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Abstract 
 

This technical report describes the rationale and technical details for the dynamic causal modelling 

of mitigated epidemiological outcomes based upon a variety of timeseries data. It details the 

structure of the underlying convolution or generative model (at the time of writing on 6-Nov-20). 

This report is intended for use as a reference that accompanies the predictions in following 

dashboard: https://www.fil.ion.ucl.ac.uk/spm/covid-19/dashboard 
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Introduction 

Since the introduction of dynamic causal modelling for quantitative prediction of the current 

coronavirus epidemic (Friston et al., 2020a; Friston et al., 2020b), the structure of the model has been 

progressively optimised as new data became available. In this technical report, we describe the 

current structure and provide illustrative predictions of various outcomes at the time of writing (i.e., 

6-Nov-2020).   

Dynamic causal modelling stands apart from most modelling in epidemiology by predicting mitigated 

outcomes—and quantifying the uncertainty associated with those outcomes. This stands in contrast 

to the majority of quantitative epidemiological modelling used for forecasting, which considers 

unmitigated outcomes. In other words, the forecasts or projections of the sort most commonly seen 

in the media (and offered as a basis of policy-making by groups such as the SPI-M1) try to predict 

what could happen on the basis of current trajectories. As a rule of thumb, these predictions are 

usually over the next few weeks—and rest upon fitting curves to the recent trajectory of various data. 

In contrast, dynamic causal modelling considers not what could happen, but what is most likely to 

happen. This mandates a generative model of interventions that mitigate viral transmission, such as 

social distancing, lockdown, testing and tracing, etc. In turn, this requires a detailed consideration of 

how various sorts of data are generated. For example, fluctuations in testing capacity and sampling 

bias due to people self-selecting when symptomatic. The advantage of this kind of modelling is that 

any data generated by the model can be used to inform the model parameters that underwrite 

fluctuations in latent states, such as the prevalence of infection. Latent states refer to those states of 

the population that cannot be estimated directly and have to be inferred from observable data. 

Dynamic causal modelling focuses not on worst-case scenarios but on the most likely outcomes, given 

concurrent predictions of viral transmission, responses in terms of behavioural interventions and 

changes in the way that the epidemic is measured (e.g., confirmed cases, death rates, hospital 

admissions, testing capacity, etc). Crucially, dynamic causal modelling brings two things to the table. 

The first is the use of variational procedures to assess the quality of—or evidence for—any given 

model. This means that the model adapts to the available data; in the sense that the best model is  

taken to be the model with the greatest evidence, given the current data. As time goes on, the 

complexity of the model increases, in a way that is necessary to explain the data accurately. 

Technically, log evidence (a.k.a. marginal likelihood) is accuracy minus complexity—and both are a 

function of the data (Penny, 2012).  

The second advantage of dynamic causal modelling is a proper incorporation of uncertainty in the 

estimation of conditional dependencies. In other words, it allows for the fact that uncertainty about 

one parameter affects uncertainty about another. This means dynamic causal models generally have 

a large number of parameters, such that the conditional uncertainty about all the parameters is 

handled together. This furnishes a model that is usually very expressive and may appear over-

parameterised. However, by optimising the prior probability density over the model parameters, one 

                                                             
1 https://www.gov.uk/government/groups/scientific-pandemic-influenza-subgroup-on-modelling 

https://www.gov.uk/government/groups/scientific-pandemic-influenza-subgroup-on-modelling
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can optimise the complexity (c.f., the effective number of parameters), using Bayesian model 

selection (Friston et al., 2018; Friston and Penny, 2011; Hoeting et al., 1999). Note that the ability to 

pursue this form of structure learning rests on being able to estimate the model evidence or marginal 

likelihood, which is one of the primary raisons d'être for the variational procedures used in dynamic 

causal modelling (Beal, 2003; Friston et al., 2007; Winn and Bishop, 2005). 

These potential advantages can be leveraged to model a large variety of data types to fit a fairly 

expressive model of the current epidemic and, implicitly, produce posterior predictive densities over 

measurable outcomes. In other words, parameterising behavioural responses—such as social 

distancing—as a function of latent states, enables the model to guess how we will respond in the 

future, with an appropriate uncertainty. This is the basis of the predictions of mitigated responses 

mentioned above. 

The remainder of this report provides a brief description of current predictions using 10 sorts of 

data. These posterior predictive densities are based upon the current implementation of DCM for 

COVID-19 described in the appendix and detailed in the accompanying annotated MATLAB code (see 

software note). 

 

Dynamic causal modelling 

The convolution, generative or forward model of epidemic data (here, from the United Kingdom) is 

based upon four factors, each of which corresponds to a distinct kind of latent state: each with a 

number of distinct levels. One of these factors (the infection factor) can be thought of as a 

conventional epidemiological model. The remaining factors are concerned with population fluxes 

and fluctuating contacts between people, who may or may not be affected, and the clinical 

progression of the infection that depends on—but is separate from—the infection factor. This allows 

for both symptomatic and asymptomatic clinical corollaries of infection. The final factor concerns 

testing. This is a key part of the generative model because it generates the data generally considered 

to be informative about the course of the epidemic. 

The particular DCM described in the appendix is based upon the original model of a single region 

(Friston et al., 2020a). It has subsequently been extended to deal with viral spread both within and 

between communities (Friston et al., 2020b). This was necessary to explain secondary waves2. A 

further difference between early applications of dynamic causal modelling in this setting and current 

applications is the use of multimodal data. The example in Figure 1 uses 10 sources of data (see 

appendix for details): 

 confirmed cases based upon PCR testing, as reported by specimen date 

                                                             
2 https://www.fil.ion.ucl.ac.uk/spm/covid-19/TR5_Second_Wave.pdf 

 

https://www.fil.ion.ucl.ac.uk/spm/covid-19/TR5_Second_Wave.pdf
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 daily deaths within 28 days of testing positive for COVID-19, reported by date of death 

 critical care unit occupancy as measured by the number of patients requiring mechanical 

ventilation 

 the number of PCR tests performed each day 

 the number of people infected, based upon unbiased community surveys using PCR tests 

 the percent of people who are seropositive, based upon unbiased community surveys using 

antibody tests 

 the number of people reporting symptoms, as estimated by the COVID symptom tracker 

 estimates of the reproduction ratio, issued by the government 

 mobility, as measured by Department of Transport estimates of car use 

 location, as estimated by Google's mobility data; specifically, the relative probability of being 

in the workplace 

Note that some of these so-called data would be treated as estimates in conventional modelling, for 

example, the reproduction ratio. However, dynamic causal modelling treats these estimates as data 

features because they are based upon historical data. In other words, dynamic causal modelling 

generates the underlying reproduction ratio directly from latent states, such as the rate of change of 

prevalence of infection. This means it can then predict estimates based upon legacy data, under the 

assumption that there are random effects that accompany these conventional estimators. 

Figure 1 shows the data (black dots) and predictions in terms of posterior expectations (blue lines) 

and associated 90% credible intervals (shaded areas). Here, we consider the first eight outcomes 

listed above. Note that the period over which data is available—and the time between observations—

varies with different data types. However, because the generative model operates in continuous time 

from the beginning of the outbreak into the future, all data points can be used. Here, we see that the 

first and secondary waves of confirmed cases show a marked asymmetry, with a much larger number 

of confirmed cases in the secondary wave. This is largely a reflection of the number of tests 

performed, as evidenced by the antisymmetric profile of daily deaths (averaged over seven days), 

which are predicted to peak at around 200 deaths per day3 in early November 2020 (specifically, 

November 8). This pattern is reflected in the number of patients requiring mechanical ventilation, 

the estimated prevalence of infection from community surveys and the symptoms reported using the 

COVID symptom tracker. 

The model also shows a decline in seropositivity from about 7% to 5% at the time of writing, which 

is predicted to increase again over the next few weeks. The reproduction ratio started at over 2 and 

fell, during the first lockdown, to below one, dipping to a minimum of about 0.7 over the summer. 

After this, it rose to about 1.5 and fell below 1 in October. Note that the conventional estimates of the 

reproduction ratio—relative to the posterior expectation from DCM—are a slight overestimate. 

Crucially, the black dots in this figure (upper and lower confidence intervals, based upon consensus 

from the SPI-M) have been shifted two weeks backwards in time from their date of reporting. This is 

                                                             
3 Note that this prediction pertains to death by date, not by date reported, which has exceeded 400 on at least 

one day at the time of writing. 
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what is meant above by historical or retrospective estimates. In other words, the estimates of the 

reproduction ratio pertain to states of affairs a few weeks ago. At the time of writing, this was 

particularly relevant because a national lockdown had just been announced with the aim of getting 

the reproduction ratio below one. According to this analysis, it was already below one at the time of 

the announcement4. 

 

Figure 1: posterior predictions of various outcome modalities, ranging from confirmed cases through 

to the reproduction ratio 

Figure 2 shows the equivalent results for mobility and location based upon Department of Transport 

and Google mobility data. It suggests that the national lockdown in spring reduced our contact rates 

to about 25% of pre-COVID levels; after which they rose again slowly until the resurgence of 

infections at the onset of the secondary wave. In Figure 2, 100% refers to the pre-COVID mobility. 

                                                             
4 https://www.gov.uk/government/news/prime-minister-announces-new-national-restrictions 

https://www.gov.uk/government/news/prime-minister-announces-new-national-restrictions
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Figure 2: posterior predictions for mobility 

Uncertainty quantification is an inherent aspect of the data assimilation afforded by dynamic causal 

modelling. In other words, dynamic causal models are convolution models that use Bayesian or 

variational approaches to assimilate data—and the attending uncertainty. In this particular dynamic 

causal model, all the uncertainty resides in the model parameters, such as various rate constants and 

probabilities (see Table 1 and the appendix). This uncertainty is then propagated through to time-

dependent latent states and, ultimately, the outcomes (denoted by the shaded confidence intervals 

in the figures above). 

Having said this, variational procedures are notoriously overconfident. They underestimate the  

uncertainty because of the way they handle conditional dependencies under mean field 

approximations to the posterior density (MacKay, 2003). To compensate for this, the confidence 

intervals in the above figures have been inflated by multiplying the posterior standard deviation by 

a factor of eight. Furthermore, these confidence intervals do not incorporate uncertainty about the 

structure or form of the model itself. In other words, although the model has been optimised over the 

past months to maximise model evidence, there is no guarantee that this is the best model, which it 

will almost certainly not be. 
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Figure 3: posterior predictions and underlying latent states 

Figure 3 shows the underlying latent states generating the predictions in Figures 1 and 2. The upper 

two panels show some outcomes from the previous figures (black dots): daily confirmed cases using 

PCR testing, daily deaths, and critical care occupancy. The upper left panel shows the rates, while the 

upper right panel shows the cumulative totals. The remaining panels detail the fluctuations in the 

latent states of the four factors. Each factor has two panels, showing each of the accompanying levels. 

For clarity, some levels have been omitted because the probabilities of being in any level—of any 

given factor—sum to one. For a more detailed explanation of what these latent states mean—and 

how they can be interpreted—please see the appendix.  
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The infection panel has been equipped with prior thresholds for restrictions on contacts within 

(lockdown) and between (travel) an effective or active population. It is these thresholds that produce 

the periodic expression of secondary and subsequent waves following the initial outbreak. One key 

thing to note here is that, in this example, about 70% of the population remains susceptible to future 

infection (after January 2021). The remaining population are at low risk of coming into contact with 

the virus or have acquired an effective immunity; irrespective of whether they are seropositive or 

seronegative. 

Table 1: parameters of the dynamic causal model 

Number Name Description Prior mean Precision Lower 

(95%) 

Upper 

(95%) 

Posterior mean Lower 

(95%) 

Upper 

(95%) 

1 N population size (M) 66.65 Inf 66.65 66.65 66.65 66.65 66.65 

2 n initial cases 1 0.25 0.037 26.8 1.04 0.41 2.6 

3 r pre-existing immunity 0.1 16 0.066 0.15 0.047 0.032 0.069 

4 o initially exposed 0.1 16 0.066 0.15 0.14 0.13 0.15 

5 out P(leaving home) 0.3 64 0.24 0.36 0.27 0.23 0.31 

6 sde threshold: distancing 0.05 64 0.040 0.061 0.047 0.044 0.049 

7 qua threshold: quarantine 0.005 64 0.0040 0.0061 0.0095 0.0083 0.010 

8 exp P(leaving area) 0.0005 16 0.0003 0.0007 0.0010 0.0009 0.0011 

9 cap CCU beds per person 0.00032 16 0.00021 0.00048 0.00057 0.00043 0.00076 

10 s distancing sensitivity 2 64 1.6 2.4 2.4 2.2 2.7 

11 u quarantine sensitivity 6 64 4.8 7.3 7.32 5.9 8.9 

12 c mechanical sensitivity 1 64 0.81 1.2 0.79 0.65 0.96 

13 nin contacts: home 2 64 1.6 2.4 1.0 0.88 1.3 

14 nou contacts: work 64 64 52 78.6 81 70 94 

15 trm transmission (early) 0.5 64 0.40 0.61 0.53 0.46 0.61 

16 trn transmission (late) 0.5 64 0.40 0.61 0.27 0.23 0.31 

17 tin infected period (days) 5 1024 4.7 5.2 4.9 4.7 5.1 

18 tcn infectious period (days) 4 1024 3.7 4.2 3.4 3.3 3.6 

19 tim loss of immunity (days) 256 64 208 314 222 208 237 
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Sources: 
https://royalsociety.org/-/media/policy/projects/set-c/set-covid-19-R-estimates.pdf 
https://arxiv.org/abs/2006.01283 

 

Table 1 lists the parameters of this model, their priors and their posteriors based upon the data above. 

The free parameters are listed in the second column and their role in shaping the epidemiological 

dynamics is described in the appendix. 

 

Table 1 provides a brief description of the parameters, their prior densities and the posterior density 

afforded by fitting the data in the figures above. The prior precision corresponds to the inverse 

variance of the log transformed priors. Although the scale parameters are implemented as 

probabilities or rates, they are estimated as log parameters. The prior means and ranges were based 

20 res seronegative proportion 0.4 64 0.32 0.49 0.45 0.42 0.49 

21 tic incubation period (days) 4 1024 3.7 4.2 3.0 2.8 3.1 

22 tsy symptomatic period (days) 6 1024 5.6 6.3 6.7 6.5 7.0 

23 trd ARDS period (days) 11 1024 10.4 11.5 8.8 8.5 9.1 

24 sev P(ARDS|symptoms): early 0.005 1024 0.0047 0.0052 0.0047 0.0044 0.0049 

25 lat P(ARDS|symptoms): late 0.005 0.25 0.00018 0.13 0.0035 0.0030 0.0041 

26 fat P(fatality|ARDS): early 0.5 1024 0.47 0.52 0.44 0.42 0.46 

27 sur P(fatality|ARDS): late 0.5 0.25 0.018 13.4 0.31 0.25 0.38 

28 ttt FTTI efficacy 0.036 1024 0.034 0.037 0.037 0.035 0.039 

29 tes testing: bias (early) 1 0.25 0.037 26.8 0.22 0.017 2.9 

30 tts testing: bias (late) 4 0.25 0.14 107 5.2 4.8 5.7 

31 del test delay (days) 4 1024 3.7 4.2 3.9 3.7 4.1 

32 ont symptom demand 0.01 0.25 0.00037 0.26 0.0074 0.0045 0.012 

33 fnr false-negative rate 0.2 1024 0.18 0.21 0.20 0.19 0.21 

34 fpr false-positive rate 0.002 1024 0.0019 0.0021 0.0020 0.0019 0.0021 

35 lin testing: capacity 0.01 0.25 0.00037 0.26 0.0065 0.0059 0.0071 

36 rat testing: constant 48 0.25 1.7 1288 44 41 48 

37 ons testing: onset 200 0.25 7.4 5367 203 194 213 

https://royalsociety.org/-/media/policy/projects/set-c/set-covid-19-R-estimates.pdf
https://arxiv.org/abs/2006.01283
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upon the above sources—and have been progressively optimised with successive versions of the 

model using Bayesian model reduction. Note that some parameters have narrow (informative) 

priors, while others are relatively uninformed. The upper and lower ranges of the prior and posterior 

confidence intervals contain 90% of the probability mass. Note that these are probabilistic ranges, 

and the posterior estimates can easily exceed these bounds, if the data calls for it. 

 

Predictive validity 

Dynamic causal modelling is generally used to test hypotheses about the causal structure that 

generates data. This rests exclusively on Bayesian model comparison, where each hypothesis or 

model is scored using a (a variational bound) on model evidence. This enables one to find the best 

explanation for the data at hand that has the greatest predictive validity. This follows because cross-

validation accuracy goes hand-in-hand with model evidence: in other words, maximising model 

evidence precludes over fitting by minimising complexity—and ensures generalisation to new data 

(Hochreiter and Schmidhuber, 1997; MacKay, 2003; Penny, 2012). This is particularly prescient for 

epidemiological modelling because ‘new data’ pertains to the future, which means generalisation 

corresponds to predictive validity. Using models for forecasting that have not been subject to 

appropriate Bayesian model selection will have poor predictive validity because they overfit, if too 

complex, or underfit, if not sufficiently expressive. An example is provided in Figure 45. 

 

 

                                                             
5 This—and the subsequent example in Figure 6— were added just prior to submission.  
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Figure 4: predicting the second peak 

 

Figure 4 illustrates a failure of nowcasting and forecasting with epidemiological (transmission) 

models (Birrell et al., 2020) that have not been optimised using variational model comparison. The 

left panels show the forecasts from the MRC Biostatistics Unit at the University of Cambridge shortly 

before and after the peak of a second surge. These projections were taken as screen grabs from the 

dashboard6 on appropriate days. The right panels show the equivalent predictions using dynamic 

causal models7 that have been optimized in terms of model evidence (a.k.a., marginal likelihood). 

The first MRC forecast on 11-Nov-20 predicted that the number of deaths each day would rise 

exponentially and “is likely to be between 380 and 610 on the 21st of November”. In fact, death rates 

peaked on 9 November at 398 (seven day average, evaluated on 20-Nov-20). This was predicted by 

the equivalent dynamic causal modelling. Crucially, the dynamic causal modelling predictions were 

consistent before and after the peak. Conversely, the MRC predictions had no predictive validity, 

forecasting opposite trends before and after the peak (indicated with the red ellipse). Furthermore, 

dynamic causal modelling predicted this peak before an upsurge in confirmed cases, albeit with a 

smaller amplitude and three weeks earlier (see Figure 5). 

                                                             
6 https://www.mrc-bsu.cam.ac.uk/tackling-covid-19/nowcasting-and-forecasting-of-covid-19/ 

7 Taken from the dashboard at https://www.fil.ion.ucl.ac.uk/spm/covid-19/dashboard/ 

https://www.mrc-bsu.cam.ac.uk/tackling-covid-19/nowcasting-and-forecasting-of-covid-19/
https://www.fil.ion.ucl.ac.uk/spm/covid-19/dashboard/
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Figure 5: Dynamic causal modelling predictions of a second wave before any increase in confirmed 

cases in early August. This figure is taken from an internal report on the causes of second waves8. 

An important application of nowcasting is to estimate the reproduction ratio (or R-number). As noted 

above this is often used as a point of reference for evaluating when various mitigations should be 

considered. However, when estimated using models that have not been optimised estimates of things 

like the reproduction ratio can, in principle, become inaccurate and biased. An example is shown in 

Figure 6. The left panel shows the reproduction ratio in terms of an expected value (black line) and 

credible intervals based from the MRC Biostatistics Unit at the University of Cambridge (for London). 

The right panel shows the upper and lower intervals (blue dots) based upon a consensus of several 

modelling groups that constitute the SPI-M (for the United Kingdom). 

In both instances, the reproduction ratio was estimated to be above one at the time the number of 

new infections peaked in the United Kingdom. This is mathematically impossible because the R-

number should be exactly one at the time of peak incidence. Conversely, the estimates based on 

dynamic causal modelling (see Figure 6 and appendix) suggest that the reproduction ratio fell below 

one about 3 weeks before the peak in death rates (black line in the right panel). The dynamic causal 

modelling estimates have a similar amplitude to the MRC and consensus (SPI-M) estimates; however, 

the latter appear to lag the former by two weeks. In short, retrospective estimates that are used to 

motivate various time-sensitive nonpharmacological interventions 9 —and assess their relative 

impact—may not be apt for guiding time-sensitive decisions. 

                                                             
8 https://www.fil.ion.ucl.ac.uk/spm/covid-19/TR5_Second_Wave.pdf 

9 For example, the Consensus Statement on COVID-19, Date: 14th October 2020’ states “The number of daily deaths is now 

in line with the levels in the Reasonable Worst Case and is almost certain to exceed this within the next two weeks. Were 

the number of new infections to fall in the very near future, this exceedance of the reasonable worst-case scenario might 

only continue for three to four weeks, but if R remains above 1 then the epidemic will further diverge from the planning 

scenario.”  

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/931162/S0808_SA

GE62_201014_SPI-M-O_Consensus_Statement.pdf 

https://www.fil.ion.ucl.ac.uk/spm/covid-19/TR5_Second_Wave.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/931162/S0808_SAGE62_201014_SPI-M-O_Consensus_Statement.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/931162/S0808_SAGE62_201014_SPI-M-O_Consensus_Statement.pdf
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Figure 6: estimates of the reproduction ratio from the MRC Biostatistics Unit (left panel) and dynamic causal 

modelling (right panel). The black lines correspond to the best (posterior) expectations and the shaded area 

correspond to credible intervals. The blue dots superimposed over the dynamic causal modelling estimates 

report the ranges of consensus values reported by the government10. These have been plotted two weeks before 

the end date of the reporting period for each pair. 

 

Conclusion 

In dynamic causal modelling, everything is optimised with respect to the marginal likelihood or 

evidence for a model, as scored by a variational free energy or evidence bound. This has the important 

consequence that the best model is a function of the data at hand. In turn, this means that the best 

model at the beginning of the epidemic is not the best model halfway through. As more data becomes 

available, the model needs to become more expressive (or complex) in order to provide an accurate 

account of these data. The complexity depends upon how tight the priors are over the model’s free 

parameters. There is an optimal complexity that, in conjunction with the accuracy of fit, subtends 

model evidence. 

This optimal complexity is identified using Bayesian model comparison. In other words, the model is 

defined in terms of which parameters are allowed to vary and which are, a priori, more constrained. 

This model optimisation is itself an adaptive and ongoing process that can, in principle, continue as 

long as data keeps arriving. As noted above, although Bayesian model comparison (in the form of 

Bayesian model reduction) has been used throughout the epidemic, there is no guarantee that the 

basic form of the model—or its coarse graining—is necessarily the best. This would depend upon an 

exhaustive search of the model space, which is a difficult problem. A problem that may be addressed 

when the epidemic enters its endemic phase. 

 

                                                             
10 https://www.gov.uk/guidance/the-r-number-in-the-uk#contents 

https://www.gov.uk/guidance/the-r-number-in-the-uk#contents
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Appendix 

This appendix describes the form of the generative model. The precise details of the implicit 

likelihood model and priors can be found in the annotated MATLAB scripts that generated the figures 

in this report. Details about the standard variational inversion of this model can be found in (Friston 

et al., 2020a). The trajectory of the epidemic has called for an expressive DCM that can fit a large 

family of trajectories in different outcome modalities. At first glance, this expressivity may be 

confused with over-parameterisation. However, the effective degrees of freedom—or effective 

number of parameters—depend sensitively upon prior probability densities that themselves have 

been optimised using Bayesian model reduction. In other words, some parameters have 

uninformative priors and can be considered free parameters, while others have relatively tight or 

informative priors. The effective number of parameters corresponds to model complexity; namely, 

Kullback-Leibler divergence between the posterior and the prior. This effectively counts the number 

of parameters that are used to explain the data. 

Currently, the dynamic causal modelling (DCM) has about 40 parameters that parameterise 400 

differential or update equations. This may sound like a large number; however, these update 

equations inherit from fairly common-sense assumptions about transitions among latent states. 

These structural assumptions, in combination with the prior densities, constitute the assumptions 

made by the model. At no point do we assume any particular parameter is known: every model 

parameter is equipped with a greater or lesser posterior uncertainty that is bounded by the priors in 

Table 1. 

The basic form of the DCM is built upon a Master equation (Seifert, 2012) that describes the discrete 

updates of the probability over the latent states of the model 𝑝 ∈ ℝ5×5×4×4, day by day: 

1

( )

p P p

p vec p

   


           (1) 

This equation can also be expressed as a set of ordinary differential equations by noting the following 

equivalence: 

1

( )

J J

p J p p

p e p P e 



   
         (2) 

Here, J plays the role of the Jacobian of the density dynamics and would have the continuous 

differential equation form used in most conventional modelling. However, we will stick to the 

discrete form using the Master equation, based upon a large probability transition matrix P. This 

matrix can be factorized into transitions among the states of each of the four factors (denoted by 

superscripts). In what follows, we will use 
, , ,P   

 to denote the probability transitions within the 

first factor states, 
, , ,P  

 denotes probability transitions within the second factor, and so on. Here, 

the dot stands in for of all levels of the factor corresponding to the order of the index. Similarly, 
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, , ,p   
 (note the lower-case p) represents the marginal distribution having averaged over the 

factors denoted by the black dots. For example, 
1, , ,p   

 is the probability of being in the first state of 

the location factor, marginalised over all other factors. The matrix factorization is as follows: 

(1) (2) (3) (4)

2 , ,1,

2 , ,2,(1)

4

2 , ,3,

2 , ,4,

(2)

P P P P P

I P

I P
P I

I P

I P

P

 

 

 

 

   

 
 


  
 
 

 



    (3) 

This means that we can build the model by considering transitions among states of each factor in turn 

and then compose these factor-specific probability transition matrices to build the Master equation 

above. This would be a simple procedure if the transitions among each factor did not depend upon 

each other. However, a key aspect of this sort of DCM is an inherent interdependency among the 

factors, in which the probability of moving from one state to another—within one factor—depends 

upon the probability distribution over the states of another factor. For example, the probability that 

I will move from an asymptomatic to a symptomatic state depends upon the prevalence of infection; 

namely, the probability that I am infected. These (second-order) dependencies can be expressed as 

probability transition matrices within each factor that are conditioned upon the levels of another. In 

what follows, we will go through the four factors describing the second-order dependencies and 

occasional third-order dependencies. Third-order dependencies mean that the influence of one 

factor on another depends upon a third factor. These high order dependencies need to be 

incorporated into the master equation, after it is composed according to Equation 3. 

To illustrate how this DCM is parameterised, we will now go through each of the factors in turn. The 

equations and underlying latent states (i.e., compartments) will be presented as figures, that are 

followed by intuitive descriptions. Please see the MATLAB code for one or two details that have been 

omitted for clarity. There are four factors, location, infection, symptom, and testing. These factors have 

four or five levels or states each. 
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Location 

 

 

Figure 7: location 

The location factor has five states, four of which constitute an effective or affected population that is 

a subset of the total or census population. The remainder of the population is assigned to a no-risk 

state. The four states of the effective population include a low and high-risk state. Here, risk refers to 

the probability of coming into contact with somebody who is infected. Low-risk could be being at 

home (in an affected area), while high-risk could be being at work or a football match (in an affected 

area). In addition to these two locations one could be in critical care (requiring mechanical 

ventilation) or self-isolated. The transition matrices on the left of Figure 7 describe the transitions 

amongst these location states when asymptomatic, symptomatic, when severely ill (e.g., acute 

respiratory distress syndrome, ARDS) or when deceased. These four states are the levels of the 

symptom factor.  

The transition matrices in Figure 7 show that when asymptomatic, I have a certain probability of 

leaving the low-risk (home) location and entering a high-risk (e.g. work) location. When at work, I 

will inevitably return home in the evening. When in a critical care unit (CCU), I will be discharged 

when and only when asymptomatic. In terms of moving from a low-risk state to isolation, I will stay 
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in self-isolation for 14 days and return to a low-risk (e.g., domestic setting) after that time. Similarly, 

if I am symptomatic, I will always go into self-isolation and when deceased, go into a no-risk state. 

When in acute respiratory distress (ARDS) I will be taken to critical care (CCU) unless I am already 

there. However, there is also a possibility that the capacity of critical care has been exceeded—and I 

am not admitted—in which case, I will go into isolation.  

The third-order dependencies are described in the lower panel of transition matrices (labelled with 

green text). For example, I will stop self-isolating provided I do not have symptoms and I am PCR 

negative. Similarly, if I am asymptomatic and test positive, then I will go into isolation. The third route 

to isolation models the efficacy of find test trace isolate and support (FTTIS). This is captured by the 

probability that I will go into isolation if I am (told by a contact tracer that I am) asymptomatic and 

infected.  

The no-risk state (state number four) models a reservoir of the population that has yet to be affected 

by the epidemic. In this (simplified) description, one can only move from a no-risk to a low-risk state. 

Effectively, this models the spread of the virus through communities, thereby enlarging the effective 

population as time goes on. In a full implementation, there is also an efflux from the affected 

population (i.e., a low-risk state) back into a no-risk state. With this bidirectional exchange—between 

the effective and no-risk population, the size of the affected population can reach some equilibrium 

depending upon the relative rates of influx and efflux. We have omitted these effects to avoid visual 

clutter. In other words, the model in this figure just allows for a progressive increase in the size of 

the affected population or the number of communities that are exposed to the virus as time proceeds. 

A simplifying assumption here is that we have used (epidemic) model of a single region—of varying 

size—as opposed to a (pandemic) model of multiple regions described elsewhere (Friston et al. 

2020b). 

The format of the equations is reproduced in subsequent figures:  generally refers to a rate 

constant, namely, the parameters of transition probabilities. The free parameters of the model 

parameterise these rate constants and are denoted by   (the functional form of this 

parameterisation is provided in the pink boxes). For example, the probability that I will leave home 

is the product of a baseline probability of going to work times a decreasing sigmoid function of the 

prevalence of infection. The midpoint of this sigmoid function can be regarded as a soft threshold. In 

a similar way, the influx of people who have hitherto been in no-risk areas is a decreasing function of 

prevalence at a lower threshold. It is the disparity between these two (lockdown versus quarantine) 

thresholds that generates secondary and subsequent waves.  

Heuristically, as the virus replicates within the effective population (i.e., the community into which a 

virus was introduced, such as a city) the lower threshold is crossed and the influx of people into the 

effective population falls. This can be mediated by travel restrictions, quarantine, or a cordon 

sanitaire. Within the effective population, prevalence continues to increase until the second 

threshold is crossed, and within-community distancing is realised through a decreased probability 

of leaving low-risk locations (i.e., ‘stay at home’). Community transmission is attenuated, and the 

prevalence of infection peaks and then falls as the community acquires a degree of population 

immunity. As prevalence falls below the lockdown threshold the community unlocks, and social 
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distancing measures are relaxed: for example, the period after the first wave during the summer in 

the United Kingdom. However, as prevalence falls towards the lower threshold there is an influx from 

the no-risk locations as travel restrictions are relaxed (e.g., students returning to university) and 

population immunity is subsequently diluted. The virus then starts to propagate through the 

extended effective population, engendering a secondary wave.  

This succession of between and within-community changes in population mixing and contact rates 

furnishes a simple model of viral spread throughout the total population, producing a succession of 

progressively attenuated waves. Note that there is a similar threshold function for entering the 

critical care state that models a limited capacity. We will see later that the only way to survive severe 

clinical consequences of infection (e.g., acute respiratory distress syndrome) is to be admitted to 

critical care. The final parameter determines how long one is in critical care, expressed as a time 

constant. These time constants can be regarded as expected dwell time or duration that one is in a 

particular state. This concludes our description of the location model, where transitions among 

different states depend primarily upon the symptom factor but also have third order dependencies 

on the infection and testing factors.  

Infection 

Figure 8 uses the same format to detail transitions among different states of infection. Here, people 

start out in a susceptible state from which they can get infected. From the infected stated there are 

two routes to an absorbing state (c.f., the removed state of conventional SEIR models). One can either 

have a mild illness and move straight to a seronegative state (Grifoni et al., 2020; Le Bert et al., 2020; 

Seo et al., 2020) that may be associated with T-cell mediated humoral immunity (Gallais et al., 2020; 

Grifoni et al., 2020; Le Bert et al., 2020). Conversely, one can have a more severe illness with viral 

shedding (van Kampen et al., 2020) and move to an infectious state, and then become seropositive 

(Ab+) for a period of time (Bao et al., 2020; Houlihan et al., 2020; Ng et al., 2020; Wajnberg et al., 

2020). This period of time corresponds to loss of antibodies (Winter and Hegde, 2020), 

parameterised with the appropriate time constant, causing a transition from seropositive to 

seronegative immunity (Ab-). The immunity is modelled by precluding a return from seropositive to 

susceptible, which could be relaxed if necessary. 
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Figure 8: infection  

The rate constants for this factor deal with the probability of becoming infected, parameterised in 

terms of different contact rates. More specifically, the probability of remaining uninfected is the 

probability of avoiding contagion raised to the power of the number of expected contacts per day. In 

turn, this depends upon whether you are in a low or high-risk situation—or indeed are isolated in 

CCU or are in a no-risk area. The probability of becoming infected per contact is itself a rate constant 

times the prevalence of infection in the respective area. In this model, the implicit transmission 

strength can change over time (either increasing or decreasing). The remaining rate constants are 

specified in terms of their expected time constants, while the proportion of people who seroconvert 

is specified by a free parameter. This parameter quantifies the overdispersion or heterogeneity of 

transmission (Endo et al., 2020; Lloyd-Smith et al., 2005), in the sense that only a certain proportion 

of people ever become infectious after being infected. This proportion is estimated as a free 

parameter of the model—analogous to k in conventional models. This concludes our description of 

the infection model that depends on, and only on, the location factor. 
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Symptoms 

 

Figure 9: symptoms 

The symptom or clinical factor has four states. One can start in an asymptomatic state and then, 

consequent on being infected, can—with some probability—become symptomatic. A small 

proportion of symptomatic people will progress to potentially fatal respiratory distress and 

subsequently die, unless they are supported in critical care. The corresponding rate constants are 

again time-dependent, meaning that the probability of developing ARDS can change over different 

phases of the epidemic (either increase or decrease). Similarly, the probability of dying from ARDS 

can itself change with time, for example as treatments improve. The remaining parameters are 

specified in terms of the expected dwell times, here in terms of an incubation period, asymptomatic 

period, and a period of severe disease. Typically, these sum to about 20 days, which is the expected 

time between becoming infected and death. 

 

Testing 

Testing has four states, starting with having never been tested. One then has a test and waits for the 

results that can either be positive or negative. Having been tested, one then returns to the not tested 

state. The probability transition matrices are equipped with test sensitivity and specificity 

parameters, with negative tests when susceptible or no longer infected or infectious (i.e., seropositive, 

or seronegative). Conversely, when infected or infectious, there is a high probability of moving to the 

PCR positive state. Note that when not part of the effective population, one does not bother getting 

tested. 
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Figure 10: testing 

The probability of submitting to a test depends upon testing capacity that is modelled with a linear 

mixture of increasing sigmoid function—as various phases of testing are rolled out. In addition, there 

is a component of test rates that reflects demand in terms of the prevalence of people who are 

symptomatic. Note further that self-selection bias is parameterised in terms of the relative 

probability of getting tested if infected, relative to not being infected. This testing bias can change 

with time (e.g., the relative number of pillar one and pillar two tests in the UK). 

This concludes our discussion of the testing factor. The transitions among the various states above 

effectively constitute the prior probabilities that, when equipped with a likelihood model, complete 

the generative model. The likelihood model maps from the latent states above to observations by 

taking the expected outcome and adding a random effect. 

 

The likelihood model 

The likelihood (a.k.a. observation) models used in this DCM are based upon simple counting statistics 

for large numbers. After a square root transform, the data can then be treated as a Gaussian variate 

with unit variance about the expected number. In practice, because the data are smoothed (which 

introduces serial dependencies among the data), DCM estimates the random observation effects 

under fairly informative hyperpriors. In other words, it adjusts the variance or precision of each data 

modality in proportion to the total number of observations based upon the residual sum of squares. 

Hyperpriors in this instance specify the prior beliefs about the variance of these residuals, 

automatically adjusting for the uncertainty in the data, relative to the priors above. In practice, the 

hyperprior expectation for the variance is set to the log of the summed observations for any kind of 

data. This automatically adjusts for sparse data with relatively few data points. 
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Table 2: outcomes and their expectations 

Outcome Description Likelihood model Source Units 

PCR cases 

(ONS) 

Cases by specimen 

date (UK total) 
, , ,3Np    https://coronavirus.data.gov.uk

/cases 

number

/day 

Daily deaths 

(ONS) 

Deaths within 28 days 

of positive test by date 

of death (UK total) 

, ,4,Np  
 https://coronavirus.data.gov.uk

/deaths 

number

/day 

Ventilated 

patients 

(ONS) 

Patients in mechanical 

ventilation beds 
3, , ,ccN p   

 https://coronavirus.data.gov.uk

/healthcare 

number 

PCR tests 

(ONS) 

Number of confirmed 

positive, negative or 

void lab-based COVID-

19 test results 

3, , ,Np   
 https://coronavirus.data.gov.uk

/testing 

number

/day 

Prevalence 

(ONS) 

Estimate of the 

number of people 

testing positive for 

COVID-19 

,2, , ,3, ,( )N p p       https://www.ons.gov.uk/peopl

epopulationandcommunity/hea

lthandsocialcare/conditionsand

diseases/datasets/coronavirusc

ovid19infectionsurveydata 

number 

Seropositive 

(GOV) 

Number of people 

testing positive for 

COVID-19 antibodies 

,4, ,Np  
 https://www.ons.gov.uk/peopl

epopulationandcommunity/hea

lthandsocialcare/conditionsand

diseases/datasets/coronavirusc

ovid19infectionsurveydata 

percent 

Symptoms 

(KCL) 

Number of people 

calculated to have 

COVID symptoms on 

each day 

, ,2,( )syN p   
 https://covid.joinzoe.com/data

#levels-over-time 

number 

R-ratio 

(GOV) 

The R number range 

for the UK 

1,2, ,

,2, ,

exp( )

ln(2)
ln t

t

t t con

t

d

R K

p
K

p T



  

  

 

 
 

https://www.gov.uk/guidance/

the-r-number-in-the-

uk#contents 

ratio 

Transport 

(GOV) 

Percentages of the 

first week in Feb-20 

(Cars) 

2

1 2, , , ,1, ,( )

100

mo

mo p p
      


 

https://www.gov.uk/governme

nt/statistics/transport-use-

during-the-coronavirus-covid-

19-pandemic 

percent 
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Work 

(Google) 

Community Mobility 

Reports (Workplaces) 
2

1 2, , , ,1, ,( )

100

wo

wo p p
      


 

https://www.google.com/covid

19/mobility/ 

percent 

 

Table 2 lists the outcomes used to invert the dynamic causal model. The predicted outcomes are a 

straightforward function of the marginal probabilities over various latent states. For example, the percentage of 

people who are seropositive is the proportion of people in the Ab+ state of the second factor multiplied by one 

hundred. Some predictions involve exponents. For example, the percentage of people at work is proportional to 

the probability of being in a high-risk location times the probability that any member of the population has yet 

to be infected, raised to a power. When this power is very small, this nonlinear term effectively disappears. All 

these expected outcomes are instantaneous functions of the probability, with the exception of the reproduction 

ratio that depends on the rate of change of prevalence. 

 

Reproduction ratio 

The effective reproduction rate is a fundamental epidemiological constant that provides a useful 

statistic that reflects the exponential growth of the prevalence of infection. There are several ways in 

which it can be formulated. For our purposes, we can generate an instantaneous reproduction rate 

directly from the time varying prevalence of infection as follows: 

1,2, ,

,2, ,

exp( )

ln(2)
ln t

t

t t con

t

d

R K

p
K

p T



  

  

 

 
 

These expressions show that the reproduction rate reflects the growth of (the logarithm of) the 

proportion of people infected—and the period of being infectious. This number is formally related to 

the doubling time Td. Note that the reproduction rate is not an estimate in this scheme: it is an 

outcome that is generated by the latent causes or hidden states inferred by inverting (i.e., fitting) the 

model to empirical timeseries. 

Software note 

The figures in this report can be reproduced using annotated (MATLAB) code available as part of the 

free and open source academic software SPM (https://www.fil.ion.ucl.ac.uk/spm/), released under 

the terms of the GNU General Public License version 2 or later. The routines are called by a 

demonstration script that can be invoked by typing >> DEM_COVID_UK at the MATLAB prompt. At 

the time of writing, these routines are undergoing software validation in our internal source version 

control system—that will be released in the next public release of SPM (and via GitHub 

at https://github.com/spm/). In the interim, please see https://www.fil.ion.ucl.ac.uk/spm/covid-

19/. 

https://www.fil.ion.ucl.ac.uk/spm/
https://github.com/spm/
https://www.fil.ion.ucl.ac.uk/spm/covid-19/
https://www.fil.ion.ucl.ac.uk/spm/covid-19/
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The data used in this technical report are available for academic research purposes from the sites 

listed in the fourth column of Table 2. 
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