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Abstract 
This technical report describes a dynamic causal model of the spread 
of coronavirus through a population. The model is based upon 
ensemble or population dynamics that generate outcomes, like new 
cases and deaths over time. The purpose of this model is to quantify 
the uncertainty that attends predictions of relevant outcomes. By 
assuming suitable conditional dependencies, one can model the 
effects of interventions (e.g., social distancing) and differences among 
populations (e.g., herd immunity) to predict what might happen in 
different circumstances. Technically, this model leverages state-of-the-
art variational (Bayesian) model inversion and comparison 
procedures, originally developed to characterise the responses of 
neuronal ensembles to perturbations. Here, this modelling is applied 
to epidemiological populations—to illustrate the kind of inferences 
that are supported and how the model per se can be optimised given 
timeseries data. Although the purpose of this paper is to describe a 
modelling protocol, the results illustrate some interesting 
perspectives on the current pandemic; for example, the nonlinear 
effects of herd immunity that speak to a self-organised mitigation 
process.
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Introduction
The purpose of this paper is to show how dynamic causal  
modelling can be used to make predictions—and test hypoth-
eses—about the ongoing coronavirus pandemic (Huang et al.,  
2020; Wu et al., 2020; Zhu et al., 2020). It should be  
read as a technical report1, written for people who want to  
understand what this kind of modelling has to offer (or just 
build an intuition about modelling pandemics). It contains a  
sufficient level of technical detail to implement the model  
using MATLAB (or its open source version Octave), while 
explaining things heuristically for non-technical readers. The 
examples in this report are used to showcase the procedures 
and subsequent inferences that can be drawn. Having said 
this, there are some quantitative results that will be of general  
interest. These results are entirely conditional upon the model  
used.

Dynamic causal modelling (DCM) refers to the characterisation 
of coupled dynamical systems in terms of how observable 
data are generated by unobserved (i.e., latent or hidden) causes 
(Friston et al., 2003; Moran et al., 2013). Dynamic causal  
modelling subsumes state estimation and system identification  
under one Bayesian procedure, to provide probability densities  
over unknown latent states (i.e., state estimation) and model  
parameters (i.e., system identification), respectively. Its focus is 
on estimating the uncertainty about these estimates to quantify  
the evidence for competing models, and the confidence in various 
predictions. In this sense, DCM combines data assimilation 
and uncertainty quantification within the same optimisation  
process. Specifically, the posterior densities (i.e., Bayesian  
beliefs) over states and parameters—and the precision of ran-
dom fluctuations—are optimised by maximising a variational 
bound on the model’s marginal likelihood, also known as model  
evidence. This bound is known as variational free energy or the 
evidence lower bound (ELBO) in machine learning (Friston  
et al., 2007; Hinton & Zemel, 1993; MacKay, 1995; Winn & 
Bishop, 2005).

Intuitively, this means one is trying to optimise probabilistic 
beliefs—about the unknown quantities generating some data—
such that the (marginal) likelihood of those data is as large as  
possible. The marginal likelihood2 or model evidence can  
always be expressed as accuracy minus complexity. This means 
that the best models provide an accurate account of some  
data as simply as possible. Therefore, the model with the  
highest evidence is not necessarily a description of the process  
generating data: rather, it is the simplest description that  
provides an accurate account of those data. In short, it is ‘as if’ 
the data were generated by this kind of model. Importantly,  
models with the highest evidence will generalise to new data 
and preclude overfitting, or overconfident predictions about  

outcomes that have yet to be measured. In light of this, it is 
imperative to select the parameters or models that maximise  
model evidence or variational free energy (as opposed to  
goodness of fit or accuracy). However, this requires the esti-
mation of the uncertainty about model parameters and states,  
which is necessary to evaluate the (marginal) likelihood of the 
data at hand. This is why estimating uncertainty is crucial. Being  
able to score a model—in terms of its evidence—means that 
one can compare different models of the same data. This is 
known as Bayesian model comparison and plays an important 
role when testing different models or hypotheses about how the 
data are caused. We will see examples of this later. This aspect 
of dynamic causal modelling means that one does not have to  
commit to a particular form (i.e., parameterisation) of a model. 
Rather, one can explore a repertoire of plausible models and  
let the data decide which is the most apt.

Dynamic causal models are generative models that generate 
consequences (i.e., data) from causes (i.e., hidden states and  
parameters). The form of these models can vary depending  
upon the kind of system at hand. Here, we use a ubiquitous 
form of model; namely, a mean field approximation to loosely  
coupled ensembles or populations. In the neurosciences, this  
kind of model is applied to populations of neurons that respond 
to experimental stimulation (Marreiros et al., 2009; Moran et al., 
2013). Here, we use the same mathematical approach to model 
a population of individuals and their response to an epidemic.  
The key idea behind these (mean field) models is that the  
constituents of the ensemble are exchangeable; in the sense that 
sampling people from the population at random will give the  
same average as following one person over a long period of  
time. Under this assumption3, one can then work out, analyti-
cally, how the probability distribution over various states of  
people evolve over time, e.g., whether someone was infected 
or not. This involves parameterising the probability that people  
will transition from one state to another. By assuming the  
population is large, one can work out the likelihood of observ-
ing a certain number of people who were infected, given 
the probabilistic state of the population at that point in time. 
In turn, one can work out the probability of a sequence or  
timeseries of new cases. This is the kind of generative model  
used here, where the latent states were chosen to generate the 
data that are—or could be—used to track a pandemic. Figure 1  
provides an overview of this model. In terms of epidemio-
logical models, this can be regarded as an extended SEIR  
(susceptible, exposed, infected and recovered) compartmental 
model (Kermack et al., 1997). Please see (Kucharski et al., 2020) 
for an application of this kind of model to COVID-194.

1 Prepared as a proof of concept for submission to the SPI-M (https://www.
gov.uk/government/groups/scientific-pandemic-influenza-subgroup-on-model-
ling) and the RAMP (Rapid Assistance in Modelling the Pandemic) initiative  
(https://royalsociety.org/topics-policy/Health-and-wellbeing/ramp/).

2 The marginal likelihood is the likelihood having marginalised (i.e.,  
averaged) over unknown quantities like states and parameters: i.e., the  
probability of having observed some data under a particular model.

3 Technically, this property reflects ergodicity that is a consequence of a  
weakly mixing system: Birkhoff 1931. Proof of the ergodic theorem. Proc 
Natl Acad Sci USA 17, 656-660. Having said this, this model aims to  
make ensemble level predictions. Because ergodicity may not necessarily hold 
in reality, the ensemble level projections should not be interpreted as predictions  
for individual experiences of the epidemic
4 Conventional (e.g., SEIR) compartmental models in epidemiology usually  
consider a single attribute of the population (e.g., infection status), such that 
the distribution over all states sums to one. In contrast, the DCM used in this  
work considers multiple attributes, where both the joint and marginal  
distributions (over each factor) sum to one.
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Figure 1. generative model. This figure is a schematic description of the generative model used in subsequent analyses. In brief, this 
compartmental model generates timeseries data based on a mean field approximation to ensemble or population dynamics. The implicit 
probability distributions are over four latent factors, each with four levels or states. These factors are sufficient to generate measurable 
outcomes; for example, the number of new cases or the proportion of people infected. The first factor is the location of an individual, who 
can be at home, at work, in a critical care unit (CCU) or in the morgue. The second factor is infection status; namely, susceptible to infection, 
infected, infectious or immune. This model assumes that there is a progression from a state of susceptibility to immunity, through a period of 
(pre-contagious) infection to an infectious (contagious) status. The third factor is clinical status; namely, asymptomatic, symptomatic, acute 
respiratory distress syndrome (ARDS) or deceased. Again, there is an assumed progression from asymptomatic to ARDS, where people 
with ARDS can either recover to an asymptomatic state or not. Finally, the fourth factor represents diagnostic or testing status. An individual 
can be untested or waiting for the results of a test that can either be positive or negative. With this setup, one can be in one of four places, 
with any infectious status, expressing symptoms or not, and having test results or not. Note that—in this construction—it is possible to be 
infected and yet be asymptomatic. However, the marginal distributions are not independent, by virtue of the dynamics that describe the 
transition among states within each factor. Crucially, the transitions within any factor depend upon the marginal distribution of other factors. 
For example, the probability of becoming infected, given that one is susceptible to infection, depends upon whether one is at home or at work. 
Similarly, the probability of developing symptoms depends upon whether one is infected or not. The probability of testing negative depends 
upon whether one is susceptible (or immune) to infection, and so on. Finally, to complete the circular dependency, the probability of leaving 
home to go to work depends upon the number of infected people in the population, mediated by social distancing. The curvilinear arrows 
denote a conditioning of transition probabilities on the marginal distributions over other factors. These conditional dependencies constitute 
the mean field approximation and enable the dynamics to be solved or integrated over time. At any point in time, the probability of being in 
any combination of the four states determines what would be observed at the population level. For example, the occupancy of the deceased 
level of the clinical factor determines the current number of people who have recorded deaths. Similarly, the occupancy of the positive level 
of the testing factor determines the expected number of positive cases reported. From these expectations, the expected number of new 
cases per day can be generated. A more detailed description of the generative model—in terms of transition probabilities—can be found in 
in the main text.
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There are number of advantages to using a model of this sort.  
First, it means that one can include every variable that ‘matters’, 
such that one is not just modelling the spread of an infection  
but an ensemble response in terms of behaviour (e.g., social  
distancing). This means that one can test hypotheses about 
the contribution of various responses that are installed in 
the model—or what would happen under a different kind of  
response. A second advantage of having a generative model 
is that one can evaluate its evidence in relation to alternative  
models, and therefore optimise the structure of the model itself. 
For example, does social distancing behaviour depend upon  
the number of people who are infected? Or, does it depend  
on how many people have tested positive for COVID-19? 
(this question is addressed below). A third advantage is more  
practical, in terms of data analysis: because we are dealing 
with ensemble dynamics, there is no need to create multiple  
realisations or random samples to estimate uncertainty. This 
is because the latent states are not the states of an individual 
but the sufficient statistics of a probability distribution over  
individual states. In other words, we replace random fluctua-
tions in hidden states with hidden states that parameterise random  
fluctuations. The practical consequence of this is that one can 
fit these models quickly and efficiently—and perform model  
comparisons over thousands of models. A fourth advantage 
is that, given a set of transition probabilities, the ensemble  
dynamics are specified completely. This has the simple but 
important consequence that the only unknowns in the model 
are the parameters of these transition probabilities. Crucially, 
in this model, these do not change with time. This means that 
we can convert what would have been a very complicated,  
nonlinear state space model for data assimilation into a  
nonlinear mapping from some unknown (probability transition) 
parameters to a sequence of observations. We can therefore  
make precise predictions about the long-term future, under 
particular circumstances. This follows because the only  
uncertainty about outcomes inherits from the uncertainty about 
the parameters, which do not change with time. These points may 
sound subtle; however, the worked examples below have been  
chosen to illustrate these properties.

This technical report comprises four sections. The first details  
the generative model, with a focus on the conditional depend-
encies that underwrite the ensemble dynamics generating  
outcomes. The outcomes in question here pertain to a regional 
outbreak. This can be regarded as a generative model for the 
first wave of an epidemic in a large city or metropolis. This  
section considers variational model inversion and comparison, 
under hierarchical models. In other words, it considers the  
distinction between (first level) models of an outbreak in 
one country and (second level) models of differences among  
countries, in terms of model parameters. The second section  
briefly surveys the results of second level (between-country)  
modelling, looking at those aspects of the model that are  
conserved over countries (i.e., random effects) and those which 
are not (i.e., fixed effects). The third section then moves on to 
the dynamics and predictions for a single country; here, the  
United Kingdom. It considers the likely outcomes over the 
next few weeks and how confident one can be about these  

outcomes, given data from all countries to date. This section 
drills down on the parameters that matter in terms of affecting  
death rates. It presents a sensitivity analysis that establishes the 
contribution of parameters or causes in the model to eventual  
outcomes. It concludes by looking at the effects of social  
distancing and herd immunity. The final section concludes with 
a consideration of predictive validity by comparing predicted  
and actual outcomes.

The generative model
This section describes the generative model summarised  
schematically in Figure 1, while the data used to invert or fit 
this model are summarised in Figure 2. These data comprise  
global (worldwide) timeseries from countries and regions from  
the initial reports of positive cases in China to the current day5.

The generative model is a mean field model of ensemble  
dynamics. In other words, it is a state space model where the 
states correspond to the sufficient statistics (i.e., parameters) 
of a probability distribution over the states of an ensemble or  
population—here, a population of people who are in mutual  
contact at some point in their daily lives. This kind of model is 
used routinely to model populations of neurons, where the  
ensemble dynamics are cast as density dynamics, under Gaussian  
assumptions about the probability densities; e.g., (Marreiros 
et al., 2009). In other words, a model of how the mean and  
covariance of a population affects itself and the means and  
covariances of other populations. Here, we will focus on a  
single population and, crucially, use a discrete state space  
model. This means that we will be dealing with the sufficient  
statistics (i.e. expectations) of the probability of being in a  
particular state at any one time. This renders the model a  
compartmental model (Kermack et al., 1997), where each state  
corresponds to a compartment. These latent states evolve  
according to transition probabilities that embody the causal  
influences and conditional dependencies that lend an epidemic 
its characteristic form. Our objective is to identify the right  
conditional dependencies—and form posterior beliefs about 
the model parameters that mediate these dependencies. Having  
done this, we can then simulate an entire trajectory into the  
distant future, even if we are only given data about the beginning 
of an outbreak6.

The model considers four different sorts of states (i.e.,  
factors) that provide a description of any individual—sampled 
at random—that is sufficient to generate the data at hand.  
In brief, these factors were chosen to be as conditionally  
independent as possible to ensure an efficient estimation of 
the model parameters7. The four factors were an individual’s  

5 These data are available from: https://github.com/CSSEGISandData/ 
COVID-19.
6 Note that part of the uncertainty about latent states inherits from uncer-
tainty about how outcomes are generated; for example, uncertainty about  
whether reported death rates are a true reflection of actual death rates.
7 This involves examining the eigenvectors of the posterior correlation  
matrix, to preclude marked posterior correlations.
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Figure 2. timeseries data. This figure provides a brief overview of the timeseries used for subsequent modelling, with a focus on the early 
trajectories of mortality. The upper left panel shows the distribution, over countries, of the number of days after the onset of an outbreak—
defined as 8 days before more than one case was reported. At the time of writing (4th April 2020), a substantial number of countries witnessed 
an outbreak lasting for more than 60 days. The upper right panel plots the total number of deaths against the durations in the left panel. Those 
countries whose outbreak started earlier have greater cumulative deaths. The middle left panel plots the new deaths reported (per day) over 
a 48-day period following the onset of an outbreak. The colours of the lines denote different countries. These countries are listed in the lower 
left panel, which plots the cumulative death rate. China is clearly the first country to be severely affected, with remaining countries evincing 
an accumulation of deaths some 30 days after China. The middle right panel is a logarithmic plot of the total deaths against population size 
in the initial (48-day) period. Interestingly, there is little correlation between the total number of deaths and population size. However, there is 
a stronger correlation between the total number of cases reported (within the first 48 days) and the cumulative deaths as shown in lower right 
panel. In this period, Germany has the greatest ratio of total cases to deaths. Countries were included if their outbreak had lasted for more 
than 48 days and more than 16 deaths had been reported. The timeseries were smoothed with a Gaussian kernel (full width half maximum of 
two days) to account for erratic reporting (e.g., recording deaths over the weekend).
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location, infection status, clinical status and diagnostic status. In 
other words, we considered that any member of the population  
can be characterised in terms of where they were, whether 
they were infected, infectious or immune, whether they were  
showing mild and severe or fatal symptoms, and whether they 
had been tested with an ensuing positive or negative result. 
Each of these factors had four levels. For example, the location  
factor was divided into home, work, critical care unit, and 
the morgue. These states should not be taken too literally. 
For example, home stands in for anywhere that has a limited 
risk of exposure to, or contact with, an infected person  
(e.g., in the domestic home, in a non-critical hospital bed, 
in a care home, etc). Work stands in for anywhere that has 
a larger risk of exposure to—or contact with—an infected  
person and therefore covers non-work activities, such as going 
to the supermarket or participating in team sports. Similarly, 
designating someone as severely ill with acute respiratory  
distress syndrome (ARDS) is meant to cover any life-threatening  
conditions that would invite admission to intensive care.

Having established the state space, we can now turn to the  
causal aspect of the dynamic causal model. The causal structure 
of these models depends upon the dynamics or transitions 
from one state or another. It is at this point that a mean field  
approximation can be used. Mean field approximations are  
used widely in physics to approximate a full (joint) prob-
ability density with the product of a series of marginal densities  
(Bressloff & Newby, 2013; Marreiros et al., 2009; Schumacher  
et al., 2015; Zhang et al., 2019). In this case, the factorisation 
is fairly subtle: we will factorise the transition probabilities, 
such that the probability of moving among states—within 
each factor—depends upon the marginal distribution of other  
factors (with one exception). For example, the probability of  
developing symptoms when asymptomatic depends on, and 
only on, the probability that I am infected. In what follows, we  
will step through the conditional probabilities for each factor  
to show how the model is put together (and could be changed).

Transition probabilities and priors
The first factor has four levels, home, work, CCU and the  
morgue. People can leave home but will always return (with unit 
probability) over a day. The probability of leaving home has 
a (prior) baseline rate of one third but is nuanced by any social  
distancing imperatives. These imperatives are predicated on 
the proportion of the population that is currently infected, such 
that the social distancing parameter (an exponent) determines 
the probability of leaving home8. For example, social distancing 
is modelled as the propensity to leave home and expose  
oneself to interpersonal contacts. This can be modelled with the 
following transition probability:

1( | , ) (1 )θθ+ = = = −= sdeinf
t t t t out infectedP loc k loc home clin asymptomatic pwor (1.1)

This means that the probability of leaving home, given I have no 
symptoms, is the probability I would have gone out normally,  

multiplied by a decreasing function of the proportion of people 
in the population who are infected. Formally, this proportion is 
the marginal probability of being infected, where the marginal  
probability of a factor is an average over the remaining factors.  
The marginal probability pl of the location factor is as follows:
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Where the final four equalities define each factor or state in 
the model. The parameters in this social distancing model are 
the probability of leaving home every day (θ

out
) and the social  

distancing exponent (θ
sde

).

The only other two places one can be are in a CCU or the  
morgue. The probability of moving to critical care depends 
upon bed (i.e., hospital) availability, which is modelled as a  
sigmoid function of the occupancy of this state (i.e., the prob-
ability that a CCU bed is occupied) and a bed capacity  
parameter (a threshold). If one has severe symptoms, then one 
stays in the CCU. Finally, the probability of moving to the  
morgue depends on, and only on, being deceased. Note that 
all these dependencies are different states of the clinical  
factor (see below). This means we can write the transition 
probabilities among the location factor for each level of the  
clinical factor as follows (with a slight abuse of notation):
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Here, the columns and rows of each transition probability  
matrix are ordered: home, work, CCU, morgue. The column  
indicates the current location and the row indicates the next  8 We will license this assumption using Bayesian model comparison later.
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location. Parameter θ
cap

 is bed capacity threshold and 
4( 1) 1( , ) (1 e )

s

s θσ θ − −= +  is a decreasing sigmoid function. In brief, 
these transition probabilities mean that I will go out when  
asymptomatic, unless social distancing is in play. However, when 
I have symptoms I will stay at home, unless I am hospitalised  
with acute respiratory distress. I remain in critical care unless 
I recover and go home or die and move to the morgue, where I  
stay. Technically, the morgue is an absorbing state.

In a similar way, we can express the probability of moving  
between different states of infection (i.e., susceptible, infected, 
infectious and immune) as follows:

( )

( )

( )

1

1

1

(1 )

1
| ,
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1 1

1
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P
P
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P
P
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θ

θ

θ

θ

θ

θ
θ θ

θ

θ
θ θ

θ

θ
θ θ

+

+

+

= − ⋅

 
 − = =  −
 

−  
 
 − = =  −
 

−  

= =
−

( )1

1 1

| ,

1 1 1 1

on

con

t t tP inf inf loc morgue

θ

+

 
 
 
 
 − 
 
 
 = =
 
 
          

(1.4)

These transition probabilities mean that when susceptible, the  
probability of becoming infected depends upon the number of 
social contacts—which depends upon the proportion of time 
spent at home. This dependency is parameterised in terms of a  
transition probability per contact (θ

trn
) and the expected number 

of contacts at home (θ
Rin

) and work (θ
Rou

)9. Once infected, one  
remains in this state for a period of time that is parameterised by 
a transition rate (θ

inf
). This parameterisation illustrates a generic  

property of transition probabilities; namely, an interpretation 
in terms of rate constants and, implicitly, time constants. The  
rate parameter θ is related to the rate constant κ and time constant 
τ according to:

1exp( ) exp( ) 1: 0τθ κ τ= − = − ≤ ∀ > 		                     (1.5)

In other words, the probability of staying in any one state is 
determined by the characteristic length of time that state is  

occupied. This means that the rate parameter above can be  
specified, a priori, in terms of the number of days we expect 
people to be infected, before becoming infectious. Similarly,  
we can parameterise the transition from being infectious to 
being immune in terms of a typical period of being contagious,  
assuming that immunity is enduring and precludes reinfection10. 
Note that in the model, everybody in the morgue is treated as  
having acquired immunity. The transitions among clinical states 
depend upon both the infection status and location as follows:

( )

( )

1

1

1

1 1 1

| , { , }

1

1 (1 )(1 ) (1 )(1 )

| , { , }
(1 )

(1

fat
fat

sur

t t t

dev sym sev rds fat

dev sym
t t t

sym sev rds

rds

loc CCU
loc CCU

P clin clin inf susceptible immune

P clin clin inf infected infectious

θ
θ

θ

θ θ θ θ θ
θ θ

θ θ θ
θ

+

+

=
=  − ≠

 
 
 ∈ =
 
 
 

− − − − −

∈ =
−

− ) 1fatθ

 
 
 
 
 
  

(1.6)

The transitions among clinical states (i.e., asymptomatic,  
symptomatic, ARDS and deceased) are relatively straightforward: 
if I am not infected (i.e., susceptible or immune) I will move to 
the asymptomatic state, unless I am dead. However, if I am  
infected (i.e., infected or infectious), I will develop symptoms 
with a particular probability (θ

dev
). Once I have developed  

symptoms, I will remain symptomatic and either recover to an 
asymptomatic state or develop acute respiratory distress with 
a particular probability (θ

sev
). The parameterisation of these  

transitions depends upon the typical length of time that I  
remain symptomatic (θ

sym
); similarly, when in acute respira-

tory distress (θ
rds

). However, I may die following ARDS, with a  
probability that depends upon whether I am in a CCU, or  
elsewhere. This is the exception (mentioned above) to the  
conditional dependencies on marginal densities. Here, the 
probability of dying (θ

fat
) depends on being infected and my  

location: I am more likely to die of ARDS, if I am not in  
CCU, where θ

sur
 is the probability of surviving at home. The 

implication here is that the transition probabilities depend upon  
two marginal densities, as opposed to one for all the other  
factors: see the first equality in (1.6). Please refer to Table 1 for 
details of the model parameters.

Finally, we turn to diagnostic testing status (i.e., untested,  
waiting or positive versus negative). The transition probabilities 
here are parameterised in terms of test availability (θ

tft
, θ

sen
). 

and the probability that I would have been tested anyway,  
which is relatively smaller, if I am asymptomatic (θ

tes
). Test  

availability is a decreasing sigmoid function of the number  
of people who are waiting (with a delay θ

del
) for their results. 

I can only move from being untested to waiting. After this,  

10 Although cases of double positive diagnoses have been reported, these 
may reflect false test results rather than re-infection per se. Having said this,  
it would be straightforward to include a transition from immunity to suscep-
tible, with a suitably small transition rate to model the decay of immunity, or 
viral mutation. Similarly, one can incorporate transition from asymptomatic to  
symptomatic, when immune, to model partial resistance.

9 Here, (1 )inf
trn infectiousP pθ= − ⋅  can be interpreted as a probability of eluding  

infection with each interpersonal contact, such that the probability of  
remaining uninfected after θ

R
 contacts is given by PθR. Note, that there is no 

distinction between people at home and at work; both are equally likely to  
be infectious.
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Table 1. Parameters of the COVID-19 model and priors, N(η, C) (NB: prior means are for scale 
parameters θ = exp (ϑ) ).

Number Parameter Mean Variance Description

1 θn 1 1/4 Number of initial cases

2 θN 1 1/16 Effective population size (millions)

3 θm 10-6 0 Herd immunity (proportion)

Location

4 θout 1/3 1/64 Pr(work | home): probability of going out

5 θsde 32 1/64 Social distancing exponent

6 θcap 128/100000 1/64 CCU capacity threshold (per capita)

Infection

7 θRin 3 1/64 Effective number of contacts: home

8 θRou 48 1/64 Effective number of contacts: work

9 θtrn 1/4 1/64 Pr(contagion | contact)

10 1exp( )
infinf τθ = − τinf = 5 1/64 Infected (pre-contagious) period (days)

11 1exp( )
concon τθ = − τcon = 3 1/64 Infectious (contagious) period (days)

Clinical

12 θdev 1/3 1/64 Pr(symptoms | infected)

13 θsev 1/100 1/64 Pr(ARDS | symptomatic)

14 1exp( )
symsym τθ = − τsym = 5 1/64 symptomatic period (days)

15 1exp( )
rdsrds τθ = − τrds = 12 1/64 acute RDS period (days)

16 θfat 1/3 1/64 Pr(fatality | CCU)

17 θsur 1/16 1/64 Pr(survival | home)

Testing

18 θtft 500/100000 1/64 Threshold: testing capacity (per capita)

19 θsen 1/100 1/64 Rate: testing capacity (%)

20 1exp( )
deldel τθ = − τdel = 2 1/64 Delay: testing capacity (days)

21 θtes 1/8 1/64 Relative Pr(tested | uninfected)

Sources (Huang et al., 2020; Mizumoto & Chowell, 2020; Russell et al., 2020; Verity et al., 2020; Wang et al., 
2020a) and:

•	� https://www.statista.com/chart/21105/number-of-critical-care-beds-per-100000-inhabitants/
•	� https://www.gov.uk/guidance/coronavirus-covid-19-information-for-the-public
•	� http://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/

I can only go into positive or negative test states, depending 
upon whether I have the virus (i.e., infected or infectious) or 
not11.

( )

( )

1

1

( , )

1

| , { , }
1

1 1

1

| , { , }
1 1

1

test
sen waiting tft

tes

tes del
t t t

del

del
t t t

del

P p

P
P

P test test inf susceptible immune

P
P

P test test inf infected infectious

θ σ θ

θ
θ θ

θ

θ
θ

+

+

=

− 
 
 ∈ =
 
 − 

− 
 
 ∈ =
 −
 
 

(1.7)

We can now assemble these transition probabilities into a  
probability transition matrix, and iterate from the first day 
to some time horizon, to generate a sequence of probability  
distributions over the joint space of all factors:

1 ( , )t t tp T p pθ+ = 					        (1.8)

11 Notice that this model is configured for new cases that are reported based 
on buccal swabs (i.e., am I currently infected?), not tests for antibody or  
immunological status. A different model would be required for forthcom-
ing tests of immunity (i.e., have I been infected?). Furthermore, one might  
consider the sensitivity and specificity of any test by including sensitiv-
ity and specificity in (1.7). For example, 1 in 3 tests may be false negatives;  
especially, when avoiding bronchoalveolar lavage to minimise risk to clinicians: 
Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., Tan, W., 2020b. Detection of 
SARS-CoV-2 in Different Types of Clinical Specimens. JAMA.
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Notice that this is a completely deterministic state space  
model, because all the randomness is contained in the  
probabilities. Notice also that the transition probability matrix  
T is both state and time dependent, because the transition prob-
abilities above depend on marginal probabilities. Technically,  
(1.8) is known as a master equation (Seifert, 2012; Vespignani & 
Zapperi, 1998; Wang, 2009) and forms the basis of the dynamic  
part of the dynamic causal model.

This model of transmission supports an effective reproduction 
number or rate, R, which summarises how many people I 
am likely to infect, if I am infected. This depends upon the  
probability that any contact will cause an infection, the  
probability that the contact is susceptible to infection and  
number of people I contact:

( )inf loc|infectious loc|infectious
trn susceptible home Rin work Rou conR p p pθ θ θ τ= ⋅ ⋅ + ⋅         (1.9)

In this approximation, the number of contacts I make is a  
weighted average of the number of people I could infect at  
home and the number of people I meet outside, per day, times 
the number of days I am contagious. The effective reproduction  
rate is not a biological rate constant. However, it is a useful  
epidemiological summary statistic that indicates how quickly the 
disease spreads through a population. When less than one, the 
infection will decay to an endemic equilibrium. We will use this 
measure later to understand the role of herd immunity.

This completes the specification of the generative model of  
latent states. A list of the parameters and their prior means  
(and variances) is provided in Table 1. Notice that all of the  
parameters are scale parameters, i.e., they are rates or prob-
abilities that cannot be negative. To enforce these positivity  
constraints, one applies a log transform to the parameters during 
model inversion or fitting. This has the advantage of being able 
to simplify the numerics using Gaussian assumptions about the  
prior density (via a lognormal assumption). In other words,  
although the scale parameters are implemented as probabilities or 
rates, they are estimated as log parameters, denoted by lnϑ θ= .  
Note that prior variances are specified for log parameters. For  
example, a variance of 1/64 corresponds to a prior confidence  
interval of ~25% and can be considered weakly informative.

These prior expectations should be read as the effective rates 
and time constants as they manifest in a real-world setting. For  
example, a three-day period of contagion is shorter than the  
period that someone might be infectious (Wölfel et al., 2020)12, 
on the (prior) assumption that they will self-isolate, when they  
realise they could be contagious.

Initial conditions and population size
Further parameters are required to generate data, such as the size 
of the population and the number of people who are initially  

infected (θ
N
, θ

n
)13, which parameterise the initial state of the  

population (where ⊗ denotes a Kronecker tensor product):

3 1
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=

∝ ⋅

=

=

= ⊗ ⊗ ⊗
				    

(1.10)

These parameters are unknown quantities that have to be  
estimated from the data; however, we still have to specify 
their prior densities. This begs the question: what kind of 
population are we trying to model? There are several choices 
here; ranging from detailed grid models of the sort used in  
weather forecasting (Palmer & Laure, 2013) and epidemiologic  
models (Ferguson et al., 2006). One could use models based  
upon partial differential equations; i.e., (Markov random) field  
models (Deco et al., 2008). In this technical report, we will  
choose a simpler option that treats a pandemic as a set of  
linked point processes that can be modelled as rare events. In 
other words, we will focus on modelling a single outbreak in 
a region or city and treat the response of the ‘next city’ as a  
discrete process post hoc. This simplifies the generative  
model; in the sense we only have to worry about the  
ensemble dynamics of the population that comprises one city. 
A complimentary perspective on this choice is that we are  
trying to model the first wave of an epidemic as it plays out  
in the first city to be affected. Any second wave can then be  
treated as the first wave of another city or region.

Under this choice, the population size can be set, a priori, to 
1,000,000; noting that a small city comprises (by definition) 
a hundred thousand people, while a large city can exceed  
10 million. Note that this is a prior expectation, the effective  
population size is estimated from the data: the assumption that 
the effective population size reflects the total population of a  
country is a hypothesis (that we will test later).

The likelihood or observation model
The outcomes considered in Figure 2 are new cases (of  
positive tests and deaths) per day. These can be generated 
by multiplying the appropriate probability by the (effective)  
population size. The appropriate probabilities here are just 
the expected occupancy of positive test and deceased states,  
respectively. Because we are dealing with large populations, the 
likelihood of any observed daily count has a binomial distribution 
that can be approximated by a Gaussian density14.

~ ( , ) ( , (1 ))

~ ( , )

t t t t t

t t t

o B n N n n

O o N n I

π π π π

π

≈ − ⇒

= 			    (1.11)

13 Table 1 also includes a parameter for the proportion of people who are  
initially immune, which we will call on later.
14 This likelihood model can be finessed using a negative binomial distri-
bution: MRC Centre for Global Infectious Disease Analysis: Report 13  
(http://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/. 
However, a binomial is sufficient for our purposes.

12 Shedding of COVID-19 viral RNA from sputum can outlast the end of  
symptoms. Seroconversion occurs after 6–12 days but is not necessarily  
followed by a rapid decline of viral load.
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Here, outcomes are counts of rare events with a small  
probability π << 1 of occurring in a large population of size  
n >> 1. For example, the likelihood of observing a timeseries 
of daily deaths can be expressed as a function of the model  
parameters as follows:

( ) ( )0 0

6
, , 1

1

| , , | ( , )

(10 )( )

( , )

T
T t

clin clin
t N deceased t deceased t

t t t

P O P O O N n I

n p p
p T p p

ϑ ϑ π

π θ
ϑ

−

+

= =

= ⋅ −
=

∏…

	                  (1.12)

The advantage of this limiting (large population) case is that  
a (variance stabilising) square root transform of the data counts  
renders their variance unity. With the priors and likelihood  
model in place, we now have a full joint probability over 
causes (parameters) and consequences (outcomes). This is the  
generative model ( , ) ( | ) ( )P O P O Pϑ ϑ ϑ= . One can now use standard 
variational techniques (Friston et al., 2007) to estimate the  
posterior over model parameters and evaluate a variational bound 
on the model evidence or marginal likelihood. Mathematically,  
this is expressed as follows:
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(1.13)

These expressions show that maximising the variational free  
energy F with respect to an approximate posterior Q(ϑ) renders 
the Kullback-Leibler (KL) divergence between the true and  
approximate posterior as small as possible. At the same time, 
the free energy becomes a lower bound on the log evidence. 
The free energy can then be used to compare different models,  
where any differences correspond to a log Bayes factor or odds  
ratio (Kass & Raftery, 1995; Winn & Bishop, 2005).

Bayesian model comparison
One may be asking why we have chosen this particular state 
space and this parameterisation? Are there alternative model  
structures or parameterisations that would be more fit for  
purpose? The answer is that there will always be a better  
model, where ‘better’ is a model that has more evidence. This  
means that the model has to be optimised in relation to  
empirical data. This process is known as Bayesian model  
comparison based upon model evidence (Winn & Bishop, 
2005). For example, in the above model we assumed that 
social distancing increases as a function of the proportion 
of the population who are infected (1.1). This stands in for a  
multifactorial influence on social behaviour that may be  
mediated in many ways. For example, government advice,  
personal choices, availability of transport, media reports of  
‘panic buying’and so on. So, what licenses us to model the  
causes of social distancing in terms of a probability that any 

member of the population is infected? The answer rests upon  
Bayesian model comparison. When inverting the model using 
data from countries with more than 16 deaths (see Figure 2),  
we obtained a log evidence (i.e., variational free energy) of -
15701 natural units (nats). When replacing the cause of social 
distancing with the probability of encountering someone with 
symptoms—or the number of people testing positive—the 
model evidence fell substantially to -15969 and -15909 nats, 
respectively. In other words, there was overwhelming evidence 
in favour of infection rates as a primary drive for social  
distancing, over and above alternative models. We will return 
to the use of Bayesian model comparison later, when asking  
what factors determine differences between each country’s  
response to the pandemic.

Summary
Table 1 lists all the model parameters; henceforth, DCM  
parameters. In total, there are 21 DCM parameters. This 
may seem like a large number to estimate from the limited  
amount of data available (see Figure 2). The degree to which 
a parameter is informed by the data depends upon how changes 
in the parameter are expressed in data space. For example, 
increasing the effective population size will uniformly elevate 
the expected cases per day. Conversely, decreasing the number 
of initially infected people will delay the curve by shifting 
it in time. In short, a parameter can be identified if it has a 
relatively unique expression in the data. This speaks to an  
important point, the information in the data is not just in the  
total count—it is in the shape or form of the transient15.

On this view, there are many degrees of freedom in a timeseries 
that can be leveraged to identify a highly parameterised model. 
The issue of whether the model is over parameterised or under 
parameterised is exactly the issue resolved by Bayesian model 
comparison; namely, the removal of redundant parameters 
to suppress model complexity and ensure generalisation: see 
(1.13)16. One therefore requires the best measures of model 
evidence. This is the primary motivation for using variational 
Bayes; here, variational Laplace (Friston et al., 2007). The vari-
ational free energy, in most circumstances, provides a better 
approximation than alternatives such as the widely used Akaike 
information criteria and the widely used Bayesian information  
criteria (Penny, 2012).

One special aspect of the model above is that it has absorbing  
states. For example, whenever one enters the morgue, becomes 

15 A transient here refers to a transient perturbation to a system, characterising a 
response that evolves over time.
16 Intuitively, this can be likened to a bat inverting its generative model of the 
world using the transients created by echo location. The shape of the transient 
contains an enormous amount of information, provided the bat has a good model 
of how echoes are generated. Exactly the same principle applies here: if one can 
find the right model, one can go beyond the immediate information in the data 
to make some precise inferences—based upon prior beliefs that constitute the 
generative model. This kind of abductive inference speaks to the importance of 
having a good forward or generative model—and the ability to select the best 
model based upon model evidence.
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immune, dies or has a definitive test result, one stays in that 
state: see Figure 1. This is important, because it means the  
long-term behaviour of the model has a fixed point. In other  
words, we know what the final outcomes will be. These  
outcomes are known as endemic equilibria. This means that 
the only uncertainty is about the trajectory from the present 
point in time to the distant future. We will see later that—when  
quantified in terms of Bayesian credible intervals—this uncer-
tainty starts to decrease as we go into the distant future. This 
should be contrasted with alternative models that do not param-
eterise the influences that generate outcomes and therefore  
call upon exogenous inputs (e.g., statutory changes in policy 
or changes in people’s behaviour). If these interventions are  
unknown, they will accumulate uncertainty over time. By  
design, we elude this problem by including everything that  
matters within the model and parameterising strategic responses 
(like social distancing) as an integral part of the transition  
probabilities.

We have made the simplifying assumption that every country  
reporting new cases is, effectively, reporting the first wave of 
an affected region or city. Clearly, some countries could suffer  
simultaneous outbreaks in multiple cities. This is accommo-
dated by an effective population size that could be greater than 
the prior expectation of 1 million. This is an example of finding  
a simple model that best predicts outcomes—that may not be 
a veridical reflection of how those outcomes were actually  
generated. In other words, we will assume that each country 
behaves as if it has a single large city of at-risk denizens. In the 
next section, we look at the parameter estimates that obtain 
by pooling information from all countries, with a focus on  
between country differences, before turning to the epidemiology  
of a single country (the United Kingdom).

Hitherto, we have focused on a generative model for a single  
city. However, in a pandemic, many cities will be affected. 
This calls for a hierarchical generative model that considers 
the response of each city at the first level and a global response 
at the second. This is an important consideration because it 
means, from a Bayesian perspective, knowing what happens  
elsewhere places constraints (i.e., Bayesian shrinkage priors) 
on estimates of what is happening in a particular city. Clearly, 
this rests upon the extent to which certain model parameters 
are conserved from one city to another—and which are idi-
osyncratic or unique. This is a problem of hierarchical Bayesian  
modelling or parametric empirical Bayes (Friston et al., 2016;  
Kass & Steffey, 1989). In the illustrative examples below, we 
will adopt a second level model in which key (log) parameters  
are sampled from a Gaussian distribution with a global  
(worldwide) mean and variance. From the perspective of the  
generative model, this means that to generate a pandemic, one 
first samples city-specific parameters from a global distribution, 
adds a random effect, and uses the ensuing parameters to  
generate a timeseries for each city.

Parametric empirical Bayes and hierarchical models
This section considers the modelling of country-specific  
parameters, under a simple (general linear) model of  

between-country effects. This (second level) model requires 
us to specify which parameters are shared in a meaningful 
way between countries and which are unique to each country.  
Technically, this can be cast as the difference between random 
and fixed effects. Designating a particular parameter as a  
random effect means that this parameter was generated by  
sampling from a countrywide distribution, while a fixed effect 
is unique to each country. Under a general linear model, the  
distribution for random effects is Gaussian. In other words, 
to generate the parameter for a particular country, we take 
the global expectation and add a random Gaussian variate, 
whose variance has to be estimated under suitable hyperpriors.  
Furthermore, one has to specify systematic differences  
between countries in terms of independent variables; for  
example, does the latitude of a country have any systematic 
effect on the size of the at-risk population? The general linear  
model used here comprises a constant (i.e., the expectation or 
mean of each parameter over countries), the (logarithms of) total  
population size, and a series of independent variables based 
upon a discrete sine transform of latitude and longitude. The 
latter variables stand in for any systematic and geopolitical  
differences among countries that vary smoothly with their  
location. Notice that the total population size may or may not 
provide useful constraints on the effective size of the population  
at the first level. Under this hierarchical model, a bigger  
country may have a transport and communication infrastruc-
ture that could reduce the effective (at risk) population size. 
A hint that this may be the case is implicit in Figure 2, where 
there is no apparent relationship between the early incidence of  
deaths and total population size.

In the examples below, we treated the number of initial cases 
and the parameters pertaining to testing as fixed effects and all  
remaining parameters as random effects. The number of initial 
infected people determines the time at which a particular  
country evinces its outbreak. Although this clearly depends 
upon geography and other factors, there is no a priori reason 
to assume a random variation about an average onset time.  
Similarly, we assume that each country’s capacity for testing was 
a fixed effect; thereby accommodating non-systematic testing 
or reporting strategies17. Note that in this kind of modelling,  
outcomes such as new cases can only be interpreted in relation  
to the probability of being tested and the availability of tests18.

With this model in place, we can now use standard procedures 
for parametric empirical Bayesian modelling (Friston et al.,  
2016; Kass & Steffey, 1989) to estimate the second level  
parameters that couple between-country independent variables 

17 This reflects concerns that data from different countries may not have been 
acquired or reported using the same criteria.
18 These are two of several factors that conspire to produce the actual outcomes. 
The purpose of having a generative model is that reports of new cases may 
provide useful constraints on the latent causes of death rates. This means it is 
imperative to model the latent causes that interact in generating one sort of out-
come, so that it can inform the causes of another. This fusion of different sorts 
of outcomes is the raison d’être for a generative model, when inferring their 
common underlying causes.
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to country-specific parameters of the DCM. However, there 
are a large number of these parameters—that may or may not  
contribute to model evidence. In other words, we need some way 
of removing redundant parameters based upon Bayesian model 
comparison. This calls upon another standard procedure called  
Bayesian model reduction (Friston et al., 2018; Friston et al.,  
2016). In brief, Bayesian model reduction allows one to evalu-
ate the evidence for a model that one would have obtained 
if the model had been reduced by removing one or more  
parameters. The key aspect of Bayesian model reduction is  
that this evidence can be evaluated using the posteriors and  
priors of a parent model that includes all possible parameters.  
There are clearly an enormous number of combinations of  
parameters that one could consider. Fortunately, these can be  
scored quickly and efficiently using Bayesian model reduc-
tion, by making use of Savage-Dickey density ratios (Friston &  
Penny, 2011; Savage, 1954). Because Bayesian model reduc-
tion scores the effect of changing the precision of priors—on  
model evidence—it can be regarded as an automatic Bayesian 
sensitivity analysis, also known as robust Bayesian analysis  
(Berger, 2011).

Figure 3 shows the results of this analysis. The upper panels  
show the posterior probability of 256 models that had the  
greatest evidence (shown as a log posterior in the upper left  
panel). Each of these models corresponds to a particular  

combination of parameters that have been ‘switched off’, by  
shrinking their prior variance to zero. By averaging the  
posterior estimates in proportion to the evidence for each 
model, —known as Bayesian model averaging (Hoeting et al., 
1999)—we can eliminate redundant parameters and thereby pro-
vide a simpler explanation for differences among countries. 
This is illustrated in the lower panels, which show the posterior  
densities before (left) and after (right) Bayesian model reduc-
tion. These estimates are shown in terms of their expectation or 
maximum a posteriori (MAP) value (as blue bars), with 90%  
Bayesian credible intervals (as pink bars).

The first 21 parameters are the global expectations of the  
DCM parameters. The remaining parameters are the coef-
ficients that link various independent variables at the second 
level to the parameters of the transition probabilities at the  
first. Note that a substantial number of second level parameters 
have been removed; however, many are retained. This suggests 
that there are systematic variations over countries in certain  
random effects at the country level. Figure 4 provides an  
example based upon the largest effect mediated by the  
independent variables. In this analysis, latitude (i.e., distance 
from the South Pole) appears to reduce the effective size of an  
at-risk population. In other words, countries in the northern 
hemisphere have a smaller effective population size, relative to  
countries in the southern hemisphere. Clearly, there may be 

Figure 3. Bayesian model reduction. This figure reports the results of Bayesian model reduction. In this instance, the models compared 
are at the second or between-country level. In other words, the models compared contained all combinations of (second level) 
parameters (a parameter is removed by setting its prior variance to zero). If the model evidence increases—in virtue of reducing model  
complexity—then this parameter is redundant. The upper panels show the relative evidence of the most likely 256 models, in terms of 
log evidence (left panel) and the corresponding posterior probability (right panel). Redundant parameters are illustrated in the lower 
panels by comparing the posterior expectations before and after the Bayesian model reduction. The blue bars correspond to posterior  
expectations, while the pink bars denote 90% Bayesian credible intervals. The key thing to take from this analysis is that a large number 
of second level parameters have been eliminated. These second level parameters encode the effects of population size and geographical 
location, on each of the parameters of the generative model. The next figure illustrates the nonredundant effects that can be inferred with 
almost 100% posterior confidence.
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Figure 4. between country effects. This figure shows the relationship between parameters of the generative model and the explanatory 
variables in a general linear model (GLM) of between country effects. The left panel shows a regression of country-specific DCM parameters 
on the independent variable that had the greatest absolute value; namely, the contribution of an explanatory variable to a model parameter. 
Here, the effective size of the population appears to depend upon the latitude of a country. The right panel shows the absolute values of 
the GLM parameters in matrix form, showing that the effective size of the population was most predictable (the largest values are in white), 
though not necessarily predictable by total population size. The red circle highlights the parameter mediating the relationship illustrated in 
the left panel.

many reasons for this; for example, systematic differences in  
temperature or demographics.

Figure 5 shows the Bayesian parameter averages (Litvak  
et al., 2015) of the DCM parameters over countries. The  
posterior density (blue bars and pink lines) are supplemented 
with the prior expectations (red bars) for comparison. The 
upper panel shows the MAP estimates of log parameters, 
while the lower panel shows the same results in terms of scale  
parameters. The key thing to take from this analysis is the  
tight credible intervals on the parameters, when averaging in 
this way. According to this analysis, the number of effective  
contacts at home is about three people, while this increases 
by an order of magnitude to about 30 people when leaving  
home. The symptomatic and acute respiratory distress periods  
have been estimated here at about five and 13 days respec-
tively, with a delay in testing of about two days. These are 
the values that provide the simplest explanation for the global  
data at hand—and are in line with empirical estimates19.

Figure 6 shows the country-specific parameter estimates for 
12 of the 21 DCM parameters. These posterior densities were  
evaluated under the empirical priors from the parametric  
empirical Bayesian analysis above. As one might expect—in 
virtue of the second level effects that survived Bayesian model  
reduction—there are some substantial differences between  
countries in certain parameters. For example, the effective  

population size in the United States of America is substantially 
greater than elsewhere at about 25 million (the population in 
New York state is about 19.4 million). The effective population  
size in the UK (dominated by cases in London) is estimated 
to be about 2.5 million (London has a population of about  
7.5 million)20. Social distancing seems to be effective and  
sensitive to infection rates in France but much less so in  
Canada. The efficacy of social distancing in terms of the  
difference between the number of contacts at home and work 
is notably attenuated in the United Kingdom—that has the  
greatest number of home contacts and the least number of  
work contacts. Other notable differences are the increased  
probability of fatality in critical care evident in China. This 
is despite the effective population size being only about  
2.5 million. Again, these assertions are not about actual states 
of affairs. These are the best explanations for the data under the  
simplest model of how those data were caused.

Summary
This level of modelling is important because it enables the 
data or information from one country to inform estimates of the 
first level (DCM) parameters that underwrite the epidemic in  
another country21. This is another expression of the importance 
of having a hierarchical generative model for making sense of 
the data. Here, the generative model has latent causes that span  
different countries, thereby enabling the fusion of multimo-
dal data from multiple countries (e.g., new test or death rates). 
Two natural questions now arise. Are there any systematic  
differences between countries in the parameters that shape  

20 https://www.worldometers.info/world-population/uk-population
21 Or, indeed, a previous pandemic, such as the 2009 H1H1 pandemic. We will 
return to this in the conclusion.

19 MRC Centre for Global Infectious Disease Analysis: Report 13, http://www.
imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/. Seth Flaxman, 
Swapnil Mishra, Axel Gandy et al. Estimating the number of infections and 
the impact of non-pharmaceutical interventions on COVID-19 in 11 European  
countries. Imperial College London (2020).
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epidemiological dynamics—and what do these dynamics or  
trajectories look like?

This concludes our brief treatment of between country effects, 
in which we have considered the potentially important role of 
Bayesian model reduction in identifying systematic variations 
in the evolution of an epidemic from country to country.  
The next section turns to the use of hierarchically informed 
estimates of DCM parameters to characterise an outbreak in a  
single country.

Dynamic causal modelling of a single country
This section drills down on the likely course of the epidemic 
in the UK, based upon the posterior density over DCM  
parameters afforded by the hierarchical (parametric empirical) 
Bayesian analysis of the previous section (listed in Table 2).  
Figure 7 shows the expected trajectory of death rates, new cases, 
and occupancy of CCU beds over a six-month (180 day) period.  
These (posterior predictive) densities are shown in terms of an 
expected trajectory and 90% credible intervals (blue line and 
shaded areas, respectively). The black dots represent empirical 
data (available at the time of writing). Notice that the generative  
model can produce outcomes that may or may not be measured. 
Here, the estimates are based upon the new cases and deaths in 
Figure 2.

The panels on the left show that our confidence about the  
causes of new cases is relatively high during the period for  
which we have data and then becomes uncertain in the future.  
This reflects the fact that the data are informing those  
parameters that shaped the initial transient, whereas other  
parameters responsible for the late peak and subsequent tra-
jectory are less informed. Notice that the uncertainty about  
cumulative deaths itself accumulates. On this analysis, we 
can be 90% confident that in five weeks, between 13,000 and  
22,000 people may have died. Relative to the total popula-
tion, the proportion of people dying is very small; however, the  
cumulative death rates in absolute numbers are substantial, 
in relation to seasonal influenza (indicated with broken red  
lines). Although cumulative death rates are small, they are con-
centrated within a short period of time, with near-identical  
CCU needs—with the risk of over-whelming available capacity 
(not to mention downstream effects from blocking other hospital 
admissions to prioritise the pandemic).

The underlying latent causes of these trajectories are shown  
in Figure 8. The upper panels reproduce the expected trajec-
tories of the previous figure, while the lower panels show the  
underlying latent states in terms of expected rates or probabili-
ties. For example, the social distancing measures are expressed 
in terms of an increasing probability of being at home, given 
the accumulation of infected cases in the population. During 
the peak expression of death rates, the proportion of people 
who are immune (herd immunity) increases to about 30% and 
then asymptotes at about 90%. This period is associated with a  

Figure 5. Bayesian parameter averages. This figure reports the 
Bayesian parameter averages over countries following a hierarchical 
or parametric empirical Bayesian analysis that tests for—and applies 
shrinkage priors to—posterior parameter estimates for each country. 
The upper panel shows the parameters as estimated in log space, 
while the lower panel shows the same results for the corresponding 
scale (nonnegative) parameters. The blue bars report posterior 
expectations, while the thinner red bars in the upper panel are 
prior expectations. The pink bars denote 90% Bayesian credible 
intervals. One can interpret these parameters as the average 
value for any given parameter of the generative model, to which a 
random (country-specific) effect is added to generate the ensemble 
dynamics for each country. In turn, these ensemble distributions 
determine the likelihood of various outcome measures under large 
number (i.e., Gaussian) assumptions.
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Figure 6. differences among countries. This figure reports the differences among countries in terms of selected parameters of the generative 
model, ranging from the effective population size, through to the probability of testing its denizens. The blue bars represent the posterior 
expectations, while the pink bars are 90% Bayesian credible intervals. Notice that these intervals are not symmetrical about the mean because 
we are reporting scale parameters—as opposed to log parameters. For each parameter, the countries showing the smallest and largest 
values are labelled. The red asterisk denotes the country considered in the next section (the United Kingdom). The next figure illustrates the 
projections, in terms of new deaths and cases, based upon these parameter estimates. The order of the countries is listed in Figure 2.
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Table 2. Posterior estimates of key DCM parameters (for 
the United Kingdom), with 90% credible range.

parameter Mean Units Upper Lower

initial cases 0.33 0.19 0.57

size of population 2.49 M 1.99 3.11

Pr(work | home) 17 % 12 23

social distancing 1.60 1.159 2.2

contacts: home 7.01 5.49 8.95

contacts: work 16.02 12.12 21.19

Pr(contagion | contact) 19 % 15 25

infected period 6.44 Days 4.87 8.51

contagious period 2.93 Days 2.15 3.99

Pr(symptoms | infected) 47 % 34 65

Pr(ARDS | symptoms) 1.70 % 1.31 2.20

symptomatic period 3.45 Days 2.55 4.68

acute RDS period 10.89 Days 8.07 14.70

Pr(fatality | CCU) 48 % 39 60

Pr(survival | home) 6.36 % 4.56 8.87

test delay 2.02 Days 1.668 2.45

Pr(tested | uninfected) 12.52 % 10 15

marked increase in the probability of developing symptoms  
(peaking at about 11 weeks, after the first reported cases).  
Interestingly, under these projections, the number of people 
expected to be in critical care should not exceed capacity: at 
its peak, the upper bound of the 90% credible interval for CCU 
occupancy is approximately 4200, this is within the current  
CCU capacity of London (corresponding to the projected capacity 
of the temporary Nightingale Hospital22 in London, UK).

It is natural to ask which DCM parameters contributed the 
most to the trajectories in Figure 8. This is addressed using 
a sensitivity analysis. Intuitively, this involves changing a  
particular parameter and seeing how much it affects the  
outcomes of interest. Figure 9 reports a sensitivity analysis of 
the parameters in terms of their direct contribution to cumulative 
deaths (upper panel) and how they interact (lower panel). These 
are effectively the gradient and Hessian matrix (respectively)  
of predicted cumulative deaths. The bars in the upper panel  
pointing to the left indicate parameters that decrease total  
deaths. These include social distancing and bed availability,  
which are—to some extent—under our control. Other factors 
that improve fatality rates include the symptomatic and acute  
respiratory distress periods and the probability of surviving  
outside critical care. These, at the present time, are not so  
amenable to intervention. Note that initial immunity has no  

effect in this analysis because we clamped the initial values to  
zero with very precise priors. We will relax this later. First, we  
look at the effect of social distancing by simulating the  
ensemble dynamics under increasing levels of the social dis-
tancing exponent (i.e., the sensitivity of our social distancing 
and self-isolation behaviour to the prevalence of the virus in the  
community).

It may be surprising to see that social distancing has such 
a small effect on total deaths (see upper panel in Figure 9).  
However, the contribution of social distancing is in the context  
of how the epidemic elicits other responses; for example, 
increases in critical care capacity. Quantitatively speaking,  
increasing social distancing only delays the expression of 
morbidity in the population: it does not, in and of itself, 
decrease the cumulative cost (although it buys time to develop  
capacity, treatments, and primary interventions). This is espe-
cially the case if there is no effective limit on critical care  
capacity, because everybody who needs a bed can be accommo-
dated. This speaks to the interaction between different causes 
or parameters in generating outcomes. In the particular case 
of the UK, the results in Figure 4 suggest that although social  
distancing is in play, self-isolation appears limited. This is  
because the number of contacts at home is relatively high  
(at over five); thereby attenuating the effect of social distancing. 
In other words, slowing the spread of the virus depends upon  
reducing the number of contacts by social distancing. However,  
this will only work if there is a notable difference between 
the number of contacts at home and work. One can illustrate  
this by simulating the effects of social distancing, when it makes a 
difference.

Figure 10 reproduces the results in Figure 8 but for 16  
different levels of the social distancing parameter, while using 
the posterior expectation for contacts at home (of about four)  
from the Bayesian parameter average. Social distancing is  
expressed in terms of the probability of being found at home or 
work (see the panel labelled location). As we increase social  
distancing the probability and duration of being at home  
during the outbreak increases. This flattens the curve of death 
rates per day from about 600 to a peak of about 400. This is the  
basis of the mitigation (‘curve flattening’) strategies that 
have been adopted worldwide. The effect of this strategy is to  
reduce cumulative deaths and prevent finite resources being 
overwhelmed. In this example, from about 17,000 to 14,000,  
potentially saving about 3000 people. This is roughly four  
times the number of people who die in the equivalent period 
due to road traffic accidents. Interestingly, these (posterior  
predictive) projections suggest that social distancing can lead to 
an endgame in which not everybody has to be immune (see the  
middle panel labelled infection). We now look at herd immunity 
using the same analysis.

Figure 11 reproduces the results in Figure 10 using the  
United Kingdom posterior estimates – but varying the initial  
(herd) immunity over 16 levels from, effectively, 0 to 100%. 
The effects of herd immunity are marked, with cumulative  
deaths ranging from about 18,000 with no immunity to very 22 Note, only 2800 beds are ventilator/ITU beds.
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Figure 7. projected outcomes. This figure reports predicted23 new deaths and cases (and CCU occupancy) for an exemplar country; here, 
the United Kingdom. The panels on the left show the predicted outcomes as a function of weeks. The blue lines correspond to the expected 
trajectory, while the shaded areas are 90% Bayesian credible intervals. The black dots represent empirical data, upon which the parameter 
estimates are based. The lower right panel shows the parameter estimates for the country in question. As in previous figures, the prior 
expectations are shown as pink bars over the posterior expectations (and credible intervals). The upper right panel illustrates the equivalent 
expectations in terms of cumulative deaths. The dotted red lines indicate the number of people who died from seasonal influenza in recent 
years24. The key point to take from this figure is the quantification of uncertainty inherent in the credible intervals. In other words, uncertainty 
about the parameters propagates through to uncertainty in predicted outcomes. This uncertainty changes over time because of the nonlinear 
relationship between model parameters and ensemble dynamics. By model design, one can be certain about the final states; however, 
uncertainty about cumulative death rates itself accumulates. The mapping from parameters, through ensemble dynamics to outcomes is 
mediated by latent or hidden states. The trajectory of these states is illustrated in the next figure.

23 We will use predictions—as opposed to projections—when appropriate, 
to emphasise the point that the generative model is not a timeseries model, 
in the sense that the unknown quantities (DCM parameters) do not change  
with time. This means the there is uncertainty about predictions in the future 
and the past, given uncertainty about the parameters (see Figure 7). This 
should be contrasted with the notion of forecasting or projection; however,  
predictions in the future, in this setting, can be construed as projections.

24 Public Health England estimates that on average 17,000 people have died 
from the flu in England annually between 2014/15 and 2018/19. However, 
yearly deaths vary widely, from a high of 28,330 in 2014/15 to a low of 1,692 in 
2018/19 (broken red lines in Figure 7).
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Figure 8. latent causes of observed consequences. The upper panels reproduce the expected trajectories of the previous figure, for an 
example country (here the United Kingdom). The expected death rate is shown in blue, new cases in red, predicted recovery rate in orange 
and CCU occupancy in yellow. The black dots correspond to empirical data. The lower four panels show the evolution of latent (ensemble) 
dynamics, in terms of the expected probability of being in various states. The first (location) panel shows that after about 5 to 6 weeks, there is 
sufficient evidence for the onset of an episode to induce social distancing, such that the probability of being found at work falls, over a couple 
of weeks to negligible levels. At this time, the number of infected people increases (to about 32%) with a concomitant probability of being 
infectious a few days later. During this time, the probability of becoming immune increases monotonically and saturates at about 20 weeks. 
Clinically, the probability of becoming symptomatic rises to about 30%, with a small probability of developing acute respiratory distress and, 
possibly death (these probabilities are very small and cannot be seen in this graph). In terms of testing, there is a progressive increase in 
the number of people tested, with a concomitant decrease in those untested or waiting for their results. Interestingly, initially the number of 
negative tests increases monotonically, while the proportion of positive tests starts to catch up during the peak of the episode. Under these 
parameters, the entire episode lasts for about 10 weeks, or less than three months. The broken red line in the upper left panel shows the 
typical number of CCU beds available to a well-resourced city, prior to the outbreak.
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small numbers with a herd immunity of about 70%. The broken  
red lines in the upper right panel are the number of people  
dying from seasonal influenza (as in Figure 7). These projec-
tions suggest that there is a critical level of herd immunity 
that will effectively avert an epidemic; in virtue of reducing  
infection rates, such that the spread of the virus decays expo-
nentially. If we now return to Figure 8, it can be seen that 
the critical level of herd immunity will, on the basis of these  
projections, be reached 2 to 3 weeks after the peak in death 
rates. At this point—according to the model—social distancing  

starts to decline as revealed by an increase in the probability of 
being at work. We will put some dates on this trajectory by  
expressing it as a narrative in the conclusion.

From a modelling perspective, the influence of initial herd  
immunity is important because it could form the basis of  
modelling the spread of the virus from city to another—and  
back again. In other words, more sophisticated generative  
models can be envisaged, in which an infected person from one 
city is transported to another city with a small probability or 

Figure 9. sensitivity analysis. These panels show the change in outcome measures—here cumulative deaths—with respect to model 
parameters (upper panel: first order derivatives. lower panel: second order derivatives). The bar charts in the upper panel are the derivatives 
of outcomes with respect to each of the parameters. Positive values (on the right) exacerbate new cases when increased, while negative 
values (on the left) decrease new cases. As one might expect, increasing social distancing, bed availability and the probability of survival 
outside critical care, tend to decrease death rate. Interestingly, increasing both the period of symptoms and ARDS decreases overall death 
rate, because (in this compartmental model) keeping someone alive for longer in a CCU reduces fatality rates (as long as capacity is not 
exceeded). The lower panel shows the second order derivatives. These reflect the effect of one parameter on the effect of another parameter 
on total deaths. For example, the effects of bed availability and fatality in CCU are positive, meaning that the beneficial (negative) effects of 
increasing bed availability—on total deaths—decrease with fatality rates.

Page 20 of 43

Wellcome Open Research 2020, 5:89 Last updated: 09 OCT 2020



Figure 10. the effects of social distancing. This figure uses the same format as Figure 9. However, here trajectories are reproduced 
under different levels of social distancing; from zero through to four (in 16 steps). This parameter is the exponent applied to the probability 
of not being infected. In other words, it scores the sensitivity of social distancing to the prevalence of the virus in the population. In this 
example (based upon posterior expectations for the United Kingdom and Bayesian parameter averages over countries), death rates (per 
day) decrease progressively with social distancing. The cumulative death rate is shown as a function of social distancing in the upper right 
panel. The vertical line corresponds to the posterior expectation of the social distancing exponent for this country. These results suggest 
that social distancing relieves pressure on critical care capacities and ameliorates cumulative deaths by about 3000 people. Note that these 
projections are based upon an effective social distancing policy at home, with about four contacts. In the next figure, we repeat this analysis 
but looking at the effect of herd immunity.
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Figure 11. herd immunity. This figure reproduces the format of the previous figure. However, here, we increased the initial proportion of the 
at-risk population who were initially immune. Increasing the initial immunity dramatically decreases death rates with a fall in the cumulative 
deaths from several thousand to negligible levels with an initial herd immunity of about 70%. The dashed lines in the upper panel shows the 
equivalent deaths over the same time period due to seasonal flu (based upon 2014/2014 and 2018/2019 figures). The lower deaths due to 
seasonal flu would require an initial herd immunity of about 60%.

rate. Reciprocal exchange between cities, (and ensuing ‘second  
waves’) will then depend sensitively on the respective herd 
immunities in different regions. Anecdotally, other major  
pandemics, without social isolation strategies, have almost  
invariably been followed by a second peak that is as high  

(e.g., the 2009 H1N1 pandemic), or higher, than the first. Under  
the current model, this would be handled in terms of a second  
region being infected by the first city and so on; like a chain of  
dominos or the spread of a bushfire (Rhodes & Anderson, 1998; 
Zhang & Tang, 2016). Crucially, the effect of the second city  
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(i.e., wave) on the first will be sensitive to the herd immunity  
established by the first wave. In this sense, it is interesting to 
know how initial levels of immunity shape a regional outbreak,  
under idealised assumptions.

Figure 12 illustrates the interaction between immunity and 
viral spread as characterised by the effective reproduction rate,  
R (a.k.a. number or ratio); see (1.9). This figure plots the  
predicted death rates for the United Kingdom and the accom-
panying fluctuations in R and herd immunity, where both are  
treated as outcomes of the generative model. The key thing to 
observe is that with low levels of immunity, R is fairly high at 
around 2.5 (current estimates of the basic reproduction ratio25  
R

0
, in the literature, range from 1.4 to 3.9). As soon as social 

distancing comes into play, R falls dramatically to almost 0.  
However, when social distancing is relaxed some weeks later, 
R remains low due to the partial acquisition of herd immunity,  
during the peak of the epidemic. Note that herd immunity in 
this setting pertains to, and only to, the effective or at-risk  
population: 80% herd immunity a few months from onset  
would otherwise be overly optimistic, compared to other  
de novo pandemics; e.g., (Donaldson et al., 2009). On the 
other hand, an occult herd immunity (i.e. not accompanied by  
symptoms) is consistent with undocumented infection and  
rapid dissemination (Li et al., 2020). Note that this way of  
characterising the spread of a virus depends upon many vari-
ables (in this model, two factors and three parameters). And can 
vary from country to country. Repeating the above analysis for  
China gives a much higher initial or basic reproduction rate,  
which is consistent with empirical reports (Steven et al., 2020).

This concludes our characterisation of projections for what is  
likely to happen and what could happen under different  
scenarios for a particular country. In the final section, we revisit 
the confidence with which these posterior predictive projections  
can be made.

Predictive validity
Variational approaches—of the sort described in this technical 
report—use all the data at hand to furnish statistically efficient  
estimates of model parameters and evidence. This contrasts  
with alternative approaches based on cross-validation. In the  
cross-validation schemes, model evidence is approximated by 
cross-validation accuracy. In other words, the evidence for a  
model is scored by the log likelihood that some withheld or 
test data can be explained by the model. Although model  
comparison based upon a variational evidence bound renders  
cross-validation unnecessary, one can apply the same procedures 
to demonstrate predictive validity. Figure 13 illustrates this by  
fitting partial timeseries from one country (Italy) using the  
empirical priors afforded by the parametric empirical Bayesian 
analysis. These partial data comprise the early phase of new 

cases. If the model has predictive validity, the ensuing posterior  
predictive density should contain the data that was withheld  
during estimation. Figure 13 presents an example of forward 
prediction over a 10-day period that contains the peak death  
rate. In this example, the withheld data are largely within the 
90% credible intervals, speaking to the predictive validity of 
the generative model. There are two caveats here: first, similar  
analyses using very early timeseries from Italy failed to  
predict the peak, because of insufficient (initial) constraints in 
the data. Second, the credible intervals probably suffer from  
the well-known overconfidence problem in variational Bayes,  
and the implicit mean field approximation (MacKay, 2003)26.

Conclusions
We have rehearsed variational procedures for the inversion of 
a generative model of a viral epidemic—and have extended 
this model using hierarchical Bayesian inference (parametric  
empirical Bayes) to deal with the differential responses of 
each country, in the context of a worldwide pandemic. The  
utility of such modelling is self-evident: one can predict, with 
a quantified degree of confidence, what may happen in the near 
future. For example, under the posterior beliefs based upon  
data at the time of writing, one can sketch a narrative for what  
people in London may experience over the forthcoming weeks. 
This narrative would be something like the following:

“Based on current data, reports of new cases in London are  
expected to peak on April 5, followed by a peak in death rates 
around April 10 (Good Friday). At this time, critical care unit 
occupancy should peak, approaching—but not exceeding— 
capacity, based on current predictions and resource availability. 
At the peak of death rates, the proportion of people infected  
(in London) is expected to be about 32%, which should then 
be surpassed by the proportion of people who are immune at  
this time. Improvements should be seen by May 8, shortly after 
the May bank holiday, when social distancing will be relaxed.  
At this time herd immunity should have risen to about 80%, about 
12% of London’s population will have been tested. Just under half 
of those tested will be positive. By June 12, death rates should  
have fallen to low levels with over 90% of people being immune  
and social distancing will no longer be a feature of daily  
life.”

Clearly, this narrative is entirely conditioned on the generative 
model used to make these predictions (e.g., the assumption 
of lasting immunity, which may or may not be true). The  
narrative is offered in a deliberately definitive fashion to 
illustrate the effect of resolving uncertainty about what will  
happen. It has been argued that many deleterious effects of the 
pandemic are mediated by uncertainty. This is probably true  
at both a psychological level—in terms of stress and anxiety  

26 Note further that the credible intervals can include negative values. This 
is an artefact of the way in which the intervals are computed: here, we used  
a first-order Taylor expansion to propagate uncertainty about the  
parameters through to uncertainty about the outcomes. However, because 
this generative model is non-linear in the parameters, high-order terms are  
necessarily neglected.

25 The basic reproduction ratio is a constant that scores the spread of a  
contagion in a susceptible population. This corresponds to the effective  
reproduction ratio at the beginning of the outbreak, when everybody is  
susceptible. See Figure 12
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Figure 12. effective reproduction ratio. This figure plots the predicted death rates for the United Kingdom from Figure 6 and the concomitant 
fluctuations in the effective reproduction rate (R) and herd immunity. The blue lines represent the posterior expectations while the shaded 
areas correspond to 90% credible intervals.

(Davidson, 1999; McEwen, 2000; Peters et al., 2017)—and 
at an economic level in terms of ‘loss of confidence’ and  
‘uncertainty about markets’. Put simply, the harmful effects of 
the coronavirus pandemic are not just what will happen but the  
effects of the uncertainty about what will happen. This is a key 
motivation behind procedures that quantify uncertainty, above and 
beyond being able to evaluate the evidence for different hypotheses 
about what will happen.

One aspect of this is reflected in rhetoric such as “there is no  
clear exit strategy”. It is reassuring to note that, if one sub-
scribes to the above model, there is a clear exit strategy  
inherent in the self-organised mitigation27 afforded by herd 
immunity. For example, within a week of the peak death rate, 
there should be sufficient herd immunity to preclude any resur-
gence of infections in, say, London. The term ‘self-organised’ 
is used carefully here. This is because we are part of this  
process, through the effect of social distancing on our location, 
contact with infected people and subsequent dissemination of  
COVID-19. In other words, this formulation does not preclude 
strategic (e.g., nonpharmacological) interventions; rather, it  
embraces them as part of the self-organising ensemble dynamics.

Outstanding issues
There are several outstanding issues that present themselves:

The generative model—at both the first and second level—needs 
to be explored more thoroughly. At the first level, this may  
entail the addition of other factors; for example, splitting the 
population into age groups or different classes of clinical  
vulnerability. Procedurally, this should be fairly simple, 
by specifying the DCM parameters for each age group (or  
cohort) separately and precluding transitions between age 
groups (or cohorts). One could also consider the fine graining 

of states within each factor. For example, making a more 
careful distinction between being in and not in critical care  
(e.g., being in self-isolation, being in a hospital, community 
care home, rural or urban location and so on). At the between 
city or country level, the parameters of the general linear model  
could be easily extended to include a host of demographic  
and geographic independent variables. Finally, it would be  
fairly straightforward to use increasingly fine-grained outcomes, 
using regional timeseries, as opposed to country timeseries  
(these data are currently available from: https://github.com/ 
CSSEGISandData/COVID-19).

Another plausible extension to the hierarchical model is to  
include previous outbreaks of MERS and SARS (Middle East 
and Severe Acute Respiratory Syndrome, respectively) in the  
model. This would entail supplementing the timeseries with 
historical (i.e., legacy) data and replicating the general linear  
model for each type of virus. In effect, this would place  
empirical priors or constraints on any parameter that shares  
characteristics with MERS-CoV and SARS-CoV.

In terms of the model parameters—as opposed to model  
structure—more precise knowledge about the underlying 
causes of an epidemic will afford more precise posteriors. In 
other words, more information about the DCM parameters 
can be installed through adjusting the prior expectations and  
variances. The utility of these adjustments would then be  
assessed in terms of model evidence. This may be particularly 
relevant as reliable data about bed occupancy, proportion of  
people recovered, etc becomes available.

A key aspect of the generative model used in this technical  
report is that it precludes any exogenous interventions of a  
strategic sort. In other words, the things that matter are built 
into the model and estimated as latent causes. However, prior  
knowledge about fluctuating factors, such as closing schools 
or limiting international air flights, could be entered by  
conditioning the DCM parameters on exogenous inputs. This  

27 This technical report does not distinguish between mitigation and suppression: 
in the generative model under consideration, both go hand-in-hand.
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Figure 13. predictive validity. This figure uses the same format as Figure 7; however, here, the posterior estimates are based upon partial 
data, from early in the timeseries for an exemplar country (Italy). These estimates were obtained under (parametric) empirical Bayesian priors. 
The red dots show outcomes that were not used to estimate the expected trajectories (and credible intervals). This example illustrates the 
predictive validity of the estimates for a 10-day period following the last datapoint, which capture the rise to the peak of new cases.

be including a time dependent increase in the capacity for  
testing: at present, constraints on testing rates are assumed to be  
constant.

A complementary approach would be to explore models in 
which social distancing depends upon variables that can be  
measured or inferred reliably (e.g., the rate of increase of  

would explicitly install intervention policies into the model.  
Again, these conditions would only be licensed by an increase 
in model evidence (i.e., through comparing the evidence for  
models with and without some structured intervention). This 
may be especially important when it comes to modelling future  
interventions, for example, a ‘sawtooth’ social distancing  
protocol. A simple example of this kind of extension would 
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people testing positive) and optimise the parameters of the  
ensuing model to minimise cumulative deaths. In principle, this 
should provide an operational equation that could be regarded  
as an adaptive (social distancing) policy, which accommodates  
as much as can be inferred about the epidemiology as possible.

A key outstanding issue is the modelling of how one region  
(or city) affects another—and how the outbreak spreads from 
region to region. This may be an important aspect of these  
kinds of models; especially when it comes to modelling  
second waves as ‘echoes’ of infection, which are reflected back 
to the original epicentre. As noted above, the ability of these  
echoes to engender a second wave may be sensitively dependent 
on the herd immunity established during the first episode. 
Herd immunity is therefore an important (currently latent or  
unobserved) state. This speaks to the importance of antibody 
testing in furnishing empirical constraints on herd immunity.  
In turn, this motivates antibody testing, even if the specificity  
and sensitivity of available tests are low. Sensitivity and  
specificity are not only part of generative models, they can 
be estimated along with the other model parameters. In this  
setting, the role of antibody testing would be to provide data 
for population modelling and strategic advice—not to establish  
whether any particular person is immune or not (e.g., to allow  
them to go back to work).

Finally, it would be useful to assess the construct validity of the 
variational scheme adopted in dynamic causal modelling, in  
relation to schemes that do not make mean field approxima-
tions. These schemes usually rely upon some form of sampling 
(e.g., Markov Chain Monte Carlo sampling) and cross-vali-
dation. Cross-validation accuracy can be regarded as a useful  
but computationally expensive proxy for model evidence and 
is the usual way that modellers perform automatic Bayesian  
computation. Given the prevalence of these sampling based  
(non-variational) schemes, it would be encouraging if both 
approaches converged on roughly the same predictions. The aim 
of this technical report is to place variational schemes on the table, 
so that construct validation becomes a possibility in the short-term 
future.

Methods
Software note
The figures in this technical report can be reproduced using  
annotated (MATLAB) code that is available as part of the free  
and open source academic software SPM (https://www.fil.
ion.ucl.ac.uk/spm/), released under the terms of the GNU 
GPL v2+ licence. This software package has a relatively high 
degree of validation; being used for the past 25 years by over  

5000 scientists in the neurosciences. The routines are called 
by a demonstration script that can be invoked by typing  
>> DEM_COVID at the MATLAB prompt. For this technical 
report, we used MATLAB R2019b and SPM12 r7814 (archived 
at https://doi.org/10.6084/m9.figshare.12174006.v1 (Friston 
et al., 2020)). The code is also compatible with GNU Octave 
5.2. Details about future developments of the software will be  
available from https://www.fil.ion.ucl.ac.uk/spm/covid-19/.

Software availability
Software is available from: https://www.fil.ion.ucl.ac.uk/spm/
covid-19/.

Archived source code at time of publication: https://doi.org/10.6084/
m9.figshare.12174006.v1 (Friston et al., 2020).

License: GLP 2.0+

Data availability
Source data
The data used in this technical report are available for  
academic research purposes from the 2019 Novel Coronavirus 
COVID-19 (2019-nCoV) Data Repository by Johns Hopkins 
CSSE, hosted on GitHub at https://github.com/CSSEGISandData/ 
COVID-19.

The data used in the manuscript correspond to commit `f7c238462
2806d5297d16c314a7bc0b9cde24937`

https://github.com/CSSEGISandData/COVID-19/tree/f7c238462
2806d5297d16c314a7bc0b9cde24937/csse_covid_19_data/csse_
covid_19_time_series

and should be copied in this directory before running the  
`DEM_COVID` script.

```

url = ‘https://raw.githubusercontent.com/CSSEGISandData/
COVID-19/f7c2384622806d5297d16c314a7bc0b9cde24937/csse_
covid_19_data/csse_covid_19_time_series/’;

urlwrite([url,’time_series_covid19_confirmed_global.csv’],’time_
series_covid19_confirmed_global.csv’);

urlwrite([url,’time_series_covid19_deaths_global.csv’],’time_
series_covid19_deaths_global.csv’);

urlwrite([url,’time_series_covid19_recovered_global.csv’],’time_
series_covid19_recovered_global.csv’);

```
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modellers are able to follow and understand. 
 
The dynamic causal model developed in this paper can be understood roughly as a stochastic 
compartmental SEIR model that has 1) a “generative” model that describes movement between 
unobserved states over time (infection, recovery etc) and 2) an “observational model” that 
describes the likelihood for the parameter values in the generative model given the observed data 
(in this case daily deaths and positive tests). The generative model has four components: location, 
which determines where you are and the contacts you make; infection, which is akin to the 
susceptible - exposed - infectious - recovered model used commonly; clinical, which determines 
the clinical presentation should you become infected; testing, which links your current infection 
status to the result of a swab test. You can be at various states within any of these four 
components at once, for example I could be an asymptomatic, infectious person at work that has 
not been tested. How I move between these states is governed by a matrix of probabilities that 
can be non-linear in time and as a response to feedback from other parameters within the model 
(for example my probability of observing lockdown can grow as more people die during the 
outbreak). 
  
I think ultimately the generative model is comparable to a complicated SEIR model and the next 
step in the mind of an infectious disease modeller is to use the likelihood from the observational 
model in a fitting method such as MCMC to generate samples from the posterior distribution of 
the generative model parameters. Instead, dynamic causal modelling has a developed body of 
theory that allows for approximation of the analytical solution to the posterior of the model 
parameters that maximises the model evidence (marginal likelihood). This allows for immediate 
comparison of different generative model structures on the same data through selecting the 
model with the optimal log model evidence, which is also referred to as “variational free energy” (a 
similar process to the commonly used Akaike or Bayesian information criterion). This was 
refreshing to me as it can sometimes be difficult to obtain AIC/BIC after fitting your model 
depending on how you have fit it, such as in the probabilistic modelling language Stan where you 
sometimes need to calculate the leave-one-out information criterion (LOO-IC) yourself. 
 
Another interesting methodological addition from the dynamic causal modelling framework is 
fitting the model to data from several different countries and then assigning model parameters as 
fixed or random effects, using a generalised linear model to estimate the between-country effects 
of certain covariates. In the manuscript the authors show the results of this process, finding a 
relationship between the latitude of a country and the effective population size of the outbreak 
inferred by the model. While, as the authors acknowledge, latitude here is very likely a proxy for 
other socio-economic variables, this approach could potentially yield interesting results using a 
wider selection of between-country effects or as a heuristic device to try and understand what 
factors are driving the model fit in each country. This is complemented with a technique called 
“Bayesian model reduction”, which efficiently prunes redundant parameters out of the model to 
simultaneously achieve model parsimony and perform a sensitivity analysis of sorts since it 
involves fixing the prior of each parameter and looking at the difference in model fit. To me, the 
framework of dynamic causal modelling seems to make available several tools that should be of 
interest to infectious disease modellers. It is not the case that infectious disease modellers don’t 
already try to reduce models or compare them between countries, but what is attractive about the 
dynamic causal modelling approach is the coherency of the framework and the availability of 
software to perform the methods for models in general (although I think most infectious disease 
modellers would prefer to use R rather than MATLAB). At the very least, the methods employed in 
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the dynamic causal modelling framework could be adapted to work with the more familiar 
combined compartmental model and MCMC approach. The methods in the dynamic causal 
modelling framework are heavily used and accepted in the field of neuroscience, so I don’t think 
it’s my job in this review to scrutinise them in particular outside of understanding them to the 
point where I can understand how the model in this particular paper was fitted.  
 
With the general modelling approach summarised I can move on to the specifics of the structure 
of the generative and observation models: 
 
Predictive validity 
 
In a similar way to AIC/BIC, I think I am correct in thinking that model selection using variational 
free energy only provides a relative score of model fit and not an objective score. Choosing the 
best model out of a suite of models does not guarantee that this best model fits well, for this we 
need to turn to predictive validity and this is where I think the model laid out in the paper is at its 
weakest. Below is the best-fitting model’s prediction for London in full: 
 
“Based on current data, reports of new cases in London are expected to peak on April 5, followed by a 
peak in death rates around April 10 (Good Friday). At this time, critical care unit occupancy should peak, 
approaching—but not exceeding—capacity, based on current predictions and resource availability. At 
the peak of death rates, the proportion of people infected (in London) is expected to be about 32%, 
which should then be surpassed by the proportion of people who are immune at this time. 
Improvements should be seen by May 8, shortly after the May bank holiday, when social distancing will 
be relaxed. At this time herd immunity should have risen to about 80%, about 12% of London’s 
population will have been tested. Just under half of those tested will be positive. By June 12, death rates 
should have fallen to low levels with over 90% of people being immune and social distancing will no 
longer be a feature of daily life.” 
 
It’s quite hard to tell if we are meant to interpret this as an example of what sort of narrative could 
be derived from the results of the model, or whether this is a genuine model prediction. If it is the 
latter, then I would expect to see mention of when the prediction was made, as well as plots 
showing the prediction (shown in Figures 12 and 6) against the data which is now available. The 
authors do this for their predictions for Italy (Figure 13) but not London. I am writing this review 
on June 10th and at the time of writing the number of deaths on the 9th June was 286. Without 
numbers given for the prediction it’s hard to know if this counts as “low levels” or not, the 8th June 
was the beginning of week 24 and the corresponding prediction of daily deaths in Figure 12 is 
near zero.  
 
Effective population size 
 
Perhaps more concerning than the prediction for deaths is the prediction for immunity. In the 
paper I find it quite difficult to tell what exactly is being spoken about when it comes to immunity. 
The model fits a parameter called “effective population” (θN) that I think could do with some 
further explanation, it seems to be the case that immunity is presented as the number of 
infections inferred by the model divided by the effective population. When the model was fitted to 
UK data it inferred an effective population size of ~2.5 million people. It’s quite hard to tell but 
from Figure 8, looking at the cumulative cases inferred by the model and the proportion of the 
population entering the immune category, it seems like the model has predicted that nearly all of 
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the 2.5 million people in the effective population are now immune.  
Here is what the authors say about the effective population parameter: 
 
“In this technical report, we will choose a simpler option that treats a pandemic as a set of linked point 
processes that can be modelled as rare events. In other words, we will focus on modelling a single 
outbreak in a region or city and treat the response of the ‘next city’ as a discrete process post hoc. This 
simplifies the generative model; in the sense we only have to worry about the ensemble dynamics of the 
population that comprises one city. A complimentary perspective on this choice is that we are trying to 
model the first wave of an epidemic as it plays out in the first city to be affected. Any second wave can 
then be treated as the first wave of another city or region .Under this choice, the population size can be 
set, a priori, to 1,000,000; noting that a small city comprises (by definition)a hundred thousand people, 
while a large city can exceed 10 million.  
Note that this is a prior expectation, the effective population size is estimated from the data: the 
assumption that the effective population size reflects the total population of a country is a hypothesis 
(that we will test later).” 
 
It is true that you can use a model with a population size under 67 million, look at the dynamics of 
the outbreak from the model output, and infer things about the potential effectiveness of social 
distancing, eventual likelihood of herd immunity, and so on, that would be true in a larger 
population. However, you would not fit a model to death data for all of the UK using a population 
parameter that is smaller than the population of the UK. I think the model output as shown in the 
manuscript is a best guess at the outbreak dynamics if the number of deaths and cases observed 
in a place with a population of 67 million people were instead observed in a place with a 
population of 2.5 million. As a result of fitting to death rates for a population 30 times bigger than 
the one in your model, you would expect to find that almost everyone is infected.  
 
Since the writing of this manuscript, serological studies have started to emerge which estimate 
the percentage of the population that have been infected (which would correspond to the immune 
compartment in the model) . On the 24th May the ONS estimated that around 7% of the UK have 
antibodies for COVID-19, rising to 17% in London. Even acknowledging that serology studies are 
not perfect and that the ones performed so far have been quite small scale, this is really quite a 
different picture than the 90% population immunity presented by the model output. 
 
The picture is similar in serological studies across the world, even in healthcare workers in hard-hit 
cities like Barcelona that would have faced constant exposure to infection. 
 
What is the result of fitting the model to UK deaths and reported cases with a fixed, actual value 
for the effective population? Or at least using the UK population as the prior value? I think either a) 
the model output should be more clearly presented as an example or b) you should acknowledge 
that the model output gives predictions that seem very different from the emerging evidence 
 
CCU fatality 
 
The fitted probability that a person dies given that they are in the CCU (θfat) for China and Italy is 
very high (nearly 100% and well over 50%). How well does this compare to actual observed 
mortality rates in CCUs? 
 
For example, this paper1, found 26% mortality in ICUs in Lombardy, Italy in early March. 
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Observation model 
 
The UK data collated by the John Hopkins COVID-19 data repository that the authors use fetches 
data from here. 
The observation model could be improved by including a delay between the actual occurrence of 
death and its eventual reporting in the official statistics, sometimes it can take a couple of days for 
deaths to appear in the government figures. I think this could interfere with the model fit as it 
tries to align deaths and reported cases (which it currently reasons have both happened on that 
day). 
 
Reporting structure 
 
It is also important to consider the structure of the surveillance system when trying to fit to 
reported cases. In the UK for a good while tests were only undertaken on hospital admissions that 
were severe enough to warrant being admitted overnight (or at least that is what the official policy 
was). Other countries like South Korea had drive-through test centres. This is going to cause a 
huge discrepancy in how you should interpret changes in reported cases. 
 
Between-country parameter value variation 
 
It is strange that there is so much variation in some of the parameters between countries. For 
example, the contagious period is around 1 day in China but around 3-5 days in France? What is 
the biological reasoning behind this? Arguably there could be some genetic variation in the virus 
between countries but could that cause such a significant difference? Is there any empirical 
evidence that supports differences in how long your are contagious between countries? 
 
The same goes for the numbers of contacts at home or contacts at work. People in the United 
Kingdom are estimated to have around 7 contacts at home, but the average size of UK households 
is just 2.3. It would be good to link the output of these variables to any empirical data that is 
available to show that they are meaningful and do actually correspond to whatever data might be 
available. One of the countries with the lowest effective contacts in the household (~ 1.5) has a 
higher average household size than the UK of 2.5. 
 
The variable for the probability of infection given contact (θtrn) is fairly stable apart from China 
and Australia where it is relatively large and small, respectively. Do the authors have any thoughts 
why this might be the case?  
 
Age structure 
 
The model does not include any kind of age structure. Age has a large effect on the fatality of 
infection and should therefore be accounted for. Countries with an older population would likely 
see a higher fatality rate. Age could also influence the amount and types of contacts that people 
make, with more intergenerational contacts happening within the home and more 
intragenerational contacts happening at work or school.  
 
Summary 
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The model described in this paper is an interesting and important first step at putting together a 
model of infectious disease dynamics within the framework of dynamic causal modelling. 
However, when the particular model here is fit to data I don’t think it displays that it has captured 
the dynamics of the outbreak well wherever it is able to be compared to separately collected bits 
of data such as seroprevalence or CCU mortality.  
 
I think what has happened in the model fitting process for the most part is that the variation 
introduced into the time series of deaths and reported cases due to differing surveillance and 
reporting structures, differing testing regimes, differing outbreak responses, and differing 
population demographics between countries have been accounted for within the generative 
model through between-country variation in parameters such as the effective population size, 
numbers of contacts at work (for example, do most people in China really have between 100 and 
150 effective contacts at work?), CCU fatality, contagious period length, and others. The 
unfortunate reality is that with a flexible enough model (in terms of numbers of parameters) it is 
always possible to produce a fit that very closely matches the reported case and death data 
observed so far. The real test for this model is whether the estimated parameter values that can 
be compared to other sources of data match what we observe empirically and I think it is fairly 
obvious that this has not happened.  
 
Sadly I don’t think that I can recommend this paper for indexing as it currently stands because I 
don’t think it is clear what it is trying to do. I think the easiest way of resolving this problem is for 
the authors to ask themselves the question “Do I think the model predictions made for the UK in 
this paper are plausible or are they examples of predictions that can be made from the model?”. If 
the predictions are examples then this paper is an introduction to disease modelling using 
dynamic causal modelling and the predictions should be more clearly labelled as examples. The 
paper could then be further improved by showing how methods such as the between-country 
parameter comparisons using the hierarchical GLM correspond to the types of questions that 
disease modellers want to answer. Alternatively, if the authors do think that the predictions made 
in this paper are accurate, then they need to be far more stringent comparing their predictions 
with data that has become available since they are made and have questions to answer regarding 
the gap between the 90% immunity in London that they predict and the 17% that has been 
estimated by the ONS. That London may have already reached herd immunity has huge 
implications for future intervention policies, the most significant being that there is no danger of a 
second wave. If we behave as if there is 90% immunity (completely end social distancing etc.) but 
we are in fact well below herd immunity, then we will have likely caused the second wave through 
our own actions. 
 
Recommendations in brief:

Compare the prediction made in the manuscript to observed deaths and cases that have 
happened since. 
 

○

Compare the model output used to make the prediction to seroprevalence surveys and 
evaluate the predictive validity of the model on this. 
 

○

Explain what is meant by effective population size and show what happens when 
predictions are generated using an effective population size equal to the population of the 
United Kingdom. 
 

○
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Consider improvements to the observational model that account for reporting delays in 
death data (and potentially in confirmed cases too, since in the UK they are likely people 
that were tested due to hospital admission and therefore there is a period of time between 
onset and hospital admission). 
 

○

Try to compare the posterior estimates of other model parameters (household contacts etc) 
to existing data. The usual approach would be to fix the parameter values in the model 
using existing data and then fitting the unknown parameters. This model fits a lot of 
parameters including some for which there is existing data. If the model fits parameter 
values that differ from the existing data, this needs to be explained by the authors.

○

 
 
References 
1. Grasselli G, Zangrillo A, Zanella A, Antonelli M, et al.: Baseline Characteristics and Outcomes of 
1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 
2020; 323 (16). Publisher Full Text  
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
No

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Infectious disease modelling, infectious disease epidemiology

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to state that I do not consider it to be of an acceptable scientific standard, for 
reasons outlined above.

Author Response 23 Jul 2020
Adeel Razi, University College London, London, UK 

 
Page 35 of 43

Wellcome Open Research 2020, 5:89 Last updated: 09 OCT 2020

https://doi.org/10.1001/jama.2020.5394


Dear Dr. Hellewell, 
  
We would like to thank you for the considerable time and effort you have spent reviewing 
our manuscript. Your thoroughness and attention to detail, in what must be very busy and 
challenging times, has been very much appreciated. We were particularly impressed with 
the summary of the technical aspects of this work, which are useful and informed 
descriptions in their own right. 
  
We have tried to revise the paper to preserve its original content (by limiting changes to the 
main text to clarify and unpack things). We have used footnotes and a new 'to address 
issues that have arisen since submission (for example, the validity of predictions in light of 
actual outcomes). 
  
Below are the replies to the comments, that for clarity we have grouped into key themes. 
We hope these revisions are what you had in mind: 
  
A) Predictive validity: 
The primary purpose of this paper was to serve as a technical report, introducing a 
methodology that could be, and was, used to answer specific questions about 
epidemiological parameters and epidemiological model structure. To clarify this, we have 
emphasised that the narrative at the end of the paper is an example of the kind of 
predictions that can be made, rather than a definitive prediction per se (footnote 31): 
  
“This narrative is not offered as a prediction – but as an example of the kind of predictions 
afforded by dynamic causal modelling. An aspect of these predictions is that they include 
systemic factors beyond the epidemiology per se. The best example of this is the above 
predictions about social distancing, which could be read as ‘lockdown’; namely the probability 
that I will leave home. This highlights a key distinction between dynamic causal models and 
standard quantitative epidemiological modelling that treats things like ‘lockdown’ as 
interventions that are supplied to the model. In contrast, interventions such as social distancing 
and testing are modelled as an integral part of the process – and are estimated on the basis of 
the data at hand. One consequence of this is that one can make predictions about when 
‘interventions’ – or their suspension – will occur in the future.” 
  
Regarding specific predictive validity, we thought it would be disingenuous to change the 
predictions in light of subsequent outcomes—or the procedures that were applied in 
subsequent reports. However, we have now added an extensive ‘Posthoc evaluation of 
model predictions’ section in the revised version that addresses the predictions in light of 
current data. This section implicitly addresses the specific points about predictions in the 
reviewers’ comments. We have also attempted to make the demarcation between a 
procedural and predictive contribution clearer throughout the text by including footnotes 
like the following (footnote 33): 
  
“To reiterate, the purpose of this technical report was to introduce the variational procedures 
entailed by dynamic causal modelling in the setting of quantitative, epidemiological modelling. 
Since this report was submitted, several papers have used procedures described in this report to 
address specific questions; for example, the impact of lockdown cycles, the effect of population 
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fluxes among regional outbreaks, the efficacy of testing and tracing, and the impact of 
heterogeneous susceptibility and transmission. Crucially, in line with a key message of this 
foundational paper, each successive application of the dynamic causal modelling leveraged 
Bayesian model comparison to update the model as new data became available.” 
  
We also take the opportunity to future-proof retrospective evaluations of the reproduction 
ratio with the following footnote 13: 
  
“Added in revision: the reproduction ratio in this report was based upon an approximation to the 
expected number of people that I might infect, if I was infectious. In subsequent reports, the 
reproduction ratio was brought into line with more formal definitions, based on the geometric 
rate of increase in the prevalence of infection and the period of contagion. A minimum 
reproduction ratio (R) of nearly zero in this report corresponds to about 0.7 in subsequent (and 
other) reports.” 
  
In addition to these, we have also incorporated a number of additional changes outlined 
below.  
  
B) Effective population  
It is clear that the “effective population” terminology, particularly in respect to immunity, 
represents a common source of confusion. To rectify this, we have made a number of 
changes throughout the paper. First, we have amended the “Initial Conditions and 
population size” section, splitting it and introducing a new subsection as follows:  
  
“Effective Population: 
Under the initial conditions, the population size can be set, a priori, to 1,000,000; noting that a 
small city comprises (by definition) a hundred thousand people, while a large city can exceed 10 
million. This population parameter is a prior that is updated based on the available data, 
providing an estimate of the “effective population” size. Effective population is defined here as the 
proportion of the total population who are susceptible to infection, and therefore participate in 
the outbreak. The assumption that the effective population size reflects the total population of a 
country is a hypothesis that we will test later [footnote 16]. For clarity, we are not implying that 
the remainder of the population classed as “not susceptible” are immune or resistant to COVID-
19, rather there exists a sub-population who do not take part in the current outbreak for any of a 
variety of reasons that may include being shielded or geographically isolated from infected cases. 
Furthermore, as the effective population (and other parameters) are estimated directly from the 
data, they will therefore reflect the source of the information. At the time of writing, in the UK this 
was dominated by the London outbreak. Finally, as all parameters pertain to the effective 
population, proportions (or probabilities)—such as population immunity—require appropriate 
scaling to be expressed as a percentage of the total (census) population.” 
  
[Footnote 16]:This technical report considered an outbreak in a single region or city. A country-
wide (pandemic) model of viral spread would require multiple regional models to be coupled 
together, and is the focus of subsequent papers (K. J. Friston, T. Parr, P. Zeidman, A. Razi, G. 
Flandin, J. Daunizeau, O. J. Hulme, A. J. Billig, V. Litvak, C. J. Price, R. J. Moran, C. Lambert, (2020) 
‘‘Second waves, social distancing, and the spread of COVID-19 across America’’, arXiv: 
:2004.13017). 
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We have also annotated the legend to figure 11, and made the following change to 
immunity predictions, to clarify this further: 
  
“Note that predictions—like the percentage of herd immunity—pertain to the effective 
population. For example, if 80% of the effective (2.5 million) population are seropositive, one 
would expect 22% of the census (8.9 million) population of London to have seroconverted by early 
May.” 
  
C) Improvements to model:  
We appreciate the number of suggestions to help refine or improve this model further. As 
surmised in the “Predictive Validity” section of your review, this report provides an initial 
technical description for the kind of analyses that could be used via the presented 
methodology. In a sense, it represents a proof of concept for this type of modelling, and we 
acknowledge there are many directions and improvements that could be made such as 
regional specific models (e.g. https://www.fil.ion.ucl.ac.uk/spm/covid-19/dashboard/local/), 
or integrating demographic data for known risk factors (e.g. age, ethnicity, BMI etc.,). To 
reflect this, we have amended the conclusion as follows: 
  
“This technical report describes an initial implementation of the DCM framework to provide a 
generative model of a viral epidemic, and to demonstrate the potential utility of such modelling. 
Clearly there are a number of ways this model could be refined. Our hope in making it open 
source is that it will allow others to identify issues, contribute to improvements—and help 
facilitate objective comparisons with other models—using Bayesian model comparison.   
  
There remain a number of outstanding issues:” 
Additionally, in a separate piece of work [1] we have also formally compared an ODE-based 
SEIR model to the DCM presented here. Here the SEIR was developed originally by 
Moghadas et al. [2] to assess CCU projections due to COVID-19 in the US. The SEIR model 
comprised 12 states including asymptomatic and subclinical infected states, self-isolation, 
and separate states of hospitalization [2]. We optimised parameters for both the SEIR and 
DCM using identical variational processes to those presented here. Taking data from seven 
European countries including the UK, we found that the approximate model evidence or 
Free Energy provided very strong support for the DCM as compared to the SEIR model, 
suggesting that marginal state occupancy was important when accounting for those data. 
In particular Log Bayes Factors of >100 was evidenced for all seven datasets. This 
comparative analysis is currently under review. 
 
D) Observation model 
We thank the reviewer for highlighting this. We are aware that delays in reporting deaths 
and reporting of statistics over weekends do represent potential confounds to the observed 
time series data. In this work, we perform smoothing of time series by several days to deal 
with these delays in reporting. Delays in reporting PCR testing were modelled explicitly in 
terms of a ‘waiting for a test’ state because entry into this state depends upon testing 
capacity. Conversely, a simple delay in reporting a death can be accommodated by an 
increase in effective dwell time in critical care. One could consider a DCM that modelled the 
delay in reporting deaths explicitly—and then use Bayesian model comparison to compare 
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models with and without delays. We did not do this; however, the conditional dependencies 
between an additional delay parameter and the existing parameters would probably reduce 
the marginal likelihood (i.e., Bayesian model evidence) of an extended DCM. 
 
E) Reporting structure 
We agree that differences in testing and reporting strategies will impact the data. In the 
model presented, the testing rate parameter accounts for some of these differences. We 
have added the following footnote 11 to emphasise the importance of this part of the 
model. 
  
“It is revealing to note that the number of model parameters pertaining to PCR testing matches 
the number of parameters mediating the epidemiology per se. This reflects the fact that the 
generative model has to consider every aspect of how data are generated. In order to leverage 
the information in new positive tests, it is necessary to think carefully about all the parameters 
that contribute to these data; for example, the probability of being tested and the selection bias 
towards testing people who are more likely to be infected. Crucially, this bias has to be estimated 
during model inversion and could vary substantially from country to country. Although not 
implemented in this report, subsequent distinctions between Pillar 1 and 2 test data would be a 
nice example of different selection biases. This speaks to the importance of modelling Pillar 1 and 
2 as distinct data modalities. From a technical perspective, equipping standard epidemiological 
models with an ‘observation model’ can be regarded as building a complete dynamic causal 
model. The key thing to bear in mind here is that the parameters of so-called observation models 
have to be treated in exactly the same way as epidemiological parameters, because they could 
show conditional dependencies. In dynamic causal modelling, all unknown parameters are 
treated in a uniform way to maximise (a free energy bound on) marginal likelihood.” 
  
  
F) CCU fatality/Between-country parameter value variation 
First a disclaimer is that these assertions (for example Fig. 6, showing differences among 
countries) are not about actual states of affairs. These are the best explanations for the data 
available at the time, under the simplest model of how those data were caused. However, 
there does appear to be some degree of predictive validity; for example, the predicted CCU 
mortality rate in the UK in April (at the time of writing of the paper) of about 48%, was close 
to data published on the 4th April by the Intensive Care National Audit and Research Centre 
(critical care mortality = 50.1% [3]). Regarding the Italian data from Lombardy, whilst the 
mortality rate was lower (26%), the data was acquired earlier on in the pandemic (February 
20 to March 18) before the peak in cases. Rather than dissect the predictive validity of each 
parameter and country, which is widely recognised as an extremely challenging problem 
[4], we would reiterate that this paper is intended as a technical report for DCM, and 
provides examples of the types of questions that could be addressed using this method. To 
clarify these points, we have modified the following in the “Parametric empirical Bayes and 
hierarchical modelling section”: 
  
“Again, these assertions are not about actual states of affairs. These are the best explanations for 
the data available at the time, under the simplest model of how those data were caused [footnote 
24].  
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[Footnote 24]: However, there does appear to be some predictive validity to these that are 
addressed in a 'Posthoc evaluation of model predictions' section. Note rather than dissect the 
predictive validity of each parameter and country, which is widely recognised as a challenging 
problem (2), we have provided some representative examples. A comprehensive analysis of this 
type would be beyond the scope of this report. It is also important to note that predictions based 
upon rate parameters and probabilities are a reflection of prior assumptions about these 
parameters, whereas predictions based upon the hidden states speak to the predictive validity of 
the DCM model structure (see below).” 
  
We have also updated the London population (previously mentioned as 7 million) which is 
8.96 million (mid-2019 estimate) [5].   
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********************************************************************************************************************  
Posthoc evaluation of model predictions 
  
This section was written three months after the report was submitted, providing an 
opportunity to revisit some of the predictions in light of actual outcomes. Although the 
predictions in this report were used to illustrate the nature of the predictions supported by 
models that included social distancing, they can be used to assess the predictive validity of 
the DCM. 
  
Subsequently, the DCM was optimized using Bayesian model comparison. A crucial addition 
was the inclusion of heterogeneity in the response of the population to viral infection. 
However, even the simple DCM above accommodated sufficient heterogeneity—in terms of 
the distinction between an effective and total (census) population—to provide some 
accurate predictions. 
  
In brief, the shape and timing of the epidemic in London was predicted to within a few days. 
Conversely, the number of fatalities and positive test results were overestimated by a factor 
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of about 3. In what follows, we list the accurate and inaccurate predictions. We assume that 
the census population of London was 8.96 million [1]. London's population is taken to be the 
effective population estimated to be 2.49 million (see Table 2) and social distancing is read as 
lockdown (i.e., the probability of leaving home). 
  
Accurate predictions 
 

“Based on current data, reports of new cases in London are expected to peak on April 5”○

Daily confirmed cases of coronavirus in the UK peaked on April 5 [2] 
 

“A peak in death rates around April 10 (Good Friday).”○

Peak death rates in London reached 249 per day on April 9 [3] 
 

“At this time [April 10], critical care unit occupancy should peak, approaching—but not 
exceeding—capacity”

○

During the Easter weekend of 11–12 April, the NHS Nightingale Hospital London had only 19 
patients. Existing London hospitals had sufficient capacity after increasing their combined 
intensive care capacity from 770 beds to 1,555. As of April 24, only 41 patients had been 
treated at the Nightingale hospital [4]. 
 

“At the peak of death rates [April 10], the proportion of people infected (in London) is 
expected to be about 32%”

○

This prediction corresponds to 8.9% = 32% x 2.49/8.96 of the census population of London, 
which coincides with the consensus estimates at that time. “Professor Chris Whitty admits 
he thinks at least 10% of the capital has been infected” (published on 24-April-2020) [5]. 
 

“Improvements should be seen by May 8, shortly after the May bank holiday, when social 
distancing will be relaxed.”

○

On May 8, the first Black Lives Matter demonstrations started in London. This was followed 
by the first governmental relaxation of lockdown on May 10: “So, work from home if you 
can, but you should go to work if you can’t work from home.” (Prime Minister's address to 
the nation: 10-May-2020) [6] 
 

“At this time [May 8] herd immunity should have risen to about 80%”○

Population immunity in the effective population corresponds to 80% x 2.49 / 8.9 = 22% 
seroprevalence in the census population, which had risen to 17.5% in the previous week: 
“After making adjustments for the accuracy of the assay and the age and gender 
distribution of the population, the overall adjusted prevalence in London increased from 
1.5% in week 13 to 12.3% in weeks 15 to 16 and 17.5% in week 18” (week ending May 
3, 2020) [7]. 
 

“By June 12, death rates should have fallen to low levels with over 90% of people being 
immune”

○

Weekly reported deaths in London hospitals for the week ending June 11 fell to 22 (with 
positive tests)[8]. Seroprevalence for this period was not reported. 
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“By June 12, social distancing [lockdown] will no longer be a feature of daily life.”○

The second governmental relaxation of lockdown was announced on June 10 and June 
23, with an initial reopening of shops, and an easing of the two-metre social distancing rule: 
“[A]s the Business Secretary confirmed yesterday, we can now allow all shops to reopen 
from Monday.” (Prime Minister's statement that the coronavirus press conference: 10-June-
2020) [9] 
“Thanks to our progress, we can now go further and safely ease the lockdown in England.  
At every stage, caution will remain our watchword, and each step will be conditional and 
reversible. Mr Speaker, given the significant fall in the prevalence of the virus, we can 
change the two-metre social distancing rule, from 4th July.” (Prime Minister's statement to 
the House: 23-June-2020) [10] 
Inaccurate predictions 
 

“About 12% of London's population will have been tested (May 8). Just under half of those 
tested will be positive.”

○

This was an overestimate: 12% of the effective population corresponds to 143,424 = 12% x 
.48 x 2.49 positive tests. At the time of writing (17-July-2020), only 34,397 people have tested 
positive in London [11]—a quarter of the predicted number. 
 

From Figure 8: Peak daily death rate 807 (710-950) with cumulative deaths of 17,500 
(14,000-21,000)

○

These were overestimates; daily deaths in London peaked at 249 on April 9 with cumulative 
deaths at the time of writing (17-July-2020) of 6,106 [12]. This represents consistent 
overestimates by factors of 3.2 and 2.8, respectively. This may reflect the fact that the data 
used in the report included regions in the United Kingdom outside London. 
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