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        Abstract 
 

Transmembrane pores are highly specialised nano-devices, with intrinsic specificity 

and gate-keeping properties that can be exploited in the field of nanobiotechnology. 

Recently, DNA-origami inspired transmembrane pores with tailorable surface 

chemistry and programmable dimensions have been rationally designed in an effort to 

overcome the limitations of protein-based membrane pores such as their fixed lumen 

size and limited structural repertoire. [1][2] Ongoing experimental research into the 

potential applications of triethylene glycol-cholesterol DNA nanopores (DNPs) has 

been fruitful, with a particular emphasis on drug delivery and biosensing. [3] 

 

In this thesis, I describe an ensemble-based coarse-grained MD protocol devised to 

probe the interactions between bilayer lipids and DNPs, and to determine the effect of 

membrane encapsulation and salt concentration on the dynamics, structure and 

conductance of these nanopores. Furthermore, I aim to elucidate the mechanisms by 

which DNPs mediate translocation of small molecules across lipid bilayers, and the 

energetics associated with these mechanisms with constant-velocity steered MD and 

umbrella sampling simulations. I have found that the DNP has no distinct lumen in 

bulk solution, where it adopts a bloated, amorphous structure with strained and 

constricted termini regardless of the salt conditions, with significant kinking and fraying 

of helices. However, salt conditions have a profound effect on the structure of a DNP 

as it spans a planar lipid bilayer, where it assumes a barrel-like structure with a defined 

lumen. Sites of constriction in the lumen of the membrane-spanning DNP present a 

significant barrier to translocation of fluorophores bearing dense negative charges.  
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             Impact Statement 

 
The design of the DNA nanopores studied in this thesis has been under gradual 

refinement since 2015, and different functionalities (e.g. ligand gating and thermal 

gating) have been achieved through the introduction of subtle modifications to the 

archetypal cholesterol anchored six-helix bundle explored here. The published 

experimental studies that preceded and precipitated this computational study mostly 

focused on showcasing the successful implementation of gating functionality in these 

nanopores, highlighting their potential utility in controlled vesicle-based drug delivery 

systems. Until now, the structural and dynamical properties of the nanopores have 

remained unknown, and many aspects of the nanopores’ behaviour in the 

experimental conditions used in the aforementioned studies were poorly understood – 

particularly their response to different salt conditions and their interactions with lipid 

bilayers. The initial binding of DNA nanopores to the surface of lipid bilayers is known 

to occur rapidly, however, the membrane insertion kinetics are very slow, especially in 

solutions of lower ionic strength. Fluorophore translocation through vesicle-

encapsulated nanopores is highly dependent on the net charge of the fluorophore, and 

the nanopore is seemingly able to discriminate between negatively charged 

fluorophores with very similar structural motifs based on the magnitude of their 

charge. Additionally, these nanopores exhibit a preference for curved bilayers over 

planar bilayers, and recent TEM microscopy data have suggested that these nanopores 

are able to remodel lipid bilayers in certain conditions.[4] 

 

The work done for this thesis has provided some putative explanations for these 

observations and has identified features of the nanopore that may give rise to this 

behaviour. These findings should inform future designs with improved insertion 

kinetics and orientational stability within planar bilayers and identify the kind of 

molecular cargo that these nanopores are best suited to transport.  
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Finally, this thesis describes a novel application of an ensemble-based coarse-grained 

molecular dynamics (CG-MD) protocol to extract robust and reproducible data 

concerning the conformational dynamics, ion sensitivity, current-voltage relationships 

and translocational mechanisms of a highly heterogenous DNA origami/membrane 

system. With this protocol, I was able to produce high-quality equilibrium molecular 

models of the DNA nanopore that showed very good agreement with cryo-EM density 

maps produced by our collaborators at Birkbeck College, University of London. This 

work describes the first successful structural characterisation of a DNA nanopore using 

a hybrid CG-MD / cryo-EM approach.   
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Chapter 1 
 
Introduction 

 
Here, I introduce the subject of transmembrane pores and the principles behind using 

DNA to construct synthetic analogues of these pores and discuss their current and 

potential future applications in science, and the experimental techniques that are 

commonly associated with their synthesis and characterisation. DNA nanotechnology 

is an emergent branch of nanotechnology, which seeks to exploit the structural and 

chemical properties of DNA to build modular, programmable structures for 

application in drug delivery, stochastic sensing, engineering and industrial chemical 

synthesis.[5] The foundation of DNA nanotechnology rests on the seminal work by 

Rothemund[6], which describes a one-pot, bottom-up method for designing and 

fabricating highly complex 2D and 3D structures from single strands of DNA, known 

as “DNA-origami”. While the size, complexity and potential utility of published DNA 

origami structures continues to grow, robust and industrially viable technologies based 

on these structures are still in the conceptual phase, for reasons that will be discussed 

later in this introduction. 

 

Gállego and co-workers[7] recently designed and synthesised thiolated DNA origami 

patches for nanolithography of gold surfaces with sub-10 nm precision – a objective 

that had not been attained with other state-of-the-art nanolithography methods. This 

method could in principle be adapted to other materials by altering the 

functionalisation of the DNA origami “stamps” to create metamaterials with 

applications in nanoelectronics and photonics. DNA origami nanostructures have also 

been utilised as components in complex multi-enzyme nanoreactors, whereby the 

nanostructure may act as a platform for the co-assembly of coupled enzymes, such as 

the DNA-tile based nanoreactor for the glucose oxidase/horseradish peroxidase 

enzyme pair designed by Fu et al., and the modular DNA-nanotubule based 

nanoreactor for the same enzyme pair developed by Linko et al. [8] Cross linking 

amino-acids of the protein surface with short, thiolated DNA strands introduces the 

“anchors” on the enzymes, which then hybridise with complimentary strands on the 

DNA origami nanostructure. Application of this methodology to extended cascades of 
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enzymes and cofactors has the potential to revolutionise the production of industrial 

biomaterials and biochemicals, working towards sustainable high-yield flow-based 

biomanufacturing with minimal waste.  

 

Efforts toward the application of DNA nanotechnology in the spheres of drug delivery 

and stochastic sensing are centred around a particular structural motif – the “DNA 

nanopore”, which is the focus of the work described in this thesis. Designed to mimic 

biological protein pores, these DNA nanopores can be incorporated into lipid, polymer 

or solid-state membranes, where they facilitate the passage of small-molecule drugs or 

analytes. Sensing functionality can be introduced through chemical modifications to 

the DNA backbone atoms inside the lumen of a membrane-spanning DNA nanopore, 

and functionality for vesicular drug-delivery systems can be achieved with the 

introduction of ligand, temperature or voltage activated DNA “gates” made from 

located at the termini of a vesicle-spanning DNA nanopore. [1] 

 

Although the sequence-specific base-pairing and folding of helices in a DNA nanopore 

is predictable, working with DNA nanopores in the laboratory presents many 

challenges, due to their intrinsic flexibility and high charge-density. It is reasonably 

simple to design a DNA nanopore with the desired shape and dimensions, but it is 

difficult to predict how it will interact with its environment, and how these interactions 

will affect their functionality. In addition, the narrow application field associated with 

the experimental techniques that have been used to study synthetic DNA nanopores 

interacting with membranes thus far (e.g., single channel current recordings, 

fluorescence microscopy, tracking and localisation microscopy) presents a barrier to 

the advancement of the field. While these techniques have successfully shown that 

these nanopores can associate with bilayers and trigger poration events, it is not clear 

whether or not the nanopores adopt a transmembrane configuration with a persistent 

lumen in a manner that is consistent with biological protein pores such as α-

haemolysin. In order to assess the practical utility of DNA nanopores in drug delivery 

and stochastic sensing technologies, we must understand the key functional features of 

the transmembrane pores that they are designed to mimic.  
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1.1 Transmembrane Pores 
 

Transmembrane proteins make up a huge class of highly specialised biomolecules that 

are designed to carry out a multitude of vital cell processes in prokaryotes and 

eukaryotes. A vast majority of transmembrane proteins function as membrane 

channels, which carefully regulate the uptake and release of ions and hydrophilic 

molecules, and also help coordinate cell-signalling processes. These naturally occurring 

channels are sophisticated architectures of pore-forming proteins which fold in a very 

specific manner, to ensure stability within the membrane and the appropriate balance 

of interactions between the internal lumen of the pore and its cargo, so that 

translocation though the lumen is quick and effective. Transmembrane proteins vary 

in size and structure, but the pores that they form within the membrane are typically 

of nanometer size and are referred to as ‘nanopores’ in the field of nanobiotechnology.  

 

 
 
 
 
 
 
Figure 1.1: (a) Diagram of an alamethicin nanopore [1] from the fungus Trichoderma 

Veridie embedded in a lipid bilayer. (b) An α-haemolysin (αHL) nanopore from the 

species Staphylococcus Aureus. The alamethicin pore is a classic example of an a-helical 

pore-forming peptide, which can form multiple stable oligomers. [8] The bilayers 

shown in these figures are composed of unequilibrated lipids and are therefore not 

representative of the orientation adopted by lipid bilayers upon association with the 

protein pores.  
 

1.2 Engineered and Synthetic Nanopores 
 

Nanopores are of particular interest to scientists for their potential application in single 

molecule detection, DNA sequencing and drug delivery. Their small internal lumen 

size, modifiability, and ability to insert easily into membranes make them ideal 

stochastic sensors. Stochastic sensing with engineered pores is an extremely precise 

method of single-molecule detection – allowing scientists to study individual binding 

a b 
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events in depth, investigate binding kinetics, and detect specific analytes at ultra-low 

concentrations. Nanopores can be genetically engineered to bind a single analyte, or a 

range of analytes by introducing a number of different binding sites. [9] Biological 

pores can be modified both the genetic and chemical level for stochastic sensing 

applications. Binding sites can also be introduced in a very specific manner with 

covalent or non-covalent modifications of specific amino acids inside the pore lumen, 

ensuring optimal interactions with the analyte. This has been demonstrated by the 

Bayley group[10] with α-haemolysin, which was successfully modified with covalently-

attached biotin ligands designed to bind with streptadivin proteins, and with non-

covalently attached b-cyclodextrins to detect a range of small molecules.  

 

 
 
 
 
 
 
 
 

Figure 1.2: Genetically engineered α-haemolysin nanopores designed for stochastic 

sensing of different analytes. The nanopore on the left features a binding site for metal 

ions within the lumen of the membrane spanning region. The nanopore on the right 

contains a binding site for organic molecules. Figure adapted from Bayley at al. [9] 
Bacterial α-haemolysin, fungal alamethicin and bacterial gramicidins were among the 

first biological nanopores to be engineered for stochastic sensing applications. Soon 

after these nanopores proved their efficacy as small molecule detectors, scientists began 

exploring the possibility of using them for DNA sequencing. The idea was first 

proposed in a paper by Deamer and Akeson [11] published in 2000, in which they 

successfully translocated RNA and DNA homopolymer strands through an α-

haemolysin pore embedded in a membrane. Each homopolymer strand produced a 

unique blockade trace during single-channel current recording experiments, and the 

authors were able to detect the transition from a 30-nucleotide block of poly-adenine 

to a 70-nucleotide block of poly-cytosine within a single RNA strand. However, single-

nucleotide resolution was not possible due to the high speed of DNA/RNA 

translocation. [11] 
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Figure 1.3: (a) Cross-sectional rendering of an engineered α-haemolysin nanopore 

translocating a strand of poly-cysteine DNA across a lipid membrane under an applied 

voltage. (b) Single-channel current trace showing the distinct blockade events 

associated with the translocation of the poly-A and poly-C portions of a single RNA 

strand, which impede the flow of current as they pass through the pore lumen. 

However, the current is not blocked completely so a residual current remains, and the 

magnitude of this residual current is specific to the nucleotide that induces the 

blockade. The passage of a poly-A section of DNA through the pore coincides with a 

characteristic drop in current from 126 to 20 pA, while the translocation of poly-C 

sections is associated with a 5 pA residual current. Adapted from Deamer et al. [11] 

 

Nanopore DNA sequencing technology has evolved significantly since then – DNA 

can now be sequenced with single-nucleotide precision, on the go with a handheld 

nanopore-based MinION device produced by Oxford Nanopore Technologies.[12] 

The device features an α-haemolysin pore with a DNA polymerase enzyme attached 

to the “cap” portion of the pore, which processes the “sense” strand and feeds it 

through the α-haemolysin pore at a much slower rate than freely translocating DNA, 

allowing individual bases to be detected. [13] 
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Figure 1.4: An engineered α-haemolysin pore with a DNA polymerase enzyme 

coupled the extracellular cap domain, which slows the rate of DNA translocation 

through the sensing element within the α-haemolysin lumen. Figure adapted from 

Schneider et al. [14] 

 

The vast majority of the work towards redesigning biological pores for such 

applications has been directed towards α-haemolysin, mostly because its structure-

function relationships are well understood and thus site-directed mutagenesis with 

either natural or unnatural amino acids can be executed without affecting the pores’ 

channel forming abilities or geometry.[15] While covalent or non-covalent attachment 

of protein-binding ligands broadens the analyte scope of α-haemolysin in stochastic 

sensing applications, these methods are of little use when designing nanopores to 

mediate the translocation of larger molecules through a lipid bilayer. As a result of the 

narrow lumen (which ranges between 2.7 nm in the cap region and ~ 2 nm in the 

transmembrane region) genetically engineered α-haemolysin pores are only capable of 

transporting small organic molecules and ssDNA. 

 

Single-molecule detection of larger analytes such as human and bovine thrombins 

using Salmonella typhi derived Cytotoxic cytolysin A (ClyA) pores modified with DNA 

aptamers has been achieved in work by Soskine et al.[16] These modified ClyA pores 

were shown to be capable of translocating proteins up to 40 kDa through its 3.8 nm 

diameter transmembrane lumen. A follow-up study[17] by the same group made use 

of a directed evolution approach to yield three different ClyA oligomers (12-mer, 13-

mer and 14-mer) with lumen diameters ranging from 3.3 nm to 4.2 nm. In principle, 

larger protein pores such as twin-arginine translocases and SecA translocases found in 

bacterial secretion systems. However, the introduction of stimuli-responsive gating 

elements for controlled release of substances from vesicle-based drug delivery systems 
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(through ligand activated gates, photo-caging or temperature-gating) has not yet been 

attempted. [1] Redesigning biological protein nanopores to fit a set of desired 

specifications (specific length, lumen diameter, lumen chemistry, hydrophobicity, 

gating functionality) is a lengthy iterative process, whether it be through site-specific 

mutagenesis or directed evolution, modifications with aptamers or site-specific ligands 

or any combination of these labour-intensive techniques. Much of the literature on 

engineered protein nanopores focuses on tuning one key feature of the nanopore, such 

as lumen diameter[16]–[19], or the electrostatic/chemical properties of the lumen[9], 

[10], [20], [21], as tuning multiple properties simultaneously is extremely strenuous.  

This makes de novo design of nanopore from biological protein pores very difficult, so 

interest in synthetic alternatives such as solid-state nanopores and DNA nanopores has 

grown in recent years as they allow for a greater degree of tunability with less effort. 

  

Solid-state nanopores usually consist of an ultra-thin silicon nitride/graphene-based 

membrane, in which holes of a chosen diameter are drilled with electron beams. The 

diameter size, pore length and pore geometry can be tailored to accommodate the class 

of analytes under investigation, and the lumen walls can be chemically modified to an 

extent. However, the quantity, loci and specificity of these modifications are much 

more difficult to control than in protein nanopores. It is also relatively difficult to 

fabricate solid-state membranes that are thin enough to achieve single-nucleotide 

precision for DNA sequencing. In order to distinguish between different nucleotides, 

the membrane thickness must correspond to the length of a single nucleotide ( 6 Å), as 

each nucleotide must occupy the nanopore fully and singularly to exert its 

characteristic current blockade. [9][22]. 

 
 
 
 
 
 
Figure 1.5: A silicon nitride/carbon based solid-state nanopore sensor, used for DNA 

sequencing. The transverse current (it) between the two carbon electrodes indicated by 

white semi-circles is modulated by the passage of individual nucleotides. Adapted from 

Spinney et al. [23] 
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1.3 DNA Nanopores 

 

Ideally, we would like to harness all of the best features of engineered biological pores 

(the specificity, chemical modifiability, and ease of assembly) together with the 

durability and size-tuneability of solid-state nanopores to create de novo nanopores 

which fulfil the specific criteria required for the intended application. [22] DNA is an 

excellent candidate for the design of such nanopores, as the phosphate groups on its 

backbone are easy to modify with simple nucleophilic substitution reactions, and the 

specificity of its base pairing makes the assembly of DNA nanostructures predictable.  

Invoking the principles of DNA origami, a series of complementary scaffold and staple 

strands can be rationally designed to fold into interlacing DNA duplexes, which all 

hybridise spontaneously to form complex three-dimensional structures. [24] The first 

DNA origami structures were being synthesised in the early 2000’s, and were published 

in the groundbreaking 2006 Nature paper by Rothemund. [6] These structures were 

relatively simple, 2-dimensional shapes designed using the “raster-filling” approach, 

where a long single strand of viral DNA is folded into the desired shape, and the 

unpaired bases are filled with smaller staple strands. 

 
 
 
 
 
 
 

Figure 1.6: (a) Schematic showing how staple strands (coloured) hybridize with a 

large scaffold strand (black) to form a network of interlacing DNA double helices. (b) 

TEM images of two-dimensional star-shaped DNA origami structure designed and 

synthesised by Rothemund. Figures adapted from the publication by Rothemund.[6] 

 

DNA nanopores can be designed according to the same protocol, using a specialised 

software package called caDNAno. They can be designed to have a cylindrical, conical 

or even cuboidal shape, and the diameter of the pore lumen can range anywhere from 

2 nm to around 20 nm. [1][3][14][15] Hydrophobic groups can be introduced quite 

easily onto the outward-facing surface of the pore by making chemical modifications 

a b 
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to the backbone phosphate groups or to the strand termini. [15][16] The addition of 

hydrophobic anchors facilitates the insertion of the densely charged DNA nanopore 

into the strongly hydrophobic membrane environment and allows it to reside within 

the membrane for an extended period of time. A number of different anchors have 

been trialled in experiments, ranging from small ethyl groups to large porphyrin rings. 

 
 
 
 
 
 
 
 

Figure 1.7: (a) 2D caDNAno schematic showing the placement of DNA strands 

across the 6 hexagonally arranged helices that make up a 6-helix DNA origami 

nanopore. The 5’ ends are denoted with a square, and the 3’ ends with a triangle. Two 

of the longer ‘staple’ strands (green) are incorporated into all 6 duplexes, and by doing 

so they bind the helices together. (b)  3D representation of the caDNAno schematic. 

Figures adapted from Maingi et al. [28] 

 
The advantages of DNA nanopores over their solid state and biological counterparts 

are numerous. Their tailorability, ability to span biological membranes combined with 

their sensing capabilities makes them more widely applicable than solid-state 

nanopores. Targeted drug delivery is one groundbreaking potential application that is 

currently under investigation. By incorporating ligand-gated or photosensitive DNA 

nanopores into vesicles containing bioactive compounds, the release of drugs/bio-

imaging agents can be localised and controlled, providing a precise method of 

treatment with limited side effects. [3] The residual negative charges on the surface of 

anchored DNA pores gives them the ability to modulate the structure of planar 

membranes, as described in a study by Birkholz et al.[4] which reported observations 

of curved protrusions in DOPC polymer-supported membranes exposed to 

cholesterol-anchored DNA nanopores. The deformation of the membrane was a result 

of re-orientation of membrane lipids such that the positive charged choline moieties 

on the DOPC lipid face the DNA backbone, in an attempt to alleviate the hydrophobic 

a 
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mismatch (discussed in Section 1.4) between the membrane and the nanopore. Given 

their ease of assembly and functionalisation, they could be engineered to target specific 

membranes, and even specific cells, to regulate biological functions like apoptosis and 

cell signalling. [2][1] As interesting as this novel branch of DNA nanobiotechnology 

is, it is not without its limitations. While hydrophobic anchors make insertion of DNA 

nanopores into membranes possible, the process is neither quick nor easy.[3],[4] Some 

of the smaller DNA nanopore designs based on the 6-helix bundle motif (discussed in 

Section 1.5 and shown in Figure 1.16) are not as structurally robust as protein 

nanopores due to the intrinsic flexibility of dsDNA helices, but full structural 

characterisation of these small nanopores has not yet been achieved with experimental 

techniques. There are considerable kinetic and thermodynamic barriers that must be 

overcome in order for the nanopores to adopt an ideal transmembrane geometry, and 

it is difficult to quantify these barriers experimentally. Furthermore, it is difficult to 

ascertain how and why the association of DNA nanopores with the membrane 

influences the orientation of the bilayer lipids to the extent that deformations are 

observed, and determine if/how membrane encapsulation influences the structure of 

the DNA nanopore.[4]  

 

Molecular dynamics methods can be used to probe the interactions between DNA 

nanopores and lipid bilayers in detail, and to calculate the macroscopic properties of 

these systems, allowing us gain insight into the nature of the DNA nanopore/lipid 

interface.[1] 

 

1.4       Hydrophobic Mismatch  

One of the chief factors that dictates whether or not a nanopore will assume a stable 

trans-membrane conformation is the degree of ‘hydrophobic mismatch’ between the 

membrane and the membrane spanning region of pore i.e. the mismatch between the 

thickness of the hydrophobic bilayer and the length of the hydrophobic region of the 

pore. To avoid the energy penalty associated with this phenomenon, most protein 

pores feature a belt of hydrophobic residues in its membrane-spanning region to 

facilitate fast and stable insertion. [30][31]  

From a thermodynamic perspective, it would be ideal if the length of the hydrophobic 

membrane spanning region matched the thickness of the bilayer. However, in nature, 
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this is not always the case, and as a result we observe a phenomenon known as 

“hydrophobic matching” in membrane biophysics. This is a process by which 

membrane lipids re-organise and/or adjust their chain thickness to match the thickness 

of the transmembrane region of the pore. Alternatively, the transmembrane pore could 

tilt, twist its backbone, form aggregates or alter its conformation/orientation within 

the membrane in an effort to reduce contact between its hydrophilic surfaces and the 

membrane. [30][29] Hydrophobic mismatch is said to be ‘positive’ when the 

hydrophobic length of the membrane spanning structure is larger than the 

hydrophobic width of the lipid bilayer, and ‘negative’ in the reverse case. [31] 

Hydrophobic matching is a complex thermodynamic phenomenon, which can be 

understood through the use of Monte Carlo (MC) and molecular dynamics (MD) 

methods. MD simulations can be performed on nanopore/membrane systems to 

extract information on the energetics associated with pore formation and lipid 

reorganisation, and to investigate the interactions between the nanopores and the 

bilayer lipids in detail. [32]–[35]The large-scale MD study of hydrophobic matching 

mechanisms employed by various KALP proteins published by Kandåsamy and 

Larson[31] in 2008 provides an excellent example of this. By systematically altering 

the KALP protein chain lengths and the lipid chain lengths in the bilayer, they authors 

built a series of nanopore-membrane systems, each representing a different mismatch 

condition. The simulations (each between 50 ns and 200 ns long) showed that in 

positive mismatch conditions, there is a strong tendency for the protein pore to tilt 

violently within the membrane to alleviate the mismatch, whereas the negative 

mismatch condition triggers the lipids to reorganise in such a way that causes the 

bilayer to curve while the pore remains relatively static, with lysine residues 

“snorkelling” towards the polar lipid headgroups. [31] While there are several 

published MD studies on DNA nanostructures interacting with lipid bilayers, the 

specific hydrophobic matching behaviours of these nanostructures have not been 

investigated as rigorously as those of membrane proteins, and hence they are less well 

understood. These findings of these studies will be discussed in Section 1.7. 
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Figure 1.8: (a) Example of negative hydrophobic mismatch between a trimeric 

protein and a lipid bilayer. The hydrophobic regions of the bilayer and the protein are 

coloured grey, and the hydrophilic regions are coloured pink/purple. (b)  Example of 

positive hydrophobic mismatch. 

 

 

1.5 Experimental Methods in Nanopore Research 
 

There is a well-established retinue of techniques used in nanopore research, which give 

scientists information about the structure, conformation, permeability, conductance 

and translocational properties of a nanopore. While these methods are powerful in 

their own right, their results are often used in conjunction with simulation data to build 

up a more detailed, comprehensive picture of the dynamical properties of biological 

(and synthetic) nanopores at the smallest timescales, and the effect that these properties 

have on their function.  

 

1.5.1     Investigating Translocational Properties of Nanopores 

 

The translocational properties of nanopores are usually studied both quantitatively and 

qualitatively, using a combination of electrophysiological and microscopic techniques.  

Single-channel current recording experiments (a specific type of electrophysiological 

technique) enable the measurement of the ionic conductance of a single nanopore, and 

also observe single-molecule translocation events.  

 

The planar lipid bilayer technique is the most commonly employed single-channel 

electrophysiological method in nanopore research, with the aim of characterising the 

conductance of the nanopore. The apparatus consists of a chamber divided into two 

compartments (cis- and trans-) holding an electrolytic solution, which are connected by 

a small aperture. The cis- compartment mimics the ‘outside’ of the cell, and the trans- 

a b 
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compartment mimics the inside of the cell. Lipid solution is applied to the aperture 

and a planar lipid bilayer subsequently forms, in which the nanopore is embedded for 

analysis. The aperture size is tailored to the size of the pore being analysed, to ensure 

that the conductance is being measured for one single nanopore. When a voltage is 

applied, ions are translocated through the nanopore exclusively (as the membrane is 

non-conductive) to either the cis- or the trans- side, depending on their charge, and the 

amplitude of the transmembrane current is recorded. The magnitude of the current is 

recorded at a series of different voltages, and a current-voltage (I/V) relationship is 

then plotted. The conductance of a nanopore (the degree to which it can conduct 

electric current, the reciprocal of resistance) is then calculated by taking the gradient 

of the current-voltage relationship.[36]  

 

 
 
 
 
 
 

 

Figure 1.9: A simplified representation of a chip-based apparatus used for planar 

lipid bilayer electrophysiology experiments. The lipid solution forms a bilayer within 

the aperture in the partition between the cis and trans chambers, and the nanopore 

inserts into the bilayer. When a potential difference is applied, a current flows through 

the nanopore, carried by the ions translocating through the pore lumen.  
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Planar lipid bilayer techniques can also be used to differentiate between the closed and 

open states of nanopores that exhibit gating behaviour, such as the voltage-gated ion 

channels that are found in neurons. Altering the conditions of the experiment and 

subsequently measuring the conductance of the pore allows for the investigation of the 

effect that voltage, pH and ionic strength have on the gating properties of the 

nanopore. They are also employed heavily in blockade experiments, which are used to 

study the binding or translocation of molecules to engineered nanopores used for 

sensing. [36] 

 

 
 
 
 
 
 

Figure 1.10: A simplified representation of a blockade experiment based on a 

modified αHL pore to which an analyte (green ball) can bind selectively. When a 

potential difference is applied, current flows through the pore, as the membrane is non-

conductive. The current is perturbed whenever there is a binding event, and a signal 

specific to the particular analyte is observed on the trace. Image adapted from Bayley 

and Cremer  et al. [9] 

 
Confocal fluorescence microscopy is a versatile optical method that can be adopted in 

both a qualitative and a quantitative capacity. In nanopore research, it is often used 

with FRET pairs (which act as ‘spectroscopic rulers’) or simple self-quenching 

fluorescent tags to directly visualise and confirm proper pore insertion and 

confirmation within a membrane/vesicle and to determine the kinetics of insertion. 

When used in dye influx/efflux assays, it can be used to monitor the translocation rate 

of a fluorescent dye through the nanopores and establish influx/efflux kinetics. [37] 
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Figure 1.11: Illustration of a dye efflux assay performed on a ligand-gated DNA 

nanopore embedded in a vesicle containing self-quenching fluorophores carboxy-

fluorescein (red) and sulpho-rhodamine (green). The figure illustrates the ‘unlocking’ 

mechanism of the ligand-gated nanopore and subsequent release of the fluorophore 

molecules from inside a vesicle. The green “key” is a short strand of ssDNA with a 

sequence that is complementary to the red “lock” strand – an ssDNA strand that ties 

together two overhanging loops of ssDNA located on one of the pore termini in the 

nanopores closed state by forming tentative base pairs with them. When exposed to 

the key strand, the lock strand dissociates from the nanopore to form a stable dsDNA 

double helix with the key strand. When the nanopores are opened, the fluorophores 

diffuse through the nanopore from concentration inside the vesicle; where emission is 

low due to self-quenching, to an area of low concentration outside the vesicle, where 

the fluorophores are highly visible under the confocal microscope. Adapted from Burns 

et al. [38] 

 

1.5.2   Structural Characterisation of Nanopores 
 
Due to their very small size, it is difficult to closely analyse the structural properties of 

nanopores using experimental methods. That being said, there some techniques that 

have been successful at providing basic information on the shape, dimensions, 

assembly status and lumen diameter of various biological and synthetic nanopores. 

Transmission electron microscopy (TEM), atomic force microscopy (AFM), and cryo-

electron microscopy (cryo-EM) are three imaging techniques that are capable of 

achieving the sub-nanometer resolution required for examining nanopores. Of these 

three techniques, AFM is by far the most commonly employed method for directly 

visualising nanopores that have been embedded or fabricated within solid supports 

(e.g. mica) or membrane environments. AFM is an extremely high-resolution 

microscopic technique, which allows 3-dimensional imaging of sample surfaces at 

atomic resolutions using a physical probe that scans the sample and outputs 
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topographic information, allowing researchers to take direct measurements of pore 

dimensions in situ. High-resolution AFM typically uses a thin silicon nitride tip (~ 2 nm 

radius at the tip apex) attached to cantilever controlled by piezoelectric drivers to scan 

the surface of the sample, in the presence of a laser, which acts as an ‘optical lever’. 

The forces (attractive and repulsive) between the tip and the surface are measured, 

along with the deflections of the laser beam off the cantilever, and this information is 

processed into a high-resolution 3D image. [39] 

 
 
 
 
 
 
 
Figure 1.12: (a) AFM image of mutant α-haemolysin nanopores on mica. (b) AFM 

image of α-haemolysin on a lipid bilayer. Images taken from Yilmaz and Kobayashi. 

[40] 

 

More recently, cutting-edge cryo-EM methods capable of achieving near-atomic 

resolution have been brought to the fore of biomolecular imaging techniques. The 

basic principle behind these methods is centred on the analysis of specially prepared 

flash-frozen specimens using either traditional transmission electron microscopy, 

electron tomography, electron crystallography, or any combination of these 

techniques. Direct electron irradiation is highly damaging to organic matter, causing 

breakage of covalent bonds and subsequent loss of secondary, tertiary and quaternary 

structure, so specimens must be shielded from the harmful effects in some way. Flash-

freezing samples at liquid nitrogen temperatures coats them in a protective glass-like 

layer of ice, permitting the use of higher electron doses than those that are routinely 

used in traditional TEM. Higher electron doses increase the signal-to-noise ratio 

during the imaging process, and the end result is an ultra-high resolution, artefact-free 

3D reconstruction of the biological structure. Alternatively, averaging across multiple 

images captured under cryogenic conditions with lower electron doses can be used to 

yield reconstructions of similar resolution. [41] 
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Figure 1.13: High-resolution cryo-EM structures of the E. Coli Cytolysin A 

dodecamer (a) Class-averaged 2D image of the dodecamer (birds eye view). (b) 

Complete 3D electron density maps of the dodecamer, reconstructed at a resolution of 

2.8 Å. Figures adapted from Peng et al.[42]  

 

There are other, more indirect methods that can be employed to investigate structural 

properties of nanopores. Differential polymer exclusion is one such method; it uses 

various poly-ethylene glycols (PEGs) of different molecular weights to determine the 

size of the channel lumen. The nanopore is embedded in a planar lipid bilayer within 

an electrophysiology chamber (Figure 1.9), and a transmembrane voltage is applied. 

Separate experiments are then carried out, where a solution containing a specific PEG 

is added to the cis- side of the chamber, and the current trace is monitored for signal 

perturbations. PEGs with a hydrodynamic diameter smaller than the pore lumen will 

enter the pore and cause blockade events, whereas larger PEGs will be unable to enter 

the pore and the signal will be unperturbed. By plotting the blockade level against the 

hydrodynamic diameter of the PEG molecules, the size of the lumen can be inferred. 

[43][44] 
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1.6 Design, Synthesis and Application of DNA Nanopores 
 
Research into the applications of DNA nanopores is still in its youth, but the advances 

and observations described in the recent literature have highlighted a number of 

potential applications. Bell et al published the first of many studies detailing a successful 

application of DNA origami nanopores in early 2012. They designed a large conical 

DNA channel from an 8634 nucleotide-long scaffold strand, combined with 142 staple 

strands, which they embedded into various differently sized solid-state SiN nanopores. 

Single channel current demonstrated that ions could diffuse across the hybrid pore 

freely with an average conductance of ~80 nS. The hybrid SiN/DNA pore was also 

shown to be capable of detecting λ-DNA: short DNA strands harvested from the 

lambda virus. [45] 

 

 

 

 

 

Figure 1.14: DNA origami nanopore designed by Bell et al. Double helices are 

represented as rods, and the overhanging dsDNA strand acts as a thread to guide the 

nanopore into the SiN pore. Figure adapted from Bell et al. [45] 

To assess the practicality of standalone DNA nanopores in contrast to their protein 

counterparts, the translocation of ions through the pores in biological media was 

investigated using chip-based planar bilayer methods. The Simmel group designed a 

slightly shorter cylindrical DNA channel inspired by the structure of aHL, featuring a 

large 54-helix ‘cap’ and a narrow 6-helix transmembrane domain. 

A total of 26 cholesterol-modified oligonucleotides were used to introduce hydrophobic 

anchors into the structure, and these hybridised to ‘adaptor’ strands of ssDNA hanging 

off the bottom of the pre-folded honeycomb cap structure. [46] Using relatively low 

concentrations, the group were able to successfully insert the synthetic DNA channels 

into differently sized POPC SUV’s and planar DphPC lipid bilayers, which they were 
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unable to do without cholesterol anchors due to the hydrophobic mismatch between 

the The reported conductance of the DNA channel was ~0.87 nS; slightly less than 

that of a typical protein pore in the same conditions (~1 nS) and slightly higher than 

the calculated value; an observation that was attributed to lateral conductivity of small 

ions in the cap region, which appeared to have leaky walls. [46] 

 

 

 

Figure 1.15: Schematic diagram illustrating the structure of the DNA nanopore 

designed by the Simmel group. Orange strands within the helices represent modified 

ssDNA strands with cholesterol moieties (orange ellipsoids) attached to the 3’ end. 

Adapted from Langecker et al. [46] 

These early studies on DNA nanopores focussed on their potential applicability in 

sensing and sequencing, and the nanopores used in these studies were quite large, 

bulky, and cumbersome to fold. In 2013, Burns, Stultz and Howorka began looking 

beyond this status quo ante, designing relatively simple but elegant DNA nanopores with 

a broader range of applications. One of their earlier designs consisted of a rationally 

designed six-helix bundle with a hydrophobic belt around the membrane-spanning 

surface comprised of 77 neutral ethyl mercapto groups. [24] 

 

 

 

 

Figure 1.16: (a) 3D representation of the six-helix bundle designed by the Howorka 

group, with the hydrophobic belt shown in magenta. Commercially available DNA 

strands with phosphorothioate (PPT) modifications were sourced for the synthesis of 

the nanopore, and these were reacted with ethyl iodide to yield ethyl-phosphorothioate 

groups. (b) The corresponding 2-dimensional caDNAno schematic of the nanopore. 

Figures adapted from Burns et al. [24] 
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The dimensions of the pore were measured using AFM experiments, which gave a 

length of 21.3 ± 4.0 nm and a width of 10.3 ± 1.9 nm (for pores adsorbed on mica). 

The authors considered the measurements to be in good agreement with the 

theoretical dimensions of 15nm by 5.5nm, when accounting for tip convolution 

artefacts. The artefacts correspond to a broadening in the dimensions of the features 

when the AFM tip radius is similar to or larger than that of the feature. The 

discrepancy between the predicted dimensions and the AFM measurements, and large 

errors associated with the AFM measurements highlighted the that the structural 

properties of these DNA nanopores are likely to highly sensitive to experimental and 

analytical conditions. 

 Single channel current recordings in DphPC revealed a linear current-voltage 

characteristic matching those described in the previous literature on DNA nanopores, 

and the group reported an average conductance of 0.395 ± 0.097 nS. It was noted that 

the nanopores stayed intact and sound within the membrane at voltages up to 200 mV, 

but at higher voltages the pore exhibited gating properties, as suggested by the 

transition from Ohmic to non-Ohmic behaviour in the current-voltage relationship 

past 100 mV – usually indicative of a transition from an open state to a closed state. At 

applied voltages above 200 mV, the nanopores had a tendency to pop out of the 

membrane. [24] Since the initial 2013 design, there have been many iterations of the 

6-helix bundle DNA nanopore. The Howorka group have experimented with many 

alternative arrangements of oligonucleotide strands and used several different types of 

hydrophobic anchor. These nanopore designs had similar overall dimensions and 

conductance values but exhibited a variety of functional behaviors on account of the 

structural differences in their frameworks.  
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Figure 1.17: Examples of different hydrophobic anchors used in DNA nanopore 

designs by Burns et al, with 2D maps below. (a) Cytotoxic ethyl-PPT anchored DNA 

nanopore. Adapted from Burns et al. [47] (b) Tetraphenylporphyrin-anchored DNA 

nanopore. Adapted from Burns et al. [27] (c) A shorter, TEG-cholesterol anchored 

DNA nanopore. [3][29] 

A 2014 study by Burns, Howorka and co-workers explored the possibility of using 

ethyl-PPT DNA nanopores (Figure 1.17a) as therapeutic agents. After incubating the 

ethyl-modified DNA nanopores with cervical cancer cells for 24 hours at a 

concentration of 60 mg mL-1, they saw a 20% decrease in cell viability compared to 

controls. While the study didn’t provide much evidence to suggest that the DNA 

nanopores could specifically target cancer cells, it proved that DNA nanopores with 

hydrophobic anchors are capable of penetrating biological membranes in a manner 

similar to pore-forming toxins such as aHL and gramicidin. [47] 

Different variations of the six-helix bundle design have been used to develop DNA 

nanopores with unique gating properties. The TTP-anchored nanopore shown in 

Figure 1.16(b) exhibited voltage-gating characteristics; adopting a high-conductance 

state at low voltages with an average measured conductance of ~1.6 nS. [43] The 

TEG-cholesterol anchored nanopore shown in Figure 1.16(c) was used as the 

foundation for a ligand-gated DNA nanopore developed by Burns et al and published 

in 2016, and a temperature-gated equivalent published three years later. The locking 

mechanism of the former was irreversible, meaning that the transition between the 

closed state and the open state could be achieved only once, as the application of the 

a b c 
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ligand “key” removed the locking mechanism from the DNA nanopore completely. 

The temperature-gated pore was designed with reversible locking and unlocking in 

mind, and the authors successfully demonstrated that transitions between the open and 

closed state could be controlled through subtle increases and decreases in temperature.  

 

 

Figure 1.18: (a) Ligand-gated nanopore by Burns et al [38].  The figure illustrates the 

‘unlocking’ of the nanopore and subsequent release of cargo from inside a vesicle. The 

“key” is a short strand of DNA, which hybridizes to the “lock” strand. The lock strand 

is an ssDNA strand that ties together two overhanging ssDNA strands located on one 

of the pore termini in the nanopores closed state by forming tentative base pairs with 

them. When exposed to the key strand, the lock strand dissociates from the nanopore 

to form a stable dsDNA double helix with the key strand. (b) Temperature-gated 

nanopore designed and studied by Arnott and Howorka [48] based on the modified 

locking DNA nanopore in a, where the lock stand is covalently bound to the body of 

the DNA nanopore, allowing reversible temperature-induced transitions between the 

open and closed states to occur. Figures adapted from Burns et al [38] and Arnott and 

Howorka [48]. 
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1.7       Molecular Dynamics Simulations of DNA Nanopores 

DNA nanobiotechnology is still an emerging field and hence computational literature 

on the subject is fairly sparse. The first molecular dynamics simulations of DNA 

origami nanopores were performed in 2015; on hand-built all-atom structures that had 

not yet been synthesised by experimentalists, that were based on the 6-helix bundle 

motif popularised by Howorka et al. The Aksimentiev group [49] were among the first 

to model DNA nanopores, and their first simulation study focused 6-helix bundle 

nanopore based on the 6-helix bundle designed published by Burns et al[24] in 2013. 

Ethyl modifications (72 in total, the same number as the original design by Burns et al) 

were added to the backbone phosphates around the central circumference of the barrel 

using the CHARMM software package. Parameters for the ethyl-phosphate groups 

were derived from the CHARMM General Force-field (CGenFF), which were 

prepared for simulation using the NAMD MD code, implementing the CHARMM36 

force field.[49] 

 

 

 

Figure 1.19: All-atom model of the ethyl-PPT modified DNA nanopore designed by 

Yoo et al, after 70 ns of equilibration time. Figures adapted from Yoo et al.[49] 

The goal of their production simulations (of which there was 6 replicas) was to explore 

the local structural fluctuations of the DNA nanopore within a membrane with atomic 

precision, and to determine which factors influence the flow of ions/conductance 

mechanism of the pore. The base pairs located at the termini of the nanopore had the 

highest RMSF values – suggesting that these regions are conformationally non-rigid 

and may exhibit gating behavior. They ran additional production simulations to 

explore the relationship between membrane tension and nanopore conductivity and 

found that membrane compression (high tension conditions) caused the nanopore to 

expand, increasing pore conductance and strengthening the integrity of the DNA-lipid 

interface. Density flow maps revealed that ions moved almost exclusively through the 

lumen at lower voltages, and that higher voltages caused the DNA/lipid interface to 

break down, causing lateral diffusion of ions.[49] 
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In the same year Maingi, Sansom and co-workers[28] conducted a similar 

investigation to that of Aksimentiev et al, but with a specific focus on the lateral 

permeability and gating properties of DNA nanopores in solution, in the absence of a 

membrane. The models were based on a design by Burns et al [24] (Figure 1.15) but 

the hydrophobic anchors were omitted in this study. Four starting configurations were 

selected, and these models were submerged in octahedral solvent boxes, with a KCl 

concentration of 1M. Three of the models were simulated using the AMBER12 MD 

engine together with the AMBERff99+parmbasc0 force-field, and the remaining 

model was simulated using GROMACS alongside the CHARMM36 force-field. 

 

 

 

 

 

Figure 1.20: Starting geometry of the DNT1 model (left), and the final geometry after 

170 ns of dynamics (right). Figure adapted from Maingi et al. [28] 

Production simulation times ranged between 115 ns (AMBER) and 500 ns 

(GROMACS). The low RMSF values at in the midsection of the nanopore indicated 

the pore have a structurally stable lumen, whereas the pore termini had high RMSF 

values, indicating gating characteristics.  The mean square displacements of water and 

ions were used to calculate diffusion coefficients down the lumen, along the principal 

pore axis. The values reported were slightly lower than the diffusion coefficients 

calculated for the bulk solution, and visual inspection revealed that this was due to the 

closure of one of the terminal “gates” due to narrowing of the pore lumen. Further 

visual inspection showed that there was a tendency for K+ ions to reside in the “walls” 

of the nanopore, between the adjacent DNA helices, and for some lateral diffusion of 

ions (perpendicular to the principal pore axis) from the interior of the pore lumen to 

the outer surface of the nanopore. The average pore radius for the four models was 

~0.8nm; close to the expected value of 1 nm.[28] 
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The following two simulation-based studies on DNA nanopores took a departure from 

the six-helix bundle framework and considered two opposite ends of the spectrum. The 

first was based on a nanopore that consisted of a single DNA duplex, and the second 

featured a large DNA-origami porin, similar to the design put forward by the Keyser 

group in 2012. The first study used both computational and experimental data to 

demonstrate that a single 19-base pair duplex bearing 3 porphyrin-based membrane 

anchors (Fig. 1.21) was able to form a pore within a DphPC bilayer through which 

ions could diffuse freely.[26]  

 

 

 

Figure 1.21: Cartoon representation of the TTP-tagged DNA strand spanning a 

DphPC bilayer, showing the movement of ions through the DNA/bilayer interface. 

Figure adapted from Göpfrich et al.[26] 

 

The DNA/membrane model was solvated in a box containing an aqueous solution of 

KCl (1M) and was equilibrated in two steps using the NAMD2 simulation code, with 

CHARMM36 forcefield. Force field parameterisation of the TTP anchors was done 

with the assistance of the CGenFF web-server. For the production phase of the 

experiment, trajectories were collected for a single model over ~600 ns of simulation 

time under a simulated external electric field. Local number densities and ionic 

currents were calculated at different voltages, and these values were used to construct 

current-voltage plots. They reported an average simulated conductance of 95 pS, 

which was corroborated by their experimental value of ~100 pS. Their ionic flux 

magnitudes indicated that ions moved mainly through the DNA, with some diffusion 

of ions between the DNA helix and the bilayer.[26] 
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Figure 1.22:(a) All-atom model of the TTP-DNA/lipid system before equilibration. 

(b) Local densities of lipids (green) and DNA (blue), and ionic currents (streamlines). 

Arrows on streamlines indicate direction of the current flux, which corresponds to the 

positive membrane bias. Black lines correspond to low ionic current flux, and red lines 

correspond to high ionic current flux. Figures were adapted from Göpfrich et al. [26] 

 

Months later, the Keyser and Aksimentiev groups published their second hybrid 

computational/experimental study. The large-conductance, conical DNA-origami 

porin described in their paper [50] had the widest pore lumen ever reported for a DNA 

nanopore, and the largest overall dimensions too. The nanopore featured 19 

cholesterol anchors, which were introduced in the structure using the technique 

previously described in Figure 1.14. Fluorescent confocal spectroscopy experiments 

confirmed that this number of cholesterol anchors was necessary to induce full 

permeation of the nanopores into vesicular membranes. The model-building and 

simulation protocols used for the computational part of the study were similar to those 

used in the previous study by Göpfrich et al [26]. The results of the all-atom production 

simulations (~20 ns at ±100 mV and ~ 50 ns at ±30 mV) were used to construct 

conductance histograms, from which an average conductance of 46.6 nS was 

calculated. The number density plots (Fig. 1.23c) and ionic flux calculations indicated 

that ~80% of ion flow occurred through the pore lumen, while the remaining 20% of 

ion diffusion occurred through a gap at the DNA/bilayer interface. The authors go on 

to address the large variance in their conductance data, which they attribute to 

insufficient sampling; a result of the relatively short simulation timescales they employ. 
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Figure 1.23: (a) Simplified schematic illustrating the structure of the DNA porin 

designed by the Aksimentiev and Keyser groups. (b) All-atom model of the DNA 

porin, before equilibration. c. Local densities of lipids (green) and DNA (blue), and 

ionic currents (streamlines). Colour codes are the same as those used in Figure 2.7. 

Figures adapted from Göpfrich et al [50]. 

 

One of the most detailed simulation-based studies on DNA nanopores to date was 

published in mid-2017 by Maingi, Sansom and co-workers.[25] The focus of the study 

was on specific interactions between the nanopore and the membrane lipids, and the 

effect that they have on the stability of membrane-spanning DNA nanopores. To 

maximise simulation timescales and sampling while maintaining precision, a 

combination of coarse-grained (CG) and all-atom (AA) simulation techniques were 

used. Coarse grained models were built and simulated for up to 1 µs, before being 

converted to their respective AA representations to be further simulated for up to 500 

ns. The subject of these simulations was the ethyl-PPT anchored DNA nanopore 

featured in 2013 publication by Burns and Howorka [3], shown in Figure 1.15. 
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Figure 1.24: (a) Snapshots from AA simulations of the ethyl-PPT anchored DNA 

nanopore spanning the bilayer, illustrating the effect of salt concentration (KCl) on the 

structure of the pore. (b) Snapshot of the same simulation, illustrating the interactions 

of individual POPC lipid chains (green) with the major and minor grooves in the DNA. 

The red spheres represent the hydrophobic ethyl-PPT anchors, which were covalently 

attached to the phosphate groups located on the midsection of the DNA nanopore. 

Figures taken from Maingi et al.[25] 

 

Although previous MD studies [16],[74] suggested the presence of an ion-permeable 

gap in the DNA/membrane interface, close inspection of lipid dynamics over extended 

simulation times (~1 µs) and across 6 replicas revealed that the lipids did in fact pack 

around this particular nanopore, with the fatty acid chains settling within the major 

and minor grooves of the helix. This may have been facilitated by the hydrophobic 

ethyl-PPT groups, or this may be unique to the DNA/POPC system; as the 

characteristics of POPC bilayers are markedly different from those of DphPC bilayers 

due to the nature of their fatty acid chains.[3], [51] One important point these studies 

on DNA/membrane systems fail to address is the reproducibility of their results. They 

do not offer any justification for the duration of their simulations, or the number of 

simulations performed, and hence they cannot comment on the precision of their 

results. Without a robust uncertainty quantification protocol, one cannot determine 

whether or not the sampling of the phase space in a set of simulations is adequate and 

should exercise caution when drawing conclusions from this data. 
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A similar MD study on the interactions between DNA nanopores and lipid bilayers 

carried out by Joshi and Maiti was published soon after. The nanopore under 

investigation was a stackable hexagonal nanotube with “sticky ends” designed and 

synthesised by Wang et al in 2012. [52] The authors built an AA model of a single-unit 

nanotube embedded in a POPC bilayer patch, with no hydrophobic moieties attached 

to the nanotube. The authors explored the influence of different salt conditions on the 

dynamics, conductivity and stability of the membrane-spanning nanotube, and 

characterised the perturbations experienced by the membrane lipids as a result of their 

interactions with the nanotube. Five different salt conditions were explored: no salt, 

0.5 M NaCl, 0.5 M KCl, 1.0 M NaCl and 1.0 M KCl. The time-evolution of the 

average RMSD of the nanotube along with average lipid tilt angles, area-per-lipid and 

ion diffusion coefficients for all four salt conditions were extracted from one-off AA 

equilibrium simulation trajectories, which were run for 205 ns apiece using the 

AMBER MD code with AMBER parameters.[53] Computational current-voltage 

relationships for each salt condition were derived from sets of simulations (five 

simulations, at transmembrane voltages: 10, 20, 50 100 and 200 mV) performed under 

a constant applied electric field.  

 

The authors make clear and distinctive comparisons of conductivity and RMSD 

between different salt conditions, however they do not comment on the errors 

associated with calculated values, making qualitative assessments rather than 

quantitative measurements or predictions. As the simulated nanotube/membrane 

models did not feature any hydrophobic anchors, the authors expected the 

hydrophobic mismatch between the lipid bilayer and the negatively charged DNA 

nanotube to be extreme in all cases. In all salt conditions, they observed a large degree 

of lipid reorientation around the outer surface of the nanotube, with the headgroups 

curving towards the outer surface of the nanotube to form a toroidal lipid pore.[54] 
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Figure 1.25: (a) Minimised structure of the membrane-spanning 6-helix nanotube. 

The nanotube consists of a single unit, where the helices are 74 base-pairs long (~24 

nm along the helical axis). (b) Simulation snapshots showing the orientation of the 

lipid headgroups at the start of the simulation (left), after 15 ns of simulation time, the 

point at which the bilayer equilibrates and forms a toroid around the DNA nanopores 

(middle), and after the full 205 ns of simulation time (right). Figures adapted from Joshi 

and Maiti.[54]  

 

Higher salt concentrations led to an increase in the rigidity of the nanotube by 

decreasing the inter-helix repulsion, which led to a stabilisation of the pore lumen that 

in turn enhanced the average conductance in the high salt (1.0 M) electric field 

simulations. The Na+ was shown to have a higher affinity for the negatively charged 

DNA backbone, and as a result these cations had a greater influence on the rigidity of 

the nanotube than the K+ cations. The simulated average conductance of the 

nanotube in NaCl was lower than that of KCl – another consequence of the higher 

binding affinity of the Na+. The calculated conductances were reported as a range 

(4.31 to 20.64 nS) and validated against a range of previously published experimental 

conductances for various DNA nanopores[24], [46], [49], [50], [55], [56], with the 

authors concluding that their calculated range overlaps well with the range of 

experimental values. Finally, the authors performed an extended one-off simulation in 

the no-salt condition (run for 0.5 µs), to establish whether or not the nanotube retained 

its transmembrane configuration at longer timescales. [54] As this conclusion was 

based on a single trajectory - which is not representative of the ensemble, the reliability 

of this result is indeterminate (see Chapter 2.4).  
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Figure 1.26: (a) Simulation snapshots illustrating the influence of increasing NaCl 

concentration on the rigidity of the nanotube. (b) RMSD plot with respect to the 

minimised structure (Fig 28.a) for all five salt conditions. The average RMSD in the 

absence of salt (black line) was markedly higher than it was in the other four salt 

conditions, which is indicative of the stabilizing effect of monovalent cations on the 

structure of the nanotube. The lowest RMSD/ highest degree of conformational 

stability was observed with 1.0 M NaCl. Figures adapted from Joshi and Maiti.[54] 

Joshi and coworkers expanded on this study in 2019, and published another paper[57] 

focusing on the characterization of the rigidity of the nanotube in these different salt 

conditions (in the absence of a membrane) by calculating the stretch modulus and 

bending angles of the individual helices. They use these calculated values to  provide 

further evidence of the conclusions reported in their previous paper.[54] Although 

errors are reported, they appear to use the same “one-off” simulation protocol as they 

did in their previous study, and they do not comment on the derivation of their errors.  
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Chapter 2 

Molecular Dynamics 
 
MD simulations are the tool of choice for investigating the configurational and 

thermodynamic properties of complex biological systems. They allow us to gain insight 

into microscopic and mesoscopic properties of complex systems that are difficult to 

analyse experimentally. Unlike MC simulations, MD simulations allow us to monitor 

the evolution of the properties of the system over time. For time-dependant processes, 

such as the insertion of a biological nanopore into a membrane, MD simulations give 

a good representation of the configurations that different components of a system are 

likely to adopt at each interval within the process. On the other hand, MC simulations 

generate a probability distribution of likely configurations given a set of conditions 

using random repeated sampling; making them ideal for the study of disordered 

systems. A downside of MD is that within a single simulation, the system can become 

trapped in low energy minima due to the deterministic nature of simulations. 

Fortunately, this can be overcome by using an ensemble-based protocol, which 

involves running multiple replicas of a simulation; each with different starting 

conditions, and calculating ensemble averages for the macroscopic properties of 

interest.[58] 

 

2.1       Introduction to Molecular Dynamics Simulations  

Scientists use molecular dynamics simulations to examine conformational changes in 

biomolecules, determine structure-function relationships and probe the kinetics and 

thermodynamics of biological processes such as ligand binding, protein folding and 

bilayer assembly. By integrating Newton’s equations of motion for all the atoms within 

a system simultaneously, over a series of discrete time-steps – we are able to observe 

how the positions, velocities and various other qualities of individual atoms evolve over 

time by collecting a trajectory.[40]-[41] 

In MD simulations, nuclei are treated as classical particles, therefore the motions of a 

multi-atomic system can be represented in the following fashion: 
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where the second derivative of !! with respect to the time-step ("#) is the acceleration 

of particle $. Dynamics simulations require initial velocities for each atom, and an 

interaction potential/potential energy function must also be defined. An 

approximation of the forces within a van der Waals system can be derived from the 

Lennard-Jones (LJ) potential:  
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where % is the distance at which interatomic/intermolecular potential is zero, & is the 

potential well depth (the depth of which depends on degree of attraction between the 

particles), and !!" is the distance between particles $ and '.  The coulomb electrostatic 

potential between two charged particles $ and ' (usually molecules in MD simulations) 

is described by the following expression: 
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                              (2.3) 

where (! and (" are the charges of the particles, e# is the permittivity of the free space, 

and !!" is the distance between the two particles. For most biomolecular simulation 

systems, which often consist of hundreds of thousands of particles, the calculation of 

the non-bonded interactions (vdW and Coulomb forces) is the most computationally 

demanding part of the simulation, as these forces arise between each individual pair of 

atoms. Hence, the calculation of vdW and Coulomb interactions for each atom ($) and 

its neighbours must be limited to inter-atomic distances between zero and a user-

specified cutoff value, where all atoms falling outside of the cutoff distance from atom 

$ are ignored.  
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This simplification does not significantly impinge on the accuracy of the calculated 

vdW interactions, which decay to zero rapidly as the distance !!" increases. However, 

this is not the case for Coulomb potentials, which have a much longer interaction range 

and therefore a cutoff cannot be applied in the same manner as is done with vdW 

interactions without causing truncation errors.[61]  

 

Several electrostatics schemes have been developed to strike a balance between 

accuracy and computational efficiency, and these tend to fall into one of two categories: 

Ewald summation techniques[62] and modified cutoff-based methods. Ewald 

summation methods treat the electrostatic potential as the sum of two terms; one short-

range, which rapidly decays as the distance !!" 	approaches infinity in real space, and a 

long-range term with a sum that converges in Fourier space. In the widely 

implemented particle mesh Ewald (PME) method, the short-range electrostatic 

interactions are summed for all atom-pairs within a certain cut-off distance. The 

calculation of long-range interactions is done by assigning the individual point charges 

to a grid by interpolation, which is Fourier transformed before the potential energies 

at the grid points are summed. The use of PME algorithms achieves excellent 

numerical accuracy whilst scaling at N ln (N) calculations for a system of N particles.[63]  

 

The reaction-field (RF) method[45]-[46] is a popular modified cutoff-based technique 

that provides a good alternative to Ewald summation, producing results that are 

generally  consistent with the latter technique.[64] In the RF method, a “cavity” 

around each atom/molecule with a user-defined cut-off radius is defined, in which 

Coulomb interactions are treated explicitly, and the region outside of this cavity is 

assumed to be a dielectric continuum (with a dielectric constant eRF). Each cavity is 

polarised by its interactions with the atoms/molecules inside the cavity. This 

polarisation of the media gives rise to an electric field (the reaction field) within each 

cavity. The electrostatic potential energies for each cavity are summed across the entire 

system to yield a total electrostatic potential at each timestep. It is worth nothing that 

while this method is computationally efficient, the combination of explicit and 

continuum treatment of electrostatics can have some negative consequences for 

heterogenous systems with charged surfaces, such as bilayer/nanopore systems in 

solution. In these systems, there are sharp discontinuities in the dielectric constant that 

occur over relatively short distances (e.g., dielectric constant in the hydrophobic length 
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of the bilayer is around twenty times higher than the dielectric constant of bulk water 

surrounding the bilayer), so assuming a uniform dielectric constant can lead to 

inaccuracies in the calculation of electrostatic potential in some parts of the system.[66]  

 

The intramolecular (bonded) terms in the potential energy function of a biomolecular 

system are made up of three key components: bond stretching, angle bending, and 

torsion (bond rotation). 

 
 

 
 
 
Figure 2.1: Illustrations of the three components of the intramolecular potential 

energy terms.  (a)The bond stretching interaction (b) The angle bending interaction 

(c) The torsional interaction. 

 

The sum of these interactions is summarised by the following expression: 
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where *$ , *% and *& are spring, angle and torsion constants respectively, and !'(, +'( 

are equilibrium values. The torsional term (-.!")* − 0) is a function of the torsion 

angle 	.!")*, the number of minima and maxima between 0 and 2p (-) and the phase 

0. The total potential energy function for a biomolecular system is comprised of 

intermolecular terms similar to those described in equations 2.2 and 2.3, summed 

together with the intramolecular terms shown in 2.4, and takes the following general 

form: 
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In MD packages, the exact form of this total potential energy function must be defined, 
along with complementary set of optimised parameters i.e. values for the various 
constants *$ , *%, %, etc for all combinations of atom type in each class of biomolecule. 
The potential energy function and parameter set is referred to as a force-field.[58]–
[60] 
 

2.2       Force Fields  

Biomolecular MD simulations can be performed over a range of resolution scales. The 

resolution scale is chosen in accordance with the process being studied and the 

available resources. In all-atom (AA) forcefields, the potential energy function and 

parameter set describe the interactions between individual atoms. In coarse-grained 

(CG) force fields, small groups of atoms are represented as ‘beads’, and the potential 

energy function and parameters describe the interactions between these beads.  

 
2.2.1     All-Atom Force Fields 

 

There are a number of AA forcefields that are applicable to simulations involving 

DNA. Of these forcefields, CHARMM and AMBER are the most widely used in the 

literature. The functional forms of the potential energy terms are usually very similar, 

but there are differences in the way that individual torsional, VdW and coulomb 

parameters are derived. Force field parameters for individual classes of biomolecules 

are usually derived using a combination of quantum mechanical (QM) methods, 

spectroscopic data, and experimental target data such as water/octanol partition free 

energies, interaction energies and macroscopic quantities of the bulk material e.g. 

densities and melting points. Macroscopic variables of interest from these simulations 

are compared to experimental data, and a range of validity is established. [58] Force 

fields are continuously under improvement, and there have been a number of studies 

comparing the results of one force-field against another, and against experimental data 

for various different DNA systems. [67]–[69] The CHARMM36 forcefield was chosen 

for the study presented in this thesis because it is implemented in both NAMD and 

GROMACS, and it allows novel residues to be parameterised with relative ease using 

the CHARMM General Force-field parameter set.  

 

 



 55 

2.2.1.1 The CHARMM36 Additive Force Field 

 

The earliest incarnation of the CHARMM force-field was delivered as part of the 

CHARMM Biomolecular Simulation Program [45]-[46], which has been in 

continuous development since the 1980s. The parameter table used in the program 

listed parameters for proteins and nucleic acids for use within the program exclusively. 

Eventually, this common parameter table developed into a set of separate CHARMM 

force fields for proteins, nucleic acids, lipids and small drug-like molecules, which were 

made available for implementation within other MD engines over the years. The 

CHARMM36 force field [68] (version 36) is an extensive set of parameters designed 

to describe highly heterogenous systems by uniting all of these separate forcefields, and 

is consistently undergoing development. The form of the potential energy function 

used in the CHARMM36 force field is given as: 
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The first set of summed bond, angle and dihedral terms are explained in Eq. 2.4, and 

the non-bonded pair term is a combination of the LJ and Coulomb potentials (Eq. 2.2 

and 2.3). The Urey-Bradley term is a quadratic function of the distance 6!) between 

atoms $ and *, which are separated by atom ' ($ − ' − *), multiplied by the force 

constant of an imaginary spring between atoms $ and *. It is used in addition to the 
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bond and angle terms in special cases, where it is needed to properly describe certain 

out-of-plane motions in order to successfully replicate the vibrational spectrum of the 

molecule – which is often a target during parameterisation of bonded terms within the 

CHARMM force-field. [46]-[47] The introduction of the spline-based numerical 

correction term for protein chains (CMAP) came as part of an improvement to the 

CHARMM22 protein parameters. It was developed through the use of ab initio QM 

calculations and structure-based potentials of mean force, to correct systematic errors 

in the description of protein backbone by the potential energy function, which would 

result in discrepancies ( around 1 kcal/mol) between computed and experimental 

values for the free energy of hydration for each amino acid. [71] As force fields may 

differ in their functional forms or in their parameterisation schemes, it is generally not 

a good idea to mix parameters from different force fields.  

 

The bonded parameters in the CHARMM force-field are usually based on equilibrium 

bond lengths and angles obtained from electron diffraction, X-ray diffraction and 

vibrational spectrum data for a selection of gas-phase and crystalline model 

compounds. The parameterisation scheme for intermolecular parameters is an 

iterative one; initial values for each initial parameter within the potential energy 

function are calculated using QM and MM methods for each model compound and 

then adjusted (either manually or automatically) until agreement with a varied spread 

of experimental data pertaining to the model compound is reached, over the course of 

many MD simulations. The earliest parameterisation of b-DNA within CHARMM 

heavily on data taken from crystallographic structures and QM calculations, and over 

the years it became apparent that the bII conformation of DNA was under-represented 

in simulations, which resulted in inaccurate calculated DNA-protein interactions that 

did not line up with experimental observations. The variation of phosphodiester 

torsions results in the emergence of two equilibrium b-DNA confirmations (I and II), 

which have profound effects on the twist, roll and base-pair displacement of DNA – all 

factors that influence the binding of DNA to proteins. NMR data provides crucial 

information concerning the equilibrium populations of BI and BII in different solvent 

conditions, so these data became an important target in later iterations of the 

CHARMM DNA forcefields (CHARMM36), where the phosphodiester torsions were 

tuned to align with these observations.[68] The more experimental data available for 

validation, the more accurate the force field.  
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2.2.1.2   The CHARMM General Force Field 

 

The CHARMM General force field is an organic force field developed to be 

compatible with the CHARMM36 biomolecular forcefield, to facilitate biomolecular 

simulations involving small drug-like organic molecules interacting with larger 

biomolecules e.g. drugs binding to protein receptors, or polymers interacting with lipid 

bilayers. Organic force field parameters are typically derived using different sets of 

experimental target data from those used for the derivation of biomolecular 

parameters, and the functional forms of these two classes of force field are usually 

dissimilar. CGenFF uses the same functional form as CHARMM36 and was 

parameterised with an emphasis of reproducing the vibrational spectra and crystal 

structures for a large set of model compounds that sufficiently describe the majority of 

chemical space and relies heavily on QM calculations. The CGenFF program can then 

be used to assign CGenFF parameters to input molecules by analogy, and the resulting 

parameters can be validated with QM calculations if necessary. Speed and simplicity 

are important features of its parameterisation scheme; this allows the user to expand 

the force field to a large number of new compounds with relative ease. [73] 

  

The CGenFF program consists of a series of algorithms responsible for bond 

perception, atom typing, derivation of partial charges, and bonded parameter 

assignment, combined with penalty scoring. The CGenFF force-field contains a library 

of non-bonded and bonded parameters covering a broad range of chemical functional 

groups, which are assigned to the input molecule/fragment by analogy. In the first 

stage of parameter assignment, a decision tree is used to categorise the atoms of the 

input molecule/fragment into atom types. Each combination of adjacent atom types 

has a set of nonbonded parameters associated with them, and these parameters are 

assigned automatically during atom typing. The program then assigns appropriate 

bonded parameters from the force field by analogy. Partial charges then are assigned 

using a bond-charge increment scheme, starting with an initial assignment of a charge 

to an atom based on the identity of the atom. Charge increments associated with each 

bond, angle or dihedral the atom participates in are then added or subtracted to each 

atom’s charge to give the final partial charge. Each bond parameter and partial charge 

assignment is given a penalty score to quantify the dissimilarity between the assigned 
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atom type and the actual atom type. Models generated by CGenFF will have a 

combined penalty score associated with them; a low score indicates that model is a 

good approximation of the molecule, and a high score advises that QM validation and 

further refinement of parameters are required.[74], [75] 

 

 

2.2.2     Coarse-Grained Force Fields 

 

The use of CG forcefields decreases resolution and degrees of freedom in a dynamic 

system by lowering the number of individual particles and flattening the potential 

energy landscape. This allows a larger time-step to be used, and so CG biomolecular 

simulations are much faster and more affordable than their AA counterparts, making 

microsecond-scale or ‘slow’ dynamics much more accessible with CG force fields. They 

are also used to overcome size issues, where the system is too large and complex to be 

simulated and sampled sufficient with AA methods. and small motions and individual 

interactions between atoms can be neglected e.g. simulations of entire viral capsids[76] 

or photosynthetic membranes in chloroplasts[77]. Additionally, the reduced cost of 

CG simulations force fields allows us to perform ensembles of simulations on average-

sized biomolecular systems, providing more precise and reproducible results.  

 

Parameterisation of CG force fields can be achieved using three different approaches; 

a bottom-up’, ‘top-down’ or mixed approach. Bottom-up approaches use structure 

based coarse-graining methods, in which parameters are extracted from reference AA 

simulations using inverse Monte-Carlo, force matching or iterative Boltzmann 

inversion methods.[78] Top-down approaches parameterize by calibration against 

experimental thermodynamic data, with a specific emphasis on reproducing specific 

thermodynamic properties. Mixed approaches use a combination of both bottom-up 

and top-down methods. [79]  

 

There are many biomolecular CG force fields in use today. Some are used widely for 

a range of biomolecular simulation problems, such as the extremely popular 

MARTINI force field – which was designed to be applied to highly heterogenous 

systems, with a mapping scheme that allows the user to generate custom parameters 

for chemically modified biomolecules or small molecules. Some force fields are 
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parameterised and mapped to solve very specialised problems, or to analyse specific 

systems where general CG force fields such as MARTINI may not provide the right 

level of detail. The PaLaCe [80] force field is a pseudo coarse-grained forcefield 

designed to model the spontaneous folding and force-induced conformational changes 

of proteins, parameterised using conformational probability distributions generated 

from a large database of protein crystal structures. It uses a two-tier mapping scheme 

in which each residue is represented by three CG pseudo-atoms during calculation of 

non-bonded interactions, meanwhile the individual atoms of the side-chains and 

backbone are treated explicitly for the calculation of bonded interactions. This tiered 

approach that utilises different levels of granularity in one simulation is common to 

many force fields and is often referred to as multi-scale modelling.[81] For the CG 

studies described in this thesis, only a single level of granularity was used for all 

components of each simulation system, which were modelled with the MARTINI force 

field.  

 

2.2.2.1     The MARTINI Force Field 

 

The MARTINI forcefield is the most widely used CG force-field for biomolecular MD 

simulations.  It features parameters for proteins, DNA, carbohydrates and lipids, 

making it ideal for simulating heterogenous systems. The earliest iteration of the force-

field was designed for simulations of solvated lipids and used a standard 4-1 heavy 

atom-to-bead mapping.  Each bead was designed to model a different chemical 

‘building blocks’ with different charges, masses and thermodynamic properties. The 

intrinsic properties and nonbonded interactions of the beads were parameterised using 

a top-down approach, with a focus on successfully replicating partition free energies 

between water and organic solvents for a broad range of molecules. The CG bonded 

parameters (force constants and equilibrium values) were derived using a bottom-up 

approach, with manual tuning of the CG bonded terms until a satisfactory overlap 

between the CG bond/angle/dihedral distributions and the corresponding AA 

distributions was established. During this process, care was taken to ensure that the 

CG bond length/angle/dihedral values did not extend beyond the range of the AA 

distributions. [82]–[84] This is similar to the methodology used in the parameterisation 

of the GROMOS all-atom force-field [85], and the coarse-grained OxDNA model. 
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In the original MARTINI force-field, the beads were classified according to four 

‘types’: polar (P), non-polar (N), apolar (C), and charged (Q). The bonded terms 

between chemically connected beads are modelled by weak harmonic potentials 

almost identical in form to those described in equation 2.4.[82] Non-bonded 

interactions between beads are described by the Lennard-Jones potential (2.2), and 

electrostatic interactions are modelled by the standard Coulomb potential (2.3). LJ 

interactions between chemically bonded beads (nearest neighbours) are typically 

excluded, but interactions between second nearest neighbours are not. The parameters 

associated with LJ and coulomb interactions of the various bead types are described 

by an interaction matrix, with different ‘levels’ of interaction: attractive (I), semi-

attractive (II), intermediate (III) semi-repulsive (IV) and repulsive (V). Each level of 

attraction is defined by a different set of values for	% (distance at which potential is 

zero), & (potential well depth in the LJ potential) and E# (permittivity in the coulomb 

potential).[45]-[46] The introduction of special bead types (S and T prefixed) with 

reduced LJ parameters in later iterations of the force field facilitated the correct 

modelling of small ring structures. These reduced parameters dampen the repulsive 

forces between covalently bound beads, allowing them to come together more closely 

– resulting in more stable and compact models.  

 

The modelling of water and ions makes many approximations. As these particles make 

up the vast majority of most CG biological systems, and interactions between biological 

polymers such as DNA and proteins are critical to their structure and function, it is 

important to understand how these approximations may affect the behaviour of the 

simulated system. MARTINI ions consist of a single charged (Q-type) interaction site, 

which represents the ion and the first hydration shell. As all ions are represented by 

the same bead type, there is no distinction between ions of different sizes. The standard 

MARTINI bead has a diameter of 5.2 Å, which is close to the diameter of a hydrated 

sodium ion (~ 5 Å, as determined by Monte Carlo simulations of water/ion 

systems[86]), thus the MARTINI model provides a faithful representation of sodium 

ions, but less so for smaller or larger ions. Under- or over-estimation of ion diameter 

may lead to an under- or over-representation of ion coordination to chelating 

biomolecules such as DNA.   

 



 61 

The current version of MARTINI provides two water models, the original non-

polarisable model[83] and the polarisable water (PW) model that was developed in 

2010.[87] The original water model mapped four water molecules to one MARTINI 

water bead,  which consisted of a single interaction site thus neglecting dipoles, opting 

for implicit electrostatic screening and a uniform dielectric environment. As the 

collective motions of individual dipoles in water generate powerful cooperative forces 

that drive protein folding, lipid membrane formation, DNA hybridisation and fraying, 

this simplification can lead to a gross misrepresentation of the of biomolecular systems. 

This necessitated the development of the PW model, which uses the same mapping (4 

water molecules to one bead) but models the bead with three interactions sites (Fig 2.2) 

– one neutral, one with a charge of +q and another with a charge of -q. These charged 

particles can rotate around the central interaction site in response to interactions with 

other charged particles within the system, altering the dipole momentum of each bead 

as they do so. Hence, the orientational polarisability of bulk water is accounted for with 

the PW model.[87] 

 

 

 

 

 

 

 

 

 

Figure 2.2:  MARTINI models of water. The bead on the left illustrates the non-

polarisable water bead, modelled by a single neutral interaction site, and the bead on 

the right shows the polarisable variant, modelled by three interaction sites. The 

distance l between the central W site and the charged WP/WM sites, the equilibrium 

angle q and force constant Kq are constrained to control the rotation of WP and WM 

particles and control the distribution of the dipole momenta. Image adapted from 

Yesylevskyy et al. [87] 
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While the PW model succeeded in facilitating the CG simulation of processes such as 

electroporation and solvent transport across ion channels with similar accuracy to AA 

simulations, it was established that the model does not sufficiently sample the range of 

dipole moments available to water molecules when compared to AA force-fields [87] 

However, the motivation of the MARTINI model is to mirror the bulk properties of 

the system in question, and the PW model does this to an extent. The freezing 

temperature of polarizable MARTINI water is still too high (280-285 K), and surface 

tension (30 mN/m) too low. Also, the implicit hydration shell in CG ions results in a 

short-range repulsion between positive-negative ions pairs, but this is compensated for 

by increasing the magnitude of q. Nevertheless, the model reproduces the overall 

dielectric constant of water at 300K well, and the temperature dependence of these 

properties is also reflective of what is observed experimentally. The hydration and 

partitioning free energies of the various CG bead types in a water/hexadecane system 

and a water/DPPC bilayer system have been investigated extensively and discussed in 

the 2010 MARTINI paper on the PW model. The authors demonstrated that the 

model provides the level of electrostatic screening required to realistically describe the 

movement of charged particles from water to a low dielectric medium (membrane 

interior) at a level comparable to atomistic models.[87] It is worth noting here that 

atomistic water/ion models are not without their limitations.  It is unclear how 

accurately polarisable AA water models can reproduce the distribution of dipole 

moments, and because of this a dielectric continuum is applied outside of the cutoff 

distance. 

 

As a result, the long-range electrostatic interactions between ions and highly charged 

molecules are masked, and an artificial clustering of ions is sometimes observed. [87]–

[89] The MARTINI force-field has been successfully employed to model the 

interactions between different classes of biomolecule, in a range of biological systems. 

In CG MD studies of proteins, carbohydrates and polymers embedded in lipid bilayers, 

the simulation data acquired with the use of the MARTINI force-field usually correlate 

very well with experimental data.[90]–[92] There have been very few MARTINI CG 

studies on a DNA/lipid systems to date[25], and those that do exist do not discuss the 

reproducibility or uncertainty of their results. Hence, we cannot have complete 

confidence in the reliability of the MARTINI force-field in such systems, so caution 
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must be taken when interpreting the data produced by these simulations, and 

appropriate validation of results against experimental data/atomistic data must be 

performed. 

 

2.2.2.2     Parameterisation of the MARTINI DNA Force Field 

 

The extension of the MARTINI forcefield to DNA necessitated the introduction of 

new ‘tiny’ beads (T-prefix) to correctly model the nucleobases and facilitate base-

stacking, and these typically have a 2-1/3-1 atom-to-bead mapping, and interact with 

each-other with a reduced LJ parameter (s = 0.32) while interacting with standard and 

S-type beads of Each tiny bead involved in hydrogen bonding was given a unique bead 

assignment, and their properties were tuned in a way that ensured that the energy of 

their interactions with each-other closely resembled the energy of the hydrogen bonds 

between those bases. To ensure the persistence length and double-helix structure of 

dsDNA is preserved throughout simulation, an elastic network of restraints was 

constructed – illustrated below. The elastic restraints can be thought of as flexible 

bonds that link each pseudo-atom to all surrounding pseudo-atoms within a certain 

cutoff distance. In the “stiff” elastic network, these restraints are applied to all beads 

within each nucleotide, which limits the flexibility of the base pairs and the backbone, 

whereas the “soft” elastic network allows for more flexibility in the motions of bases as 

these beads are not restrained.  

 
 
 

 

 

 

 

Figure 2.3: (a) Atom-to-bead mapping used in the MARTINI DNA force-field. 

Adapted from Uusitalo et al.[84] (b) Ball-and-stick representation of the stiff elastic 

network of restraints used to maintain the structure of base pairs in dsDNA. The elastic 

restraints are flexible bonds that link each pseudo-atom to all surrounding pseudo-

atoms within a certain cutoff distance.  Adapted from Khalid et al.[93] 

b a 
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The longest step in the parameterisation of the DNA model was the tuning of the non-

bonded parameters. The parameters were tested by calculating free energies of 

partitioning (water to octanol, water to chloroform and water to lipid bilayer) for each 

CG nucleobase and comparing the CG values to both experimental and atomistic 

values.  
 
 

 

 

 

 

Figure 2.4: Partition free energies of nucleobases for (a) water-chloroform system 

and (b) water-octanol system. n-Octanol is used as a crude membrane-lipid mimic. 

Adapted from Uusitalo et al.[84] 

While the MARTINI DNA model does not completely replicate the experimental 

partitioning free energies of the nucleobases, Figure 21 shows that the absolute error 

associated with the MARTINI CG partition free energies are comparable to those 

associated with the partition free energies yielded by AA forcefields. The 

water/membrane partition free energies for the MARTINI CG and various AA 

forcefields were all in excellent agreement with each other. Additional potential mean 

force (PMF) profiles were constructed for base-base interactions in water, to the energy 

landscapes of base stacking and base-pairing interactions. The calculated CG base-

pairing and base-stacking energies were compared to their AA counterparts, and the 

base-stacking CG PMFs closely resembled the AA PMFs. On average, the CG base-

pairing free energy values were lower, but they followed the same order as the AA 

energy values. While this is a considerable limitation, it is an inevitable effect of the 

granularity of the CG model – as increasing the base-pairing interactions would 

adversely affect the base-stacking energies. Overall, the MARTINI DNA model is 

robust enough to conserve the structure of dsDNA, and the top-down parameterisation 

of the beads with the use of water-lipid partitioning data makes this model suitable for 

modelling of DNA origami structures in the presence of lipid membranes.[79], [84] 
 

a b 
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2.2.2.3 Mapping AA Models to MARTINI 
 
The MARTINI model allows CG systems to be built by mapping existing 

biomolecular AA structures to their coarse-grained representation using an auxiliary 

programme called martizine.py.[94] The program uses standardised mapping schemes 

for water, ions, lipids, proteins, DNA (Figure 2.2), allowing heterogenous to be built 

easily in an automated fashion. If a simulation system features non-standard residues 

or organic molecules, additional steps must be taken to generate MARTINI CG 

parameters for these custom system components. MARTINI parameterisation tools 

such as PyCGTool [95] provide an elegant solution; the user feeds in an atom-to-bead 

mapping scheme and a bonding scheme describing the connectivity of the beads, and 

once this information has been loaded the program parses the input reference AA 

simulation trajectories. Non-bonded parameters are assigned according to the 

mapping and bonding information provided by the user, and bonded parameters are 

extracted from the reference AA simulations, making use of the Boltzmann inversion 

method to derive coarse-grained bonded potentials. The output is a GROMACS 

compatible structure and topology file, ready for incorporation into larger simulation 

systems. The insane.py [96] script is another auxiliary tool commonly employed for the 

construction of heterogenous MARTINI systems – it allows the user to solvate their 

custom CG molecules and proteins/nucleic acid structures in water (standard 

MARTINI water model or the polarizable water model), and/or insert CG 

macromolecules into pre-equilibrated CG lipid bilayers membrane simulations.  

 

2.3       Integration Algorithms 

The most frequently employed algorithms for integrating the equations of motion are 

all based on the Verlet integration algorithm. It uses randomly assigned initial 

velocities generated from the Maxwell-Boltzmann distribution together with the force-

field parameters to calculate the force on each particle, according to equation 2.6. The 

force is then used to calculate updated positions and velocities at the next timestep ( 

D#). [58], [78] 
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There is no explicit velocity term within the Verlet algorithm, which leads to a loss of 

precision, and there is also a tendency towards truncation errors. To address these 

limitations, the leap-frog integration algorithm was developed. It is a variation of the 

Verlet scheme, and is used as the default integrator in the GROMACS MD code.[58], 

[97]–[99] 
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where !!LE is the position of particle	$ at time  # + D#,  M!L!"
 is the velocity of particle $ 

at time  # + E
.
D# and M!>!"

  is the velocity of particle i at time # − E
.
D#. One drawback 

of this algorithm is that the position and velocity of a particle at a particular time-step 

cannot be calculated at the same time. The NAMD engine makes use of the velocity-

Verlet algorithm, which updates positions and velocities in the same step without loss 

of precision. [100] It is executed in three steps, which are summarised by the following 

two relationships: 
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2.4       Thermodynamic Ensembles 

At present, biomolecular simulations are only capable of reproducing the behaviour of 

biomolecular systems at time and length scales in the nano/micro regime, purely 

through the calculation of microscopic quantities i.e. positions and velocities of 

individual atoms. From this data, we can extract information about the macroscopic 

behaviour of the system through the use of statistical mechanics.  

 

The idea of the ‘ensemble’ in statistical mechanics is central to the correct 

interpretation and understanding of MD simulation data. An ensemble can be thought 

of as a collection of all the possible microscopic states of a system that give rise to the 
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same macroscopic or thermodynamic state. The microscopic state of a system is 

defined by the atomic positions and momenta, and these quantities can be considered 

as coordinates on a 6N-dimensional space known as a phase space. The macroscopic 

state of the system is defined by three mechanical properties of the system that can be 

controlled independently. This is usually some combination of: the number of particles 

(N), the volume (V), pressure (p), temperature (T) and internal energy (E). By keeping 

three of these variables constant, we define the ‘experimental conditions’ or ‘phase’ of 

the biomolecular simulation, and we define the ensemble. [61]-[62] 

 

 

 

 

Table 2.1: Common ensembles used in MD simulations.[101] 

An MD simulation will produce data that corresponds to different points on the phase 

space as a function of time, all within the same ensemble. For example, each replica 

within the NVT ensemble will have a different configuration, but they will all have 

identical values for N, V and T. The macroscopic variables of interest i.e. free energy, 

interatomic distances etc are as calculated as ensemble averages, according to the 

following general relationship: 
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                          (2.11) 
where N is the variable of interest, N' is the number of sampled configurations of the 

system within the ensemble, and N! is the value of N for the $th configuration.[85], 

[103] For each configuration, N!  is a function of the positions and momenta of the 

particles in the system. As it is not realistic to calculate the ensemble average of a 

variable as the average over all sampled configurations, we classify these configurations 

as being in a particular ‘state’ and calculate the probability P of the state from the 

number of configurations that exist in the particular state. Hence, the following expression 

Ensemble Name Fixed Variable Conditions 

Microcanonical NVE Closed system in vacuum 

Canonical NVT Closed system in heat bath 

Isothermal/Isobaric NPT Open system in heat bath 
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can be derived from equation 2.11: 

	

CB6><5 =	 ⟨!⟩627689:6 = GHJ!C! 	
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!H#

I	

                            (2.12) 
 
One important point to note is that for non-kinetic systems, the ensemble average of a 

variable is the same as its time average: 

 

⟨!⟩;<=;>?@; = 	 ⟨!⟩AB>; 
                            (2.13) 
 
where ⟨N⟩+!M' is the time averaged over infinity. This is known at the ergodic 

hypothesis, and it is only truly valid for systems already in equilibrium. In the context 

of biomolecular MD simulations, calculating all the possible states of the system at a 

single point in time is not possible, and neither is simulating at an infinite timescale. 

For a complex biomolecular system approaching equilibrium (e.g. a protein 

undergoing conformational changes, or a ligand binding to a protein), the evolution of 

the trajectory is sensitive to the initial conditions. While such a system can be 

considered ergodic, this sensitivity to the starting conditions is ignored in the ergodic 

hypothesis. Two or more trajectories with the same starting configuration but different 

initial velocities may diverge exponentially with time, and this has been proved in 

numerous ensemble-based MD studies.[90], [104]–[107] Hence, it is inappropriate to 

assume that the results from a single trajectory are truly representative of the ensemble 

if it simulated for ‘long enough’. One must establish an appropriate simulation length; 

where the macroscopic variables of interest are permitted to evolve and approach 

equilibrium, and an appropriate ensemble size consisting of multiple ‘replicas’ with 

different initial conditions. An ensemble of sufficient size and duration will give a 

converged and therefore reproducible ensemble-averaged value for the macroscopic 

property of interest, with minimal errors. Ensemble-based protocols have been 

employed in several biomolecular MD studies for a broad range of problems, from 

calculating binding affinities of drugs to predicting inter-helix distances of G protein-

coupled receptors in membranes. [90], [107] 
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2.5       Temperature and Pressure Coupling 

The data collected from MD simulations of biomolecular/biological systems are only 

meaningful if the simulation conditions are reflective of real-life experimental 

conditions. Hence, it is common practice to run production simulations in either the 

canonical or isothermal/isobaric ensemble, and these require temperature and 

pressure control through the use of thermostats and barostats. Thermostats work by 

ensuring that the average temperature is equal to the desired temperature, whilst still 

allowing the total kinetic energy to fluctuate. More specifically, the rate of change of 

the particle velocities is controlled by modifying Newtons second law. This is often 

done through the use of the Langevin equation: 
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                            (2.14) 
where 0!(#) is the specified frictional damping coefficient and S!(#) is the stochastic 

force experienced by particle $ at time #, which is randomly assigned at each 

timestep.[59], [97] The Langevin thermostat is commonly implemented in the NAMD 

[100] molecular dynamics engine. The Berendsen weak-coupling scheme [108] uses 

velocity-rescaling to fix the average temperature to the desired value, and this forms 

the basis of the Berendsen thermostat used in MD engines such as NAMD and 

GROMACS. At each time-step, the algorithm multiplies the particle velocities by the 

following scale factor:  

 

M = 1 +
D$
N
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− 14 

                            (2.15) 
where T is the time-coupling parameter, which dictates the extent of temperature 

fluctuation. For larger systems, this thermostat produces roughly the same temperature 

fluctuations as what would be expected in the canonical ensemble, and hence it is often 

used for equilibration.[60], [109] The velocity-rescaling thermostat implemented in 

GROMACS is a modified version of the Berendsen thermostat, which adds an 

additional stochastic term to the kinetic energy distribution of the system, allowing 

accurate sampling of the canonical ensemble. [63][110] Just as thermostats couple the 
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system to a heat bath, barostats couple the system to a ‘pressure bath’. The pressure 

bath is introduced by modifying the equations of motion to include an additional 

degree of freedom. The pressure (U) is related to the box volume (V) and the inner 

virial ( Ξ	) of the system according to the Clausius virial theorem: 

 

P = 	
2
3R

(SK − 	Ξ) 

                            (2.16) 
 
where X) is the kinetic energy of the system and the inner virial is defined by pairwise 

inter-particle distances and forces. [111] The Berendsen pressure-coupling 

algorithm[108] (supported by NAMD and GROMACS) rescales the box vectors and 

distances between individual particle coordinates at each time-step with a scaling 

matrix, which alters the virial, allowing the average pressure to be controlled 

throughout the simulation. This results in a first-order relaxation of the pressure 

towards to the desired pressure. As the Berendsen barostat doesn’t allow the box shape 

to change, and it cannot accurately sample the NPT ensemble, so it is often used for 

equilibration rather than production simulations. The Parrinello-Rahman barostat 

[112] is often used for production simulations, as it does yield a true NPT ensemble. It 

treats the box vectors individually, adding an additional degree of freedom, which 

allows the shape and size of the box to change throughout the simulation.[63] 

2.6       Uncertainty Quantification in Molecular Dynamics Simulations 

As discussed previously in Chapter 2.4, macroscopic properties of a simulated system 

are calculated as ensemble averages of instantaneous microstates – which may vary 

significantly over time, and across multiple replicas. Due to the deterministic nature of 

MD simulations, the initial velocities that are assigned to the particles in a system will 

dictate which microstates the system will occupy over time. At the same time, the 

temporal evolution of an individual trajectory is stochastic, meaning that neighbouring 

trajectories with different initial velocities are often divergent. Increasing both the 

ensemble size (i.e. the number of replicas) and the replica length will maximise the 

sampling of microstates. Therefore, we must determine a sufficient simulation 

timescale for each replica, and an appropriate number of replicas (N) to ensure a 

reproducible result with minimal uncertainty, such that running N+1 would not alter 

the behaviour significantly. When the ensemble-averaged value of a macroscopic 



 71 

variable and its associated error remains stable despite further increases in the 

ensemble size, it is said to be converged.  

An appropriate statistical protocol is required to quantify the errors associated with 

observable quantities that have been calculated from a simulated ensemble. I have 

employed the bootstrap method [82]-[83] for calculating the standard error of the 

mean, which provides a good estimate of the errors associated with ensemble-averaged 

macroscopic properties of the simulated systems. This statistical technique involves 

random sampling with replacement from a set of N data points generated from an 

ensemble of N simulations; a process which is repeated 10,000 times to generate 10,000 

bootstrapped samples, each containing N data points. The mean of each bootstrapped 

sample is calculated, and the standard deviation of the distribution formed by the 

means is taken as an estimate for the standard error of the mean (SEM).[107] This 

statistical method has been utilised successfully in many ensemble-based all-atom MD 

studies [104]–[106], [115]–[118], where the typical simulation duration is fairly short 

(4 – 20 ns), but its use in CG studies at longer timescales has not yet been reported. In 

this work, I have achieved similar success to previous AA studies, in terms of error 

control and reproducibility. 

2.7       Aims 

The simulation work described in the following chapters aims to deepen our 

understanding of the structure, dynamics, membrane interactions and transport 

properties of the TEG-cholesterol anchored DNA nanopore (henceforth referred to as 

DNP) that was first published by Burns et al[38] in 2016 (shown in Fig. 1.16c). The 

design of this nanopore is much simpler than previous generations; it uses simple 

oligonucleotides of equal length rather than a combination of scaffold/staple strands 

of different lengths. It is also predicted to be smaller than previous designs, thought a 

robust structural characterisation has not yet been achieves. Binding assays carried out 

using fluorescence microscopy [38]have shown that they bind preferentially to curved 

membranes rather than planar membranes, and that stable insertion into planar lipid 

membranes for single-channel current recordings is difficult to achieve without the 

assistance of a Triton-X surfactant and a buffer with a salt concentration (either KCl 

or NaCl) of ~1.0 M minimum. Some recently published tracking-and-localisation 

microscopy/transmission electron microscopy experiments[4] performed at lower salt 
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concentrations (0.3 M KCl) have shown that these DNPs are able to remodel planar 

DOPC bilayers to form hybrid DNA-lipid nanotubes. The binding mechanism of the 

nanopore was also studied with total internal reflection fluorescence and reflectance 

interference spectroscopy (TIRFS-RIf), and a two-step binding mechanism was 

proposed, as illustrated in Figure 2.5. 

 

 

 

 

 

Figure 2.5: Proposed insertion mechanism for the TEG-cholesterol DNA 

nanopore. A rate constant of ~1.5 x 105 M−1 s−1 was calculated for the initial 

association of the nanopore with a polymer supported planar lipid DOPC bilayer. 

Initial tethering to the membrane surface is fast for highly curved membranes (SUV’s) 

and low curvature membranes (GUV’s), but the reorganisation/insertion step is 

markedly slower for low curvature membranes. Figure adapted from Burns et al.[3] 

These observations of unpredictable behaviour of DNPs in the presence of lipid 

bilayers at difference salt concentrations cannot be explained without a good 

understanding of their structural and dynamic properties in different salt conditions, 

both in bulk solution and in the presence of a lipid bilayer. The simulations described 

in Chapters 3 and 4 aim to explore these phenomena. Chapters 4 and 5 focus on the 

transport properties of membrane-spanning DNPs – specifically the conductance of 

ions and the transport of small-molecule fluorophores across the lipid bilayer.  
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Chapter 3  

Coarse-Grained Simulations of DNA Nanopores in Aqueous 
Salt Solutions 

Firstly, I will discuss the protocols I employed to build and equilibrate the initial all-

atom and coarse-grained models of archetypal TEG-cholesterol anchored DNA 

nanopores (illustrated in Fig. 3.2), which have not been modelled previously. I will also 

discuss the results yielded from the two ensembles of CG simulations performed at two 

different salt concentrations (0.3 M NaCl and 1.0 M NaCl, two salt conditions that 

have been used in experimental studies[4], [38]) in aqueous conditions, in the absence 

of a bilayer. These simulations give us reliable and reproducible information on the 

structural properties of solvated DNPs in solution and provide insight into the effect 

that monovalent salt concentration has on the gross conformation, dynamics and 

structural integrity of DNP’s in these conditions. Macroscopic quantities calculated 

from the 0.3 M NaCl simulation ensemble are then validated against an ensemble of 

shorter AA simulations in the same conditions, as well as cryo-EM experiments.   

3.1       Model Building 

Before any CG models could be built, an all-atom (AA) model of the DNP was 

constructed. Helices 1-6 (schematic shown in Fig. 3.1, sequences in  Appendix 1) were 

built with the Nucleic Acid Builder module in AMBERTools [53]- [53], and arranged 

hexagonally with a ~ 2 nm inter-helix spacing using a python script deployed in 

PyMOL.[119] This arrangement was achieved by positioning the helices 2 nm apart, 

at an angle of 120° relative to the adjacent helices, and then rotating the helices such 

that the terminal base pairs of adjacent helices were also 120° apart, corresponding to 

the interior angle of a hexagon.  Assuming 10.5 base pairs per turn, which corresponds 

to twist angle of 34.29° per base pair in a helix consisting of 21 base pairs, the two 

terminal base pairs of each helix would have an angle of 0° between them, as 21 x 

34.20° gives a helix twist angle of 720°, which is exactly divisible by 360°. 
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The polyT inter-helix crossovers, TEG-C anchors and the covalent linkages between 

the TEG-C and the DNP were also made using PyMOL utilities. The TEG-cholesterol 

anchors and the covalent linkages to the DNP were parameterised within the 

CHARMM General Force Field (CGenFF V 3.0.1)[73]–[75], with the assistance of 

the CGenFF program (v.1).[120] Parameters are supplied in Appendix 2. NAMD 

v2.12 [100] was used for all AA simulations, in conjunction with the CHARMM36 + 

CGenFF force fields. The nanopore was solvated in a 35 x 35 x 40 nm box of TIP3 

water molecules using the VMD solvate plugin, and the autoionize plugin was used to set 

the concentration of KCl to 0.3M. [121] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1: (a) CaDNAno schematic of the DNP. Orange stars denote the loci of the 

TEG-cholesterol anchors, and blurred hairpin loops represent the poly(T) crossovers. 

Strands A, B and C have TEG-C anchors covalently attached to the 3’ ends, which 

are represented as arrowheads. Hence, the anchors are located on helices 2, 4 and 6. 

The 5’ ends are represented as squares. Figure adapted from Burns et al. [3] (b) 

Illustration of the idealised six helix bundle structure of the TEG-C anchored DNP. 

 
The system was minimised for 10,000 steps (2fs time-step) using the default conjugate-

gradient algorithm, to remove the unfavourable interactions and relax strained bonds 

that originate from the artificial starting structure. The system was then equilibrated 

for 25 ns with positional restraints, to allow for a slow and stable relaxation of the 

artificial starting configuration. The force constant (k) of these restraints was gradually 

reduced throughout the equilibration period, starting with 1000 kJ/mol/nm2 for the 

first nanosecond, 500 kJ/mol/nm2 for the second nanosecond, 200 kJ/mol/nm2 for 
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the following 3 nanoseconds, 100 kJ/mol/nm2 for the next 10 nanoseconds, 10 

kJ/mol/nm2 for another 10 nanoseconds, and no restraints for the final 5 nanoseconds. 

The model was then subjected to another 50 ns of unrestrained dynamics, allowing the 

temperature and average RMSF of the DNP backbone to reach a steady state. The 

temperature was set to 300K with the Langevin thermostat, and isotropic pressure 

control at 1.013 bar was achieved using the Nosé-Hoover Langevin piston method. 

Electrostatic forces were calculated using the particle mesh Ewald (PME) algorithm, 

and a 1.2 nm cutoff was used for VdW and electrostatic interactions.  

 

The PME method involves calculation of short-range electrostatic interactions in real 

space, combined with calculation of the electrostatic potential across the entire unit 

cell (in Fourier space) by assigning charges to a grid using interpolation. A 1.2 nm 

shifted cutoff was used for VdW interactions and short-range electrostatic interactions, 

to allow a slow decay to zero as the distance (r) increases. [100] 

 

 

Figure 3.2: (a) 3D rendering (side view and birds eye view) of the DNP in its artificial 

starting configuration. (b) Snapshot of the DNP after 25 ns of equilibration.  

 
The artificial relaxed-barrel configuration of the DNP used to build the AA 

DNP/POPC system was converted to its MARTINI[84] coarse-grained 

representation using the martinize-dna.py script. [76] The script automatically generates 

an elastic network of restraints optimised to maintain the base-pairing, general 

structure and persistence length of double-stranded b-DNA. The ‘stiff’ elastic network 

was used for all CG simulations. MARTINI parameters for the TEG-C anchors were 

generated with the PyCGTool program developed by Graham et al [95], using the AA 

to CG mapping scheme illustrated in Fig. 3.3a.  

 

a b 
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Radius of gyration (Rg) data for the CG TEG-C anchors were generated from a set of 

6 unrestrained CG simulations of the DNP in solution (using protocols described in 

Section 3.2), was compared to the (Rg) data taken from 6 unrestrained 30 ns AA 

reference simulations of the solvated DNP.  Rg data provides an indirect measure of 

the overall conformation adopted by small molecules, making it a convenient metric 

for validation of the CG anchor parameters against AA data. For each anchor, the 

percentage difference between the total Rg from the AA reference simulation and the 

total Rg from the CG simulation was under 5%, indicating that the CG parameters 

gave a good representation of the dynamic behaviour of the AA TEG-C anchors.  

 
 

 

 

Figure 3.3: (a) AA to CG mapping for the TEG-C anchor, with MARTINI bead 
assignments. (b) Total radius of gyration vs time for a TEG-C anchor.  

To study the influence of aqueous solvents with different ionic strengths on the 

macroscopic properties and dynamics of the DNP, two CG models were built – one 

representing low salt conditions and one representing high salt conditions. For the low 

salt model, the CG DNP structure was centred in a box of polarisable PW MARTINI 

water molecules with NaCl concentration set to 0.3M using the insane.py script.[96] 

The high salt model was built with the same script, but with NaCl concentration set to 

1.0 M NaCl. The two solvated models consisted of ~ 90,000 pseudo-atoms and had 

overall cell dimensions of 18 nm x 18 nm x 18 nm. These dimensions were chosen to 

ensure that the cholesterol anchors did not interact with each-other across the periodic 

boundaries, as each anchor is around 5 nm long at full extension and any tilting, 

breathing motions or lateral movement of the nanopore within the simulation box 

result in artefacts due to self-interactions.  
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3.2       Simulation Details and Analytical Methods 

All CG simulations were performed with GROMACS v5.1.4. Temperature control 

was achieved with the use of the velocity-rescaling thermostat developed by Bussi et 

al[110] with a time constant of 1 ps. Two different barostats were employed for 

pressure control (at 1.013 bar) during NPT simulation phases; the Berendsen 

thermostat for early equilibration (with time constant of 2.0 ps) and the Parrinello-

Rahman barostat[112] for production/data collection. Two separate temperature and 

pressure coupling groups were defined – one for the water and ions and one for the 

DNP and its cholesterol anchors. Replica production simulations were run by 

generating separate run files with different random velocity seeds. Velocities, energies, 

forces and coordinates were recorded every 40ps, corresponding to 25 ‘snapshots’ per 

ns. The maximum distance allowed for bonded interactions with domain 

decomposition (rdd) was adjusted throughout the production simulations to facilitate 

the use of a 5-fs timestep, and typically remained in the range of 1.5 -1.9 nm. The 

standard 1.1 nm cut-off was used for electrostatic and VdW interactions. 

Once the solvated DNP models were built, they were subjected to 5,000 steps of 

minimization using the steepest-descent algorithm before equilibration. A 2 fs timestep 

was used for the first 10 ns of equilibration time, as the initial relaxation of system 

involves drastic conformational changes which result in large forces being calculated 

at each time step. For first phase of the equilibration (in the NVT ensemble), strong 

positional restraints were applied to the beads of the DNP. The force constants of the 

restraints were gradually reduced to zero over the course of ~4 ns. The temperature 

was held at 300K throughout the equilibration. The next 16 ns of equilibration was 

performed without restraints in the NPT ensemble with the Berendsen barostat[108], 

after which timestep was increased to 5 fs for a further 10 ns of equilibration. For the 

final phase of equilibration (lasting 50 ns) the Parrinello-Rahman barostat[112] was 

employed with a time coupling constant of 12 ps. Production simulations were then 

run for 500 ns apiece, with a 5 fs timestep and with temperature and pressure held at 

300K and 1.01 bar, respectively. 
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The average pore height was calculated as the arithmetic mean of the 6 helix lengths. 

Specific pairs of oppositely-facing DNA backbone beads at the termini of each double 

helix (6 in total) were selected, and the distance between these pairs was calculated 

using the gmx_distance tool in GROMACS.[70] [82] To facilitate the calculation of  

root-mean-squared fluctuation (RMSF),  pore width and pore lumen profiles, each 

helix composing the DNP was split into eight distinct regions, illustrated below. The 

outer pore width for each region was calculated by taking the average of the maximum 

distance between opposing helices within the relevant regions — of which there are 

three (Figure 3.5). The lumen width for each region was approximated in a similar 

fashion, by taking the average of the minimum distance between opposing helices. The 

RMSF for each region was calculated using the gmx_rmsf tool.[63] 

 

 

 

 

 

 

 

Figure 3.4: Splitting the DNP into eight distinct pore regions, illustrated on a 

schematic of helix B, (comprised of strands 1 and 2).  The pore termini are comprised 

of the unpaired poly(T) crossovers (four nucleobases per strand) and singular base-pairs 

at the strand termini; three of which bear the TEG-cholesterol anchors, make up R4. 

The remaining regions are each composed of four consecutive base-pairs.  
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Figure 3.5: (a) Illustration of the index groups used for the calculation of average 

pore height. Three of the six bead pairs used for the helix length calculations are shown 

in red. (b) The three sets of opposing helices used to calculate average pore widths and 

lumen widths at each pore region (R1-R8), which were used to generate pore width 

and lumen width profiles.  

 

 

The percentage of base pair breakage was calculated in VMD with a custom Tcl script, 

which loops through all frames within each trajectory and counts the intact hydrogen 

bonds between base pairs within the DNP. An intact hydrogen bond is defined by the 

same geometric criteria in most analysis packages, such as the VMD HBond 

plugin[120] and MDAnalysis[121]. The distance between the hydrogen bond acceptor 

and donor (in adenine-thymine and guanine-cytosine base pairs) must be less than or 

equal to 0.3 nm, and the angle between the donor and acceptor must be greater than 

or equal to 140°.  The script then subtracts the number of intact base pairs from the 

total number of base pairs possible in the given selection (helix, region or entire DNP) 

to yield the number of broken base pairs, and this is reported as a percentage of the 

total number of base pairs in the selection. These distance and angle criteria work well 

in all-atom systems where the hydrogen bonds occur between explicit hydrogen and 

oxygen/nitrogen atoms, but are less suitable for MARTINI CG systems, where the 

hydrogen-bond donor and acceptors are modelled by larger pseudo-atoms. Hence, the 

cutoff distance of 0.3 nm for classification of hydrogen bonds is too small for 

MARTINI DNA systems, so I used a cutoff of 0.5 nm as this enabled better 

discrimination between broken and intact base pairs. The equivalent calculation of 

base pair breakage for the AA ensemble described in Section 3.5 used a 0.3 nm cut-off 

and an angle of 140°. 

 

a b 



 80 

Average dwell times for cholesterol anchors within the grooves of the DNA helices was 

approximated by calculating the minimum distance between the centre-of-mass of the 

cholesterol portion of the TEG-cholesterol anchors and the side-chain pseudo-atoms 

of the helices as a function of time for each simulation. The timesteps at which the 

minimum distance was between 0.3 nm and 0.6 nm (the typical range of interaction 

distance for vdW forces) were counted, and the average gross dwell time was calculated 

by summing these timesteps.  

 

Helix kink angles were calculated using the gmx bundle analysis tool. Prior to analysis, 

the region containing the kink angle centre was identified for each helix. In all six 

helices, the centre of the kink angle originated at the cusp of R4 and R5 in all replica 

simulations. Pseudo-atom indices of the R4/R5 region were defined as the “kink 

centre” group, from which the two vectors emerge to make the angle. Pseudo-atoms 

making up region R2 was defined as the “kink-top” group, and R5 was defined at the 

“kink-bottom” group. During the kink angle analysis, gmx bundle fits vectors around the 

kink angle centre using the defined index groups and calculates the angles between 

them at each timestep. 

 
The first phase of the study for the solvated DNP simulation systems was dedicated to 

establishing an appropriate ensemble size. By monitoring the decay of the 

bootstrapped standard error associated with the average pore height and width, while 

increasing the replica number and length, I have determined that 12 replicas run for 

at least 500 ns apiece are required to provide robust, reproducible results for the 

aqueous DNP models, as the averaged pore height and pore width did not change 

significantly after 12 replicas. A total of 15 replicas were performed for each ensemble, 

to facilitate a thorough analysis of the convergence of macroscopic properties of 

interest. The ensemble average plots shown in Figure 3.6 overleaf show how the 

bootstrapped standard errors decay rapidly when increasing the number of replicas 

before levelling off after around 10 replicas – suggesting that this is the minimum 

number of replicas of this duration required for fully converged ensemble averages.   
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Figure 3.6: Ensemble average plots illustrating the convergence of pore dimensions 

and the associated bootstrapped standard errors in the solvated DNP simulation 

ensembles. Error bars correspond to the bootstrapped standard error. (a) 

Convergence of the average pore height as a function of replica number for the 1.0 M 

NaCl model demonstrates that 10 replicas are sufficient to ensure reproducible results 

for these systems. (b) Convergence of the average pore height with simulation time for 

the 1.0 M NaCl model shows that 500ns is an appropriate duration for the full set of 

15 replicas. (c) Decay and subsequent plateau of the standard error associated with 

the pore height for the 1.0 M NaCl model suggests that 10 replicas were sufficient for 

control over errors. (d) Convergence of the average pore width as a function of replica 

number for the 0.3 M NaCl model. (e) Convergence of the average pore width as a 

function of simulation time. (f) Decay of the bootstrapped standard error associated 

with the average pore width in the 0.3 M NaCl model. 
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3.3       Benchmarking and Computational Resources 

In order to approximate the level of computing resources that would be required for 

these lengthy simulations, strong scaling tests were performed for one of the CG 

solvated DNP simulation systems (running with GROMACS) on two HPC platforms; 

the UK national supercomputer ARCHER[123] and the Dutch national 

supercomputer Cartesius. [124] For an optimal balance between speed and cost, I 

chose to run each individual simulation on 360 CPU cores, as the simulation box was 

too small to be divided amongst more cores than this. The thirty 500 ns - long 

simulations of the aqueous DNP models were completed on ARCHER, and these 

consumed 325,000 core hours in total. The computational resources used for this work 

were provided by the CompBioMed Centre of Excellence.[125] 

3.4       Results and Discussion 

Here, I interpret and compare the results of the solvated DNP simulations. In the 

absence of a membrane, the DNP is an anisotropic globular structure without a distinct 

pore lumen. It adopts a highly bloated conformation in solution, with regions of 

constriction at the pore termini - where the inter-duplex poly(T) crossovers are located. 

Increasing the salt concentration from 0.3 M to 1.0 M had little effect on the average 

pore dimensions; in both cases the average pore height remained stable at around 7.6 

nm, and the pore width at around 7.5 nm. Minimum pore width values were calculated 

for both models (Table 3.1 and Figure 3.7), and in both sets of simulations, the 

minimum values were clustered at the pore termini; specifically, the R8 and R1 

regions.  

 

The effect of increasing the salt concentration on the average width of the DNP in 

solution is very modest due its intrinsic asymmetry and structural lability, meaning that 

a constriction in one dimension causes an expansion in another dimension. For this 

reason, I calculated three widths for each region – corresponding to the distance 

between three sets of opposing helices (Figure 3.5b). The calculated average pore 

dimensions at 0.3 M (Table 3.1) are in fairly good agreement with the predicted 

dimensions (9 nm by 5 nm), and with experimental values reported from atomic force 

microscopy (AFM) experiments performed in 0.3 M KCl buffer solution. It should be 

noted that the predicted values do not account for the effects of the solvent or salt 
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concentration, and that AFM measurements of these delicate DNA nanostructures are 

prone to tip convolution effects, as was discussed previously in Section 1.4.2.[39] In 

both sets of simulations, we notice a profound and persistent difference in the 

minimum widths of the two termini of the DNP. The minimum width at the R8 

terminus is ~ 1 nm narrower than the minimum width at the R1 terminus, giving rise 

to a fixed polarity in pore/lumen width down the central pore axis. This asymmetry 

may play a key role in the translocational properties of the DNP (discussed in Chapter 

6). 

 

 

 

 

 

 

 

 

 

Figure 3.7: Solvated DNP dimensions in two different salt conditions. (a) Average 

height and width of the DNP in 0.3 M NaCl (indicated by the blue arrows, shown 

above), and the widths of the constrictions at the termini, which correspond to the 

mean of the calculated minimum pore widths at R1 and R8 (indicated by red arrows, 

shown below). (b) Average height and width of the DNP in 1.0 M NaCl, and the 

widths of the constrictions at the termini. 

 

 

 

 
 

a b 

7.59 ± 
0.01 nm 

7.48 ± 0.02 nm 

7.54 ± 
0.03 nm 

7.44 ± 0.04 nm 

5.58 ± 0.05 nm 4.65 ± 0.08 nm 5.83 ± 0.06 nm 4.49 ± 0.06 nm 
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Table 3.1: Comparison of the calculated pore dimensions of the solvated DNP 
models. Experimentally derived average dimensions are presented for validation. All 
calculated values correspond to the mean ± the bootstrapped 95% confidence interval 
obtained from an ensemble of 15 trajectories.   
 
 
 
 
 
 
 
 
Figure 3.8: Representative structures of the DNP in 0.3 NaCl (left) and 1.0 M NaCl 

(right) exhibiting partial fraying of the dsDNA duplexes.  

 

While the overall pore dimensions are more or less unchanged upon increasing the 

NaCl concentration from 0.3 M to 1.0 M, the RMSF-per-residue plots (Figure 3.9) 

reveal a subtle change in the structural fluctuations of the pore, particularly in the R1-

R4 region where the duplexes are shorter (9 base-pairs long). In the low-salt 

simulations, the degree of fluctuation is relatively uniform throughout the entire length 

of the nanopore, with some sparse clustering of extreme values (greater than the 

median 0.3 nm) in the central region of the nanopore. In the high-salt simulations, 

there is a pronounced reduction in the extent of fluctuation in the R1 region. We also 

observe a higher incidence of extreme values in the upper-central region (R2-R4) of 

the nanopore, and a lower incidence of extreme values in the lower-central region (R4-

R6), suggesting that the longer duplex sections located below the nicks are stabilised at 

the expense of the shorter duplex sections, which are located above the TEG-

cholesterol anchors.  

 

  0.3 M NaCl                                        1.0 M NaCl      AFM  
Average Pore Height (nm)   7.59 ± 0.02   7.54 ± 0.06    9.0 ± 1.5 
Average Pore Width (nm)   7.48 ± 0.04   7.44 ± 0.08    5.1 ± 1.1 
Average Pore Width R1 (nm)   6.59 ± 0.04   6.54 ± 0.08        n/a 
Average Pore Width R8 (nm)   6.11 ± 0.02   6.06 ± 0.02        n/a 
Minimum Pore Width R1 (nm)   5.58 ± 0.10   5.83 ± 0.12        n/a        
Minimum Pore Width R8 (nm)   4.65 ± 0.16   4.49 ± 0.12        n/a 
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The extreme duplex fraying within this region observed in the 1.0 M NaCl simulations 

(illustrated in Figure 3.8) supports this hypothesis, and the relatively high percentage 

of broken base pairs (% BPB) shown in Table 3.2 in the R1-R4 region (47.3 ± 1.52 %) 

provides further evidence of helix destabilization in this region at 1.0 M NaCl.  

 

It is important to note that shorter helix sections (R1-R4) of helix 2, 4 and 6 are 

covalently connected to the TEG-cholesterol anchors, which are highly mobile within 

the solution. The RMSD vs time plots shown in Figure 3.10 indicate that the average 

RMSD of the cholesterol anchors evolves sinusoidally with time, and the magnitude 

of their average RMSD is consistently higher than the RMSF of the main body of the 

DNP. The forceful motions of the connected cholesterol anchors are likely to be a 

contributing factor the helix fraying exhibited in the shorter duplex sections. In 

addition, the freely-moving hydrophobic TEG-cholesterol anchors frequently make 

close Van-der-Waals contacts with the hydrophobic grooves within the DNA, which 

may disrupt the hydrogen bonding between base-pairs. In order to identify the pore 

region that the cholesterol anchors interacted with most frequently, the average total 

duration of (non-consecutive) simulation time in which the distance between the 

anchors and the grooves of the R1-R4 region was less than 0.6 nm was calculated, and 

the same was done for the R5-R8 region. The 0.6 nm cut-off is analogous to the upper 

boundary of the range of Van-der-Waals interaction distances. At both salt 

concentrations, the dwell time of the anchors within the R1-R4 grooves is significantly 

higher than the dwell time within the R5-R8 grooves (Figure 3.10). The difference in 

the dwell times in the 1.0 M ensemble is significantly more pronounced than it is in 

the 0.3 M ensemble; the duration for which the cholesterol anchors occupy R1-R4 is 

more than twice the duration they occupy R5-R8, indicating a strong preference for 

the shorter helix sections, which may further contribute to their fraying and increased 

RMSF-per-residue values. 
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Figure 3.9: Structural fluctuations of a solvated DNP. (a) Root mean square 

fluctuation (RMSF) per residue plot for the DNP in 0.3M NaCl, generated from an 

ensemble of 15 x 500 ns trajectories. The median RMSF value is 0.25 nm. (b) Average 

structure of the DNP in 0.3 M NaCl (anchors omitted). The length of each DNA 

duplex corresponds to 21 base pairs (not including the poly(T) crossovers), which have 

been grouped and colour coded according to their position along the pore axis. The 

helix sections located above the nicks (R2-R4) are 9 base-pairs long, whereas the helix 

sections below the nicks (R5-R7) are constituted from 12 base-pairs. The orange 

pseudo-atoms represent nucleobases that are directly bound/adjacent to TEG-

cholesterol anchors. (c) RMSF per residue plot for the DNP in 1.0M NaCl. The 

median RMSF value is 0.23 nm. (d) Average structure of the DNP in 1.0 M NaCl. 
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Further % BPB and RMSF analyses were performed to determine which individual 

helices display more mobility in general, which ones are particularly prone to fraying 

in either salt condition and how this might influence the mechanical properties of the 

DNP. Surprisingly, only three out of the six helices had over 50% of their base pairs 

intact at either salt concentration, and the identity of these helices is highly dependent 

on the concentration of NaCl (Table 3.2).  The conformation of the DNA throughout 

the pore clearly deviates from the expected b-DNA structure in the presence of NaCl, 

across a range of concentrations, with helices 1, 3 and 6 experiencing the most 

disruption at the lower salt concentration. It is worth noting here that the MARTINI 

force field for DNA has been shown to underestimate the free energy associated with 

base-pairing[84], so the absolute values of the percentage of base-pair breakage 

reported here are likely to be exaggerated. This is discussed further in Section 3.5.3. 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

Table 3.2: Percentage of broken base pairs within the DNP. At the higher salt 

concentration, the helix fraying is more prominent in the shorter (9 base-pairs long) 

helix sections located above the nicks (R1-R4), whereas the longer helix sections (12 

base-pairs long) below the nicks (R5-R8) experience more fraying at the lower salt 

concentration. Errors are reported as the bootstrapped 95 % confidence interval.  

 

 

 

 

 

        0.3 M NaCl                                            1.0 M NaCl 
    R1-R8     39.0 ± 2.48      42.1 ± 1.29 
    R1-R4     30.2 ± 3.40      47.3 ± 1.52  
    R5-R8     45.7 ± 2.08       38.2 ± 1.71      
    Helix 1     60.4 ± 2.95      4.80 ± 1.15 
    Helix 2     5.58 ± 1.66      86.6 ± 0.46 
    Helix 3     67.8 ± 1.75      12.8 ± 0.21 
    Helix 4     16.4 ± 2.00      54.3 ± 0.80 
    Helix 5     44.0 ± 3.31      40.8 ± 0.83 
    Helix 6 
 

    53.6 ± 3.37      82.0 ± 0.94 

R1 
R2  
R3  
R4  
R5 
R6  
R7  
R8  
 

4 

1  

2  

3  

6 

5 
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Figure 3.10: Average total dwell time of TEG-cholesterol anchors within the DNA 

grooves of the R1-R4 region, and the R5-R8 region for both salt conditions. The 

higher salt concentration appears to increase the propensity for the cholesterol anchors 

to reside within the R1-R4 grooves rather than the R5-R8, which coincides with an 

increase in %BPB in the former region a decrease in %BPB in the latter. Errors are 

reported as the bootstrapped 95 % confidence interval.  

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Plot of the RMSD of TEG-cholesterol anchors vs time in both salt 

concentrations. Error bars represent the bootstrapped standard error associated with 

each RMSD value.  
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 268.7 ± 31.2 ns 
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The RMSF-per helix plot shown in Figure 3.12 reveals a fixed asymmetry in the 

dynamics of the helices in 0.3 M NaCl; where one “half” of the 6-helix bundle (helices 

1 2 and 3) are significantly less mobile than the other half (helices 4, 5 and 6), as 

evidenced by their lower RMSF values (Figure 3.12a). The higher mobility of helices 

4,5 and 6 suggests that it may be these helices that modulate the dimensions and 

dynamics of the pore lumen at this salt concentration, as they are capable of moving 

closer together to restrict the lumen, or further apart to expand it. In 1.0 M NaCl, the 

distribution of mobile helices is more evenly distributed, with helices 2, 4 and 6 

experiencing the highest RMSF. It may be that lumen width is modulated by 

symmetrical contractions of these helices towards the DNPs centre of mass at higher 

salt concentration. It is highly likely that relatively high mobility of the higher-RMSF 

helices in both salt conditions are the result of lateral/axial motions primarily, and 

base-pair breakage to a lesser extent.  

 

The base-pair breakage data shown in Table 3.2 illustrates the profound effect of salt 

concentration on the % BPB of each helix, with helices 2, 4 and 6 experiencing 

dramatic increases in base pair breakage, while base-pair breakage in helices 1, 3 and 

5 decreases substantially. Overall, the average % BPB of the higher RMSF helices in 

0.3 M NaCl (4, 5 and 6) decreases in response to increasing ionic strength, and an 

increase in base-pair breakage occurs for the lower RMSF helices. However, the 

average RMSF of all helices but helix 2 decreases by ~0.2 nm in response to the 

increasing ionic strength, so there is no clear correlation between increasing % BBP 

and increasing RMSF. Tracking the evolution of broken base pairs within the DNP as 

a function of time, we see the % BPB increases very gradually over time at both salt 

concentrations, indicating that base pairs have a tendency to slowly drift apart over 

time, rather than spontaneously breaking and reforming over the course of the 

simulations. Hence, we can attribute the majority of the individual helix mobility to 

large-scale lateral and axial motions, rather than helix fraying alone. 
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Figure 3.12: Comparison of the average RMSF of each helix between the two salt 

concentrations, presented with colour-coded top-view images of the averaged DNP 

structures. The average RMSF of the helix is taken as the mean of the RMSF of all 

CG pseudo-atoms within the helix. (a) RMSF per helix for the 0.3 M NaCl system. 

The lower RMSF of helices 1, 2 and 3 compared to helices 4, 5 and 6 indicates that 

one half of the pore is more structurally rigid than the other at this concentration of 

NaCl. (b) RMSF per helix for the 1.0 M NaCl system. Helices 2, 4 and 6 exhibit the 

highest average RMSF, and also the largest extent of base-pair breakage. The RMSF 

of the helices is generally lower by ~0.2 nm at the higher salt concentration, with the 

exception of helix 2, which experiences higher fluctuation in high salt conditions.  

 

 

 

a b 

1.0 M 0.3 M 
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Figure 3.13: Fluctuation of base pairs (% BPB) as a function of time for (a) the 0.3 

M NaCl production simulations and (b) the 1.0 M NaCl production simulations. The 

percentage of broken base pairs gradually increases over time in both cases, and at a 

similar rate. The % BPB differs between the two salt concentrations significantly at        

t = 0, on account of base pair breakage occurring during the equilibration period in 

both models. Error bars represent the bootstrapped standard error.  

 

3.5       Further Validation of CG Simulation Data 

Here, I present some experimental and all-atom MD simulation work on the 

characterisation of the DNP done by both internal and external collaborators, which 

validate the results discussed in this chapter. AA simulations of the solvated DNP in 

0.3 M NaCl detailed in Section 3.4.1 were performed by Daria Kieczka, a masters’ 

student under my supervision, and the cryo-EM experiments and subsequent analyses 

were undertaken by Dr. Abid Javed and Professor Elena V. Orlova at Birkbeck, 

University of London. To facilitate comparisons of CG data to the cryo-EM maps, 

structures representing the most highly populated clusters obtained from the CG 

trajectories were back-mapped to their all-atom representation, as the flexible fitting 

procedure for the construction of cryo-EM images must be performed with all-atom 

MD models. The clustering of CG trajectories was performed with the GROMOS 

algorithm, implemented within the gmx cluster analysis module in GROMACS.[63], 

[98] 

 

a b 
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3.5.1     All-atom simulations of the solvated DNP in 0.3 M NaCl 

The equilibrated all-atom DNP model that was constructed to serve as the basis for 

the solvated CG model (shown in Figure 3.2b) was used to initiate the production 

simulations of the AA solvated DNP model. All equilibration and productions 

simulations were performed with the 2019 version of GROMACS.[63] The system 

was minimised for 10,000 steps (2fs time-step) using the default conjugate-gradient 

algorithm, to remove the unfavourable interactions and relax strained bonds that 

originate from the artificial starting structure. The system was then equilibrated for 

~15 ns with a network of elastic restraints to reinforce base-pairing and base-stacking 

interactions. The force constant (k) of these restraints was gradually reduced 

throughout the equilibration, from 500 kJ mol-1 nm-2 to zero. The model was then 

subjected to another 50 ns of unrestrained dynamics. The temperature was set to 300K 

with the velocity-rescale thermostat, and isotropic pressure control at 1.013 bar was 

maintained through the use of the Parrinello-Rahman barostat. Electrostatic forces 

were calculated using the particle mesh Ewald (PME) algorithm, and a 0.9 nm cutoff 

was used for VdW and electrostatic interactions. A 0.9 nm shifted cutoff was used for 

VdW interactions and short-range electrostatic interactions. A total of fifteen 

production simulations were run for 30 ns apiece, and each replica was initiated with 

a different random velocity. Average pore height and pore width values were 

calculated from the AA DNP simulations according to the protocol described in 

Section 3.2, as well as helix kink angles and % BPB. These full set of AA simulations 

consumed a total of 250,000 CPU hours on Cartesius.[124]  

3.5.2       Cryo-EM Models 

 

The classification of electron-density maps yielded from cryo-EM experiments 

conducted in a solution of 0.0012 M MgCl2 identified a total of six well-populated 

distinct structural classes (Fig. 3.14). Though the use of a monovalent salt medium 

matching the salt concentrations used in the CG MD simulations would have provided 

us with a more directly comparable dataset, this was not ultimately possible as the 

resolution of the images yielded in these conditions was comparatively poor. It is well 

documented that Mg2+ ions have a profound influence on the structure and stability 

of the dsDNA helix,[126]–[128], and that salt concentration strongly influences the 

persistence length and flexibility of DNA.[129] Experimental and computational 
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studies have demonstrated that increasing the concentration of Mg2+ ions in the media 

leads to stabilisation of base-pairing and attenuation of the fluctuations in the 

phosphate backbone, and Mg2+ ions are also capable of inducing b to Z-DNA 

transitions in helices with high cytosine and guanine content[130], and kinking in 

helices with more adenine and thymine content[131]. Therefore, we can expect some 

discrepancies between observations made in cryo-EM and those made in the 

simulations. Five of these six classes were of high enough resolution for flexible fitting 

against MD-derived atomic models.  

 

Before the flexible fitting procedure can be initiated, one must establish an appropriate 

set of back-mapped AA models that are distinguishable at the cryo-EM level of 

resolution (typically anywhere between 0.2 nm and 2.0 nm) [132], whilst also being 

representative of the range of  conformations present in the CG simulation ensemble. 

This can be achieved by tailoring the RMSD cut-off used for clustering simulation 

trajectories, as this directly influences the number of clusters that are generated, and 

the degree of resolution between these clusters. I tested a range of RMSD cut-off values 

between 0.3 nm and 0.5 nm, and ultimately selected the clusters obtained with the 0.4 

nm RMSD cut-off for the comparisons detailed here, as these clusters yielded the 

highest correlation with the cryo-EM maps. The CG middle structures of these clusters 

were then back-mapped to their all-atom representation through the use of the 

backward.py script [133]  provided by the developers of the MARTINI force-field. The 

structures and percentage populations of these twelve clusters are shown in Appendix 

3. Three of the twelve back-mapped clustered models correlated extremely well with 

the six cryo-EM maps during the flexible fitting procedure, with a cross correlation 

score of > 0.9 in each case (Fig. 3.14). To obtain these correlation scores, first the 

clustered DNP structure PDB files were converted into SPIDER density maps, and the 

resolution of the computed EM map was adjusted to match that of the cryo-EM map. 

The computed EM maps were then docked into cryo-EM electron density maps using 

the SPIDER software suite[134], according to the method described by Li and 

Frank.[135] After docking, the flexible fitting procedure is initiated, which uses an 

external potential derived from the cryo-EM map to drive the atomic positions of the 

MD-derived molecular model into high density areas in the cryo-EM map while 

preserving the conformation of the MD-derived model through the application of 

harmonic restraints to the atomic positions, to avoid over-fitting. Finally, the Pearson’s 
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cross-correlation coefficient between the averaged voxel values of the EM and MD 

maps is calculated to give a measure of the goodness of fit.[136]  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Results of the flexible fitting of cryo-EM electron density maps to CG 

MD derived atomic models of the DNP. The six structural classes obtained from the 

cryo-EM characterisation of the DNP in 12 mM MgCl2 solution, and other are shown 

in the top panel. No detergents or nanodiscs were used in the preparation of cryo-EM 

samples. The population of these classes is represented as the number of structures 

belonging to each class taken as a percentage of the total number of structures 

obtained. The three back-mapped middle structures obtained by clustering the CG 

trajectories are shown in the bottom panel, along with their population percentages. 

Blue arrows indicate the strength of the correlation, denoted by correlation coefficient 

CC, between the cryo-EM maps and the MD models. 

 

 

Class 1   Class 2             Class 3            Class 4              Class 5  Class 6 

Cluster 1                        Cluster 5                 Cluster 9  

CC =0.90 

CC =0.91 CC =0.91 CC =0.91 CC =0.87 

  41%       2.6%                                <1 % 
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Table 3.3: The relationship between the RMSD cutoff used for clustering CG 

trajectories and the number of clusters obtained. The set of 12 clusters generated with 

the 0.4 nm RMSD cut-off were used for flexible fitting to the cryo-EM maps.  

 

3.5.3      Validation of CG simulation data  

 

At the time of writing of this thesis, only a small preliminary set of cryo-EM derived 

quantities were available for direct comparison to computed quantities. However, the 

strength of the correlation between the cryo-EM reconstructions and the back-mapped 

AA models extracted from the CG simulation ensemble is demonstrative of the 

accuracy and reliability of the CG ensemble-based protocol for the characterisation of 

key structural features of a solvated DNP. To assess the accuracy of the dynamical 

behaviour and observed structural features yielded from the CG nanopore model, as 

well as the overall suitability of the MARTINI force-field for the characterisation of 

novel and complex DNA nanoarchitectures; direct comparisons were made between 

CG-derived quantities and their AA equivalents. Specifically, I focused on pore 

dimensions, % BPB, helix kink angles and RMSF-per residue plots, as these observable 

quantities taken together capture both the gross structure of the pore and more 

detailed, site-specific features and motions that are likely to contribute to the pores’ 

functionality.  

 

Overall, we find there is very good agreement between the results of the AA simulations 

and those of the CG simulations, particularly in relation to the proportions of the pore 

and areas of strain and/or loss of idealised dsDNA structure, though the CG model 

does appear to overestimate the absolute dimensions and % BPB.  

 

 

 

     RMSD cut-off CG Clusters 
       0.30 nm         3 

       0.35 nm        28 

       0.40 nm        12 
       0.45 nm         6 
       0.50 nm         4 
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3.5.2.1      Pore Dimensions and Structural Fluctuations 

 

The side-by-side comparison of the computed AA and CG dimensions presented in 

Table 3.3 suggests that the MARTINI CG model of the nanopore overestimates the 

average pore height and width by ~ 0.5 nm, as a consequence of the standardised 4-1 

atom-to-bead mapping and the associated loss of resolution.[73],[114] However, the 

ratio between the height and width in the CG model is nearly identical to the ratio 

observed in the AA model. In addition, the regions of constriction observed in the AA 

models correspond to the regions of constriction in the CG models. In both models, 

the pore is constricted at the termini, with the narrowest constriction occurring at the 

R8 terminus – suggesting that the overall pore geometry and specifically the fixed 

polarity of the pore width down the principal axis is successfully reproduced by the 

MARTINI force-field. This polarity is also observed in the cryo-EM images that were 

fitted to back-mapped clustered AA models, and this is reflected in the high cross 

correlation scores associated with the flexible fitting procedure. The slight 

overestimation of the absolute pore dimensions by the MARTINI force-field is a 

problem that can be easily overcome by measuring these quantities from representative 

back-mapped AA structures. The average pore height calculated for the 12 back-

mapped AA structures generated from the clustered CG trajectories was 7.01 ± 0.05; 

almost identical to the value obtained from the ensemble of AA simulations. This 

ability to quickly recover atomic-resolution macroscopic properties from CG 

simulations whilst taking advantage of greater computational efficiency and longer 

simulation timescales further proves the power and versatility of CG MD simulation 

protocols. The efficiency of the CG protocol here is indeed remarkable – the ensemble 

of 500ns CG simulations required only 65% of the CPU hours that were consumed 

when running the ensemble of 30ns AA simulations. 

 

As the absolute AA dimensions are inherently more accurate than CG equivalent, 

these are the dimensions we should use to compare against the cryo-EM values. We 

notice that the average measured height of the DNP in the cryo-EM dataset is larger 

than it is in silico by ~ 0.6 nm, and the average measured width is only very slightly 

narrower, though the relatively large uncertainty in the measured width makes this 

comparison slightly more difficult. The larger pore height in cryo-EM is likely to be a 

consequence of the relatively low salt concentration used in the cryo-EM experiments. 
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As the cryo-EM experiments were conducted after the MD data were collected, and 

the cryo-EM protocol explicitly required an MgCl2 buffer, it was regrettably not 

possible to achieve a match between the solvent conditions. Transient electric 

birefringence experiments have shown that, regardless of the cation valency, increasing 

the salt concentration from low (~ 0.001 M) to moderate concentrations (~0.01 M) 

causes the persistence length of dsDNA to decrease monotonically from the range of 

80 - 100 nm down to the limiting persistence length range of 45 - 50 nm. [129][138]. 

While it cannot measured directly, it can be assumed that the persistence length of the 

DNA in the cryo-EM conditions used here is likely to lie in the 80 – 100 nm range. A 

higher persistence length in cryo-EM conditions would result in a stiffer helix and lower 

degree of helix kinking, and therefore a longer helix. Helix kinking was indeed 

observed in the cryo-EM images, and kink angles are currently being measured for the 

cryo-EM dataset, but cannot be commented on at this time.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Rendered images of highly populated DNP clusters obtained from three 

different datasets. The top-view images are taken from the R1 terminus. (a) Model of 

the most populous structure obtained from the AA 0.3 M ensemble. (b) CG model 

representing the most highly populated cluster obtained from the CG 0.3 M NaCl 

ensemble (c) Cryo-EM structure of the DNP built by flexible fitting of the back-mapped 

AA representation of model b to the most populated structure observed in cryo-EM 

(class 5 in Fig. 3.14).  

a b c 
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Table 3.4: Comparison of DNP dimensions obtained from AA simulations in 0.3 M 

NaCl, CG simulations in 0.3 M NaCl and cryo-EM microscopy simulations conducted 

in 12 nM MgCl2. The higher-resolution AA-derived pore dimensions are taken as the 

more reliable estimates of the absolute dimensions. The pore height calculated from 

back-mapped CG clusters (7.01 ± 0.05 nm) overlaps extremely well with the AA pore 

height.  

 

Fluctuation analysis was performed for the AA simulation ensemble according to the 

same protocols used for the CG ensemble (Fig. 3.9). The RMSF-per-residue plot 

constructed from this data provides a convenient means to assess the validity of the 

characteristic motions and conformational flexibility observed in the CG ensemble, as 

the plots in Figure 3.9a (CG) and Figure 3.16a (AA) can be compared directly. The 

AA RMSF-per-residue plot reveals a median RMSF of ~ 0.6 nm, which is over twice 

the median RMSF seen in the CG equivalent (0.25 nm), which suggests that the 

conformational flexibility of the DNP is somewhat supressed in the CG model. This 

may be the consequence of the use of the stiff elastic network model in the production 

simulations, which applies flexible restraints to all of the pseudo-atom beads in order 

to preserve the b-DNA structure (discussed in Section 2.2.2.2). However, the 

distribution of more “extreme” values (greater than the median) through the pore body 

is very similar to the distribution of extreme values in the CG plot. In both plots, 

extreme values are distributed fairly uniformly through the pore body, and the highest 

RMSF values are observed in the R4/R5 regions, indicating that the breathing 

motions of the bloated midsection observed in the CG model are also present in the 

AA model. However, the AA RMSF plot displays an asymmetry in the mobility of the 

termini that was seemingly not captured by the CG simulations. The mean RMSF of 

R1 is higher than the mean RMSF of R8 by ~ 0.7 nm, suggesting that the poly(T) 

crossovers at R8 terminus experience more strain than the poly(T) crossovers at the 

            AA 0.3 M NaCl                                         CG 0.3 M NaCl         Cryo-EM 12 nM MgCl2 
Average Pore Height (nm)   7.02 ± 0.04      7.59 ± 0.02              7.60 ± 0.4 

Average Pore Width (nm)   7.09 ± 0.06      7.48 ± 0.04              6.85 ± 1.2 
Average Pore Width R1 (nm)   5.56 ± 0.14      6.59 ± 0.04                  TBC 

Average Pore Width R8 (nm)   5.11 ± 0.10      6.11 ± 0.02                  TBC 

Minimum Pore Width R1 (nm)   4.83 ± 0.14      5.58 ± 0.10                  TBC 

Minimum Pore Width R8 (nm)   4.58 ± 0.12      4.65 ± 0.16                  TBC 
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R1 terminus. While this is not directly observed in the CG RMSF plot, this is reflected 

somewhat in the asymmetry in the widths of the terminal constrictions seen in the CG 

model (and validated by the AA dimensions) presented in Table 3.4. The narrower 

terminus is likely to be less flexible than the wider terminus, as the two sets of poly(T) 

crossovers are identical in length and sequence, so the narrowing of the R8 terminus 

compared to the R1 terminus must be a result of strain imposed by the neighbouring 

R7 region.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 3.16: (a) RMSF-per-residue plot generated from the ensemble of 15 x 30 ns 

AA simulations of the solvated DNP in 0.3 M NaCl, illustrating the degree of 

fluctuations through the pore body from R1 to R8. (b) Representative structure of the 

AA DNP model in 0.3 M NaCl taken from the most populous cluster of conformations 

observed in the AA ensemble. (c) RMSF per residue plot for the CG DNP model in 

0.3M NaCl taken from Figure 3.9a and readjusted to match the range of y-axis values 

in the AA equivalent. (d) Average CG structure of the DNP in 0.3M NaCl. 

R1 R2 R3 R4 R5 R6 R7 R8  

a b 

R1 R2 R3 R4 R5 R6 R7 R8  

c d 
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3.5.2.1          Helix Kink Angles and Percentage of Base-Pair Breakage 

 

Here, I compare the % BPB extracted from the CG simulation ensemble in 0.3 M 

NaCl (presented in Table 3.2) to the % BPB observed in the AA simulation ensemble 

and relate these quantities to observations of structure loss in specific helices in the 

cryo-EM structures. The total % BPB throughout the pore (14.8 ± 1.00 %) calculated 

from the AA ensemble is considerably lower than the value reported for the CG 

ensemble, which is suggestive of a two-fold to three-fold overestimation of base-pair 

breakage within the MARTINI CG model. However, the AA data does give credence 

to some observations made in the BPB analysis – namely the identification of helices 

that experience breakage of over 50% of the base pairs. In Section 3.4 (Table 3.2), we 

concluded that helices 1, 3 and 6 exhibit a relatively high % BPB in 0.3 M NaCl. In 

the AA dataset presented below, we can see that helices 1 and 6 do indeed experience 

above-average BPB as suggested by the CG model, though helix 3 is below the average. 

The cryo-EM structures of the DNP in 12 mM MgCl2 are not of high enough 

resolution to allow for distinction of frayed helices, however they do show evidence of 

loss of b-DNA structure in specific areas, namely helices 2, 5 and 6. These helices 

closely resemble Z-DNA in the images, suggesting that a major conformational change 

occurs in these helices in MgCl2. The transition from b-DNA to Z-DNA involves 

transient disruptions of base-pairs, and typically occurs on the scale of seconds to 

minutes.[139] Both the CG and AA models predicted a relatively high percentage of 

base-pair breakage in helix 6, highlighting the potential for predicting the loci of these 

transitions in silico. However, BPB data from both models did not identify helices 2 and 

5 as sites for these potential b-to-Z conformational transitions, which is not completely 

unexpected given that the time scale for complete base-pair formation and breakage 

in dsDNA helices ranges from several hundreds of nanoseconds to milliseconds and is 

still a heavily debated topic[140], [141].  

 

Aside from the difference in salt conditions between the MD simulations and the cryo-

EM experiments, it should also be noted that that the DNP structure studied by cryo-

EM does not feature TEG-cholesterol anchors, which may introduce further sources 

of discrepancy between the MD and cryo-EM data sets.  
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Table 3.5: Comparison of the percentage of base pair breakage calculated for the CG 

and AA solvated DNP systems in 0.3 M NaCl. Overall, % BPB is significantly lower 

in the AA ensemble than it in the CG ensemble, and the asymmetry in base pair 

breakage above (R1-R4) and below (R5-R8) the helix nicks that is observed in the CG 

ensemble is much less pronounced in the AA ensemble. However, both ensembles 

identify helices 1 and 6 as sites prone to above-average BPB.  

 

Given that the MARTINI force-field is known to underestimate the free energy 

associated with base pairing in the DNA model, as discussed in the 2015 paper by 

Uusitalo et al.[84]The minima in the potential of mean force (PMF) profiles associated 

with the interactions between two CG hydrogen-bonding nucleotide bases 

approaching each-other on a fixed plane are much shallower than in the equivalent 

AA models simulated with CHARMM or AMBER parameters. On average, the 

magnitude of the free energy at the global minimum of PMFs calculated for a single 

base-pair is ~1.5 times smaller than that of the CHARMM force-field. Adjustments of 

the non-bonded hydrogen-bonding pseudo-atom parameters were made in an attempt 

to correct this misrepresentation of base-pairing, however these adjustments led to a 

negative impact on representation of base-stacking interactions, which is generally very 

accurate in the MARTINI forcefield. Fortunately, the agreement between the AA and 

CG data with respect to calculated helix kink angles is much stronger than for BPB. 

The AA kink angles calculated for helices 1 – 5 overlap very well with the CG kink 

angles (both shown in Table 3.6), and both models indicate that helix 4 experiences 

the most severe kinking, followed closely by helices 2 and 5. The AA and CG-derived 

kink angles for helix 6 are in reasonable agreement, however the average kink angle in 

        CG % BPB                                           AA % BPB 
  R1-R8    39.0 ± 2.48     14.8 ± 1.00 
  R1-R4    30.2 ± 3.40     14.4 ± 1.52  
  R5-R8    45.7 ± 2.08      15.0 ± 1.12      
  Helix 1    60.4 ± 2.95     18.9 ± 1.29 
  Helix 2    5.58 ± 1.66     10.8 ± 1.60 
  Helix 3    67.8 ± 1.75     10.4 ± 3.10 
  Helix 4    16.4 ± 2.00     14.6 ± 0.72 
  Helix 5    44.0 ± 3.31     12.8 ± 1.22 
  Helix 6 
 

   53.6 ± 3.37     20.0 ± 2.60 
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the CG model lies slightly outside the lower bound of the confidence interval of the 

AA value. The magnitude of the errors reported for the AA kink angles are generally 

higher than they are in the CG equivalent, on account of the shorter simulation 

timescale of the AA simulations, and the higher average RMSF in the AA models, 

which gives rise to relatively sharp fluctuations in the kink angle as a function of 

simulation time (plot provided in Appendix 4). The cryo-EM structures reveal 

significant kinking in all six helices, though verified measurements cannot be provided 

at this time. 

 

Table 3.6: Helix kink angles calculated for the CG and AA simulation ensembles of 

a solvated DNP in 0.3 M NaCl. Helix kink angles were calculated using the gmx bundle 

analysis tool, which calculates angles between vectors representing the kink-top and 

kink-bottom groups. The solid black lines represent the vector of the R1-R4 region 

(kink-top) in each helix, and dotted lines represent the vector of the R5-R8 region (kink-

bottom). In all six helices, the centre of the kink angle originated at the cusp of R4 and 

R5 in all replica simulations. Pseudo-atom indices of the R4/R5 region were defined 

as the “kink centre” group, from which the two vectors emerge to make the angle.  

               Helix 1               Helix 2                Helix 3 

      CG 
40.0 ± 0.3∘ 

      AA 
35.9 ± 7.8∘ 

      CG 
62.5 ± 0.5∘ 

      AA 
70.3 ± 7.3∘ 

      CG  
50.8 ± 0.5∘ 

      AA 
47.2 ± 4.0∘ 

   

                Helix 4                Helix 5                Helix 6 

      CG 
67.3 ± 0.7∘ 

      AA 
78.3 ± 5.3∘ 

      CG 
62.5 ± 0.5∘ 

      AA 
 60.0 ± 9.1∘ 

      CG  
31.0 ± 0.8∘ 

      AA 
38.9 ± 3.4∘ 
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3.6       Conclusion 

This chapter explored the conformational dynamics, average dimensions and key 

structural features of a DNP in bulk solution, and the influence that ionic strength has 

on these properties. Overall, the solvated DNP has no distinct lumen, and is 

conformationally very flexible, with a significant amount of helix fraying and 

characteristic breathing motions in the midsection that are facilitated by kinking of the 

helices at the nick sites. The pore is constricted at the termini, with a fixed polarity in 

the widths of the termini that is also observed in cryo-EM electron density maps. These 

observations contrast greatly with the idealised pore structure, which was assumed to 

be a rigid barrel with a well-defined lumen when it was designed. The poor rate of 

insertion associated with this pore design may be a consequence of the lack of rigidity 

and generally globular conformation of this particular design of DNP. It would not be 

appropriate to compare the structural characteristics of these DNPs to protein pores 

such as a-haemolysin or ClyA as these proteins exist in a monomeric form in solution, 

which aggregate and assemble into their multimeric functional form once they come 

into contact with lipid bilayers. Similarly, we cannot attribute the relatively slow rate 

of insertion to structural properties by directly comparing the rates of insertion of the 

DNPs studied here to those of other published DNP designs, as insertion kinetics of 

other designs have not been published yet.  

 

Through the comparisons made against AA simulation data and cryo-EM 

experiments, we have seen that the use of the MARTINI CG force-field combined 

with subsequent back-mapping of clustered structures allows us to accurately predict 

the dimensions of a solvated DNP, and CG models alone were capable of identifying 

regions of constriction and strain within the structure. The CG models also identified 

the helices most susceptible to fraying and kinking, and the kink angles calculated from 

the 0.3 M NaCl CG simulation ensemble were successfully validated by AA 

simulations of the DNP in the same conditions. However, the loss of resolution and the 

invocation of the elastic network model when using the MARTINI force-field does 

lead to an underestimation of the degree of fluctuations, and in particular the relative 

flexibility of R1 terminus compared to the R8 terminus, though in theory this could be 

corrected for by using softer elastic restraints. Over-estimation of the percentage of 

base pair fraying is likely unavoidable when using the MARTINI model, due to the 



 104 

difficulty involved in refining non-bonded parameters to preserve realistic base-pairing 

and base-stacking interactions simultaneously. Nevertheless, the model predicted a 

relatively high incidence of base-pair breakage in helices 1 and 6, and this observation 

was validated by AA simulations. The CG simulation ensemble provided highly 

reproducible results with consistently low errors due the ease and affordability of 

accessing longer timescales with the MARTINI model, and the breadth of 

observations made in these ensembles yielded results that were comparable to cryo-

EM experiments – which has not yet been achieved in any CG simulation studies of 

DNA nanostructures thus far. To make the best use of these findings, the simulation 

protocol described in this chapter should be applied to other published DNP 

frameworks, and the kinetics of insertion of these DNPs into planar membranes must 

also be established, using techniques such as total internal reflection fluorescence and 

reflectance interference spectroscopy (TIRFS-RIf).[4] Comparing the dynamical 

behaviour of the simulated DNPs in solution allows for the identification of design 

motifs (e.g. helix length, helix nicks, terminal polyT crossovers, Holliday junctions) that 

confer structural rigidity or areas of flexibility to the pore scaffold. It is not yet clear 

whether or not the conformational flexibility, helix kinking, and helix fraying exhibited 

by the TEG-C DNPs in solution here detrimental or advantageous to membrane 

insertion. If simulation data for a range of DNP designs are considered alongside 

experimentally derived insertion kinetics, the answer to this question could be 

elucidated, and future designs can be refined to improve membrane encapsulation of 

DNPs.  
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Chapter 4 

Coarse-Grained Simulations of Lipid-Bilayer Spanning DNA 
Nanopores  

The protocols and results discussed here builds on those discussed previously in 

Chapter 3. To understand the influence of ionic strength on the functionality of a DNP, 

we must analyse its’ dimensions and conformational dynamics as they span a lipid 

bilayer, as well as in bulk solution. The concept of hydrophobic mismatch (discussed 

in Chapter 1) is important when we consider the interactions between DNPs and lipid 

bilayers. As the DNP possesses negative charges along the entirety of the outer surface, 

and just three thin and flexible hydrophobic anchors in lieu of a hydrophobic region, 

we can surmise that the hydrophobic mismatch between the DNP and the membrane 

will be very large. A greater number of cholesterol anchors on the DNP may in theory 

reduce the hydrophobic mismatch, however when tested experimentally these DNPs 

had a tendency to aggregate in solution (results pending publication). The composition 

of the lipid membrane would also influence the extent of hydrophobic mismatch and 

the type of hydrophobic matching behaviour that occurs between the DNP and the 

bilayer, as acyl chain length and cholesterol content control the hydrophobic thickness 

of the membrane, as well as its rigidity and susceptibility to curvature.[29]  

As we are interested in understanding observations made in published experimental 

studies which make use of homogenous PC lipid bilayers[4], [38], the simulation 

conditions must be reflective of these conditions.  Hence, a homogenous POPC bilayer 

was selected to model the lipid bilayer as they are used extensively in ongoing 

electrophysiology experiments. Experimental and computational studies of these 

bilayers have confirmed that POPC bilayers have a hydrophobic thickness of ~ 2.7 

nm[142]. As the DNP is highly hydrophilic, can expect to observe some hydrophobic 

matching effects in the membrane simulations, whereby the system moves to reduce 

contact between hydrophobic lipid tails and the negatively charged DNP. This can 

involve tilting of the pore, reorganisation of lipids, and the adoption of alternative 

binding modes. Indeed, these effects are observed in all of the DNP membrane 

simulations, and the findings here indicate that the salt concentration plays a crucial 

role in the degree of tilting and general mobility of the DNP within the bilayer.  
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4.1       Model Building 

The solvated membrane models were built by inserting the CG DNP into the centre 

of a pre-equilibrated CG POPC bilayer patch, which was solvated with in a box of 

polarised MARTINI water molecules with the insane.py script.[96] Coarse-grained Na+ 

and Cl- ions were added to set NaCl concentrations of 0.3 M (for the low salt model) 

and 1.0 M NaCl (for the high salt model), also with the insane.py script. The two models 

consisted of ~ 100,000 pseudo-atoms, with overall cell dimensions of 16 nm x 16 nm 

x 13 nm. A 16nm x 16nm membrane patch was chosen, as this allowed for plenty of 

space between periodic images of the DNP, thus avoiding self-interactions. The initial 

configuration of the DNP had an initial unequilibrated width of 4.95 nm and was 

placed in the middle of the membrane patch, which corresponded to initial distance of 

11.05 nm between periodic images of the DNP.  Membrane simulations are also highly 

susceptible to finite size effects, as the periodic boundaries often cancel out undulations 

that may be experienced by membranes in nature[143][144], which can have 

amplitudes anywhere between 5 nm and 100 nm. Sampling these undulations is 

important in these simulations, as hydrophobic matching effects i.e. lipid 

reorganization and membrane thinning are variables of significant interest in this 

study. This membrane patch size allows us to sample some of the smaller amplitude  

undulations, as the centred DNP is surrounded by ~ 5 nm of membrane.  

The initial models were subjected to 5,000 steps of minimization using the steepest-

descent algorithm. A 2-fs time-step was used for the first 10 ns of equilibration time, as 

the initial relaxation of system involves drastic conformational changes which result in 

large forces being calculated at each time step. The first phase of the equilibration was 

performed in the NVT ensemble, with strong positional restraints applied to the beads 

of the DNP and the charged lipid head-groups. The force constants of the DNP 

restraints were gradually reduced to zero over the course of ~5 ns of equilibration time, 

during which the temperature increased gradually from 100K to 300K. The 

subsequent 6 ns of equilibration was performed in the NPT ensemble with the 

Berendsen barostat[108], to relax the volume of the system whilst slowly releasing the 

restraints on the POPC head-groups, to prevent the formation of voids within the 

bilayer. After the removal of all position restraints, the time-step was increased to 5 fs, 

and the unrestrained system was subjected to another 20 ns of simulation time with the 

Berendsen barostat. For the final phase of equilibration (lasting 70 ns) the Parrinello-
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Rahman barostat[112] was employed with a time coupling constant of 12 ps. 

Production simulations were then run for 1 μs, with temperature and pressure held at 

300K and 1.013 bar, respectively with the velocity-rescaling thermostat and the 

Parrinello-Rahman barostat. 

4.2       Simulation Details and Analytical Methods 

All CG simulations were performed with GROMACS v5.1.4. Temperature control 

was achieved using the velocity-rescale thermostat with a time constant of 1 ps. Two 

different barostats were employed for pressure control (at 1.013 bar) during NPT 

simulation phases; the Berendsen thermostat[108] for early equilibration (with time 

constant of 2.0 ps) and the Parrinello-Rahman barostat[112] for production/data 

collection. Three separate temperature and pressure coupling groups were used; one 

for the water and ions, one for the POPC bilayer, and one for the DNP (including the 

cholesterol anchors). Ensemble-based production simulations were run by generating 

separate run files with different random velocity seeds. Velocities, energies, forces and 

coordinates were recorded every 40ps, corresponding to 25 ‘snapshots’ per ns. The 

maximum distance allowed for bonded interactions with domain decomposition (rdd) 

was adjusted throughout the production simulations to facilitate the use of a 5-fs 

timestep, and typically remained in the range of 1.5 -1.9 nm. A standard 1.1 nm cut-

off was used for electrostatic and VdW interactions, and this further ensures that there 

are no electrostatic or vdW interactions between periodic images.  

 
The calculation of nanopore height, RMSF per residue, percentage base pair 

breakage, width profiles and lumen profiles for the DNP/membrane models were 

performed with the same tools and methodologies described in Chapter 3.2. Helix kink 

angles were calculated for the middle structures of the most highly populated clusters 

from each replica using the gmx bundle analysis tool. The clusters used for these 

calculations were obtained through the use of the GROMOS clustering algorithm 

implemented within gmx cluster, with the RMSD cutoff set to 0.3 nm. Bilayer thickness 

was calculated using the gmx density [70],[82]tool which was used to compute the 

density of the lipid headgroups along the bilayer normal. The distance between the 

peaks in the bilayer thickness profile provides a good measure of bilayer thickness. 

[145] Second rank lipid order parameters (P2) for the bonds within the lipid acyl chains 

were calculated according to the following equation: 
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P" =
1
2
(3	UVW"⟨:⟩ − 1) 

                                  (4.1) 

where + is the angle between each bond and the bilayer normal (z-axis). Averaging the 

P2 values gives us an approximation of the alignment of lipid tails with respect to the z-

axis. Good alignment with the z-axis is indicated by P2 values close to 1, anti-alignment 

is indicated by P2 values close to -0.5, and a value close to 0 suggests that the lipids 

have no preferred orientation and the bilayer is structurally anisotropic. [146] 

Average bilayer thickness and average pore height were used as convergence criteria 

to determine the appropriate simulation length and ensemble size for these 

simulations. By monitoring the decay of the bootstrapped standard error associated 

with these two quantities, while increasing the replica number and length, I determined 

that 15 replicas will yield reproducible results for these models. The ensemble average 

plots in Figure 4.1 show that the averaged pore height and bilayer thickness in the 1.0 

M NaCl simulation ensemble remain more or less unchanged after 10 replicas. 

However, this was not the case for the 0.3 M NaCl ensemble, where the trajectories 

split into two subsets with different DNP binding configurations. In one subset, the 

DNP remained in the membrane spanning configuration throughout, and in the other 

the DNP migrated out of the bilayer and tethered itself to the membrane surface. 

Therefore, it was necessary to run a total of 15 replicas for the 0.3 M NaCl ensemble, 

and the same was done for the 1.0 M NaCl ensemble. A simulation duration of 1µs 

was chosen for both ensembles initially, because this is the timescale on which processes 

such as lipid reorganisation and bilayer phase transitions occur, according to NMR 

relaxation experiments. [147] As we are interested in probing the interactions between 

the DNP and the lipid, we must simulate for a long enough time to ensure that 

hydrophobic matching effects such as lipid reorganisation are captured, and that the 

properties of membrane and DNP are converged across the entire ensemble. 
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Figure 4.1: Ensemble average plots illustrating the convergence of quantities in the 

1.0 M NaCl simulation ensemble. Error bars correspond to the bootstrapped standard 

error. (a) Convergence of the average bilayer thickness as a function of replica number 

demonstrates that 10 replicas are sufficient to ensure reproducible results, however 15 

replicas were performed in total to ensure reproducibility and consistency between the 

1.0 M NaCl and 0.3 M NaCl ensembles. (b) Convergence of the average pore height 

with simulation time shows that 1µs is an appropriate duration for a set of 15 replicas. 

(c) Decay and subsequent plateau of the standard error associated with bilayer 

thickness suggests that 15 replicas guarantee fully converged errors. (d) Convergence 

of the average pore height as a function of replica number. (e) Evolution of the average 

pore height as a function of simulation time. The slight increase in pore height at the 

end of the plot suggests that a longer simulation duration may be prudent. (f) Decay 

of the bootstrapped standard error associated with the average pore height. 

a 

b 

c 

d 

e 

f 
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4.3       Benchmarking and Computational Resources 

In order to approximate the level of computing resources that would be required for 

these simulations, strong scaling tests were performed for one of the CG DNP/POPC 

simulation systems (running with GROMACS v5.1.4) on two HPC platforms; the UK 

national supercomputer ARCHER[123] and the Dutch national supercomputer 

Cartesius. [124] Each simulation was run on 360 CPU cores, as the simulation box 

was too small to be divided amongst more cores than this. Half of the thirty 1 μs - long 

simulations of the DNP/POPC models were completed on ARCHER, and the other 

half on Cartesius. These simulations consumed 685,000 core hours in total. The 

computational resources used for this work were provided by the CompBioMed 

Centre of Excellence.[125] 

4.4       Results and Discussion 

The results from the simulations of the DNP as it spanned the POPC bilayer revealed 

a striking changeability in its long-time behaviour at different ion concentrations. Most 

remarkably, there was a high tendency for the DNP to pop out of the bilayer and bind 

to the bilayer surface in the low-salt (0.3 M NaCl) ensemble, but not at all in the high-

salt ensemble (1.0 M NaCl). This occurred in 10 out of the 15 trajectories in the low-

salt ensemble. In experimental studies, DNPs have been shown to exhibit a strong 

preference for curved membranes over planar membranes[4], [38], and insertion into 

planar membranes in similar conditions (0.3 M KCl buffer) has been reported to be 

very slow. In light of this, single channel current recording experiments with these 

pores are typically carried out in buffer solutions containing surfactants and relatively 

high salt concentrations (e.g. 1.0 M KCl) to facilitate the uptake of DNP’s into planar 

membranes. [2], [4], [38] This is possibly indicative of a high energy barrier associated 

with insertion of the DNP into planar membranes. While we do not have the 

appropriate simulation data to comment on the thermodynamics associated with 

membrane insertion, the expulsion of the DNP in the simulations described here 

suggests that the artificial starting configuration imposed on the membrane-spanning 

DNP is unfavourable in 0.3 M NaCl. In the affected trajectories, the DNP exits the 

bilayer in a series of steps, illustrated in Figure 4.3.  

 
 



 111 

We can approximate the time at which the DNP departs the membrane within each 

simulation by tracking the change in pore height as function of simulation time across 

all replicas. As the pore tethers to the underside of the membrane, the attractive 

electrostatic interactions between the negatively charged phosphate backbone and the 

positively charged choline groups causes DNA helices to elongate, in order to maximise 

these favourable interactions. The average pore height in the affected replicas increases 

fairly sharply up until the end of the simulation in each case, indicating that these 

replicas are exhibiting non-equilibrium behaviour and should therefore be extended 

in the future. Figure 4.2 shows that the onset of the expulsion event varies considerably 

between replicas, with the time of onset ranging between 300 ns and 700 ns. To extract 

reliable information on the dimensions and dynamics of the DNP as it spans the bilayer 

in the low-salt condition, it was prudent to use the data from the first 300 ns of the 0.3 

M ensemble only.  

 
 

 
Figure 4.2: (a) Plot showing the evolution of the average pore height with time for 

each of the 15 individual replicas. The plot-lines showing a sharp increase in the 

average pore height are representative of the replicas in which the pore tethers to the 

bilayer surface after ejection. Error bars have been omitted for clarity. (b) Plot of 

standard error (s) associated with the average pore height vs replica length, illustrating 

how the divergence of neighbouring trajectories causes the standard error to increase 

dramatically after around 300ns. 

 

 

 

 

 

  a    b 
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Figure 4.3: Snapshots taken from a simulation in which the DNP departs from the 

bilayer in a multi-step process. (a) The DNP is spanning the membrane normally in 

the transmembrane binding pose, and the surrounding lipids form a toroidal pore 

around the DNP by orienting themselves perpendicular to the bilayer normal. The 

shape of the toroidal pore is shown in detail in Figure 4.4. (b) Membrane lipids 

reorganise, and the DNP descends from the centre of the bilayer. (c) The DNP tilts 

and rotates, moving further out of the membrane. (d) The DNA backbone aligns with 

the POPC headgroups, and the DNP is held on the lower surface of the bilayer by two 

cholesterol anchors, adopting the side-on binding pose. The positively charged choline 

groups of the POPC lipids are represented as green spheres, and the negative 

phosphate moieties are shown as purple spheres. 

 
Previously published experimental studies [4] of the DNP’s membrane binding 

mechanism have alluded to the unpredictability of the DNP in the presence of planar 

bilayers, due to its propensity to induce curvature and eventually remodel bilayers into 

lipid nanotubes. Capturing these events using brute force MD is extremely difficult due 

to the issue of sampling as these processes occur over extensive periods of time 

(seconds/minutes).[4] To assess the effect of the two observed DNP binding poses 

(transmembrane vs side-on) on the structural and dynamical properties of the lipid 

bilayer from this set of simulations, the second-rank lipid chain order parameters, the 

average area per lipid and the average bilayer thickness was calculated for the 

membrane-spanning DNP in both salt concentrations, and also for the surface-

tethered DNP after expulsion in 0.3 M NaCl. The bilayer thickness is defined as the 

a 100 ns b 300 ns 

d 800 ns c 500 ns 
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averaged distance between the lipid headgroups of  the upper membrane leaflet and 

those of  the lower membrane leaflet. Previously published X-ray scattering data[148] 

and AA MD studies[113][114] have confirmed the average thickness of a pure POPC 

bilayer to be 3.92 ± 0.01 nm at 303 K. The calculated bilayer thickness taken from the 

trajectory slices where the DNP is tethered to the bilayer surface (3.980 ± 0.034 nm, 

see Figure 4.4c) is very close to the published value, though slightly higher. The 

discrepancy may be a result of  coarse-graining – it has been noted that the densities 

of  bilayers in AA and CG models are often not in perfect agreement, and CG 

membranes are usually thicker than their AA counterparts. [82], [151] Alternatively, 

the discrepancy could be a due to presence of  salt ions, which have been reported to 

cause thickening of  pure bilayers at concentrations as low as 0.10 M in x-ray scattering 

experiments.[152], [153] It is well known that incorporation of  cholesterol into bilayers 

(including POPC) increases both the bilayer thickness and the average lipid order 

parameter.[149], [150], [154] However, these effects are only observed when the 

cholesterol is present at percentages of  20 % or above. As there are only 3 cholesterol 

anchors present in these systems (making up less than 1 % of  the bilayer), their 

influence on the average bilayer properties is likely to be negligible in this case.  

 

When comparing the bilayer properties associated with the two binding poses 

(transmembrane vs-side on) in 0.3 M NaCl, we can see that the average bilayer 

thickness decreases by 0.285 ± 0.1 nm when the pore adopts the side-on binding pose 

after expulsion in 0.3 M NaCl. The penetration of  the bilayer by the DNP results in 

thickening of  the POPC bilayer at both salt concentrations (Figures 4.4a/b), as the 

bilayer thickness values are considerably higher than published value in both cases. 

Hence, we can infer that the bilayer-spanning DNP induces membrane thickening – a 

phenomenon that has been observed in x-ray scattering[155] and MD[35], [156] 

studies of  certain protein nanopores, including mammalian aquaporin-0 and a 

bacterial a-helical stress response protein. For both of  these proteins, the hydrophobic 

length of  the protein exceeds the hydrophobic length of  the bilayer, and the membrane 

swells in the z dimension to increase the thickness of  its hydrophobic domain in 

response. In the DNP/membrane system, the hydrophobic thickness of  the pore is 

much smaller than that of  the lipid, and the lipids form a toroidal pore around the 

DNP, so this reasoning is not applicable here.  
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Toroidal pores form when the headgroups of lipid molecules in close proximity to a 

transmembrane channel form strong electrostatic interactions with the backbone of 

the channel. [157] The lipids headgroups form the inner surface of a torus, resulting 

in a reduction of area-per-lipid of the membrane at the membrane/channel interface.  

The second-rank order parameters provide some insight on what happens to the 

orientation of  the lipids when the DNP departs from the bilayer in 0.3 M NaCl, and 

how this may or may not impact the bilayer thickness. The order parameter increases 

by ~0.03 after expulsion, meaning the lipids adjust their orientation slightly to better 

align themselves parallel to the bilayer normal. The lipid torus that surrounds the DNP 

features lipids that lie perpendicular to the bilayer normal (corresponding to P2 values 

close to -0.5), and therefore the presence of  the torus decreases the average lipid order 

parameter. After the DNP exits the bilayer, the lipid torus is lost and averaged P2 value 

decreases. It is also interesting to note that after the expulsion even, a small number of  

lipids molecules are pulled out of  the bilayer and remain nestled within the grooves on 

the helices (Figure 4.5c). In the 1.0 M NaCl system, the value of  P2 is comparable to 

that of  the system represented in Figure 4.5c (0.3 M, side-on binding), however the 

bilayer is significantly thicker. This indicates that the reduction in the order parameter 

that coincides with presence of  a lipid torus does not have much influence on the bilayer 

thickness. We also notice that for the transmembrane binding mode, the higher salt 

concentration causes an increase in the order parameter and a concurrent decrease in 

the average bilayer thickness, meaning that the usual linear relationship between lipid 

order parameter and membrane thickness[158] does not apply for these systems.  

 
 

 
Figure 4.4:  Simulation snapshots illustrating the formation of a toroidal pore around 
the DNP. (a) The positively charged (green) choline moieties of lipids adjacent to the 
DNP align closely with the negatively charged DNP backbone, causing the adjacent 
lipids to curve inwards to form a lipid torus, shown clearly in b. (b) The lipid torus with 
the DNP removed for clarity. 

a  b  
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Figure 4.5: Analysis of the influence of salt concentration and DNP binding mode 

(where applicable) on the ensemble averaged bilayer properties. (a) Average bilayer 

thickness and average second-rank order parameter (P2) with respect to the bilayer 

normal for the entire high salt DNP/membrane ensemble, where the DNP remained 

in the transmembrane configuration throughout each replica. (b) Average bilayer 

thickness and P2 calculated for the first 300ns of the full low salt DNP/membrane 

ensemble, where the DNP remained in the transmembrane orientation throughout. 

(c) Average bilayer thickness and P2 taken from the last 200 ns of the ten trajectories 

in which the DNP was expelled from the bilayer to adopts a side-on binding 

configuration.  

 
 
 
 
 

1.0 M NaCl   
Average bilayer thickness (nm) 4.154 ± 0.021 
Average order parameter (P2)      0.291 ± 0.001 

0.3 M NaCl   
Average bilayer thickness (nm) 4.265 ± 0.066 
Average order parameter (P2)      0.265 ± 0.002 
  
  
  
  
0.3 M NaCl  
Average bilayer thickness (nm) 3.980 ± 0.034 
Average order parameter (P2)      0.295 ± 0.001 

a  

b  

c  
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In each of the 10 trajectories featuring an expulsion event in 0.3 M NaCl, we observe 

a range of hydrophobic matching effects as the pore exits the bilayer i.e. lipid 

reorganisation and DNP twisting, tilting and breathing motions. The heightened 

mobility of the DNP within the membrane in this environment is illustrated in the 

RMSF per residue plot shown overleaf (Figure 4.6). The DNA backbone is extremely 

fluctuant; much more so than in the solvated 0.3 M NaCl system (Figure 3.7a). The 

range of RMSF values in the membrane model is much broader than it is for the 

solvated model, with much higher upper extremes - around 0.7 nm for the membrane 

model, compared to 0.4 nm for the solvated model. Furthermore, extreme values are 

distributed relatively uniformly across the length of the DNP as it spans the membrane, 

whereas extreme values in the solvated model (0.4 nm) occur mainly within the 

midsection of the pore, due to the breathing motions of this region. 

 

In the high-salt membrane simulations, we did not observe any signs of the DNP 

exiting the bilayer at any point, suggesting that the initial transmembrane binding 

mode is more favourable at higher salt concentrations. The incidence of extreme 

RMSF values in the high-salt membrane model is very low compared to the low-salt 

membrane model, and even the most extreme value (0.35 nm) is around 0.1 nm lower 

than the median value in the low salt RMSF-per-residue plot. Generally, the 

nucleosides in the membrane-spanning region have RMSF values below 0.2 nm in the 

high-salt case, indicating that the DNP is far less mobile within the bilayer, and hence 

less likely to depart. The RMSF-per-residue values for the high-salt membrane model 

are also lower and more narrowly distributed than those of the solvated high-salt model 

(Figure 3.7d), suggesting that the midsection of the DNP experiences significant 

compression and immobilization within the membrane, due to the formation of the 

toroidal lipid pore (Figure 4.4) around the DNP.  
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Figure 4.6: (a) Representative structure of the membrane-spanning DNP in 0.3 M 

NaCl (cholesterol anchors omitted). (b) RMSF per residue plot for the membrane-

spanning DNP in 0.3M NaCl, generated from the first 300 ns of the 15 trajectories. 

The median RMSF value is 0.45 nm. (c) Representative structure of the membrane-

spanning DNP in 1.0 M NaCl. (d) RMSF per residue plot for the membrane-spanning 

DNP in 1.0 M NaCl, generated from the first 300 ns of the trajectories. The median 

RMSF value is 0.19 nm. 

The relative stability of the transmembrane binding mode in 1.0 M NaCl compared 

to 0.3 M NaCl is also made apparent in the distribution of the total potential energies 

of these systems, shown in Figure 4.7. The average potential energy of the 0.3M NaCl 

system (-246 x 105 kcal/mol) is markedly higher that of the 1.0 M NaCl system (-420 

x 105 kcal/mol), suggesting that the additional electrostatic screening proffered by the 

higher salt concentration makes a large impact on the stability of the DNP/bilayer 

system. Additionally, the distribution of energies in 1.0 M NaCl resembles a Gaussian 

d 

R1 R2 R3 R4 R5 R6 R7 R8  

R1 R2 R3 R4 R5 R6 R7 R8  

c 

a b 



 118 

distribution centred around a single global maximum, whereas the 0.3 M NaCl system 

energies take the form of a bimodal distribution, where there are two separate potential 

energy wells. The density of the higher energy well on the right-hand side of the plot 

is approximately 1.5 times greater than the density of the lower energy well, which 

reflects the ratio of time spent in the transmembrane orientation vs the side-on tethered 

orientation reasonably well. Given that all fifteen replicas in the 0.3 M NaCl ensemble 

had the same initial configuration with the DNP spanning the membrane, and the 

expulsion event in the ten affected trajectories occurred at around 500ns on average, 

we can estimate that the DNP adopted the transmembrane binding mode for around 

66% of the total simulation time (15 µs) across all replicas. This means the duration of 

time the DNP spends in the transmembrane orientation within the ensemble is around 

1.5 times the duration of time spent in the side-on binding orientation. Hence, it is very 

likely that the more highly populated, slightly higher energy potential energy well 

corresponds to the transmembrane binding mode in 0.3 M NaCl.  

 

Figure 4.7: Histograms and overlaid estimated probability density functions 

representing the distribution of the total system potential energy for the membrane 

spanning nanopore models, calculated from 100ns-long windows across the full 

ensemble in each case. Probability density functions (smooth curves) were calculated 

using the kernel density estimator. (a) Distribution of potential energies of the 0.3 M 

NaCl, showing the emergence of two distinct potential energy wells. The larger well 

on the left-hand side of the plot corresponds potential energies sampled in the 

simulation windows where the nanopore adopts the less stable (higher energy) 

transmembrane binding mode. The well on the right represents the lower energy side-

on binding mode. (b) Distribution of potential energies for the 1.0 M NaCl system, 

where the nanopore spans the membrane stably throughout the entire ensemble.  

a b 
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Figure 4.8: Compression of the DNP within the POPC membrane. (a) Snapshots 

taken after 1 µs of simulation time in 0.3 M NaCl, illustrating the formation of a 

toroidal pore within the POPC membrane (upper panel, ions and DNP removed for 

clarity), and the distribution of ions in the system (lower panel). Red spheres represent 

the sodium ions, and yellow spheres represent chloride ions. Green pseudo-atoms 

represent the positively charged choline groups, which are electrostatically attracted to 

the negatively charged backbone of the DNP. Magenta pseudo-atoms represent the 

neighbouring negatively charged phosphate groups. The hydrophobic region is 

illustrated in grey. (b) Snapshots taken after 1 µs of simulation time in 1.0 M NaCl, 

illustrating toroidal pore formation and distribution of ions. (c) Plot of average pore 

width along the pore axis for both ensembles, illustrating the reduction in average pore 

width in all eight pore regions due to increased pore compression in high-salt 

conditions.   

a 

c 

0.3 M  1.0 M 
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The additional electrostatic screening in 1.0M NaCl allows the DNP to tolerate the 

compressive force of the toroidal pore, and therefore the transmembrane binding has 

a lower potential energy penalty in this medium. The inner edge of the torus is capable 

of exerting localised pressure to the midsection of the pore, especially when the lipid 

head-groups and the outer pore surface are oppositely charged, which is the case in 

this system. In low-salt conditions, compression of a DNA nanopore would be 

unfavourable, as this would bring densely the negatively charged dsDNA backbones 

together, giving rise to repulsive coulomb forces. Compression in the high-salt model 

made possible by the enhanced electrostatic screening, which lessens the repulsion 

between the DNA helices, allowing them to be pushed together to form a stable 

ellipsoidal lumen. As a result, the average pore width in the high salt condition is 0.24 

± 0.03 nm smaller than it is in the low salt condition (illustrated in Figure 4.10).  

 

The radial distribution functions shown in Figure 4.9 reveals a strong tendency for the 

sodium ions to aggregate within the pore lumen at both salt concentrations, as the 

highest peak in sodium ions density occurs immediately prior to the peak DNA density 

in both distribution functions. However, in the 0.3 M distribution function, the sodium 

ion density declines steadily beyond 2 nm while the chloride ion density gradually 

increases beyond this point, indicating that the aggregation of  sodium ions in the 

lumen and around the DNA helices at the DNP/membrane leads to a shortage of  

sodium ions in bulk solution. Evidence of  this can also be seen in Figure 4.8a, where 

the sodium ions (red spheres) appear concentrated in the DNP lumen and more 

sparsely distributed in the bulk solution. However, this decline of  sodium content in 

bulk solution (past the 2 nm point) is not seen in the radial distribution function for the 

1.0 M NaCl system, and Figure 4.8b illustrates this further. The bulk solvent is rich in 

both sodium and chloride ions, and chloride ions appear to occupy the DNP lumen in 

greater numbers than in 0.3 M NaCl. It would follow that the electrostatic potential 

energies in the more homogenous 1.0 M NaCl solution experience less fluctuation than 

in 0.3 M NaCl, leading to more stable dynamics. The use of  the reaction field method 

for electrostatics in these simulations makes it difficult to determine exactly how the 

imbalance between the sodium and chloride ions introduced in the 0.3 M simulation 

system by the aggregation of  sodium in the DNP lumen influences the dielectric 

electrostatic screening ability of  the bulk solvent, because a continuous dielectric 

constant is assumed outside of  the cutoff  distance. Further simulations of  the 0.3 M 
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NaCl system with PME electrostatics are needed to elucidate this. Nevertheless, the 

number density plots show that the density of  sodium ions within the pore lumen is 2.2 

times greater in 1.0 M NaCl than it is in 0.3 M NaCl. The aggregation of  sodium ions 

in the lumen depletes the bulk in the higher salt concentration to a lesser extent than 

what is seen at the lower salt concentration; the maximum density is 1.4 times greater 

than the density at the outer edges of  the box in 1.0 M NaCl, and in 0.3 M NaCl the 

maximum is 2.4 times greater than the density of  the outer edges.  

 

 
 
 
 
 
 
 
 
 
 
 
Figure 4.9: Radial distribution functions illustrating the variation of system 

component densities as a function of distance (r) from the centre of the DNP lumen for 

(a) the first 300 ns of simulation time of the 0.3 M NaCl ensemble and (b) the first 

300 ns of the 1.0 M NaCl ensemble. The density of  the sodium ions within the lumen 

is higher in 0.3 M NaCl, with a peak at ~0.5 nm which tails off  gradually as r increases, 

indicating that their numbers become depleted in the bulk solution, while the density 

of  chloride ions increases as a function of  r. (c) Averaged number density plots of  

sodium ions across the simulation box (x dimension), calculated from the frames 

corresponding to the first 300ns of  the two simulation ensembles. In both plots, the 

sodium ion density reaches its peak inside the pore lumen, which is centered ~ 10 nm 

across the box.  

b  a  

c  
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The R8 terminus appears to be much more sensitive to the compressive force of the 

lipid torus than the R1 terminus, and the largest salt-induced decrease in the average 

pore width appears to occur in the R5 region, located in the pore midsection. This 

suggests that the R8 terminus may act as an ion sensitive gate, where higher salt 

concentrations facilitate the translocation of small molecule cargo through the pore 

lumen. The pore height is 0.16 ± 0.06 nm smaller in the high salt solution than it is in 

the lower salt condition, indicating that higher ionic strengths cause compression of 

the DNP in both the lateral and axial dimensions.  

 
 
 

 

 

 

 

 

 

 

 

Figure 4.10: Variation of the membrane-spanning DNP dimensions in the two 

different salt conditions. (a) Average height and width of the DNP in 0.3 M NaCl 

(indicated by the blue arrows, shown above), and the widths of the constrictions at the 

termini, which correspond to the mean of the calculated minimum pore widths at R1 

and R8 (indicated by red arrows, shown below). (b) Average height and width of the 

membrane-spanning DNP in 1.0 M NaCl, and the widths of the constrictions at the 

termini. 

 

 

b a 

8.11 ± 
0.05 nm 

4.95 ± 0.02 nm 4.71 ± 0.01 nm 

7.95 ± 
0.01 nm 

5.55 ± 0.04 nm 4.51 ± 0.15 nm 5.51 ± 0.04 nm 4.00 ± 0.30 nm 
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Kinking of the helices in the was observed in the high salt simulations, which was 

particularly extreme in helices 3, 4 and 5 and most likely a contributing factor to the 

axial compression and shortening of the DNP. Kink angles were calculated for the 

affected helices and these are shown in in Figure 4.11.  The angles of the kinks in helices 

3 and 4 were centred around the R4 region, whereas helix 5, which was the most 

susceptible to kinking, exhibited large kink angles in the R2 and R4 regions. The kink 

angle of ~72	∘	in the R2 region of helix 5 was severe enough to cause partial unraveling 

of the helix in this area, with the small, frayed strand section sitting on the surface of 

the surrounding lipid torus like an anchor.  

 

 

Table 4.1: Comparison of the calculated pore dimensions of the membrane/DNP 

models at two different salt concentrations. All calculated values correspond to the 

mean ±  the standard error obtained from an ensemble of 15 trajectories.   

 

 

 

 

 

 

 

 

 
 
 

 Calculated 0.3 M NaCl                                          Calculated 1.0 M NaCl 
Average Pore Height (nm)           8.11 ± 0.05              7.95 ± 0.01 
Average Pore Width (nm)           4.95 ± 0.02              4.71 ± 0.01 
Average Pore Width at R1 (nm)           5.95 ± 0.02              5.85 ± 0.02 
Average Pore Width at R8 (nm)           5.84 ± 0.03              5.97 ± 0.01 
Minimum Pore Width at R1 (nm)           5.55 ± 0.04              5.52 ± 0.04 
Minimum Pore Width at R8 (nm)           4.51 ± 0.15              4.00 ± 0.30 
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Figure 4.11: Helix kink angles calculated for helices 3, 4 and 5 in the 1.0 M NaCl 

DNP/membrane model. The order in which the helices appear in the top panel 

corresponds to their order in the bottom panel. The kink angle of helices may 

contribute to the decrease in average pore height that occurs upon increasing the NaCl 

concentration from 0.3 M to 1.0 M. 

 

 
 
 
 
 
 
 
 

Table 4.2: Comparison of the distances between adjacent helices in a membrane-

spanning DNP at the two different salt concentrations. The marked reduction of the 

average inter-helix distance upon increasing the salt concentration gives evidence for 

the stabilising effect of additional electrostatic screening on the membrane-spanning 

pore.  

    Mean Inter-Helix Distance (nm)    0.3 M NaCl                                           1.0 M NaCl 
                 Helix 1 – 2    3.51 ± 0.20        2.56 ± 0.01 
                 Helix 2 –3    3.80 ± 0.30     2.38 ± 0.02 
                 Helix 3 –4    2.74 ± 0.09     2.46 ± 0.03 
                 Helix 4 –5    2.42 ± 0.04     2.14 ± 0.04 
                 Helix 5 –6    3.53 ± 0.24     2.54 ± 0.03 
                 Helix 6 –1    3.64 ± 0.27     2.32 ± 0.01 
                  Average    3.26 ± 0.02     2.40 ± 0.10 
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Further evidence of the higher extent of lateral pore compression in 1.0 M NaCl is 

given by inter-helix distance data shown in Table 4.2, which clearly illustrates a 

dramatic reduction in the average inter-helix distance of ~ 0.9 nm upon increasing the 

salt concentration to 1.0 M NaCl. Additionally, comparison of the lumen width profiles 

(Figure 4.12) reveals a striking difference in the width and shape of the lumen between 

the two salt conditions. Both lumen profiles shown noticeable constrictions within the 

lumen at R2 and R7, due to their close proximity to the strained helix crossovers at 

R1 and R8.  Increasing the salt concentration causes a uniform narrowing and 

smoothening of the lumen profile, with an additional constriction at R4– where the 

cholesterol anchors are located. In theory, the hydrophobic cholesterol groups act 

simply as hydrophobic anchors, allowing the highly charged DNA nanopore span the 

lipid bilayer. The observation of this lumen constriction at the site of TEG-cholesterol 

anchoring suggests that the presence of hydrophobic cholesterol anchors, which align 

themselves parallel to acyl chains of the lipids making up the torus, increasing the force 

of attraction between the positively charged lipid headgroups and the negatively 

charged midsection of the DNP, leading to a concurrent increase in pressure exerted 

on the DNP by the lipid torus.  

 

 

 

 

 

 

 

 

 
 Figure 4.12: (a) Averaged lumen width profile of a solvated DNP in 0.3 M NaCl, 
generated from an ensemble of fifteen replicas. The lumen width for each region was 
taken as the mean of three minimum distances measured between opposing DNA 
helices. The computed average lumen width is 3.39 ± 0.02nm. (b) Averaged lumen 
width profile of a membrane-spanning DNP in 1.0 M NaCl. The main constriction 
within the pore lumen at R4 corresponds to the position of the TEG-cholesterol 
anchors. The computed average lumen width is 2.21± 0.01 nm, which is well in line 
with the expected lumen width of ~ 2.0 nm confirmed by PEG sizing experiments. 
The profiles have been symmetrised for ease of visualisation. 

b a 
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4.5 Conclusions 
 
The varied spread of interesting behaviors that were observed in these highly dynamic 

simulation systems highlights the need for ensemble-based CG protocols for 

exploratory studies of novel and unpredictable DNA nanoarchitectures such as the 

TEG-cholesterol anchored DNP studied here. In the low-salt case, a propensity for the 

DNP to exit the bilayer caused the ensemble to separate into two clusters, revealing 

two district kinds of behavior corresponding two different membrane binding modes. 

Capturing these sub-states, which involve biomolecular motions that occur at micro-

second timescale with traditional brute-force all-atom MD whilst maintaining close 

control of errors is not possible without incurring huge costs. If we are to make direct 

comparisons between the binding modes that are observed in simulation and 

experiments, thorough elucidation of the free energy difference between the two 

binding modes is required, alongside simulated binding and insertion kinetics using 

enhanced sampling simulation techniques e.g., metadynamics. [159], [160]  

 

The conditions in the simulations are of course not completely reflective of the 

conditions employed in experimental studies of DNPs in the presence of membranes. 

These studies use significantly larger membrane patches (µm length scale) than the 16 

nm x 16 nm simulated POPC patch, KCl rather than NaCl, and slightly alkaline 

buffers with pH of 8.0. [4], [38] Not much is known about the influence of pH on 

planar homogenous lipid membranes such as the PC bilayers used in this 

computational work the published experimental literature, but preliminary 

fluorescence microscopy-assisted vesicle migration studies by Angelova et al[161] have 

suggested that higher pH values can decrease the surface tension of DOPC 

membranes.  Due to the simplified representation of ions and water in the MARTINI 

force-field, it is not possible to exactly recreate the solvent conditions, and the use of 

reaction-field electrostatics with the polarisable water model must be validated for this 

system by comparing the results to simulations performed with PME electrostatic 

treatment. Ideally, this should be done with an AA force-field, as MARTINI was 

parameterised with short range shifted electrostatic interactions, so long range 

electrostatics are considered less reliable in MARTINI CG simulations, regardless of 

the method used for calculating electrostatics. 
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In these simulations, we observe a strong tendency for sodium ions to accumulate 

within the pore lumen in both salt conditions, due to the density of negative charges 

on the DNP interior, and the density of sodium ions within the DNP lumen is of course 

greater in the higher salt condition due to the abundance of ions. The expulsion of the 

DNP in 0.3 M NaCl, and the subsequent side-on membrane binding mode suggests 

that the lower salt concentration does not provide sufficient electrostatic screening 

between the DNA helices of the DNP in CG models. The inter-helix repulsion within 

the DNP is apparently too large to withstand the compressive force of the membrane, 

and therefore it opts to bind to the bilayer side-on instead. A concentration of 1.0 M 

NaCl appears to stabilise the transmembrane binding mode, and the DNP is 

compressed within the lipid bilayer to form an ellipsoidal pore, with kinks forming 

within the DNA helices in response to the compressive force of the lipid torus that 

forms around it. The simulated pore lumen profile in 1.0 M NaCl is in excellent 

agreement with the values obtained from PEG-sizing experiments, though more 

experimental data are needed to validate properties such as helix kink angles and 

bilayer thickness. The relationship between the lipid order parameters and the bilayer 

thickness is atypical in the presence of the DNP, and this is difficult to explain without 

further experimental data (e.g. x-ray scattering), or higher resolution all-atom MD 

simulations.  
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Chapter 5 

Computational Electrophysiology Simulations of Lipid Bilayer 
Spanning DNA Nanopores 

In this chapter, we explore the conductive properties of a membrane-spanning DNP 

and assess the relationship between the dynamics of the membrane/DNP system under 

an applied potential difference and its ability to transport ions across the membrane. 

The current-voltage relationship and average conductance for this particular DNP 

have already been established in published experimental literature, primarily through 

single-channel current recordings (discussed in Chapter 1.5). The DNP exhibits ohmic 

conductivity under applied voltages below 60 mV, but the average conductance 

appears to decrease at higher voltages – a phenomenon which has been attributed to 

conformational changes to the DNP that impede its conductivity. Confirming this 

hypothesis experimentally would be very challenging, so I have utilised coarse-grained 

simulation methods to analyse the conductive properties of the membrane-spanning 

DNP, and any conformational changes that the system experiences as a result of ion 

transport and the application of a potential difference to the bilayer normal. I have 

used the computational electrophysiology protocol[162], [163] developed by the 

creators of GROMACS[98] to derive current-voltage relationships for the membrane-

spanning DNP at a range of instantaneous voltages, and to assess the dynamic behavior 

of the system in response to the resultant voltage applied normal to the bilayer.  

5.1       The CompEl Protocol 

The computational electrophysiology protocol was developed within GROMACS to 

address the issues that arise when one attempts to introduce an applied electric field 

into a simulation system with periodic boundary conditions and fluctuating dielectric 

properties. Periodic boundary conditions are particularly necessary in membrane 

simulations to avoid finite size effects (discussed briefly in Chapter 4.1), and one of the 

consequences of these conditions in the z-direction is that the ionic solution on either 

side of the bilayer plane will have the same composition. This means that ion 

concentrations on either side of the bilayer are always equivalent, making it difficult to 

establish a transmembrane potential difference. [164] The magnitude of the total 

electric field experienced by the simulation system depends on the side of the 



 129 

simulation box, as well as the dielectric properties of systems. In simulation systems 

with fluctuating dielectric properties (such as the dynamics membrane/nanopore 

systems being studied here), it is difficult to impose a constant electric field as the factor 

by which net electric field is influenced by the fluctuating dielectric must be corrected 

for throughout the simulation. The CompEl protocol provides a simple solution to this 

problem by cloning the system in the z-axis, allowing the user to define two solvent 

compartments which differ in their ion concentration which introduces a sustained 

potential difference across the bilayer. 

For a typical CompEl simulation, a double-bilayer system is constructed by cloning the 

nanopore/membrane system in the z-direction, such that two distinct solvent 

compartments (A and B) are formed, corresponding to the cis and trans compartments 

in a traditional chip-based parallel bilayer recording instrument. Virtual cylinders are 

defined around the two parallel membrane-spanning pores, a point charge difference 

(Dq) is applied to the system in each simulation, and the net influx of cations and anions 

into each compartment is recorded at regular intervals. 

 

 

 

 

  

 

 

Figure 5.1: Illustration of a double-bilayer system built for CompEl simulations. 
Ion/water swaps between the two solvent compartments (A and B) are performed after 
an ion traverses through the pore from one compartment into the other to re-establish 
a charge imbalance between the two compartments, resulting in a sustained potential 
difference – denoted by DU shown in the plot shown on the right. Image adapted from 
Kutzner et al.[162] 



 130 

Whenever the ion count in each compartment differs from the reference count (defined 

by Dq), ions from one compartment are swapped with water molecules from the other 

compartment to restore the reference count. Once the simulation is complete, the 

trajectory is split into slices – each slice typically corresponding to 20ns of simulation 

time. [63], [162] For each trajectory slice, the potential difference (V) is calculated, and 

the instantaneous current flowing through each pore (I) is calculated according to the 

following expression:   

Y =
∑((! 	 × 	-! 	\]	^_`a^)

2∆#
 

         (5.1)                                          

where (! is the charge of the ion, multiplied by the number of ion/water swaps for that 

ion. The division by two is required as two bilayers are simulated in the CompEl 

protocol. The computed current and instantaneous voltage for each trajectory slice 

constitutes a single data point on the computed current-voltage relationship. The 

gradient of the trend-line yields the average conductance of the nanopore/membrane 

system.  

5.2       Model Building and Simulation Details 

To generate an appropriate simulation system for the CompEl simulation ensemble, a 

new membrane-spanning DNP model was constructed with a smaller membrane 

patch than the one that was used in the equilibrium simulations discussed in Chapter 

4.1. The fully equilibrated DNP model (without membrane) was taken from the 1.0 M 

NaCl DNP/membrane ensemble and inserted into a 13 nm by 16 nm membrane 

patch, and solvated in a 13 nm x 16 nm x 16 nm box containing 1.0 M NaCl solution 

(MARTINI polarisable water model) using the insane.py[96] script. The system was 

then cloned in the z-axis using the gmx genconf [98] tool to create a double bilayer/DNP 

system, consisting of ~90,000 pseudo-atom beads. Each simulation was run for 100 ns, 

during which ions were counted every 0.2 ps, and ion/water swaps were made between 

the two solvent compartments to restore the original charge imbalance Dq. The speed 

of ion diffusion is dictated by the ion diffusion coefficient, which is itself dependant on 

the identity of the ions, the chemistry of the ion channel, the concentration of the 

solution and the temperature. In solutions with concentrations between 0.1 and 1 M, 
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the diffusion coefficients of sodium and chloride ions are reported to be between 1 and 

2 nm2 ns-1 at room temperate, so we can expect to witness many diffusion events in a 

simulation system of this size over the course of 100 ns.[165]  Kutzner et al[162], [163] 

achieved accurate predictions for the conductance and ion selectivity of wild-type and 

mutated bacterial porin PorB with all-atom CompEl simulations in 1.0 M and 0.2 M 

NaCl solutions with simulation durations of 100 ns, so I chose to run multiple replicas 

of this duration, increasing the number of replicas until the error associated with the 

calculated conductance remained constant (Fig. 3.5b). There are currently no 

published studies of coarse-grained membrane/nanopore systems that make use of the 

CompEl protocol, so the simplified representation of water along with the under-

estimation in the size of hydrated chloride ions in the MARTINI force-field may 

introduce inaccuracies in the ion diffusion coefficient for this system. However, the 

excellent agreement between the computed and experimental studies indicate that 

these effects are minor.  

For each trajectory frame, the potential difference (V) across the membrane was 

calculated using the gmx potential [63] tool, by summing the charges in the two solvent 

compartments and taking the second integral of the charge distribution on either side 

of the bilayer. The system was equilibrated using the same procedure described in 

Section 4.1. Production simulations were run in the NPT ensemble for a duration of 

100 ns at a temperature and pressure of 300K and 1.03 atm, with temperature and 

pressure control maintained with the velocity-rescale thermostat and the Berendsen 

barostat. Electrostatics were computed using the PME method, with a cut-off of 1.2 

nm. Twenty-five replicas were performed in total; nine with Dq = 0, eight with Dq = 

2, and eight with Dq = 4, the charge imbalance values recommended in the CompEl 

protocol.[162] The transmembrane voltage at each timestep 2+ is related to Dq 

according to the following relationship: 

2+ =
Dq+
e

 

                       (5.2) 

where e is the membrane capacitance, which dictates how the membrane voltage 

responds to changes in current. As the capacitance of the DNP-perforated membrane 

is not a priori known, the transmembrane voltage must be calculated at each time-step 
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(by integrating the charge distribution).  The high frequency of ion/water swaps and 

relatively small membrane patch caused the instantaneous potential difference to 

fluctuate sharply throughout each simulation, so some of the trajectory slices were 

omitted as the potential difference rose beyond the range of voltages that are typically 

employed in electrophysiology experiments on DNA nanopores (± 100 mV). Around 

100 usable data points were extracted from the full set of trajectories, and these were 

invoked to construct a current-voltage (I/V) curve. Bootstrap error analysis confirmed 

that twenty-five replicas yielded a converged value for the average conductance G, 

which was taken as the slope of the line fitted to the I/V curve.   

 

 

 

 

 

 

 

Figure 5.2: The pre-equilibrated double bilayer/DNP system set up for CompEl 

simulations. The arrow represents the alignment of the simulation box with respect to 

the z-axis (the vector of ion translocation).   

 
5.3       Computational Resources 

All CompEl simulations were performed on the UK national supercomputer 

ARCHER[123], with each simulation being run on 240 CPU cores, as the simulation 

box was too small to be divided amongst more cores than this. These simulations 

consumed 88,000 core hours in total. The computational resources used for this work 

were provided by the CompBioMed Centre of Excellence.[125] 
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5.4       Results and Discussion 

At the beginning of this investigation, I had to determine an appropriate number of 

CompEl simulation replicas to ensure a converged result for the calculated average 

conductance, with a reasonably low standard error. Tracking the evolution of the 

average conductance (calculated with equation 5.1) and its associated standard error 

reveals that the ensemble of 20ns windows with instantaneous voltages below 100 mV 

(a voltage range that is commonly used in experiment) yielded from the 25 simulations 

was sufficient to provide a reliable value for the computed conductance (1.19 ± 0.49 

nS). This value was in good agreement with the experimentally determined 

conductance of 1.59 ±	0.07 nS. The magnitude of the errors associated with the 

average conductance is noticeably higher than errors calculated for other macroscopic 

quantities discussed in the previous chapters, and the reason for this is tied to the 

specific features of the CompEl protocol. As mentioned in Section 5.1, ions are 

swapped with water molecules at regular intervals throughout the simulation as ions 

proceed to traverse the nanopore, in order to restore the point charge mismatch and 

allow the transmembrane potential difference to persist. However, these frequent 

swaps often cause the magnitude of the voltage to oscillate quite rapidly throughout 

the simulation, increasing the uncertainty of the instantaneous voltage in each window. 

This effect is usually more pronounced in smaller membrane patches, and in 

simulations with shorter timescales with fewer frames outputted. The voltage is 

calculated retrospectively by integrating twice over the charge density along the 

transmembrane pores’ principal axis at each timestep (or number of timesteps). A 

smaller membrane patch means the charge density will be affected significantly by each 

ion-water swap event, and the fluctuations in voltage will be greater. The larger the 

membrane patch, the more negligible the effect of these events. The effect of shorter 

timescales and less frequent frame collections simply results in less configurations 

sampled, and therefore larger jumps in voltage as time goes on. 
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Figure 5.3:(a) Ensemble average plot illustrating the convergence of the average 

conductance (nS) as the ensemble size increases and (b) the decay of the standard error 

associated with the average conductance with increasing number of replicas (right). 

The ensemble averaged conductance was computed from a set of 100 x 20ns windows 

with an instantaneous voltage below 100 mV, converging at 1.19 ± 0.49 nS. 

The conductive properties of the DNP were originally investigated experimentally, 

with standard painted lipid bilayer techniques for single-channel current recordings. 

The experimental value (1.59 ±	0.07 nS) was obtained from a conductance histogram 

constructed from 97 individual current recordings taken at + 20 mV. The computed 

I/V curve derived from the ensemble of CompEl simulations sampling within the 

voltage range 0-100 mV gave an average conductance G of 1.19 ± 0.49 nS. Taking the 

error into account, our computed value overlaps comfortably with the experimental 

value. The ion selectivity was calculated by taking the average ratio of the flux of each 

of the ion species (Na+ and Cl-) from the 100 x 20ns windows that were used to 

construct the I/V curves. Predictably, the negatively charged DNP exhibits a 

preference for cations due to its dense negative charge, with a ratio of cations to ions 

of around 3:1 observed, as illustrated by Figure 5.5. The ion selectivity has not yet been 

determined experimentally, however dye efflux assays with DNP-gated vesicles 

containing charged fluorophores have demonstrated that the DNP preferentially 

transports sulpho-rhodamine B (net charge of 1-) over carboxyfluorescein (net charge 

of 3-) with a ratio of around 10:1, indicative of a strong preference for less negatively 

charged cargo.[38] Overlaid snapshots from CompEl trajectories reveal that sodium 

ions have a propensity to diffuse through the DNP/membrane interface, due to the 

formation of toroidal lipid pores around the DNP (discussed in Chapter 4), while 

a b 
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chloride ions appear to only travel through the DNP lumen. The published 

experimental work mentions the emergence of sub-conductance states at higher 

voltages, generally in the 60 - 100 mV range.[3] Evidence of this phenomenon has also 

been observed in the CompEl simulations, illustrated in the I/V curves below. There 

is a pronounced reduction in the slope of the I/V curve with the inclusion of current 

measurements taken at higher voltages (above 50 mV), and the average conductance 

decreases as a result.  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 5.4: Series of plots illustrating the decline of the average conductance with the 

inclusion of measurements taken at high instantaneous voltages, due to the emergence 

of sub-conductance states. (a) I/V curve generated from 100 x 20ns slices with 

instantaneous voltages below 100 mV, yielding an average conductance G of 1.19 ± 

0.49 nS. (b) Simulated conductance histogram constructed from the data from plot a. 

(c) Computed I/V curve generated from data taken from 40 x 20ns trajectory slices 

with instantaneous voltages under 50 mV (closest to the range used in experimental 

conditions), taken from 16 replicas. The slope of the red line gives an average 

conductance G of 1.49 ± 0.80 nS, which is closest in agreement with the experimental 

conductance, albeit with a larger standard error. (d) I/V curve generated from 136 x 

20ns slices with voltages below 200 mV, with an average conductance G of 0.64 ± 0.24 

nS. The marked decrease in average conductance is likely a result of the inclusion of 

sub-conductance states sampled at higher voltages. 

 d  
 

 c  
 G = 1.49 ± 0.80 nS G = 0.64 ± 0.24 nS 

G = 1.19 ± 0.49 nS 
a  
 

b  
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Figure 5.5(a): Ion flux calculated as a function of time, over the 100 windows taken 

from 25 replicas. The ratio of the gradient provides a good measure of the ion 

selectivity. The DNP exhibits a monovalent cation selectivity of 3.11± 0.23 at the ns 

timescale. (b) Overlaid frames from a CompEl trajectory illustrating the ion transport 

routes. The nanopore is shown in a transparent cyan surface representation, and the 

lipid headgroups of the toroidal lipid pore are shown as transparent grey spheres. The 

of sodium ions (blue) traversing the pore lumen outnumber the chlorine ions (purple), 

as shown in the ion flux plot, and it appears that sodium ions are transported along the 

DNP/toroid interface as well as through the DNP lumen.  

 

While the original experimental study speculates that the diminished conductance at 

higher voltages is a result of a conformational changes within the DNP, no significant 

conformational changes were observed in the CompEl simulations. The most 

noteworthy observation that was made in these CompEl simulations was related to the 

motility of the water molecules. In several replicas featuring relatively high 

instantaneous voltages, the water molecules had a tendency to “jam” within the pore 

lumen – causing the density of the system to increase dramatically, and the lateral 

movements of all components of the system other than the lipid alkyl chains to dampen 

significantly. Similar behaviour has been reported by in simulations studies on 

graphene nanopores performed by Wilson et al[166], which reports water-compression 

gating that arises from the dielectrophoretic force of water moving through a narrow 

lumen under an applied voltage. The authors report a significant increase in the local 

density of water particles dwelling within the graphene pore lumen at voltages above 

200 mV, and the magnitude of the pressure acting along the pore axis increases rapidly 

a  
 

b  
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as the voltage is ramped up from 500 mV to 1000 mV.  This in turn caused a pore 

blockade that was severe enough to impede the translocation of dsDNA strands in 

constant-velocity steered MD simulations of DNA transport through graphene pores. 

This effect was observed in porous graphene membranes of varying thicknesses (from 

one atom to five atoms thick), and the diameter of the nanopore lumen was typically 

between 2.9 and 3.5 nm – which match the lumen diameter profile of the DNP very 

closely. To determine whether or not dielectrophoretic effect could be causing the 

emergence of the sub-conductance state at higher voltages, further analyses of local 

water densities and ion mobilities could be performed on the CompEl windows. As the 

windows with appropriately high voltages are of a relatively short duration, longer 

simulations under constant applied voltages may also be necessary, but this is beyond 

the scope of this thesis. 
 

5.5      Conclusions 

Here, I have demonstrated how an ensemble-based CG approach using the CompEl 

protocol for simulated electrophysiology can be used to accurately estimate the average 

conductance of a membrane-spanning DNP, validated by existing experimental 

literature values. The DNP displays selectivity towards sodium cations, which diffuse 

freely through the DNP lumen and the DNP/lipid interface. These CompEl 

simulations also captured the voltage-dependant suppression of conductance that has 

been observed in previous experimental studies [3], which could be the result of 

dielectrophoretic compression of water within the narrow channel lumen (evidenced 

by a decrease in solvent mobility and increase in the system density) but further work 

must be done to explain the mechanism that gives rise to this phenomenon. Though 

converged, the magnitude of the standard errors associated with the mean 

conductance values were somewhat higher than experimental the experimental errors, 

which was reported as the standard deviation of a sample of ~100 independent single 

channel current recordings. The relatively high errors reported here are tied to specific 

features of the CompEl protocol itself, as discussed previously in Section 5.4.  These 

errors can be improved by running further simulations with a larger membrane patch, 

which lessens the influence of rapid water-ion exchanges on the transmembrane 

potential difference, causing less fluctuation and therefore less uncertainty in the 

instantaneous voltage. 
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Chapter 6 

Constant-Velocity Steered Molecular Dynamics Simulations of 

Fluorophore Translocation through a Lipid Bilayer-Spanning 

DNA Nanopore 

While the TEG-cholesterol anchored DNP studied in this thesis has many useful 

potential applications in biotechnology, their design and ongoing development is 

primarily geared towards drug delivery applications.  As such, we must assess and 

understand their ability to mediate the transport of various types of molecular cargo 

and identify any size or charge selectivity the pores may exhibit before we can deploy 

them successfully for drug delivery. To date, the translocation of only a small number 

of small charged fluorophores through modified DNP’s has been studied using 

fluorescence confocal microscopy, namely sulpho-rhodamine B (SRB) [3],[48], 

carboxyfluorescein (CF) [3] and ATTO 655 (a fluorescent dye manufactured by 

ATTO-TEC).  

As discussed earlier in Chapter 1.4, fluorescent dye influx/efflux assays allow us to 

calculate the rate of fluorophore translocation through a ligand-gated DNP. 

Differences between the translocation rates of different fluorophores may indicate 

selectivity towards fluorophores with different charges and/or steric properties, and 

the existing literature postulates that the relatively high translocation rate of SRB 

compared to that of CF is due to charge selectivity of the DNP.[3], [48] SRB and CF 

are structurally very similar, but differ in size and net charge, with the former 

possessing two negatively charged groups and one positively charged group in solution, 

and the former possessing three negatively charged groups. In addition, the bulky 

sulphate and diethylamine moieties make SRB the larger of the two molecules, making 

the charge density of the CF molecule greater than that of SRB. It is proposed that 

density of negative charges distributed along the interior walls of the DNP repels the 

more negatively charged fluorophores from the pore lumen, impeding translocation. 

More recent (unpublished) dye efflux assays have successfully made use of ATTO 665, 

which has shown influx rates comparable to SRB.  
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Figure 6.1: Skeletal representations of the three fluorophores.  (a) SRB (b) CF and 

(c) ATTO 655. ATTO 655 has no net charge, while SRB and CF have net charges 

of -1 and -3 respectively.  

 

The existing fluorophore efflux study[3] also proposed that the translocation of SRB 

through SUV-encapsulated DNP’s proceeds mainly via the pore lumen, as the 

fluorescence signal of ligand-gated DNP’s containing SRB increased substantially after 

the ligand gate was opened following the addition of a DNA “key” that hybridises to 

the lock strand that bundles the overhanging ssDNA loops at gate entrance. It is worth 

noting here that the design of the DNPs used in the efflux assays makes use of longer 

DNA strands, to introduce these overhanging loops, therefore these DNPs may have 

slightly different structural and functional properties to the DNPs studied in this thesis. 

The translocation of CF was generally quite poor and oddly, the rate of dye efflux 

through the pore in its open state (with the correct key added) was lower than the rate 

of efflux in the presence of the mismatched key, where the SUV-spanning nanopore is 

assumed to exist in its closed state (Fig 6.2c). This suggests the possibility of a secondary 

translocation pathway that proceeds outside of the DNP lumen, where the likelihood 

of one pathway occurring over another is dependent on the net charge and/or size of 

the translocating fluorophore. Additionally, the kinetic release trace (Fig. 6.2b) 

constructed for SRB showed that the background SRB emission at t=0 (immediately 

after the addition of the DNA key) was slightly higher than that of CF, and the low 

efflux rate of SRB through the closed pore (Fig. 6.2c) suggests that freely translocating 

fluorophores such as SRB can “leak” through the closed DNP, which may also be a 

result of a secondary translocation pathway through the DNP/toroid interface. Here, 

I discuss the putative basis of this behavior by analysing the results from a series of CG 

constant-velocity steered molecular dynamics (cv-SMD) simulations and subsequent 

umbrella sampling simulations, designed to model the single-molecule translocation 

mechanisms of SRB, CF and ATTO 655 through a bilayer spanning DNP. 
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Figure 6.2. (a) Illustration of the ‘unlocking’ of the ligand-gated nanopore designed 

by Burns et al.[3]  The closed state of the nanopore is denoted NP-C, and the open 

state NP-O. (b) Kinetic release traces for CF (red) and SRB (green) yielded from UV-

Vis absorbance spectroscopy experiments on SUV’s containing the fluorophores, 

where the gate-keeping nanopore is in the open state (NP-O) after the addition of the 

DNA key at t=0. (c) Efflux rates calculated for nanopore-gated SUV’s containing CF 

and SRB, demonstrating that the addition of the correct key strand (leading to 

formation of NP-O) leads to a strong increase in the efflux rate of SRB, compared to 

the NP-C state exposed to a mismatched key (which should not trigger formation of 

DNP-O) suggesting that translocation of SRB proceeds predominantly through the 

pore lumen. In the case of CF, the presence of the mismatched key appears to increase 

the rate of efflux, suggesting that the NP-C actually favours translocation of this 

fluorophore. Figures adapted from Burns et al.[3] 

 

 

 

a 
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6.1      Simulation Details and Analytical Methods 

Constant-velocity steered MD (cv-SMD) is a simulation technique usually employed 

for the modeling of non-equilibrium, force-induced processes such as protein folding, 

receptor-substrate binding events or translocation pathways by applying a force to set 

of atoms (SMD atoms), while keeping another group of atoms fixed. By keeping one 

group fixed while pulling another, we force the system to adopt a series of 

configurations along the pre-defined vector of the proposed pathway, and this allows 

to sample the free energy landscape of the pathway more readily. Extracting reliable 

free-energy landscapes directly from standard equilibrium MD simulations is not 

usually feasible, as the likelihood sufficiently sampling the relevant configurations along 

the pathway without incurring huge computational expenses is very small.[97], [167] 

Here, I discuss the implementation of the pull code within GROMACS, and the 

methods used for subsequent calculation and analysis of force profiles and free energy 

profiles, to identify energy barriers along the translocation pathway for each 

fluorophore through a DNP.  

6.1.1    The Pull Code 

The pull code implemented within GROMACS allows the user to apply the pull types 

in a number of different ways to suit the intended purpose of the simulations. For the 

translocation simulations described in this chapter, the umbrella pulling scheme was 

employed – where the centre of mass of the pull group is harmonically restrained to a 

dummy atom, two which a force is applied in the direction of the translocation. 

Restraints are usually applied to groups that are in close proximity to the pull group 

i.e. the nanopore that is being traversed, as this facilitates pulling and ensure that 

interactions between the pull group and the surrounding biomolecular structures are 

properly sampled. In addition to the pulling vector, the user must specify the force 

constant of the spring, and the pull rate. A larger force constant coincides with a stiffer 

spring, which reduces the width of the sampling window at each coordinate, increasing 

the bias of the translocation pathway. Excessively fast pulling rates may lead to 

deformations in groups in close proximity of the pull group, so pull rates between 0.001 

and 0.01 nm ps-1 are typically used in biomolecular simulation studies.[168] I used a 

spring constant of 500 kJ/mol to maximise sampling of conformational space, thus 

allowing different translocation paths to be explored, and a pulling rate of 0.002 nm 
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ps-1 over a duration of 5 ns, corresponding to a pulling distance of 10 nm from one 

pore opening to the other. The force experienced by the harmonic spring at each 

coordinate along the pulling axis is then outputted during the simulation. The potential 

of mean force (PMF) can then be extracted, either by direct analysis of the pulling 

trajectories (through the invocation of Jarzynski’s equality, explained in Section 6.1.4 

), or by running further restrained equilibrium simulations of the system in a number 

of slightly overlapping adjacent configurations that occur along the pulling vector – a 

technique known as umbrella sampling (US).[63] My choice of pulling parameters 

made it possible to run an ensemble of pulling simulations for each fluorophore cheaply 

and rapidly, while generating enough intermediate system configurations to generate 

an appropriately sized ensemble of US simulations for each system. 

6.1.2   Calculating the Potential of Mean Force 

Consider a process for which a parameter l changes incrementally with time between 

the start of the process l0 and the end of the process lt, where t is the time taken for 

the process to reach completion. According to the second law of thermodynamics, the 

average work g	performed on a system undergoing a quasistatic process is equal to 

the difference between the free energies (h) corresponding to the initial and final states 

of the system (l0 and lt), as implied by the following expression: 

 Dh = h(l+) − 	h(l#) = 	 ⟨g⟩ 

                   (6.1) 

where ⟨g⟩ denotes an ensemble of measurements of g, and l has a value of 0 at l0 

and 1 at lt. Put simply, the potential of mean force is a measure of the change in the 

free energy of the system as a function of l . It is obtained by taking the integral the 

work performed by the mean force acting on the system at each value of l. For the 

case presented in this chapter, l is represented by the translocation coordinate x along 

the translocation pathway, which runs from one side of the bilayer to the other. The 

translocation of a small molecule through a DNP can be considered a quasistatic 

process if it proceeds slowly enough for neighboring states at neighboring values of x 

to exist in equilibrium.[169] 
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6.1.3   Umbrella Sampling 

The trajectories obtained from cv-SMD simulations of the translocation process serve 

as a starting point for a subsequent ensemble of umbrella sampling simulations. The 

user selects a number of frames within the cv-SMD trajectory to represent the 

incremental progression of the translocation coordinate x from the start of the 

translocation to the end point. The frames define the umbrella sampling “windows” 

(USWs), from which overlapping histograms of configurations are yielded during the 

US simulations. In order to keep the translocating molecule (pull group) centered 

within each umbrella sampling window, a harmonic restraint is applied to it, which 

biases the distribution of potential energies sampled within each window. This bias is 

removed during the post-processing phase, yielding an unbiased distribution of 

energies for each window from which the PMFs are calculated. PMFs obtained for 

each window are assembled into a continuous PMF function, which evolves as a 

function of  x . [168] This post-processing is most often done through an 

implementation of the weighted histogram analysis method (WHAM).[63], [170] 

To calculate the PMFs for the fluorophore translocation events simulated with cv-

SMD, I divided each pulling trajectory into 52 frames, such that the distance between 

neighboring x windows was ~ 0.2 nm in each case. The harmonic umbrella biasing 

potential in each window was applied with a force constant of 500 kcal/mol/nm2, to 

promote overlap between USWs while keeping the molecule centered in its sampling 

window, as this allows the WHAM algorithm to construct a smooth free energy profile 

from the histograms of configurations generated by US. As the translocation 

coordinate x is a function of the distance in the z-direction, the PMFs calculated here 

are one-dimensional, which assumes that fluctuations in the other two dimensions will 

not affect the free energy. The accuracy of this assumption cannot be commented on 

without a thorough investigation of collective variables using dimensionality reduction 

techniques such as principal component analysis. [171] 
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Figure 6.3: Setting up USWs from a pulling simulation. The image at the top 

represents the pulling simulation, where pulling force is applied to the dummy atom 

(blue), to which the fluorophore (green star) is harmonically restrained. Frames from 

the pulling trajectory (denoted by dashed arrows) are extracted and used to seed the 

separate umbrella sampling simulations (middle image), where the fluorophore’s centre 

of mass is restrained within its sampling window using an umbrella biasing potential. 

The simulations generate a series of overlapping (biased) histograms of configurations 

(bottom image), which are analysed and unbiased by WHAM, producing a smooth 

PMF curve describing the free energy surface of the translocation process.  

 

6.1.4   Jarzynski’s Equality  

A popular, faster and less computationally costly alternative to US simulations involves 

running an ensemble of cv-SMD simulations and invoking the Jarzynski equality (JE) 

[128]-[129], which relates the equilibrium free energy change with the work done by 

the system as it undergoes a non-equilibrium “fast-switching” process according to the 

following formula: 

 ij>N(x)	/)$Rk = jDS	(x	)/)$R 	 
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                                                                   (6.2) 

where W is the work done across an ensemble of pulling trajectories, *: is the 

Boltzmann constant and Dl is the Gibbs free energy difference between the two 

adjacent states in the pulling process. The left-hand side of the equation applies to the 

non-equilibrium scenario, where measurements of W are taken from an ensemble of 

non-equilibrium simulations, which are used to approximate the free energy Dl (an 

equilibrium property, denoted on the right-hand side) associated with the non-

equilibrium process. An ensemble of cv-SMD simulations is performed according to 

the methodology described in 6.1.1, and a free energy profile is obtained directly from 

these trajectories by calculating DG of the system at each translocation/pulling 

coordinate x according to the following relationship:  

 DG = *:n	ln @
1

q
4jN%(x)	/)$R
T

!

C 

                              (6.3) 

where q is the total number of work samples taken from q replica simulations. 

Insufficient sampling along the coordinate x is a common concern when using JE to 

calculate free energy profiles, as well as the tendency for smaller values of g to 

dominate the exponential average disproportionately. To remedy this, the second-

order cumulant expansion of the JE terms is used to calculate Dl at each value of x to 

yield a less biased PMF – though loss of energy due to dissipated work is still quite 

difficult to account for. US yields more reliable PMFs and more accurate calculated 

Dl values than direct calculation from cv-SMD trajectories with JE, simply because 

sampling is much more comprehensive and tunable with the former method, though 

it has been demonstrated that JE can reproduce US-derived PMFs if lower pulling 

rates and longer simulation durations are used – though this typically drives the cost of 

the simulation up to levels that are comparable to the cost of US simulations. [131], 

[134]-[135] That said, Martin et al. [175] described a rapid and cost-efficient ensemble-

based protocol utilising JE in conjunction with shorter-duration AA cv-SMD 

simulations, that was capable of deriving experimentally validated PMF profiles for the 

translocation of a range of polynucleotides and single nucleotides through wild-type 

and engineered aHL nanopores. The discriminating features of the free energy profiles 
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associated with the translocation of poly(A) and poly(C) through the wild-type aHL 

nanopore elucidated in this study provided a qualitative explanation of the differences 

in the rate of translocation of these polynucleotides that were observed in experiment.  

6.2      Model Building 

As the MARTINI force-field does not feature standardised parameters for small 

molecule fluorophores, parameters for the SRB, CF and ATTO 655 molecules had to 

be derived from AA simulations. Two AA topologies were built for each fluorophore, 

one with general AMBER force-field (GAFF) parameters, for which partial charges 

were derived from QM data using the restrained electrostatic potential (RESP) 

procedure, and one with CHARMM general force field parameters derived using the 

CGenFF web server without prior QM calculation of partial charges. These two sets of 

force-field parameters were tested to determine the extent to which the choice of initial 

AA force field influenced the final CG MARTINI parameters. Once the CG 

MARTINI fluorophores were built, I assembled three fully coarse-grained models 

ready for cv-SMD simulations of the translocation pathways for SRB, CF and ATTO 

655 through a membrane-spanning DNP.  

6.2.1   Parameterisation of All-Atom Fluorophore Models 

 

Fluorophores (commonly referred to as fluorescent dyes) are small-to-medium sized 

organic molecules that are capable of absorb specific wavelengths of visible light, and 

re-emitting light at longer wavelengths after experiencing a vibrational relaxation 

following the initial electronic excitation. Fluorescent molecules often feature highly 

conjugated fused rings, as the gap between the highest occupied molecular orbital and 

the lowest occupied molecule orbital in these molecules corresponds to wavelengths 

within the visible spectrum. [176] The availability of parameters for fluorophores 

within the biomolecular force fields is limited, due to the intrinsic difficulty of 

accurately modelling the high degree of polarisability within these molecules, which 

arises from rapid movement of delocalised electrons throughout the conjugated ring 

system. This difficulty stems from the fixed point charge approximation that is a feature 

of most standard AA MD force fields [71] [91],[140]so the rapid charge fluctuations 

that occur in fluorophores are difficult to account for.   
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Additionally, there is a shortage of published experimental data on common 

fluorophores that quantify the properties that are used for validation of force-field 

parameters, such as solvation free energies. Nevertheless, AA parameterisations within 

the CHARMM and AMBER force fields have been developed for the rhodamine, 

Alexa Fluor, Cy and ATTO families of fluorophores by several independent research 

groups, using a variety of parameterisation methodologies, though the reliability of 

these parameters is uncertain. Studies by Vaiana et al [178], [179] describe the 

automated frequency matching method (AFMM) they used to obtain CHARMM27 

compatible parameters for Rhodamine 6G and an MR121 (a member of the ATTO 

dye family). The method consists of two stages: an initial quantum-chemical 

calculation of partial charges and normal modes at the restricted Hartree-Fock level of 

theory (RHF) and assignment of existing CHARMM27 bonded parameters and vdW 

constants by analogy, followed by an iterative refinement of these parameters until the 

molecular mechanics (MM) derived normal mode eigenvalue/eigenvector sets match 

the results from the quantum-chemical normal mode analysis. Furthermore, the 

parameters they derived allow them to calculate fluorescence lifetimes from MD 

simulations, which were in good agreement with experimental lifetimes, however these 

were calculated as a function of distance between the dye and the quencher, which is 

unrelated to normal modes.  

 

A very similar method was used by Corry et al[180] to parameterise a series of Alexa 

Fluor dyes, only the quantum chemical charge-fitting procedure was based on density 

functional theory (DFT) rather than RHF, and the comparison of vibrational normal 

modes between QM and MD models was forgone as they were not relevant to the 

purposes of their study. The aim of their work was to uncover the orientational 

freedom and orientation factors of protein-tethered fluorophores, which are almost 

impossible to measure directly in an experimental setting but make a large contribution 

to uncertainties associated with the interpretation of FRET experiments. Their results 

were ultimately inconclusive, due to the scarcity of experimental orientational 

measurements for validation of their fluorophore parameters, and insufficient sampling 

in their MD simulations. A substantial effort towards establishing a set of reliable, 

modular and easy to implement AMBER-compatible parameters named “AMBER-

DYES” for the Alexa Fluor, Cy and ATTO family of fluorophores was made by Graen 

et al[181] in 2014. Their strategy also made use of QM methods for calculation of 
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partial charges, and after this stage atom types and bonded parameters were assigned 

by analogy from GAFF. The charge-fitting procedure was validated by comparing the 

calculated partial charges to those of tryptophan – a bulky aromatic and “dye-like” 

amino acid for which thoroughly validated partial charges exist for all major 

biomolecular force fields. In addition, they characterised charge fluctuations for each 

fluorophore from principal component analysis of QM/MM trajectories and 

concluded that the majority of the change variance exhibited throughout the ring 

systems could be accounted for with a small number of polarisable centres, though this 

feature has not been implemented within AMBER-DYES. 

 

The study presented in this chapter uses comparatively unsophisticated biomolecular 

CG models. The MARTINI force-field used therein is non-polarisable (with the 

exception of the water molecules), and we use it to explore the dependence of the 

fluorophores’ net charge and on its translocation pathway through the membrane-

spanning DNP. Hence, the capacity of the AA parameters to account for charge 

polarisation and vibrational normal modes of the fluorophores is likely be of little 

consequence in the derived CG parameters. The key common features of the 

parameterisation schemes detailed above are the derivation of partial charges using 

QM calculations, and the assignment of atom-types and bonded terms from general 

force fields (either AMBER or CHARMM), so these are the steps I took when 

parameterising the AA fluorophore models. In the AMBER and CHARMM 

parameterisation scheme, each residue or molecule is restrained to have a fixed integer 

charge, so that large biomolecular systems can be built in a modular fashion without 

needing to refit individual atomic charges as the system increases in complexity. The 

partial charges the atoms within the molecule/residue must accurately reflect the 

distribution of charge around the molecule, and they must sum to give the correct 

restrained net charge. For parameterisation within CHARMM, the CGenFF program 

assigns partial charges according to the bond-charge increment scheme described in 

Chapter 2.2.1.2. The AMBER force-field relies on quantum mechanical calculation of 

the electrostatic potential around the molecule by summing the contributions from the 

nuclei and the electronic wavefunction. The partial charges of the atoms are then 

optimised according to the restrained electrostatic potential (RESP) procedure[182], 

to achieve an optimal least-squares fit between the RESP model calculated electrostatic 

potential. Molecular models of the ATTO 665, CF and SRB structures were hand 
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built using PyMOL, with coordinates saved in the PDB format. The PDB files were 

converted to the Gaussian16 ASCII format required for the QM geometry 

optimization and ESP calculations. Geometry optimisation was performed with no 

symmetry, bond length, bond angle or dihedral restrictions in Gaussian16 [183] at the 

HF/6-31G* level of theory, in the gas phase, followed by ESP calculations. The 

optimised geometries and ESP data for each fluorophore were then fed into the 

Antechamber programme [53], which performed the fitting of RESP charges, atom 

typing and assignment of bonded parameters. The optimised geometries outputted by 

Gaussian were also converted to the Tripos Mol2 format required by the CGenFF 

web-server for assignment of CGenFF partial charges, atom types and bonded 

parameters by analogy.  

 

Each AA fluorophore model was solvated in a 4 nm x 4 nm x 4 nm water box with a 

concentration of NaCl set at 1.0 M, using the gmx solvate and gmx ionize plugins.[63], 

[98], producing solvated fluorophore models consisting of ~ 9000 atoms in each case. 

The models were minimised (with a 2fs time-step) using the default conjugate-gradient 

algorithm, until the forces converged below the maximum threshold of 1000 kJ mol-1 

nm-1. Each system was subjected to an initial 5ns of equilibration within the NVT 

ensemble, with the temperature set to 300K using the velocity-rescaling thermostat, 

followed by 10 ns of NPT equilibration with the Berendsen barostat controlling the 

pressure at 1.013 bar. Production simulations were run in the NPT ensemble for a 

duration of 50 ns, with temperature and pressure control maintained with the Nosé-

Hoover thermostat and barostat. Electrostatic forces were calculated using the particle 

mesh Ewald (PME) algorithm, and a 1.2 nm shifted cutoff was used for VdW and short-

range electrostatic interactions. A total of 25 replicas were required for each model to 

guarantee convergence of the radius of gyration (Rg), which was assessed to confirm 

that the CG models derived from the AA models replicated the gross conformation of 

the molecules in the AA models.  
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Figure 6.4: QM optimised geometries of the three fluorophores (a) CF (b) SRB and 

(c) ATTO 655. 

 

6.2.2 Parameterisation of Coarse-Grained Fluorophore Models 

 

The method used for the derivation of CG parameters for the CF, SRB and ATTO 

655 molecules was identical to the method used to obtain the CG TEG-cholesterol 

parameters (using PyCGTool) described in Sections 2.2.2.3 and 3.1.  Before bonded 

parameters could be extracted from the reference AA simulations, AA to CG mapping 

and bonding schemes were devised for the three fluorophores. The mappings were 

designed by eye, to preserve as much symmetry in the molecules as possible, while 

maintaining a faithful representation of the positions of charged and polar groups 

present within the structures. Tiny bead types (see Section 2.2.2.1) were used in the 

place of small bead types for the CG model of CF, to account for its’ smaller size 

relative to SRB.  Several mapping and bonding schemes were tried for each molecule, 

however only the mapping schemes shown below resulted in stable CG topologies, for 

which the distribution of gyration radii (Rg) in simulations matched the AA 

distribution. The corresponding bonding schemes are supplied in Appendices 5-7. 

b  
 

a  
 

c  
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Figure 6.5: AA atom to MARTINI CG pseudo-atom mapping schemes used for 

parameterisation of the fluorophores with PyCGTool. (a) CF (b) SRB and (c) ATTO 

655. 

Two solvated CG models were built for each fluorophore using the insane.py script (one 

with CG parameters obtained from AA simulations with CHARMM parameters, the 

other obtained from AA simulations with AMBER parameters), each with a box size 

of 4 nm x 4 nm x 4 nm, filled with MARTINI polarisable water pseudo-molecules with 

a concentration of NaCl equivalent to 1.0 M. An ensemble of 25 production 

simulations lasting 50 ns each was performed for each model, and Rg data was 

extracted from the ensembles. For ATTO 655 and SRB, the AMBER-derived CG 

models had a larger average Rg than the CHARMM equivalent, whereas the average 

Rg of the two CG CF models were almost equivalent. It is worth mentioning that the 

CHARMM topology for CF generated by the CGenFF program had the lowest 

penalty score of the three, which may explain the higher degree of consistency in 

average Rg values between both CF models. This is illustrated in the Tukey box plot 

shown below – which shows that the overlap between the error bars of the median 

(indicated by notches) for the CF boxplots is strongest for CF. 
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Figure 6.6: Tukey boxplots comparing the total Rg of the CHARMM and AMBER 

derived CG fluorophore models. The black lines represent the median Rg in each case, 

and the mean Rg is denoted by green circles. The height of the notches on the boxplot 

reflects the height of the error bars of the median, where the error bars represent the 

standard error of the median. 

I chose to use the AMBER-derived CG topologies for the fluorophore translocation 

simulations, as the higher accuracy of the AMBER RESP-fitted partial charges did in 

fact have a noticeable influence on the Rg in the resulting CG models, as shown by the 

differences in the mean Rg between the CHARMM and AMBER derived models in 

Figure 6.6. 

6.2.3 Assembly of Models for Pulling and Umbrella Sampling Simulations 

The fully equilibrated CG 1.0 M NaCl DNP/membrane model (details in Chapter 4) 

served as the starting point for assembly of the cv-SMD simulation systems. The DNP 

and POPC bilayer coordinates were extracted from the final frame of a replica and 

converted to PDB format. Each fluorophore translocation model was assembled in the 

same way, with the equilibrated CG fluorophore positioned ~ 1.2 nm above the centre 

of the pore opening at the R1 terminus. The three fluorophore/DNP/bilayer models 

were solvated (with insane.py) in a 20 x 20 x 30 nm solvent box with a concentration of 

1.0 M NaCl, using the polarisable MARTINI water model. The larger z-dimension 

was chosen to allow enough space along the pulling vector so that the fluorophore can 

be pulled continuously through its simulation box without interacting with DNPs in 

periodic boxes.  
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The simulation parameters (timesteps, integration algorithms, thermostats, barostats, 

electrostatics schemes and associated settings and cut-offs) used for the minimisation, 

equilibration and production simulations were largely the same as those listed in 

Chapters 3 and 4. However cv-SMD simulations require a slightly more specialised 

equilibration procedure to conserve the starting position of the pull group, and extra 

parameters must be specified for the pulling and umbrella sampling simulations 

(discussed in 6.1.1 and 6.1.3). After minimisation with the gradient descent algorithm, 

positional restraints with of a force constant of 1000 kJ mol-1 nm-2 were placed on the 

fluorophore molecule, the DNP and the lipid headgroups for the first 5 ns of NVT 

equilibration. The restraints were kept as they were for the first 5 ns of the NPT 

equilibration, then reduced to 500 kJ mol-1 nm-2 for the following 5 ns. The restraints 

on the lipid headgroups were gradually removed over the final 10 ns of NPT 

equilibration, but the positional restraints on the DNP were held in place for the pulling 

simulations.  

Before pulling simulations were initiated, the positional restraints on the fluorophore 

molecules were replaced with harmonic restraints, with a spring constant of 500 kJ 

mol-1 nm-2. Pulling simulations were performed in the NPT ensemble, with the 

temperature held at 300 K and pressure at 1.013 bar with the Bussi velocity-rescaling 

[110]and Parrinello-Rahman barostat[112] combination, with temperature and 

pressure time coupling constants of 10 ps. The SMD atom was defined for each 

fluorophore; in each case this atom was a pseudo-atom located in one of the central 

aromatic rings. The SMD atom is the atom/pseudo-atom that is harmonically 

restrained to the dummy atom that represents the point in space that is shifted down 

the translocation coordinate. Each fluorophore was pulled at a rate of 0.005 nm ps-1, 

over a duration of 5 ns, from one side of the box to the other.  A total of 30 replicas 

(each with a different initial random velocity seed) was performed for each cv-SMD 

system, to explore the possibility of alternative transport pathways that may not 

proceed directly through the pore lumen (the “trans-lumen pathway”). Alternative 

transport pathways through the interface between the lipid bilayer and the outer 

surface of the DNP (the “interfacial pathway”) were observed for all three fluorophores, 

with the probability of transport occurring via the interfacial pathway varying 

considerably between the fluorophores (see Section 6.4). The emergence of two 

transport pathways in the cv-SMD ensembles necessitated two sets of umbrella 
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sampling simulations for each fluorophore, as direct comparisons of the PMFs yielded 

for the two pathways can give us a better idea of which route may be preferred by each 

fluorophore in an experimental setting. From each fluorophore cv-SMD ensemble, I 

selected one pulling trajectory in which the translocation occurs via trans-lumen 

pathway, and one trajectory featuring the interfacial pathway.  

These selected trajectories were trimmed to remove frames in which the fluorophore 

was located was over 2 nm from the pore termini, and the trimmed trajectories the 

were divided into 52 frames, resulting in 52 umbrella sampling simulation windows 

covering 12 nm of pulling distance. Each window was used to seed ten separate replicas 

(with different initial velocities) for each window, and each replica commenced with 5 

ns of NPT equilibration before the umbrella sampling (production) simulation was 

initiated. All umbrella sampling simulations were run for 20 ns apiece. Each ensemble 

of US simulations used a harmonic umbrella biasing potential with a force constant of 

500 kcal mol-1 nm-2 in each sampling window. Ten replicas for each USW were 

generally sufficient to produce a reproducible and differentiable averaged PMFs with 

reasonably low standard errors (between 0.93 kcal/mol and 1.98 kcal/mol), and the 

calculated values for the free energy change associated with the transport pathway DG 

largely followed a normal distribution, albeit with some spaces between histogram bins 

(see Appendix 8). Running more replicas for each USW would undoubtedly reduce 

the standard error associated with DG, though the additional computational expense 

incurred would provide little benefit here as we aim to make mainly qualitative 

comparisons between the translocation pathways for each fluorophore, and the 

characteristic PMFs derived from the existing dataset already provide a solid basis for 

this. More specific convergence criteria were difficult to establish in a timely manner 

as each of the ten PMFs constituting each averaged PMF were themselves derived from 

52 US simulations, all with different starting configurations. 

 

 

 

 



 155 

6.3       Computational Resources 

A total of 4300 individual simulations were run for the investigation discussed in this 

chapter, and this workload was spread between two supercomputers: ARCHER[123] 

and Cartesius[124]. Each simulation was run on 120 CPU cores, as each ensemble of 

umbrella sampling simulations was submitted as an array job to make the workload as 

streamlined as possible. These simulations consumed 800,000 core hours in total. The 

computational resources used for this work were provided by the CompBioMed 

Centre of Excellence.[125] 

6.4       Results and Discussion 

As mentioned in Section 6.2.3, each cv-SMD fluorophore transport simulation 

proceeded via one of two pathways: the trans-lumen (TL) pathway or the interfacial 

(IF) pathway, shown in Figure 6.7. Since DNPs are designed for selective transport of 

small molecules by maintaining a structurally stable lumen of a fixed diameter while 

embedded in lipid bilayers, a trans-lumen pathway is desirable for their intended 

applications. The existing literature[3] posits that translocation of SRB proceeds via a 

TL pathway, but it provides no clear evidence of a TL pathway for CF (see Section 

6.1). Performing a brief inspection of the trajectories provided me with an initial 

indication of which transport pathway might be preferred by each fluorophore. The 

likelihood of the TL and IF pathways expressed as percentages of the total number of 

replicas in the cv-SMD ensemble for each fluorophore are shown in Table 6.1. Both 

SRB and CF appear to adopt the TL pathway more frequently, though SRB has a 

higher propensity to proceed along this pathway than CF, as indicated by the higher 

percentage of cv-SMD replicas that feature it. In contrast, the translocation of ATTO 

655 exhibited a strong preference for the IF pathway. Whether these preferences are 

reflective of reality or are merely the result of a bias imposed by the starting 

configuration, pulling rate and/or harmonic spring constant is not clear, as different 

combinations of these parameters were not tested. In any case, we can draw far more 

reliable conclusions from the PMFs. 
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Table 6.1: Distribution of trans-lumen and interfacial transport events for each 

ensemble of cv-SMD replicas, represented as the percentage of replicas featuring the 

given transport pathway.   

 

 

 

 

 

Figure 6.7: Simplified illustration of the idealised TL and IF pathways, represented 

by blue and red arrows respectively.  

The averaged force profiles (Figure 6.8) of the IF and TL pathways for each 

fluorophore reveal a limited amount of information about the obstacles the 

fluorophore encounters by tracking the force experienced by the harmonic spring 

connecting the fluorophore COM to the dummy atom, which provides a measure of 

the force required to pull the fluorophore from the R8 terminus to the R1 terminus 

along the translocation vector. In all three of the TL force profiles, there are two 

distinctive force maxima that arise shortly after the fluorophore enters the R8 opening 

(at 1ns), and just before it exits through the R1 opening (~ 2.7 ns), suggesting that the 

constrictions at the termini impede translocation of small molecules through the DNP 

lumen to some extent. The IF force profiles all show a general upward drift in the force 

as the fluorophore traverses the boundary of the DNP and the lipid torus between 1ns 

and 3ns, with the peaks and troughs of distributed fairly randomly between the three 

fluorophores, suggesting there is no significant barrier to the IF translocation path 

imposed by the DNP/membrane interface.  

 

        SRB      CF ATTO 

655 Trans-lumen         70%      62%       30% 

Interfacial         30%      38%       70% 
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Figure 6.8: Averaged force profiles extracted from the ensembles of cv-SMD 

simulations of fluorophore translocation. The fluorophore enters the R8 pore entrance 

at 1 ns (at 4 nm pulling distance) and exits through the R1 terminus at around 3 ns (12 

nm pulling distance).   
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The averaged force profiles (Figure 6.8) of the IF and TL pathways for each 

fluorophore reveals a limited amount of information about the obstacles the 

fluorophore encounters by tracking the force experienced by the harmonic spring 

connecting the fluorophore COM to the dummy atom, which provides a measure of 

the force required to pull the fluorophore from the R8 terminus to the R1 terminus 

along the translocation vector. In all three of the TL force profiles, there are two 

distinctive force maxima that arise shortly after the fluorophore enters the R8 opening 

(at 1 ns), and just before it exits through the R1 opening (~ 3 ns), suggesting that the 

constrictions at the termini impede translocation of small molecules through the DNP 

lumen to some extent. The IF force profiles all show a general upward drift in the force 

as the fluorophore traverses the boundary of the DNP and the lipid torus between 1ns 

and 3ns, with the peaks and troughs of distributed fairly randomly between the three 

fluorophores, suggesting there is no significant barrier to the IF translocation path 

imposed by the DNP/membrane interface. Direct comparison of the averaged PMFs 

associated obtained from the umbrella sampling simulations of the interfacial and 

trans-lumen pathways for each fluorophore provides a far more reliable account of the 

energetic obstacles and/or advantages associated with both pathways for each 

fluorophore. Evaluating this information alongside the calculated values for the overall 

free energy change (DG) allows us to predict which pathway is likely to be favoured. 

Before making a comparison across fluorophores, I will discuss the features of each 

individual PMF. 

6.4.1       Transport PMFs for SRB 

At first glance, we notice that the ensemble-averaged DG value associated with IF 

translocation pathway of SRB (Fig. 6.9b) is strongly negative (inclusive of errors), 

whereas the average DG calculated for the TL pathway fluctuates around zero within 

the bounds of the 95% confidence interval. Though there is little net energetic gain 

concomitant with the TL pathway, the fluctuations of PMF as a function of the 

translocation coordinate are rather modest, with upward spikes in free energy rarely 

exceeding 1 kcal/mol, meaning the SRB is unlikely to encounter any major energy 

barriers along the translocation path. An exception occurs between 3 nm and 4 nm on 

the x-axis, where there is sharp dip in the PMF. Analysis of the distribution of the 

histograms of force measurements taken in the ensemble of US simulations (shown in 
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Appendix 9) reveals a small gap between adjacent histograms in this region, indicating 

that more sampling is required here. A similar defect occurs in the IF PMF calculated 

for SRB (Fig. 6.9b), in the same region. Equal spacing between USWs does not always 

guarantee a smooth and defect-free PMF, so the ideal distribution of configurations 

must be established on a case-by-case basis through rigorous testing.[168]  

The IF PMF features a dramatic fall in the free energy (~18 kcal/mol) that occurs 

shortly after the SRB molecule enters the gap between bilayer and the DNP, which 

then tails off after the molecule exits the interface (discounting the two small spikes 

between 3 and 4 nm caused by insufficient sampling). The reason behind this fall in 

free energy becomes clear when we consider the distribution of charges on the SRB 

molecule, and how they align with the charged sites of the surrounding DNP and 

POPC lipids. As shown in Figure 6.5b, the CG model of the SRB molecule has two 

negatively charged pseudo-atoms in close proximity to each other, representing the 

two sulphate groups of the 1,3-benzenedisulphonate moiety, which makes up one 

corner of the triangular molecular model. The repulsion between these two negative 

sulphate groups, as well as the repulsion between the entire benzenedisulphonate 

moiety and the negatively charged DNP backbone is attenuated by the presence of the 

positively charged choline headgroups of the zwitterionic POPC lipids. In addition, 

the solvated SRB molecule possesses a tertiary amine conjugated to a series of fused 

benzene rings, which forms a p-system that endows the nitrogen with a positive charge. 

This positive charge was also included within the CG model of SRB and is located in 

an adjacent corner of the model. Hence, the CG SRB molecule can easily orient its 

positively charged corner to face the DNP’s negative backbone, and its densely 

negatively charged corner with the lipid headgroups to maximise favourable 

interactions, bringing the free energy down significantly as it traverses the interface.  
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Figure 6.9: PMFs representing the 1D free energy landscapes associated with the 

transport of SRB via the TL pathway (a) and the IF pathway (b). The boundaries of 

the error bars are represented by the grey traces drawn above and below the PMF, 

where distance between the PMF curve and error traces are equal to the bootstrapped 

standard error of the ensemble PMF averaged over 1 nm blocks along the translocation 

coordinate. The distance along the translocation coordinate is defined as the 

displacement of the SMD atom from the DNP centre of mass, which corresponds to 

the symmetrised distance along the principal pore axis (the z axis) relative to the centre 

of the DNP. The error reported for the DG corresponds to the bootstrapped 95% 

confidence interval. The same error representation method is used for all following 

PMFs. The purple and blue arrows mark the approximate location of the outermost 

edges of the R8 and R1 regions of the DNP, and the grey arrows represent the surfaces 

of the lipid bilayer.  The asterisks mark the loci of defects in the PMF, which arise from 

insufficient overlap between force histograms in the US simulations.  

DG = +0.79 ± 1.82 kcal/mol 

* 

a  
 

b  
 

* * 

DG = -19.52 ± 1.79 kcal/mol 
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Once the SRB molecule escapes the interface, it appears to diffuse across the 

undulating zwitterionic surface of the bilayer (this was also seen for other fluorophores). 

In the simulations performed for USWs 37-41, where the fluorophore is initially 

restrained at specific points on the idealised IF translocation pathway between 4 nm 

and 5 nm displacement, the fluorophore drifts away from the position to which it was 

restrained (see Fig. 6.10d). This indicates that the repulsions between the DNP and the 

negative benzenedisulphonate moiety, and the attractions between the point charges 

on SRB and the zwitterionic lipid headgroups provide a strong enough driving force 

for the SRB molecule to overcome the harmonic restraints used in these US 

simulations and are absorbed to the bilayer surface. Hence, the IF pathway 

corresponds to a membrane adsorption event rather than a translocation event, and 

hence the calculated DG associated with these pathways represents the free energy of 

fluorophore adsorption. In the case of a single SRB molecule, the IF adsorption 

pathway evidently has the stronger energetic driving force associated with it due to the 

favourable electrostatic interaction, however the absence of significant energy barriers 

in the TL pathway and the associated range of DG values gravitating around zero 

indicated that the TL pathway is also feasible for SRB. Given that fluorescence 

experiments have already demonstrated a strong propensity for SRB to translocate 

rapidly through vesicle-bound DNPs in their open state, it is probable that SRB is very 

capable of translocating via the TL pathway. The IF adsorption pathway is of course 

more favourable, however commenting on the rate of IF adsorption relative to the rate 

of TL translocation is difficult here, as both free energy profiles are free of major 

energetic obstacles. Most importantly, we are considering the translocation of a single 

fluorophore through a single nanopore here, whereas kinetic efflux assays are 

established on the translocation of fluorophores contained within vesicles (with ~ 100 

nm diameter) that are large enough to be punctured by multiple DNPs, down a 

concentration gradient over the course of minutes, meaning the fluorophore-

fluorophore interactions and entropic effects that influence the kinetics of fluorophore 

efflux are ignored in these simulations, as are the effects of any aggregation of multiple 

DNPs along the surface of the vesicles. As mentioned in the introduction of this 

chapter, the kinetic efflux assays made used of a functionalised DNP with overhanging 

ssDNA strands on one of the termini, which may well interact with the surface of the 

bilayer when they are unbound and in their open state, potentially obstructing the IF 

pathway and making the TL pathway more accessible. 
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Figure 6.10: (a) Schematic illustrating the tendency for the fluorophore molecule 

(green triangle) to deviate from the idealised IF translocation pathway in US windows 

36-41 (between 4 and 5 nm displacement) and associate with the POPC headgroups 

once it departs the DNP/membrane interface. The approximate distribution of the 52 

USWs along the displacement values is shown below.  (b) US simulation snapshot 

taken from a replica of USW 15 showing how the CG SRB molecule aligns its 

positively charged pseudo-atoms (shown in yellow) toward the DNP backbone, and its’ 

negatively charged pseudo-atoms (shown in red) away from the DNP. (c) US 

simulation snapshot extracted from USW 26, where the positive pseudo-atoms 

associate strongly with the DNP backbone, and the negative pseudo-atoms interact 

with the zwitterionic lipid headgroups. The positively charged choline groups are 

represented as green spheres, and the negative phosphate groups are represented as 

violet spheres. (d) Snapshot taken from USW 41, illustrating the SRB molecule drifting 

from the point in space to which it is harmonically restrained, to form stabilising 

interactions between its’ charged pseudo-atoms and the zwitterionic lipid headgroups. 

This drift in position typically occurred after ~ 5ns of simulation time.   
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6.4.2       Transport PMFs for CF 

The PMFs calculated for CF (shown in Figure 6.11) display very different 

characteristics to the PMFs calculated for SRB.  The two fluorophore models appear 

structurally similar upon initial inspection (Fig. 6.3) with a similar triangular 

arrangement of aromatics rings, however their differences in net charge, charge 

distribution and charge density influence their interactions with the membrane-

spanning DNP drastically, and this is reflected by the marked differences in the 

appearances of their PMFs and the associated DG values. The net charge of CF is three 

times larger than that of SRB, with three negative point charges distributed across two 

corners of the CG model, and no counterbalancing positive point charges anywhere 

in the molecule. CF is also smaller in size, and this difference in size was accounted for 

in the CG models through the use of T-prefix pseudo-atoms for the modeling of CF, 

as discussed in Section 6.2.2. This CG mapping reduced the volume of the CF model 

(approx. 0.33 nm3) to half of the volume of SRB model (0.66 nm3). These combined 

features endow the CF model with a higher negative charge density relative to SRB, 

and therefore it experiences stronger repulsive interactions with the membrane 

spanning DNP along either translocation pathway. The appearance of the PMFs for 

the TL and IF pathways of CF (Fig. 6.9) substantiates this theory well.  

The TL pathway is more energetically favourable because it provides the path of least 

resistance; the lumen of the is wide enough (2.21± 0.01 nm on average) to 

accommodate the passage of the small CF molecule while avoiding close contact with 

the negatively charged DNA backbone pseudo-atoms on the interior surface of the 

DNP. The size of the gap between the DNP and the lipid torus at the DNP/membrane 

interface fluctuates between 0.5 and 1.0 nm throughout the US simulations, meaning 

the CF molecule is forced to make extremely close contact with the negatively charged 

DNA backbone as it travels via the IF pathway. The spikes in free energy along the TL 

pathway coincide with constricted R8, R4 and R1 regions where the negative charges 

of the helices become concentrated within the lumen (see Fig. 4.11b), and repulsions 

between the CF and the DNP are strongest. As the CF molecule passes the constricted 

R8 opening, the free energy experiences a moderate increase before falling gradually 

as the CF molecule enters the less constricted part of the lumen, running from R7 to 

R5. As the CF approaches the R4 constriction (near the DNP centre of mass), the free 

energy rises sharply by ~8.5 kcal/mol, presenting a significant energy barrier to 
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complete translocation through the lumen. Assuming this energy barrier is overcome, 

and the CF molecule is able to translocate past the R4 constriction, the CF molecule 

then encounters another smaller, but significant free energy barrier of ~ 4 kcal/mol as 

it approaches the R1 constriction.  

Of all of the PMFs calculated for the six pathways studied across the three 

fluorophores, the IF pathway of CF is the most idiosyncratic, with the highest average 

standard error in free energy and a generally “noisy” appearance. The US force 

histograms generated from the ensemble of US simulations of this translocation 

pathway (see Appendix 9) are much narrower than the histograms generated for the 

other five translocation pathways, and consequently the overlap of these histograms is 

relatively poor throughout the entire translocation vector, causing sudden drops in the 

free energy between US windows. This can be rectified through the use of smaller 

spacings between US windows in future studies of fluorophore transport.  

Like SRB, the CF molecule exhibited the same tendency to break its harmonic 

restraints and drift away from the DNP at displacements between 4 and 5 nm (shown 

in Figure 6.10a) in an attempt to reduce the magnitude of repulsive forces between 

itself and the DNP that arise in the IF pathway. Though they are numerous, the 

individual spikes in free energy rarely exceed 2.5 kcal/mol and are minor is 

comparison to the large energy barrier encountered by the CF along the TL pathway. 

We can also distinguish a very minor downward drift in the free energy profile once 

the CF passes the outer surface of the R4 region, that leads to a slightly negative 

average DG, however the relatively high error makes it difficult to ascertain whether 

or not the IF membrane adsorption pathway is a truly spontaneous process. Taking 

the relatively low energetic barriers and borderline DG value into account, we can 

assume that the IF pathway is marginally feasible and is possibly faster than its’ TL 

equivalent. We can confidently conclude that both the IF and TL pathways are 

appreciably less accessible for CF than for SRB (and ATTO 655 as we will see shortly), 

due to their differences in charge density and distribution.  
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Figure 6.11: PMFs representing the 1D free energy landscapes associated with the 

transport CF via the TL translocation pathway (a) and the IF membrane adsorption 

pathway (b). The purple and blue arrows mark the approximate location of the 

outermost edges of the R8 and R1 regions of the DNP, and the grey arrows represent 

the surfaces of the lipid bilayer. The orange triangle in (a) indicates the position of the 

lumen constriction in the R4 region, where there CF molecule experiences strong 

repulsive interactions with the DNP midway through the translocation. The asterisk in 

a denotes a translocation coordinate (at around 0.5 nm displacement) at which 

insufficient overlap of force histograms may cause a minor defect in the PMF. 

 

a  
 

b  
 

DG = -11.81 ± 3.39 kcal/mol 

* 

DG = -1.71 ± 3.82 kcal/mol 
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6.4.3       Transport PMFs for ATTO 655 

ATTO 655 differs greatly from SRB and CF in that it has no net charge, and a 

relatively sparse distribution of positive and negative point charges across the length of 

its fused 5-ring system. The aromaticity of the ring system is not complete, and the 

piperidine rings on either end of the fused system are flexible enough to allow the ring 

system to curve slightly. In addition, the distribution of point charges is such that one 

end of the ~ 3 nm long fused ring system has a net charge of +1 while the other bears 

a net charge of -1, giving the molecule the characteristics of a flexible bar magnet. The 

effect that this unique feature of ATTO 665 has on the transport properties is evident 

in the PMFs. The calculated DG for both the TL and IF pathways are strongly negative 

within the bounds of the 95% confidence intervals, and therefore it is likely that both 

pathways are energetically feasible for this fluorophore. The magnitude of DG for the 

IF pathway is almost twice that of the TL pathway, however the free energy barriers 

that arise along the TL PMF are slightly lower in scale than the free energy barriers 

seen in the IF PMF. The first energetic barrier in the IF PMF (~ 2.5 kcal/mol) occurs 

shortly after the ATTO 655 molecule enters the lumen at the R8 opening and arises 

from steric clashes between the molecule and the interior of the DNP lumen.  

As the ATTO 655 molecule enters the lumen, it has a tendency to align its positively 

charged groups directly adjacent to the negatively charged opposing DNA helices to 

increase favourable electrostatic interactions, however this orientation makes it difficult 

for it to clear the narrow opening, as shown in Figure 6.12a. The free energy then 

decreases gradually as it navigates the more spacious portion of the lumen, where it 

retains the same alignment without encountering steric clashes, before exiting through 

the constriction at R1, causing the free energy to rise again by ~ 2.5 kcal/mol as the 

negatively charged sulphate and carboxylate groups come into close contact with the 

DNA backbone pseudo-atoms (Figure 6.13c).   
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Figure 6.12: PMFs calculated for transport of ATTO 655 via the TL translocation 

pathway (a) and the IF membrane adsorption pathway (b). In the IF PMF, the first 

barrier is the result of the negatively charged end of the molecule being forced into 

close contact with the DNP at the interface. Once it enters the interface between the 

DNP and the zwitterionic lipid headgroups, it flexes to embed its hydrophobic 

midsection into the membrane and align its’ charged ends with the headgroups, and 

these favourable interactions cause the free energy to fall. The departure of the ATTO 

655 molecule from the interface at 2 nm displacement results in the loss of favourable 

hydrophobic interactions, and this coincides with the second free energy barrier seen 

here.  

 

DG = -13.67 ± 2.38 kcal/mol 

a  
 

DG = -6.77 ± 2.43 kcal/mol 

b  
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Figure 6.13: US simulation snapshots showing the orientation adopted by the ATTO 

655 fluorophore at is clears the DNP lumen in the TL pathway. (a) As the fluorophore 

approaches the R8 entrance, it orients its positively charged groups (one protonated 

cyclic tertiary amine and one conjugated cyclic tertiary amine, indicated by yellow 

spheres) to face the negatively charged interior of the DNP lumen. The width of the 

fused ring system introduces steric clashes in this orientation, causing a small spike in 

the free energy profile (Fig. 6.13a). Negatively charged groups (sulphate and 

carboxylate) are represented as red spheres and are located adjacent to each other on 

one end of the fused ring system. (b) The fluorophore retains this orientation as it 

traverses the wider midsection of lumen freely. (c) The fluorophore tilts its negatively 

charged groups out of the constricted and densely charged R1 terminus as it exits the 

pore lumen, causing another small spike in the free energy due to repulsions. 

The first of the two distinct free energy barriers associated with the IF pathway PMF 

(Fig. 6.12b) is comparable in scale to the free energy barriers seen in the TL pathway, 

which suggests that the probability of the molecule entering the DNP/membrane 

interface is more-or-less equal to the probability of it entering the lumen. In order to 

penetrate the interface, the negatively charged pseudo-atoms of the ATTO 655 

molecule make close contact with the DNP backbone (Fig. 6.14a) just as they do in the 

TL pathway, and therefore we see similar initial free energy barriers for both pathways. 

After entering the interface, the PMF drops extremely rapidly by ~ 15 kcal/mol. This 

dramatic decrease in free energy is initiated by the flexion of the fluorophore molecule 

at either end of the fused ring system, which allows the hydrophobic, aromatic 

midsection of the molecule to embed itself into the hydrophobic interior of the lipid 

a  
 

b  
 

c  
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torus, while the charged ends flex outwards to interact with the zwitterionic lipid 

headgroups (Fig. 6.14b). As the molecule exits the interface, the favourable 

hydrophobic interactions between the ATTO 655 midsection are lost and the 

negatively charged groups must again come into close contact with the DNP backbone, 

which gives rise to a slightly more severe secondary free energy barrier of ~ 4 kcal/mol. 

It is difficult to determine the extent to which this energy barrier might impede full 

cross-membrane transport of ATTO 655 along the IF pathway, but it is clear that the 

fluorophore is quite capable of entering the lumen and the interface with similar 

probabilities. This, along with the modest free energy barriers seen in the PMF, and 

the negative DG values calculated for both pathways implies that both are accessible, 

and their transport rates are comparable. 

 

 

 

 

 

 

 

 

Figure 6.14: US simulation snapshots illustrating the important role of flexion of the 

ATTO 655 molecule as it enters the DNP/membrane interface. (a) The fluorophore 

curves its charged negatively charged groups (red) away from the DNP backbone as it 

approaches the interface. As it enters, the negative groups briefly make close contact 

with the DNP backbone. (b) Once the fluorophore enters the interface fully, it curves 

to embed its hydrophobic midsection (black) into the hydrophobic interior of the lipid 

torus, leaving the charged groups (red and yellow) to interact with the charged lipid 

headgroups (positive choline groups represented as green spheres, negative phosphate 

groups represented as violet spheres).  

 

a  
 

b  
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6.5        Conclusions 

The qualitative comparisons of the PMF plots yielded from the six ensembles of US 

sampling simulations made here have allowed us to determine which fluorophores 

have a higher tendency to translocate across a bilayer-spanning DNP and relate these 

findings to experimental observations of charge-selective transport mediated by DNPs. 

I have ascertained that CF is significantly less likely to be transported across the bilayer 

via either of the two pathways (TL translocation or IF membrane adsorption) than 

SRB and ATTO 655 on account of its dense negative charge, meaning it is strongly 

repelled by the DNP and therefore unlikely to be transported through or around it. 

This aligns well with the observations of comparatively weak fluorescence in efflux 

assays performed for DNP-gated vesicles containing CF.[3] Furthermore, the large 

free energy barrier associated with more energetically feasible TL translocation 

suggests that any successful individual CF translocation events through the lumen are 

likely to proceed very slowly. The noisiness of the IF PMF makes it difficult to identify 

individual energetic barriers associated with interfacial membrane adsorption of CF, 

though the magnitude of the spikes in free energy that were observed were generally 

lower than those observed in the TL PMF. In addition, the small net decrease in the 

free energy after IF transport of CF indicates that it is marginally feasible. This provides 

a tentative explanation as to why the rate of CF efflux was greater when the DNP was 

in its closed state rather than its open state in the efflux assays [3] – the blockage of the 

slower but more energetically favourable TL pathway forces the CF to leak through 

the DNP/membrane interface via the faster but less favourable IF adsorption pathway.  

Similar fluorescence efflux assays have revealed that both ATTO 655 and SRB have 

a strong tendency to translocate through the pore lumen, and the TL PMFs presented 

here have also demonstrated that TL translocation is likely to be both fast and feasible 

for these fluorophores when the DNP is in its open state. Interfacial adsorption also 

appears to be highly favourable for these two fluorophores, however this would be 

difficult to prove with existing fluorophore efflux assay data as it is not clear whether 

or not adsorption of these fluorophores to the outer surface of the vesicle would give 

rise to a fluorescence signal. Structural differences in the design of the DNP studied 

here and the design used in experiment may also diminish the propensity for IF 

adsorption. The gated DNPs used in fluorescence efflux assays made use longer DNA 

strands to introduce the gating functionality that was required for the efflux assays. 
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Finally, I was able to comment on the structural and electrostatic properties of ATTO 

655 that enable its’ facile transport through the DNP lumen, which gives us new 

insights into the type of molecular cargo that these DNPs are most suited to 

transporting across membranes.  
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Chapter 7 

Summary and Future Outlook  

In this thesis, I have studied the structure, dynamics, conductance and translocational 

properties of archetypal cholesterol-anchored DNA nanopores using an ensemble-

based coarse-grained MD protocol, which enabled me to access microsecond 

timescales across an extensive range of simulation systems representing different 

experimental conditions, whilst maintaining tight control of errors throughout.  

In bulk solution, the DNP adopts a bloated and anisotropic conformation, where 

repulsions between helices cause the DNP to deviate from the idealised barrel-like 

structure, with large spaces between adjacent helices and an undefined lumen. The 

ensembles of CG simulations of the DNP in 0.3 M and 1.0 M NaCl identified which 

helices are most susceptible to kinking and base-pair breakage, and back-mapping 

middle structures from clustered CG trajectories to their AA conformation allowed me 

to calculate accurate and precise dimensions and kink angles for the solvated DNP, 

which were validated against cryo-EM structures and fully atomistic simulations in 0.3 

M NaCl. The nicks in the R4 region of the pore coincide with the centre of the helix 

kink angles, indicating that the presence of the nick sites contribute to the DNP’s 

characteristic breathing motions. The poly(T) inter-helix crossovers at the R1 and R8 

pore termini are highly strained and cause local constriction of the nanopore at the 

termini; the R8 terminus being the narrower of the two (by ~1 nm). Overall, the 

concentration of NaCl had little effect on the overall structure and dimensions of the 

solvated pore. However, this was not the case for the membrane-spanning DNP, where 

salt concentration had a profound effect on the lumen profile, dynamics and 

membrane-binding mode. In the lower salt condition ensemble, the DNP was 

extremely mobile within the bilayer across all replicas and was eventually ejected from 

the bilayer in the two thirds of the replicas to adopt the side-on membrane binding 

mode for the latter part of the affected replicas, while the transmembrane binding 

mode was retained in the remaining third. This was not observed in the ensemble of 

membrane/DNP simulations performed in1.0 M NaCl, where the DNP remained in 

stable transmembrane orientation, with a smooth defined pore lumen, and relatively 

small inter-helix distance of ~2.4 nm. The expulsion of the DNP in 0.3 M NaCl, and 

the subsequent side-on membrane binding mode suggests that lower monovalent salt 
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concentrations do not provide sufficient electrostatic screening to the DNP/POPC 

bilayer system, and the inter-helix repulsion caused by compression of the DNP within 

surrounding lipid torus is too large for the system to withstand. Hence, higher salt 

concentrations appear to stabilise the transmembrane binding mode.  

After characterising the structural features of the pore and their response to ionic 

strength, I demonstrated how an ensemble-based CG approach using the CompEl 

protocol for simulated electrophysiology could be used to accurately determine the 

average conductance of the membrane spanning DNP in 0.3 M NaCl. In addition to 

recreating the experimental conductance, the CompEl simulations also recreated the 

voltage-dependent suppression of conductance that was seen in previous experimental 

studies [3].  Finally, I discussed the free energy profiles associated with the DNP-

mediated transport pathways of the SRB, CF and ATTO 655 fluorophores. The 

ensemble-based protocol utilised in this study identified two distinct transport 

pathways: the trans-lumen translocation pathway and the interfacial membrane-

adsorption pathway through the DNP/membrane interface, which leads to binding of 

the fluorophore to the outer bilayer surface. In agreement with experimental data 

derived from kinetic efflux assays, the PMF plots show that DNP is very likely to 

facilitate transport (via either pathway) of SRB and ATTO 655 to a greater extent than 

CF. The density of negative point charges on the relatively small CF molecule gives 

rise to pronounced repulsive forces between the DNP and the approaching 

fluorophore molecule regardless of the pathway taken. While the trans-lumen pathway 

for CF is energetically favourable, it is likely to proceed slowly due to the presence of a 

large energy barrier at the translocation coordinate that coincides with the 

fluorophores’ passage through the constriction at the R4 region of the lumen. The 

weakly negatively charge SRB and net charge neutral ATTO 655 experience a much 

lower degree of repulsion and are able to translocation freely via either pathway.  

The open-ended and exploratory nature of this study allowed me to investigate a 

comprehensive range of the DNPs behavior and structural properties. That said, there 

are several aspects of this study that require further work and consideration, and 

protocols that require refinement to improve their computational efficiency and 

enhance the precision of the results they produce. I will briefly discuss these aspects 

and propose actions to address them. 
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7.1     Stiff Elastic Network vs Soft Elastic Network for MARTINI DNA 

As explained in Chapters 2 and 3, the MARTINI force field makes use of an elastic 

network of restraints to reinforce base-pairing and maintain the persistence length of 

dsDNA strands, of which there are two varieties: the “stiff” elastic network and the 

“soft” elastic network. The stiff elastic network restrains both the DNA backbone and 

the nucleotide bases, such that rotation of the bases and base-flipping is hindered, 

whereas the soft elastic network only restrains the backbone, allowing for more realistic 

dynamics of the nucleotide bases. The main advantage of employing the stiff elastic 

network is efficiency; fluctuations in the structure of the MARTINI DNA are relatively 

minor between timesteps, and this allows for longer timesteps and ultimately faster 

simulations where longer timescales are more easily accessible.[84] As this study was 

aimed at gaining a comprehensive understanding of the DNPs various functionalities 

and responses to environmental conditions using an ensemble-based protocol, a lot of 

long-duration simulations were needed, and efficiency was a high priority. For this 

reason, the stiff elastic network was employed in all of the simulations conducted for 

this thesis. The consequences of this were seen in Chapter 3. While loss of resolution 

in the dimensions of the DNP was easily corrected by back-mapping clustered middle 

structures to their AA representation, there was an underestimation of the total RMSF 

in the CG models compared to the AA models that could not be corrected for so easily 

and the higher flexibility of the R1 terminus compared to the R8 terminus that was 

revealed in the AA simulations was missed in the CG simulations.  

For future studies of this nature, both the stiff and soft elastic restraints should be tested, 

and validation of the results against the available experimental data should inform the 

choice of restraints going forward. The stiff elastic network may have also influenced 

the results obtained from the DNP/membrane simulations discussed in Chapter 4. 

With the rotations of nucleotide bases hindered, the repulsions between negatively 

charged backbones on adjacent helices within the DNP may have been somewhat 

exaggerated. We saw that in the 0.3 M NaCl ensemble, the repulsion between the 

helices caused the nanopore to exit the bilayer in a subset of the replicas. To confirm 

whether or not this behaviour is an artefact, further equilibrium simulations of the 0.3 

M DNP/membrane system could be performed with the soft elastic restraints.  
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7.2      Energetics of Insertion and Expulsion of DNPs  

Another more direct approach to establish the cause of the DNP expulsion events 

witnessed in Chapter 4 would be to perform cv-SMD simulations of the DNP inserting 

into and exiting the POPC bilayer, using similar methods to those described in Chapter 

6, and in the 2017 paper by Maingi et al.[25] which investigated the insertion of a 

similar DNA nanopore into planar lipid bilayers. Free energy profiles could be yielded 

for the trans-membrane insertion (pulling in) and expulsion (pulling out) of the DNP 

at the two salt concentrations studied here (0.3 M NaCl and 1.0 M NaCl) using 

ensembles of cv-SMD simulations in conjunction with Jarzynski’s equality [172], or 

with subsequent US simulations. If the energy barriers associated with the insertion 

PMFs exceed (in number or magnitude) the energy barriers involved in expulsion, then 

it is probable that the transmembrane orientation is energetically unfavorable in the 

given set of conditions. By comparing the free energy landscapes associated with 

pulling in at the two salt concentrations, we can determine the role that ionic strength 

plays to facilitate or obstruct trans-membrane insertion. Comparison of the pull-out 

PMFs would allow us to elucidate which conditions (if any) might increase the 

likelihood of expulsion from the membrane. It is also important to refine the protocol 

to ensure that long-range electrostatic interactions are described as realistically as 

possible, so a PME electrostatics scheme should be employed in future simulations of 

these systems.  

 

7.3     CompEl and Applied Electric Field Simulations   

In Chapter 5, I highlighted the utility and efficiency of the CompEl protocol for the 

accurate derivation of the current-voltage relationships for bilayer-spanning DNPs. 

The simulations used up a relatively small amount of computational resources (under 

100,000 core hours) and produced reproducible results for the average conductance 

with converged standard errors, however the magnitude of the standard errors was 

larger than the errors reported in experiment due to finite size effects, and the 

fluctuations in the instantaneous voltage brought about by the water-ion swap events. 

The precision of these results could be improved by running further simulations with 

a larger membrane patch, which would reduce the influence of rapid water-ion 
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exchanges on the transmembrane potential difference, which in turn dampens the 

fluctuations in voltage. Less extreme fluctuations in voltage result in less uncertainty in 

the instantaneous voltage, and therefore less uncertainty in the average conductance.  

Furthermore, the depression in the slope of the I-V plot that was caused by the 

inclusion of measurements taken at higher instantaneous voltage could be explored 

further by running longer duration equilibrium simulations of the membrane-spanning 

DNP under a consistent potential difference above 200 mV. This would allow us to 

analyse the equilibrium behaviour of individual system components under these 

voltage conditions, potentially shedding light on the cause of the sub-conductance 

states that have been seen at this voltage range in experiment and alluded to in the 

results discussed in Chapter 5. As mentioned previously, maintaining a constant 

transmembrane potential difference in a system with a fluctuating dielectric is not 

trivial. In both NAMD[100] and GROMACS[98], users have the option to apply a 

uniform external electric field along the membrane normal, along the principle vector 

of the transmembrane nanopore. Assuming the system is simulated for long enough, 

and enough replicas are performed, the influence exerted by fluctuations in the box 

vectors and dielectric distribution on the magnitude of the potential difference becomes 

negligible, and the average potential difference will reach a state of convergence.  

 

7.4 Refinement of cv-SMD Protocol for Fluorophore Translocation 

The umbrella sampling simulations discussed in Chapter 6 were aimed at elucidating 

the free energy profiles of two different translocation pathways: the trans-lumen (TL) 

and interfacial (IF) pathways. However, all three fluorophores displayed a tendency to 

drift away from the translocation coordinate in certain umbrella sampling windows in 

the IF pathway (corresponding to displacements of 4 nm to 5 nm from the DNP centre 

of mass), indicating that the spring constant of the positional restraints employed in 

these windows was insufficient to correctly model full interfacial translocation. Hence, 

the IF pathway studied here is not strictly a translocation pathway, as the free energy 

profiles do not return to zero once the fluorophore passes through the membrane via 

the DNP/membrane interface. Rather, it is a transport pathway that involves 

adsorption of the fluorophore to the bilayer surface, and hence the calculated free 
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energy change DG corresponds to a free energy of membrane adsorption.  In order to 

compare the energetic feasibility of the IF and TL pathways, the umbrella sampling 

simulations for the IF pathways should be repeated with stronger positional restraints. 

As discussed in Chapter 6, there is more than one tried and tested method used to 

obtain free energy profiles for non-equilibrium processes such as translocation from 

cv-SMD simulations. The ensemble-based US protocol used in this thesis yielded 

reproducible PMFs, however the standard deviation of the distributions of the free 

energy change (DG) values calculated for the CF pathways were relatively large in 

comparison to the equivalents for ATTO 655 and SRB, as were the associated 

standard errors. This can be attributed to the pulling parameters that were used for 

the cv-SMD simulations of CF translocation, which resulted in suboptimal spacing 

between USWs in the subsequent US simulation. The same pulling rate and harmonic 

spring constant spacing between USWs (~0.23 nm) was used in the pulling and US 

simulations run for all three fluorophores, and while these parameters returned 

generally good overlap between force histograms and smooth PMFs for simulations of 

ATTO 655 and SRB, the same cannot be said for the CF simulations.  

Hence, it would be wise to test different combinations of pulling/umbrella sampling 

parameters for the CF translocation model, to improve the sampling and there reduce 

the uncertainty in the results. An alternative methodology for the derivation of free 

energy profiles, using ensembles of cv-SMD simulations in combination with Jarzynski 

equality could also be tested on this system. This methodology has the potential to 

produce high quality free energy profiles at a fraction of the computational cost of the 

more traditional US approach, provided the pulling parameters used in the cv-SMD 

have been thoroughly tested, and the ensemble of cv-SMD simulations is large enough 

to yield converged standard errors for the free energy.[175]  

7.5   Final Remarks 

The findings described in this thesis have shed some light on the relationship between 

the structural features of the cholesterol-anchored DNA nanopore and its’ functional 

properties, enabling a deeper understanding of phenomena that have been witnessed 

in experimental studies of DNPs thus far. The pronounced bloating and flexibility of 

the midsection of the DNP around the nick sites in the bulk solution simulations 
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constitute an unexpected discovery, as the pore was initially assumed to adopt a rigid 

cylindrical structure with straight unkinked helices. The rigidity of the pore may be 

enhanced by adding additional crossovers between adjacent helices near the nick sites, 

or perhaps by switching from a six-helix bundle design to a five-helix bundle. The 

formation of a toroidal lipid pore around the POPC membrane-spanning DNP 

indicates that the POPC lipids undergo major rearrangements to decrease the 

hydrophobic mismatch between the DNP and the membrane, which explains why the 

insertion of the DNP into planar bilayers is often very slow. The compressive force of 

the toroidal lipid pore around the DNP gives rise to significant inter-helix repulsions, 

which may introduce a thermodynamic barrier to successful transmembrane insertion. 

We also expect that the use of higher ionic strength solutions (~1.0 M NaCl) in 

experimental settings is likely to decrease the inter-helix repulsion experienced by a 

membrane-spanning DNP, and this in turn may improve the frequency of successful 

insertions into planar bilayers. Finally, the results from the cv-SMD simulations 

confirm that the DNP does indeed discriminate between different kinds of molecular 

cargo according to their charge, and that it is highly suited to transporting slightly 

flexible molecules with zero net charge such as ATTO 655. 
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                             Appendices 
 
 
 

Appendix 1: Specific nucleotide sequences of each chain making up the DNP, and  

CaDNAno schematic illustrating how the oligonucleotides chains arrange themselves  

to form the six-helix bundle.  

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Chain ID                                                                             Sequence 5’ à 3’  
        A AGCGAACGTGGATTTTGTCCGACATCGGCAAGCTCCCTTTTTCGACTATT* 
        B CCGATGTCGGACTTTTACACGATCTTCGCCTGCTGGGTTTTGGGAGCTTG  
        C CGAAGATCGTGTTTTTCCACAGTTGATTGCCCTTCACTTTTCCCAGCAGG*  
        D AATCAACTGTGGTTTTTCTCACTGGTGATTAGAATGCTTTTGTGAAGGGC  
        E TCACCAGTGAGATTTTTGTCGTACCAGGTGCATGGATTTTTGCATTCTAA* 
        F  CCTGGTACGACATTTTTCCACGTTCGCTAATAGTCGATTTTATCCATGCA  

1 2 3 4 5 6 Helix ID: 

A B C D E F Chain ID: 
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Appendix 2: CHARMM36 residue topology file entry and parameter file for the 

TEG-cholesterol 3’ DNA backbone modification, generated by the CGenFF web-

server.  

 
PRES TCL      -1.000 
 
ATOM C3'  CN7             0.01 
ATOM H3'  HN7            0.09 
!ATOM O3'  OG303    -0.577 
ATOM P01  PG1           1.517 
ATOM O01  OG2P1    -0.791 
ATOM O9G  OG2P1   -0.791 
ATOM O3'  ON2           -0.57 
ATOM O7G  OG303   -0.565 
ATOM C39G CG321   -0.080 
ATOM H68G HGA2     0.090 
ATOM H67G HGA2     0.090 
ATOM C38G CG321   -0.011 
ATOM H65G HGA2     0.090 
ATOM H66G HGA2     0.090 
ATOM O6G  OG301   -0.338 
ATOM C37G CG321   -0.011 
ATOM H63G HGA2     0.090 
ATOM H64G HGA2     0.090 
ATOM C36G CG321   -0.011 
ATOM H62G HGA2     0.090 
ATOM H61G HGA2     0.090 
ATOM O5G  OG301   -0.338 
ATOM C35G CG321   -0.011 
ATOM H60G HGA2     0.090 
ATOM H59G HGA2     0.090 
ATOM C34G CG321   -0.011 
ATOM H57G HGA2     0.090 
ATOM H58G HGA2     0.090 
ATOM O4G  OG301   -0.338 
ATOM C33G CG321   -0.011 
ATOM H55G HGA2     0.090 
ATOM H56G HGA2     0.090 
ATOM C32G CG321   -0.011 
ATOM H54G HGA2     0.090 
ATOM H53G HGA2     0.090 
ATOM O3G  OG301   -0.338 
ATOM C31G CG321   -0.026 
ATOM H52G HGA2     0.090 
ATOM H51G HGA2     0.090 
ATOM C30G CG321   -0.173 
ATOM H50G HGA2     0.090 
ATOM H49G HGA2     0.090 
ATOM C29G CG321    0.083 
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ATOM H36G HGA2     0.090 
ATOM H48G HGA2     0.090 
ATOM N0G  NG2S1    -0.415 
ATOM H35G HGP1      0.329 
ATOM C28G CG2O6     0.207 
ATOM O2G  OG2D1    -0.390 
ATOM O0G  OG302     -0.293 
ATOM C24G CG311      0.224 
ATOM H47G HGA1       0.090 
ATOM C25G CG321     -0.193 
ATOM C26G CG321     -0.174 
ATOM C27G CG331     -0.272 
ATOM C23G CG321     -0.185 
ATOM C22G CG301     -0.002 
ATOM C21G CG2D1    -0.001 
ATOM C20G CG2D1    -0.150 
ATOM C19G CG321     -0.180 
ATOM C18G CG331     -0.271 
ATOM C17G CG321     -0.182 
ATOM C16G CG321     -0.180 
ATOM C15G CG311     -0.089 
ATOM C14G CG311     -0.088 
ATOM C13G CG3RC1  -0.001 
ATOM C12G CG3RC1 -0.098 
ATOM C11G CG3C52  -0.182 
ATOM C10G CG3C52  -0.179 
ATOM C9G  CG3C51   -0.091 
ATOM C8G  CG331      -0.272 
ATOM C7G  CG311      -0.094 
ATOM C6G  CG321      -0.172 
ATOM C5G  CG321      -0.175 
ATOM C4G  CG331      -0.271 
ATOM C3G  CG331      -0.271 
ATOM C2G  CG321      -0.171 
ATOM C0G  CG311      -0.083 
ATOM HG   HGA3         0.090 
ATOM H2G  HGA3        0.090 
ATOM H3G  HGA3        0.090 
ATOM H4G  HGA3        0.090 
ATOM H5G  HGA3        0.090 
ATOM H6G  HGA3        0.090 
ATOM H7G  HGA1        0.090 
ATOM H8G  HGA2        0.090 
ATOM H9G  HGA2        0.090 
ATOM H10G HGA2       0.090 
ATOM H11G HGA2       0.090 
ATOM H12G HGA3       0.090 
ATOM H13G HGA3       0.090 
ATOM H14G HGA3       0.090 
ATOM H15G HGA1       0.090 
ATOM H16G HGA2       0.090 
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ATOM H17G HGA2       0.090 
ATOM H18G HGA2       0.090 
ATOM H19G HGA2       0.090 
ATOM H20G HGA1       0.090 
ATOM H21G HGA2      0.090 
ATOM H22G HGA2      0.090 
ATOM H23G HGA3      0.090 
ATOM H24G HGA3      0.090 
ATOM H25G HGA3      0.090 
ATOM H26G HGA1      0.090 
ATOM H27G HGA2      0.090 
ATOM H28G HGA2      0.090 
ATOM H29G HGA2      0.090 
ATOM H30G HGA2      0.090 
ATOM H31G HGA1      0.090 
ATOM H32G HGA2      0.090 
ATOM H33G HGA2      0.090 
ATOM H34G HGA4      0.150 
ATOM H37G HGA3      0.090 
ATOM H38G HGA3      0.090 
ATOM H39G HGA3      0.090 
ATOM H40G HGA1      0.090 
ATOM H41G HGA2      0.090 
ATOM H42G HGA2      0.090 
ATOM H43G HGA2      0.090 
ATOM H44G HGA2      0.090 
ATOM H45G HGA2      0.090 
ATOM H46G HGA2      0.090 
 
BOND O3'  P01 
BOND P01  O01    P01  O9G    O7G  P01    O7G  C39G 
BOND C39G H67G   C39G H68G   C38G C39G   H65G C38G   H66G C38G 
BOND C38G O6G    C37G O6G    H64G C37G   H63G C37G   C37G C36G 
BOND H56G C33G   O5G  C36G   O5G  C35G   H57G C34G   C34G C35G 
BOND C34G H58G 
BOND C34G O4G 
BOND H55G C33G 
BOND C36G H61G 
BOND C36G H62G 
BOND H50G C30G 
BOND C33G O4G 
BOND C33G C32G 
BOND C35G H59G 
BOND C35G H60G 
BOND H49G C30G 
BOND H45G C25G 
BOND O3G  C32G 
BOND O3G  C31G 
BOND C30G C31G 
BOND C30G C29G 
BOND C32G H53G 
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BOND C32G H54G 
BOND H48G C29G 
BOND C25G H46G 
BOND C25G C26G 
BOND C25G C24G 
BOND C31G H51G 
BOND C31G H52G 
BOND H43G C26G 
BOND H44G C26G 
BOND N0G  C29G 
BOND N0G  C28G 
BOND N0G  H35G 
BOND C29G H36G 
BOND C28G O2G 
BOND C28G O0G 
BOND O0G  C24G 
BOND H47G C24G 
BOND C26G C22G 
BOND C24G C23G 
BOND H30G C16G 
BOND H40G C15G 
BOND H38G C27G 
BOND C22G C15G 
BOND C22G C27G 
BOND C22G C21G 
BOND H29G C16G 
BOND C23G H42G 
BOND C23G C21G 
BOND C23G H41G 
BOND C16G C15G 
BOND C16G C17G 
BOND C15G C14G 
BOND C27G H39G 
BOND C27G H37G 
BOND C21G C20G 
BOND H32G C19G 
BOND C20G C19G 
BOND C20G H34G 
BOND H28G C17G 
BOND C17G H27G 
BOND C17G C13G 
BOND C14G H31G 
BOND C14G C19G 
BOND C14G C12G 
BOND C19G H33G 
BOND H3G  C4G 
BOND HG   C4G 
BOND H23G C18G 
BOND C4G  H2G 
BOND C4G  C0G 
BOND H9G  C2G 
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BOND H26G C12G 
BOND H24G C18G 
BOND C13G C12G 
BOND C13G C18G 
BOND C13G C9G 
BOND C12G C11G 
BOND C18G H25G 
BOND H5G  C3G 
BOND H8G  C2G 
BOND H17G C6G 
BOND C2G  C0G 
BOND C2G  C5G 
BOND C0G  C3G 
BOND C0G  H7G 
BOND H6G  C3G 
BOND C3G  H4G 
BOND H16G C6G 
BOND C6G  C5G 
BOND C6G  C7G 
BOND H20G C9G 
BOND C9G  C7G 
BOND C9G  C10G 
BOND C11G H21G 
BOND C11G H22G 
BOND C11G C10G 
BOND C5G  H10G 
BOND C5G  H11G 
BOND C7G  H15G 
BOND C7G  C8G 
BOND C10G H19G 
BOND C10G H18G 
BOND C8G  H14G 
BOND C8G  H13G 
BOND C8G  H12G 
IMPR C28G   N0G    O2G    O0G 
end 
 
* Parameters generated by analogy by 
* CHARMM General Force Field (CGenFF) program version 1.0.0 
 
! Penalties lower than 10 indicate the analogy is fair; penalties between 10 
! and 50 mean some basic validation is recommended; penalties higher than 
! 50 indicate poor analogy and mandate extensive validation/optimization. 
 
BONDS 
CN7  OG303    310.0      1.433 ! C3' to O3' (cholesterol mod) 
 
ANGLES 
CG2O6  OG302  CG311    40.00    111.00 ! /Users , from CG2O6 OG302 CG321, 
penalty= 0.6 
CN7       ON2         PG1    20.00     120.00    35.00    2.33000 ! Link 
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OG2P1   PG1        ON2     98.90    107.50 ! Link 
ON2       PG1    OG303     80.00    104.30 ! Link 
CN7       CN7    OG303   115.00    109.70 ! Link 
CN8      CN7     OG303   115.00    109.70 ! Link 
HN7      CN7     OG303       60.0    109.50  
 
DIHEDRALS 
NG2S1  CG2O6  OG302  CG311       0.1500  1   180.00 ! /Users , from NG2S1 
CG2O6 OG302 CG321, penalty= 0.6 
NG2S1  CG2O6  OG302  CG311       2.2000  2   180.00 ! /Users , from NG2S1 
CG2O6 OG302 CG321, penalty= 0.6 
NG2S1  CG2O6  OG302  CG311       0.1000  3   180.00 ! /Users , from NG2S1 
CG2O6 OG302 CG321, penalty= 0.6 
OG2D1  CG2O6  OG302  CG311      0.1500  1     0.00 ! /Users , from OG2D1 
CG2O6 OG302 CG321, penalty= 0.6 
OG2D1  CG2O6  OG302  CG311      2.2000  2   180.00 ! /Users , from OG2D1 
CG2O6 OG302 CG321, penalty= 0.6 
OG2D1  CG2O6  OG302  CG311      0.1000  3     0.00 ! /Users , from OG2D1 
CG2O6 OG302 CG321, penalty= 0.6 
OG302  CG311  CG321  CG2D1        0.2000  3     0.00 ! /Users , from OG311 
CG311 CG321 CG2D1, penalty= 1.5 
OG302  CG311  CG321  CG321         0.1950  3     0.00 ! /Users , from CG321 
CG321 CG321 OG302, penalty= 4 
CG321  CG311  OG302  CG2O6        0.7000  1   180.00 ! /Users , from CG321 
CG311 OG302 CG2O2, penalty= 4 
HGA1   CG311  OG302  CG2O6        0.0000  3     0.00 ! /Users , from HGA1 
CG311 OG302 CG2O2, penalty= 4 
OG301  CG321  CG321  OG303         0.1950  3     0.00 ! /Users , from OG303 
CG321 CG321 OG303, penalty= 1.5 
CG321  CG321  NG2S1  CG2O6        0.3500  1   180.00 ! /Users , from CG331 
CG321 NG2S1 CG2O6, penalty= 0.9 
CG321  CG321  NG2S1  CG2O6        0.7500  2     0.00 ! /Users , from CG331 
CG321 NG2S1 CG2O6, penalty= 0.9 
CG321  CG321  NG2S1  CG2O6        0.1500  4     0.00 ! /Users , from CG331 
CG321 NG2S1 CG2O6, penalty= 0.9 
HN7    CN7    ON2    PG1            0.0000   3      0.00 ! Link 
CN7    CN7    ON2    PG1             2.5000  1   180.00 ! Link 
CN8    CN7    ON2    PG1             2.5000  1   180.00 ! Link 
ON2    PG1    OG303  CG321      1.2000  1   180.00 ! Link 
ON2    PG1    OG303  CG321      0.1000  2   180.00 ! Link 
ON2    PG1    OG303  CG321      0.1000  3   180.00 ! Link 
CN7    ON2    PG1    OG303        1.2000  1   180.00 ! Link 
CN7    ON2    PG1    OG303        0.1000  2   180.00 ! Link 
CN7    ON2    PG1    OG303        0.1000  3   180.00 ! Link 
CN7    ON2    PG1    OG2P1        0.1000  3       0.00 ! Link 
OG303  CN7    CN7    CN8B        0.2000  4       0.00 ! Link 
HN7    CN7    CN7    OG303        0.1950  3       0.00 ! Link 
OG303  CN7    CN7    ON6          0.2000  3       0.00 ! Link 
 
IMPROPERS 
END 



 195 

 
Appendix 3: Ten of the twelve most highly populated middle structures yielded after 

performing cluster analysis on the ensemble of CG trajectories using the GROMOS 

algorithm, using an RMSD cut-off of 0.45 Å. The relative stability of each clustered 

conformation is reflected by the percentage population of each cluster. 
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Appendix 4: Fluctuations in the average helix kink angle as a function of simulation 

time for the shorter duration AA simulations of the solvated DNP in 0.3 NaCl.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 5: PyCGTool bonding scheme for the MARTINI CG model of SRB. 
 
[ SRB ] 
SU1 AR1 
AR1 AR2 
AR2 AR3 
AR1 AR3 
AR2 SU2 
AR2 AR4 
AR4 AR9 
AR4 AR5 
AR4 AO1 
AO1 AR7 
AR7 AR6 
AR5 AR6 
AR6 NN1 
AR6 NN2 
NN1 NN2 
AO1 AR8 
AR8 AR9 
AR9 AR10 
AR8 AR10 
AR10 PN1 
AR10 PN2 
PN1 PN2 
 
 
 



 197 

 
 
Appendix 6: PyCGTool bonding scheme for the MARTINI CG model of CF.  
 
[ CF ] 
   
CA1 AR2 
AR2 AR1 
AR2 AR0 
AR0 AR1 
AR2 AR1 
AR1 AR3 
AR1 CA2 
AR3 AR5 
AR3 AO1 
AR3 AR8 
AR5 AR4 
AR5 AR6 
AR4 AR6 
AR6 CO1 
AR4 AO1 
AO1 AR7 
AR8 AR7 
AR8 AR9 
AR9 AR7 
AR9 CO2 
 
 
Appendix 7: PyCGTool bonding scheme for the MARTINI CG model of CF.  
 
 
[ ATTO ] 
CA1 CH1 
CH1 AM1 
AM1 R1 
R1 R2 
R2 SU1 
R2 AR1 
AM1 AR1 
AM1 AR2 
AO1 AR2 
AR1 AN1 
AN1 AR2 
AO1 AR3 
AN1 AR4 
AR4 AR3 
AR3 AR5 
AR5 AR4 
AR5 C2 
AR5 AM2 
AM2 C2 
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Appendix 8: Histograms and overlaid estimated probability density functions representing 

the distribution of the free energies of translocation (DGtrans) for the six translocation pathways 

studied with cv-SMD and US simulations. Probability density functions were calculated using 

the kernel density estimator, and generally resemble normal distributions (albeit with some 

degree of skewness, which can be corrected by running additional US ensembles). (a) 

Distribution of DGtrans for the trans-lumen translocation of SRB. (b) Distribution of DGtrans for 

the interfacial translocation of SRB. (c) Distribution of DGtrans for the trans-lumen translocation 

of CF. (d) Distribution of DGtrans for the interfacial translocation of CF. (e) Distribution of DGtrans 

for the trans-lumen translocation of ATTO 655. (f) Distribution of DGtrans for the interfacial of 

ATTO 655. 
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Appendix 9: Distributions of the force histograms along the fluorophore translocation 
coordinate yielded from WHAM analyses of the umbrella sampling simulation data 
described in Chapter 6. 

 

SRB trans-lumen 

SRB interfacial 
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CF interfacial 

CF trans-lumen 
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ATTO 655 trans-lumen 

ATTO 655 interfacial 


