os(t) = outcome of trial t for subject s

fff s
d(t) = the measured value of fff d at trial t for subject s.

We used the probabilistic programming language STAN (https://

mc-stan.org/) to invert this model and obtain samples of the posterior

distribution over these population parameters, p(µw,Σw| fff s,os(t)∀t,s 6= s0).

We then used the expected value of the posterior distribution for µw as wwws0
d .

The measure thus obtained was highly correlated to the one obtained by

pooling data from all subjects: correlation average value 0.87 and s. d. of

0.03.

https://mc-stan.org/
https://mc-stan.org/


Appendix I

Performance features: definition,

within trial effects, learning effects

We used trial-level measures of performance in our analyses, however there is

rich within-trial variability in subjects’ behaviour, due to the particular nature

of the task: at every moment during a trial, a subject’s behaviour is represented

by whether they pressed a key or not and, if they did, by their choice of key

press; therefore behaviour at the finest-grained level is represented by the key

press variable on every frame (every 50 ms).

We labelled the key press variable on every frame as pause (p), correct

(c), wrong, but correct for up (wcu), wrong, but correct for previous orienta-

tion(wcp) and wrong (w) for all other wrong key presses.

This labelling provides us with a time course of performance within each

trial (see figure I.1).

For a qualitative view of the evolution of within-trial performance across

trials see figures I.2 and I.3. Subject 02190318’s performance improves across

trials: in the 2s post rotation internal, they are making fewer pauses and fewer

mistakes. The situation is different for subject 02070218, whose number of

correct key presses and pattern of mistakes in the 2s interval post rotations

doesn’t change much in time.

For our analyses we need a coarser, trial-wise summary quantification of

performance. We refer to the resulting trial-by-trial measures as performance
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Figure I.1: Example of performance evolution within trial: running averages (2 s
smoothing window) of different types of key presses, see legend; vertical
black bars represent rotations within the trial, the maze’s orientation is
labeled as U (up), D (down), L (left), R (right).

Figure I.2: Post rotation performance evolution, good learner

regressors. We note that despite our intuition about wcp being a relevant label,

it turned out that this was an extremely rare type of mistake, and therefore we

decided not to include its summary among the performance regressors. For
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Figure I.3: Post rotation performance evolution subject, bad learner

the same reason, the set of wrong key presses is practically the complement

of the set containing correct and wcu key presses, and therefore provides no

additional information. We therefore used only the proportion of pauses, the

proportion of correct key presses, and the proportion of wrong key presses

that would have been correct in the normal UP orientation.

We compared two trial by trial summaries of performance: one in which

the proportion of each type of key press was computed across the whole trial,

and one in which this proportion was computed considering only the 2s post-

rotation interval. In all the analyses described below, there was no difference

between using the whole trial and using the post rotation interval versions of

the performance regressors. We use the post rotation interval version in all

analyses presented.



Appendix J

Model list, skill estimate models

J.1 Purely descriptive models
NOTE: in all the following, t indicates the index of a trial in the whole data

set for one subject, while ts indicates the index of the trial within the session

it was recorded in;

s(t) = predicted skill estimate at trial t, and Greek letters represent fitted

parameters.

• logarithm shape, ignoring session (model L1):

s(t) = α +β ∗ log(t)

• logarithm shape + effect of break between sessions, but same parame-

ters for both sessions (model L2):

s(t) =

α +β ∗ log(ts) if t is in the first session

α +β ∗ log(ts)+ γ if t is in the second session

• logarithm shape, different parameters for the two sessions + effect of

break between sessions (model L3):

s(t) =

α1 +β1 ∗ log(ts) if t is in the first session

α2 +β2 ∗ log(ts)+ γ if t is in the second session
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• sigmoid shape, ignore session (model S1):

s(t) = µ +(ν−µ)σ(−β (x−α))

• sigmoid shape + effect of break between sessions, but same parameters

for both sessions (model S2):

s(t) =

µ +(ν−µ)σ(β ∗ (ts−α)) if t is in the first session

µ +(ν−µ)σ(β ∗ (ts−α))+ γ if t is in the second session

• sigmoid shape, different parameters for the two sessions + effect of

break between sessions (model S3):

s(t)=

µ1 +(ν1−µ1)σ(β1 ∗ (ts−α1)) if t is in the first session

µ2 +(ν2−µ2)σ(β2∗ (ts−α2))+ γ if t is in the second session

where

σ(t) =
1

1+ exp(−x)

J.2 Rescorla - Wagner models

In all the following model descriptions we use the following notations (greek

letters denote additional model parameters):

s0 = initial value of the internal skill estimate: model parameter

st = internal skill estimate after trial t

rt = skill estimate after trial t

ot = outcome of trial t ∈ {0,1}

at = attribution for trial t ∈ {internal(1),external(−1),none(0)}

tII
0 = index of first trial of the second session

δt = prediction error at trial t
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For most of the models, the naming convention reflects the presence or

absence of four orthogonal factors, S (session), A (attribution), O (outcome

valence), T (timescale). Other models, such as those including difficulty, fol-

low slightly different naming conventions. All models are fully specified be-

low.

• baseline: this is the basic RW model, which has one learning rate, α , a

parameter modelling the effect of the break between sessions, β , and the

variance in response noise, σ2. All other RW models will be variations

on this basic one.

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α ∗δt if t 6= tII
0

st−1 +β +α ∗δt otherwise

rt = N (st ,σ
2)

• S___: baseline + different learning rates for the different sessions:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
, where α(t) =

α1 if t < tII
0

α2 otherwise

rt = N (st ,σ
2)

• _A__: baseline + different learning rates for different attributions:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise
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st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
, where α(t) =


αi if at = 1

αe if at =−1

αn otherwise

rt = N (st ,σ
2)

• __O_: baseline + different learning rates for wins and losses:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
, where α(t) =

α+ if ot = 1

α− if ot = 0

rt = N (st ,σ
2)

• ___T: baseline + outcome impulse effect: local influence of the out-

come on the immediately following skill report only, which does not

propagate to later trials:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α ∗δt if t 6= tII
0

st−1 +β +α ∗δt otherwise

rt = N (st + γ(ot),σ
2), where γ(ot) =

γ+ if ot = 1

γ− otherwise

• SA__: baseline + session + attribution:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise
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st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
, where α(t) =



α1
i if at = 1 and t < tII

0

α1
e if at =−1 and t < tII

0

α1
n if at = 0 and t < tII

0

α2
i if at = 1 and t ≥ tII

0

α2
e if at =−1 and t ≥ tII

0

α2
n if at = 0 and t ≥ tII

0

rt = N (st ,σ
2)

• S_O_: baseline + session + outcome:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
, where α(ot) =



α1
+ if ot = 1 and t < tII

0

α1
− if ot = 0 and t < tII

0

α2
+ if ot = 1 and t ≥ tII

0

α2
− if ot = 0 and t ≥ tII

0

rt = N (st ,σ
2)

• S__T: baseline + session + outcome impulse:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
, where α(t) =

α1 if t < tII
0

α2 otherwise

rt = N (st + γ(ot),σ
2), where γ(ot) =

γ+ if ot = 1

γ− otherwise



J.2. Rescorla - Wagner models 275

• _AO_: baseline +attribution +outcome:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
,where α(t) =



αi+ if ot = 1 and at = 1

αe+ if ot = 1 and at =−1

αn+ if ot = 1 and at = 0

αi− if ot = 0 and at = 1

αe− if ot = 0 and at =−1

αn− if ot = 0 and at = 1 = 0

rt = N (st ,σ
2)

• _A_T: baseline + attribution +outcome impulse:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
, where α(t) =


αi if at = 1

αe if at =−1

αn otherwise

rt = N (st + γ(ot),σ
2), where γ(ot) =

γ+ if ot = 1

γ− otherwise

• __OT: baseline + outcome + outcome impulse:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
, where α(ot) =

α+ if ot = 1

α− if ot = 0
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rt = N (st + γ(ot),σ
2), where γ(ot) =

γ+ if ot = 1

γ− otherwise

• SAO_: baseline + session + attribution + outcome.

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
, where α(t) =



α1
i+ if ot = 1,at = 1 and t < tII

0

α1
e+ if ot = 1,at =−1 and t < tII

0

α1
n+ if ot = 1,at = 0 and t < tII

0

α1
i− if ot = 0,at = 1 and t < tII

0

α1
e− if ot = 0,at =−1 and t < tII

0

α1
n− if ot = 0,at = 0 and t < tII

0

α2
i+ if ot = 1,at = 1 and t ≥ tII

0

α2
e+ if ot = 1,at =−1 and t ≥ tII

0

α2
n+ if ot = 1,at = 0 and t ≥ tII

0

α2
i− if ot = 0,at = 1 and t ≥ tII

0

α2
e− if ot = 0,at =−1 and t ≥ tII

0

α2
n− if ot = 0,at = 0 and t ≥ tII

0

rt = N (st ,σ
2)

• SA_T: baseline + session + attribution + outcome impulse:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise
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st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
,where α(t) =



α1
i if at = 1 and t < tII

0

α1
e if at =−1 and t < tII

0

α1
n if at = 0 and t < tII

0

α2
i if at = 1 and t ≥ tII

0

α2
e if at =−1 and t ≥ tII

0

α2
n if at = 0 and t ≥ tII

0

rt = N (st + γ(ot),σ
2), where γ(ot) =

γ+ if ot = 1

γ− otherwise

• S_OT: baseline + session + outcome + outcome impulse:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
, where α(t) =



α1
+ if ot = 1 and t < tII

0

α1
− if ot = 0 and t < tII

0

α2
+ if ot = 1 and t ≥ tII

0

α2
− if ot = 0 and t ≥ tII

0

rt = N (st + γ(ot),σ
2), where γ(ot) =

γ+ if ot = 1

γ− otherwise

• _AOT: baseline + attribution + outcome + outcome impulse:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise
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st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
, where α(t) =



αi+ if ot = 1,at = 1

αe+ if ot = 1,at =−1

αn+ if ot = 1,at = 0

αi− if ot = 0,at = 1

αe− if ot = 0,at =−1

αn− if ot = 0,at = 0

rt = N (st + γ(ot),σ
2), where γ(ot) =

γ+ if ot = 1

γ− otherwise

• SAOT: baseline + session + attribution + outcome + outcome impulse:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise
,st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
,

where α(t) =



α1
i+ if ot = 1,at = 1 and t < tII

0

α1
e+ if ot = 1,at =−1 and t < tII

0

α1
n+ if ot = 1,at = 0 and t < tII

0

α1
i− if ot = 0,at = 1 and t < tII

0

α1
e− if ot = 0,at =−1 and t < tII

0

α1
n− if ot = 0,at = 0 and t < tII

0

α2
i+ if ot = 1,at = 1 and t ≥ tII

0

α2
e+ if ot = 1,at =−1 and t ≥ tII

0

α2
n+ if ot = 1,at = 0 and t ≥ tII

0

α2
i− if ot = 0,at = 1 and t ≥ tII

0

α2
e− if ot = 0,at =−1 and t ≥ tII

0

α2
n− if ot = 0,at = 0 and t ≥ tII

0

rt = N (st + γ(ot),σ
2), where γ(ot) =

γ+ if ot = 1

γ− otherwise



J.2. Rescorla - Wagner models 279

• RWD1: in this model the difficulty of the current trial contributes to the

outcome prediction in δ :

δt =

ot− (0.5+0.5∗ (st−1−dt)) if t 6= tII
0

ot− (0.5+0.5∗ (st−1 +β −dt)) otherwise

st =

st−1 +α ∗δt if t 6= tII
0

st−1 +β +α ∗δt otherwise

rt = N (st ,σ
2)

• RWD2: this a model in which difficulty d(t) modulates the prediction

error effect on the internal skill update, as follows:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α ∗δt ∗d(t) if t 6= tII
0

st−1 +β +α ∗δt ∗d(t) otherwise

rt = N (st ,σ
2)

• RWD3: this is a model in which the difficulty d(t) and outcome of the

current trial modulate the prediction error effect on the internal skill

update, as follows:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α ∗δt ∗d f (t) if t 6= tII
0

st−1 +β +α ∗δt ∗d f (t) otherwise
, where d f (t) =

d(t) if ot = 1

1−d(t) if ot = 0 ,

rt = N (st ,σ
2)

• __O_+diff: this is a different model of the interaction of difficulty and

outcome in modulating the internal skill update; difficulty d(t) mod-
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ulates the prediction error effect on the internal skill update equally

regardless of outcome, but learning rate can be different for wins and

losses:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α(t)∗δt ∗d(t) if t 6= tII
0

st−1 +β +α(t)∗δt ∗d(t) otherwise
, where α(t) =

α+ if ot = 1

α− if ot = 0

rt = N (st ,σ
2)

• _A__+diff: this is similar to __O_+diff, but difficulty d(t) and attribu-

tion, rather than outcome, modulate the internal skill update

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α(t)∗δt ∗d(t) if t 6= tII
0

st−1 +β +α(t)∗δt ∗d(t) otherwise
, where α(t) =


αi if at = 1

αe if at =−1

αn otherwise

rt = N (st ,σ
2)

• RWD4: this is a model in which the learning rate is a linear function of

the difficulty d(t):

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +(ε +φ ∗d(t))∗δt if t 6= tII
0

st−1 +β +(ε +φ ∗d(t))∗δt otherwise

rt = N (st ,σ
2)

• RWD4+O: this is similar to RWD4, but the linear relationship between
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difficulty and learning rate is allowed to be different for wins and losses:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α(t,d(t))∗δt if t 6= tII
0

st−1 +β +α(t,d(t))∗δt otherwise
,

where α(t,d(t)) =

ε++φ+ ∗d(t) if ot = 1

ε−+φ− ∗d(t) otherwise

rt = N (st ,σ
2)

• RWD5: this is a model in which the relationship between difficulty and

learning rate is quadratic:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +(ε +φ ∗d(t)+θ ∗d(t)2)∗δt if t 6= tII
0

st−1 +β +(ε +φ ∗d(t)+θ ∗d(t)2)∗δt otherwise

rt = N (st ,σ
2)

• RWD5+O: this is an augmentation of RW16, in which the coefficients

of the quadratic relationship between difficulty and learning rate are

allowed to be different for different outcomes:

δt =

ot− st−1 if t 6= tII
0

ot− (st−1 +β ) otherwise

st =

st−1 +α(t)∗δt if t 6= tII
0

st−1 +β +α(t)∗δt otherwise
,
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where α(t) =

ε++φ+ ∗d(t)+θ+ ∗d(t)2 if ot = 1

ε−+φ− ∗d(t)+θ− ∗d(t)2 otherwise

rt = N (st ,σ
2)

• RWD6: in this model the prediction part of the prediction error is a

combination of the current value of the internal skill estimate and a

filtered history of encountered difficulties, f d(t):

f d(0) = d(0)

f d(t) = ε ∗ f d(t−1)+(1− ε)∗d(t)

δt = ot− (0.5∗ (st−1− f d(t))+0.5)

st =

st−1 +α ∗δt if t 6= tII
0

st−1 +β +α ∗δt otherwise

rt = N (st ,σ
2)

• RWD6+T: this is model RWD6 with the addition of a local effect of

outcome on the skill estimate only:

f d(0) = d(0)

f d(t) = ε ∗ f d(t−1)+(1− ε)∗d(t)

δt = ot− (0.5∗ (st−1− f d(t))+0.5)

st =

st−1 +α ∗δt if t 6= tII
0

st−1 +β +α ∗δt otherwise

rt = N (st + γ(ot),σ
2), where γ(ot) =

γ+ if ot = 1

γ− otherwise

• RWD6+S: this is model RWD6 augmented with different learning rates

for the two sessions:
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f d(0) = d(0)

f d(t) = ε ∗ f d(t−1)+(1− ε)∗d(t)

δt = ot− (0.5∗ (st−1− f d(t))+0.5)

st =


st−1 +α1 ∗δt if t < t2

0

st−1 +β +α2 ∗δt if t = tII
0

st−1 +α2 ∗δt if t > tII
0

rt = N (st ,σ
2)

• RWD6+ST: this is model RWD6 with different parameters for the two

sessions and augmented with the addition of a local effect of outcome

on the skill estimate only:

rt = N (st + γ(ot),σ
2), where γ(ot) =

γ+ if ot = 1

γ− otherwise

J.3 BIC score computation for curve fitting mod-

els

The BIC score is defined as

k log(N)−2log(L̂),

where k is the number of parameters, N the number of trials that they con-

tribute to explaining and L̂ the maximum likelihood of the data under the

model.

Curve fitting models assume responses are independent conditioned on

parameters, and distributed normally around predictions, with a fixed and un-
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known standard deviation σ . The BIC therefore becomes

BIC = k log(N)−2Σ
N
i=1 log

(
1√

2πσ2
e−

(yi−ŷi)
2

2σ2

)
= k log(N)−2Σ

N
i=1

(
−1

2
log(2πσ

2)− (yi− ŷi)
2

2σ2

)
= k log(N)+N log(2πσ

2)+
1

σ2 Σ
N
i=1(yi− ŷi)

2

Keeping only the parts that differ between models we are left with

k log(N)+N log(σ2)+
1

σ2 Σ
N
i=1(yi− ŷi)

2.

If we approximate σ2 with ΣN
i=1(yi−ŷi)

2

N , then the above becomes:

k log(N)+N log
(

ΣN
i=1(yi− ŷi)

2

N

)
+

N
ΣN

i=1(yi− ŷi)2 Σ
N
i=1(yi− ŷi)

2

k log(N)−N log(N)+N log
(
Σ

N
i=1(yi− ŷi)

2)+N,

which, if we again keep only the terms that are different between models,

becomes

k log(N)+N log
(
Σ

N
i=1(yi− ŷi)

2) .

The r2 score obtained from curve fitting models is

r2 = 1−
ΣN

i=1(yi− ŷi)
2

ΣN
i=1(yi− ȳ)2 ,

therefore

Σ
N
i=1(yi− ŷi)

2 = (1− r2)ΣN
i=1(yi− ȳ)2 = (1− r2)SS,

where SS does not depend on the model.

Plugging the expression for ΣN
i=1(yi− ŷi)

2 in the reduced formula for BIC
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obtained above we obtain:

k log(N)+N log
(
Σ

N
i=1(yi− ŷi)

2)=
k log(N)+N log

(
(1− r2)SS

)
=

k log(N)+N log
(
1− r2)+N log(SS) .

(J.1)

As SS does not depend on the model, the last term can also be dropped

for the purpose of model comparison. Therefore the reduced approximation

to the BIC score becomes

k log(N)+N log
(
1− r2) ,

which can be computed directly from r2 scores for curve fitting models.



Appendix K

Observing the observer models.

Posterior approximations and

updates

For all the models, the propagation of subjects’ belief about the underlying

skill is a filtering process, which involves computing the update after every

trial, therefore producing the posterior belief conditioned on the observations

of that trial, and propagating this belief through the skill evolution function,

therefore obtaining the prior belief before observing the following trial. Due

to the simple nature of the skill evolution functions that we used, and to the

fact that the belief distributions to be propagated are Gaussian approxima-

tions(see below), propagating beliefs through the skill evolution functions is

straightforward. However computing the posterior is challenging: in all but

very few cases - such as when both the prior and the likelihood are Gaussians-

computing the posterior distribution involves intractable integrals. The same

is valid in our case, since the observation likelihood is Bernoulli, not Gaus-

sian; we therefore approximated the true posterior with Gaussian distribu-

tions, as detailed below.

Written in the most general case, where θ denotes the parameter and o
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denotes the observation, the Bayesian posterior computation is

p(θ |o) = p(o,θ)
p(o)

=
p(θ)∗ p(o|θ)

p(o)

=
p(θ)∗ p(o|θ)∫

dθ p(θ)∗ p(o|θ)

One simple approach is to use a Laplace approximation: the issue ap-

pears because of the need to compute the normalising constant of the numer-

ator in the above fraction, seen as a function of θ ; the solution consists in

approximating this function with a simple one - a Gaussian bump situated at a

maximum of the original function; the Gaussian bump is obtained by making

a 2nd order approximation of the log of the numerator around a maximum

point. The resulting approximation is therefore:

N (θ |µposterior,Σposterior), where

µposterior = argmin(− log(p(θ)∗ p(o|θ)))

Σposterior = H−1, where

H = Hessian of the objective function p(θ)∗ p(o|θ)

at the minimum point µposterior.

While this approach is simple theoretically and easy to implement, it has

a number of drawbacks Bishop (2006) the most relevant to us here being its

high computational cost: the approximation relies on optimisation, and in our

case, where the approximation is needed for belief updating after every trial,

this is particularly costly.

Based on the approach of Mathys at al Mathys et al. (2011) , we decided

to use a different Gaussian approximation: instead of performing an optimi-

sation to find a maximum of the unnormalised posterior, we used the current

estimate of the parameter as the point around which the quadratic approxima-

tion is made.
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What we need is an approximation of p(st |o1,o2, ...ot).

p(st |o1,o2, ...ot) =
p(st ,ot |o1, ..,ot−1)

p(ot |o1, ...ot−1)

=
p(st |o1, ..,ot−1)p(ot |st ,o1, ...ot−1)

p(ot |o1, ...ot−1)

=
p(st |o1, ..,ot−1)p(ot |st)

p(ot |o1, ...ot−1)
,

because ot is independent of previous outcomes given st .

We want to approximate p(st |o1,o2, ...ot) with a Gaussian, which is

equivalent to approximating its logarithm with a quadratic function:

log
p(st |o1, ..,ot−1)p(ot |st)

p(ot |o1, ...ot−1)
≈−1

2
log(2πσ

2
new)−

(st−µnew)
2

2σ2
new

log(p(st |o1, ..,ot−1))+

log(p(ot |st))−

log(p(ot |o1, ...ot−1))≈−
1
2

log(2πσ
2
new)−

(st−µnew)
2

2σ2
new

The third term on the left hand side is a constant w.r.t st . The first term

is already quadratic, since it is the log of the propagated Gaussian density,

p(st |o1, ...ot−1) = N (st |µold,σ
2
old). We approximate the middle term with a

quadratic expression in st by keeping only the terms up to second order in the

Taylor expansion of log(p(ot |st)) around µold .

If observed outcome is win

If ot = 1, then

p(ot |st) = σ(β (dt− st))

and the 2nd order approximation around µold is

log(p(1|st))≈ log(p(1|µold))

−β (1−σ(β (dt−µold)))

− 1
2

β
2(1−σ(β (dt−µold)))σ(β (dt−µold))(st−µold)

2
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The approximation above then becomes

− 1
2

log(2πσ
2
old)−

(st−µold)
2

2σ2
old

+ log(p(1|µold))−β (1−σ(β (dt−µold)))

− 1
2

β
2(1−σ(β (dt−µold)))σ(β (dt−µold))(st−µold)

2 + log p(ot |o1, ...ot−1)

=−1
2

log(2πσ
2
new)−

(st−µnew)
2

2σ2
new

and what is needed is to identify µnew and σ2
new.

For this we use Mathys et al’s Mathys et al. (2011) observations about

situations where, for a quadratic function, f ,

f (x) =−1
2 log(2πσ2)− (st−µ)2

2σ2 .

In such a situation, the following hold:

σ
2 =− 1

d2 f
dx

and

µ = x0−
d f
dx (x0)

d2 f
dx (x0)

for any x0.

The first is obtained by deriving both sides of the equations twice. The

second is a general property of a second order function, which allows to find

its argmax in one step from any starting point. In the present case, applying

these two equations by taking x0 = µold leads to the updates:

σ
2
new =

1
1

σ2
old

+β 2(1−σ(β (dt−µold)))σ(β (dt−µold))

µnew = µold−
β (1−σ(β (dt−µold)))

1
σ2

old
+β 2(1−σ(β (dt−µold)))σ(β (dt−µold))

If observed outcome is loss

If ot = 0, then
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p(ot |st) = 1−σ(β (dt− st))

and the 2nd order approximation around µold is

log(p(1|st))≈ log(p(1|µold))

+βσ(β (dt−µold))

− 1
2

β
2(1−σ(β (dt−µold)))σ(β (dt−µold))(st−µold)

2

The approximation above then becomes

− 1
2

log(2πσ
2
old)−

(st−µold)
2

2σ2
old

+ log(p(1|µold))+βσ(β (dt−µold))

− 1
2

β
2(1−σ(β (dt−µold)))σ(β (dt−µold))(st−µold)

2 + log p(ot |o1, ...ot−1)

=−1
2

log(2πσ
2
new)−

(st−µnew)
2

2σ2
new

.

Using again the above equations to identify identify µnew and σnew leads

to the updates:

σ
2
new =

1
1

σ2
old

+β 2(1−σ(β (dt−µold)))σ(β (dt−µold))

µnew = µold +
βσ(β (dt−µold))

1
σ2

old
+β 2(1−σ(β (dt−µold)))σ(β (dt−µold))

To sum up, updates can be approximated as follows:

σ
2
new =

1
1

σ2
old

+β 2(1−σ(β (dt−µold)))σ(β (dt−µold))

µnew =


µold− β (1−σ(β (dt−µold)))

1
σ2

old
+β 2(1−σ(β (dt−µold)))σ(β (dt−µold))

if ot = 1

µold +
βσ(β (dt−µold))

1
σ2

old
+β 2(1−σ(β (dt−µold)))σ(β (dt−µold))

otherwise,

(K.1)
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where

ot ∼ Bernoulli(σ(dt− st))

N (µnew,σ
2
new)≈ p(st |o1,o2, ...ot)

N (µold,σ
2
old)≈ p(st |o1,o2, ...ot−1)

σ(x) =
1

1+ exp(−x)
and

β < 0 = fixed slope of the generative model for the outcome.

Adding a modulation of the update according to attribution or outcome

leads to the following updates:

σ
2
new =

1
1

σ2
old

+αa ∗β 2(1−σ(β (dt−µold)))σ(β (dt−µold))

µnew =


µold−α ∗ β (1−σ(β (dt−µold)))

1
σ2

old
+β 2(1−σ(β (dt−µold)))σ(β (dt−µold))

if ot = 1

µold +α ∗ βσ(β (dt−µold))
1

σ2
old

+β 2(1−σ(β (dt−µold)))σ(β (dt−µold))
otherwise,

(K.2)

where α has different values for the different attributions

α =


1 if no attribution exists for trial

αi if trial attributed internally

αe if trial attributed externally

or different values for the different outcomes,

α =

α+ if trial won

α− if trial lost

according to the model.
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Correlations between features of

interest

Figure L.1 shows correlations between the features of interest.
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Figure L.1: Correlations between the features of interest. pl: path length, pnu: pro-
portion of non up orientations, pc: proportion of correct key presses, s:
skill. Data pooled from all subjects.



Appendix M

T-statistics correction

Permutation methods can be used to protect statistical conclusions about any

underlying test. However, not all tests are equally powerful – here because

of different numbers of relevant trials. We therefore chose to account for dif-

ferent uncertainties in our measurements of attribution proportions by using

weighted measurements for computing the t statistic. We obtained confidence

intervals for the differences in proportions that we were interested in, using

the continuity correction for the Wald Z estimate, then we weighted differ-

ences based on uncertainties associated with these confidence intervals and

computed the weighted relevant statistics, thus taking into account the uncer-

tainty associated with each observed difference in proportions.

Specifically, for each subject and each difference in proportion that we

are interested in, the estimate for the uncertainty of the proportion difference

is obtained as:

σ =

z∗
[√

p1∗(1−p1)
n1

+ p2∗(1−p2)
n2

+ 1
2(

1
n1
+ 1

n2
)

]
2

, where

z = the 95 % percentile from the standard normal distribution

n1,n2 are the number of trials in the two conditions we are interested in comparing

p1, p2 are the proportions of attributions to the option of interest

in the two conditions we want to compare.
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We thus obtained for each subject proportions of attributions in the two con-

ditions -
{

pi
1|i = 1,N

}
,
{

pi
2|i = 1,N

}
- and estimates for the uncertainty as-

sociated with the proportion difference for each subject - {σi|i = 1,N}; we

then computed the weighted repeated measures t-test statistics as follows:

ts =
µ

σ
, where

µ =
Σ

pi
1−pi

2
σ2

i

Σ
1

σ2
i

and

σ =

√√√√Σ
(pi

1−pi
2−µ)2

σ2
i

Σ
1

σ2
i
−1

√
N

We then performed permutation tests (2000 permutations) to compute

p-values for ts.
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Outcome effect on attribution
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Permutation test outcome effect SELF

Figure N.1: Effect of outcome on attributions in the “self” condition, results of per-
mutation test. The permutation test was performed as follows: for each
iteration (2000), outcome labels for each subject were permuted; the
proportion of attributions to each option out of all trials labeled as wins
(losses respectively) was computed, along with uncertainty estimates
based on small correction Wald Z; the weighted repeated measures t-
statistic for the difference between the proportion of attributions after
trials labeled as wins and trials labeled as losses was computed across
subjects. Histogram shows the resulting statistics values, the red line
marks the value of the statistic obtained from the data. The p-value is
approximated as the proportion of statistic values beyond the red line.



296

4 2 0 2 4
0

10

20

30

40

50

60

70

80
Attributions to other, p = 0.00

4 3 2 1 0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90
Attributions to maze, p = 0.41

4 3 2 1 0 1 2 3 4
0

10

20

30

40

50

60

70

80
Attributions to rotations, p = 0.02

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

50

60

70

80
Attributions to luck, p = 0.00

Permutation test outcome effect OTHER

Figure N.2: Effect of outcome on attributions in the “other” condition, results of per-
mutation test. The permutation test was performed as follows: for each
iteration (2000), outcome labels for each subject were permuted; the
proportion of attributions to each option out of all trials labeled as wins
(losses respectively) was computed, along with uncertainty estimates
based on small correction Wald Z; the weighted repeated measures t-
statistic for the difference between the proportion of attributions after
trials labeled as wins and trials labeled as losses was computed across
subjects. Histogram shows the resulting statistics values, the red line
marks the value of the statistic obtained from the data. The p-value is
approximated as the proportion of statistic values beyond the red line.
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Figure N.3: Effect of outcome on attributions in the “self” condition, excluding the
two subjects who made no internal attribution for wins. The permutation
test was performed as above.
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Outcome and time effect on

attribution, permutation tests with

2-way repeated measures ANOVA

statistics

The permutation tests were performed on the F-statistics for repeated mea-

sures 2-way ANOVA with two fixed within subject factors (outcome and time)

and subjects as a random factor. The test was performed for each condition

and each attribution option, with the proportion of attributions to the attribu-

tion option of interest as the dependent variable.

Let A and B be the factors of interest; a, b, s , the number of levels of

factor A, the number of levels of factor B and number of subjects respectively.

Let Yi jk be the observation from the i-th subject corresponding to the j-th

level of factor A and k-th level of factor B. Overbars denote averages in the

corresponding conditions. The F-statistics used were computed as follows

Howell (2012):

FA =
MSA

MSAS
, FB =

MSB
MSBS

, FAB =
MSAB

MSABS
, where

MSA =
SSA
a−1

, MSAS =
SSAS

(a−1)(s−1)



298

MSB =
SSB
b−1

, MSBS =
SSBS

(b−1)(s−1)

MSAB =
SSAB

(a−1)(b−1)
, MSABS =

SSABS
(a−1)(b−1)(s−1)

SSA = sbΣ j(Y. j.−Y...)2, SSB = saΣk(Y..k−Y...)2

SSAS = bΣi, j(Yi j.−Yi..−Y. j.+Y...)2

SSBS = aΣi,k(Yi.k−Yi..−Y..k +Y...)2

SSAB = sΣ j,k(Y. jk−Y. j.−Y..k +Y...)2

SSABS = Σi, j,k(Yi jk−Yi j.−Yi.k−Y. jk +Yi..+Y. j.+Y..k−Y...)2.

Permutation tests corresponding to 2-way ANOVAs with outcome and

another factor of interest were performed as follows: for each iteration (5000),

we permuted outcome labels and attribution labels for each subject; we com-

puted the proportions of attributions to each option out of all trials labeled

as wins (losses respectively) for each level of the other factor of interest; we

computed the repeated measures F-statistics for a 2-way ANOVA with out-

come and the other factor of interest as fixed factors and subjects as random

factors.

In general, the permutation distributions of these statistics turned out to

be good approximations of the theoretical F-distributions that the correspond-

ing ANOVA tests would use. In most cases the quality of the approximation

is similar to the one illustrated in figure O.1 below; figure O.2 shows the case

with the worst match between the permutation distribution and theoretical

one.
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Figure O.1: Effect of outcome and time on attributions to “self”, results of permuta-
tion test. Histogram shows the distribution of resulting statistics values,
in density form; the red line marks the value of the statistic obtained
from the data. The p-value is approximated as the proportion of statistic
values beyond the value obtained for the unscrambled data. The black
curve is the pdf of the F-distribution that the corresponding ANOVA test
would use, for comparison with the permutation distribution.

Figure O.2: Effect of outcome and time on attributions to “rotations”, in the “self”
condition, results of permutation test. The permutation test and p-value
computation were performed as described above.
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Objective task measures

quantization and distributions of

outcomes

For the purposes of our model agnostic analyses we discretised continuous

factors of interest, such as task and performance features. Ideally, these fac-

tors should be independent of outcome, and a fine-tuned staircase adaptation

procedure would contribute to achieving this aim. As we did not have pre-

viously validated measures of difficulty for our task, the staircase adaptation

mechanism that we used turned out to only partially achieve this goal, being

rather coarse (see 2). Figures in this appendix show the dependence between

objective task features and outcome.
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Figure P.1: Path length quantization: total number of trials and number of wins and
losses per quantile of path length. Each line represents one subject.
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Figure P.2: Prop non up orientations quantization: total number of trials and number
of wins and losses per quantile of prop non up orientations. Each line
represents one subject.
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Time and skill level quantization

1st quantile

2nd quantile

3rd quantile

4th quantile

Skill level quantiles vs time SELF

Figure Q.1: Time vs skill quartiles of skill estimates, all subjects ‘self’ condition:
vertical bars mark the time division of trials; dot colors mark skill quan-
tiles, from bottom (red) to top (green).
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1st quantile

2nd quantile

3rd quantile

4th quantile

Skill level quantiles vs time OTHER

Figure Q.2: Time vs skill quartiles of skill estimates, all subjects ‘other’ condition:
vertical bars mark the time division of trials; dot colors mark skill quan-
tiles, from bottom (red) to top (green).



Appendix R

Models for attribution responses

The models we fit all used linear combinations of features, with parameters

acting as weights of the features in computing a score for each possible attri-

bution response. Scores for the different options are passed through a softmax

function, to provide response probabilities for the different response options:

st,o =wwwo · fff t∀o ∈ O

pt(o) =
exp(st,o)

Σo∈O exp(st,o)
, where

st,o = score of response option o on trial t

wwwo = feature weights for option o

fff t = feature values on trial t

O = set of available response options

pt(o) =probability of choosing option o on trial t

(R.1)

The full set of features used comprised previous skill response (s), length of

correct path through the maze (pl), proportion of frames within the trial when

the maze orientation was not UP (pnu), proportion of correct key presses (pc),

average proportion of pauses in a 2s interval post maze rotation (pp), along

with a bias term (b).

Parameters represented weights of the different features for computing

scores of the different response options, separately for positive (+) and neg-

ative (-) outcomes. For each outcome, weights for whole set of attribution
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options were constrained to sum to 0. For the case of binary relabelling of the

responses into “internal” and “external”, the resulting set of parameters (for

the full model):

wwwI+ = (b+,αs+,αpl+,αpnu+,αpc+,αpp+)

for computing the score for internal attributions post win

wwwI− = (b−,αs−,αpl−,αpnu−,αpc−,αpp−)

for computing the score for internal attributions post loss

wwwE+ =−wwwI+

wwwE− =−wwwI−

(R.2)

When labelling parameters in plots, we use, for brevity, the following conven-

tion: if x denotes the feature of interest and o a given outcome, we label αxo

as xo (e. g αs+ will be labelled as s+). For the case of the 4 response options,

the resulting parameter set was:

wwwI+ = (bI+,αsI+,αplI+,αpnuI+,αpcI+,αppI+)

for computing the score for internal attributions post win

wwwI− = (bI−,αsI−,αplI−,αpnuI−,αpcI−,αppI−)

for computing the score for internal attributions post loss

wwwM+ = (bM+,αsM+,αplM+,αpnuM+,αpcM+,αppM+)

for computing the score for attributions to maze post win

wwwM− = (bM−,αsM−,αplM−,αpnuM−,αpcM−,αppM−)

for computing the score for attributions to maze post loss

wwwR+ = (bR+,αsR+,αplR+,αpnuR+,αpcR+,αppR+)

for computing the score for attributions to rotations post win

wwwR− = (bR−,αsR−,αplR−,αpnuR−,αpcR−,αppR−)

for computing the score for attributions to rotations post loss
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wwwL+ =−(wwwI++wwwM++wwwR+)

wwwL− =−(wwwI−+wwwM−+wwwR−).
.

When labelling parameters in plots, we use, for brevity, the following conven-

tion: if x denotes the feature of interest, A a given attribution response option,

and o a given outcome, we label αxAo as xAo (e. g αsI+ will be labelled as

sI+).



Appendix S

Computing feature effects

For a full description of the attribution models see appendix R. We remind

that for the case of the 4 response options, the parameter set of the winning

model was1:

wI+ = (bI+,αsI+,αplI+,αpnuI+,αpcI+,αppI+)

for computing the score for internal attributions post win

wI− = (bI−,αsI−,αplI−,αpnuI−,αpcI−,αppI−)

for computing the score for internal attributions post loss

wM+ = (bM+,αsM+,αplM+,αpnuM+,αpcM+,αppM+)

for computing the score for attributions to maze post win

wM− = (bM−,αsM−,αplM−,αpnuM−,αpcM−,αppM−)

for computing the score for attributions to maze post loss

wR+ = (bR+,αsR+,αplR+,αpnuR+,αpcR+,αppR+)

for computing the score for attributions to rotations post win

wR− = (bR−,αsR−,αplR−,αpnuR−,αpcR−,αppR−)

for computing the score for attributions to rotations post loss

1See glossary for feature definitions and abbreviations
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wL+ =−(wI++wM++wR+)

for computing the score for attributions to luck post win

wL− =−(wI−+wM−+wR−)

for computing the score for attributions to luck post loss.

.

Let x denote the feature of interest; we want to compute its contribution

to choosing attribution option A having encountered outcome o. We denote

this contribution by xAo, e. g sI+ for the contribution of skill to making inter-

nal attributions for wins.

xAo =
1
T

Σt
∂ pt(A)

∂x
|x=0,where

T = total number of trials

pt(A) = the probability of choosing attribution option A on trial t

=
exp(wAo · ft)

exp(wIo · ft)+ exp(wMo · ft)+ exp(wRo · ft)+ exp(wLo · ft)
, where

ft = feature values on trial t.

(S.1)

Thus the derivative of pt(A), seen as a function of x, is evaluated at x = 0,

and values are then averaged over all trials.

An alternative way of computing the contribution of feature x is to dis-

card all other features, reducing the model to biases and x alone, then comput-

ing the derivative of the resulting probability of choosing A after outcome o.

We obtained very similar results for the two ways of computing. In the text of

the chapter, we presented the ones obtained using the first way of computing

xAo.
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