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Introduction 
 

The fifth ERME Topic Conference for Mathematics Education in the Digital Age (MEDA), held in 
September 2018 in Copenhagen was inspired by the contributions to the Thematic Working Groups 
15 and 16 at CERME 10 in Dublin, which highlighted the diversity of current research and its overlaps 
with other TWG themes. MEDA was an interdisciplinary, multifaceted collaboration that brought 
together participants who would normally attend a range of CERME Thematic Working Groups to 
provide the opportunity for further in-depth discussion and debate. The successful conference 
experience resulted in an intensive communication and collaboration, which continued through the 
collegial work that culminated in the publication of a post-conference book in the ERME Series 
published by Routledge. Moreover, inspired by the contributions to the Thematic Working Groups 
15 and 16 in the last CERME 11 in Utrecht, the second conference, MEDA2, provides the opportunity 
for further in-depth discussion and debate. In particular, MEDA2 is of interest to the following TWGs: 

TWG 18  Mathematics Teacher Education and Professional Development  

TWG 22  Curricular Resources and Task Design in Mathematics Education 

TWG 21  Assessment in Mathematics Education 

TWG17  Theoretical Perspectives and Approaches in Mathematics Education Research 

The conference welcomed theoretical, methodological, empirical or developmental papers (8 pages) 
and poster proposals (2 pages) in relation to the following themes: 

Theme 1:  Mathematics teacher education and professional development in the digital age 

Theme 2:  Mathematics curriculum development and task design in the digital age 

Theme 3:  Assessment in mathematics education in the digital age 

Theme 4:  Theoretical perspectives and methodologies/approaches for researching 
mathematics education in the digital age 

Theme 1 - Mathematics teacher education and professional development in the digital age 

• The specific knowledge, skills and attributes required for efficient/effective mathematics 
teaching with digital resources, to include digital mathematics resources, which we define 
as resources that afford or embed mathematical representations that teachers and learners 
can interact with by acting on objects in mathematical ways. 

• The  design  and  evaluation  of  mathematics  teacher  education  and  professional 
development programmes that embed the knowledge, skills and attributes to teach 
mathematics with digital resources. 

Theme 2 - Mathematics curriculum development and task design in the digital age 

• The design of resources and tasks (e.g. task features, design principles and typologies for 
e-textbooks); 

• The evaluation and analysis of resources and tasks (e.g. determining quality criteriafor 
curricular material, resources and methods of analysis); 
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• The interactions of teachers and students with digital curriculum materials (e.g. 
appropriation, amendment, re-design), both individually or collectively. This includes the 
consideration of teacher learning/professional development in their work with digital 
resources. 

Theme 3 - Assessment in mathematics education in the digital age 

• New possibilities of assessment (formative, summative, etc.) in mathematics education 
brought by digital technology 

• Use of digital technology to support students to gain a better awareness of their own 
learning 

• Assessment of learners’ mathematical activity in digital environment 

Theme 4 - Theoretical perspectives and methodologies/approaches for researching mathematics 
education in the digital age 

• Theories for research on technology use in mathematics education (e.g. design theories, 
prescriptive theories, theories linking research and practice, theories addressing the 
transfer of learning arrangements to other learning conditions etc.) 

• The linking of theoretical and methodological approaches and the identification of 
conditions for productive dialogue between theorists, within mathematics education and 
beyond (e.g. developing collaborative research with educationalists, including teachers 
and educational technologists). 

The conference particularly welcomed contributions linking some of these four themes at any level 
of mathematics education: pre-school, primary, lower- and upper-secondary or tertiary. 

The Conference Proceedings of the 10th ERME Topic Conference MEDA 2020 are rich in the variety 
of content-formats and are therefore structured in two parts. They include the contributions of the 
plenary speakers and all the 67 reviewed and accepted submissions from participants, organised as 
four chapters according to the aforementioned themes.  

 

Ana Donevska-Todorova, Eleonora Faggiano, 
Jana Trgalova, Zsolt Lavicza, Robert Weinhandl, 
Alison Clark-Wilson, and Hans-Georg Weigand 
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Teaching practices in digital era: some theoretical and methodological 
perspectives 

Mariam Haspekian 
Université de Paris, France, mariam.haspekian@u-paris.fr 

In the spirit of MEDA 2 whose objective is to interlink the CERMEs’ topic working 
group (TWG) on digital technologies with other TWG, the MEDA-2 conference 
organizers wished a lecture on the theme of theories. The aim is to make the audience 
think about theories and digital tools, while giving questions for the discussions. 

INTRODUCTION CHOICES AND REASONS 
The topic of the “theories” especially relates to the Theme 4 of the conference: 
Theoretical Perspectives and Methodologies/Approaches to Conduct Research in 
Mathematics Education in the Digital Age, which covers two issues: Theories to 
conduct research on using technology in mathematics education; Linking theoretical 
and methodological approaches as well as identifying conditions to create productive 
dialogue between theorists, as part of mathematics education and beyond”. The subject 
is thus vast and requires making choices.  
Pointing the only context of digital age and restraining to theories still leads to a huge 
body of issues, about which one only person can hardly be well-informed.  
Following up investigations on student learning, numerous research on teachers and 
classroom practices have emerged, then considerably developed over time. Among this 
teacher-oriented research, a growing body focuses on issues specifically related to 
technologies. It is therefore interesting to stop now and take stock. 
Presented in Annex 1, a more detailed retrospective panorama, based on Drijvers et al. 
2010 historical overview, further enlightens the reasons of this choice. 
Hence, I propose here to limit the theory issue to research on teachers and mathematics 
teaching practices in digital age (TPDA in the next [1]), with the question: what can a 
focus on theory bring to research on TPDA? 
THEORIES, PERSPECTIVES, PHILOSOPHY  
The concepts in ME research are embedded in flourishing general or specific frames: 
Activity theories (Vygotski 1978, Leontev 1984…), Cultural-Historical Activity 
Theory (Engeström 2001), PCK (Shulman 1986), Balacheff’s cKc (1995), 
Instrumental Approach (IA) (for a recent overview, see Artigue 2020 in the ICMI 
Awardees MOOC AMOR [2]), Documentary Approach (Gueudet & Trouche 2009), 
Pedagogical Technology Knowledge (Thomas and Hong 2005), TPACK (Mishra & 
Koehler 2006), Structuring Features of Classroom Practice framework (Ruthven 2007), 
Theory of Communities of practice (Wenger 1998), Framework of Teacher-
Curriculum relationship (Remillard 2005), Theory of Semiotic Mediation (Bartolini 
Bussi & Mariotti 2008)… This non-exhaustive list seeks to show the diversity in topics, 
scales and dates. Besides, some approaches derive from others: IA is based on 
Chevallard’s Anthropological Theory (2006) and on that of Verillon & Rabardel 
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(1995) in psycho-ergonomics. This latter itself is partly based on Activity theories… 
We could continue to “climb” back over these frames to reach main perspectives 
dealing with more general ideas of education, learning, cognition: Lakoff & Nunes 
(2000) Embodied mathematics, Piaget’s (1980) constructivist perspective on child 
development, socio-constructivist theory (Vygotski 1978), Bloom’s (1956) 
psychological taxonomy, Skinner’s (1953) application of behaviorist perspective… 
The step further reaches the underlying philosophical foundations on what knowledge 
ultimately is, how it is acquired, transmitted, with for instance the innate/acquired 
debates... The dialectic materialism, a philosophical background of Radford’s (2019) 
Theory of Objectivation or Bachelard’s (1938) concept of epistemological obstacle in 
philosophy of science, used in Brousseau’s theory foundations, are two examples.  
The level that interests us here is the first one: what issues does the focus on this 
different theories panorama bring up for research on TPDA? To answer, we can 
examine: 1. the theories used in the research within the CERME TWG related to 
TPDA? 2. the papers dealing with TPDA within the TWG on theories (TWG17). 

LOOKING AT THE THEORIES IN THE TWGS RELATED TO TPDA 
From a methodological viewpoint, the idea would be to see which theories are jointly 
used, how and why. Focussing for instance on the 2 last CERME (2017, 2019), we can 
list the theories used in the TWGs related to TPDA i.e. TWG15 Teaching mathematics 
with resources and technology TWG18 Mathematics teacher education and PD, TWG19 
Mathematics teachers and classroom practices, and TWG20 Mathematics teacher knowledge, 
beliefs, and identity, but also TWG16 Learning mathematics with technology and other resources, 
and complete with papers that review CERMEs’ groups. The work is quite large. I have 
carried it out in detail for TWG15, and in a more global view for the other TWGs 2017 
and 2019. From this, raises first a landscape of theories that we can cluster following 
the purpose for which the theory is invoked. Extending the categories mentioned in the 
MEDA2 announcement, we thus describe the clusters that we have obtained by 
distinguishing:  
Theories that are used for research on technology use in mathematics education: 

o theories to design, prescriptive theories (offering design directions, investigative strategies) 
o theories addressing the link research and practice  
o theories addressing the transfer of research learning design to usual classroom conditions, or 

more generally the transfer of learning arrangements to other learning conditions 
o theories to understand, describe and model practices 

Theories that are used to address collaborative dimension, identify conditions for 
productive dialogue between: 

o actors (e.g. developing collaborative research with educationalists, including teachers and 
educational technologists) 

o research fields (theorists within mathematics education and beyond).  
Beyond this classification, to advance in our question, it would be interesting to revisit 
these theories by the characteristics/dimensions they focus on. For instance, which 
theories foreground the institutional dimension so important in questions of 
technological integration? The next section presents the investigation of TWG 15-
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2017. The analyses lead to some reflections and questions for research on the TPDA. 
Analyses of the theories used in CERME 20017 TWG 15  
The Table 1 synthesizes my review: TWG15 included 26 contributions: the 
introduction of the group, 19 papers, 6 posters (mentioned below with the letter “P”). 
The numbers are those of the proceedings [3]. The panorama obtained shows we are 
moving towards a more coherent, yet not unified, theoretical backdrop, with a limited 
set of specific theories frequently used, sometimes completed by concepts or theories 
less frequent in the field. Have-we fulfilled the request made in the CERME 4 
technology group (Barzel et al., 2005, p. 929) for a more systematic approach “which 
combines various theories focusing on each of these subsystems (didactics, 
instrumental approach, situated and distributed cognition, community of practice)”? 

 Alone With others 
TPACK (Koehler & 

Mishra, 2005) (based 
on Shulman 1986 PCK) 

03 (with notion of “attitude”) 04 (+ Situated Abstraction, Noss & Hoyle 1996) 
09 (+ Valsiner’s three zones (1997) 

I.A (Artigue, 2002, ; 
Guin & Trouche, 2002, 

Lagrange, 2002…) 
(based on ATD and 

cognitive ergonomics 
Rabardel 2002) 

13 
 

01 (+ Double Approach, (Robert & Rogalski, 2005) 
19 (+MTD (Meta Didactical Transposition) Arzarello et 
al. 2014 + Connectivism, Siemens 2004; Downes 2012) 
21P (+ ATD) 

Documentational 
Approach (Gueudet, 

Trouche, 2009) (based 
on I.A.) 

25P 10 (+ Teaching Triad, Jaworski, 1994) 
13 (+Social Creativity, Boundary Crossing) 
26 (+ MTD (Arzarello et al., 2014)+communities of 
practice, Wenger, 1998) 

Structuring Features of 
Classroom Practice 

(Ruthven, 2009) 

06 
22P 
24P 

  

ATD (Chevallard, 1985) 02 (extended with in/ outsourcing) 
18 (with references to didactics of 
algebra) 

 

Others 07 ACOT steps (Dwyer et al., 1994) 
11 
20P teachers’ professionalism 
(Dale 2003) and models for action 
research (Asiale et al., 1996, Borba 
& Skovsmose, 2004) 
23P references to programs 
dealing with automatic theorem 
proving (geometry) 

05 various references to analyze tasks 
08 several references to barriers of teachers’ 
technology integration (+ TPACK to design PD not to 
analyse) 
12 (Half-baked microworlds, Kynigos 2007) + Social 
Creativity and Communities of Interest (Fischer 2005; 
2014)  
14 (assessment) 
16 (flipped classroom, Abeysekera and Dawson, 2015)  
17 Semiotic representations (Duval, Janvier), semiotic 
bundle (Arzarello and Robutti, 2004) 

Table 1. theories in the TWG 15 of CERME 2017 [4] 

The last line “Others” reveals there is still a certain fragmentation. This is reinforced 
by the other lines if we look them more finely, not only quantitatively (how much are 
used?) but qualitatively: how/ why are they used? This second stage overview (Table 
2) shows that theories are at times used as they are, or extended, or still associated. 
Besides, they are used for objectives of different nature. The landscape then seems to 
go all directions, even more if we add to this overview the reflexions cited in the 
introductive paper of the group (Clark-Wilson et al. 2017). The issues discussed among 
the members overflow, raising a huge variety of topics, from the acknowledgement on 
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the need of multi-perspectives understanding, to the attention on digital assessment in 
mathematics. Certainly, among the various topics addressed, that of the technology 
integration comes more frequently. Yet, this latter is dealt so differently according to 
researchers that it still not represents a point of regularity. The nature of theories used, 
the ways they are, and the reasons why are different. 

The TPACK (Koehler & Mishra 2005) frame is used for analyzing large-scale professional development (PD), 
but also for designing PD courses, not for analyzing data. Thus, the same theory has somewhat a different 
status there, it is a support for the design of the experiment. 
We observe that it is also combined with the frame of Valsiner’s three zones (Valsiner, 1997) to investigate 
how a tool (GeoGebra) is introduced in various mathematics tasks. 
The Instrumental Approach (Artigue 2002; Guin & Trouche 2002) is used along with the Documentational 
Approach (Gueudet et al., 2012) to describe the teachers’ collective processes in the use of a platform to 
plan their lessons. 
Another paper also uses this IA and DA combination but adds a third frame: the Teaching triad (Jaworski, 
1994), for the collection and analysis of data on teachers’ considerations when implementing tasks in 
mathematics lessons. 
ATD (Chevallard 1985) is used to value if the technological tool is applied in a way that is consistent with an 
epistemological analysis of the topics.  
In another paper, it is used with the suggested addition of the concepts of out/in-sourcing, used as 
metaphors within the dialectics of tool and content in the planning of teaching, to support teachers’ 
reflection on crucial choices between instrumented and non-instrumented praxeologies when planning 
their use of technology in mathematics lessons. 
Some researchers extend the Structuring Features of Classroom Practice framework (Ruthven, 2009), with 
the addition of a new (sixth) structuring feature to capture teachers’ knowledge related to their students’ 
attitudes and behaviors with technology. Other use it as it is, to analyze teachers’ rationales for technology 
integration in the mathematics classroom. 
To analyze the integration of technology in teachers’ practices, others call upon the Ergonomic theoretical 
approach (Robert & Rogalski, 2005). 

Table 2. A qualitative overview of the theory use in the TWG 15 of CERME 2017 

What reflections and questions does this work bring for future research on TPDA? To 
answer, this only opening work should be followed by a similar review of the other 
CERMEs’ groups related to TPDA: 16, 18, 19 and 20. This was beyond the scope of 
the request, yet, the study of the TWG15 already raises some reflections and questions. 
Below, I present them, taking a perspective broader than CERME. 
Some reflections and questions from this review of the technology group 
From the reviewing work described above, we draw several reflections and questions: 
that we grouped under 3 topics: 1. The importance of the “Networking issue”, that 
offers the possibility for researchers to share theoretical constructs. 2. The question of 
“Societal dynamics”, that relates to the future innovations (new tools, new interaction 
forms, new types of resources, artificial intelligence, big data…) but more of all, to the 
constant moving character of our society, and to the fastness of these moves; and 3. 
The issue of the “Theory-practices links”, that addresses some challenges and questions 
raised by the field of the PD. Due to the space constraints, these 3 topics and the 
questions raised are detailed in the Annex 2. 
Some methodological perspectives to continue 
To answer the question what can a theory focus bring to TPDA?, the study initiated 
above could be furthered for a better view of the state of the art, by a similar 
methodology applied to the study of the TWG related to TPDA (15 to 20) of the two 
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(or more) last CERME, then by extending it to a more systematic literature review. 
This can be based on the following questions: What do the theories chosen for this 
theme tell us about this theme? What do the very choices of theories, the theoretical 
constructions themselves tell us about this theme? Three axes could be questioned: 1. 
On a epistemological but also cultural axis: why these theories? what models are made 
of teaching/ (ou pedagogical?) practices? what aspects are explored? How is 
considered the specificity of the "digital" context? 2. On a dynamic or "developmental" 
axis of the theories: how do they evolve? On which dimensions are they enriched and 
on which dimensions do they encounter obstacles? Which constructs are forsaken and 
why? 3. On a "networking of theories" axis: how do these theoretical frames articulate, 
complete or oppose, contrast each other? 

LOOKING AT RESEARCH ON TPDA THROUGH THE LENSE OF THE 
THEORIES AND THEIR NETWORKING 
What are combinations, filiations, complementarity or on the contrary oppositions 
between the theories seen above? The need of networking theories emerged at CERME 
4 in 2005 and was explored in TWG17 of the ensuing CERME conferences. The 
questions that multiplicity of theories arises, addressed in the "networking" field, apply 
well to the TPDA theme here: why so multiple theoretical developments? Is it due to 
communication strains among various native languages? (see Bikner-Ahsbahs & 
Prediger 2014 or the TWG17 also showing examples of the vocabulary barrier [5]), or 
cultural aspects? (the various educational cultures within countries may explain 
theoretical fragmentation and be an obstacle to connections (Kynigos & Psycharis 
2009); the cultural obstacles may hinder 2 types of transfer, from foreign cultures and 
towards different educational contexts (Bikner-Ahsbahs et al. 2017 [6])). 
The TPDA theme addresses two networking “sets”: among theories directly focused 
on TPDA, and between general studies on teaching and those more specific to teaching 
with technologies. Despite the language and cultural difficulties, many researchers 
have networked, cross-analysed theories within these two sets. Relevant papers can be 
found in TWG17 group [7] but not only. A broad literature review is therefore 
interesting. 
A review of networking theories papers related to TPDA 
In 2010, Drijvers et al. provide a state of the art of the theories that significatively 
address the technological integration in teaching practices. Through this historical 
overview, they claim for “integrative theoretical frameworks that allow for the 
articulation of different theoretical perspectives.” (Drijvers at al., 2010). Ten years 
later the work is still going on, even if several hybridizations have clearly developed 
over time, with a greater or lesser influence from one field to another, according to the 
authors. Today, numerous ME papers technology-centred put different theories or 
constructs in perspective, to compare, contrast or look for filiations between them.  
Some deal with more than 2 theories: Ruthven (2014) explores commonalities, 
complementarities, and contrasts between TPACK (Koehler and Mishra 2009); 
Instrumental Orchestration (Trouche 2005); and Structuring Features of Classroom 
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Practice (Ruthven 2009). Drijvers (2011) find share points between the Realistic 
Mathematics Education view, the IA and the Embodied cognition. Instead of looking 
for unification, some researchers contribute to developing strategies to cope with the 
theoretical diversity. This is the case of Maracci et al. (2013), who cross-analyse the 
Theory of Didactical Situations and the Theory of Semiotic Mediation. Networking 
activity provides not only theoretical results but also concrete applications. An example 
is the Tabach & Trgalová’s research. They first achieve (2017, 2018) relevant 
connections between IA and TPACK through the theoretical construct of double 
instrumental genesis (Haspekian 2011). In 2019, they add to the previous connections 
a more general discussion, comparing and contrasting with the Thomas and Hong’s 
PTK(2005). Then, using the Mathematics Knowledge for Teaching framework (Ball et 
al., 2008), they gain insight in the research field of the PD (Fig.1) by defining several 
concrete PD stages, where personal instrumental genesis precedes professional genesis. 
Sacristan’s introductive chapter in the same book (2019) discusses this position asking 
for more flexible implementation of PD programs. Thus, opening discussions in the 
ME research community, Tabach and Trgalova progress both at theoretical level and 
in the results of research (better understanding and defining the specific knowledge to 
be developed at each stage). 

 
Fig 1. (MDKT) framework (Tabach & Trgalovà, 2019, p. 201) 

Much more has been done. In order to derive new perspectives from this focus, we 
could further the list, and characterize more finely each of these networking cases, 
which are not of the same nature regarding the networking degrees (Bikner-Ahsbahs 
& Prediger 2008). Due to space restriction, I limit myself to these examples and present 
below some methodological perspectives to further the networking dialogue. 
Methodological proposal to advance TPDA networking: cross-domain research? 
Trgalova et al. (2018) report a discussion on how to organize the technology group in 
next CERMEs. Since CERME9, the thematic is split in two groups, respectively 
foregrounding teachers and students issues, which does not afford space for research 
addressing both. They note that another division, such as educational phase, still does 
not satisfy. It look like any fixed topic division would not meet the need of overlapping 
areas. Yet, “trans-TWG” sessions devoted to specific mutualized work on multi-
perspective issues are needed. For example, “the topic of teaching practices with 
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technology raises the “need [for teachers] to develop new knowledge to design relevant 
technology-enhanced tasks” (Tabach & Trgalova 2019). This competency addresses 
the PD. Researchers in this field (Hegedus et al. 2017) point a disappointment of the 
PD outcomes, explained by discrepancies between teachers’ needs and PD program 
(Emprin, 2010). But reducing this discrepancy needs to better grasp both standard 
practices and perturbances caused by the technology. This multi-perspective raised the 
issue of “ICT competency standards” (Tabach & Trgalova 2019) to make PD and 
teacher educators more efficient. Referring to Trgalova et al. (2018) tetrahedron, there 
is a dialogue between 3 “faces” here: (teacher–technology–maths); (PD–technology–
maths) and (teacher–PD–maths). Making these 3 areas dialogue appeals then to the 
whole tetrahedron, which is thus no more operational to describe the situation if a new 
summit is needed in the dialogue (for instance the “theory” issue dealing with this 
whole). In this example, the “knowledge” summit is mathematics for all, so not an 
actual dimension to play on (it would be such in studies dealing with added domains 
as in Lagrange & Laval 2019). Taking it as an common element already present frees 
a summit making the tetrahedron operational for new organizations: I thus suggest 
creating discussion times addressing a face of the new tetrahedron formed by a new 
foregrounded topic (Fig.2). This could be “Theory”, “Representation”, “A given device 
as Scratch”… Unlike in the initial tetrahedron, it’s not fixed but has to be flexible for 
organizing “turning” mutual session times. It could be defined not upstream but after 
the submissions, according to the needs emerging from these. For example, choosing 
“Learners” we can benefit from de Freitas et al. (2019) work. They used cognitive 
psychology theories in ME to renew the role of affect at a collective level on students’ 
side. This can be explored on teacher side, where affect, sympathy, play as well 
important roles not only at an individual scale (many research already explored it with 
the role of affect, beliefs on ICT integration) but on a cooperative scale. There, a 
dialogue with Sensevy’s (2012) Joint Action theory could be used, teaching/learning 
being a joint activity (also in Radford 2019). 

 
Fig 2. New forms of organisations for researchers’ dialog 

I did not elaborated further these reflections in concrete organization but the idea of 
“time modalities” with turning sessions may help organize dialogue in order to advance 
research on technology-enhanced teaching and learning, by adding another lever on 
which to play, so that. The idea is to network topics (and find methodologies for that) 
in addition to network theories on a given topic. 

Trgalova, Clark-Wilson and Heigand (2018) tetrahedron 

technology, resource 

teacher learner technology, resource 

teacher learn
er 

Another topic foregrounded 
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CONCLUSION 
We made a journey among the theories in ME with a particular concern on teaching 
practices in digital age, with the broad question: what a focus on theory can bring to 
TPDA research? More specially, can the specific prism of theories on TPDA advance 
research results on this theme? (in general, can studying theories on a topic advance 
the research results on that very topic?) We proceeded along two directions. In the first 
one, we examined the theories in the CERME TWG related to TPDA. In the second, 
we examined research on TPDA through the lens of theories and networking, within 
and beyond the TWG17. Some reflections, emergent research issues and questions 
resulted. For example, the research of Tabach & Trgalova (2018, 2019) described 
above illustrated a networking case that brings both theoretical and “action” research 
results. Yet, my journey in both parts has only been initiated and would benefit of being 
furthered. For both perspectives I made methodological suggestions to continue the 
work. The qualitative state of the art could be combined with quantitative ones as the 
new Drijvers et al (2020)’s methodology mentioned above, which advanced on a 
theoretical concept using a bibliometric study. Yet, a more systematic literature review 
can help but would not be sufficient. The second part above explored the networking 
dimension, which is crucial for advancing on TPDA. To further it, it is necessary to 
find ways for researchers to dialogue.  
Regarding this journey, to advance research on TPDA seems urgent as for the “constant 
technological flux [which] makes it difficult to develop proper teacher training 
programs.” (Sacristan 2019, p. 173). Gaining robust theoretical frames and tool that 
resist this flux is needed. Networking may undoubtedly help and the TPDA research 
field is fairly mature for this! 
NOTES 
1. Note that theories can hardly be disconnected from methodologies as the teacher issue can hardly 
be disconnected from learners' one. Operating a focus only puts one element on the scene front. On 
this topic, TWG17(2019) provides an interesting emphasis on the theories/methodologies interplay. 
2. Awardees Multimedia Online Resources Project 
3. https://hal.archives-ouvertes.fr/CERME10-TWG15/ (the n°15 being the introduction of the group) 
4. The distinction “Alone/With others” is not strict but only a subjective appreciation: all the papers 
mention more than one theoretical reference, but these are more or less used by the authors. 
5. French milieu, German Grundvorstellung have no English translation (Bikner-Ahsbahs et al 2017) 
6. “theoretical tools (…) borrowed from other fields must either be adapted to mathematics education 
(…) or complemented with content-related theoretical tools” (Bikner-Ahsbahs et al. 2017) 
7. Two recent CERME examples: Kuzniak et al. (2017), who illustrate the plasticity of their model 
by connecting it to several theories, Lagrange & Laval (2019), with working spaces in algorithmics. 

REFERENCES, ANNEXES, FIGURES 
Due to space limitation, the supplementary material connected to this text (references 
and annexes) can be found outsourced here:  
https://www.researchgate.net/publication/344042875_MEDA_2_-
2020_Plenary_Teaching_practices_in_digital_era_some_theoretical_and_methodological_perspectives 
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Assessment of mathematics in the digital age:                                             
The case of university mathematics 

Paola Iannone 
Loughborough University, Mathematics Education Centre, United Kingdom, 

p.iannone@lboro.ac.uk 
In this paper I will reflect on the experience of TWG21: Assessment in Mathematics 
Education at CERME10 and CERME11, with focus on contributions linked to the use 
of digital technologies. I will then compare research concerning Computer Assessment 
Systems (CAS) at university level to the research in the general literature on 
assessment to find common themes, omissions and themes that are germane to the 
digital nature of this assessment method and to the mathematics. I conclude with some 
suggestions for future research as they apply to CAS in university mathematics, but 
that are relevant to assessment of mathematics in the digital age.  
Keywords: computer assessment systems, university mathematics, assessment validity, 
formative and summative assessment.  

INTRODUCTION 
It is impossible to overestimate the impact that digital technologies have had and 
continue to have on the assessment of mathematics. A quick search on Google Scholar 
for the terms ‘assessment mathematics digital technology’ yields in excess of 94 
thousand results since 2016, with entries concerning the assessment of mathematics at 
any level of instruction (from kindergarten to university and beyond), the potential of 
digital technologies for formative and summative assessment, the investigation of what 
can and cannot be assessed by digital technologies, and much more. In this paper I will 
first summarise the CERME experience of TWG21: Assessment in Mathematics 
Education to illustrate the breadth of this topic and some of the direction that the 
research has taken. I will then briefly discuss what are the main areas of research in 
assessment and I will map those onto the case study of the use of Computer Assessment 
Systems (CAS [1]) for mathematics at university. I will then show where this CAS 
research aligns with general assessment research, what is omitted and what are 
examples of research questions that are germane to the mathematics and to the use of 
technology. I start from the position that research on assessment in higher education is 
a rich field of enquiry and that mathematics education assessment research needs to 
confront its thematic against the thematic of this larger body of research, highlighting 
how findings transfer to the specific case of mathematics. I will conclude with some 
reflection of the role of digital assessment in the teaching and learning cycle of 
mathematics and what could be important areas for future research. 
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THE CERME EXPERIENCE 
(Summative) assessment of mathematics at university level is one of my research 
interests and I was surprised to realise that there had not been a TWG on assessment 
for many years at CERME, despite assessment being a very important part of 
mathematics teaching and learning at any stage. Therefore in 2017, together with 
Michal Ayalon (Israel), Jeremy Hodgen (UK) and Michiel Veldhuis (Nederlands), I 
started TWG21 at CERME10. The group has now met twice and has received 42 
submissions altogether, of which 14 concern assessment involving digital technology. 
These 14 papers clearly demonstrated the variety of research on digital assessment. 
Some papers discuss new assessment methods which just would not be available 
without the aid of technology such as comparative judgment (Davies, 2017), or the 
creation of a complex formative assessment tool in a blended modality for university 
mathematics (Barana & Marchisio, 2019; Cusi & Telloni, 2019). Other investigate the 
implications of transferring a task from pen and paper to a computer assessment system 
(Lemmo & Mariotti, 2017); report on the use of digital assessment to facilitate self-
assessment (Hasa, Rämö & Virtanen, 2019); or disseminate findings of large projects 
investigating the design of digital activities that provide rich feedback to school 
students (Cusi, Morselli & Sabena, 2017a, 2017b). Some of the papers discuss the types 
of mathematical reasoning that CAS can test (Sangwin, 2019) and how CAS can be an 
effective tool for providing students with rich feedback (Beck, 2017). Finally, a good 
number of papers address the affordability that a large database of students’ answer 
created through computer assessment systems can offer to researchers (Garuti et al. 
2017; Ferretti & Gambini, 2017; Garuti & Martignone, 2019; Lasorsa et al., 2019; 
Bolondi et al., 2019) allowing them, for example,  to classify students’ difficulties with 
basic concepts like operations between exponentials. This variety of submission 
reflects only a fraction of the variety of research strands related to assessment of 
mathematics in the digital age. This research cannot however be carried out in a 
vacuum and needs to relate to the general research on assessment in education.   

THEMES IN ASSESSMENT  
If I were to name the four most important areas of research related to assessment these 
would be reliability, validity, feedback and fairness. In a naïve way reliability concerns 
the outcomes of assessment in terms of grading. An assessment is highly reliable if two 
distinct markers of the same paper return the same (or very close) results by using the 
same assessment scheme. Validity has recently developed into a complex concept and 
encompasses various aspects of the impact that assessment has on the teaching/learning 
cycle. Validity at a basic level concerns what is assessed and the aims of the 
assessment. An assessment method is valid if it assesses what it was supposed to assess. 
A mathematics exam in French administered to English students would not be a valid 
assessment of mathematics as it would also (and possibly mostly) be an assessment of 
the French language knowledge that the students have. A more realistic example is that 
of an assessment which asks pupils to reproduce seen computational techniques. This 
would probably not be a valid assessment of conceptual understanding (although it may 
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be a valid assessment of procedural fluency). Messik (1995) breaks up the concept of 
validity into four dimensions: construct validity (the theoretical basis of the construct 
being assessed), criterion validity (the relation of that assessment item to other 
assessment measures), content validity (expert judgment on the content matching the 
construct subject of the assessment) and consequential validity (the impact that the 
assessment has on the participants to the teaching/learning cycle). The latter aspect of 
validity has been one focus of my recent research on assessment and its importance is 
highlighted by the work by Entwistle and Entwistle (1991). These authors describe 
how assessment is amongst the main factors that impact on students’ approaches to 
learning, as the students’ perceptions of what the assessment requires to be successful 
influence strongly the way in which they engage with the subject and the teaching of 
that subject. I have added feedback separately to my list as this is a much-debated 
aspect of assessment and feedback implementations, timing and effects are much 
studied in the education community. Finally, fairness deals with issues of inclusion and 
equity across the implementation of the assessment (e.g. are there any participants to 
the assessment who are excluded from it? Is the assessment fair across the body of 
students to whom it is relevant?). I will discuss below how existing research on CAS 
at university level (which I choose as a rather narrow case study part of the large body 
of research on assessment in the digital age) maps onto these aspects of assessment 
research. 

CAS AND UNIVERSITY MATHEMATICS  
CAS has become very popular in university mathematics assessment, at least in the 
UK. One reason is that mathematicians find very welcome the time saving coming 
from the electronic marking that these systems afford, but other advantages of these 
systems are also becoming clear. Before describing the match between research on 
CAS and the general assessment research it is important to note that  reliability of 
assessment, which is of great importance when discussing human-marked work, it is 
far less important when discussing CAS systems as the marking process, once the 
marking grid has been established by those who have designed the assessment, will be 
automated. This is a big advantage that CASs provide both to the markers, and to 
researchers.  
As an interesting exercise for this paper I have reviewed the literature on CAS, and I 
have grouped the papers found in some broad themes. I have mention one paper next 
top each theme as a representative, but the body of literature in most of the themes is 
extensive. The themes are:  
1. What mathematical competencies can be assessed by CAS, including papers that 
addresses specific topics such as linear algebra (e.g. Sangwin, 2019); 
2. Lecturers’ perspective of the use of CAS (e.g. Marshal et al., 2012); 
3. Students’ perspective of the use of CAS (e.g. Rønning, 2017); 
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4. Potential of CAS as a source of rich feedback, and effectiveness of such feedback 
(e.g. Attali, & van der Kleij, 2017); 
5.  Effectiveness of CAS as a tool to catalogue students’ misconceptions (e.g. Walker 
et al., 2015). 
In this list there are some important themes that can be matched to the current research 
in assessment, some omissions, and some research issues which are germane to the 
presence of the digital technology. I will discuss those in turn below. 
Matches: Many of the research areas listed above for CAS are related to validity in a 
wider sense. Research on what mathematics competencies can be assessed by CAS is 
paramount to construct a valid assessment of some given capabilities.  While there is 
widespread agreement that CAS is very suitable to assess procedures and procedural 
fluency, it is still a matter for debate if it is suitable also to assess complex responses 
such as proof. This is also related to construct validity in that it relates to the distinction, 
in mathematics, between procedural and conceptual understanding. The difficulties 
with assessing complex processes like proof is, at least in part, that traditionally this 
work is submitted by the student in a free written form which is not compatible with 
automated marking. However, work is currently in progress (see Bikerton & Sangwin, 
2020, for a report of some promising developments) and new questions are being 
written in order to compose proof comprehension tests that can be assessed by CAS. 
Research on stakeholders’ perceptions and perspective is related to consequential 
validity. Not only there is an established link between students’ approaches to learning 
and their perceptions of assessment, but teachers’ perceptions of the assessment they 
adopt are bound to influence its implementation and ultimately its success. From the 
students’ perspective, Rønning (2017) reports that one of the drawbacks of using CAS 
for assessment was that students stopped paying attention to the process of obtaining 
an answer as only the final answer can be input in CAS for grading. This is an approach 
to learning akin to procedural understanding and it is not desirable when assessing 
mathematics. From the mathematicians’ perspective, Marshal et al. (2012) report that 
without full integration of CAS in the teaching of mathematics and without the creation 
of a shared forum for discussing its use (i.e. a community of practice), the use of CAS 
at university will not be sustained beyond the novelty trial stage.   However, despite 
the presence of some study involving the CAS stakeholders, this area remains under-
researched.  Investigation of the effectiveness of feedback most associated to CAS is 
quickly becoming a significant research area. This area too can be related to 
consequential validity and, given that systems like STACK or NUMBAS can offer 
individualised feedback to students, it is quickly attracting the attention of many 
researchers. The type of feedback given to students, its timing and the impact of 
feedback on exam outcomes have all been studied in relation to CAS. As an example, 
Attali and van der Kleij (2017) report that although there is still no conclusive answer 
as to when it is best to administer feedback, if immediate or delayed, it seems that 
students’ previous knowledge is still the dominant factor in deciding about 
effectiveness of feedback. Lastly, I would like to mention the potential of CAS to easily 
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create a bank of data that researchers can analyse in order, for example, to build a 
comprehensive list of students’ misconceptions at university level with a given topic, 
or to map how these misconceptions disappear or persist across educational levels. 
Although this is not strictly related to assessment, it is nevertheless an important by-
product of the use of CAS, as also Bolondi et al., (2019) have discussed.  
Omissions: Thinking back to the assessment research, the one big omission in CAS 
research is the investigation of whether there are stakeholders excluded from this type 
of assessment, and how can assessment include them. While it is true that CAS can 
help including university students who have to study remotely by offering flexible and 
effective assessment for online courses, the experience during the COVID-19 
pandemic has highlighted just how wrong it is to assume that all students have easy 
access to digital tools and the conditions to focus on studying away from their 
university. This of course it is not the only section of the student body excluded from 
this assessment, those who do not conform to an ableist view of what a student can and 
cannot do are also excluded, and more effort and research should be dedicated to 
develop the right tools so that they too are included.  
Questions related to the digital nature of CAS: There are also research questions 
that and are germane to the digital nature of the assessment and to the mathematics. 
Probably one of the most relevant concerns is the implications of the transfer between 
the pen and paper medium and the digital medium. This is particularly relevant for 
CAS assessment where the questions are often a ‘translation’ of questions that could 
be asked in pen and paper mode. There is an assumption in much of the literature that 
this transfer is immediate and without implications, although research in school settings 
shows that this is not always the case (Lemmo & Mariotti, 2017). Issues related to 
question design and implementations are also relevant to CAS. Answer to these 
questions will for example help deciding issues of validity in respect to what questions 
can be asked in a CAS environment.  

SOME CONCLUDING REMARKS 
I have described here the research on CAS as a case study of assessment in the digital 
age. The picture that emerges from this case study is that, although research around the 
implementation and impact of this assessment is growing, and this assessment is 
increasingly adopted in mathematics departments around the world, there are still 
important areas that demand attention. The main under-researched area is the impact 
of the assessment on the stakeholders, i.e. students and teachers. In my experience this 
is of paramount importance as this assessment can have unexpected consequences on 
students’ engagement with mathematics, as the paper by Rønning (2017) shows. The 
CAS case study also shows one characteristics of assessment in the digital age: that it 
is thus far failing to realise its full potential and that usually it is designed in a 
conservative way. In a review of assessment carried out in Australia by Masters (2013) 
the author states: 
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Most technology-based assessments to date have not capitalised on the potential of 
technology to transform assessment practice. In fact, most current computer-based 
assessment in school education is little more than paper and pen testing on a screen. 
(Masters, 2013, p. 27)  

This is a position which is also to some extent reflected in the TWG21 papers I 
discussed earlier. Amongst all the submissions there has been only one assessment type 
that deviates significantly from a very traditional view of assessment. Comparative 
judgment for the assessment of mathematics (Bisson et al. 2016; Davies, 2017) is one 
example of assessment that is unlike anything else that has been used for assessment 
before and challenges the way in which we understand assessment. The idea beyond 
comparative judgment is that judging two items of work comparatively to find which 
one is better than the other is quicker and more accurate that judging a number of items 
against a marking scheme, i.e. adopting a criterium based judgment (Thurstone, 1927). 
For this method of assessment, a number of ‘judges’ assess pairs of student work and 
create a rank order which pools the ‘collective knowledge’ of the judges. The work by 
Bisson et al. (2016) shows how this method of assessment – which rely on the use of a 
computer interface for judgments and could not be implemented without this interface 
- is suitable to assess typically difficult mathematical competencies such as problem 
solving and conceptual understanding. There are also other applications of comparative 
judgment for peer assessment and for formative feedback, as the paper by Jones and 
Alcock (2014) shows.  
If we want to exploit the full potential of digital technologies in assessment, we need 
to re-think the way in which we design and implement assessment and not just transfer 
uncritically the current assessment we use onto a digital format. As it turns out, even 
this un-critical transfer is not devoid of problems! 

NOTES 
1. Throughout the paper I refer to Computer Assessment Systems (CAS) to assessment whereby the 
students reply to mathematics questions administered via a computer system which are then marked 
by the system. STACK (https://stack.maths.ed.ac.uk) and NUMBAS (https://www.numbas.org.uk) 
are examples of CAS commonly used in the UK. 
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Quality of (digital) resources for curriculum innovation 
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In this conceptual paper I re-conceptualize the notion of quality of digital (curriculum) 
resources in terms of a number of criteria: relevance, coherence, practicality, 
effectiveness, scalability, sustainability. I explain and illustrate them with two groups 
of studies in different context; both contexts could be characterized as oriented towards 
curriculum reform.  It appears that in the context of reforms, the two criteria of 
‘relevance’ and ‘practicality’ are important criteria for the quality of digital 
curriculum resources, whilst a thought-provoking distinction was made between static 
and dynamic quality.  
Keywords: Digital curriculum resources, quality of curriculum resources, curriculum 
innovation.  

INTRODUCTION 
Whilst I am writing this article, the whole world is plagued by the COVID-19 
pandemic, also changing policy makers’ and teachers’ perceptions of how education 
should be designed and provided. Moreover, it has changed students’ perceptions of 
how to learn and study, and which resources to beneficially use for their learning. 
Certainly, since COVID-19, education has been expected to be provided mainly ‘at the 
distance’, via the internet, and technology will play a major role in how education will 
be provided in the future.  
At the same time, internationally, teachers and students increasingly rely on digital 
resources (including open educational resources) to plan their lessons (for teachers), to 
solve their tasks and develop their learning trajectories (for students); in short to build 
their mathematics curriculum. Whilst there is an abundance of digital resources, both 
teachers and students often experience difficulties in choosing from the abundance of 
resources available (e.g. Siedel & Stylianides 2018), in evaluating their quality, and in 
integrating them in their instruction and learning in a systematic and meaningful 
manner. Curriculum resources, including digital materials, are known to be key tools 
for teachers (for preparing their teaching), and students heavily rely on them for their 
learning. Moreover, in many countries (e.g., The Netherlands, United Kingdom, United 
States), teachers are increasingly encouraged to (re-) design the curriculum in planning 
their instruction. In particular in higher education, mathematics students are stimulated 
to work on challenges and projects that need a high level of autonomous learning to 
solve the challenges, often auto-didactically acquired through/with digital (curriculum) 
resources. There is potential for these resources to provide stimulating and meaningful 
learning experiences for students, and motivating opportunities for teacher 
collaborative learning. One of the concerns arising is about the quality of the digital 
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(curriculum) resources that teachers and students may use, and the coherence of their 
work with digital curriculum resources.  
In terms of previous work that I build from in my analysis of quality of digital 
curriculum resources, I present three frameworks here. First, Choppin et al. (2014) 
created the Digital Typology framework. They outlined three categories to consider 
when analysing digital curriculum resources: students’ learning experiences, 
curriculum use and adaptation, and assessment systems. Moreover, they 
conceptualised the learning space in terms of learning experiences, 
differentiation/individualization, social/ collective features. Second, in their second 
framework Choppin and Borys (2017) looked at digital curriculum resources with 
respect to four perspectives that inform the design, development, dissemination of 
curriculum resources: private sector perspective, designer perspective, policy 
perspective, and user perspective. They also explore how these perspectives lead to a 
foregrounding (or backgrounding) of the features described in the Choppin et al. (2014) 
framework. In particular, they explain that the four perspectives are often in tension 
with each other in terms of the purposes for design, the resources and capacity 
necessary to adopt digital programmes, and the potential to develop teacher (design) 
capacity. In the third framework, Pepin et al. (2016), distinguish between three types 
of e-textbooks (according to their model of development and their functionality): 
integrative e-text, evolving or ‘living’ e-textbook, and the interactive e-textbook (see 
below).  
If we define ‘curriculum’ as ‘design for learning’ (van den Akker & Nieveen 2020), 
then ‘curriculum resources’ can be those designs for learning (e.g. mathematical tasks, 
lesson plans), or the tools that help us to design (and evaluate) learning (e.g. design 
tools). The research question is the following: 
What do we know about the quality of such curriculum resources, in particular if they 
are digital, and how can we (re-)conceptualize the ‘quality’ of (digital) curriculum 
resources, in particular in times of curriculum renewal?  

THEORETICAL FRAMES 
In this section I explain and define the concepts of resources, e-textbooks and digital 
curriculum resources.  
Several studies lean on the notion of resource to study what kinds of resources and 
materials teachers and students have access to, use, and orchestrate for their teaching 
and study of mathematics (e.g. Remillard 2005). To clarify the concept of curriculum 
resources, Pepin and Gueudet (2018) referred to mathematics curriculum resources as  

“all the material resources that are developed and used by teachers and students in their 
interaction with mathematics in/for teaching and learning, inside and outside the 
classroom.” (p. 1) 

It is important to add that we have distinguished the term curriculum resources from, 
for example, social resources (e.g. web-based conversations with colleagues), and/or 
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cognitive resources in mathematics education (e.g., frames used in professional 
development sessions to develop particular competences). Curriculum resources would 
thus include (1) text resources (e.g., textbooks, teacher guides, worksheets, tests); (2) 
other material resources (e.g., calculators or manipulatives used for a particular part of 
the curriculum); and digital curriculum resources (e.g., interactive e-textbooks).  
In an earlier handbook chapter (Pepin, et al. 2016), we have defined e-textbooks. For 
the purpose of this paper I have slightly amended that definition, to become the 
following:  

E-textbooks can be defined as an evolving structured set of digital resources, dedicated to 
teaching (and learning), initially designed by different types of authors, but open for re-
design by teachers (or students), both individually and collectively. (p.644) 

 They identified three kinds of e-textbooks: 
1- the integrative e-textbook refers to an ‘adds-on’ type model where the digital version of 
a (traditional) textbook is connected to other learning objects [..];  

2- the evolving or ‘living’ e-textbook refers to an accumulative/developing type model, 
authored where a core community (e.g. of teachers, IT specialists) has authored a digital 
textbook, which is permanently developing due to the input of other practicing 
members/teachers [..];  

3- the interactive e-textbook refers to a ‘toolkit’ model where the e-textbook (authored to 
function only as an interactive textbook) is based upon a set of learning objects: tasks and 
interactives (diagrams and tools) that can be linked and combined. (p. 640).  

In terms of differences between digital curriculum resources and digital (educational) 
technologies, we have proposed (Pepin, et al. 2017) to see the main differences as being 
the particular attention that digital curriculum resources pay to:  

- The aims and content of teaching and learning mathematics;  
- The teacher’s role in the instructional design process (i.e., how teachers select, 

revise, and appropriate curriculum materials);  
- Students’ interactions with digital curriculum resources in terms of how they 

navigate learning experiences within a digital environment;  
- The impact of digital curriculum resources in terms of how the scope and 

sequence of mathematical topics are navigated by teachers and students;  
- The educative potential of digital curriculum resources in terms of how teachers 

develop capacity to design pedagogic activities. (p. 647) 
Thus, we regard as curriculum resources (e.g. textbooks) those materials that are 
related to the (mathematics) curriculum, whether it is a one-off worksheet, or a test to 
assess a particular part of the curriculum (in terms of topic or grade), or a full-blown 
curriculum program.  
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“It is the attention to sequencing—of grade-, or age-level learning topics, or of content 
associated with a particular course of study (e.g., algebra)—so as to cover (all or part of) a 
curriculum specification, which differentiates digital curriculum resources from other 
types of digital instructional tools or educational software programs.” (p. 647) 

THE STUDIES 
In this section I explain and discuss two groups of studies: (1) one on (the design and 
evaluation of) mathematics (e-)textbooks (mainly) in the French context (e.g. Gueudet, 
Pepin, & Trouche 2013; Pepin, Gueudet, Yerushalmy, Trouche, & Chazan 2016); and 
(2) one on the design of students’ actual study/learning paths with digital (curriculum) 
resources in the Dutch context (e.g. Pepin & Kock 2019). 
Study group 1 – Design and evaluation of mathematics e-textbooks  
In an earlier study (Gueudet, Pepin, & Trouche 2013) we reported on the comparison 
of the design and conceptualization of two very different French lower secondary 
mathematics textbooks: one which was developed, as it is ‘traditionally’ done, by 
‘experts’ (teacher educators and researchers); and one which was developed, 
innovatively, by teachers using a digital platform. These different designs and 
conceptualizations had implications on the content, structure, potential and intended 
use of the books (which we investigated on the basis of specially designed 
questionnaires to the two groups of textbook authors). Our results pointed to a re-
conceptualization of the notions of ‘quality’ (and ‘coherence’) of curriculum resources, 
such as (e-)textbooks. In terms of quality, we claimed that one of the textbooks (PDF 
version of paper book, with digital resources attached) was of high didactical albeit 
static quality: it offered many rich tasks, organized according to a carefully considered 
and complex structure. The second e-textbook appeared to be, in its initial version, of 
a lower intrinsic quality: it offered less problems and less rich tasks. In terms of 
structure it simply followed the structure of the official French National Curriculum. 
However, the ‘digital additions’ and possibilities of the e-textbook prompted us to re-
consider the notions of ‘quality’. The online version of e-textbook had already been 
modified several times, to take account of ‘user comments’, i.e. users’ experiences and 
needs. The digital means offered possibilities for modifications, and these were 
integrated by the e-textbook in the process of re-design. This was perceived by the 
authors (a mathematics teacher association) as a necessity for meeting users’/teachers’ 
needs in order to ensure the quality of the textbook- we called this dynamic quality. 
Only this e-textbook supported user adaptations and drew on user contributions.  
In our quest for identifying the ‘quality’ of e-textbooks and digital curriculum 
resources, we recognized the notion of connectivity as an important issue (Pepin et al., 
2016). Hence, in that handbook chapter we stated that the quality of an e-textbook 
depends on the nature and number of connections it makes. In particular, we identified 
connections at two levels: 
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(a) External connectivity refers to the potential of linking to and between subjects/users 
and resources/tools outside the textbook. It includes the potential to create virtual 
communities, connecting users with users (both teachers and students), as well as users 
and designers, and the textbook’s interaction with other resources, via web links, or on 
platforms, for example. More generally, we have argued (ibid) that this external 
connectivity could include the following criteria:  

Connections to the national curriculum; 

Connections across grades; 

Connections with other disciplines (e.g., physics);  

Connection to the assessment system;  

Connections to other resources (files to download or websites of different kinds)  

Connections between the textbook and teacher resource systems (for synergetic effects)  

Connections between teacher and students; 

Connections in terms of teacher collective work;  

Connections between teachers using the textbook and the author/s of the textbook.  

(p. 651) 

(b) Internal connectivity refers to connections made inside the e-textbook. It concerns 
the specific mathematical content, i.e., that the e-textbook offers different kinds of 
combined materials (which can be definitions, properties, exercises but also, in the case 
of an e-textbook, software files, videos, etc.) and specific didactics (i.e., 
differentiation). Internal connectivity could include the following criteria:  

Connections between different topic areas;  

Connections between different semiotic representations (e.g. text, figures, static, and 
dynamic);  

Connections between different software/s for carrying out a particular task  

Connecting different concepts;  

Connecting different strategies for problem solving—this is linked to the issue of 
procedural vs problem-solving tasks as proposed by the textbook;  

Connecting different moments of appropriating a given concept (e.g. spiral progression, 
progressively deepening a concept instead of proposing a complete presentation of it in the 
same chapter) (p. 651/652) 

From this group of studies, we retain first, that there are different forms of quality (i.e. 
static and living quality), and second, that the quality of an e-textbook depends on the 
number and nature of the connections it makes, at different levels. 
Study group 2 – Students’ use of digital resources for their actual student study paths 
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In a second kind of study we actually asked undergraduate mathematics students about 
their use of (digital) resources, in three different courses (Calculus, Linear Algebra, 
Bachelor End project based on challenged-based learning approach). In these studies 
(Pepin & Kock, 2019) we used a case study approach to investigate what kinds of 
resources were selected by students working on their two mathematics courses 
(Calculus, Linear Algebra) and the challenge-based projects they did as bachelor end 
projects. We were particularly interested how they used and orchestrated their chosen 
resources. Results showed that the students working on Challenge-Based-Learning 
projects used more resources outside the realm of curriculum resources (offered to 
them in traditional courses), and the teacher became the main ‘resource’ for monitoring 
and stimulating progress. Students’ Actual Student Study Paths were iterative/cyclical. 
This was in contrast to the ‘linear’ study paths found e.g. in traditionally taught Linear 
Algebra courses. In the blended learning course (Calculus) students had an abundance 
of resources (most of them digital) to choose from, and they felt lost in this 
environment. The kinds of resources students used most were the following: 

to their peers/colleagues, and to the lecturer/tutor; 

to the textbook/reader (provided by the university); 

to the resources provided for the course (by the course leader); 

to resources outside the university (e.g. Khan academy); 

to their family members (e.g. asking for help with tasks); 

to the stakeholders of the (e.g. in case of the challenge-based bachelor end projects). 

From this group of studies, we retain that students evaluate digital resources according 
to their ‘usability’ for a particular project or mathematical task, and their practicality 
(e.g. easy downloadable).  

RESULTS 
From the studies I used to illustrate particular aspects of quality, I take particular note 
of the following: First, it appears that the potential of a resource (for a particular 
purpose, in a particular context) leads to an exploration of its quality. Moreover, it can 
be said that whilst the mathematics education literature claims an intrinsic quality of a 
resource (e.g. didactical quality), this has to be seen in connection with (and 
distinguished from) its suitability with respect to a particular context (in which it is 
used) and users’ goals and expectations. This rings true with the works of Trgalová and 
Jahn (2013) who suggest that the quality of a teaching resource depends on the user/s, 
the users’ working context/s, and their design objectives. It can be said that these three 
aspects are connected (like in a web), and if only one is considered and addressed, it 
might bring the system out of balance.  
Second, it appears that the notions of quality (of digital curriculum resources) and 
coherence (see Gueudet, Pepin, & Trouche 2013) go hand-in-hand. Whilst in one type 
of textbook, quality was afforded by rich didactical considerations (of the authors), it 
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was stayed static by nature. In the other e-textbook, a different quality emerged, 
dynamic quality: users could change the content and so the textbook could evolve 
according to users’ comments and proposed adaptations.      
Third, in our study on students’ use of digital resources, we identified other aspects of 
quality: for students the resource (e.g. previous maths course/video on the web) was of 
quality, if they saw its relevance (in a particular learning situation) and if it was easy 
to use, if it was practical. Digital software tools such as Matlab were important 
resources to shape the mathematical practice of the students and to help develop a 
solution to the challenge, based on the mathematical concepts involved.  
Leaning on the curriculum innovation literature (e.g., van den Akker & Nieveen 2020), 
we can summarise the aspects of quality of digital (curriculum) resources under the 
following headings (see below), whilst noting that in particular situations students and 
teachers pay particular attention to some and less to others: 

- relevance: both teachers and students only choose a digital resource if they see 
its relevance for their purpose and in the situation. 

- coherence: the coherence of a digital resource is typically evaluated by the 
number and nature of its links to e.g. the curriculum, or fittingness within the 
lesson series. 

- practicality: this refers to easiness of use and practicality in terms of feasible 
within a certain situation (e.g. usable with 30 students). 

- effectiveness: this refers to whether the resource is ‘doing’ what it claims to 
‘do’, e.g. does it help to understand a certain mathematical concept better. 

- scalability: can this resource be used by only a small number of students, or by 
the whole school population? 

- sustainability in context: can this resource be sustained over a prolonged period 
of time? 

It appears that in the context of reforms, the two criteria of ‘relevance’ (there is a need 
for this resource, linked with the new curriculum) and ‘practicality’ (the resource is 
useful/useable in practice) are important criteria for quality of digital curriculum 
resources, whilst a thought-provoking distinction was made between static and 
dynamic quality. However, we have to realize that quality is especially depending on 
the user/audience and his/her purpose. 
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The Liceo Matematico (LM) is an Italian project in which in high school curricular 
hours extra hours are added where mathematical contents and interdisciplinary 
activities are proposed. The additional activities, always of laboratory nature, are 
aimed at broadening students’ cultural education and developing their critical skills. 
The LM is characterized by a strong collaboration between school and university 
through teacher training activities during the school year. In this paper, we make an 
initial analysis of the impact that this training experience has on the teachers who 
followed the LM in Catania for three years. From data analysis, obtained from the 
administration of a questionnaire, professional development and collaboration arise 
in this community of teachers that is emerging.   
Keywords: Liceo Matematico, mathematics machines, professional development, 
teachers’ collaboration, communities of practice.  

INTRODUCTION  
The Liceo Matematico (LM) is a research project started at the University of Salerno 
in 2014. Main pilasters of the LM are: interdisciplinarity, laboratory teaching, 
elaboration of didactic proposals dealing with mathematical topics that are not in the 
curriculum (Capone et al., 2017). The LM project was joined by several Universities 
in Italy. Afterward, classes called “LM classes” started in several Italian high-schools 
(from grade 9 to 13). In these classes, in addition to the curriculum activities, one or 
two hours per week are dedicated to laboratory activities in which mathematics acts as 
a glue between different disciplines (literature, philosophy, chemistry, biology, 
computer science, robotics, art) (Capone et al., 2017). Schools hosting LM classes are 
called LM high schools (www.liceomatematico.it). There is a strong collaboration 
between university researchers and school teachers of LM high schools, in both cases 
not only in mathematics. The collaboration is expressed through the organization of 
periodic meetings aimed at designing and discussing laboratory activities to be tested 
and implemented in the classes. Annually, a National LM conference is offered were 
teachers and professors can share the various experiences. The activities are generally 
proposed by the University Poles and each Pole proposes training activities that 
respond to the skills of researchers, always having in mind the above pilasters. For 
example, the module that will be analysed in this work was designed within the Catania 
Pole for the LMs of Eastern Sicily.  
To date, in Italy, there are 12 University Poles, to which about 100 secondary schools 
refer to. The LM project proposed by the University of Catania, the city where the 
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authors of this paper work, was joined by about 10 schools in Eastern Sicily and 13 
LM classes started in the school year 2017/2018. To date 13 schools have started the 
LM in Eastern Sicily for a total of about 300 students, per year. The educational project 
of the University of Catania is in progress (to date covers grades 9 to 11). The school 
teachers involved in LM activities, periodically, more or less every two weeks, between 
October and April, meet together with the university researchers and examine the 
proposals that the researchers elaborated. In fact, the university researchers do not go 
to LM schools, but the teachers who have followed the training course at the University 
will implement the activities in their classes. In this paper, we consider the mathematics 
teachers who have been following the LM work for these first 3 years. The following 
research questions guide our study: i) What impact does such a training experience 
have on their professional development? ii) If so, what kind of collaboration does take 
place between these teachers? 
In particular, we will illustrate the training activity on the use of Virtual Mathematical 
Machines (VMM). The teacher training was conducted by one of the authors; the 
construction of the questionnaire and the analysis of the collected data were carried out 
by all the authors, putting together their mathematical and psycho-pedagogical skills. 

THEORETICAL FRAMEWORK  
The ICME-13 survey on teachers working and learning through collaboration (Robutti 
et al., 2016) examines different research studies, offering a common interpretative 
frame, in which placing and interpreting experiences of teachers working together. It 
is based on three themes: i) contexts and features of mathematics teachers working 
collaboratively; ii) theories and methodologies; and iii) outcomes. The first theme is 
particularly useful in framing educational initiatives, because it is spread out in 
different dimensions: 1) The initiation, foci and aims of collaborations; 2) The scale of 
collaborations (numbers of teachers and time-line); 3) The composition of 
collaborative groups and the roles of the participants; 4) Collaborative ways of working 
and their conception. In what follows, we present the LM experience in Catania 
according to this frame, in order to contextualize it in a general perspective. As for the 
second theme, it seems appropriate to recall the following theoretical lenses, that we 
will use as well. 

The meaning of teachers collaborating and the meaning of community 
“Collaboration implies co-working (working together) and can also imply co-learning 
(learning together). It involves teachers in joint activity, common purpose, critical 
dialogue and inquiry, and mutual support in addressing issues that challenge them 
professionally. It helps them in reflecting on their role in school and in society.” 
(Robutti et al., 2016, p. 652). Community is used colloquially to mean groups of people 
who engage together socially, professionally, corporately, or officially. However, the 
community is usually seen to have some joint purpose and some stability over time. 
Wenger (1998) defines communities of practice as groups of people engaged with each 
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other focused on a joint enterprise and creating a shared repertoire - a set of resources 
which support their engagement in relation to the joint enterprise. “Tools and resources 
are important for collaborative professional work and learning among teachers” 
(Brodie, 2020, p. 37).  

CONTENT AND TEACHER TRAINING  
Every year (starting from the school year 2017/2018), LM school teachers attend 
training meetings at the University of Catania on educational activities (modules) that 
they can bring to class. Each teacher decides which modules propose to his/her 
students, depending on his/her aptitudes and on the class. In any case, in the classroom, 
they work through laboratory teaching (Anichini et al., 2004). The activities for grade 
9-10 students of LM classes are well structured, with a well-defined path designed by 
the researchers, and worksheets already tested in the classes. This school year 
(2019/2020) training for teachers with grade 11 students has started with a module on 
VMM. It was decided to actively involve the teachers in the design of the activities. 
The school teachers, in fact, have already been following LM activities for two years 
and have probably understood the LM approach. In the following, we will focus on the 
VMM module.  
1) The initiation, foci and aims of collaborations: A mathematical machine (in a 
geometric context) is a tool that forces a point to follow a trajectory or to be 
transformed according to a given law (Bartolini Bussi & Maschietto, 2006). In the 
VMM module, mathematical machines related to conics are examined. The researcher 
proposed real mathematical machines and built their virtual representation with the 
GeoGebra software (or vice versa), highlighting the problems that arise in the design 
phase of each machine. In fact, the virtual construction of a machine and its physical 
construction present very different difficulties. The aim of the training was to involve 
teachers in the design of activities on mathematical machines that they would have to 
replicate in their classes. Observe that the passage from physical to virtual is not easy: 
in the activity, students are guided towards this passage by activities that underline the 
difference in the use of some GeoGebra tools. For example, the difference between 
Segment and Segment with given length. When drawing machine bars, we have to use 
the latter.  
2) The scale of collaborations (numbers of teachers and time-line): The training 
involved 15 teachers, in three meetings of 3.5 hours each, between November and 
December 2019.  
3) The composition of collaborative groups and the roles of the participants: 
Participants were high-school in-service mathematics teachers, teaching in LM classes. 
At the first meeting, the researcher proposed the topic, mathematical machines, and 
presented, in general, machines producing conics and machines producing geometrical 
transformations [1]. The whole group decided to work on machines producing conics. 
In fact, conics are part of grade 11 curriculum. Then, the teachers and researcher 
decided to deal with the antiparallelogram (that draws an ellipse), with two machines, 
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similar to each other, that draw an ellipse and a hyperbola (based on the use of a circle), 
and with a machine drawing a parabola. 
4) Collaborative ways of working and their conception: At each meeting, the researcher 
was introducing the topic (a mathematical machine) and afterward teachers and 
researcher worked on the school activity, thinking on how to build the machines, which 
material they could use or “correcting” [2] the worksheets that the researcher prepared. 
Between meetings, teachers would discuss in small groups, comparing ideas. The 
groups were not predefined, they were born spontaneously during the meetings, even 
sometimes they were made up of the teachers sitting “close by”. The groups discussed 
the proposals made and discussed the activities proposed in class. Everything was then 
shared with the rest of the colleagues.  
The approach used to introduce the machines in class was different from time to time, 
shared and proposed by the participants. The approach to the first machine was 
proposed by the researcher: it was decided to start from the physical machine, the 
antiparallelogram, and then move on to the virtual one. The path proposed to the school 
students foresees the physical construction of the machine with wooden sticks, balsa 
cutter and paper fasteners. The teachers, however, at the next meeting also proposed 
other materials for the construction of machines (wood, plastic materials ...). In the case 
of the two other machines, the ones that draw an ellipse and a hyperbola (based on the 
use of a circle), it was chosen to start from the virtual machine and then move on to the 
physical one.  
For the last machine, the one that draws parabolas, it was chosen to introduce the 
machine only through a verbal description (Figure 1): “Let us consider an articulated 
system of bars representing a rhombus ABCD and two perforated bars, a and d. The 
bar a slides along two guides, represented in the figure by the straight lines r and s, 
perpendicular to it, and has one end at point C, while the bar d contains points B and 
D”. 

For each machine, worksheets of the activity have 
been produced by the researcher and discussed 
with the teachers. The worksheets have the task of 
guiding the school student in the analysis of the 
machine by identifying its characteristics and 
highlighting why that machine produced that 
conic. Worksheets also highlight the constraints 
to be imposed in the design of the virtual machine 
and those to be imposed in the design of the 
physical machine. Therefore, in this type of 
activity mathematical and engineering aspects 
interact with each other. 

 
Figure 1: Parabolograph (taken 
from [3]) 
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QUESTIONNAIRE AND DATA ANALYSIS 
At the end of the training meetings, in December 2019, an anonymous questionnaire 
was administered. It was produced using Google Forms, an open source application for 
online surveys, and sent to teachers via email. It is divided into two sections: one related 
to LM in general and the second more specific to the course VMM. It contains multiple 
choice questions, Likert scale questions - from 1 (absolutely false) to 4 (absolutely true) 
- and some open-ended questions to motivate some answers. The analysis of responses 
was performed with Excel.  
All 15 teachers who attended the VMM module answered the questionnaire. Among 
them, 3 followed the LM activities for the first time, 1 is in the second year and the 
other 11 are in the third year of the training. Our analyses focus only on these 11 
teachers, 7 women and 4 men, all mathematics teachers in service in Eastern Sicily, 
with teaching experience ranging from 10 to 40 years. The following analyses, unless 
otherwise indicated, refer to questions formulated on Likert scale from 1 to 4. 
Examples of teachers’ answers to open-ended questions will be shown in italics. 
Let us start by considering the data referring to the first part of the questionnaire. As 
mentioned, the methodology that the LM prefers is laboratory teaching. We asked the 
teachers how familiar they were with this methodology before starting the LM and 
now, three years later. In the following, we consider 3+4 together in the Likert scale. 
73% was already familiar with this methodology before the LM, but only 45% used to 
practice it in their lessons. Now, three years after the start of the LM, 73% use this 
methodology, even in activities outside the LM. In addition, this same percentage is 
now using this methodology with more awareness. The first part of the questionnaire 
ends with a self-reflection part. We asked the teachers to reflect on whether, before the 
LM, they expected any repercussions on their teaching professionalism and their 
students. For both questions, 73% (3+4 together in the Likert scale) answered that they 
had such expectations. The same questions were asked at the present time. For both 
questions, 74% (3+4 together in the Likert scale) answered that they perceived such 
effects. An open question asked to describe the possible effects they perceived. We 
received only 6 answers. They all agree that a new way of teaching mathematics is 
being experimented and that this has a positive influence on students: 

I had the opportunity to pose some topics differently and the students have partly 
understood that mathematics can be done differently; 

Students are more motivated and are more focused, interested and enthusiastic in math 
lessons.     

Let us now consider the part of the questionnaire related to the VMM module. We were 
interested in understanding, whether during the hours of training at the university, 
discussions/sharing of ideas were made between the teachers on the contents that were 
dealt with. 55% (3+4 together in the Likert scale) did this with teachers from the same 
school [4]. 54% (3+4 together in the Likert scale) did this with all the teachers present.   
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In addition to discussions about the contents of the 
module, the teachers produced some physical models of 
mathematical machines with the help of simple 
materials (wooden sticks, paper fasteners...). An 
example of a model realized by the teachers is shown in 
Figure 2. It is a mathematical machine that allows to 
draw an ellipse. The model has not been ‘invented’, but 
rather the teachers have made an ingenious choice to 
choose simple materials to use for its construction and 
how to cut and assemble all the pieces. 

The design of the models was carried out by 4 teachers. Although not everyone made 
proposals on how the models could be built, 64% (3+4 together in the Likert scale) said 
they felt involved in the design phases of VMM module. This type of collaboration, 
both discursive (discussion, reflection) and design (construction of physical models), 
which is also based on the fact that the teachers know each other and have been working 
together for three years now, has led us to believe that these teachers form a community 
of practice. Although this assumption can be further demonstrated by finer analyses, 
which we want to conduct in the near future, in the questionnaire we were interested in 
understanding what degree of perception of belonging to a community the teachers 
had. We then asked “With regard to the group of teachers with whom you followed the 
VMM module, how much do you feel part of a community?”. 55% feel absolutely part 
of a community, 27% more yes than no, 18% more no than yes (nobody answered 
absolutely no). 

I have been collaborating with the family of the Liceo Matematico for three years now and 
I find that they have been three intense years full of experience and collaboration; 

Suggestions, advice, opinions continue even outside the university classroom; 

Everything that in so many years of experience you have imagined, materializes when you 
compare yourself with others. 

Finally, we asked: “How much do you agree that this training experience has affected 
your way of teaching mathematics to your students?”. 18% absolutely agree, 73% more 
yes than no and 9% more no than yes. So the majority (91% if we consider 3+4 together 
on Likert scale) believe that having designed the activities together with the researcher, 
with the possibility to intervene with their ideas, had an impact on their 
professionalism. 

It made me reflect on my way of teaching; 

It encouraged me to use new approaches closer to the students’ interests; 

[I give] more importance to the sense of discovery; 

I deal with topics more casually in ways that students sometimes don’t expect. 

 
Figure 2: 
Antiparallelogram 
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DISCUSSION AND CONCLUSION 
In light of the analysed data, we can answer the research questions. The first part of the 
questionnaire, although at a general level, allows us to answer question i). The effects 
on the professional development of the teachers who have been participating for three 
years in the LM of the University of Catania are a confirmation of the expectations 
they had before starting the LM. Most of the teachers had expectations of change both 
on their professionalism and on their students’ attitude towards mathematics. These 
expectations are becoming a reality over the years of the LM. Most have stated that 
they perceive a change in the way they teach mathematics and that this is spilling over 
to their students. In particular, changes in one’s professionalism concern the laboratory 
teaching. Prior to the LM, it was known to the majority, however, they did not make 
much use of it in class. Since attending the LM, the majority not only use it in activities 
outside the LM, but also use it with more awareness. With the second part of the 
questionnaire, which focuses on VMM module, we can answer more precisely the 
research questions. In fact, within this module, there has been collaboration both 
between the researcher and the participating teachers and among the participating 
teachers themselves. Working groups were created in the presence and the discussion 
took place in a double direction. On the one hand, there have been discussions about 
the content of the course. These discussions took place both among colleagues from 
the same school and among colleagues from other schools. On the other hand, there 
have been discussions on how to make physical models of mathematical machines. The 
most proactive teachers were 4. However, it was the majority who stated that they felt 
involved in the whole VMM module. In particular, the majority stated that the 
experience of designing together with the researcher and colleagues had a positive 
impact on their professionalism in terms of self-reflection and their way of teaching. 
We can therefore observe that co-working involved co-learning. We need finer 
analyses to be able to assert this with more certainty, but we can begin to say that for 
these teachers the collaboration results in the creation of a community of practice. They 
have a domain of common interest: they joined the LM and meet periodically in 
university to receive training on the mathematics topics proposed by the researchers 
and that they then bring back to class to their students. They, therefore, engage in joint 
discussions and activities, learning from each other, as has been the case with the 
design of physical models of mathematical machines with simple materials. Over the 
course of three years, they have developed a shared repertoire of experiences and tools. 
They are therefore practitioners. Most of them feel that they belong to a community. 
Some speak of “family of the LM”.  
This is a first analysis after three years of LM activity made only on teachers who have 
been following the LM for 3 years. It is our intention to do interviews, case studies, to 
study in more depth the professional development from which these teachers are 
benefiting. 

 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

36 

NOTES 
1. For more information, see: http://www.mmlab.unimore.it/site/home/laboratorio-visite-mostre/la-
collezione-di-macchine-matematiche.html 

2. In the sense of suggesting changes, make easier some points of the mathematics proofs, etc. 

3.http://www.macchinematematiche.org/index.php?option=com_content&view=article&id=216&It
emid=298&lang=it 

4. These 11 teachers come from 6 schools. In particular, 3 are from 3 different schools, 2 from one 
school and 6 in two groups of 3, from two schools. 
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This paper covers the conceptualisation of an innovative teaching format that helps 
students build bridges between university geometry and school geometry to counteract 
the effect of Klein’s (1924/2016) “double discontinuity”. After a theoretical discussion 
of the used frameworks, we present the design-based research process for the teaching 
format and results of the accompanying evaluation using the framework of concept 
image (Tall & Vinner, 1981). Finally, we present the constructed e-learning tool and 
future research plans. 
Keywords: design-based research, transition, concept image, mathematical maps.  

INTRODUCTION 
"Teachers matter" is the statement and title of an OECD (2005) paper presenting a 
study conducted in 25 countries. They agree that “demands on schools and teachers are 
becoming more complex” and teachers are “the most significant resource in schools” 
to reach high-quality education (OECD, 2005, p. 7). Since quality of future teachers 
depends heavily on university training (cf. Venter, 2017), it is necessary to improve 
university teaching if high standards in schools are to be maintained. 100 years ago, 
Felix Klein (1924/2016) described a common issue in teacher education, the “double 
discontinuity”, which concerns problems of future teachers when transitioning from 
school to university and back to school. Winsløw and Grønbæk (2013) showed that 
this problem is still relevant today, especially when it comes to autonomous work. 
Klein stated that the reason for this discontinuity, the lack of connections between 
mathematical contents at school and university, results in teachers falling back on 
traditional teaching culture after graduating from university and eventually in low 
quality of teaching. Additionally, subjectively perceived lack of meaning of university 
contents (in the sense that students think, they won’t need them for their future work) 
is one reason for students’ poor academic performances in mathematics teacher 
education (cf. Cooney & Wiegel, 2003). However, the important connections between 
school and university math contents do not emerge incidentally (e.g. Bauer & Partheil, 
2008; Winsløw & Grønbæk, 2013). 

THEORETICAL BACKGROUND 
In order to counteract the problem of the double discontinuity and its consequences, 
we designed and evaluated an innovative teaching format based on the theory of 
praxeology (Chevallard, 2006). A praxeology consists of a praxis block and a logos 
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block. The praxis block is made of types of tasks or problems (Τ) and techniques (τ) to 
solve them. The logos block is comprised of a technology (θ), i.e. description and 
justification of the technique, and the theory (Θ), which is a broader discourse 
justifying the technology. Using the notion of praxeology, the problem under 
consideration is to counteract Klein’s “double discontinuity” by showing connections 
between school and university geometry (T) and the technique to do this is the 
presented innovative teaching format (τ). Specifically, the teaching format consists of 
a course (τ1), which should illustrate the interdependencies of mathematics taught at 
school and mathematics taught at university. In order to illustrate them more clearly, 
an interactive “mathematical map” (τ2) (Brandl, 2009) as a digital learning tool is 
developed and used. It is intended to “offer the student an optimal solution for 
establishing successful learning processes“ (ibid., p. 106) by integrating the historical 
origin of mathematical concepts as well as interdependencies between them. The 
“mathematical map” should combine these two characteristics in one three-
dimensional representation, a kind of graph or tree. One dimension represents time, 
while the other two represent inner-mathematical dependencies. More details can be 
displayed by using added functionalities, where only one characteristic is considered 
(cf. present status below). Overall, the praxis block of the teaching format can be 
identified with the tuple [Τ, τ1, τ2]. In the notion of praxeology, the evaluation of the 
teaching format can be seen as part of the technology (θ), as it justifies the techniques 
[τ1, τ2] to address the problem (T). The research question is if the techniques [τ1, τ2] are 
able to build bridges from the “conceptual-embodied” or “perceptual-symbolic world” 
of school into the “axiomatic-formal world” of university (Tall, 2008) and therefore 
smoothen the first discontinuity. 

DESIGN-BASED RESEARCH PROCESS FOR [τ1, τ2] AND EVALUATION 

Figure 1: Illustration of the research cycles (based on Fraefel, 2014) 

For the design and evaluation of [τ1, τ2], we decided to use a design-based research 
(DBR) approach (cf. Anderson & Shattuck, 2012), which is “a practical research 
methodology that could effectively bridge the chasm between research and practice in 
formal education" (ibid., p. 16). To support students’ autonomous learning processes, 
a blended learning design was implemented via an e-learning platform. The use of e-
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learning has many advantages, for example, time and location independence and the 
possibility of self-paced learning (Elkins & Pinder, 2015). 
As an e-learning management system, we used ILIAS, which is provided by the 
University of Passau and has the same functionalities as Moodle. The presented ILIAS 
course contains multiple learning modules for the different topics discussed during the 
semester. Each learning module consists of essential definitions, theorems, and 
examples from university textbooks and school textbooks as well as related tasks for 
the students to work on in groups. So far, the teaching format passed three cycles (see 
Figure 1) with slight changes to the design in every cycle. 
In the following, DBR process and adaptions made to the teaching format [τ1, τ2] during 
all three cycles are addressed briefly. Afterwards, the Evaluation of the last 
implementation in Summer 2019 is described in detail. Hereby, the focus is on results 
for the course τ1. Finally, we present the Re-Design of the interactive mathematical 
map τ2, whose didactical benefit will be evaluated in detail in a future research cycle. 
The design-based research process for [τ1, τ2] and adaptions 
Before starting the conceptualisation of [τ1, τ2], a preliminary questionnaire on school 
geometry knowledge of first semester students was conducted with 136 participants to 
identify knowledge gaps. Additionally, scripts of university geometry lectures were 
compared with the school curriculum for geometry to identify relevant topics for the 
teaching format, such as axiomatic structure of geometry, motions, congruence, 
Pythagoras theorem and absolute geometry. For τ2, information from relevant literature 
about the historical developments of geometry was collected. A first version of [τ1, τ2] 
was piloted in the winter semester 2017/18. Analysis of this pilot led to reducing 
mathematical rigor in favor of vividness of concepts. Therefore, GeoGebra applets 
were embedded in ILIAS learning modules to add visualisations. Due to technical 
difficulties with the implementation of the three-dimensional map, it could not be used 
in the first cycle. For the second version of [τ1, τ2] in the winter semester 2018/19, the 
theoretical model of concept image and concept definition (Tall & Vinner, 1981) was 
used to grasp the concept of connections between university and school geometry 
together with guided interviews as a research instrument. Observations during the 
semester and the analysis of the guided interviews suggested some adjustments, which 
led to increased use of visualisations in the third cycle (Datzmann & Brandl, 2019). To 
solve the technical difficulties with τ2, the original concept was split into two separate 
parts, a timeline, which shows the historical development, and a two-dimensional map, 
which shows similarities of the geometrical contents (cf. Datzmann & Brandl, 2018). 
These were used to categorise geometric developments in terms of their content and 
the time they emerged. 
Making the teaching format credible for the mandatory study plan in the summer 
semester 2019 led to an increase in the course size to 11 students. The two separate 
parts of τ2 were connected by introducing links leading from the two-dimensional map 
to the respective content in the timeline (e. g. theorem of Pythagoras). The 
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accompanying evaluation again consisted of a guided interview as a pre-post-test to 
compile the concept image of geometric concepts and is now described in detail. 

Evaluation of τ1 in the third research cycle (Summer 2019) 
As mentioned above, we used Tall and Vinner’s (1981) framework of concept image 
and concept definition for the evaluation accompanying the design-based research 
process in the last two cycles. The concept image is “the total cognitive structure that 
is associated with the concept, which includes all mental pictures and properties” (p. 
2). The concept definition splits into the formal concept definition, like the one in a 
textbook, and the personal concept definition, “which is the personal reconstruction by 
a student of a definition” (p. 2). The personal concept definition is often attributed to 
the concept image and we follow this habit. At different times different portions of the 
concept image may be activated, these are then called the evoked concept image. 
We were interested in how the concept image of the students changed because of the 
teaching format. The survey focused on the concepts of line, circle, congruence, and 
the sum of interior angles since all of them are covered in school and university.  
For these concepts, the most relevant mental pictures, properties and related 
mathematics concepts were identified based on schoolbooks and university scripts. The 
aspects found were then divided into four subcategories as shown in Table 1. 

Concepts Line Circle Congruence Sum of interior angles 

 

 

Subcategories 

Conceptions of a 
line 

Properties of lines 

Lines in different 
geometries 

Connections to 
related concepts 

Conceptions of a 
circle 

Properties of a 
circle 

Special circles 

Connections to 
related concepts 

Conceptions of 
congruence 

Classification 
in mathematics 

Connections to 
related 
concepts 

Derivation of the sum 
of interior angles 

Sum of interior angles 
in different geometries 

Extension to n-gons 

Connections to related 
concepts 

Table 1: The four concepts and their subcategories 

As a research instrument, a guided interview was conducted with nine students, who 
completed the teaching format in the summer semester 2019, before the first and after 
the last session. The guided interview was used to allow the students to talk about 
everything in their mind regarding a concept and the interviewer could then use 
questions to evoke subcategories of the concept image, which were not mentioned. The 
statements of the students were assigned to aspects of the respective subcategory (i.e. 
aspects for “Conceptions of a line”: infinite straight dash; set of points; line equation; 
vectors; determined by two points; axiomatic) and assessed regarding their correctness 
via a five-level Likert scale from mainly incorrect to mainly correct. Aspects that were 
not mentioned were marked as not existent. A sample of the assessments (20%) was 
countercoded by a second researcher with a Cohens Kappa of κ = 0.772. 
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The coded statements of the students were then compared between the pre- and post-
interview. The concept images in the post-interview contained more aspects that are 
allocated in the “axiomatic-formal world” of university geometry than in the pre-
interview, whereas aspects that refer to the “perceptual-symbolic world” of school 
geometry were still present. Klein described the issue when a student is “confronted 
with problems, which do not remember, in any particular, the things with which he had 
been concerned at school. Naturally he forgets all these things quickly and thoroughly” 
(1924/2016, p. 1). However, results show that the concept images have mostly been 
extended by abstract university aspects and that concepts from school have not been 
replaced by them. This suggests that most students were able to create links between 
what they knew from school and what they have learned at university. Therefore, the 
developed teaching format was to some extent able to counteract the first discontinuity. 

RE-DESIGN OF τ2, THE INTERACTIVE MATHEMATICAL MAP 
Subsequent to the last research cycle, it was possible to redesign the existing prototype 
of the “mathematical map” in accordance with the original concept in order to show 
similarities of concepts and connections more clearly (see Figure 2 left; Brandl, 2009).  

Figure 2: Screenshots of the mathematical map (front and top view; Status 09.06.2020) 

To translate the thematic relatedness into the Euclidean distance, we use a force-
directed method out of graph theory (technical details can be seen in Przybilla et al., in 
press). In the top view (see Figure 2, right), the thematically related contents are 
displayed close together in clusters. By clicking on a point, the corresponding content 
opens on a timeline, where milestones of geometry are shown and material such as 
files, videos, or interactive media can be accessed. An example of such a node on the 
timeline is shown in figure 3. In order to visualise genesis and similarities of contents, 
some functionalities for students to use were added. 
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Figure 3: Screenshot of the node Pythagorean triple on the timeline (Status 09.06.2020) 

Historical Genesis of Mathematical Contents and Vertical Cuts 
To overcome Klein´s “double discontinuity” 
(1924/2016), teachers have to point out connections 
between the “axiomatic-formal” university contents 
and the “perceptual-symbolic” school contents (Tall, 
2008). One possibility to create such links is by 
recognizing and emphasizing mathematics as an 
emerging science. Klein describes this type of 
learning as “intuitive and genetic, i.e., the entire 
structure is gradually erected on the basis of 
familiar, concrete things” (1924/2016, p. 9), Tall 
would say, on contents out of the “perceptual-
symbolic world”. Historically, university contents 
are often built upon school contents. For example, 
the curriculum for geometry in Germany covers 
mostly the Greek Euclidean geometry. Only in the 
last years, analytical geometry, founded in the 17th 
century by René Descartes, is discussed in part. 
Whereas the focus at the university lies on Hilbert's axiomatic geometry, which had 
developed at the transition to the 20th century. In addition, the non-Euclidean 
geometries, studied in the 19th century, are treated. Therefore, the functionality 
“Vertical Cut” (Brandl, 2009) visualises all development steps, which led to a chosen 
content. In figure 4, the Vertical Cut of the node Spherical geometry is depicted.  
Inner-Mathematical Similarities and Horizontal Cuts 

In order to facilitate the recognition of similar contents, the system offers the 
functionality “Horizontal Cut” (Brandl, 2009). After projecting all nodes to one level, 
so that the thematic proximity becomes visible, the user can filter them related to time 

Figure 4: Screenshot of a 
Vertical Cut (Status 
09.06.2020) 
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or thematically. Looking at the horizontal cut from 1850 BC to 1899 AD (figure 2 
right), similar contents are clustered (manually highlighted by ellipses). The lower 
ellipse contains all Trigonometry contents in this period. Additionally, the increasing 
differentiation in mathematics in the 18th and 19th centuries becomes visible through 
the contents of non-Euclidean geometry cluster and included in the dashed ellipse. 

UPCOMING RESEARCH CYCLE 
A further research cycle will be implemented to investigate the didactic benefit and 
several possible applications of the mathematical map (τ2) in different universities. 
First, benefits of the usage as an interactive data structure will be tested. Students 
should make use of the functionalities to become aware of the connectedness of 
mathematical concepts and the historical origins of concepts. On the other hand, it is 
planned that students create some contents for existing nodes themselves. In this way, 
they shall learn from the historical development and the research process.  
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Scratch programming and student’s explanations 
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Programming is being included in many educational policies, also in Norway. A study 
involving first-year pre-service teachers and year four students is undertaken to 
address the increased emphasis on programming. The focus is on links between 
ScratchJr functions and students’ mathematical explanations and justifications. The 
results indicate that some functions in ScratchJr have the potential to foster such 
mathematical argumentation, but it requires appropriate mathematical tasks and 
teacher awareness about how to support the students’ work. 
Keywords: programming, mathematical explanations and justifications, task design. 

INTRODUCTION: BACKGROUND, RATIONALE, RESEARCH QUESTION  
ICT literacy is the ability to use technology to develop 21st-century knowledge and 
skills such as critical thinking, communication, and collaboration (Dede, 2010). In 
recent years, this focus on ICT literacy has re-orientated to include programming. 
According to Balanskat and Engelhardt (2015), programming has been included in 
more than 20 national curriculums. This is likely to increase with the EU’s policy 
document Digital agenda for Europa (http://ec.europa.eu/digital-agenda). In their 
research, Bocconi, Chioccariello, and Earp (2018) found that programming as an 
important 21st-century skill was becoming more evident in national policy documents. 
In the future, Balanskat and Engelhardt (2015) argue that many of today’s students will 
be involved in developing technology. 
In Norway, there has been an emphasis in the national curriculum on digital skills and 
students’ abilities to express themselves orally and in writing, and these focuses are 
maintained in the revised curriculum that will take effect during autumn 2020 
(Norwegian Directorate for Education and Training, 2020). As well, there is an 
increased focus on students’ argumentation, their explanations and justifications. 
However, the most debated change is the prominent role given to programming. In the 
new curriculum, programming is implicitly included in the competence aims in 
mathematics from year two and explicitly included from year five and onwards. 
Programming in school is not new. In the 1970-80s, the use of programming languages 
like BASIC and LOGO faced challenges such as adding additional demands on 
students, little transfer value, and effects on students’ mathematical understanding took 
time to emerge (Hoyles & Noss, 1987). In two recent reviews, Forsström and 
Kaufmann (2018) and Popat and Starkey (2019) have found that there remains a lack 
of convincing evidence for the educational potential of programming in mathematics 
education. Thus, there appears to be a gap between education policies and education 
research. Investigating the relationship of programming and mathematical explanations 
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and justifications can address this gap. There are, however, studies such as Kaufmann 
and Stenseth (2020) that document links between programming and mathematical 
argumentation. According to Mariotti (2012), particular tools can be resources that 
support teachers’ didactical actions, and in this study, we investigate if and how 
programming with ScratchJr can be a tool that facilitates student’s argumentation. The 
question we pose is therefore: what makes grade four students engage or not in 
(multimodal) mathematical explanations and justifications when programming in pairs 
with ScratchJr? Several factors might play a role, such as the program functions of 
ScratchJr, the teacher’s introductions and follow-ups when helping the students, and 
the kinds of tasks given to the students. We emphasise which program functions were 
used and if and how they fostered or hindered students’ mathematical explanations and 
justifications. 

ANALYTICAL FRAMEWORK 
ScratchJr programming provides opportunities to communicate mathematics with 
multiple modalities in addition to language like gestures and screen elements (code 
blocks and animations). Morgan and Alshwaikh (2012) argued for the importance of 
considering the contribution of different modalities and how they can be related. We 
investigate, inspired by Albano, Iaconor, and Mariotti’s (2017) scripting approach, 
how ScratchJr functionalities can mediate students’ explanations and justifications. 
A communicative function of an explanation is to provide an answer to an explicitly- 
or implicitly-posed question. According to Donaldson (1986), the question type defines 
a mode of explanation: empirical (what has happened to cause …?), intentional (for 
what purpose …?), deductive (how do you know that …?), or procedural (how do you 
DO …?). By studying explanations and justifications in a mathematics class, Yackel 
(2001) differentiated between mathematical explanations and justification as social 
constructs based on the communicative function they serve. Mathematical 
explanations have a main communicational function of clarifying aspects of 
mathematical thinking that may not be completely clear to others (Yackel, 2001), while 
the function of mathematical justification is to respond “to challenges to apparent 
violations of normative mathematical activity” (Yackel, 2001, p. 13).  
From the perspective of Donaldson’s explanation modes, mathematical explanations 
seem equivalent to the empirical mode and mathematical justifications seem similar to 
the deductive mode. Although both empirical and procedural modes include a 
directional indicator through the inclusion of words such as “because” or “so”, 
empirical explanations use it to show that something is caused by something else, while 
procedural explanations use it to emphasize the temporal order. The procedural 
explanation mode does therefore not necessarily provide information about 
mathematical thinking. “The role of causal connectives in deductive sentences is to 
make explicit the links in the deductive process, rather than causal relations between 
events” (Donaldson, 1986, p. 104). Thus, a deductive mode of explanation uses 
evidence through logical reasoning to support why something is the case. 
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METHODOLOGY 
This paper concerns year four students’ exploration of programming with ScratchJr in 
two mathematics lessons led by a first-year pre-service teacher (PT). The students 
worked in pairs and shared a tablet. The Jr.-version of Scratch was used because it 
works well on touch-based tablets and its iconic representation for the function blocks 
makes it user-friendly for beginners. In this paper, the functions’ names are italicised 
and correspond with the block descriptions in the ScratchJr user manual. 
The study is part of the first loop of a design-based research project (e.g. Sandoval & 
Bell, 2004), supported by the Norwegian Research Council, called Learning about 
teaching argumentation for critical mathematics education (LATACME) in 
multilingual classrooms. The data comes from a partnership school during the PT’s 
second practicum period. Two audio and video recordings of the PT’s introductions 
and five audio and video recordings of the students’ work were collected across two 
days. The screen recordings and the students’ discussions were combined in picture-
in-picture movies and transcribed. Here we focus on one of the pairs, Per and Tor. 
The students’ task was to use multiplication tables (corresponding number sequences) 
to navigate characters when creating an animation in ScratchJr. The assumption was 
that this open task would make students engage in mathematical explanations and 
justifications. However, neither the PT nor the students had much experience with 
ScratchJr. The PT had little time to prepare the lessons and did not have the opportunity 
to discuss the plans with his teacher educators. Therefore, we report on what 
Skovsmose and Borba (2000) refer to as “the current situation” which forms the base 
stage from which a design-based research project can be developed. 
When analysing the data, we first identified the excerpts containing mathematical 
explanations and justifications by searching for explanation modes as well as the 
ScratchJr functions the students used. Then, to address what made the students engage 
or not in explanations and justification, we focused on the use of three different 
modalities: the spoken language, the codes, and the animations. Other factors such as 
the PT’s follow-ups were also considered.  

FINDINGS AND DISCUSSION 
ScratchJr has some constraints that influence how a task can be solved. For example, 
the grid in ScratchJr is fixed to 20x15 squares and the movement is circular. This means 
that a character can move a maximum of 20 steps before it disappears from the screen 
and reappears on the other side. The requirement to use multiplication tables to 
generate a sequence of moves makes it easy to exceed 20 even with the multiplication 
table for 2. Per and Tor experience the issue of characters disappearing on both days, 
but only in some cases are mathematical explanations and justifications provided. In 
this section, we chronologically present analyses of three excerpts illustrating different 
explanation modes from both days accompanied by a brief description of the lessons.  
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On the first day, the students get the task to “create an animation that uses the 
multiplication tables for 2 and 3”. In the introduction, the PT explains the use of motion 
functions and asks the students to use multiplication tables to navigate characters, 
otherwise no specific instructions are given. Per and Tor use some time to explore the 
program before they start programming a crab moving on a beach background.  
Excerpt 1. Tor finishes the program for the crab (Figure 1), and Per starts the 
animation. The crab leaves the screen and then reappears on the left side to proceed 
almost to the centre where it stops. Tor says, “No! We have to take eeh … I guess we 
have to take away …” Tor drags the last two blocks aside and, while holding them, 
asks, “How do we delete these?” Per moves the blocks back to the menu and they 
disappear. Tor then runs the remaining program (Figure 2) and concludes that the crab 
stays on the screen. 

 
Figure 1: Code when crab leaves screen        Figure 2: Code when crab stays on screen 

When the code makes the crab leave the screen and reappear on the other side, the 
students says “No!” and start immediately to revise the code. The animation mediates 
an important idea of measurement, namely the indirect comparison of length. The code 
can mediate the idea of a function for the total path length expressed as the number of 
steps per block as it consists of four move right blocks grouped according to the 
multiplication tables for 2 and 4. It does not though mediate the idea of measurement 
as clear as the animation because there is no limitation to the numbers to be used in the 
code due to the circular movement. Combined, the code and the animation help them 
to see how to keep the crab’s movement on the screen. Tor says “I guess we have to 
take away …” and he disconnects the two last code blocks. This can be regarded as a 
procedural mathematical explanation because it, although it requires knowledge about 
the solution, mainly concerns how to solve the problem. Per deletes the two 
disconnected blocks by moving them back to the menu, and this manipulation of the 
blocks is also a procedural explanation, though non-mathematical. When they had done 
the code adjustments, they checked if they had solved the problem by running the code 
again.  
In this excerpt, the differences between the ideas mediated by the code and the 
animation invite the students to solve a mathematical problem and provide 
explanations. ScratchJr provides visual modalities both to understand the problem and 
to communicate the solution. After 19 minutes, a teacher educator turns on the grid 
function to help the students program a boat approaching the beach, so that it includes 
perspective effects. They try out the enlarge and normal size functions from the control 
menu, but no use of the grid is evident. 
During the introduction on the second day, the PT asks some of the students to explain 
the functions in the different menus of ScratchJr. He comments and adds several 
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examples when the say command (from the looks functions) and the sound and motion 
functions are discussed. Then Per and Tor get the task to create an animation using the 
multiplication tables for 6 and 8. They choose a birthday party as a topic. After two 
minutes, Tor turns on the grid function. 
Excerpt 2. During the first nine minutes, Per and Tor program the pink alien to move 
on the scene, add sound at several steps, and review the result several times. The PT 
approaches the students, looks at the screen, checks his notes, and decides to take part 
in their discussion: 

PT: Now you actually have to start including bigger numbers [points at the 
screen]. Is it big multiplication tables, the multiplication table for 6 and … 
[checks his notes] 8? 

Tor: [Looks at PT] Yes, we have 12 [points at the rotation block] (see Figure 3).  

PT: But 12 in itself is not how the multiplication table for 8 is built up. 

Tor: But it is very difficult with eight because then we have to go so far, then we 
have to do something else. 

 
Figure 3: Code for Pink alien         Figure 4: Code for Blue alien 

The students seem to try to avoid the problem of the limited width of the screen by 
only using the number 2 on their motion blocks (Figure 3). This is not in line with the 
task of using the multiplication tables for 6 and 8. When the PT points this out, Tor 
argues that they cannot use larger numbers from the multiplication table for 8 because 
it will move the alien too far. He answers the PT’s why-question by explaining their 
decision not to use the multiplication table for 8, and this can therefore be considered 
as an example of an intentional explanation mode. The PT’s involvement makes the 
students look for how actions, other than movements, can be used in the animation in 
order to follow the pattern of the required multiplication tables. 
Excerpt 3. After the PT leaves, Per and Tor add a new page with the blue alien as the 
character. They disagree whether they should use the multiplication table for 6 or 8, 
but then Per makes a program (see Figure 4) and the blue alien stops having just a few 
more steps left before it might disappear from the screen: 

Tor: We have to think about how many steps it is. 

Per: Six. 

Tor: One, two, three, four, forward [points at the four squares of the grid ahead of 
the alien]. So, we have to take four [types 4]. We have to take four. Look, it 
will be as here. And start! 
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While Per makes the code, Tor counts and presents an argument for how many steps 
the alien has left before disappearing from the screen. The mathematical problem is 
similar to the one in the Excerpt 1. However, this time the grid function has been turned 
on, and this adds an iconic representation for the number of steps in the animation. 
Together, they mediate the idea of the measurement by counting. This supports Tor’s 
argument by providing evidence for his point of view. The combination of gesture 
(counting by pointing at the grid) and language can be considered a mathematical 
explanation. Although it has a clear procedural goal (how to program the alien to move 
to the end of the scene), it is a deductive explanation, because Tor first counts the 
number of squares between the alien and the goal, and then concludes that they have 
to write four in the program.  
On the second day, Per and Tor use the looks (only say), sound and motion functions 
(except go back). They use reset characters several times, but do not use the control 
functions as they did the first day. Although the grid function is turned on the first day 
as well, it is not used to solve the mathematical problem. On both days, the functions 
the PT emphasises in his presentations are the ones most frequently used by the 
students. The motion, grid, sound, and looks functions seem to foster explanations and 
justifications. Procedural and intentional explanation’ modes were identified both days, 
often related to ScratchJr functionality, but the deductive mode of explanation occurred 
only on the second day. The students concentrate mostly on forming meaningful 
storylines, but they adhere more closely to the assigned multiplication tables on the 
first day. The communication moves from focusing on the exploration of ScratchJr 
functions during the first day to become more mathematical and result-oriented on the 
second day as they get more familiar with the program. This is in line with how the PT 
organized the two introductions, from brief comments to discussion of the functions. 

CONCLUSION 
What makes grade four students engage or not in mathematical explanations and 
justifications when programming in pairs with ScratchJr? The focus in this paper has 
been on which program functions were used and if and how they fostered or hindered 
such argumentation. Summarized, the study provides results showing that students’ 
mathematical argumentation can be mediated (cf. Albano et al., 2017) by: conflicting 
differences between modalities in line with Morgan and Alshwaikh (2012) (cf. excerpt 
1); thinking on the solution of the task mediated by the program or one of the modalities 
(cf. excerpt 3), and, in some cases, negotiating the task when challenged by the PT 
about how well they addressed it. ScratchJr mediates explanations and justifications by 
making several representations of mathematical ideas simultaneously available 
through different modalities.  
The study contributes, like Kaufmann and Stenseth (2020), to documenting an 
educational potential of programming in mathematics education. The affordances and 
constraints of ScratchJr have some didactical implications for mathematics teachers 
who plan to use it. For example, ScratchJr allows sending messages and wait a certain 
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time for an action, but it lacks conditional blocks. The animation with the grid 
visualises well that one step forward increases the x-coordinate by one. The circular 
nature of the grid surprises the students and can trigger explanations and justifications. 
Combining the motion and control functions can create a perspective effect for a 
moving character, while the rotation of a character is limited and only works for some 
of them. These aspects should be taken into consideration during task design and other 
didactic actions aiming to facilitate student’s argumentation. 
Although using multiplication tables when making animations might not seem 
challenging enough mathematically for year four students, in a programming context 
with ScratchJr, it provides opportunities to investigate measurement ideas. A more 
explicit focus in the task formulation on number sequences in the multiplication tables 
could invite students to focus more on functional reasoning. Discussing the 
mathematical ideas students experience while programming and how the program can 
be made to do what it does, can facilitate students’ mathematical argumentation. 
Teachers' preparation, and the presentations and follow-ups in class, influence to what 
extent students explain and justify with mathematics, but there are also other aspects 
that deserve further research. Investigating the role of students and teachers’ gestures, 
how teachers can develop and use knowledge about ScratchJr and task design to 
facilitate mathematical argumentations, and how teacher educators can help PTs gain 
sufficient knowledge about how to include programming in their mathematics 
teaching, are just some examples. 
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Examining educational staff’s expansive learning process, to 
understand the use of digital manipulative artefacts to support the 
students’ computational thinking and mathematical understanding 

Camilla Finsterbach Kaup 
Aalborg University, Faculty of Culture and Learning, Denmark, cfk@learning.aau.dk  
This paper discusses the need for a professional development process if the educational 
staff were to use digital manipulative artefacts in primary mathematics education. The 
project is based on how to develop a teaching sequence to use robots as digitally 
manipulative artefacts to support students’ mathematical understanding and 
computational thinking. This paper is a part of an ongoing project and will 
demonstrate how educational staff through an expansive learning process, develop a 
teaching sequence to support the students’ mathematical and computational 
understanding by working with robots as a digital manipulative artefact.  
Keywords: mathematics education, primary level, computational thinking, digital 
manipulative artefacts, work development research 

INTRODUCTION AND RELEVANCE  
With this paper, I would like to shed light on the possibility of incorporating technology 
into mathematics in the form of robots already by the early years, in order to support 
work with the students’ understanding of mathematical concepts supported by 
computational thinking. With the rise of the digital age, more and more digital 
manipulatives have become available, such as robots that can be used in teaching 
contexts. According to Nugent, Barker, Grandgenett, and Adamchuk (2009) the digital 
manipulatives embed computational capabilities, and can be seen as catalysts that can 
help youth in problem-solving approaches using the digital manipulatives as a tool to 
help them in development of their thinking.  
In an article published in 2006, Jeanette Wing described computational thinking (CT) 
as a way of “solving problems, designing systems, and understanding human behaviour 
by drawing on the concepts fundamental to computer science” (p.33). CT is a problem-
solving strategy in which a complex problem can be solved either by drawing on known 
strategies or by means of decomposition and abstraction. According to Grover and Pea 
(2018), the core elements are logic, algorithms, abstraction, pattern recognition, 
evaluation and automation. They also define computational practices such as 
decomposing, the creation of computational artefacts, testing, and debugging and 
iterative processes. In this project, problem-solving should be seen as a context in 
which the students can experience and develop their mathematical understanding using 
the concepts from CT, and it considers how the educational staff can help to support 
these processes. 
According to Lee et al. (2011) there is a lack of opportunities for teachers to learn CT 
as a part of their professional development, and the teachers do not have the necessary 
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access to materials and technology to use in their teaching. It is not just important that 
the teachers are offering professional development courses, but also, as reported by 
Black et al. (2013), there is a need to establish communities of practice, to provide 
ongoing support and sharing of resources. However, there is an increased need to focus 
on how to establish professional development in order to support the educational staff 
(the participating classes’ maths teachers and teacher assistants) to embed the students’ 
CT in mathematics. There is therefore a need to explore how the educational staff can 
be supported in using robots as a manipulative artefact in mathematics and how the 
built-in computational thinking in the robot can help to support the students' 
mathematical understanding.  

THEORETICAL BACKGROUND 
In adopting the term ‘learning environment’, I consider the teaching and learning 
situation as a whole (Bottino & Chiappini, 2002). This means that I am interested in 
analysing teaching and learning processes to use in the educational staff’s professional 
development. As a part of this, robots have an important role as a manipulative artefact 
in mediating teaching and learning processes.  
The expansive learning process (Engeström, 2001) gives me a framework that is useful 
for describing and developing the educational staff’s collective professional 
development process. The expansive learning process is concerned with the historical 
and cultural development of activity, and I am specifically interested in the mediation 
role of the digital manipulative artefact, and how the educational staff are using it to 
develop the students’ mathematical understanding. For Engeström (2001), it is 
important to learn from new forms of activity which are not yet available. In this case, 
the knowledge and skills are learned as they are being created by the educational staff. 
“An expansive learning activity will produce culturally new patterns of activity, and 
expansive learning at work will produce new forms of work activity at the workplace” 
(Engeström, 2001 p. 139). The typical sequence of learning action in an expansive 
cycle is the following: Questioning is the first action, where a question will be asked, 
criticising or rejecting some of the already accepted practices and existing knowledge. 
Analysing is the second action. This analysis involves a mental, discursive, or practical 
transformation of the situation to discover reasons or explanatory mechanisms. 
Analysis evokes the “why” questions and exposes the principles. Modelling is the third 
action. Here, the participants construct an explicit and simplified model of the new idea 
that explains and offers a new resolution to the problematic situation. Examining the 
model is the fourth action. Here, the participants are running, operating, and 
experimenting with the new model in order to understand its dynamics, potentials, and 
limitations. Implementing the new model is the fifth action. Here, the participants are 
using and testing the new model. Reflecting is the sixth action. Here, the participants 
are evaluating the new model and perhaps adjusting it. Consolidating the model and its 
outcome into a new stable form of practice is the final action (Engeström, 2001). These 
seven steps for increased understanding should be seen as an outwardly expanding 
cycle but with many different kinds of action that can take place at any time. Mapping 
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the educational staff’s learning action can provide a collective mirror for the 
educational staff and help them to identify problems in the activity. The seven steps 
also allow the researcher to identify and analyse which types of learning action is most 
dominant in a particular period of time. 
In order to support the educational staff’s expansive learning processes, a teaching 
sequence, centred on the use of robots as a manipulative artefact in geometry, was 
analysed together with the educational staff. I then focused on the moment of the 
teaching sequence where the use of the robots was expected to unfold mathematical 
meanings. The teaching sequence was considered using three second-grade classes. I 
will present the analysis of selected episodes drawn from the teaching sequences that 
have been used in the educational staff’s professional development to support their 
expansive learning processes. The concept of teaching sequences emerged from the 
Theory of Semiotic Mediation (Bartolini Bussi & Mariotti, 2008), and offers a 
framework to design teaching sequences embedding digital manipulative artefacts, and 
to analyse the collected data in order to gain insight into the use of robots to support 
students’ CT and mathematical understanding. The structure of a teaching sequence 
can be defined as a didactical cycle that consists of an iteration where different 
typology of activities consist such as; activities with an artefact, individual/small group 
production of signs, collective production of signs, and mathematical discussion 
(Bartolini Bussi & Mariotti, 2008). 
The teaching sequences have been developed by the educational staff, and the tasks 
and activities were the same for all three classes. This allowed me to look at the same 
teaching sequence concerning geometry in three different classes, and explore the 
potential for using robots to gain a deeper understanding of geometry for the students. 
This leads to the following research question: How can the use of a teaching sequences 
support the educational staff’s expansive learning process in using robots as a digital 
manipulative artefact to aid the students’ computational thinking and mathematical 
understanding?   

METHOD  
The study has been conducted with the participation of three second-grade classes (A, 
B and C), and the classes’ educational staff. The teaching sequences were developed 
throughout two lessons, each of them lasting one and a half hours in each class.  
Ethnographic data in the form of observations and video have been used to analyse the 
teaching sequences, and unfold the students’ use of the robots to gain a better 
understanding of how the educational staff can create tasks and activities that support 
the students’ CT and mathematical understanding. Through professional development 
sessions, the educational staff was presented with quotes from the teaching sequences, 
and were then guided by the researcher to analyse and gain a better understanding of 
the tasks and activities. This analysis was used to gain new insight, and to develop the 
teaching sequence further. There have been two professional development sessions 
with the educational staff, one after the second didactical cycle, and one after the last 
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didactical cycle. These sessions were videotaped, which allowed for mapping and 
analysing the educational staff’s expansive learning process (Engeström, 2001).  
Overview of the teaching sequence 
The teaching sequences that the educational staff has formulated for the students were 
structured in order to support the students' geometric thinking. According to 
Goldenberg, Dougherty, Zbiek and Clements (2014), is it important to help students 
develop a precise language about geometric figures, to give them words and language 
as well as the ability to participate in discussions about the categorisation of the figures. 
Attention will therefore be paid to tasks and activities that encourage the students with 
help from the manipulative artefact to categorise the geometric figures, and to use the 
appropriate words. As outlined, there was a need for the educational staff to develop 
and model new solutions such as tasks and materials that were to be used in connection 
with the robot and the geometric field of study.  
As stated above, the teaching sequences are followed by an iterative process of didactic 
cycles.  
The first didactic cycle involved the robots. The task was that the students should 
become familiar with the robot, and figure out how it works.  
The second didactical cycle focused on how to get the robot to make a square, and then 
they had to investigate how small and how large a square the robot could make. 
According to CT, the students were asked to create an algorithm for making the square.  
The third didactical cycle; here the students were asked to work with the geometric 
properties of polygons. The task (Fig. 1) was to make the robot land on, for example, 
all squares, triangles, etc., and describe the characteristics of the individual polygon. 

  

Figure 1. Task geometric properties 
The fourth didactical cycle had a problem-solving approach, and the students had to 
figure out which type of polygon the robot could make. The students were required to 
investigate the type – from one-sided to ten-sided polygon – the robot could make, and 
see if they could make any generalisations from it. In the next section, I will focus on 
the first and the third didactical cycles to unfold how the teaching sequences were used 
as a part of the educational staff’s expansive learning process.  
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Focus on the first didactical cycle  
The students worked together in pairs, and each pair had their own robot. During the 
first task, the students were required to become familiar with the robot. The teacher 
provided a short overview of the different buttons on the robots, and after that the 
students was asked to figured out what the different buttons were for. Subsequently, 
the teacher followed-up on it in the class discussion. The following quote demonstrates 
how the students are trying to understand how the robots work. The quote is taken from 
class A, and the discussion section at the didactical cycle.  

Student 1:  We clicked a whole lot and but it didn’t do what we wanted it to. 

Student 2:  It was because we forgot to press delete. Then we clicked two forwards and 
two to the side, two backwards and two to the side.  

Teacher:  What did you think it was doing? A square?  

Student 1:  Yes, but it didn't. It just started driving around and going backwards (the 
student moves his body to show what the robot had done). Because we forgot 
to press delete. 

Teacher:  If you had clicked on delete, would it then have made a square? Did you try 
it?  

Student:  You must press two forward, one left, two forward, one left, two forward, 
one left, two forward, one left. 

Teacher:  This is something we should actually try out in a moment. I actually saw it 
when I was with you when you said that you were going to try to make it do 
a square and it just didn't.  

Student 1:  (The student turns around to demonstrate the ability to make a square.) 

This was a good example of what the student was struggling with in the first task. Many 
had trouble remembering to clear the robot after ending an activity, and thereby trouble 
with creating a new activity. Student 1 also used his body to demonstrate the movement 
of the robot, which helped him to make the movement more understandable. The fact 
that the students were initially given time to investigate the robot made them more 
focused on the mathematics in the later exercises.  
Professional development  
After the second didactical cycle, the educational staff were given a training session to 
help them develop the teaching sequences further. The quote above was shown to them 
to let them know how the students had worked with the robots. The quotes also showed 
that, even when the task did not include mathematics, the group attempted to get the 
robot to make a square. The quote showed the potential for using the robots as a digital 
manipulative in mathematics, but also the need to develop tasks and activities to 
support this. Here, the educational staff started to ask questions on the previous 
practices, as part of their expansive learning processes. They became aware of the fact 
that there was a need to design tasks and additional material that could be combined 
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with the robot if it were to be used to support the students' mathematical concepts of 
understanding. It appeared that the robot could not be regarded as a manipulative 
artefact for mathematics itself, but that it was the didactical framework and the task 
which created the possibilities for supporting the mathematical concept of 
understanding. For this reason, the educational staff had to act to ensure that the 
developed materials could be used in connection with the robot if it were to support the 
geometric subject area.  
Focus on the third didactical cycle 
In the third didactical cycle, the students worked on two tasks. In the first, they were 
asked to work with the geometric properties of polygons, see Fig. 1. The students had 
to make the robot land on, for example, all squares, triangles, etc., and describe the 
characteristics of the individual polygons. When the students sorted the polygons, it 
helped to initiate a process in which they focused their attention on the characteristics 
of the polygon. This would allow them to increase their knowledge of the individual 
polygons. The students must both relate to the robot through CT, where they must first 
get an overview of, for example, the triangles on the worksheet, and then create an 
algorithm that moves the robot from one triangle to another. The students use the robots 
as a manipulative object by describing the characteristics that lie behind the polygon 
the robot lands on. 
In the second task, the students had to categorise different polygons on the basis of 
different criteria such as a right angle, acute angle, etc. This helped to support the 
students' study of various properties such as a 'right angle' and 'equally long sides’. 
Categorising the polygons from Fig. 1 on the basis of new criteria helps to support 
students' reasoning at a higher level of abstraction (Goldenberg et al., 2014). This also 
gave the students the opportunity to distinguish between polygons which resembled 
each other and to become aware of the common characteristics of polygons which did 
not appear to have the same characteristics. Through their work on categorising the 
polygons, the students developed an understanding of the fact that the different 
polygons could have the same characteristics. When the students worked with the 
robots as a manipulative artefact, they are working with CT when they are 
programming the robots. Through CT, the students work to get the robots to move in 
different sequences, for example when the robot has to move around all the triangles 
(Fig. 1). During the task, they were continually debugging and correcting their codes 
if the robot did not land on the desired polygon. In this way, the students were trained 
in their CT when they introduced what they had worked with in the classroom as well 
as the way in which they had solved the rewarding task.  
Professional development  
After the fourth didactical cycle, the educational staff were given another session. The 
session focused on the third and fourth didactical cycles, and the teaching sequences 
as a whole. The educational staff was asked to mention which part of CT the students 
had been working with in the two types of tasks in the third didactical cycle. However, 
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this proved difficult for them: “I actually don’t know. I know that we were working 
computational with the robot, but which part of CT we used, is hard for me to say” 
(Teacher, Class C). This showed that the educational staff were using the digital 
manipulative artefacts as a tool to let the students solve the task. It is thereby suggested 
that the educational staff gain a better understanding of CT, so they can support and 
distinguish signs of CT that can support the students’ mathematical understanding. 
Together with the researcher the educational staff were questioning and analysing the 
teaching sequence to gain a better understanding of the possibility to work with the 
robots as a digital manipulative tool in mathematics. Through the teaching sequence 
the educational staff modelled the didactical cycles, and examined the teaching 
sequence by using the robots to develop the students’ CT and mathematical 
understanding. “This form of development has given me the courage to do more, and 
use the technology in small steps” (Teacher, class A). The educational staff stated that 
working with the digital manipulative artefacts through a collective professional 
development process had an impact on them, based on the fact that they had to develop 
new teaching sequences together. In other words, it has given the educational staff the 
courage to work with technologies in teaching. The educational staff felt that they were 
gradually being supported in their own expansive learning process and were getting 
help to change their activities through joint collective actions that helped to develop 
their practice regarding the use of digital manipulatives to support of the students’ 
mathematical and computational understanding.  

CONCLUSION  
Expansive learning should be seen as an iterative process, where the educational staff 
together with the researcher examine the current practices, along with the teaching 
sequences. Considering the educational staff’s expansive learning processes, they are 
still in the beginning of the processes. By analysing the didactical cycles, it helps the 
educational staff to gain a greater understanding of how the robots could be used as a 
manipulative artefact to support the students’ mathematical understanding.  
From an educational perspective, working with a robot as a digitally manipulative 
artefact helps the students to reason, problem-solve, generalise, and predict, which may 
lead to a deeper mathematical understanding. The possibilities for supporting the 
students' mathematical learning are present with digital manipulative artefacts under 
the right pedagogical and didactical prerequisites. During the study, it was found that 
the robot itself could not be regarded as a mathematical manipulative artefact, but that 
the didactical cycles and the work on the tasks, which meant that the robot, and the 
built-in CT helped to support the students' development of their mathematical and 
computational understanding.  
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In this paper, members of three research teams describe their digital mapping projects: 
Math-Mapper 6-8 (USA), the Dynamic Mathematics Curriculum Network (Canada), 
and the Cambridge Mathematics Framework (England). Each researcher shares early 
evidence of the ways their map is being used. This evidence illustrates the potential of 
these maps to enhance the design and enactment of mathematics curricula and to foster 
professional learning and knowledge sharing among groups engaged in mathematics 
education. The maps are likely to be increasingly meaningful for their intended 
audiences because they incorporate user feedback and new research. Other insights 
arising from dialogue among the researchers are shared. 
Keywords: digital technology, curriculum design, mathematics professional learning. 

A GENERATIVE DIALOGUE AMONG RESEARCH TEAMS 
In this paper, we consider the potential impact of three projects focused on the digital 
mapping of school mathematics. Each project uses digital technology to make the many 
connections in school mathematics more visible. Math-Mapper 6-8 (MM6-8) is a 
learning map being developed in the United States; the Dynamic Mathematics 
Curriculum (DMC) Network is a digital network that emerged from a Canadian 
research project; and the Cambridge Mathematics Framework is a knowledge map 
being developed in England. Members of the research teams for these projects began 
meeting after the DMC Project (Koch, Suurtamm, Lazarus & Masterson, 2018) was 
presented at the Fifth ERME Topic Conference on Mathematics Education in the 
Digital Era.  
Our initial discussions revealed that the connections as well as the underlying basis for 
the connections, were unique to each project. At the same time, as noted in Koch, 
Confrey, Clark-Wilson, Jameson and Suurtamm (in press), we discovered that each 
map illustrates how mathematics concepts relate to one another, includes connections 
from school mathematics to related research, and offers connections to instructional 
resources. Each project also uses digital tools to facilitate knowledge sharing among 
teachers, curriculum designers, teacher educators, and researchers. Our ongoing 
discussions led to insights into how each map functions as a dynamic, emergent space 
as summarized in Koch et al. (in press).  
In this paper, we introduce the “spaces of representation” (Siegert, 2011) in each map 
by describing their respective purposes, intended audiences, underlying basis, and 
structure. Each researcher then describes some ways their map is being used to 
facilitate the design and enactment of mathematics curricula. Here, we use the term 
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curricula to convey both the mandated curriculum standards that specify the concepts 
and processes students are expected to learn in each grade, as well as the curricular 
materials educators use to enact these standards. Each researcher also provides 
examples of changes made to their map in response to user feedback and considers the 
ways their map functions as a shared resource across professional communities.  
We see these projects as situated at the intersection of two MEDA 2020 themes: 
mathematics teacher education and professional development in the digital age (Theme 
1), and curriculum development and task design in the digital age (Theme 2). We look 
forward to critical engagement with conference participants on these topics. 

THREE DIGITAL MAPPING PROJECTS 
Math-Mapper 6-8 (Jere Confrey) 
Math Mapper 6-8 (MM6-8) is one component of a digital learning system which covers 
the content of middle grades mathematics in the United States (Siemens & Confrey, 
2015). The map can be accessed by registering an account at sudds.co. The purpose of 
the map is two-fold. Firstly, the map creates a visual representation of the relationships 
among the big ideas and sub-constructs within middle school mathematics. We view 
big ideas as concepts that connect the content, processes, and forms of argumentation 
in mathematics. In doing so, big ideas can help avoid viewing mathematics as a set of 
fragmented topics and skills. Secondly, the map provides teachers with direct access to 
empirically-based learning trajectories (LTs) (Clements & Sarama, 2004; Confrey, 
Toutkoushian, & Shah, 2019) which can guide learner-centred instruction and ground 
the map’s related diagnostic assessments. Confrey (2019), wrote a synthesis of research 
on mathematics learning trajectories which summarizes the map’s theoretical 
foundation. MM6-8 was built and refined in a partnership among learning scientists 
and psychometricians in a “trading zone” that allows revision and refinement of the 
map (Confrey, 2019). 

Figure 1: Components of Math-Mapper 6-8 

The principal audience for the MM6-8 map is both students and teachers. The map 
replaces the linearity of a book’s table of contents in favour of multiple levels of visual 
illustration. MM6-8 uses a non-linear, hierarchical structure which includes nine big 
ideas, 25 relational learning clusters (RLCs), and 62 constructs, each of which is 
associated with a LT. Students who use the map can see how what they are learning 
connects to a small but powerful set of big ideas. Teachers who use the map gain access 
to empirically established ideas about learning using LTs. In addition, every level of 
LTs in MM6-8 has a related set of assessment tests and practice accompanied by 
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intuitive student reports to guide diagnostically-valid instructional moves. Thus, 
teachers can use MM6-8 to re-examine instructional materials and curriculum 
standards and diagnostically assess student progress along LTs (Confrey, Gianopulos, 
McGowan, Shah, & Belcher, 2017). Connections to other resources are also offered 
including the Common Core State Standards - Mathematics (CCS-M) and access to 
illustrative resources from the “Resource library”. 
Early users of MM6-8 include partnerships with six middle schools with varied 
demographics. Over the last four years, students have taken over 75000 MM6-8 
assessments enabling the research team to use item-response theory (IRT) to conduct 
on-going validation of those assessments. Annual interviews with teachers have led to 
modifications to the map based on the use of the diagnostics resulting in more explicit 
delineation of misconceptions in mathematics, revisions to the map, and shorter, more 
focused assessments. Student data show positive correlations of increased use with 
improved end-of-year growth on MM6-8 tests (Confrey, Toutkoushian & Shah, 2019). 
Data also indicate that it takes time for teachers to learn to trust the learning trajectories 
and to see their relationship to instructional practices. 
Dynamic Mathematics Curriculum Network (Martha Koch) 
The DMC Network [1] is the result of a research project to represent the connections 
within school mathematics as perceived by individuals who are engaged in 
mathematics education (Koch et al., 2018). Theoretically rooted in complexity thinking 
(Davis & Simmt, 2003; Doll, 2008), the DMC Network was derived from analysis of 
the concepts, connections and related resources suggested by K-12 teachers, school 
division mathematics curriculum leaders, teacher educators, researchers, and graduate 
students from across Canada. In the first phase of data collection, participants engaged 
in video-recorded collaborative problem-solving sessions and created physical models 
of connections they perceived as they worked on the task. The task they were given is 
one that often prompts algebraic thinking. In subsequent phases, we invited 
mathematics educators to view the digital version of the DMC Network that we had 
developed through analysis of the models from the first phase, and to contribute their 
ideas through an online portal.  
In the DMC Network, mathematics concepts and processes are represented as nodes 
connected to one another with curved lines. Clicking a node or connection line reveals 
definitions, explanations, examples, and links to research-informed resources. The 
position of any node is determined solely by connections between that node and other 
nodes. Readers are invited to view these features at dynamicmathcurriculum.ca.  Based 
on our analysis of input from participants, some nodes connect to many others (e.g. 
“Algebraic expressions” currently connects to 12 nodes) while other nodes have fewer 
connections (e.g. “Proportionality” currently connects to 4 nodes). Educators can 
create many paths through the concepts and processes that are shown. A central feature 
of the DMC Network is the “Add to the Network” tab which invites any user to suggest 
new nodes or connections or recommend related resources. Contributors are asked to 
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explain their thinking to assist the research team with evaluating their suggestions and 
deciding which changes should be made in the DMC Network.  
We think of teachers as the main audience for this resource. The DMC Network can 
help teachers deepen their understanding of mathematics concepts, plan a sequence of 
lessons, discover a way to support a student struggling to understand a concept, or share 
ways of teaching mathematics that they have found effective. Teacher educators may 
use the DMC Network to help teachers become more aware of the connections that are 
called for but typically not made explicit in curriculum documents.  
Participants who contributed to the first iteration of the DMC Network found the 
process of articulating and representing the connections they perceived as they engaged 
in collaborative problem solving to be challenging yet generative. Many noted that 
these activities deepened their understanding of mathematics concepts and processes 
in relation to the curriculum standards in their jurisdiction. Most saw mathematics as 
much more interconnected than they had realized and many sought to represent the 
connections they perceived by adding iterative elements to their models. Those who 
contributed their ideas through the “Add to the Network” feature more often suggested 
new connections rather than new nodes. The first iteration of the DMC Network had 
10 nodes with 31 connections while the next iteration had 13 nodes and 59 connections. 
Here again, we noted the tendency for participants to see mathematics as deeply 
interconnected. A few contributors suggested changes that reflect initiatives in their 
context such as one teacher educator who recommended including Indigenous views 
of mathematics in the DMC Network. In the most recent phase of the project, high 
school and college educators have been invited to envision a three-step path they might 
take within the DMC Network and to provide feedback on the nodes and connections 
that might be added. 
Cambridge Mathematics Framework (Ellen Jameson) 
In the Cambridge Mathematics Framework (CM) project a team of designers, teachers, 
and researchers are developing a tool to enable the dynamic generation of maps which 
highlight and describe connections between ideas and experiences in school 
mathematics (www.cambridgemaths.org). The maps, and associated content, are 
representations of knowledge about mathematics learning interpreted from reports of 
research and practice according to our design methodology (Jameson, McClure & 
Gould, 2018). The purpose of the CM Framework is to support coherence in 
mathematics education by facilitating shared understanding of connections in 
mathematics learning within and between communities involved in curriculum design 
and enactment such as curriculum and resource designers, teachers, and teacher 
educators. Our purpose, theoretical influences and design methods are more fully 
elaborated in recent papers (Jameson, McClure & Gould, 2018; Jameson, 2019). 
In order for the CM Framework to serve as a shared frame of reference, these 
mathematical ideas are not curriculum-specific but can be mapped to various sets of 
standards. Likewise, these ideas and relationships are expressed in ways which are 
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recognisable and useful to audiences in multiple communities. Some people may be 
looking for a ‘way down’ to get a more detailed perspective, while others may need a 
‘way up’ to see a bigger picture. Some might be looking back to see what ideas students 
may need to be working with at a particular point, while others may look forward to 
see what ideas students will need to be able to work with later on. Some may be 
working at a time scale of a few weeks, while others may be designing for learning 
over a few months, a few years, or a decade.  
Mathematical content is expressed in the CM Framework maps as waypoints. Each 
waypoint contains a summary of the mathematical idea (the ‘what’) and its part in the 
wider narrative (the ‘why’), and lists examples of ‘student actions’ that would provide 
opportunities to experience the mathematics in meaningful ways. Waypoints are 
related to one another by themes. A theme is a way in which an idea develops into or 
is used when working with another idea. The CM Framework also includes Research 
Summaries which are documents that tell the story of a group of waypoints and themes. 
They include a literature review, an interactive map of the waypoints and themes, and 
a section which describes how research has influenced the structure and content of the 
map. An example of a Research Summary is available on our website (Jameson et al., 
2019). Connections to other resources are also managed within this layered structure. 
These resources might be for designers (such as curriculum statements for curriculum 
comparison or revision), for teachers and teacher educators (such as professional 
development activities), or for both (such as glossary definitions of mathematical 
terms).  
External reviewers evaluate our research summaries, and we conducted a Delphi study 
to evaluate our structure and theoretical influences (Jameson and McClure, 2020). We 
are piloting the use of the CM Framework for curriculum and resource design to 
identify core actions for the key uses of the CM Framework and to develop features, 
interfaces and training support. In one case, we used the CM Framework in the design 
of the UNICEF Learning Passport for Children on the Move (LPCM) mathematics 
curriculum framework, through which we were able to develop new tools and 
processes for mapping, analysing and revising curriculum statements, and for 
documenting the content and connections underlying the revised curriculum in order 
to provide a narrative for those who need to work with it (Jameson & Horsman, 2020). 
We are also currently running a survey, CM DefineIt, to collect data on preferences and 
critiques of published definitions of mathematical terms relative to teachers’ contexts 
(Majewska, 2019). Our next step will be to trial the features and interfaces we are 
developing. 

INSIGHTS FROM ACROSS THE PROJECTS 
Facilitating the design and enactment of curricula 
Each of these digital maps is beginning to impact the design or enactment of 
mathematics curricula in distinct ways. Confrey identifies as a first order of impact of 
MM6-8, an increased awareness among teachers of their students’ thinking and a 
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movement toward learner-centred approaches as teachers enact the curriculum 
standards in their setting. Koch notes that many participants who contributed to the 
DMC Network became more aware of the deeply connected nature of mathematics as 
they articulated their ideas. Insights from educators who describe their experiences 
planning a three-step sequence using the DMC Network will be shared at MEDA 2020. 
In the CM Framework, Jameson describes the integration of important conceptual 
connections, highlighted by evidence from research and practice, into curriculum 
analysis and design in ways that improve coherence.  
Fostering professional learning and knowledge sharing 
Feedback from early users of each project illustrates the ways these maps foster 
professional learning and knowledge sharing within and across the groups engaged in 
mathematics education. For example, Confrey characterizes MM6-8 as a “trading 
zone” (Confrey, 2019) among different communities where practitioners, learning 
scientists, and measurement specialists can discuss the map as a shared resource. On a 
smaller scale, participants in the DMC Network project describe their learning in 
comments such as “I could see some connections quickly and then started to wonder 
about other nodes that might be appropriately connected . . . I wanted to break some 
nodes down into smaller chunks”. Others noted the value of the DMC Network for 
facilitating collaboration such as one participants’ comment “For its users and 
contributors it seems that this type of tool can emphasize the importance of researcher-
practitioner relationships”. Returning to knowledge sharing at a larger scale, in the CM 
Framework LPCM pilot project, a curriculum development team used the CM 
Framework as a shared frame of reference driving discussions around strategies and 
trade-offs in the design of a curriculum with unusual constraints.  
Digital maps as inherently dynamic tools  
Each project includes processes for responding to feedback and for reflecting new 
research. These processes are essential for ensuring each map continues to support 
effective mathematics teaching and learning. The nodes, connections, definitions and 
resources in the DMC Network can be revised as researchers review contributions from 
mathematics educators. In the MM6-8 project, feedback from teachers has resulted in 
changes to the map to clarify mathematics misconceptions and facilitate ongoing 
development of assessment tools. Newly developed learning trajectories can also be 
added. The team developing the CM Framework has created a flexible format and 
structure to which modifications can be made. The CM team is currently using this 
flexibility to expand the range of content and to respond to feedback from external 
reviewers. As the CM Framework reaches a broader audience, opportunities to 
incorporate feedback will expand and new research can be included. 
Dynamic tools can be used in ways which are creative rather than prescriptive; they 
leave room for choice and decision-making. A map or network can contain many 
overlapping paths, allowing users to focus on one or more paths relevant to their 
context while not losing the implications of the others. For example, the CM 
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Framework contains more than a single curriculum could cover, but this is what gives 
it the power to explore the implications of choices for content selection and sequence 
when designing a curriculum or a textbook.  
These projects provide evidence of the ways digital maps can foster vertical integration 
across K-12 mathematics curriculum standards, encourage informal collaboration or 
more formal partnerships between groups engaged in mathematics education, and lead 
to a better understanding of the processes and impact of instructional change on 
teachers’ knowledge and classroom practices.  

NOTES 
1. Social Sciences & Humanities Research Council of Canada partly funded the DMC Network.  
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Using vignettes for the professional learning of Mathematics teachers is considered to 
have a high potential for their growth related to mathematics education: vignettes are 
representations of practice which afford linking theory with practice contexts both in 
learning opportunities and in assessment instruments. The digital age offers various 
possibilities of creating and implementing vignettes in teacher education and 
professional development. However, evidence about best-practice use of different 
vignette formats, such as video, cartoon, or text vignettes, is relatively scarce. 
Responding to this research need, relevant existing findings are reviewed, and 
implications are drawn for the design of a digital tool for representing classroom 
situations in the framework of the European project coReflect@maths. 
Keywords: Vignettes, representations of practice, teacher education, professional 
development, digital learning. 

INTRODUCTION 
Representations of professional practice contexts in vignettes can help to connect 
specific practical requirements of the mathematics teacher profession with theoretical 
contents in mathematics education (e.g., Buchbinder & Kuntze, 2018). This can be 
expected to have advantages for pre- and in-service teachers’ professional learning: 
For instance, specific classroom situations can be analysed with the help of criterion 
knowledge – highlighting the relevance of corresponding professional knowledge for 
such analysis – and cooperative reflection can be encouraged, given the mostly obvious 
need to deal with such classroom situations. Beyond providing teachers with learning 
opportunities, vignettes can also be used in assessment instruments. 
However, relatively little is known from empirical research about best-practice ways 
of using vignettes in professional learning opportunities and in assessment. The 
development of digital technologies offers a large variety of possibilities of 
representing practice contexts such as classroom situations in vignettes: One of the 
most recent developments, for instance, are 3D representations of classrooms with 
student (and teacher) avatars (e.g. Blume et al., 2018; Richter et al., 2019), which can 
be viewed by pre- or in-service teachers with virtual reality headsets. Vignettes using 
this technology may aim at placing teachers in the perception of an artificially designed 
representation of a situation, which can be standardised or – depending on the design 
and goals of the vignette use – be modified in controlled ways. More established is the 
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use of video technology in mathematics teacher education and professional 
development. Video vignettes are expected to contain a high amount of context 
information of a classroom situation and are, therefore, considered as particularly close 
to the classroom situation they represent and to its professional requirements (e.g. 
Richter et al., 2019; Petko et al., 2003).  
Still, there is a need of empirical evidence about the specific strengths of video 
vignettes in comparison with other vignette formats, such as text vignettes, cartoons, 
or animations. For the design of vignette-based digital learning or assessment 
environments, empirical evidence is, however, needed in the search for effective ways 
of technology use. Consequently, this paper addresses this research need and collects 
available findings with relevance for identifying potentials of different vignette 
formats. Implications will be drawn for the development of a digital tool for 
representing classroom situations in the European project coReflect@maths.  
The paper will first outline a theoretical background related to vignette-based 
professional learning and assessment of pre- and in-service teachers. Based on the 
research interest derived from this background, we will then present and examine 
available findings related to different vignette formats and to their respective potential. 
Against these findings, conclusions will be discussed for the design of a digital tool for 
representing classroom situations in the project coReflect@maths, and an outlook on 
further related project goals and activities will be given.  

THEORETICAL BACKGROUND 
Vignette-based professional learning in mathematics education aims at fostering a 
broad range of aspects of professional expertise. In recent approaches of describing 
aspects of mathematics teachers’ expertise, several interrelated and overlapping terms 
are used, such as “awareness” (Mason, 2002), “noticing” in the sense of “selective 
attention” (e.g., Seidel, Blomberg, & Renkl, 2013) or “knowledge-based reasoning” 
(Sherin, Jacobs, & Philipp, 2011), “professional vision” (Sherin & van Es, 2009), or 
“usable knowledge” (Kersting et al., 2012). All these terms have in common that they 
relate aspects of teachers’ expertise to profession-related situation contexts, such as 
classroom situations (Kuntze & Friesen, 2018), so that in these approaches, profession-
related situation contexts are particularly relevant for assessing teachers’ expertise and 
for teachers’ professional learning. 
However, classroom situations are very complex (Petko et al., 2003): in classroom 
situations, many processes take place simultaneously and some of them are not directly 
visible or hearable. Moreover, an individual situation in the classroom happens only 
once in the same way and cannot be reproduced exactly as it had originally taken place. 
Even if a classroom situation is recorded on video, the video can capture only specific 
perspectives and only visual and auditive information can be stored, so that multitude 
of perspectives and thoughts of all the actors of the situation, for instance, cannot be 
mapped. Therefore, even if videos may cover many aspects of a classroom situation in 
an information-rich way, it is not possible to cover all aspects of it. Classroom videos 
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thus should not be confounded with the situation they show, they are only 
representations of them (Buchbinder & Kuntze, 2018).  
In general, classroom vignettes can be understood as representations of practice. 
According to Buchbinder and Kuntze (2018), a representation of practice (e.g. a 
classroom situation) is something that stands for this classroom situation (e.g. a cartoon 
showing a conversation between two students, or a transcript of a dialog) and represents 
some, but not all aspects of the classroom situation it refers to.  
This reduction of information entails some key benefits of vignettes: Vignettes can be 
viewed (or read, etc.) repeatedly and independently from a specific classroom situation; 
they can be stored, collected and provided to other persons. Vignettes, therefore, afford 
an easy access to analysing elements of classroom situations by teachers (Kuntze, 
2018), which makes vignettes a useful instrument in mathematics teacher education in 
many ways (e.g. Skilling & Stylianides, 2019). In particular, vignettes can help to 
bridge the gap between theoretical contents and goals in mathematics education on the 
one hand, and requirements of specific classroom situations on the other hand. 
Vignettes can use different formats, which can be expected to have different specific 
advantages, but also challenges. While video vignettes, for instance, may cover a 
relatively high amount of information from the classroom situation they represent, 
creating such a vignette requires effort, and data protection issues requires care and 
may restrict their use. Compared to cartoons, for example, video vignettes can hardly 
be constructed quickly or modified easily so as to contain specific elements intended 
for reflection. Cartoon or text vignettes contain less information, but are more flexible 
in use and can be constructed relatively easily. Especially without the help of a digital 
tool, the design of cartoon vignettes requires creating and dealing with graphical 
elements, which may represent a difficulty compared with text vignettes. A reduced 
complexity also can be a benefit as it may support the access for learners and reduce 
cognitive load (e.g. Syring et al., 2015). 

RESEARCH AIM 
When it comes to developing vignette-based learning opportunities or vignette-based 
assessment instruments, it has to be decided which vignette format to choose and how 
to frame the vignette-based work. For these design decisions, empirical evidence about 
best-practice ways of using vignettes is needed, as different vignette formats might 
impact differently on teachers’ analysis outcomes, for instance. A video vignette might, 
for example, better support teachers in engaging with the represented classroom 
situation compared to a text vignette, but the large amount of potentially irrelevant 
context information of the video vignette might also be an obstacle for successful 
noticing or criteria-based analysis. Empirical research related to the potential of 
different vignette formats is particularly essential for the design of digital tools and 
environments which aim at facilitating vignette-based work by supporting their design 
and their implementation as learning opportunities. In particular, the following 
questions are in the center: Are there differences between vignette formats, as far as 
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characteristics of their effectiveness for professional learning and assessment (such as 
noticing, analysis, perceptions of authenticity, etc.) are concerned? Which vignette 
formats can be considered as particularly effective according to available empirical 
findings? What implications can be drawn for the design of a digital tool facilitating 
the creation of vignette-based learning opportunities? 
Responding to this research need, we will in the following collect empirical findings 
concerning comparisons of different vignette formats. Based on this, we will discuss 
implications for the development of a digital tool, which aims at supporting the design 
of vignette-based learning opportunities. 

EMPIRICAL FINDINGS ON DIFFERENT VIGNETTE FORMATS 
In a study with N = 298 pre-service and in-service teachers (Friesen, 2017; Friesen & 
Kuntze, 2018), three different vignette formats (text, video, cartoon) were compared in 
terms of the extent of engagement perceived by the participants when analysing the 
vignettes; engagement can be seen as important prerequisite for sufficiently 
representing classroom situations by means of vignettes (ibid.). For evaluating to what 
extent teachers were engaged with the vignettes, they were asked by means of Likert 
scales about the extent of their (1) motivation to analyse the vignettes, (2) regarding 
perceived authenticity of the vignette, and to what extent they perceived (3) immersion 
and (4) resonance when analysing the vignettes. Immersion means that participants felt 
“put in” the situation; resonance refers to whether one thinks about the own 
professional practice when working with the vignettes (cf. Seidel et al., 2011). 
Moreover, it was investigated whether the participants’ analyses varied among the 
different vignette formats, which would indicate that the vignette format can have an 
impact on teachers’ analysis of the represented classroom situations.  
For the study, sets of three vignettes in different formats (text, cartoon, and video) were 
designed representing the same classroom situation. In order to validate the accordance 
of the vignettes to the respective classroom situations, the sets of vignettes were 
subjected to an expert rating by teacher educators. Based on that rating, six sets of 
vignettes rated as highly authentic and representative were chosen. The vignettes 
together with Likert scales for measuring how teachers assess the authenticity of each 
vignette and their perceived engagement were administered in a multiple matrix design 
to the participants (Friesen, 2017; Friesen & Kuntze, 2018).  
In the analysis of the teachers’ responses it was found that the perceived motivation, 
immersion, and resonance was on a similar and relatively high level for all three 
vignette formats. The authenticity of the video-based vignettes was rated by most of 
the participants on average as less authentic than the text and cartoon vignettes; only 
the sub-sample of n = 22 in-service teachers rated the authenticity of video vignettes 
similarly as the authenticity of text and cartoon vignettes. Based on teachers’ analyses 
of the vignettes, a Rasch analysis was conducted. No evidence was found implying 
multiple dimensions, e.g. according to different vignette formats. There were also no 
implications for interrelatedness of vignette formats and teachers’ analysis of the 
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represented classroom situations, which would have become apparent in divergent item 
difficulties. In conclusion, the results did not reveal relevant differences according to 
different vignette formats in terms of engagement, and there were no hints that the 
vignette format influenced teachers’ analysis. 
A study with N = 61 teacher candidates by Herbst, Aaron, and Erickson (2013) 
provided similar results. In this study, it was investigated whether there are differences 
of using animations (animated cartoons with audio track) compared with videos of 
classroom situations in the categories genuineness, projectiveness, mathematics, 
noticing, reflectiveness, and alternativity, which are described in detail in Herbst et al. 
(2013). The results show that participants only rated authenticity of the video vignettes 
higher; no other significant differences were found. Similar to Friesen’s (2017) study, 
the study did not reveal any hints that the participants’ analyses of the represented 
classroom situations were influenced by different vignette formats. The authors, 
therefore, conclude that videos and animations “can be comparably effective” (ibid, p. 
11). In a further qualitative study (Herbst & Kosko, 2014), there were also no relevant 
differences between video vignettes and vignettes with animations. The authors, 
therefore, concluded, that “animations are just as useful as videos” (p. 515) for 
investigating teachers’ professional knowledge.  
In conclusion, the reported empirical findings indicate that the different vignette 
formats appear to be similarly effective to make classroom situations accessible for 
teachers’ analysis. 

DEVELOPING A DIGITAL TOOL FOR VIGNETTE-BASED LEARNING 
A central aim of the European project coReflect@maths is to develop a digital tool 
(DIVER – Designing and Investigating Vignettes for Education and Research Tool), 
which supports pre- and in-service teachers as well as teacher students in creating, 
sharing, and collaboratively reflecting on vignettes representing classroom situations. 
Existing online tools are mostly limited to one vignette format (e.g. cartoons or videos), 
can only be used by speakers of one language (e.g. English), and do often not 
sufficiently solve issues with data protection, which is a major concern in educational 
contexts. The DIVER tool will be programmed as a plugin for the learning platform 
Moodle. Moodle is used by many European universities and provides a secure, data-
protected learning environment in different languages. Since it is open-source, external 
applications such as DIVER can be integrated to add specific functionalities. Another 
advantage of Moodle is its potential for remote teaching since it allows the 
implementation of online courses as well as blended learning scenarios.  
As the empirical findings outlined above do not imply general advantages of video 
vignettes in comparison with the other formats, the development of the DIVER tool 
mainly concentrates on cartoon vignettes, as they can combine advantages of video-
based and text-based vignettes without sharing most of their disadvantages. For 
instance, cartoon vignettes allow to sketch various classroom situations and to vary 
them systematically, which hardly can be done with video vignettes. In addition, as 
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cartoons afford representing aspects of classroom situations visually, long descriptions, 
which could be needed when choosing text vignettes, are not necessary. A central aim 
of the tool, therefore, is to support the easy creation of cartoon-based vignettes. At the 
same time, the tool will also facilitate the integration of text and video vignettes within 
the same environment, as multiple vignette formats might support specific goals of 
professional learning.  
For developing vignettes, the tool is intended to have an easy access graphical interface 
containing several graphical elements (different student and teacher characters, 
classroom environments, classroom material, etc.) that can easily be arranged in order 
to create classroom scenarios. There will be possibilities to add speech bubbles, to edit 
students’ notebooks, and to add writings on the board, so that there are possibilities of 
creating cartoon vignettes on the base of video material which cannot be published as 
a consequence of data protection limitations. The creation of cartoon-based vignettes 
in DIVER is supposed to support creating classroom scenarios in a systematic way, 
highlighting, e.g., certain quality aspects of teaching and learning in the mathematics 
classroom. It allows at the same time to create classroom situations based on personal 
teaching experience of pre-service and in-service teachers. By capturing that teaching 
experience, e.g. in the form of a cartoon-based vignette, it can be shared with 
colleagues and made accessible to collaborative analysis and reflection as well as to 
further improvement. For facilitating the sharing of vignettes and collaborative 
reflection on presented classroom practice, it is planned that the DIVER tool should 
also offer the opportunity to follow up on already designed cartoon-based or existing 
video-based vignettes that can then be analysed and commented on within the tool. 
This function of the tool can also be used for evaluating vignette-based university 
courses or PD programmes and holds, therefore, potential for corresponding evaluation 
research. 

OUTLOOK 
In coReflect@maths, we plan to implement the support of the languages English, 
Spanish, German, and Czech. The relatively quick possibility of translating speech 
bubbles in cartoon vignettes will enable a multinational use of some of the vignettes, 
highlighting a further advantage of cartoon vignettes. This possibility will also enable 
to detect, compare, and discuss cultural specificities of the mathematics classroom of 
the different member countries. Corresponding multi-lingual vignette-based material 
will be published on the project homepage (www.coreflect.eu) for public use by the 
end of the project. 
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In this paper, we surmise that a well-founded geometrical work of teachers is crucial 
for an adequate introduction of digital tools in mathematics education. Building on 
this assumption, we explore an approach to the teaching and learning of geometry 
based on the mathematical work that student teachers actually do. We begin by 
describing the forms of geometrical work performed by student teachers who solve an 
elementary geometric task in a paper-and-pencil environment. Next, we present a 
training process designed to help them better master their own work through the 
conjoint use of classical and digital tools in compliance with institutional expectations. 
The development and analysis of the research are supported on the theory of 
Mathematical Working Space. 
Keywords: Geometrical work, Dynamic Geometry Software, Geometry teaching and 
learning, Teacher training. 

INTRODUCTION 
For more than 30 years now, mathematics instruction has benefited from the many 
digital tools developed by researchers and teachers in many countries. We have 
ourselves been involved in the development of teaching and learning situations based 
on Dynamic Geometry Software, inspired by Laborde’s (2001) or Mariotti’s (2000) 
contributions. Nevertheless, it must be acknowledged that this unprecedented 
mobilisation of new high-performance tools has not had the expected effects. 
According the PISA Study on Students, Computer and Learning (OECD, 2015), the 
substantial investments made might have a counterproductive effect. Indeed, and 
paradoxically, the authors of the report argue that the higher the investment in ICT, the 
lower the results. And, they conclude that there exists a negative relationship between 
computers use and performance in mathematics. 

Irrespective of the specific tasks involved, students who do not use computers in 
mathematics lessons perform better in mathematics assessments than students who do use 
computers in their mathematics lesson, after accounting for differences in socio-economic 
status (OECD, 2015, p. 158). 

Moreover, in the case of France, the last twenty years have seen a dramatic decline in 
the level of students in absolute and relative terms since France. A study with primary 
school students (Chabanon & Pastor, 2019) show a dramatic decline in students' 
knowledge since in some mathematics areas, half of the present students belong to the 
last decile of the 1980s. Of course, reasons for this failure are complex and not all of 
them are related to the entry into the digital age and we continue to think that digital 
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tools can positively transform the mathematical work of students. For the ICMI study 
on ICT (Hoyles & Lagrange, 2010), contributors were invited to consider the influence 
of teachers on this point. Most of the papers insisted on the conditions of use and 
appropriation of digital tools leaving aside possible problems related to initial teachers’ 
knowledge of mathematical content. This issue is just evoked but not really addressed 
in the papers and surveys that we read. That is why we launched this joint research 
between our two teams (PUCP in Lima, Peru and LDAR in Paris, France), on the 
question of teachers’ knowledge and training in this field. The present research aims to 
identify the real and effective mathematical work developed by teacher students and 
then to design a training process based on the mathematical work forms actually 
produced by the students. To be more precise, and working only in geometry, the 
research is grounded on the following teaching intents: 

S1. To base the teaching and learning of geometry on existing forms of 
geometrical work among students in such a way that they can examine and 
question their mathematical knowledge, or be aware of their limits, conceptions, 
etc. 
S2. To promote a flexible and non-compulsory use of digital tools seen as a set 
of resources from which students can draw according to their knowledge and 
taste.  

The relevance and validity of these two teaching intents (S1 and S2) are studied through 
the lens of the theory of Mathematical Working Spaces (MWS) (Kuzniak, Tanguay & 
Elia, 2016) and geometrical paradigms (Kuzniak, 2013). A brief introduction to this 
theoretical framework is first given. Then, our report is divided in two parts. The first 
part is dedicated to the identification of the geometrical work actually performed by 
primary school teacher students when solving geometric problems in a paper-and-
pencil environment. Next, we present the task, developed in a digital environment that 
is intended to provide students with the means to master mastering their own geometric 
work and help them overcome certain obstacles.  
This contribution is part of the debate on the role and use of classical and digital tools 
in mathematics teacher education and professional development (topic 1) and in task 
design (topic 2).  

THEORETICAL FRAMEWORK  
Mathematical Working Spaces (MWS) 
A Mathematical Working Space (Kuzniak, Tanguay & Elia, 2016), named MWS, is an 
abstract environment organized to enable the functioning and generation of 
mathematical work in a specific domain (geometry, probabilities, etc.). The space thus 
conceived is based on the articulation of epistemological and cognitive aspects 
represented by two planes in the MWS diagram (Fig1). The epistemological plane is 
directly associated to the mathematical content. This plane consists of three sets of 
components: a set of signs named representamen, a set of technological tools 
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(artefacts), and a set of properties and theorems (theoretical referential). The second 
plane, cognitive plane, relates to the thinking of individuals solving mathematical tasks, 
and is the conjunction of three cognitive processes: visualization, construction and 
proving. The transition from one plane to another plane results from the three geneses 
connected with the model: semiotic, instrumental, and discursive (Fig. 1).  

• a semiotic genesis that transforms the signs into operative mathematical objects; 

• an instrumental genesis that makes the artefacts operative as construction 
instruments; 

• a discursive genesis of proof that relies on properties and organizes them for 
producing a mathematical proof. 

Figure 1: The MWS Diagram 

The MWS diagram helps visualize the dynamics and evolution of the work through the 
different geneses and planes. To account for the various interactions necessary to 
generate this work, it is useful to consider three vertical planes in the diagram: semiotic-
instrumental [Sem-Ins], instrumental-discursive [Ins-Dis], and semiotic-discursive 
[Sem-Dis]. A work will be considered as complete (Kuzniak & Nechache, 2016) when 
a circulation into the MWS diagram exists that mobilizes all these vertical planes. 
Geometrical paradigms 
In geometry education, three geometrical paradigms have been adapted from Kuhn’s 
paradigms by Houdement and Kuzniak (Kuzniak, 2013) and help clarify and organize 
the various and conflicting points of view prevailing in education around geometry. 
The first paradigm called Geometry I is concerned by the world of practice with 
technology. In this geometry, valid assertions are generated using arguments based 
upon perception, experiment, and deduction. The paradigm called Geometry II, whose 
archetype is classic Euclidean geometry, is built on a model that approaches reality 
through a model. Once the axioms are set up, proofs have to be developed within the 
system of axioms to be valid. This geometry has an axiomatic horizon in relation to the 
modelling of the real world. To these two Geometries, it is necessary to add Geometry 
III, which is usually not present in compulsory schooling, but which is the implicit 
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reference of mathematics teachers who are trained in advanced mathematics. In 
Geometry III, the system of axioms itself is disconnected from reality, but central.  
Identification of geometrical paradigms and their interplay contributes to the 
understanding of what guides the work actually performed in a school setting and helps 
characterize the forms of this work. In the following, paradigms will help us clarify the 
extent to which the work performed complies with teaching expectations.  

DIFFERENT FORMS OF GEOMETRIC WORK 
First-year master teacher students were asked to perform a geometric task on estimating 
the surface area of a piece of land, "Alphonse’s field".  

Alphonse has just returned from a trip to Périgord where he saw a quadrilateral-shaped 
field that his family was interested in. He would like to estimate its area. To do this, during 
his trip, he successively measured the four sides of the field and found, approximately, 300 
m, 900 m, 610 m, 440 m. He's having a hard time finding the area. Can you help him by 
showing him the method to be followed?  

Students were allowed to search for a solution and ask further information for ten 
minutes. Contrary to the initial teachers' and researchers' expectations, almost all 
students did not identify the need to have further conditions to fix the shape of the 
quadrilateral and determine its area. Indeed, they engaged in the search for the field 
area by spontaneously adding certain supplementary conditions (the quadrilateral had 
to be specific or all the quadrilaterals had the same area since they had the same 
perimeter). From the solutions that the students provided to the task, we have drawn 
the following characterization of their geometric work.  
Forms of geometric work identified in a paper-and-pencil environment 
The study (Kuzniak & Nechache, 2020), in Paris, was conducted over two years and 
engaged two cohorts of student’s teachers (85 in all) and was completed and confirmed 
by the same experiment in Lima with 30 students this year. Using the MWS theory, 
five main forms of geometric work have been identified. In order to clarify these forms 
of work, we have observed in particular the place and role of the semiotic tools (figure 
and drawing), the artifacts (construction and length measurement tools) and the 
theoretical tools (formulas and properties). These forms of geometrical work also 
depend on their relation to Geometry I or Geometry II paradigm or an interplay 
between both geometrical paradigms. 
1. Dissectors work is supported on a decomposition of the quadrilateral into sub-figures 
without any use of drawing tools. It is a form of work in conformity with the 
Geometry II paradigm with an exploratory proof work. This work did not produce the 
expected results and leads to a blockage. In the end, it is not complete because students 
do not engage in any exploration work based on figures and possible constructions. 
2. Surveyors work is based on figure construction at scale with drawing tools. The 
constructed figure is then used as support for measuring, reasoning and proving. It is a 
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form of work that is in line with the expectations of the Geometry I paradigm. We 
consider it as complete, in the MWS context, because all the geneses of work are 
mobilized. However, the final outcome is not mathematically correct because students 
used a particular drawing and introduced sole additional data.  
3. Explorers work refers to construction and exploration of different figures that satisfy 
the required conditions. Compliant to Geometry II paradigm, this work is not complete 
due to a lack of explanations and references to properties. 
4. Constructors work is only dedicated to the sole construction of the quadrilateral with 
use of ruler and/or compass to transfer the lengths of the sides. This work is not 
complete and remains compliant to Geometry I in the sole plane [Sem-Ins]. 
5. Calculators work is guided by a calculation based on a formula specially invented 
for this purpose. It does not use any control, instrumental or theoretical, over the results. 
Calculators’ work form poses the problem of the exact nature of the paradigms 
involved in work. It may be a kind of scholarly geometric paradigm which interferes 
with geometrical paradigms. 
Lack of controls and false results 
From this first report we were able to draw some conclusions about the students' lack 
of control over their work that leads them to mathematically false results. This is largely 
due to the fact that students have developed a cognitive repository (Kuzniak & 
Nechache, 2020) that contradicts the standard theoretical referential. This repository is 
based on a set of knowledge and assertions that are false or at least questionable. They 
introduce false theorems in action (equivalence of perimeter and area). They make 
systematic use of even imaginary formulas and finally they consider that the figures 
involved in a geometry problem are necessarily particular figures. 
This cognitive repository comes from the students' previous practice of geometry and  
enables them, in the best of cases, to produce a geometric work in which processes and 
methods are in conformity with the dominant geometrical paradigm. But, the results 
they get are not correct due to a lack of control based on the theoretical referential. The 
working forms of Dissectors, Surveyors and Explorers are good candidates to develop 
a teaching and learning in the field of plane geometry adapted to the level of these 
students and their future schoolchildren. We suggest that it is possible to enrich these 
forms that are close to the way these students work and think in order to make them 
correct and conform to certain geometric paradigms (S1). According to our approach, 
this requires thinking about the design and implementation of didactic situations based 
on the use of various classical and digital tools (S2). We will detail this in the following 
part.  

DEVELOPING A GEOMETRIC WORK BASED ON A FLEXIBLE USE OF 
DIGITAL TOOLS 
Based on the geometric work forms previously identified in a paper-and-pencil 
environment, we decided to continue the study in Lima and Paris by developing the 
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students' geometric work with use of digital tools. The development of the expected 
geometrical work is based on different types of controls in relation to each of the 
genesis of the MWS. The construction of figures with drawing and measurement tools 
is associated to approximation of the measurement and a set of procedures 
(triangulation, formulas and properties). In this way, we think the students' cognitive 
repository can be changed in order to adjust it to the epistemological referential 
expected at this level. In a way, the geometric paradigm involved is mainly related to 
both Geometry I and II paradigms with a strong emphasis on the discursive genesis 
associated with proof. 
To challenge the work done previously, we chose to have the students explore the 
various configurations and formulas of possible areas by using a version of GeoGebra 
on a tablet. Moreover, this study is related to our theoretical framework (MWS theory) 
and that led us to consider and articulate the three MWS geneses in the project. The 
instrumental genesis supported by digital and classical tools is central and articulated 
with a semiotic genesis based on the use of different registers of representation (graph, 
table, numeric calculation) and with the proof discursive genesis generated by symbolic 
and analytic tools. 
A three-stage project 
The project is divided into three stages that will be illustrated and completed during the 
oral presentation at the conference.  
First Step. Construction and exploration with GeoGebra. 
The first is a classic step of construction and exploration in a digital environment. It 
aims to develop better controlled construction methods by integrating the circle entity 
with construction tools into the student’s work, especially that of constructors. The 
exploration of the different quadrilaterals obtained must challenge student’s theorems 
in action related to areas and perimeters and lead them to suggest the need of 
supplementary information, one of the quadrilateral diagonals, to construct the 
quadrilateral and solve completely the task.  
This step has first been implemented in Lima with 30 student teachers who were 
working alone each with a computer and GeoGebra. We noted a significant difference 
between the students who were comfortable with the software, since they knew the 
tools needed to use it, and the others who had great difficulty building the figure. 
Among the students who had no difficulty using the software, there were two 
populations. The first constructed the quadrilateral by adjustment with the “given 
length segment” tool. Then with the “area measurement” tool, they estimated the area 
of the quadrilateral. Some of these students are then confident that they have found the 
right value for the area, while the majority of them have been able to see area variations 
and suggest other data to construct the quadrilateral (angle, particular figure...). For the 
second population, unfortunately, the construction they made turned out to be 
indecipherable and useless because of the remaining traces of all the circles necessary 
for the construction.  
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Second step. Towards an experimental proof of Heron’s formula. 
As mentioned earlier, many students are convinced that there is a formula for finding 
the quadrilateral area, and therefore the formulas issue is taken up for this second step. 
Using the triangulation method introduced by dissectors, the aim here is to explore the 
possibilities of obtaining a formula for the area of a triangle as a polynomial function 
P of the length of its three sides.  

  

Search for the area of a variable triangle 
having two fixed sides 

Graph of the points (side, square of the 
area) to get the polynomial P. 

Table 1. Towards an experimental proof of Heron’s formula 

Third step. Towards a discursive proof.  
Finally, for the most advanced students, a search for proof is planned in connection 
with formal classical proof or with the possibilities proposed by GeoGebra around the 
automatic reasoning tools (ART). This approach uses advanced control instructions 
(Relation tools) and allows to verify certain demonstrations based on Pythagoras’s 
theorem. It is based on an analytic expression of the conditions related to the 
construction of a triangle with the height relative to the diagonal. 

CONCLUSION 
This ongoing research focuses on a type of teacher training associated with the use of 
classical and numerical tools. The training is based on the students' geometric work 
forms (S1) that we have been able to describe through the use of MWS theory. We 
attempt to design tasks that allow the evolution of these forms of geometric work with 
the use of various digital or traditional tools (S2). We seek to develop students' 
exploratory work through the construction of figures in different environments. We 
also wish to make them use the semiotic registers related to calculation and drawing. 
Finally, our aim is to enable the students to elicit experimental and formal proofs. In 
this way, we think possible to make the students aware of their different forms of 
geometrical work in order to develop control means on their solutions to the task. 
The first results of our experiment showed the difficulty for the students to use some 
tools, both classical and digital. However, we were able to observe that the joint 
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activation of these different tools allowed the whole group to progress and overcome 
certain obstacles. This first experimentation also shows the interest of varying the tools 
used by the students. Indeed, some of them accept to use calculators, spreadsheets or 
CAS while rejecting GeoGebra. We also observed that some students were asking for 
experimental and others for formal proofs.  
Our training method is based on the students' actual mathematical work, and combines 
the use of traditional and digital tools, around emblematic tasks. It seems to us therefore 
relevant to implement it not only in geometry but also in other fields of mathematics. 
But of course, it is still necessary to assess the extent to which this use of digital and 
traditional tools has really transformed their working form in relation to the institution's 
expectations.  
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A teaching activity on rotations has been used in a math education master course in 
order to provide students with an insight into mathematics teaching with digital 
resources. The design of the activity was framed by the Theory of Semiotic Mediation 
taking into account related research results concerning the synergy between 
manipulatives and digital artefacts at school level. The aim of the study described in 
this paper is to investigate the potentialities of the designed teaching activity in helping 
prospective teachers to reflect on the role and the use of digital resources in high-
school mathematics teaching and learning. 
Keywords: mathematics teaching with digital resources, Theory of Semiotic Mediation, 
prospective teacher education. 

INTRODUCTION 
Integration of digital resources in mathematics teaching and learning is one of the main 
research topics in mathematics education, at least for the last twenty years (Trgalová 
et al., 2018). The issue is addressed from different prospective such as: design and 
development of resources; mathematics curriculum development and task design; 
benefit for students’ learning; and, more recently in particular, mathematics teacher 
education and professional development (Clark-Wilson et al., 2014). With respect to 
the latter, many research studies are being devoted to this area: to identify the specific 
knowledge and expertise that is required to efficiently/effectively teach mathematics 
using digital resources; and to design and evaluate teacher’s education in mathematics 
and professional development programs, aiming to enhance this knowledge and 
expertise. Within this research field, this paper aims at contributing to investigate the 
prospective teachers' interaction with digital resources with a dual purpose: on the one 
hand we focus on their personal reflection on mathematical meanings through the 
accomplishment of a sequence of tasks involving different kind of resources; on the 
other, we pay attention to their professional development process in reflecting on the 
integration of digital resources in mathematics teaching. 
To do this, we present a teaching activity and its implementation in a teaching 
experiment, involving master students in Mathematics (here conceived as prospective 
teachers). The activity, concerning rotation around a centre in the plane, is described 
within the framework of the Theory of Semiotic Mediation (Bartolini Bussi & Mariotti, 
2008), highlighting the role of the synergic use of digital and non-digital resources. 
Some key episodes of the implementation of the teaching activity are described and 
analysed in order to answer a first research question: can the combined, intentional and 
controlled use of digital and non-digital artefacts within the activity enhance students' 
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mathematical content knowledge? Moreover, we show some evidence supporting the 
hypothesis about the potentiality of the use of the activity to develop prospective 
teachers' professional knowledge and skills. This aims to answer the following research 
question: may the activity enhance the students' knowledge and expertise on the use of 
digital resources in mathematics teaching and learning?  

THEORETICAL FRAMEWORK 
The Theory of Semiotic Mediation (TSM) offers a theoretical framework suitable to 
design teaching sequences embedding digital resources and to analyse data in order to 
gain insight into the students' learning process. According to TSM, personal meanings, 
emerging from the activities carried out with an artefact, may evolve into mathematical 
meanings, which constitute the objective of the teaching intervention. Fostered by 
specific semiotic activities, the evolution can occur, in peer interaction during the 
accomplishment of the task and in collective discussions, orchestrated by the expert 
guidance of the teacher. Some research studies based on TSM (Mariotti, 2009) have 
pointed out the fundamental role of the teacher in fostering the construction of 
mathematical meanings throughout the students' learning process. Within TSM, the 
design of tasks develops on the base of a fine grain a priori analysis of the solution 
processes, and specifically on the identification of the schema of utilization that are 
expected. Moreover, Faggiano, Montone and Mariotti (2018), showed that a potential 
synergy may occur between the use of different digital and non-digital artefacts, 
providing a rich support to the development of mathematical meanings. For the 
purposes of the math education master course at stake, the TSM was chosen to offer to 
the students a framework to develop their reflection on the role and the use of digital 
resources in mathematics teaching and learning. 

METHODOLOGY 
Participants, procedure and data collection 
The study was conducted with 12 master students in Mathematics, within a 
mathematics education course. They were familiar with the notion of rotation as an 
isometric transformation of the plane in itself, with one fixed point, called centre of the 
rotation. The teaching experiment was developed in three lessons of two hours each. 
In the first session students were asked to work in groups of four on a sequence of three 
tasks on rotation, involving different kind of resources. The second session was 
devoted to a collective discussion, conducted by the teacher, aimed at allowing 
personal meanings to emerge and evolve towards the meaning of rotation. The aim of 
the last session was to collectively discuss with the students the experience they had 
with the teaching sequence of tasks and to bring them to reflect on the way the activity, 
conveniently changed, can be developed in a high-school class in order to teach 
rotations through a synergic use of digital and non-digital resources. 
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Group work and discussions were videotaped, transcribed and analysed together with 
the students' protocols. In this paper we present some of the collected data with the aim 
to provide elements to answer to our research questions.  
Overview of the teaching sequence 
The aim of the teaching sequence was to focus on the properties of the rotation as a 
one-to-one correspondence between the points of the plane, described by the centre of 
rotation, the angle of rotation, and the direction of the turn, and which preserves the 
distances of each rotated point from the centre. The tasks have been designed according 
to TSM and combining the use of different artefacts in order to exploit the synergy 
among them. 

Figure 1a: Task 1 Figure 1b: Task 3 

The first task (Fig. 1a) required students to draw the figure obtained by rotating 90° 
clockwise a given figure around a given (external) centre and to explain the way they 
did it. In order to carry out the request, the students were given tools such as the 
protractor, a ruler, set squares and a compass. The aim of this first task was to draw 
students' attention to the following aspects of the concept of rotation: the idea of 
rotation as a circular rigid movement of a figure around a point –called centre– by a 
certain angle, expressed by the use of the compass –to preserve the distances from the 
centre– and the use of the protractor –to rotate all the points by 90°; the idea of rotation 
as a punctual correspondence, expressed by the identification of the rotated points in 
the intersection points of the arches –drawn with the compass– with the rays –drawn 
from the centre creating 90° angles; the idea of rotation as an isometric transformation 
which, in particular, preserves the distances and the amplitudes of the angles and 
transforms segments into congruent segments, expressed by the process to join the 
obtained rotated points to draw the rotated figure. 
In the second task students were required to use a Dynamic Geometry Environment 
(GeoGebra). They were asked: to construct the segment A'B' obtained by rotating 60° 
clockwise a given segment AB around a given point P, using the tool/button “Rotate 
around point”; to observe what moves and what doesn’t move when dragging the 
extremes of the two segments or the point P and to explain the reasons why it happens. 
The aims of this second task were: to draw students' attention once more to the meaning 
of rotation as a punctual correspondence of the points of the plane and as an isometric 
transformation –by dragging the extremes of the segment AB and observing the 
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resulting movement of the segment A'B'; to highlight the fundamental role played by 
the centre of rotation, during the construction of the required rotation –by dragging the 
point P and observing the resulting movement of the segment A'B'. 
The third task (Fig. 1b) does not require the use of GeoGebra. Students were given two 
congruent figures drawn on a piece of paper and were asked to find the centre of the 
rotation that transforms one figure into the other. The aim of the third task was to draw 
students' attention to the centre of the rotation as the unique point at the same distance 
from each pair of corresponding points of the figures. That is, the centre of rotation can 
be found as the intersection point of the perpendicular bisectors of two segments 
joining a point of one figure to the corresponding point of the other figure.  

RESULTS AND DISCUSSION 
The transcripts and the protocols, presented and discussed in this section, were chosen 
for their features to give evidence of: the emergence and evolution of signs showing 
the students' enhancement of their mathematical knowledge; and the students' 
understanding of the role and the use of digital resources in high-school mathematics 
teaching and learning.  
Students' accomplishment of the three tasks  
During the first lesson students worked in groups of four, but each of them received 
his/her own sheet to work on. In order to obtain the 90° clockwise rotation of the given 
figure around the given point P, all of them immediately started using the compass, 
pointed in P, to draw four arches passing through the vertices of the given figure. Then 
they drew the four segments joining each of the vertices with the point P. Finally, as 
the required rotation was 90°, they drew, starting from P, the perpendicular lines to 
these four segments. To do that, some of them used the protractor and others the set 
squares. The rotated figure was identified joining the intersection points of the arches 
with the perpendicular lines (see. Fig. 2a).  
A tablet was given to each of the groups in order to accomplish the second task. As 
requested, they: opened the given GeoGebra file; used the tool/button “Rotate around 
point” to create the 60° clockwise rotation of the given segment AB around the given 
point P; dragged A and/or B and then dragged P; discussed about what happened; wrote 
their observations concerning the dragging of the elements. The quote below is what 
one of the students wrote: 

- Dragging the point A, point B and the rotated point B' remain fixed, differently from the 
rotated point A'. Moreover, the length of the segment remains the same. Varying A, 
segment AB varies too, such as segment A'B'. 

- Dragging point P, segment A'B' translates so that: the 60° inclination between the line 
through line segment AB and the line through line segment A'B' is preserved, and PA=PA' 
and PB=PB'. 
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The text shows the student’s comprehension that dragging the extremes of the segment 
AB gives as a result the movement of the segment A'B, that endows rotation with the 
meaning of a punctual correspondence and of an isometric transformation. Moreover, 
the dragging of point P and the observation of the resulting movement of the segment 
A'B', has allowed the role of the centre of rotation to be highlighted.  

Figure 2a: One of the students' protocols 
of Task 1 

Figure 2b: One of the students' protocols 
of Task 3 

In the final part of the lesson students worked on the third task to identify the centre of 
rotation that transforms one of the given figures into the other. This resulted in being 
the most challenging task. In one of the groups, for example, students started reflecting 
on the idea that a rotation preserves the distances between the centre and each pair of 
the corresponding points. However, in order to identify the centre, they extended the 
line through one of the segments of the figure and focused on one of the vertices. Along 
this line, they looked for the point which has the same distance from the corresponding 
point of the second figure. In this way, the centre was outside the piece of paper and 
they decided to take another sheet and extend the lines on that one (see Fig. 2b). To 
conclude, students didn’t succeed in accomplishing the third task, and this became the 
main focus of the next class discussion. 
Class discussion of the three tasks  
According to the TSM, during the second lesson, the teacher initiated a class discussion 
with the aim to focus on the aspects of the rotation on which students were required to 
reflect on, in order to fully construct the mathematical meaning. In particular, the 
students' attention was brought to the perpendicular bisector of the segment joining a 
point of one figure to the corresponding point of the rotated figure. As the centre of the 
rotation belongs to the perpendicular bisector for any pair of corresponding points, 
indeed, this allows us to find the centre as the intersection point of two different 
perpendicular bisectors. For this purpose, students were firstly asked to reflect on how 
to accomplish the first task without any tools. The required folding of the paper allowed 
the students to focus on the triangles obtained joining two corresponding points 
between them and with the centre. In this way, it was easy to pay attention to the fact 
that these triangles are isosceles.  
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At this point, the teacher moved on to discuss the second task. Asking students to report 
on what they had done working in groups during the first lesson, she pointed on what 
moves and what doesn’t move when dragging A or P. Students were able to make the 
right hypothesis concerning the movement of A' with respect to dragging of A. The 
discussion on how A'B' moves when dragging P was based on the use of the trace (Fig. 
3a). The teacher’s aim was to let students give meaning to the “translation” of the 
segment A'B'. As the following quote shows, students claimed that the segment AB 
has to have always the same direction as the segment A'B': 

Figure 3a: GeoGebra screenshot taken 
during the discussion – dragging P on the 
left 

Figure 3b: GeoGebra screenshot taken 
during the discussion – highlighting the 
triangles  

Giusy:  A'B' has to move along the direction of 60° and has to move down as much 
as I drag on the left in order to keep constant the distances PA' and AP 

Felice:  it is right that it goes down because if it had gone up the angle would have 
been contracted  

Susanna:  indeed, we paid attention to the distances but not to the angles, so [for the 
segment] to go up the angle contracts, as he said, and the angle is not 
preserved of course   

The discussion continued with the teacher aiming to focus once more on the triangles 
obtained joining two corresponding points between them and with the centre. Different 
colours were used to draw the segments joining different pairs of corresponding points 
with the centre (see. Fig. 3.b). It was an easy consequence, thus, to perceive the centre 
as the intersection point of two different perpendicular bisectors of any two pairs of 
corresponding points. This allowed the request of the third task to be accomplished 
according to the following observations: 

Stefano:  if we consider the circumferences on which the points move, the centre of 
the circumference that transform this point into this other will be on the 
perpendicular bisector of the chord 

Susanna:  once the points are connected, we should find the midpoint of these segments 

Giusy:  and so, it comes that what is given by the intersection of the perpendicular 
bisectors is the centre of the rotation 
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The excerpt shows how, through the mediation of the digital artefact, the students 
realised that the centre of rotation can be found as the intersection point of the 
perpendicular bisectors of two segments joining a point of one figure to the 
corresponding point of the other figure.  
Class discussion on the use of a similar activity to introduce rotations at high-
school level  
During the last session, students were asked to reflect on the experience they had had 
with the teaching activity. They recognized that the activity had helped them to give 
meaning to the notion of rotation, focusing not only on its definition as an isometric 
transformation but also on its properties. During the discussion, in particular, they paid 
attention to the relationship between rotations and axial symmetries: it happens, indeed, 
that, in the attempt to obtain the rotated figure, one of the students folded twice the 
paper and used a pin. Then the students were required to reflect on the way the activity, 
conveniently changed, can be developed in a high-school class in order to teach 
rotations through a synergic use of digital and non-digital resources. They recognised 
that GeoGebra, and in particular the trace tool, reveals itself to be effective in order to 
highlight the notion of rotation as an isometric transformation, which preserves the 
distances and the amplitudes of the angles and transforms segments into congruent 
segments. However, they believed it was important to start the sequence of tasks with 
paper and pencil. In particular, they started discussing on the idea to introduce the 
activity starting from the request to do a double axial symmetry with respect to two 
lines having in common a point, and they thought to make use of a further artefact, a 
transparency: 

Teacher:  so, I ask you to do the two axial symmetries, and then? What are the questions 
to pose?  

Stefano:  then I put a transparency on  

Mario:  what is happened to the figure? 

Stefano:  putting the transparency on and tracing the starting figure, try to overlap 
rotating  

As the quote above shows, the idea was to guide students to build the notion of rotation 
as a combination of two axial symmetries with their axes that meet in the centre of the 
rotation, using paper, pencil and a transparency.  
Then they moved to the use of GeoGebra in order to exploit its potential to focus on 
the dependence of the final figure from the starting one and from the intersection point 
of the symmetry axes. It also emerges that using GeoGebra to look at the rotation as a 
double axial symmetry can allow high-school students to easily recognise that rotations 
preserve the distances of any pair of corresponding points from the centre. However, 
they underlined the importance of guiding students to focus on the triangles obtained 
joining two corresponding points between them and with the centre, as they recognised 
this aspect to also have been important in their experience. It is by means of this 
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observation that they were able to find the centre of the rotation, given the figures, and 
the third task, as it was, was considered to be a valuable activity in concluding the 
sequence. 

CONCLUSION 
The episodes of the implementation of the teaching activity, discussed in the last 
section, reveal that the combined, intentional and controlled use of the digital and non-
digital artefacts enhanced students' mathematical content knowledge. Indeed, the 
mediation of the artefacts resulted to be fundamental in order to let personal meanings 
emerge during the interaction with the artefact in the accomplishment of the tasks. 
These meanings evolved towards mathematical meanings throughout collective 
discussion. The most evident aspect is the one concerning the characterization of the 
centre as intersection of two perpendicular bisectors.   
Moreover, results show how the activity was useful for the prospective teachers to 
develop professional knowledge and skills. The teaching activity was the occasion for 
them to discuss specific mathematical and pedagogical aspects. For example, the 
notion of rotation as a combination of two axial symmetries was seen as important to 
help high-school students to highlight the properties of the rotation. The role of digital 
resources emerged while the prospective teachers interacted with it and reflected on 
their experience. They experienced how digital resources can foster the construction of 
meanings and can be integrated by the teacher in order to serve her didactic objectives. 
To conclude, we can say that the activity seemed to have enhanced the students' 
knowledge (in terms of awareness of the various aspects and the properties of the 
geometrical concept) and expertise on the use of digital resources in mathematics 
teaching and learning (in terms of semiotic potential of the resources).  
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A commognitive approach for teaching functions: The discursive 
change of pre-service teachers in a technology-rich environment 
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Norwegian University of Science and Technology, per.g.osterlie@ntnu.no 

This paper attempts to investigate the contribution of digital tools when pre-service 
teachers were introduced to functions. The overarching goal was to improve their 
subject matter knowledge of functions through a commognitive approach using an 
technology rich environment. The study was conducted using student’s narratives from 
written tasks and oral observation. A claim is that a discursive change can be observed, 
and that technology played an important part. 
Keywords: Functions, mathematical discourse, design research, commognition 

INTRODUCTION 
With a new curriculum, to be implemented in Norwegian schools in autumn 2020, a 
further emphasis is put upon functions and modelling. Results from the national 
Norwegian exams have proved functions to be challenging, and thus call to future 
teachers do something about that. As a teacher educator, I am also challenged to 
provide my students with the needed knowledge. That gave grounds for a research 
project on how to design a first course in functions for pre-service teachers (PST). The 
research method was an adoption of design research (DR) (e.g. Gravemeijer, 1994; 
Design Based Research Collective, 2003) and commognitive theory (Sfard, 2008). In 
this paper I concentrate on how technology contributed to the design. 
An important part of the future teacher’s knowledge will be to interpret functions as 
reificated objects with the characteristics of univalence and arbitrariness. My research 
question for this paper is: 
How can a technology rich environment contribute to PST’s reification of a function 
object that includes univalence and arbitrariness? 
In the frame of the theory presented later, the reification should end with an abstract d-
object. 

THEORETICAL BACKGROUND 
About functions and MKT 
Teaching will require a Mathematical Knowledge for Teaching (MKT) (Ball, Thames, 
& Phelps, 2008). One important part of the MKT is the reification of the function as an 
object (Sfard, 1991, 2008). In mathematics, we operate with the function as an object. 
Composed functions, derivatives and integration are all examples where functions are 
treated as objects. Reification is thus required. 
Freudenthal (1983) put emphasis on two other properties of the modern function: 
univalence and arbitrariness. Univalence, or one-valuedness, is a necessary 
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requirement to avoid ambiguousness. A modern definition of a function does not 
restrict the nature of the dependency between the variables. There is also no restriction 
of the variables themselves. Both are arbitrary. The two properties are the result of the 
historical development of the function (Boyer, 1959; Kleiner, 1989). The same 
properties are also among the demands for the MKT by Even (1993). 
A commognitive approach 
A commognitive approach was used on several levels. First, the learning goal for 
functions is formulated within a commognitive framework. Second, the analysis is 
done with a commognitive approach. 
Sfard regards communication and cognition as intertwined: “[t]hinking is an 
individualised version of (interpersonal) communication” (2008, p. 81). With the 
blending of communication and cognition, a new word is merged of the two nouns: 
commognition. An implication is that narratives can be regarded as expressed thinking. 
Sfard (2008) describes mathematics as a special discourse with four properties that 
makes it distinct: word use, visual mediators, narratives and routines. Visual mediators, 
visualisations used as mediators, are operated upon as an important part of 
communication. As participants in a discourse the mathematical activity consists of 
producing narratives that can be endorsed. According to Sfard (2008) and Lavie, 
Steiner and Sfard (2018) mathematical narratives are governed by metadiscursive rules 
split into three categories of routines, corresponding to their use: rituals, deeds, and 
explorations. An exploration will end with an endorsed narrative about change of 
mathematical objects containing the story of what, and why, the change appeared. 
Before the learners end up with the full-fledge explorations, they will undergo a 
development through deeds and rituals. As interlocutors in the discourse, learners will 
meet mathematical objects. A mathematical object is defined as a signifier with a 
corresponding realisation tree (Sfard, 2008). A realisation tree is a hierarchical 
organisation of realisations (representations in other frameworks) of the signifier. An 
example is the signifier “quadratic function” where realisations can be the expression 
𝑥", the corresponding graph or a table of values. All of them are perceptually accessible 
and called primary objects (p-objects). Sfard (2008) argues for an objectification as a 
discursive process where discursive objects (d-objects) are individualised. The 
participants must create narratives about p-objects. Simplifying is a driving force in the 
communication and a next step will be to signify p-objects by assigning a noun or 
pronoun. Thus, a concrete d-object is created. More advanced processes are involved 
when d-objects are put together and individualised: saming, encapsulation, and 
reification. Through saming, “the act of calling different things the same name” (Sfard, 
2008, p. 170), a search for common attributes will end by assigning one signifier to 
many realisations; e.g., when “linear function” is used in communication both about 
linear polynomials on the form 𝑎𝑥 + 𝑏 and the graph as a straight line. When a noun, 
or pronoun, will signify a specific set of objects, the act is called encapsulation. Several 
objects are turned into a single entity. This act can be observed as a change from 
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narratives in plural being changed to singular when talking about a property of all the 
set members. Finally, reification happens by introducing a noun or pronoun for 
processes on objects to create narratives about relations between objects (Sfard, 2008). 
An abstract d-object will substitute narratives about processes. In the discourse of 
functions a crucial reification will be that 𝑓(𝑥) signifies the function as a d-object and 
will not be realised as a process of “putting values into an expression and calculate a 
value”. 

THE DESIGN EXPERIMENT 
According to DR the implementation of the teaching is a design experiment, build upon 
a conjectured Local Instruction Theory (LIT) as a foundation for a Hypothetical 
Learning Trajectory (HLT). I will now describe how the design experiment took place, 
the participants, and the basis for the planning. 
The students and data collection 
The participants of the design experiment were twenty-six PST in their second year of 
teacher training. All had chosen mathematics as their primary subject and completed a 
mathematics course of thirty ECTS in their first year. Combined with the second year 
course of thirty ECTS, the PST shall be prepared for teaching mathematics to 11-16 
year old pupils in Norwegian schools. None of them had any experience from teaching 
except for the practice during teacher training education. 
The collected data consist of written material and recordings of the group- and plenary 
discussions. Both the participants and me wrote logs. As attendance was voluntary, the 
number of students who took part of the different lectures may vary. 
Some of the narratives from students, who can typically exemplify the discourse, were 
chosen. These narratives will serve as examples to illustrate the changes of the whole 
discourse. These students are designated S1 to S5. 
The planning and the implementation 
A considerable constrain, caused by national, institutional, and collegial premises, was 
a time limit of four plenary lectures. The duration of each lecture was three hours. 
Between each lecture the PST had to read and complete assignments. As a consequence 
of the limited lecture time two instructional videos, were the teacher’s monologue 
played the main part, were made. After watching the videos the students were required 
to write short summaries and to write down questions for the next lecture. The 
foundation for the teaching was that participation in an orchestrated discourse would 
contribute to a transition from processes, and p-objects, to a reification of the function 
object. Thus, a discursive practice, with all PST engaged as participants, had to be 
created. Then the role of more experienced participants, as the teacher, becomes 
important. All narratives, both orally and written, has to be carefully considered by the 
teachers. The use of “function” has to signify a reified object. Hence, the discourse 
must be guided in the same direction by allowing the participants to produce narratives 
that can be collectively corrected.  
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Digital tools are important mediating artefacts for the learners. In this design they 
include Dynamic Geometry Software (DGS), graph plotters and Computer Algebra 
System (CAS). The main digital tools were GeoGebra and Desmos. A conjecture was 
that these artifacts can contribute to a rich use of realisations of the function and provide 
visual mediators for the interlocutors. 

RESULTS AND ANALYSIS 
I will now present an overview of what happened during the teaching periode. First, 
the discursive change in the narratives of functions, then some episodes that argues for 
an individualisation of the function object, and last the role technology played. 
The students’ initial definitions of a function 
Before the experiment, the PST had to write down an answer to the question: What is 
a function? All writings were collected, and a plenary discussion took place. This 
served as a pre-test for the experiment. The narratives were analysed according to how 
they responded to the signifier “function”. S1 wrote: “I would say that the concept of a 
function is how to do calculations from a formula where you can use variables. The 
result will be a graph in a coordinate system.” In this narrative “function” can be 
analysed as a signifier for a process where the result of the process is a p-object, the 
graph. When S2 responded: “It is an expression that can be written with letters and 
numbers”, there is a reference to a p-object with a limited realisation tree. The same 
applies for the narrative of S3: “Something that shows a picture/line of values that 
changes during certain time periods (hours, days, years)”. The p-object is a graph and 
limited to a time unit, and “function” is not used as a signifier. These narratives are 
typical for sixteen, of the twenty students who took part in the pre-test. None of these 
respondents’ narratives made explicit requirements of univalence and arbitrariness, and 
none showed an object-driven use of “function” and a reified function object. The rest 
of the respondents produced vague, or incorrect, answers. 
The students’ definitions of a function at the end 
At the end of the last lecture a plenary discussion on how a teacher should perceive a 
function, was conducted. Before the discussion everyone had to write down their own 
description of a function. These written responses were analysed with the narratives 
given at the plenary discussion. Twenty-two students participated. The signifier 
“function” was used as a noun describing a covariation, or coherence, between 
variables, in a majority of the respondents. Sixteen of the PST showed that clearly. The 
utterance of S1: “A function is a connection between various factor, often x and y. x 
depends on y. Each value of x gives one y”, is an example of that category. A total of 
seventeen narratives express explicit one-valuedness. 
None of the narratives contain a direct statement about “function” as a process, but 
three can be interpreted as implicit utterances of a process. An example is S4: “A 
function is about relationship of values. Every argument value will affect the value of 
the function. It is exactly one dependent value”. The use of “is about” is imprecise, but 
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interviewed later the respondent corrected the narrative to: “It is the function that 
expresses the co-variation between the values”. 
The written, and oral, narratives show a change in the discourse. The signifier 
“function” had changed from signifying a process to signify a function object. The 
different narratives of S2 provides an example. In the first, S2 expressed a process. The 
last was: “In order to call something a function there has to be correspondence between 
the value you use as a variable and the value given by the function. For each input only 
one output”. This is a phrase-, or object, driven use of a d-object with explicit 
univalence. Thus, an example of the development of the majority of the students. 
Arbitrariness was also examined, but is not as evident as the discursive change from 
processes to objects. It was more clearly drawn into the plenary discussion. 
A change of the discourse 
During the experiment, there was a change in the discourse. The narratives of functions 
transformed from being about processes and p-objects into the use of the function as 
an object, including the characteristics of univalence and arbitrariness. Of course, 
endorsed narratives cannot give an exact answer on how the object has been 
individualised – they may be phrase driven. As shown by others (Tall & Vinner, 1981; 
Vinner & Dreyfus, 1989) there may be a distinction between definitions and by how 
they are actually treated. On the other hand, incorrect narratives would imply direct 
shortcomings in the MKT. The change in discourse and the proper narratives are 
indications of correctness of the hypothesis in the LIT and HLT about the facilitation 
of the discourse. At the end, most narratives can be categorised as explorations. 
An objectification can also be observed from the use of signifiers. Both “function”, and 
various use of symbols like 𝑓(𝑥), gives rise to narratives where they are used to signify 
a function object with a noun. This is typical for an individualisation of the function 
object by the participants. The narratives also show a rich use of realisation trees. 

HOW DID TECHNOLOGY PLAY A ROLE? 
The result of the experiment is due to many factors and the commognitive approach 
regards learning as both situated and distributed. Thus, it is not easy, or even possible, 
to isolate each factor. Nevertheless, I will try to elaborate on the role and contribution 
of ICT without insisting on a direct isolated effect. 
First, ICT was important as an organiser. A Learning Management System (LMS) was 
used as tool to structure the learning experiment. It was also used to assign, and collect, 
responses. The LMS offered the use of a diary and logbooks which proved important 
for the production of the narratives. These narratives sought to increase both intra- and 
interpersonal communication. As the narratives could be both peer reviewed, and read 
by me, they contributed to many productive plenary talks, comments, and served as a 
reflection tool for interpersonal communication. With the immediate access in the 
LMS, they also served as an important guide line for adjusting the discourse by the 
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teacher. Another contribution of technology was the use of instructional videos and the 
collection of the responses to the videos in the LMS. 
Digital tools were also important mediating artefacts and supportive for an inquiry 
process. I will now outline some of these contributions. The challenges reported on 
conversions between realisations (cf. Duval, 2006) were considered for the experiment. 
In the commognitive framework transitions can be considered as including realisations 
in a discourse and let these play a part in the objectification. The dynamic nature and 
the easy transitions of realisations offered by the tools constitute an important part of 
the narratives. Through saming, encapsulation and reification, realisations are crucial 
for the individualisation of the function object. The digital artefacts can supply 
realisations in form of objects which can serve as visual mediators. In the function 
discourse, examples of visual mediators are 𝑓(2) − 𝑓(3) and 𝑓(𝑔(𝑥)). Both should be 
regarded as objects and treated that way. I will provide some examples. At the first 
lecture, the PST were given a task with a graph of a third degree polynomial function 
in a coordinate system. The students should solve the equation 𝑓(𝑥) = 0 and find 𝑓(2) 
without access to the expression of the function. Only nine out of twenty-two student 
interpreted 𝑓(2) as the correct –2. Seven did not answer. In the same task, they were 
also given a function by 𝑔(𝑥) = 𝑥" + 1 and supposed to find 𝑔(3). In the plenary 
discussion that followed they explained that as an easy task, but without an expression 
given, they were unsure about what to do. The students’ explanations can be taken as 
evidence of a lack of realisation of the signifier 𝑓(𝑥), and an incorporated routine for 
calculating function values. During the experiment the use of digital tools as artefacts 
for producing visual mediators sought to improve the students’ realisation tree. 
Examples are conversions of physical situations into realisations, tracing graphs with 
coordinates visualised, and an extended use of symbols. In reflections about the initial 
task of this example, most of the students expressed astonishment about the fact that 
they were unable to solve the task. 
In a modelling task with the draining of a water tank, the students had to find the rate 
of change in intervals. They could do that by calculating 0(12)30(14)

12314
. First, the students 

calculated every value, but by the tools they saw the use of simplifying and treating 
𝑓(𝑡) as an object. There was also a change in the discourse as the students started to 
form narratives like “what is being drained between the third and the second minute” 
as a replacement of 𝑓(3) 	− 	𝑓(2). At the end, all participated in a discourse where 
symbols were replaced the function values. That supports the claim of objectification 
as well as the contribution of ICT to provide function values without the process of 
calculation as interference. In another context, the signifier ℎ(𝑡) was used as “all the 
heights” in a situation concerning the height of a tree over time. Another contribution 
for the objectification is the object nature of CAS commands. CAS syntax often 
demands a need to operate on the function object given by an expression. The operation 
is carried out on the function as an object, and the result can either be properties of the 
function or a new function. Tasks that emphasised both the result, and reflections about 
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operations on the function object, showed important for the reification. An example is 
the command Derivative(f) where the input is the declared function  and the result is 
a new function object – the derivative. Some of the reflections about the nature of these 
commands were crucial for the individualisation of the function object. The same 
example also provided discussions about univalence: What if univalence was not 
required? With a CAS command as a visual mediator narratives like “it is obvious that 
the function cannot give multiple values” were typical. The arguments were found by 
the impossibility of ambiguous input and output of commands. 
A modelling approach was used during parts of the experiment. With digital tools, the 
students had to collect data from real life situations to make a model. As they had to 
produce narratives about the process, several important aspects for the properties of the 
function came up. Arbitrariness could be discussed when an expression was found by 
regression: Did the expression really delineate the covariance correct? In some cases, 
the conclusions were that regression gave the best fit, but the covariance could not be 
expressed through an expression. The gap between the model found, and reality was 
used for discussions about the arbitrary property of a function. 
Throughout the experiment, a main goal was to support how different discourses could 
be subsumed into one about functions. As ICT provided easy, and rapid, transitions 
between physical situations, graphs, expressions, and tables, narratives of the each 
realisation could be transformed into narratives of the function object. This helped the 
different discourses to be subsumed into one. 

CONCLUSION AND DISCUSSION 
An explicit change in the discourse could be observed and a conclusion is that 
technology provided an important contribution to the change. All PST had been taught 
functions before teacher education and mastered common process related to function, 
but important properties and a reified function object was missing. The discursive 
change supports a claim of an individualisation of the function object. Without the 
support of digital tools this change is hard to imagine within the limited time available. 
Naturally, there are several adjustments I would have made. One is to make more 
videos for the students to see between lectures. That could have provided more time 
for discussions and work in groups. A more thorough examination of each individual 
would also be useful. That could have revealed a phrase driven use of narratives as an 
approach to provide what as intended by the teacher. 
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We study the evolution of long-term interactions between one mathematics teacher and 
resources, especially digital ones, with a dual focus on his documentational and 
identity trajectories. We combine a theoretical framework on teachers’ work with 
resources with a framework based on social practice theory. The analysis allowed us 
to describe what digital resources the teacher interacted with and when, as well as to 
explain how and why he interacted with these resources the way he did over time.  
Keywords: Digital resources, DAD, documentational trajectory, Patterns-of-
Participation, identity trajectory. 

INTRODUCTION  
The aim of this paper is to study the evolution of long-term interactions between 
mathematics teachers and resources – especially digital resources (DRs) – with a dual 
focus on professional and identity development. A multiplicity of studies focuses on 
mathematics teachers’ professional development as an outcome of their participation 
in specific, often short-term initiatives, while only fewer studies have examined teacher 
development over a long period of time as a result of their participation in daily 
activities (e.g., Little, 2002). Recently, calls have been made for extended studies, for 
instance by Trouche (2019), who argues that teachers’ deep instructional changes often 
need long time. Taking into account the transformative potential of DRs in terms of 
stimulating learning experiences to students, motivating teacher collaboration and 
design capacity (Pepin, Gueudet, & Trouche, 2017), we consider the study of teachers’ 
long-term interaction with DRs as a promising research area.   
Our literature review revealed only few studies focusing on teachers’ long-term 
development with DRs, predominantly within the framework of Documentational 
Approach to Didactics (DAD) (Trouche, Gueudet & Pepin, 2018) that concentrates on 
teachers’ work with resources. For instance, Rocha (in Loisy, 2019) analyses when, 
where, why, and how teachers interact with which resources at critical points during 
their professional life. This analysis provides mainly overall descriptions of teachers’ 
interactions at the macro level by focusing on special events outside classrooms or 
schools and the corresponding resources. Though contributing valuable insights, this 
analysis focuses on when and where teachers interact with resources and what promote 
their actions, and to a lesser extent on why and how teachers interact in the described 
ways by taking broader social perspectives into account.  
In this paper, we adopt a social practice framework, Patterns-of-Participation (PoP) 
(J. Skott, 2019), that favours understandings of how broader social constellations and 
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modes of reasoning inform teacher action and meaning making. PoP allows a social 
perspective on a teacher’s professional identity that is defined as his/her experiences 
of being, becoming and belonging as a teacher. We aim to combine (Prediger, Bikner-
ahsbahs, & Arzarello, 2008) DAD with PoP to get a multi-faceted insight into a Greek 
mathematics teacher’s (Victor’s) long-term development and especially into the hows 
and whys of Victor’s interactions with DRs over time. For this, we analyse his 
documentational trajectory (i.e. his interactions with resources over time) in 
conjunction with his identity trajectory (i.e. his identity formation over time).  

THEORETICAL APPROACHES  
DAD (Trouche et al., 2018) acknowledges the crucial role of resources for teachers’ 
work and professional growth retaining a broad meaning for resources as material and 
non-material elements (e.g. textbooks, discussions with colleagues) and considers that 
teachers’ work with and on resources constitutes a dialectic process where design and 
enactment are intertwined. Teachers use different kinds of resources that shape not only 
the mathematical content and the ways it is (re)presented, but also students’ 
mathematical learning. Teachers adapt their appropriation and use of resources to their 
needs and customs. This dynamic process of (re)-design and interpretation continues 
during enactment of the resources and orients teachers’ documentation work leading to 
their creation of documents. The set formed by all the resources used by a teacher 
defines his/her resource system (RS). Rocha (in Loisy, 2019) introduces the concepts 
of documentational experience (i.e. a teacher’s appropriation of professional events 
acquired during his/her interactions with resources, that were remarkable to his/her 
documentation work from his/her perspective) and documentational trajectory (i.e. the 
set of professional events of both individuals and collectives that ground teachers’ 
documentational experiences) to study the long-term evolution of interactions between 
teachers and resources. She also proposed two new methodological tools: a Reflective 
Mapping of a teacher’s Documentational Trajectory (RMDT) made by the teacher and 
an Inferred Mapping of a teacher’s Documentational Trajectory (IMDT) made by the 
researcher. These tools map a teacher’s experience throughout his/her professional life 
by indicating on a timeline crucial events/collaborations to his/her documentation work 
(Fig. 1).  
Trouche (2019) indicates a need to consider the broader contexts in which teachers 
operate as they make decisions about what resources to use and how to use them. To 
take into account how social constellations and modes of reasoning are reflexively 
related to and co-determiners of teachers’ acts and meaning-making, we use PoP (J. 
Skott, 2019). In line with other studies of teacher identity, PoP draws on the notions of 
practice and figured worlds in social practice theory, where practice “connotes doing 
[but] doing in a social and historical context that gives structure and meaning to what 
we do” (Wenger, 1998, p. 47). Figured worlds are “socially and culturally constructed 
realm[s] of interpretation, in which particular characters and actors are recognised, 
significance is assigned to certain acts, and particular outcomes are valued over others” 
(Holland, Lachicotte Jr., Skinner, & Cain, 1998, p.52). 
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PoP differs from other identity studies using social practice theory by focusing on shifts 
in a teacher’s ways of participating in social interactions over time (e.g., classroom 
interactions) and not focusing on how a teacher move towards a more comprehensive 
participation in a specific, pre-established community or figured world. In PoP, a 
teacher’s participation in social interactions is understood as influenced by his/her 
interpretation of the immediate situation and his/her simultaneous meaning-making 
where he/she continuously interprets “others’ actions symbolically, including their 
actual or possible reactions to one’s own behaviour” (J. Skott, 2019, p. 472). In terms 
of symbolic interactionism, the teacher takes the attitude to him/herself of others. The 
others can be a colleague or a parent, but it can also be a social group or community in 
which case the teacher takes the attitude to him/herself of generalized others. In PoP, 
practices and figured worlds are interpreted as possible generalized others. Using PoP, 
we define Victor’s professional identity as his experiences of being, becoming and 
belonging as a teacher at his school and beyond (e.g. research projects), and Victor’s 
identity trajectory as his identity formation over time. Our research questions are:  
(1) What are the major professional events and corresponding resources in Victor’s 
long-term documentational trajectory? How do these events/resources contribute to his 
professional development at the macro level?  
(2) How do Victor’s experiences of being, becoming and belonging influence his 
interactions with DRs? How do these experiences contribute to forming his identity 
trajectory at the macro level?  

METHODOLOGICAL APPROACH  
We study Victor’s professional life focusing on his interactions with DRs over 18 years 
from when he starts working as a new mathematics teacher in his own auxiliary school 
to his current position as a teacher in a multicultural public school in northern Greece. 
Victor’s case is illustrative as he explores the different opportunities for interacting 
with DRs through his participation in multiple research projects and development 
initiatives. We aim to understand how Victor’s participation in such major events at 
the macro level influence his interactions with resources, especially digital ones, but 
also, why Victor engages in these events and what motivates him in the long run. In 
line with the principles of reflective investigation (Trouche et al., 2018, p. 8) we (a) 
analyze Victor’s long-term documentation work (“long-term follow-up” principle) at 
different time moments in- and out-of-class (“in- and out-of-class follow-up”), (b) 
address his reflections on his choices and experiences (“reflective follow-up”), (c) take 
into account a “broad collection of the material resources” produced and used 
throughout the follow-up, and (d) “permanent confronting Victor’s views on his 
documentation work and the materiality of this work”. For this paper our data is: 8 
individual interviews, e-mails on his documentation work in different time periods, 
resources for his teaching of a specific unit in grade 8 (e.g., worksheets, lesson plans), 
and an activity template where he described aspects of his design and experiences from 
the implementations. Based on the interviews and teaching resources, we made first 
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drafts of IMDT including major events and resources. We then asked Victor to provide 
written comments (wr) on the IMDT to (a) examine this version and let him modify it 
by adding missing events, (b) highlight the most critical events for him and explain 
why, and (c) provide examples of resources related to these events. Based also on a 
follow-up discussion (fd), we constructed a combined IMDT and RMDT (we name it 
I/RMDT).   
For the analysis of Victor’s documentational trajectory, we cross-referenced I/RMDT 
with other data and identified key points operating as ‘entrances’ into his trajectory and 
examined if and how they influenced his professional activity. For the analysis of his 
identity trajectory we used mainly his written reflections on I/RMDT and the follow-
up discussion. This analysis was carried out in two steps. First, under a broadly 
grounded approach we analyzed line-by-line Victor’s utterances and practices in 
relation to his orientations towards important actors, significant acts and values, and 
gathered these into distinct practices, characters and figured worlds. Second, we 
analyzed how the roles of these practices, characters and worlds shifted in dominance 
to Victor’s experiences of being, becoming and belonging when interacting with DRs, 
drawing corresponding landscapes of their constellations. By identifying shifts among 
these landscapes, we constructed Victor’s identity trajectory.     

VICTOR’S DOCUMENTATIONAL TRAJECTORY  
Our analysis of Victor’s I/RMDT shows four categories of events and corresponding 
representative resources (Fig. 1) that constitute his professional life: (a) taking part in 
professional exams (E2, E4); (b) teaching secondary students and pre-service teachers 
(E1, E3, E6, E9); (c) engaging in research and developmental work in mathematics 
education especially with the use of DRs (E5, E8, E10, E11, E12, E13, E14, E15, E16, 
E17); (d) participating in scientific and professional associations (E7). By combining 
the I/RMDT with our data, we identify three overall/key events and their corresponding 
time periods: participation in the national exams (E2) (2000-2001), collaboration with 
teachers and researchers (2004-2010), and participation in teams designing 
curriculum/curriculum resources such as in the projects New School and Digital School 
(2010-2015). These events provide the basis for three major documentational 
experiences underlying his trajectory: collaborating with colleagues and researchers; 
collaborating within specific frames/contexts and norms regarding resource design 
especially with DRs; approaching mathematics education research.  
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Figure 1: Victor’s I/RMDT  

The reform aspects of New School and Digital School concerned multiplicity of 
curriculum resources and conceptualization of teachers as active partners in designing 
teaching with DRs. Furthermore, the new curriculum was structured in learning 
trajectories and used two novel DRs: 1) micro-experiments: interactive applets 
developed through different categories of proliferating digital media (CAS, 
programmable software), and 2) synthetic activities: generic scenarios promoting 
project-work based on modelling, inquiry and integrated representations. A set of 
principles guided the work of those two projects like combining formal math 
representations (e.g., graphs), text and/or simulations (e.g., math behaviour), 
promoting students’ dynamic manipulation of math objects in order to explore and 
discuss their relationships/properties, and promoting inquiry. Victor’s collaboration 
with researchers in the projects affected deeply his interactions with DRs and his RS. 
We highlight three points related to a new constitution of this system. (1) The new 
curriculum design and the enrichment of textbooks with DRs mark Victor’s entrance 
to design DRs and to integrate them systematically in his RS. As a result, this set of 
new resources gives birth to a new RS that includes novel resources such as Enriched 
Worksheets consisting of theory (e.g., definitions), different tasks (e.g., problems, 
exercises), multiple representations and links to DRs (e.g., micro-experiments). (2) 
Although worksheet was an innovative resource in Victor’s initial system, micro-
experiments occupy dominant positions in all subsequent forms of his RS. (3) The two 
projects mark Victor’s passage from looking for new resources (e.g., by reading 
research literature for ASEP) to aligning his RS with resources designed in the projects 
and later on to being able to design such resources himself. In terms of structure, we 
consider micro-experiments as pivotal resources (Trouche et al., 2018) used by Victor 
in various activities (e.g., lesson planning, tasks). Also, they seem to play a central role 
in helping Victor to restructure and reorganize his RS. Finally, Victor’s participation 
in New School and Digital School seems to influence his professional development as 
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a consequence of the evolution of his RS. Resources designed in the projects are 
different from the resources (tasks, worksheets) normally used in classrooms. The new 
resources aim to introduce teachers to new design approaches as regards functionalities 
and use of available DRs as well as to open discussions and to share ideas for future 
use. Further, developing such resources is a demanding process requiring associated 
documentation work that in Victor’s case led to deep reorganization/restructuring of 
his RS at the level of both technical (e.g., design capacity in Geogebra) and pedagogical 
demands (e.g., synthetic activity).  

VICTOR’S IDENTITY TRAJECTORY  
Preparing for the national exams to enter secondary education (1997-1998).  
As a new teacher Victor works in his own auxiliary school (1997-2001) and belongs to 
a world of Para-education (e.g. a parallel private educational system behind the formal 
school system in Greece that supports students in passing the higher education exams). 
This world is characterised by “stereotyped perceptions of math” (wr, p.6), and it does 
not encourage use of DRs as this is not required for obtaining its purpose: helping 
students to pass exams. However, when preparing for his own exam to teach at 

secondary level, Victor realises that “something 
was wrong [in his teaching] as it did not help all 
students” (wr, p.1). His realisation marks a critical 
shift in his identity formation. He begins to 
orientate himself towards a world of Reform 
mathematics teaching and a new character of an 
Embracing mathematics teacher emerges that 

combines the inquiry part of the Reform-world with his political ideas of education for 
all. Thus, to teach student-centred, Victor starts designing worksheets with 
mathematical graphics which is new in Para-education. These worksheets also 
represent Victor’s first steps in using DRs in his teaching, which is rather rare in Greece 
by this time. Figure 2 shows his first landscape of practices, characters and figured 
worlds (a dark blue arrow shows strong prominence).      
Collaborating with teachers and educational researchers (2004-2010)  
The equity issue gains importance for Victor, and hence his devotion to become an 
embracing character, when he begins to teach at a multicultural school with heavy 
language problems. Two types of experience prove important in this period: (1) Victor 
gains experience with designing resources that include DRs that students can use (e.g. 
dynamic geometry systems); (2) he starts collaborating with colleagues and 
researchers: “Our [collaboration] was based on my classroom teaching. She 
[researcher] supported me theoretically providing me a framework for functions” (wr, 
p.2). He experiences being recognised by colleagues and researchers as competent 
collaborator and teacher due to his affiliation with the Reform-world. Fig. 3 shows 
Victor’s second landscape of practices, characters and worlds. 

Fig. 2: Victor’s first landscape 
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Participating in New School and Digital School (2010-2015) 
This period is the most important for Victor’s identity formation in relation to DRs, “It 
was a very big step … one of the most important things I have done so far” (fd, p.5). 
While Victor transforms his ways of collaborating and designing, his landscape of 
practices, characters and worlds is similar with the previous period. We therefore focus 

on the two practices. Regarding collaborating, 
Victor experiences being part of a complex and 
diverse collaboration both in terms of more 
participants, multiple actors (i.e. researchers, 
teachers, ministry advisors), larger scope (e.g. 
grade 1-9) and comprehensive purposes. By 
engaging in new ways of collaborating especially 
with researchers, Victor gains experience that 

helps him become an even more competent teacher “I knew a lot, but it was first when 
I consider the curriculum [in terms of learning trajectories] that I understood it deeper” 
(fd, p.5). Regarding the second practice, designing, Victor gains experiences with 
creating novel DRs in new ways, especially micro-experiment, that is “an autonomous 
application” with text, questions and digital constructs integrated and “starting with a 
problem. You need to design the problem to create space for the next step, the 
mathematics” (fd, p.8). By being required to engage deeply with the affordances of 
DRs relative to the targeted reform-intensions Victor experiences how to use DRs to 
facilitate these, “I understood deeper what using technology means … the role of 
representations, the idea of exploration, the dynamism of dragging a slider and 
observing what happens … Before, all these ideas circulated around and teachers 
always asked “Who can do all this?”” (fd, p.6). At the same time, Victor tries out the 
micro-experiments in his classroom. By engaging in these new ways of collaborating 
and designing DRs and experimenting in classrooms, Victor gains experiences with 
implementing the Reform-world in classrooms. He thus becomes more like the 
embracing character.  
In summary, Victor’s identity formation undergoes a big transformation during these 
18 years. From belonging to the traditional Para-education world and not using DRs, 
to becoming an embracing teacher who uses DRs as a tool to implement the Reform-
world in his classrooms. The motivation for Victor’s identity is his insistence on 
becoming the embracing character. By engaging in the two practices, collaborating and 
designing of DRs in New School and Digital School, Victor gains experiences with 
and recognition for his ways of implementing the Reform-world in his classrooms. 
These experiences contribute further to explain how and why Victor becomes like the 
embracing character. 

CONCLUSION  
We used two theoretical constructs, documentational and identity trajectories, to study 
a Greek teacher, Victor’s, interactions with DRs over time. The DAD analysis shed 

Fig. 3: Victor’s second landscape 
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light on major events and corresponding resources that promoted Victor’s interaction 
with DRs. It stressed the evolution of his RS and how it was influenced by his 
collaboration with specific agents or collectives. The PoP analysis highlighted Victor’s 
trajectory focusing on big shifts in his identity formation related to his long-term 
experience of being, becoming and belonging as a teacher interacting with DRs. The 
analysis shows that his dominant motivation was to become an embracing math teacher 
and how this influenced his ways of participating in social interactions, and 
furthermore that the roles shifted between the practices, characters and figured worlds 
that were crucial to his professional experience. Our combined theoretical focus thus 
allowed to describe which DRs Victor interacted with and when, and to explain how 
and why he developed his interactions which these DRs.  
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Teachers as task designers in the digital age: teaching using 
technology 
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The aim of the paper is to present and analyse the case of one teacher attempting to 
introduce his students to fractals using digital technology. His task design process has 
been made explicit through the writing of a storyboard. It has been analysed in order 
to focus on the stages of the process, identifying prominent elements in it by using the 
knowledge quartet framework. Results can be useful to inform teacher educators about 
his needs with respect to the development of his ability in task design. The importance 
of this aspect, particularly worth of note in the digital age in which teachers have many 
opportunities to access teaching resources online, has been amplified by the 
constraints to which educational systems have been subjected during the Covid-19 
pandemic emergency. 
Keywords: Task design, digital technology, teacher knowledge, teacher professional 
development. 

INTRODUCTION 
Digital technology is usually pointed as having the potential to promote the students' 
development of mathematical thinking. However, according to Thomas and Lin 
(2013), this development is more a consequence of the tasks proposed to the students 
and of the way these tasks explore the potentialities of the technology, than of the 
technology alone. Nevertheless, designing tasks that enhance the potential of 
technology is a complex and difficult achievement (Joubert, 2017) and even a major 
pedagogical activity (Leung, 2017). There is the need to design tasks promoting 
mathematical learning and understanding, and which take advantage of technology. 
This can challenge the curriculum and the teaching trajectories, changing the more 
traditional approaches. Often, mathematical tasks aim at achieving results or answers, 
emphasizing procedural skills instead of promoting conceptual understanding and the 
development of problem solving competencies. The use of technology changes the way 
of having access to results and facilitates a focus on conceptual understanding (Rocha, 
2020). However, this might result in a need to new prerequisites for designing tasks 
(Olsson, 2019).    
This paper presents and analyses a case of one teacher attempting to integrate digital 
technology in his teaching. We intend to reflect on how he was engaged in the 
development of digital technology rich learning trajectory concerning fractals. Fractals 
has been chosen for their potential to address several mathematical contents, and also 
because it is possible to find on-line many different kinds of resources concerning 
them. We address the research question: what are prominent elements characterising 
stages of the teacher’s task design process that can be identified? Although the paper 
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concerns a single case study and a specific mathematical topic, the findings can be 
useful to inform teacher educators about teachers' needs related to the development of 
their task design ability. The importance of this aspect, particularly in the digital age in 
which teachers have many opportunities to access teaching resources online, has been 
amplified by the constraints to which educational systems have been subjected during 
the Covid-19 pandemic emergency. 

THEORETICAL FRAMEWORK 
Teachers always design tasks in order to promote their students learning. According to 
Leung (2017, p. 4), “mathematics task design can be thought of as designing activities 
situated in pedagogical environments that provide boundaries within which students 
engage in doing mathematics leading to the construction of mathematical knowledge”. 
The decisions teachers take during this process of creation are guided by the learning 
goals they define for their students (e.g., planning an exploration activity or a moment 
to practice). This process becomes more complex when digital technologies are part of 
it and, in these circumstances, for students to take advantage of all the potential 
provided by technology, the tasks should require them to explore, reconstruct and 
explain mathematical concepts and relations (e.g., Olsson, 2019).  
When referring to different types of task sequences, the global idea given by Watson 
et al. (2013) is that the initial tasks of a sequence somehow offer a basis for the 
development of mathematics knowledge needed to address the later tasks. However, 
most of the research focuses on isolated tasks, trying to characterize them. For example, 
Burkhardt and Swan (2013) give attention to the difficulty of the task, analysing the 
task according to different factors: complexity; unfamiliarity; mathematical procedural 
demand; student autonomy and level or kind of guidance. Other authors, e.g. Ponte 
(2005), classify tasks according to their level of difficulty but also according to their 
level of structure (from closed to open-ended tasks).  
Also, when considering the use of digital technologies in a task, there are different roles 
they can assume (Rocha, 2020). Actually, technology can be integrated into a task as a 
way of doing part of the mathematics, as a way of allowing for exploration of a situation 
and the development of conjectures, or in several other roles. Laborde (2001) classifies 
the tasks according to the role assumed on it by technology, but in a different way: 
tasks that are facilitated by technology but not modified by it; tasks where technology 
facilitates exploration and analysis; tasks that can be done with paper and pencil, but 
where technology allows new approaches; tasks that cannot be accomplished without 
technology. In this case the focus is not so much on what technology does, but more 
on how the use of technology impacts the task.  
According to Leung (2017), the teacher knowledge is central in the options assumed 
by the teacher in the process of task design. The author assumes this knowledge as a 
complex construct resulting from the interactions among different knowledge domains. 
And from these interactions Rocha (2013) emphasizes the impact of technology on the 
pedagogical options of the teacher and also on the mathematical content addressed. 
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Rowland et al. (2005) also value the teacher knowledge and highlight four dimensions 
of what they call quartet knowledge: foundation, transformation, connection, and 
contingency. While the last dimension can be described as the ability to “think on one’s 
feet” during the contingent classroom events, the first three dimensions have been 
further characterized by Tanışlı et al. (2019, p. 136) in the following way: “foundation 
refers to a repertoire of the teacher's academic knowledge for teaching and learning 
mathematics including his/her beliefs regarding why mathematics is important and 
why it should be taught”; “transformation refers to the transformation of theoretical 
knowledge into practice by designing and planning pedagogical tasks in terms of 
choosing appropriate examples and activities for the construction of mathematical 
meanings”; “connection refers to the coherence of designed parts of a lesson or series 
of lessons through deliberately chosen activities and domain specific tasks. Such 
pedagogical task sequences enable students to make a connection between different 
concepts as well as to interplay between different representations”. These dimensions 
give to the conceptualization a close connection to the teachers' practice, particularly 
suitable for this study. 

METHODOLOGY AND CONTEXT 
As we were interested in identifying prominent elements in the stages of the teacher 
task design process, we used storyboards as research tools. The storyboard we analysed 
in this paper was written by an Italian mathematics teacher, with a Master degree in 
Mathematics, working at the high-school level for 7 years. Although he was not 
enrolled at that moment in any research or training programme, in order to become a 
teacher, he was involved in a two-year teacher education program ending with an 
examination. Thanks to this program he acquired basic notions of mathematics 
education and of the use of technology in the teaching practices. He designed a teaching 
sequence of tasks which involves digital technology and concerns fractals, attempting 
to exploit the opportunity to approach them in different ways and at different levels. 
His task design process was made explicit through the writing of a storyboard. Excerpts 
of the storyboard are presented and analysed using the dimensions of the quartet 
knowledge framework. Although the framework was thought mainly to focus on the 
analysis of mathematics teaching, we believe it could be useful to develop some 
understanding also about the way teachers are engaged in their task design process in 
a context of technology integration.   

RESULTS 
In the storyboard analysed in this paper, the sequence of tasks was conceived to be 
hypothetically developed in four hours in the laboratory, so that pairs of students could 
share a computer. Herein, we focus on the teacher's task design process starting with 
the presentation of the teacher’s plans related to his hypothetical task sequence.  
According to what the teacher wrote in the storyboard, he starts his teaching sequence 
by posing a problem. The chosen problem seems not to be immediately connected with 
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fractals, but it is pivotal in the development of the sequence. Indeed, his aim is to let 
emerge from the discussion that the curve “broken infinite times” presents a difference 
with that “broken 1000 or 100000 times”. At this point he plans to show a short part of 
a video, explaining the property of the Roman cabbage of “remaining equal to itself” 
on any scale, and hence to give a definition of fractals using this property, so to 
introduce the concept of self-similarity.   
In the next phase, he plans to introduce the students to the many examples in which 
nature uses fractal structures. In a brainstorming session he intends to invite students 
to propose possible explanations as to why nature often uses these structures. The final 
answer is entrusted again to a short part of a video that shows the increase of the surface 
in a limited volume. This makes students reflect on the “relationship between 
dimensions (surface – volume)”. Then, he plans to show fractal constructions that can 
be obtained by recurrence through geometric transformations, such as the Koch curve 
and the Sierpinski triangle.  In doing these constructions he is particularly interested in 
highlighting the role of the affine transformations and determining their equations: 

It will be shown how to use the self-similarity of fractals to determine the minimum number 
of portions “equal to themselves” that allows us to obtain the whole figure and how to 
apply the transformations to these parts. This will be done for the Koch curve and the 
Sierpinski triangle and, after having collectively identified the parts and transformations, 
students will be invited to write their equations. 

Successively, he plans to show some tutorials –founded online– presenting the creation 
of ad hoc tools to reproduce the minimal part of the similarity –in order to directly 
involve the students, in pairs or in small groups, in the construction of fractals using 
GeoGebra. He intends to underline how the identification of the transformations is the 
basis on which the ad hoc tools are created.   

The possibility that GeoGebra gives to zoom in on portions of areas will allow students to 
better understand how fractals are related to the concept of infinity.  

Finally, his idea is to come back to the starting problem to explain how fractals can be 
useful to tackle these kinds of issues.  
In what follows, we show how the foundation, transformation and connection 
dimensions of the quartet knowledge framework can be identified in the teacher's 
storyboard on the task design process. The last dimension, contingency is exclusively 
related to the implementation in the classroom and would not be addressed here.      
Foundation 
The teacher identifies mathematical content that can be addressed using fractals. This 
can be seen as characterizing his knowledge with respect to the foundation dimension. 
For example, he writes: 

Fractals involve different mathematical concepts (and not only): geometry (in a broad 
sense), proportions, geometric transformations, concept of dimension, arithmetic, 
trigonometry, successions, functions, limits and convergences, set theory, logic, ...   
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The intention in this case is not to be limited to purely exposition: the presentation of these 
mathematical objects with the playful, artistic and anecdotal aspects, in my view, could be 
combined with the use of fractals as application and study of geometric transformations in 
the Cartesian plane. On this aspect, therefore, my teaching intervention intends to be more 
mathematically punctual and “operational”. Moreover, from a more cultural point of view, 
I would like to take this opportunity for a (possibly different) reflection on the concept of 
infinity and its implications with mathematics.  

He also underlines that the Internet offers a surprisingly large variety of software to 
create fractals, but he considers the idea of generating fractals to come out of the 
purpose of a limited educational intervention aimed at a mathematical learning goal. 
However, in some software he sees aspects that can be useful from the didactical point 
of view. For example, he found a software that has a rich gallery of interactive fractals: 
“you can zoom in (in fact the program recompiles always guaranteeing excellent 
definition and richness of details), select portions of the image, rotate them, vary the 
colours of the convergence sets”. He recognises in this interactive functionality a 
didactical potentiality.  
The foundation dimension of the teacher's knowledge can also be seen in the way he 
looks for online resources and in the comments he writes concerning the choice of the 
resources with respect to his beliefs regarding mathematics teaching. Two examples 
are given below: 

- This is one of the first websites I found (of some interest). The most interesting part is a 
section in which it proposes programs written in BASIC that should build fractals showing 
their iterations. This thing is of potential interest, but in addition to the fact that I already 
had doubts about the usefulness of running a code that for students means nothing (not 
knowing the language), honestly by doing the tests I was not even able to run them.  

- This website is absolutely pertinent to the aims of the educational intervention that I have 
in mind, given that it emphasizes exactly the related transformations. The website is 
divided into three parts: related transformations in the plan (this part should be a 
prerequisite for the students, but it is convenient that it is also present on the website); 
fractal geometry (it is the main and most interesting part for my purposes); insights 
(especially centred on the relationship between fractals - golden section - spirals).   

Transformation 
When the teacher describes the way he analysed the resources he found online, he 
makes explicit some assumptions which reveal his way of perceiving the knowledge in 
action. As the quote below shows, his analysis of the resources reveals not only his 
pedagogical point of view but also the mathematical one. Concerning some of the 
resources he took into consideration he makes the following kind of comments:  

- This video presents fractals giving excellent ideas and using a captivating video editing.   

- The intent of the video seems to me to bring out the mathematics that “underlies” the 
fractals in a way that can be used by non-professionals, but the speed of the exposure 
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makes, in my opinion, the whole video inadequate for students who, in addition to being 
captivated, should also learn something.  

- Some issues that can be tackled by high school students are completely left out or 
excessively trivialised by this video.  

- The attempt to keep content within a few minutes is appreciable but, dealing with so many 
aspects in such a short time, it does not make this video suitable even for a simple “first 
presentation” of the topic.      

This foundation knowledge led him to do some transformation and he decided to 
choose small parts of videos to address specific aspects that can benefit from the 
visualization allowed by the video format.  
He also declared the willingness to let students experiment by themselves with the 
construction of fractals. Taking into account that his aim was mainly to show the 
relationship between the related transformations and the generation of fractals, he 
thinks about using GeoGebra and behaving “by hand”, so that students can “touch” the 
transformations involved and the necessary iterations.   
Connection   
The way the teacher structures the teaching sequence reflects choices based not only 
on the knowledge of structural connections within mathematics itself, but also on his 
pedagogical content knowledge. For instance, his foundation knowledge makes him 
value an approach based on problem solving as a way to involve students, and his 
connection knowledge makes him decide to start by what he called a “stimulus” 
problem. The particularity of the problem he chooses was that it could be faced by the 
students considering two approaches which come out as two different and conflicting 
answers. This was, in his hypothetical teaching sequence, the occasion to promote a 
brainstorming that could bring students to the need of discovering fractals. He values 
the relevance for the students of what is addressed (foundation knowledge), as so, he 
tries to lead students to recognize fractals around them. In this sense he moves from 
the initial (mathematical) approach towards some issues that allow students to connect 
fractals around them again with mathematics point of view.  
The role of technology in the teacher task design  
A focus on the role of technology in the task design process of the teacher can be added 
to the analysis in terms of the quartet knowledge framework. This would add some 
understanding to the case of a task design process involving technology.            It is 
possible to identify some stages on the teacher's task design that are directly related to 
technology and grounded in the teacher's foundation knowledge: looking for digital 
materials concerning fractals; choosing some of the most “interesting”; and reflecting 
on the potentialities of them. Concerning transformation knowledge, some other stages 
can be identified: focusing on a mathematical content that can be mediated by the use 
of them; and recognising aspects of the content that can or cannot be taken into 
consideration when using them. Finally, the building of a sequence of tasks using the 
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chosen digital material, can be seen as the final stage grounded in the teacher's 
connection knowledge.   

CONCLUSION    
Nowadays, there are many resources available online. This circumstance increases the 
relevance of the teachers' knowledge to allow them to be able to explore and use 
resources to promote learning. With the aim to identify prominent elements 
characterising the stages in the task design process, our conclusions, based on the 
quartet knowledge framework, point to a significant impact of the teachers' foundation 
knowledge. Although we have only analysed the task design of one teacher, as far the 
presented case study is concerned, it is this knowledge that guides the initial options of 
the teacher, defining what he considers relevant to use and what he does not. This is 
the starting point for modifications to the resources, guided by the teacher’s 
transformation knowledge. And this is the source for the alignment of the sequence of 
tasks, where the connection knowledge defines the learning trajectory proposed to the 
students. The prominent elements characterising the stages related with the use of 
technology, as they emerged through the analysis, can be grounded in all the three 
dimensions. However, our findings highlight that foundation knowledge has a strong 
influence over the initial choice of digital technologies and over the reflection about 
their potentialities. This could be useful to inform teacher educators about teachers' 
needs with respect to the development of their ability in task design. In particular, in 
order to promote a rich selection of digital technologies, it seems important, within the 
teachers training programs (initial and continuous), to give attention to the 
development of foundation knowledge. In this way it will be possible to develop a deep 
integration of digital technologies on teachers' practice. Nevertheless, this requires 
attention also to the transformation and connection knowledge of the teachers, in order 
to transform technology into an irreplaceable part of the tasks (according to the view 
presented by Laborde, 2001), where tasks are changed by the technology and cannot 
be implemented without it.  
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We aim at investigating digital competences of mathematics teachers in France and in 
Israel. A questionnaire based on proficiency levels of teacher’s competences was 
designed and implemented. Results suggest similar patterns of teachers’ use of 
technology in both countries, yet different with respect to various competences. 
Insufficient instrumental genesis resulting in didactic instruments may explain these 
results and suggests a path for professional development efforts.  
Keywords: Teacher digital practices, Digital competence, Instrumental genesis. 

INTRODUCTION 
Research findings converge on that specific knowledge and skills are required for 
teaching mathematics with digital technology. Yet, these knowledge and skills are not 
defined clearly enough to help devise efficient teacher development programs toward 
technology integration. Indeed, most of the reports about such initiatives conclude with 
unsatisfactory outcomes in terms of gaps between teachers’ expectations and needs, 
and the program contents (Hegedus et al., 2016).  
Several theoretical frameworks have been developed to provide a conceptual frame 
defining teachers’ knowledge specific to the use of digital technology. Yet, Neubrand 
(2018) claims that knowledge-driven approaches are limited because of both “the gap 
between knowing and acting” and the lack of the “affective component” (p. 609) 
deemed as important as the cognitive one. As Kunter et al. (2013) put forward, “aspects 
beyond knowledge may be important in determining teacher success. These aspects 
include teachers’ beliefs, work-related motivation, and ability for professional self-
regulation” (p. 807), and delineate the concept of teacher professional competence. 
This study aims at investigating digital competences of mathematics teachers in France 
and in Israel.  

THEORETICAL FRAMEWORK 
We outline our meaning of competence, the instrumental approach (Rabardel, 2002) 
used to investigate ways mathematics teachers use digital technology, and the three 
frames of teachers’ digital technology use (Abboud-Blanchard & Lagrange, 2007).  
Competence 
Klieme et al. (2008) consider competences to be “context-specific dispositions for 
achievement that can be acquired through learning. Furthermore, they functionally 
relate to situations and demands in specific domains” (p. 8). Ala-Mutka (2011) suggests 
that competence is “an ability to use knowledge and skills with responsibility, 
autonomy and other appropriate attitudes to the context of work, leisure or learning” 
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(p. 18). These definitions converge on that competence involves an ability to act in a 
particular context or situation. We thus consider competence as a means for acting in 
different professional situations, and put aside affective and other aspects because of 
space limitation. 
We draw more particularly on the European framework for the digital competence for 
educators (DigCompEdu, Redecker, 2017). The framework describes educator-
specific digital competences that are grouped in six areas: (1) professional engagement, 
(2) digital resources, (3) teaching and learning, (4) assessment, (5) empowering 
learners’ competences, and (6) facilitating learners’ digital competence. Areas 2-5 
represent “the core of the DigCompEdu Framework” (p. 16). 
Instrumental genesis 
The instrumental approach (Rabardel, 2002) is used to understand processes by which 
a user transforms a digital tool - an artifact, into an instrument enabling her to achieve 
her goals. While the artifact (material or symbolic) is available to the user, the 
instrument is a personal construct created by the user during her activity with the 
artifact. This process is called instrumental genesis and comprises two interrelated 
processes: instrumentation leading to the development by the user of schemes of use 
of the artefact, and instrumentalisation during which the user adapts the artefact 
according to her knowledge and beliefs. The development of schemes of use manifests 
itself in a user’s invariant behaviour in a given class of situations. 
Three frames of teachers’ professional use of digital technology 
An important part of teacher’s activity occurs outside the classroom, e.g., preparing 
lessons, searching for resources or communicating with colleagues. Teachers also use 
different kind of technology: mathematical software for teaching, but also general 
technology such as Internet or text editor for preparing students’ worksheets. Abboud-
Blanchard and Lagrange (2007) distinguish three frames of digital technology uses: 

• Frame 1 is “the personal sphere of activity wherein the teacher uses ICT with no 
direct connection with his/her classroom activities” (e.g., communication with 
colleagues, or use of specific software not directly linked to students' learning). 

• Frame 2 “refers to prep work, the teacher having in mind what knowledge and 
know-hows he/she wishes the students acquire. For instance, a teacher might be 
using general tools (Internet, spreadsheets) and more specific ones strongly 
connected with subject teaching”. 

• Frame 3 is “in classroom, ICT use being intimately bound to subject teaching and 
being subservient to the students’ learning”. 

One can expect that activities within different frames imply different teachers’ 
competencies. This leads us to specify teachers’ activities when defining their digital 
competence. We fine-tune these frames to the purposes of our research. In particular, 
we believe that instrumental genesis encompasses a reflectivity on professional actions 
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taken, which the three frames do not capture. We adapt the delineation of the three 
frames as follows: first, we distinguish between teacher’s professional activity done 
outside the classroom (frames 1 and 2) and in the classroom (real or virtual) implying 
teacher’s interactions with learners (frame 3). We consider frame 1 including teacher’s 
professional activity not directly aimed at planning or implementing a lesson, whereas 
frame 2 referring to preparation activity, as well as reflection on the lesson 
implementation leading to the improvement of the lesson and possibly impacting the 
subsequent lesson preparation. Whereas frame 3 relates to the didactical use of 
technology, this may not be the case for frame 2: a teacher can prepare students’ 
worksheets using technology and implement them in a printed paper format in the 
classroom.  
We investigate mathematics teachers’ digital competencies as they manifest 
themselves in their practices in the three frames. Our research question is: Are there 
differences in practicing teachers’ use of technology according to the three frames? 

METHOD 
Classes of situations where digital technology can be used 
In line with the instrumental approach, to define classes of situations where teachers 
can use digital technology, we refer to the three frames of teachers’ professional use of 
digital technology and to the areas of the DigCompEdu Framework that define 
teachers’ digital competence, in particular the areas 2 and 3.  
We suggest that searching for and selecting resources is a class of teachers’ 
professional situations belonging to frame 1, as the purpose of this activity may not be 
directly related to lesson preparation. Frame 2 encompasses activities related to lesson 
planning and reflecting after lesson implementation: creating and modifying digital 
resources and designing learning tasks, sessions or sequences of sessions. Frame 3 
comprises activities involving teachers’ interactions with learners: implementing and 
managing digital learning activities, assessing students learning and performance, and 
monitoring the class and following the students. Note that the last two activities belong 
to the frame 2 as well.  
Design of the questionnaire and data collection 
We conducted a survey in France and in Israel involving mathematics teachers. For 
each class of situations, we listed items taken from the DigCompEdu Framework 
(Redecker, 2017), particularly from statements related to educator’s proficiency levels: 
we consider stage A - educators assimilate new information and develop basic digital 
practices; stage B - they apply, further expand and structure their digital practices; and 
stage C - they pass on their knowledge, critique existing practice and develop new 
practices. After having tested the English version with a few practicing mathematics 
teachers in Israel and in France, we refined the items and translated them to Hebrew 
and French. The online questionnaire was distributed nationwide in both countries. 
Participation to the survey was anonymous and voluntary. 
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FINDINGS 
Responses from 79 teachers in Israel and 434 teachers in France were collected. The 
participants are the teachers who are in contact with the teacher centres; hence we see 
them as the more proficient. We cannot claim that the data is representative of 
practicing mathematics teachers in either country; yet, this sample allows us getting 
some insight into teachers’ digital competences. Next, we present findings related to 
the first four classes of situations, as they are associated to one of the frames. Due to 
the space limitation, we only refer to part of the findings.   
Searching for and selecting digital resources (frame 1) 

Question: Which of the following items characterize your practice when you 
search for and select digital resources? Please tick the corresponding cells. Israel France 

(A) I only rarely, if at all, use internet to find resources for teaching and 
learning. 5 (6.9%) 34 (7.8%) 

(A) I use simple internet search strategies (e.g., keywords) and common 
educational platforms to identify digital content relevant for teaching. 33 (45.8%) 271 

(62.4%) 
(B) I evaluate the quality of digital resources based on basic criteria, such as 
e.g. place of publication, authorship, other users’ feedback. 29 (40.3%) 123 

(28.3%) 
(B) I adapt my search strategies to identify resources, e.g. searching and 
filtering by license, filename extension, date, user feedback etc. 10 (13.9%) 55 (12.7%) 

(C) I evaluate the reliability and suitability of content for my learner group 
and specific learning objective based on a combination of criteria, verifying 
also its accuracy and neutrality. 

39 (54.2%) 161 
(37.1%) 

(C) In addition to search engines, I use a variety of other sources, e.g. 
collaborative platforms, official repositories, etc. 38 (52.9%) 229 

(52.8%) 

Table 1. Results related to searching for and selecting digital resources 

We see this class of situations in frame 1 because searching for resources is not always 
linked with lesson planning. Interestingly, the responses in both countries are coherent: 
the items appear in the same order according to percentages. A small percentage of the 
teachers (about 7% in Israel, 8% in France) declare rarely, if at all, use Internet to 
search for resources. Hence, Internet is a source of digital resources for the majority of 
teachers. Teachers rather use simple search strategies or search for resources on 
common educational platforms (around 46% in Israel, 62% in France). Only about 14% 
Israeli and 13% French teachers adapt their search strategies to identify resources. Two 
hypotheses can explain this finding: either simple strategies provide satisfactory results 
or teachers complement these strategies with other ways of searching for resources. 
The fact that about 53% of teachers in both countries declare using other sources, such 
as collaborative platforms or official repositories, corroborates the latter hypothesis. 
Such platforms are created by the mathematics teacher education centre in Israel; in 
France several well-known repositories are frequently used, like those of the Institutes 
for Research on Teaching Mathematics. Some teachers use specialized search engines, 
e.g., Google Scholar or Publimath (French search engine dedicated to mathematics 
resources). Regarding resource selection based on quality evaluation, about 40% of 
Israeli and 28% of French teachers say using basic criteria, while 54% and 37% 
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respectively evaluate resource reliability and suitability with respect to their 
educational goal and their students. 
Creating and modifying digital resources (frame 2) 

Question: Which of the following items characterize your practice when you 
create and modify digital resources? Please tick the corresponding cells. Israel France 

(A) I may make use of digital resources, but I do not usually modify them or 
create my own resources. 10 (13.9%) 38 (8.8%) 

(A) I use office software to design and modify resources (e.g. worksheets 
and quizzes) and presentations. 40 (55.6%) 374 (86.2%) 

(B) When I create digital resources (e.g. presentations), I integrate some 
animations, links, multimedia or interactive elements. 37 (51.4%) 154 (35.5%) 

(B) I modify and combine existing resources, including interactive elements, 
to create learning activities that are tailored to a concrete learning context 
and objective, and to the characteristics of the learner group. 

36 (50.0%) 205 (47.2%) 

(C) I employ design principles for increasing accessibility for the resources 
and digital environments used in teaching, e.g. as concerns font, size, layout, 
structure. 

24 (33.3%) 129 (29.7%) 

(C) I create my own apps or games to support my educational objectives. 29 (40.3%) 53 (12.2%) 

Table 2. Results related to creating and modifying digital resources 

The findings are again quite coherent between the countries. The first item received the 
least number of responses: these teachers usually do not modify digital resources, 
which suggests that they use them as they are. The highest percentage of teachers chose 
the second item (respectively about 56% and 86%), suggesting that the use of office 
software to modify resources or create worksheets or presentations is common. Half of 
the teachers declare modifying and combining existing resources to adapt them to their 
context and objective. When creating resources, respectively around 51% and 36% of 
teachers integrate multimedia. A third of teachers in both countries consider themselves 
sensitive to accessibility issues when creating resources. Surprisingly, quite a big 
number of Israeli teachers (40%) design their own apps or games, comparing to only 
12% of French teachers. This can be explained by the use, in Israel, of platforms to 
which teachers can apply their own content (e.g., Kahoot).  
Designing a learning activity, a session or a sequence of sessions (frame 2) 

Question: Which of the following items characterize your practice when you 
design a learning activity, a session or a sequence of sessions? Please tick the 
corresponding cells. 

Israel France 

(A) I do not or only very rarely use digital devices or digital content in my 
teaching. 6 (8.3%) 35 (8.1%) 

(A) I choose mathematical digital technologies according to the learning 
objective and context. 

53 
(73.6%) 308 (71%) 

(A) When designing learning activities, I consider the importance of ensuring 
equal access, both physical (i.e., access to hardware and software) and 
intellectual (i.e., necessary technical knowledge) to the digital technologies used 
for all students 

16 
(22.2%) 

102 
(23.5%) 

(B) I choose the most appropriate tool for fostering learner active engagement 
in a given learning context or for a specific learning objective. 41(56.9%) 198 

(45.6%) 
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(B) I select and use some learning activities, e.g. quizzes or games, that allow 
learners to proceed at different speeds, select different levels of difficulty and/or 
repeat activities previously not solved adequately. 

28 
(38.9%) 

123 
(28.3%) 

(B) I design learning sessions or other interactions with a mathematical digital 
technology. 

19 
(26.4%) 

134 
(30.9%) 

(C) When I set up learning activities in digital environments, I let my students 
choose digital technology. 3 (4.2%) 15 (3.5%) 

(C) I continuously evaluate the effectiveness of digitally enhanced teaching 
strategies and revise my strategies accordingly 

19 
(26.4%) 

83 
(19.1%) 

(C) I reflect on, discuss, re-design and innovate pedagogic strategies for 
personalizing education through the use of digital technologies. 

16 
(22.2%) 

121 
(27.9%) 

Table 3. Results related to lesson planning 

Only about 8% of respondents confess not to use, or only very rarely, digital devices 
or content in their teaching. As regards the choice of digital technology while preparing 
their teaching, almost 3 teachers out of 4 claim choosing appropriate technology with 
respect to the learning goal and context. The percentage decreases when active 
learners’ engagement is at stake, which might imply that the remaining percentage of 
teachers adopt rather teacher-centred pedagogy. Even lesser part of the teachers pays 
attention to differentiation (around 40% and 28% respectively) when planning their 
teaching. Not surprisingly, only about 4% of the teachers in both countries plan to let 
their students choose digital technology to be used. Less than one third of teachers 
(around 26% and 31% respectively) design learning activities with mathematical 
digital technology, which contrasts with much higher percentage of teachers who claim 
choosing mathematical digital technologies according to the learning objective and 
context (around 74% and 71% respectively). This finding suggests again the prevalence 
of teacher-centred pedagogy. A quarter of teachers declares being sensitive to ensuring 
equal access to technologies. This amount of answers should however be nuanced as 
some teachers confess not to have understood the meaning of the item. Finally, 
regarding the reflectivity about own digital strategies, about 26% of Israeli and 19% of 
French teachers say continuously evaluating its effectiveness and 22% of Israeli and 
28% of French teachers declare innovate their pedagogical strategies through the use 
of technology. 
Implementing and managing digital learning activities (frame 3) 

Question: Which of the following items characterize your practice when you 
implement and manage digital learning activities?  Israel France 

(A) I use available classroom technologies, e.g. digital whiteboards, 
projectors. 47 (65.3%) 393 (90.6%) 

(A) I use digital technologies to visualize and explain new concepts in a 
motivating and engaging way, e.g. by employing animations or videos. 41 (56.9%)  287 (66.1%) 

(A) When implementing collaborative activities/projects, I encourage learners 
to use digital technologies to support their work, e.g. internet search or 
present results. 

26 (36.1%) 108 (24.9%) 

(B) Putting learners’ active use of digital technologies is important in my 
instructional process. 27 (37.5%) 88 (20.3%) 
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(B) I implement collaborative activities, in which digital technologies are used 
by learners for their collaborative knowledge generation, e.g. for sourcing and 
exchanging information. 

13 (18.1%) 58 (13.4%) 

(B) I require learners to document their collaborative efforts using digital 
technologies, e.g. digital presentations, videos, blog posts. 6 (8.3%) 22 (5.1%) 

(B) I use a range of digital technologies to create a relevant, rich and effective 
digital learning environment, e.g. by addressing different sensory channels, 
learning styles, by varying activity types and group compositions. 

15 (20.8%) 45 (10.4%) 

(B) When sequencing and implementing digital learning activities, I allow for 
different learning pathways, levels and speeds and flexibly adapt my 
strategies to changing circumstances or needs. 

16 (22.2%) 85 (19.6%) 

(C) I implement learning sessions so that different (teacher-led and learner-
led) digital activities jointly re-inforce the learning objective. 13 (18.1%) 105 (24.2%) 

(C) I select, design, employ and orchestrate the use of digital technologies 
within the learning process according to their potential for fostering learners’ 
active, creative and critical engagement with the subject matter. 

23 (31.9%) 75 (17.3%) 

Table 4. Results related to implementing and managing digital learning activities 

This class of situations gives insight into the declared use of technology in class. 
Indeed, around 65% of the Israeli and 91% of the French teachers declare using 
available technology (projector, IWB, PC). Teacher-centred use of technology seems 
to be dominant in both countries, as was marked by about two thirds of teachers. In 
contrast, the percentage is much lower for items clearly indicating the use of 
technology in the hands of students; only around 38% and 20% of teachers declare 
paying attention to learners’ active engagement with technology. This percentage is 
even lower (32% and 17%) when students’ active, creative and critical engagement is 
at stake. When collaborative activities are implemented, around 36% and 25% of 
teachers declare encouraging students to use technology to support their work, whereas 
only 18% and 13% take profit of such activities for learning purposes. However, only 
about 8% and 5% of teachers require learners to document digitally their collaborative 
efforts. About a fifth of teachers declare exploiting technology for differentiation, 
which is less than regarding planning (40% and 28%), which might mean that when 
planning, more teachers might use technology for preparing differentiated paper-based 
worksheets. Only around 21% and 10% of teachers combine various digital 
technologies to create a rich learning environment. Finally, about 18% and 24% of 
teachers declare implementing sessions in which different digital activities reinforce 
learning goal. 

DISCUSSION AND CONCLUSION 
The four classes of situations show similar pattern in responses between the two 
countries, however very different according to the three frames. The class of situations 
in frame 1 - searching for and selecting digital resources (Table 1) - shows increased 
percentage of teachers’ responses along proficiency levels. A plausible hypothesis 
explaining this finding is that nowadays searching on the internet is part of the digital 
literacy of any citizen; hence teachers are proficient in this competence. Classes of 
situations in frame 2 - creating and modifying digital resources and lesson planning 
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(Tables 2 & 3) - show a pattern that resembles normal distribution, suggesting that most 
of the teachers are at intermediate proficiency level B regarding these competences. 
Finally, the class of situations in frame 3 -implementing and managing digital activities 
(Table 4) - shows decreasing pattern along the proficiency levels. These findings 
suggest a gap in uses of technology in frames 1 & 2 and in frame 3, i.e., although 
teachers use it to search for resources and to prepare their teaching, they use it much 
less in the classroom. This finding is similar to what Abboud-Blanchard and Lagrange 
(2007) observed in student-teachers’ use of technology. We suggest that the difficulty 
with integrating technology in classrooms continues, as teachers fail to transform 
available technology into didactic instruments for their teaching. This may suggest 
avenues for teacher professional development. 
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Blended-learning in mathematics teacher professional development 
Laura Abt and Silke Ladel 

University of Education Schwäbisch Gmünd, Germany, laura.abt@ph-gmuend.de 
The project is located at the University of Education Schwäbisch Gmünd, Germany as 
cooperation between the University and the aim (Akademie für Innovative Bildung und 
Management) in Heilbronn, Germany. As part of the project, a teacher professional 
development program on the topic of language in arithmetic lessons is designed, 
carried out and evaluated. The program started in October 2019 with 14 arbitrarily 
selected teachers of mathematics (voluntary registration for the course). It ends in June 
2020. The program is designed as blended-learning to provide a maximum of flexibility 
in time and space for the participants. 
Keywords: professional development, blended-learning, language in mathematics 
learning. 
RESEARCH ON PROFESSIONAL DEVELOPMENT FOR TEACHERS 
For more than ten years, research on teacher professional development has concluded 
that successful professional development programs for teachers include some specific 
aspects. These are e.g. long-term duration instead of so called “one-shot” programs and 
referring to school topics and curricula. Professional development programs for 
teachers have to address teachers and generate subjective importance (Bogler and Nir, 
2008; Lipowsky and Rzejak, 2012). Moreover, the meta-analysis of Darling-
Hammond, Hyler, and Gardner (2017) reports further features of successful programs: 
they have to focus on active learning on the side of the participants what implies that 
the programs are illustrated with authentic examples and tasks. Furthermore, the 
authors advise to support collaboration, give best practice models, provide coaching, 
feedback and reflection. However, professional development programs in Germany 
often do not take up these features. 
RESEARCH FINDINGS ON LANGUAGE IN MATHEMATICS LEARNING 
Since the first survey, PISA has reported weaker mathematics’ skills for migrant 
students than non-migrant students (Gebhardt et al., 2013, p. 275). There is no question 
that differences in the level of competence achieved in mathematics can be attributed 
to linguistic aspects. This is not a phenomenon limited to German, but applies to all 
processes of second language acquisition as, for mathematics, three different language 
registers need to be learned (technical language, educational language and everyday 
language) (Cummins, 1979). In addition, research has shown that characteristics of the 
mathematical terminology and specialties of the German language also cause problems 
on different levels (Prediger, 2015).  

IMPLICATIONS FOR THE DESIGN OF THE RESEARCH PROJECT 
The project aims to develop a professional development program for teachers that fits 
current research in several ways: to overcome the gap between research findings on 
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successful professional development for teachers, the designed program refers to the 
following aspects: it is planned long-term to provide the possibility for the participants 
to connect, collaborate, try out and reflect. To provide a maximum of flexibility in time 
and space, it is held as a blended-learning-course what means that it is started and ended 
by a classroom event. In between, a longer online stage will present authentic 
application examples. The topic language in arithmetic lessons is chosen to take into 
account the research that found out, that professional development programs have to 
provide authentic content that is close to the curricula. With this specific topic, we paid 
attention to this aspect. Since this topic is relevant for teachers in primary and 
secondary level, the participants will be from both types is the style. Based on the 
theoretical considerations and empirical findings described above, the following main 
research question arises for the presented research project: How does a professional 
development program, designed as a blended-learning course, influence the 
satisfaction of the teachers and their willingness to attend further PD of this kind? This 
research question raises further sub-questions that will be presented on the poster. 

REFERENCES 
Cummins, J. (1979). Cognitive/Academic Language Proficiency, Linguistic 

Interdependence, the Optimum Age Question and Some Other Matters. Working 
papers on bilingualism, 19, p. 197–205.  

Darling-Hammond, L., Hyler, M. E., Gardner, M. (2017). Effective Teacher 
Professional Development. Palo Alto, CA: Learning Policy Institute.  

Gebhardt, M., Rauch, D., Mang, J., Sälzer, C. & Stanat, P. (2013). Mathematische 
Kompetenz von Schülerinnen und Schülern mit Zuwanderungshintergrund. In M. 
Prenzel, C. Sälzer, E. Klieme, & O. Köller (Eds.), PISA 2012: Fortschritte und 
Herausforderungen in Deutschland (p. 275– 308). Münster: Waxmann.  

Prediger, S., Wilhelm, N., Büchter, A., Benholz, C. & Gürsoy, E. (2015). 
Sprachkompetenz und Mathematikleistung – Empirische Untersuchung sprachlich 
bedingter Hürden in den Zentralen Prüfungen 10., In Journal für Mathematik-
Didaktik, 36(1), p. 77-104.  

Lipowsky, F., & Rzejak, D. (2012). Lehrerinnen und Lehrer als Lerner – Wann gelingt 
der Rollentausch? Merkmale und Wirkungen effektiver Lehrerfortbildungen. 
Schulpädagogik heute, 5(3), p. 1–17.  

Nir, A. E., & Bogler, R. (2008). The antecedents of teacher satisfaction with 
professional development programs. Teaching and Teacher Education, 24(2), 377–
386.  



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

 

129 

Potential explanations to the opposition of curricular digitalisation: a 
case study of Egyptian mathematics teachers   

Mariam Makramalla 
University of Cambridge, Faculty of Education, United Kingdom, 

mmmm2@cam.ac.uk 
This poster is grounded on a wider empirical study that was conducted with Egyptian 
mathematics teachers in view of their perceived relation to students and to 
mathematical content knowledge. Based on a contextual and dynamic understanding 
of the instructional triangle, it presents a potential explanation to the opposition that 
was recently nationally recorded, with regards to the digitalisation of the teaching and 
learning platform of school mathematics education. Findings suggest the opposition 
may be rooted in a distorted self-image of mathematics teachers as authority figures 
in the classroom.   
Keywords: digital platform, teacher role, student self-image, mathematical content  

INTRODUCTION 
In 2018, the Ministry of Education in Egypt launched a national initiative to digitalise 
the teaching, learning and examination platform for mathematics education. Teachers 
and students were to be provided with a common digital interface, from which they 
had common access to mathematical knowledge, explanation and practice tools as well 
as access to central government examination, when needed. This initiative was faced 
with a lot of opposition. In this poster, I use the instructional triangle dynamic as a 
theoretical lens. I present findings of an empirical investigation that uncovers how 
teachers relate to students and to mathematical tasks in the classroom and how their 
perceived self-image as authority figures in the classroom might be disrupted by the 
introduction of a unified digital platform for knowledge exchange.  

THEORETICAL FRAMEWORK 
In their study of mathematical resources and their utilisation for instructional purposes, 
Cohen, Raudenbush and Ball (2003) plot the complexity of the contextual interaction 
between students as peers, students and the teacher as well as students, teachers and 
the content of instruction. According to the authors (Cohen et. al., 2003) instruction 
happens as an interaction between multiple agents. Firstly, there is the teacher 
knowledge, both of the diversity of their student body and of the mathematical content 
being taught. Secondly, there is the student-peer interaction, the student- teacher 
interaction and the student’s own thinking and learning process in relation to 
mathematical content learning. The interactions happen within a context that is bound 
by a classroom environment, a school environment and a wider societal environment 
that either endorses or weakens the learning operation.  
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LITERATURE REVIEW  
In his investigation of the learning environment within the framework of the centrally 
controlled and unified national agenda for teaching and learning in Egypt, Naguib 
(2006) argues for the existence and reproduction of a culture of despotism that views 
teaching and learning content as static and solely owned by the figure of authority. A 
passive depiction of knowledge transfer is passed on hierarchically to school via the 
centrally governed national policy. This culture is in turn reproduced at school and then 
again in classroom. As a result, the teacher relates to the content taught in the lesson as 
being static in nature and as teacher ownership. Similarly, the teacher relates to students 
as a block of passive, non-diverse classroom audience.  

EMPIRICAL EXPLORATION AND FINDINGS 
As part of a wider study that aimed to explore Egyptian teachers’ perceptions of math 
problem solving tasks and their classroom integration, math teacher groups were 
presented with a set of different math problem solving task integration scenarios, each 
depicting a different experience of the math task in the classroom. Teachers were 
prompted to discuss which of the scenarios best related to their perception of their role 
in the classroom, both in relation to students and to math content. Patterns in the 
findings were mapped against the same analytical framework that was devised to put 
together the scenarios. Repeatedly, findings revealed a teacher self-image of her role 
as the main authority figure in the classroom, solely responsible for the transmission 
of content knowledge to a passive audience of students: “The task belongs to me. I am 
the teacher. I oversee the classroom and know exactly how to teach it. The student, he 
doesn’t know.”   

DISCUSSION 
In line with Naguib’s (2006) depiction of culture of despotism that reproduces itself at 
school and classroom level, it becomes understandable why equal access to a digital 
interface of infinite math knowledge is considered threatening to the teacher and hence 
opposed. The understanding of how the student passively relates to the mathematical 
content also explains why a student would oppose an open digital platform for learning. 
The teacher self- perceived role in the classroom in relation to both content and the 
student seems to have, over time, led to a limited student self-image in relation to 
themselves, their peers and the mathematical content studied.  
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Surveying prospective teachers’ conceptions of GeoGebra when 
constructing mathematical activities for pupils  

Attila Szabo1, Mirela Vinerean², and Maria Fahlgren² 
1Stockholm University, Department of Mathematics and Science Education, Sweden, 

attila.szabo@edu.stockholm.se; ²Karlstad University, Department of Mathematics 
and Computer Science, Sweden, mirela.vinerean@kau.se, maria.fahlgren@kau.se  

In this poster, we present an ongoing study about prospective mathematics teachers’ 
conceptions about the relationship between mathematics, problem solving and 
GeoGebra. The context of our study is a curriculum reform in Sweden that emphasizes 
the use of digital tools mathematics education. In that respect, we will investigate 
prospective upper-secondary teachers´ conceptions when participating in a geometry 
course at university level. During the course, participants will construct mathematical 
activities for pupils by using GeoGebra. 
Keywords: mathematics teaching and learning, prospective teachers, dynamic 
geometry software, problem solving. 

BACKGROUND 
Despite a substantial emphasis on the potential of digital technologies for mathematics 
education in the last two decades (e.g. Hoyles & Lagrange, 2010), a meaningful 
implementation of digital tools in the teaching of mathematics is not an unproblematic 
issue (e.g. Drijvers, 2013). Following the international trend, a relatively recent 
curriculum reform in Sweden highlights the use of digital technology in mathematics 
education in upper-secondary school. Importantly, according to the curriculum, digital 
tools should be used by pupils to develop their competences in problem solving and 
mathematical modelling. 
Mathematical problems and problem solving are considered central to mathematics 
education. When discerning problems from routine tasks, the relationship between the 
solver and the proposed task, in combination with the challenge that the solver faces 
when solving the task, are essential (Carlson & Bloom, 2005). Consequently, to prepare 
prospective teachers to use digital tools in their teaching, these perspectives should be 
included in the teacher education programme. Additionally, prospective teachers´ 
relatively limited experience in working with digital technology in mathematics, 
should be addressed in the context (Misfeldt, Szabo & Helenius, 2019). 

THE STUDY 
By focusing the educational programme of prospective teachers, the main goal of the 
present study is to investigate their conceptions about the relationship between school 
geometry, problem solving and GeoGebra. Consequently, we designed a survey related 
to various aspects of and intersections between these subjects. The survey is mainly 
based on previous studies about mathematics teachers facing challenges related to new 
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digital technology or to the use of Dynamic Geometry Software (DGS) (e.g. Fahlgren 
& Brunström, 2014; Misfeldt, Szabo, & Helenius, 2019). Some questions focus 
prospective teachers’ use of DGS in the perspectives of instrumental distance and 
professional genesis (Haspekian, 2014). To achieve an appropriate level of reliability 
and validity of the responses we use a four-alternative Likert scale. 
The 22 participants are prospective upper-secondary teachers enrolled in a geometry 
course at university level. Prior to the course, they had no formal education in and very 
little experience of DGS. During the course, participants applied GeoGebra to construct 
activities for pupils that include problem solving. In order to develop participants’ 
critical reflection, mentioned activities underwent peer assessment and were tested by 
peers, acting as pupils. 
Due to the limitations of this poster, we present only one result from our study. The 
analysis shows that 95% of participants feel enthusiastic – by stating that DGS is 
important and meaningful for mathematics education – and 70% feel well-prepared to 
use DGS in their teaching. On the other hand, 85% of participants think that they will 
meet pupils who are more skilled in DGS than they are. This indicates that prospective 
teachers’ conceptions related to DGS should be discussed further in the light of 
instrumental distance and professional genesis (Haspekian, 2014). That is, it is not 
unreasonable to assume that, despite feeling optimistic and relatively well-prepared, 
participants will face challenges when implementing DGS in their teaching.  
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Preservice teachers’ perceptions on outdoors education using a digital 
resource 
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This paper refers to a study that aims to understand the potential of digital technology 
in outdoors mathematics education from the perspective of future teachers. We 
followed a qualitative approach and collected data through observation, 
questionnaires and photographic records. The participants were forty-eight preservice 
teachers that used Math City Map to do a math trail in Viana do Castelo. Results show 
that they valued the experience, having the possibility to solve realistic problems, 
developing cooperative work, critical thinking and establishing mathematical 
connections. They found the app to be user friendly and motivating, mentioning its 
contribution for students’ engagement through active learning, spatial orientation, 
autonomy and being more interactive than the paper version. 
Keywords: Math trail; Problem solving; Mathematical connections; STEM education; 
Teacher training. 

INTRODUCTION 
This paper is based on previous work developed by the authors in the scope of outdoor 
mathematics education. We have been carrying out several studies conducted with 
preservice teachers (e.g. Barbosa & Vale, 2016; Barbosa & Vale, 2018; Vale, Barbosa 
& Cabrita, 2019) which show that the outdoors can be seen as a privileged educational 
context, promoting positive attitudes and additional engagement/motivation for the 
study of mathematics. In particular, the use of math trails has great potential in 
unveiling the connections between mathematics and everyday life, specifically with 
the environment that is close to us. These studies focused mainly on a particular detail 
of the math trails, which was task design, approaching different aspects of problem 
posing and obviously problem solving, using a mathematical eye to formulate tasks 
that highlight connections with daily life. Along with this research interest, being part 
of the Consortium of the Project Math Trails in School, Curriculum and Educational 
Environments in Europe (MaSCE3), gave us the opportunity to contact with a different 
approach to math trails, other than task design, adding the possibility to resort to digital 
technology, specifically mobile devices. It is important to state that the use of Math 
City Map (MCM), a project of the working group MATIS I (IDMI, Goethe- Universität 
Frankfurt) in cooperation with Stiftung Rechnen, has been reported as having a positive 
impact in supporting teachers and students in the process of teaching and learning 
mathematics outside the classroom, acting as a resourceful tool to explore the outdoors 
in a mathematical perspective (e.g. Cahyono & Ludwig, 2019; Ludwig & Jablonski, 
2019). We are convinced that these approaches are extremely relevant in mathematical 
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education and also to the development of a set of skills expected from students in 21st 
century, so it is our purpose in this study to understand the potential of digital 
technology in outdoor mathematics from the perspective of future teachers. Based on 
this problem, the following research questions were formulated: 1) Which potentialities 
and limitations are recognized in MCM by the participants?; 2) How can we 
characterize the reactions of the participants to a math trail? 

OUTDOOR EDUCATION: THE CASE OF MATH TRAILS 
One of the main ideas of this paper is that of Math Trail. Hence, it is pertinent to begin 
by defining this concept. We consider a math trail to be a sequence of tasks along a 
pre-planned route (with beginning and end), composed of a set of stops in which 
students solve mathematical tasks in the environment that surrounds us (Vale et al., 
2019, adapted from Cross, 1997). This is a privileged context to offer rich learning 
experiences to the participants, that also enables the exploration of mathematical 
concepts stated in the curricular guidelines, which can be considered as an advantage 
in the teachers’ perspective (e.g. Vale et al., 2019). While experiencing a math trail, 
students can use and apply mathematical knowledge learned in school but, at the same 
time, mobilize informal daily life knowledge. Beyond this possibility there is a wide 
range of skills that are naturally in line with outdoor education like problem solving, 
critical thinking, collaboration, communication, reasoning or the establishment of 
connections. For all the stated arguments, we believe that it is important to complement 
the work developed inside the classroom with experiences in the scope of outdoor 
mathematics, allowing students to discover and interpret the world beyond the 
classroom walls and accepting that education can take place in different places and 
contexts (Bonotto, 2001). 
During a math trail the participants contact with realist problems that illustrate the 
usefulness of mathematics, but more than that amplify the possibility of establishing 
connections between mathematics and reality. This feature can be crucial to induce 
positive attitudes towards this discipline (e.g. Bonotto, 2001; Borromeo-Ferri, 2010), 
relying specially on curiosity, motivation and interest. Beyond solving realist 
problems, in this non-formal context we must not forget the influence produced by 
movement in students’ attitudes. The body plays a decisive role in the entire intellectual 
process. Alongside cognitive engagement, math trails imply two other dimensions: 
physical and social engagement (Hannaford, 2005). The interaction between these 
dimensions, facilitated by a math trail, is in line with an active learning approach, 
known by committing students to the learning process, hence promoting positive 
attitudes towards mathematics (e.g. Vale et al., 2019). 
Richardson (2004) proposes a series of steps for the preparation of a math trail: (1) first 
comes the selection of the site. It can be anywhere, as long as it is rich in mathematics. 
The teacher must observe the elements of the chosen context and look for aspects like 
patterns, shapes, things to measure, count or represent; (2) then, we take photos at each 
chosen location to later use them in the design of the tasks; (3) select the photos, create 
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a map and identify the chosen places to carry out the tasks in order to verify the 
distribution of the stops and the distance of the route; (4) formulate the different tasks 
and the instructions to reach the different stops. These tasks must have different 
cognitive levels of demand (Smith & Stein, 2011) and admit different mathematical 
approaches. The tasks must be solved with knowledge previously learned in the 
classroom; (5) whenever possible, it is interesting to establish connections between 
mathematics and other curricular areas through the tasks. Regarding the task design, 
Richardson (2004) recommends that questions should arouse the curiosity, forcing the 
students to observe the environment to achieve a successful solution. There are other 
aspects to consider on a math trail. According to Shoaf, Pollak, and Schneider (2004): 
they should be for everyone, regardless of age and experience, since it is intended that 
they discuss and compare their reasoning and strategies; they require collaboration and 
not competition; the participants must be able to manage time; participation must be 
voluntary, given that participants must feel involved and interested; they should be 
presented in any safe public place, since mathematics is everywhere; and they are 
temporary, since the places are subject to changes over time. After completing the trail, 
the participants must carry out their assessment, in order to expose the difficulties felt, 
as well as the aspects to maintain and improve. 

DIGITAL TECHNOLOGY AND OUTDOOR MATHEMATICS 
Nowadays, mobile devices are fully integrated in our daily lives and, consequently, in 
the lives of students starting from very young ages. Teachers should be more aware of 
this fact and try to follow this trend using resources of this nature in their teaching 
practices. In addition to keeping up with the development and needs of contemporary 
society, it is also important to state that mobile devices are becoming a resource with 
great potential both in classrooms but also in outdoor learning (Sung, Chang & Liu, 
2016). This is due to the rapid developments in mobile devices and also in the creation 
of a diversity of educational apps, which increases the window of opportunities for 
teachers to use these tools with their students. 
The diversity of learning opportunities offered by this type of technology can make 
STEM education more interesting, significant and enjoyable for students, enhancing 
the possibilities for their engagement in STEM subjects inside but also outside the 
classroom (e.g. Sung et al., 2016). The extension of the classroom to the outdoors is 
facilitated by the portability and wireless functionality of the mobile devices, which 
presents students with a more authentic and appropriate context, making it easier to 
explore the surrounding environment (Cahyono & Ludwig, 2019). Digital technology 
can help develop a deeper understanding of mathematics, acting as a mind tool that 
facilitates inquiry, decision making, reflection, reasoning, problem solving and 
collaboration (Fessakis, Karta & Kozas, 2018). 
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METHODS  
This study follows an interpretative qualitative methodology (Erickson, 1986). The 
participants are forty-eight future teachers that attend an undergraduate teacher training 
course in primary education (6-12 years old), which includes a unit course on Didactics 
of Mathematics that acts as the context for the development of the study. Knowing that, 
at the beginning of the semester, the participants did not have any significant 
experiences working mathematics outside the classroom, we chose to start with an 
activity of this nature, a math trail. Initially they completed a questionnaire 
(Questionnaire I) that aimed to access their perceptions about the teaching and learning 
of mathematics outside the classroom and also about the use of technology in that type 
of context. Then they had the opportunity to do a math trail using the Math City Map 
(MCM) app, which was organized and designed by the researchers to be solved in the 
historical centre of the city of Viana do Castelo. The trail was planned and the tasks 
were designed based on the ideas of Richardson (2004) and Smith and Stein (2011), 
seeking, in general, to propose diversified tasks with regard to the mathematical 
contents involved and with different cognitive levels of demand. To implement the trail 
the preservice teachers worked in groups of 3 or 4. They attributed the responsibility 
of the use of the app/smartphone to one of the group elements, while the others were 
in charge of the measurements, calculations and registers. After doing the trail they 
completed a second questionnaire (Questionnaire II), applied with the purposed to 
analyse eventual changes on the perceptions of the participants about outdoor 
mathematics and the use of technology, specifically the MCM app. 
Data was collected in a holistic, descriptive and interpretive manner and included 
observations (of the preservice teachers doing the math trail), questionnaires, 
photographs and written productions (solutions of the tasks). The later were not 
analysed for this specific paper. The researchers accompanied the participants during 
the trail, a choice that facilitated the accomplishment of the direct observation. Since 
we had forty-eight participants, to maximize the observation, we chose to divide the 
group in half and do the math trail with each group separately. The questionnaires 
contained mainly open-ended questions, so the content analysis focused on finding 
categories of responses regarding the perceptions evidenced by the participants, which 
were crossed with the evidences collected with the observation. In this process we 
reached categories mainly influenced by the research questions: reactions to the math 
trail; potentialities of MCM; limitations of MCM. 

RESULTS AND DISCUSSION  
We started by analysing the results of Questionnaire I, to be aware of the initial 
perceptions of these future teachers about outdoor education and the use of technology 
in such a context. In this process we used percentages but only as a mere indicator of 
trends in the answers. We concluded that the majority of the participants (91%) 
considered that it is possible to teach and learn mathematics outside the classroom. The 
examples cited varied between: tasks related to real life situations; counting activities; 
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money related tasks; shopping activities; games; competitions; clubs; field trips; 
observing architecture/artwork/shapes in the outdoors; finding mathematics in nature, 
like patterns/shapes; doing a trail/peddy paper. 87% of the participants revealed that 
they never experienced a mathematics class outdoors, which in a certain way may 
explain the general and vague ideas they had about how to do it. Considering these 
results, we believe that preservice teachers need to experience certain methodologies 
before they are able to incorporate them in their future practices. As for technology 
knowledge, 60% of the participants stated that they did not know any digital resources 
to explore mathematics outdoors. The 40% that admitted knowing resources of this 
nature mentioned digital games, apps and robots, but none of the examples given 
allowed the exploration of the surrounding environment, they only had a playful strand. 
Before going to the city centre to do the math trail with MCM, the participants had a 
brief session about the use and the main features of Math City Map. Then the 
researchers accompanied them to the location of the trail and supervised the activity, 
which, as mentioned, facilitated the observation of certain aspects. Regarding the use 
of the app, we can say that they didn’t show noteworthy difficulties. They found it to 
be very intuitive and were extremely autonomous throughout the trail. The 
gamification feature of the app was definitely an extra motivating factor: on one hand 
it caused excitement when the solution was correct; and implied greater care before the 
introduction of the answers, which was reflected on several situations were the 
participants tried to make sure of the validity of the answer discussing it within the 
groups. The dynamics of the math trail using MCM naturally promoted collaborative 
work, within each group, leading them to share responsibilities (e.g. carry and use the 
smartphone; measurement; recording data; calculations), or even among different 
groups cooperating with the same goal in mind (e.g. joining several articulated meters 
to find the measure of a certain length). In Figure 1 we can observe different moments 
of the trail implementation that illustrate the preservice teachers’ work, where they had, 
for example, to: determine the volume of a flower pot; estimate the length of an avenue 
based on a pattern of lamps; discover the probability of hitting the white area of a no 
entry sign with a dart; or characterize the rotation symmetries in a stained glass 
window. These are only four of the tasks of the math trail but they are representative 
of the other tasks used in the trail.    

 
 
 
 

 

Figure 1: Preservice teachers doing the math trail with Math City Map 
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Throughout the trail it was possible to witness reactions and comments made by the 
preservice teachers that we think are relevant and must be emphasized since they reveal 
engagement: the trail gave them the opportunity to get to know better certain aspects 
of the city, related to historic and architectural features that they did not know of; many 
expressed interest in using the app with their future students; we identified a 
generalized satisfaction throughout the activity; they valued the need to move around, 
opposed to the sedentary work traditionally developed inside the classroom. 
After experiencing the math trail with MCM, the preservice teachers completed 
Questionnaire II. From the analysis of the results we were able to conclude that all the 
participants recognized the importance of teaching and learning outside the classroom, 
especially as a way to complement the formal educational context. Contrary to the 
results obtained through Questionnaire I, they were all convinced, with no exception, 
that teaching and learning mathematics outside the classroom is possible, showing that 
some of these preservice teachers changed their opinion about this issue. Those who 
already thought that this strategy was a possibility, stated it with even more emphasis, 
admitting that it exceeded their expectations. We found several arguments supporting 
these ideas: it follows the principles of active learning, promoting intellectual, social 
and physical engagement; learning is more meaningful for students because they are 
directly involved; it increases motivation and enthusiasm; it helps understand the 
usefulness of mathematics, realizing its application in real life problems; it allows to 
increase the knowledge of the cultural and natural heritage; it facilitates collaborative 
work and helps develop communication skills, as well as critical thinking; it can lead 
to the use of technology. 
The majority of these participants expressed that they enjoyed solving all of the tasks 
presented along the trail, which is consistent with the observed enthusiasm. The tasks 
pointed as favourites corresponded to those considered as the most challenging or the 
ones that presented information/curiosities/historic aspects about certain elements of 
the city that they did no know about. On the other hand, the least favourites were the 
ones that required too many steps during the solution process. 
In this questionnaire the participants also commented on the use of MCM and its 
features. From the users/students perspective they highlighted as potentialities: the 
possibility to use curricular contents in real life situations; being user friendly, easy to 
understand, promoting autonomy; facilitating cooperation; it helps to get to know the 
local environment; it develops spatial orientation; being more practical and interactive 
than the paper version; the possibility of getting immediate feedback; and the 
gamification feature. As for the teachers’ perspective, the participants mentioned as 
potentialities: the possibility to design tasks adapted to the local environment and 
publishing them; addressing different mathematical contents and promoting 
interdisciplinary tasks; a way to diversify educational contexts; it allows the teacher to 
supervise and accompany the work developed by the groups, due to the autonomy it 
provides the user. When asked about the limitations of the app, these preservice 
teachers only referred to the possible lack of access to Wi-Fi, the fact that students of 
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younger ages normally do not have smartphones and, in terms of the tasks, the 
limitation of the answer formats to either a value or multiple choice. 

CONCLUDING REMARKS  
Based on previous studies developed with preservice teachers (e.g. Barbosa & Vale, 
2016; Barbosa & Vale, 2018; Vale et al., 2019) we had already concluded that 
designing and implementing math trails can promote positive attitudes towards 
mathematics and help gain a broader view of the connections we may establish with 
the surrounding environment. This type of experience develops the “mathematical eye” 
of the trail designers as well as of the trail users (e.g. Vale et al., 2019), bringing out 
the usefulness and applications of mathematics. 
Unlike the above mentioned studies, this one focused only on the perspective of the 
trail user and not the designer. We intended to understand the potential of the MCM 
app in outdoor education from the point view of preservice teachers. Globally they 
valued the math trail experience as a meaningful pathway to engage students in realistic 
problem solving (Richardson, 2004), that presents a diversity of opportunities for the 
establishment of connections between mathematics and other content areas, as well as 
with real life (e.g. Bonotto, 2001; Borromeo-Ferri, 2010). Active learning was also 
pointed out by the participants as a fundamental attribute in a math trail, allowing 
intellectual, physical and social engagement, whose interaction normally generates 
positive attitudes (e.g. Hannaford, 2005; Vale et al., 2019). Math City Map was used 
as the means to present and execute the trail. This was the additional dimension of this 
study, trying to perceive its impact. These preservice teachers valued the use of the 
app, finding it user friendly and motivating, especially due to the gamification feature. 
They also mentioned as positive its contribution for developing spatial orientation, 
cooperation, students’ autonomy and being more practical and interactive than the 
paper version. The only limitations recognized by the participants were related to 
constraints like the absence of Wi-Fi or smartphones and also the limited possibilities 
for answer formats. 
To conclude, when implementing the math trail we recognized an additional motivation 
associated to the digital and interactive features of the MCM app, which facilitated and 
made more interesting the exploration of the outdoors (e.g. Cahyono & Ludwig, 2019). 
Being preservice teachers, the participants other then going through this experience as 
users, they also had the opportunity to assess the potential of the strategy (math trail) 
and the resource (MCM app) and analyse how could they, as teachers, implement it in 
the future. Recognizing the importance of keeping up with the technological 
development and society requirements they considered the possibility of integrating 
this resource, and the math trail strategy, in their practices. 
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We introduce the math trail method as an opportunity to teach math outdoors with 
digital tools. Regardless of proven positive effects on motivation and learning, math 
trails are so far rarely used to teach a specific math topic. In order to promote the use 
of math trails as part of regular math lessons and to meet the requirements of outdoor 
learning, we have developed the concept of so-called theme-based math trails. They 
are a collection of conceptually related tasks focusing on a specific topic in the 
mathematics curriculum. This way we try to provide a curriculum-based outdoor 
learning experience for mathematics teaching. To exemplify the creation of theme-
based trails, we have identified characteristic tasks for a trail around the concept of 
linear functions. By developing design principles, we intend to support teachers in 
creating a curriculum-based math trails using the MathCityMap system. 
Keywords: Generic Tasks, MathCityMap App, Mathematics Curriculum, Mobile 
Learning, Theme-based Math Trails. 

INTRODUCTION 
One promising approach for mathematical education outdoors is the math trail method. 
While working on realistic and authentic tasks about real existing objects, students 
explore their own environment from a mathematical perspective. The MathCityMap 
project revives this idea and combines it with the potentials of digital media, e.g. GPS 
navigation and systemic feedback (Ludwig & Jesberg, 2015).  
So far, the math trail method is mainly used for the revision of already learned topics. 
Based on local conditions, teachers create mathematical tasks about interesting objects 
in their own environment. As consequence, the tasks refer to various mathematical 
contents, especially from geometry. However, as Zender (2019) pointed out, the math 
trail method can also be used for the targeted work on a specific curriculum topic. To 
enable teachers to easily integrate math trails into their regular teaching units, we point 
out possibilities to create so-called theme-based math trails within the MathCityMap 
system. Therefore, the following terms will be used. 
(1) Generic task: A generic task represents on the one hand a characteristic problem 
for a specific mathematical topic. On the other hand, a generic task can be understood 
as blueprint, i.e. the task can be performed on a variety of outdoor objects. For example, 
the concept of slope can be experienced outdoors through ramps, handrails or spiral 
staircases (Ludwig & Jablonski, 2020). 
(2) Theme-based trail: A theme-based trail can be considered as a collection of generic 
tasks on one particular mathematical topic. 
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Within the concept of theme-based trails, math trails are directly linked to the 
mathematics curriculum. Therefore, theme-based trails can be seen as the adoption of 
the regular math lessons in outdoor settings. In this paper we introduce the idea of math 
trails and the MathCityMap app. Subsequently, we develop design principles for the 
creation of theme-based trails and illustrate them by focusing on the concept of linear 
functions. In this way we want to give a substantial contribution to implement 
MathCityMap math trails for the teaching and learning a specific curriculum topic. 

CONCEPTUAL FRAMEWORK: MATH TRAILS & MATHCITYMAP 
Mathematical outdoor education can be implemented by using the math trail method. 
A math trail is a walking route consisting of several place-bound math tasks. These 
tasks treat mathematical questions about real existing objects in one’s environment, 
which allows people from all ages to perceive their own environment from a 
mathematical perspective (Shoaf, Pollak, & Schneider, 2004). The method generates 
“an appreciation and enjoyment of mathematics in everyday situations, usually to 
complement work in the classroom” (Blane & Clarke, 1984, p. 1).  
According to Cross (1997), the math trail method offers several advantages for 
mathematics education: By working on realistic and authentic tasks, students firstly 
experience relevance of mathematics in everyday life. Consequently, they learn to 
apply their theoretical knowledge in a wide variety of practical situations and can 
develop strategic problem-solving skills. Secondly, Cross stresses the value of group 
cooperating and communicating, which enables students to clarify and structure their 
mathematical knowledge. Thirdly, solving a math trail task usually requires to collect 
and record data – a worthwhile skill that is rarely fostered in regular math class. Finally, 
the method also promotes learning about the immediate environment, so math trails 
offer interdisciplinary and multi-faceted learning opportunities (ibid.). 
MathCityMap: Digitalization of the Math Trail Method 
The MathCityMap project revives the ‘old’ idea of math trails and supplements it with 
mobile learning (Ludwig & Jesberg, 2015), which can be defined as usage of mobile 
devices like tablets or smartphones in an educational context (Park, 2011). The 
computing power and portability of these devices as well as the possibilities of wireless 
communication and digital tools offer great potential for both traditional teaching and 
outdoor learning (Sung, Chang, & Liu, 2016).  
MathCityMap is a two-component system consisting of a web portal and a freely 
available app. It provides a simplified, digital way to create, share and to run math trails 
(Ludwig & Jablonski, 2020). The first component, the MathCityMap web portal 
(www.mathcitymap.eu), is a database for finding and creating mathematical tasks and 
to combine them to math trails. Both, tasks and trails can be shared with members of 
the worldwide MathCityMap community. This aspect of sharing can be named as one 
of the core features of the web portal. For every math trail, a math trail guide is 
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available. It can be downloaded as PDF file or accessed via the MathCityMap app. This 
guide includes a map of the trail, all tasks and one picture of each task situation. 
The MathCityMap app enables users to access math trails, which were created on the 
web portal. After downloading the trail guide to the mobile device, it is possible to run 
the math trail via app even without an internet connection. Only one smartphone or 
tablet with the installed app is necessary per group. 
Features of the MathCityMap App 
According to Ludwig and Jesberg (2015) mobile-supported math trails offer several 
advantages in comparison to ‘classic’ math trails: Firstly, the MathCityMap app eases 
the task localization by navigating students to the tasks via GPS. Secondly, the app 
provides hints to support students’ problem-solving progress. Thirdly, students receive 
a systemic feedback on their calculated solution (ibid.). Adding the value of 
pedagogical gamification, we will describe the listed benefits. 

 

Figure 1: The Task “x-intercept” in the MathCityMap App: Task Formulation, a Hint, 
Validation of the Solution and Sample Solution (from left to right). 

Stepped hints: For each task, the app displays up to three stepped hints to support 
students’ problem-solving progress (Fig 1, center-left). While students can call up 
those hints independently, they can determine the difficulty of the task. This enables 
learners to adapt task to their individual performance and motivation level. 
Consequently, the hints allow both higher and lower performing students to work on 
the given tasks (Franke-Braun, Schmidt-Weigand, Stäudel, & Wodzinski, 2008). 
Feedback: According to Reinhold (2018), a major potential of digital tools is the ability 
to give students immediate feedback on their work progress. In addition, through their 
feedback, digital tools should enable the recognition of possible errors and 
misconceptions in the solution process (ibid.) On one hand, the MathCityMap app 
gives students an immediate feedback regarding the numerical correctness of the 
solution entered (Fig 1, center-right). On the other hand, a look at the sample solution, 
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which can be viewed after solving a task or after at least six wrong answers, allows the 
independent detection of errors in the solution process (Fig 1, right). All in all, the 
MathCityMap App can validate the calculated solutions of the students and enables the 
learners to identify potential errors or misconceptions by analyzing the sample solution. 
Gamification: The study of Lieberoth (2014) indicates a positive motivational impact 
of the gamification of activities. By solving MathCityMap tasks each group receive up 
to 100 points per task, depending on the quality of their solution. By using the optional 
function Leaderboard, the groups are listed in a local ranking. Those gamification 
elements lead to both an increase in the number of completed tasks per hour and a 
reduction of blind guessing (Gurjanow, Olivera, Zender, Santos, & Ludwig, 2019). 

RESEARCH INTEREST: CREATION OF THEME-BASED MATH TRAILS 
Although recent studies about MathCityMap math trails have shown positive 
motivational effects (Cahyono, 2018; Gurjanow et al., 2019) as well as positive 
learning effects (Zender, 2019), math trails have so far mainly been used for a 
methodical variation of math teaching: They often aim at a wider revision of already 
learned topics. Consequently, the math trail method is – until now – rarely used for 
practice lessons with an explicit connection to a topic of the math curriculum.  
This lack could be caused by the low amount of so-called theme-based math trails. 
Even though it is possible to develop curriculum-related math trails for many 
mathematical topics (Cross, 1997; Zender, 2019), the creation of such trails has an 
inherit challenge: As the tasks of the ‘classic’ math trail arise from local conditions 
(and with respect to the curriculum), the possible task types of a theme-based trail are 
predetermined by the curriculum. Therefore, a suitable object for a predefined task has 
to be found at the chosen location. At the same time, those topic-related tasks should 
not only allow the learning of a specific topic, but still remain an authentic problem 
concerning a real existing object a given place. In conclusion, the difficulty of creating 
theme-based trails is to identify objects in one’s environment that raise realistic 
questions related to a particular curriculum topic. Within this paper, we aim to show 
possibilities for the curriculum-based use of the math trail method. 

DESIGNING A THEME-BASED TRAIL 
By taking up the concept of generic tasks, we identify design principles for the creation 
of theme-based trails linking the math trail method and curriculum-based topics in 
arithmetic, algebra, analysis and stochastic. By following these principles, teachers 
should be enabled to create their own theme-based trails on current classroom topic.  
Generic Tasks and Theme-based Trails 
A generic task is a mathematical task which can be applied to frequently occurring 
objects, e.g. the slope of a ramp or a handrail. These objects offer the possibility to 
easily transfer existing tasks to other locations (Ludwig & Jablonski, 2020). Within the 
Erasmus+ project MoMaTrE (Mobile Math Trails in Europe), a catalogue of generic 
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tasks was created and translated in six languages, including English, French and 
German. Those tasks can be considered as best-practice examples for MathCityMap 
tasks with a specific reference to the mathematics curriculum. 
A theme-based trail is a collection of generics tasks of one common topic, e.g. fractions 
in arithmetic, percentage calculation in algebra and linear functions in analysis as well 
as combinatorics in stochastic theory. Within a theme-based trail, a specific curriculum 
topic is addressed and can therefore be directly connected to regular math class. Zender 
(2019) already followed this approach during his study about stereometry for ninth 
graders by examining math schoolbooks for recurring topic-related tasks. 
Design Principles for Theme-based Trails 
The development of theme-based math trails requires design principles which are 
presented in the following. First, a detailed look into the school curriculum is necessary 
to identify the sub-areas of the current mathematics topic, e.g. the concept of slope as 
part of linear functions. Based on these concepts, a suitable method is to examine math 
textbooks for common task types. This ensures that all major concept-related task types 
used in the school are covered by the theme-based trail. After studying the curriculum 
and identifying the characteristic tasks, the required data and results have to be defined 
for all these task types: Which data is given in the task formulation? How is the result 
calculated? What is the expected solution process? 
Finally, the author can search for suitable objects outdoors. An object must fulfil 
several conditions in order to be usable. First, it must be suitable to collect the required 
data, e.g. by measuring and counting. It is important to recognizes which data are 
directly measurable for the students and which data must be obtained by calculations. 
Furthermore, the task objects must be publicly available and clearly identifiable. 
Otherwise it is possible that the students will neither find nor reach the object during 
the lesson. In some cases, reference sizes are helpful or even necessary, e.g. auxiliary 
lines in the task picture, or reference objects as a lantern if the intercept theorem is used 
to calculate the height of a building. 
Regarding to Zender (2019), we recommend the creation of filling tasks (non-topic-
related tasks), in order to offer students a variety during the theme-based math trail. If 
students realize that they work on several similar tasks in a row, e.g. measuring the 
diameter of a circle for calculating the circumference, they first lose their motivation 
and then remain unfocused. Consequently, Zender (2019) suggests the creation of 
filling tasks to interrupt the sequence of constantly recurring tasks so that students do 
not blindly work through algorithms. To ensure that the topic-based focus is still 
maintained, every third or fourth task should be designed as a filling task. 
 
In summary, Table 1 presents the developed design principles for theme-based trails: 
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Step Object 
1 Analyze the curriculum to identify the sub-area of the chosen topic. 
2 Examine textbooks searching for common task types. 
3 Define required data and results. 

4 Search for suitable objects outdoors. 
5 Create theme-based tasks and filling tasks in a 3:1 or 4:1 ratio. 

Table 1: Design Principles for Theme-based Math Trails. 

An Example: Theme-based Trail on Linear Functions 
In order to illustrate the described design principles, we introduce the concept of linear 
function as a possible topic for a theme-based math trail in eighth grade. By examining 
math textbooks, we have identified five characteristic tasks and defined their required 
data (Tab. 2). Since all these task types can be applied on frequently occurring objects, 
they can be considered as generic tasks for linear functions. Therefore, a theme-based 
trail on linear functions can be easily created almost at any place by using these five 
generic tasks. In the following, we present exemplary tasks for all five identified sub-
areas (Fig. 2) for the object “handrail”. 

Table 2: Generic Tasks for the Concept of Linear Functions. 

Focusing on the task types “slope” and “x-intercept”, we describe students’ solution 
process and possible hints given by the MathCityMap app. 

Sub-Area Object Task Type Required Data 
Proportional 
Relationship. 

e.g. Price list. Calculate the costs of z 
pieces, e.g. balls of ice-
cream. 

Change in x, y. 

Slope. e.g. Ramp. Calculate the slope of the 
ramp. Give the result in 
percentage. 

Change in x, y. 

Slope-intercept 
form. 

e.g. Slide. Define the linear function 
given by the slide. 

Change in x, y 
& y-intercept b. 

x-intercept. e.g. Handrail. Calculate the root of the 
linear function given by 
the handrail.  

Change in x, y 
& y-intercept b. 

Point of 
intersection. 

e.g. Gable roof. Find the point of 
intersection of two lines 
given by the gable roof. 

Equations of two 
lines. 
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Figure 2: Selection of Tasks for Linear Functions within the MathCityMap App. 

Slope (Fig. 2, center-left): To identify the slope of the handrail in percent, students 
have to measure the its length x and its maximum height difference y. Subsequently, 
they have to divide y by x and convert the fraction into percentage. This process could 
be guided by stepped hints: (i) Use a gradient triangle. Hint (ii) could include a picture 
of a gradient triangle, whereas hint (iii) aims at the percentage notion: The result should 
be given in percentage. For example, m = 0,21 equals 21 percent.  
x-intercept (Fig. 2, center-right): In order to identify the x-intercept, the handrail 
function has first to be defined by calculating the slope m and measuring the y-intercept 
b. To structure students’ solution process, the general term of the linear function and 
the required data could be given in the first two hints. Hint (iii) could clarify the further 
proceeding: Students have to equate the handrail function with zero and thereby 
identify its x-intercept.  

CONCLUSION 
The math trail method enables learners and teachers to explore their environment in a 
mathematical way. The usage of the MathCityMap system for creating and working on 
theme-based math trails adds the benefits of mobile learning to the ‘classic’ math trail 
idea: The app guides learners through a math trail, providing GPS, the task formulation, 
hints, feedback and a sample solution. Teachers can create their own math trails within 
the MCM web portal or use public available math trails.  
Considering the positive effects on motivation (Cahyono, 2018; Gurjanow et al., 2019) 
as well as learning growth (Zender, 2019), the math trail method is underrepresented 
in regular school lessons. So far, trails are mainly used for a broader repetition of 
already learned topics, but not for the targeted work on current math content. We 
explain this by the lack of curriculum-related math trails, which – so far – prevents a 
more frequent embedding of the math trail method in the regular teaching units.  To 
address this issue, we have introduced the idea of a theme-based math trail that covers 
the content of a regular math lesson through curriculum-related tasks. For this purpose, 
we have developed design principles to support teachers in creating theme-based trails. 
These include the analysis of specific mathematical sub-areas in textbooks and the 
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identification of generic tasks that can be applied on common objects in one’s own 
environment. In this way, we offer a possibility to make the math trail method usable 
for many, if not all, contents of the math curriculum. Enabling teachers to create their 
own theme-based trails fulfils an important requirement for the long-term integration 
of the math trail method into regular math lessons.  
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Using PrimarWebQuests can motivate pupils to discuss mathematical terms during 
different learning sequences, which can support pupils’ mathematical language 
abilities, particularly in bilingual classes. In a research project concerning the use of 
Information and Communication Technology (ICT) in bilingual settings, pupils were 
observed while working with bilingual PrimarWebQuests. In the following paper, the 
adaptation of WebQuests for primary education will first be described. Following this, 
the meaning of Content and Language Integrated Learning (CLIL) will be explained, 
as well as how the combination of CLIL and ICT fits in this special context. This 
combination is achieved in the approach of bilingual PrimarWebQuests. The 
framework of an ongoing study and first results will also be described. 
Keywords: WebQuest, bilingual education, online resources, primary education, 
symmetry 

FROM WEBQUESTS TO PRIMARWEBQUESTS 
The method WebQuest, invented by Dodge and March in 1995, is an inquiry-oriented 
and web-based learning approach (see webquest.org 02.02.2020). WebQuests are 
offered on the Internet. However, pupils can use both, online and offline sources. The 
sources are chosen by the teacher in advance, so the learners do not get ‘lost in 
cyberspace’. March describes a WebQuest with the following important aspects: 

A real WebQuest is a scaffolded learning structure that uses links to essential resources on 
the World Wide Web and an authentic task to motivate students’ investigation of an open-
ended question, development of individual expertise and participation in a group process 
that transforms newly acquired information into a more sophisticated understanding. The 
best WebQuests inspire students to see richer thematic relationships, to contribute to the 
real world of learning, and to reflect on their own metacognitive processes. (March, 2004, 
p. 42) 

The method WebQuest was invented for dealing with internet resources in adult 
education as a challenging pattern of teaching. WebQuests are based on a constructivist 
theory of cognition in which knowledge can only be acquired by action. WebQuests 
should give a structure for using the internet sources in an efficient and target-oriented 
way. This method focuses on the use of information instead of searching for it (Moser, 
2008; Schreiber & Kromm, 2020). In regard to mathematics education, Bescherer 
(2007) emphasizes that implementing WebQuests can foster mathematical 
communication and argumentation. Furthermore, she maintains a possible realization 
of inquiry-learning by using WebQuests. 
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Schreiber (2007) trialled WebQuests in primary schools and observed some difficulties 
for pupils. He adapted the method for primary school children and called it 
PrimarWebQuest. A mathematical PrimarWebQuest contains digital and analogue 
sources in order to deal with mathematical concepts and issues. It is important while 
working with internet resources that one considers the host of information and its 
reliability. The structure of a PrimarWebQuest can set a focus on important aspects and 
reduce the complexity of the available information. Therefore, the sources linked to a 
mathematical issue still have to be chosen by the teacher in advance. With those 
sources, the pupils research their topic in small groups and finally present their results. 
As the pupils should be enabled to self-evaluate their learning process and the learning 
product, the requirements of a PrimarWebQuest must be made transparent for the 
pupils from the beginning of the working process (Schreiber & Kromm, 2020; see also 
Baschek in preparation). 

PRIMARWEBQUESTS IN BILINGUAL CLASSES 
The structure of bilingual PrimarWebQuests is similar to those which are monolingual. 
However, in bilingual PrimarWebQuests (in this case German/ French), pupils can read 
each instruction in both languages provided in two different language columns (see 
Figure 1). 

 

Figure 1: Part of an Introduction of a Bilingual PrimarWebQuest 

Therefore, they can choose the working language independently. The sources are also 
offered in both languages, so every group, regardless of which working language they 
choose, has the possibility to use both languages for research. As the sources are mostly 
realistic websites made by native speakers of the particular language areas, you can 
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find different information about the topic by using both languages. Additionally, there 
are methodical advantages of group work. The pupils can interact in both languages, 
which makes a language as well as a content exchange possible, especially by using 
information from both countries.  
There are six sequences involved in using a PrimarWebQuest in class (see Schreiber 
& Kromm, 2020, pp. 70-73). In the first sequence, (1) introduction, every page is 
explained by the teacher and the pupils are allowed time for looking at the websites. 
The following sequence is titled (2) working with sources. The pupils work with the 
information texts and different types of tasks, which motivates them to exchange their 
different ideas and understanding of the topic in their small groups. For discovering 
common conflicts or difficulties, the teacher encourages the pupils to reflect upon their 
group work in a sequence titled (3) balance drawing. This sequence allows for the 
emphasis of the use of academic terms and everyday language, for example, by creating 
a common lexical storage on a poster. In this case, the pupils can negotiate the meaning 
of different terms and compare their conceptions of those terms. In the next sequence, 
(4) presentation planning, the pupils prepare their posters for a successful presentation. 
After the (5) presenting sequence, another (6) reflecting sequence follows during which 
the teacher reflects the whole working process with each individual group. 
For beneficial use of a bilingual WebQuest, one must take three aspects into 
consideration. First of all, the students could need linguistic support, because a 
bilingual WebQuest can challenge them. This could be a common mapping or 
classifying of new terms. Second of all, particularly WebQuests with a bilingual design 
can motivate the students to switch between the languages as they practice using both 
languages while switching. Third of all, the students can get into a collaborative 
dialogue because of the open-ended nature of the task, which offers them the possibility 
to check their understanding of mathematical terms by discussing the new terms with 
their classmates. It is necessary to adapt a bilingual WebQuest to the linguistic 
knowledge of the students to ensure a successful learning experience for all (Baschek, 
in preparation). 

CLIL: CONTENT AND LANGUAGE INTEGRATED LEARNING 
In the European context, the term CLIL is used as a generic term for different bilingual 
learning and teaching models and can be implemented in different ways. It summarizes 
educational situations in which a subject or even just a selected topic is taught in an 
additional language than the school language for a fixed or an enduring time. This 
approach aims to connect content and language learning in an integrated way. It is seen 
as an effective method for learning a foreign language with the aid of authentic topics. 
“[…] [A]chieving this twofold aim calls for the development of a special approach to 
teaching in that non-language subject is not taught in a foreign language but with and 
through a foreign language” (Eurydice 2006, p. 7, emphasis in original). 
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Figure 2: Curricular Framework for CLIL Classes According to Coyle (2006) 

Coyle (2006) describes four key components (see Figure 2) for planning CLIL lessons 
in her “4Cs Framework”. The aspect Content contains learning new knowledge and an 
understanding with regard to content for the pupils. The content of bilingual classes is 
geared toward curricular guidelines of the subject and its aim is a double and profound 
knowledge acquisition. Communication means extending the pupils’ language 
knowledge and abilities, which qualify them for an academic interaction in class. The 
aspect Cognition means all cognitive abilities which can be established, such as 
metalinguistic knowledge or strategy learning. As for Culture, the pupils have to 
develop a reflexive attitude vis-à-vis their own and other cultures. It is important to 
think about multiple perspectives and to switch between them (Baschek, 2019b; 
Baschek in preparation). In this study, the framework was used for creating suitable 
PrimarWebQuests for CLIL classes. The implementation succeeded the best for the 
topic of point symmetry because one aspect of this topic is dealt with differently in 
French and German schools. That is why the pupils are offered the chance of an 
intercultural learning which was evident for them and which deepens Coyles 
component Culture even more than in the two other PrimarWebQuests. 

PILOT STUDY 
The aim of this pilot study is to describe the interaction between pupils, teacher and 
material to explore which opportunities of language and content learning are offered 
by the approach of PrimarWebQuest. 
Different bilingual PrimarWebQuests with the topic of symmetry sections were tested 
in the fourth grade of a German primary school offering bilingual classes (German/ 
French) in multiple subjects. The school follows the German curriculum and uses 
German textbooks. However, mathematics is generally taught exclusively in German. 
Most of the pupils’ mother tongue is German. As can be seen in Table 1, the class has 
been split into three different sections of symmetry (line symmetry, rotational 
symmetry and point symmetry) and each topic has been split once again into two 
groups.  
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Line symmetry Rotational symmetry Point symmetry 
Group G Group G Group G 
Group F Group F Group F 

Table 1: Group Division in class 

One group had the requirement to present the topic in German (Group G), the other 
one in French (Group F). They were offered to use bilingual PrimarWebQuests where 
the working language was chosen freely by the pupils. All groups were video and audio 
recorded. As the topic point symmetry was the only completely new topic for this 
learning group and appeared to include the most fruitful discussions because of the 
cultural differences, these two groups were chosen for analysis. Crucial sequences, 
such as discussions of one or two groups of which the negotiation of mathematical 
terms seemed to be in focus, were transcribed later [1]. In table 1, a short overview of 
the groups is provided. For interpreting the utterances, we used the interaction analysis 
which is based on the ethno-methodological conversation analysis and developed by 
Bauersfeld, Krummheuer and Voigt. It deals with processes of interaction that take 
place in school (Bauersfeld, Krummheuer & Voigt 1988). 

FIRST RESULTS 
Within the aim of this investigation to explore the possible learning opportunities 
regarding language and content, pupil interactions are described and analysed. The 
different sequences of PrimarWebQuest usage offer several possibilities for supporting 
the mathematical language skills of bilingually taught pupils. During the first working 
sequence, the pupils start the procedure of answering their task. While reading and 
interpreting the given sources, they must gather and check the suitable information 
details from the authentic sources. This is shown in the following originally German 
dialogue: 

Pupil  Translated Utterance 

Dana: (reads) Point symmetric shapes. The red marked spots are the symmetry point 
of each shape. This remains the same all the time.  

Finn: Look, it is explained here. 

Dana: If you turn the N, yes turn it half. So, when the N is like this  is and here that 
spot, then you do half a turn, so like that (shows a turning gesture with her 
hands). Then it is a N again. 

Evelyn: Right. 

Dana: It always has to be the same if you turn it one time. It is just the same for that, 
for that and for that (points at the shape examples) and even for those here. If 
you do a half turn, then it looks the same. Then it looks like you’ve got it from 
the front. 
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Evelyn: Right. 

In this sequence, the pupils try to understand in a collective way which general and 
mathematical information the given text contains. The group work helps them to 
communicate successfully about the new information. As the pupils must describe their 
own thinking processes as well as their approaches during the group work, they learn 
to verbalize their understanding of the informative texts on their own. The open-ended 
task supports the subject-based discourse while preparing the poster presentation, 
because the pupils need to come to a mutual result at the end of this sequence. This 
result must be discussed by the pupils while comparing their understanding of the 
different information. The pupils could express assumptions or recognize connections 
(Baschek, 2019a). 
For example, group F discussed about a text for their poster. They wanted to use the 
German internet information that the term symmetry is Greek and can also be described 
with regularity. The dialogue is originally in German and French terms are typed in 
SMALL CAPITALS: 

Pupil  Translated Utterance 

Anne: SYMÉTRIE… 

Fabienne: You forgot CENTRALE. 

Inés: SYMÉTRIE CENTRALE, got it. 

Anne: Yes, write it down. No no, it has to be without CENTRALE. 

Fabienne: Why? 

Anne: Because eeh the, CENTRALE means point. But eeh regularity means symmetry. 
That could be the line symmetry, too. Symmetry, but not line. Do you 
understand? Neither axial, nor point, nor rotational. 

While discussing, Anne argued why they must use the term symmetry instead of point 
symmetry. She did not want to write down the French term CENTRALE because she 
understood that symmetry is a generic term to point symmetry (Baschek, 2019a). In 
addition to her arguing abilities, she shows a different or deeper understanding of this 
term compared to her classmates. Due to the continuous change of both languages, it 
is possible that the pupils learn terms in both languages and beyond that, they could fix 
them in a cognitive bilingual way. During the poster presentation sequence, a proper 
use of mathematical terms and symbols is necessary, especially for reflecting their 
approaches and strategies.  
Regarding the comparison of both groups, group G shows a more static use of academic 
terminology. As they worked quite activity-oriented, they looked for many examples 
in the class room. That group utilized everyday terminology and periphrases for 
describing their insights in a flexible way. Group F showed a more proper use of 
academic terminology and compared both languages in an intensive way. In fact, they 
spoke more German than French, but they thought of the French terms repeatedly when 
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starting their work. From the foreign language learning perspective, it must be 
mentioned that group G didn’t show a large increase in new productive French 
speaking skills, but they did deepen their decoding skills in French because of the 
French sources and French presentations of the other groups. It was possible to observe 
a subject-based discourse in both groups (Baschek, 2019b).  
There were discussions between the two groups which contributed the negotiation of 
some terms. For group F, the French language was an obstacle as well as a motivator. 
In the beginning, they had difficulties getting into the topic and struggled with 
expressing their thoughts during the sequence. However, those difficulties were a 
stimulus for the pupils to work with both languages. They compared terms and 
discussed their meanings for understanding the topic. Those pupils expanded some 
strategies in foreign language learning and showed both a productive and receptive 
expansion of vocabulary. Group F was able to explain the idea of the point reflection 
in addition to mutual knowledge, such as checking the congruence of two figures or 
naming examples (Baschek, 2019b). 

CONCLUSION 
To conclude, the method PrimarWebQuest can support the use of mathematical 
language in bilingual classes (see also Baschek in preparation). The pupils felt safe 
because of the open choice of working language. Specifically, the preparation of the 
presentations encourages the pupils to think about their informative texts. The open-
ended task allows a motivating individual focus during the working sequences. If the 
content of the sources is too complex for the pupils, a PrimarWebQuest can guide them 
purposefully in working on the task successfully. In retrospect, PrimarWebQuests 
result in the pupils dealing with different terms in both languages in a language-aware 
way. The unknown content of the sources and the authentic materials motivate the 
pupils to negotiate new terms with their groups. The pupils work with mathematical 
terminology and are able to compare their understanding of terms in multiple ways 
thanks to the group work. This cooperation and communication can support language 
learning as well as proper language use. During the presenting sequence, the pupils are 
able to communicate adequately with mathematics classes. 
Seen from a technical perspective, the two groups were able to learn the mathematical 
content by using academic terms in both languages. This integrated method of learning 
follows the idea of CLIL classes. In addition to the language and mathematical learning 
of the pupils, they also worked on their media competences while using 
PrimarWebQuests with multiple internet sources. They were able to select the relevant 
information from internet sources and prepare them for a presentation. In this case, the 
presentation was an analogue poster presentation. In other cases, it can be a digital 
presentation using suitable software. The mode of presentation depends on the task in 
the PrimarWebQuest and previous knowledge of the pupils.  
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NOTES 
1. You can find the bilingual PrimarWebQuest here: https://pwq-punktsymmetrie-
symetriecentrale.weebly.com 
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Re-design of digital tasks: the role of automatic and expert scaffolding 
at university level 
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In this study we present the re-design of a digital task for university students attending 
to a probability course. The re-design, directed toward the overcoming of specific 
critical issues highlighted in previous studies, is mainly aimed at providing students 
(in particular low achievers) with hints and feedback as tools of scaffolding and meta-
scaffolding. Thanks to the analysis of a low achiever’s interaction with the re-designed 
task, we investigated the limits of the automatic scaffolding and the key- role of expert’s 
interventions in fostering students’ overcoming of possible impasses. 
Keywords: digital scaffolding, task design, university level, role of the expert 

INTRODUCTION 
The research presented in this paper is part of a wider study focused on the 
individualization of teaching-learning paths at university level (Alessio, Demeio & 
Telloni 2019, Cusi & Telloni 2019a, Cusi & Telloni 2019b). In particular, in Cusi & 
Telloni (2019a, 2019b) we presented two teaching experiments, focused on the design 
of online teaching-learning paths, developed with formative assessment purposes, 
involving groups of engineering students of the Polytechnic University of Ancona 
(Marche, Italy), attending to Calculus and Probability courses. Both studies highlighted 
students’ inadequate awareness about their difficulties with mathematical topics and 
about their needs and a widespread lack of metacognitive control. As a result of these 
lacks, students are not able to activate appropriate strategies to overcome their 
difficulties while they work within digital environments. Starting from these results, 
here we propose a re-design of one of the digital tasks of the teaching-learning path 
presented in Cusi and Telloni (2019a). This re-design aims at creating a digital 
environment that could enable students to activate themselves at the metacognitive 
level, offering them feedback that support their use of hints to scaffold their work. 
Moreover, we propose the analysis of the interaction of a low achiever with the re-
designed task to reflect on further difficulties that could arise and on the key-role that 
the expert plays in supporting students’ overcoming of these difficulties. 

THEORETICAL FRAMEWORK 
In our design of individualised teaching-learning paths, we refer to Baldacci’s (2006) 
definition of individualization as the act of differentiating the didactical paths in order 
to enable all the students to reach common objectives. This is particularly relevant at 
university level, where students need to overcome gaps of knowledge due to the 
heterogeneity of their background. A possible way of realizing individualization at this 
level is focusing on the use of digital environments, where a fundamental formative 
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assessment process can be flexibly activated: providing feedback (Hattie & Timperley, 
2007). Giving feedback could be also conceived as a possible means to realize 
scaffolding, that is the “act of teaching that (i) supports the immediate construction of 
knowledge by the learner; and (ii) provides the basis for the future independent learning 
of the individual” (Holton and Clarke, 2007, p.131). When scaffolding is realized 
within digital environments, the focus is on computer-based scaffolding (Belland, 
2017), that is the “computer-based support that helps students engage in and gain skill 
at tasks that are beyond their unassisted abilities” (p.26). 
Research in mathematics education has distinguished different scaffolding domains. 
Holton and Clarke (2007), for example, introduce two domains: (a) conceptual 
scaffolding, which relates to specific contents; and (b) heuristic scaffolding, which 
relates to the development of heuristics for learning or problem solving. Types of 
scaffolding could be also identified in relation to the agents that provide it (Holton and 
Clarke, 2007): expert scaffolding (provided by an expert), reciprocal scaffolding 
(provided by peers), and self-scaffolding (provided by an individual to himself). This 
last type of scaffolding plays a key-role in fostering the following fading, that is the 
appropriation of the scaffolding by the learner (Shvarts & Bakker, 2019). 
Students’ effective use of the provided scaffolding and subsequent development of 
awareness about the role of scaffolding requires that they activate themselves at the 
metacognitive level (Holton & Clarke, 2007). The fundamental role of metacognitive 
aspects is stressed also within digital environments, where a good balance between 
procedural and metacognitive-scaffolding is needed (Sharma & Hannafin, 2007).  
Research has highlighted that, within digital environments, the support provided by 
facilitators (teachers, tutors or, more in general, human experts) in activating meta-
scaffolding is particularly crucial (Pea, 2004). To analyze this role, we refer to Wood, 
Bruner and Ross’ (1976) main scaffolding functions: recruitment (enlisting learner’s 
interest and the adherence to the requirements of the task), reduction in degrees of 
freedom (simplifying the task by reducing the number of constituent acts required to 
reach the solution), direction maintenance (keeping learners in pursuit of a particular 
objective), marking critical features (accentuating relevant features or parts of the 
activity), frustration control (reducing learners’ stress, without creating too much 
dependency on the tutor) and demonstration (modelling solutions to a task).  

RESEARCH QUESTIONS AND RESEARCH METHOD 
The analysis developed in Cusi & Telloni (2019a, 2019b) highlighted some critical 
issues that prevent students from fruitfully exploiting the hints provided by digital 
environments to scaffold their work. This study is aimed at facing two main research 
questions: (1) What criteria can guide a re-design of digital tasks to overcome these 
critical issues and foster an effective scaffolding of students’ work? (2) When a digital 
task is re-designed according to these criteria, what factors inhibit the overcoming of 
the critical issues that have been highlighted? In case of students’ impasses due to these 
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inhibiting factors, what kind of support could be provided by the expert scaffolding to 
effectively integrate the digital automatic scaffolding? 
The reflections developed to answer to question 1 enabled us to identify three main 
criteria, that guided our re-design of one of the digital tasks belonging to the teaching-
learning path presented in Cusi and Telloni (2019a). These criteria and their use in re-
designing the task will be presented in the next section. 
To investigate the aspects connected to question 2, we developed a teaching 
experiment, with a group of ten first year master-degree engineering students, enrolled 
on voluntary basis. The students, who were attending to a mini course focused on 
probability (in the period September-December 2019), in the middle of the course 
(November 2019) were asked to work on the re-designed version of the digital task, 
within a laboratorial activity. We collected the video-recordings of students’ screens 
while facing the task. To develop an in-depth analysis of students’ use of feedback and 
hints provided within the digital environment to scaffold their work, we asked them to 
think at loud while facing the tasks, and audio-recorded their speeches. A tutor (the 
teacher of the course, one of the authors) was in the computer lab to provide support to 
students in case of problems. 
In this paper, we will focus on the analysis of the interaction of a low achieving student, 
Maria, with the re-designed task, through the tutor’s support. Maria was selected 
because she displayed, from the very beginning of her work on the task, her awareness 
about her lack of knowledge. This analysis was developed in two subsequent phases. 
In the first phase, we identified key-moments, during which the student faced 
difficulties in her work on the task. In the second phase, we developed an analysis of 
the interactions between Maria, the digital environment and the tutor to identify: (a) 
impasses in the student’s use of hints to scaffold the development of the resolution 
process; (b) factors that create impasses; (c) specific roles of the tutor in fostering the 
overcoming of these impasses. 

ANALYSIS OF THE TASK RE-DESIGN 
In this section we focus on the re-design of the digital task presented in Table 1. 
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A text in verbal language introducing some events and their 
probabilities (their values are random) appears on the screen. The 
students are required to fill six input fields by inserting the 
probabilities of some events: three of them are those given in the 
text and the remaining can be obtained applying probability rules 
(complementary events, conditional probability). When the six 
input fields are correctly filled, other two questions (yellow boxes) 
appear on the screen, concerning the independency and the 
incompatibility of events. For each answer given by the student, 
the program reacts by a feedback (red and green boxes).  

During the interaction with 
the task, students can ask for 
different kinds of hints. We 
mention, in particular: a 
summary of the data given in 
the text (data hint), Eulero-
Venn diagrams of elementary 
and compound events (E-V 
hint), a list of useful formulae 
(formula hint).  

Table 1: The first version of the task [1] 

Thanks to our previous studies (Cusi & Telloni, 2019a, 2019b), we identified three 
main critical issues and their effects in negatively influencing students’ work on digital 
tasks. The identification of these critical issues suggested us three main criteria that 
could guide task re-design. These aspects are summarised in table 2. 

Critical issues Negative effects Criteria for the re-design 

Students’ lack of awareness or 
partial awareness about their 
difficulties/weaknesses and 
their learning needs. 

Students are not able to 
identify useful hints to 
scaffold their work on the 
tasks. 

(1) Add explicit written feedback in 
which possible hints to be used are 
highlighted. 

Students’ lack of 
metacognitive control in 
monitoring their problem-
solving processes. 

Students are not able to 
exploit the provided hints 
to effectively scaffold 
their work on the tasks. 

(2) Re-structure the tasks in order to 
guide students in identifying the 
fundamental steps to solve the tasks. 
Provide students with explicit 
feedback by a tutor to enable them to 
become aware about possible ways of 
using hints. 

Insufficient flexibility in the 
use and interpretation of 
different representations 
(graphical, symbolic, 
verbal…) 

Students are blocked in 
the interpretation of hints 
and in the use of hints to 
face the tasks. 

(3) Provide students with multiple 
representations and explicit feedback 
to stimulate a flexible use of these 
representations (written feedback or 
feedback given by a tutor) 

Table 2: Critical issues, their negative effects and criteria for the task re-design 

The identified criteria led our re-design of the task, aimed at scaffolding students’ work 
by guiding them into 5 sub-steps that characterize an effective resolution process. The 
structure of the re-designed task is summarized in Figure 1. 
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Figure 1: The structure of the re-designed task 

The orange rounds in Fig. 1 represent the 5 steps that characterize a possible effective 
approach to the resolution of the problem. We referred to these steps to organize the 
scaffolding of students’ work on the task (criterion 2), since each step corresponds to 
a sub-task, whose completion enables the students to progress in their work. In this 
way, the scaffolding functions reduction of the degree of freedom and marking critical 
features (Wood et al., 1976) can be activated. 
The individualization of students’ paths when facing the task is highlighted by the 
arrows and the blue triangles, which show the steps to which students are addressed 
according to their answers, and by the green boxes, which contain suggestions 
automatically given to students if they fail in specific steps. These suggestions are new 
elements introduced in the re-design process to scaffold students’ work at a meta-level, 
guiding their choice of the hints, conceived as possible effective tools for conceptual 
scaffolding (criterion 1). Another element of individualization is the fact that students 
are free to accept or not the suggestions of asking for specific hints.  
The design of the questions in S1 (involving interpretation of verbal texts) and S2 
(requiring conversions from verbal to symbolic representations) and our choice of the 
hints on which scaffolding is focused are aimed at fostering students’ flexible use of 
different representations (criterion 3). This flexible use is also required in S4, where 
students are asked to represent, through suitable numerical expressions, the processes 
that lead to determining the required probabilities starting from the known ones. 
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ANALYSIS OF A LOW ACHIEVER’S INTERACTION WITH THE RE-
DESIGNED TASK 
In this section we analyze Maria’s interaction with the re-designed task. We identified 
three key-moments that highlight Maria’s difficulties in effectively referring to the 
provided hints to scaffold her work. Because of space limitations, we summarize the 
main results of our analysis in table 3, in which each key-moment is analyzed in terms 
of: impasse that is shown, factors creating the impasse, roles played by the tutor to 
foster the overcoming of the impasse. 

Key-moment 1: impasse due to a lack of focus in developing a strategy 
Position of the key-moment 

within Maria’s path 
After having failed S1, faced S2 and visualized S2’s solution, 
Maria is facing again S1. 

Kind of impasse Maria is not able to use the data hint to correctly complete S1. 
Factors creating the 

impasse 
Maria is confused because her main focus is on her mistakes in S2 
in converting from verbal to symbolic representations. 

 
Roles played by the tutor to 
foster the overcoming of the 

impasse 

The tutor reformulates the request in S1, making Maria observe 
that the data hint directly shows how to complete this step. In this 
way, the tutor activates: a direction maintenance scaffolding 
function, making Maria reflect on the role of the data hint; and a 
recruitment scaffolding function, explicitly re-focusing Maria’s 
attention on the request in S1. 

Key-moment 2: impasse due to an inadequate strategic use of provided hints 

Position of the key-moment 
within Maria’s path 

While Maria is facing S3, she follows the suggestion of using 
formula hint. 

Kind of impasse Maria is blocked: she is not able to use the formula hint to identify 
the probabilities that can be directly obtained. 

Factors creating the 
impasse 

Maria is not able to activate a strategic approach in identifying 
formulas that can be used to determine other probabilities. 

 

Roles played by the tutor to 
foster the overcoming of the 

impasse 

The tutor suggests Maria to focus on one of the probabilities that 
have to be found, then on one of the data and asks Maria to identify 
a formula that relates them. In this way, Maria is guided in setting 
a sub-goal with respect to the request in S3, and the reduction in 
degrees of freedom scaffolding function is activated. The tutor’s 
intervention aims also to activate the marking critical features 
scaffolding function, enabling Maria to focus on a specific 
formula towards a specific goal. 

Key-moment 3: impasse due to difficulties in handling multiple representations 
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Position of the key-moment 
within Maria’s path 

Maria is working on S4, when she explicitly asks for the tutor’s 
support. 

Kind of impasse Maria does not know what strategic approach she can activate to 
find out one of the required probabilities. 

Factors creating the 
impasse 

Maria refers to the right formula, but she is not able to find out the 
inverse formula to determine the required probability, because of 
her lacks in manipulation and interpretation of algebraic formulae. 

 

Roles played by the tutor to 
foster the overcoming of the 

impasse 

The tutor models an effective strategic approach, activating the 
demonstration scaffolding function to guide Maria in obtaining 
the right inverse formula, and in understanding how the known 
probabilities should be substituted in the formula itself. This 
scaffolding also involves metacognitive aspects, since it regards 
the use of the hints to perform this step of the task. 

Table 3: Key-moments in Maria’s interaction with the re-designed task 

FINAL REMARKS 
The re-design process presented in this paper has been developed considering three 
criteria, which proved to be effective, especially in the case of average and high 
achievers, in stimulating students at a metacognitive level, fostering a scaffolding 
focused on solution processes that require flexibility in making reference to conceptual 
knowledge and in effectively using it. 
The analysis of Maria’s interaction with the re-designed task enabled us to highlight 
that the activated scaffolding is sometimes not effective, especially in the case of low 
achievers, who, because of their lack in metacognitive control, are often not able in 
correctly interpreting the given feedback and in autonomously using the hints provided 
within digital environments. Through our analysis, we showed that the role of the 
expert (the tutor) becomes crucial in supporting low-achievers in overcoming moments 
of impasse connected to specific factors, such as lack of focus in developing a strategy, 
inadequate strategic use of provided tools, difficulties in interpreting mathematical 
representations and in using multiple representations. 
Through our analysis, we identified specific roles that could characterize, also in other 
contexts, the expert’s approach in case there is the need of integrating the automatic 
scaffolding provided by the digital environment: (a) making the students reflect on the 
role and use of specific hints; (b) re-focusing students’ attention on the task’s 
requirements; (c) focusing students’ attention on conceptual aspects; (d) setting sub-
goals that could guide students’ resolution process; (e) highlighting connections 
between specific goals and tools to achieve them; (f) modeling effective strategic 
approaches, focusing on syntactic and semantic control of these processes. In table 3 
we also show how these roles can be connected to an effective activation of specific 
scaffolding functions (Wood et al, 1976). 
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As an ongoing development of this research, we are focusing on a further tool to 
scaffold students’ learning and to activate them at metacognitive level: the use of the 
diagram in Fig.1 to support students’ a-posteriori reconstruction of their own learning 
path and consequent reflections on their use of digital tools and hints. 

NOTES 
1. The task, presented in Cusi&Telloni (2019a), has been designed using the software GeoGebra. 
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A qualitative-experimental approach to functional thinking with a 
focus on covariation 

Susanne Digel and Jürgen Roth 
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Students encounter functional relationships in almost every grade. Nonetheless, they 
often experience difficulties when dealing with functions and show misconceptions. The 
prevalent numerical approaches to the topic in school practice lead to a pointwise view 
of functions which contributes to these problems. Experimental approaches have 
proven to be beneficial for functional thinking, with simulations inducing greater 
learning gains than experiments with real material. A closer look at these two methods 
reveals that each of them promotes a different aspect of functional thinking. The study 
presented here deals with the question of how both methods can be combined 
beneficially and proposes two different approaches.  
Keywords: functional thinking, experiments, simulations, covariation. 

FOSTERING FUNCTIONAL THINKING 
According to Vollrath (1989), functional thinking is based on three main aspects: the 
correspondence of an element of the definition set to exactly one element of the set of 
values; the covariation of the dependent variable when the independent variable is 
varied and the final aspect, in which the function is considered as an object. This 
differentiation is in line with the developmental perspective on students’ 
conceptualization of functions derived by Breidenbach et al. (1992) using the Action-
Process-Object-Scheme (APOS) theory. The action concept on the lowest level is 
limited to the assignment of single output values to an input. With the more generalized 
process concept students consider a functional relationship over a continuum, enabling 
the reflection on output variation corresponding to input variation. Finally, functions 
conceptualized as objects can be transformed and operated on. Students with an 
elaborate concept of functions are supposed to be able to use the action, process or 
object conception depending on the mathematical situation (Dubinsky and Wilson 
2013).  
Learning environments with experimentation activities have proven to be beneficial 
for functional thinking (Lichti and Roth 2018, Ganter 2013) and motivation (Ganter 
2013). One possible explanation could be the proximity of functional thinking to 
scientific experiments as illustrated by Doorman et al. (2012): with a given variable as 
starting point, a dependent variable is generated in an experiment. Relating the output 
to the input clearly addresses the correspondence aspect and the action concept. 
Following manipulations of the input and concurrent observation of the output make 
the covariation of both variables tangible and enables a process view.  
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Furthermore, experiment activities enable constructivist settings, that lead to higher 
learning gains when using digital technologies (Drijvers et al. 2016) and provide 
embodied experiences, contributing as cognitive resources (Drijvers 2020).  
Lichti and Roth (2018) implement the scientific experimentation process – preparation 
(generate hypotheses), experimentation (test the hypotheses) and post-process (reflect 
results) – in a comparative intervention study to foster functional thinking of sixth 
graders with either hands-on material or simulations and report learning gains for both 
approaches (ibid.), but a closer look reveals disparities: while hands-on material 
promotes the correspondence aspect and the association to the real situation, 
simulations foster covariational thinking, the interpretative usage of graphs and lead to 
higher overall gains in functional thinking (Lichti 2019). 
The instrumental approach (Rabardel 2002) and its distinction between artefact and 
instrument can be useful when interpreting these results: while the artefact is the object 
used as a tool, the instrument consists of the artefact and a corresponding utilization 
scheme that must be developed. This developmental process - the so-called 
instrumental genesis (Artigue 2002) - depends on the subject, the artefact and the task 
in which the instrument is used. Hence, different artefacts lead to different schemes.  
Artefacts that are more suitable for the intended mathematical practice of a task appear 
to be more productive for the instrumental genesis and facilitate the learning process 
(Drijvers 2020). In addition, embodied activities in a task seem to contribute to the 
instrumental genesis (ibid.). From the viewpoint of instrumental genesis, the results of 
Lichti (2019) can be interpreted as follows: when using simulations, schemes that 
develop are concerned with variation and transition, while measurement procedures of 
the hands-on material induce schemes that concentrate on values and conditions (ibid.). 
The students working with hands-on material associate their argumentation more often 
with the material, while the rationale of students using simulations frequently relates 
to the graph. Again, the instrumental genesis can explain these disparities: the hands-
on material stimulates basic modelling schemes, relating the situation to mathematical 
description. Simulations already contain models of a situation and when used as multi-
representational systems (Balacheff and Kaput 1997) illustrate connections between 
model and mathematical representation (e.g. graph and table) that evoke schemes for 
these representations and their transfer.  
The study presented here attempts to make use of all these beneficial influences on the 
instrumental genesis through an appropriate combination of hands-on material and 
simulations in experimental activities to foster functional thinking. 

SETTING 1: EXPERIMENTS WITH HANDS-ON MATERIAL AND 
SIMULATIONS 
The learning environment is set in a story of two friends preparing to build a treehouse. 
The student activities are structured in five contexts (see below for details), each one 
laid out like a scientific experimentation process with preparation, experimentation and 
post-processing phase. Starting off with hands-on material to activate modelling 
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schemes and enable embodied experience, students are asked to make assumptions 
about a pattern or relationship and on that basis, estimate values. During 
experimentation phase they take a series of measurements and data is recorded in a 
table within a simulation (GeoGebra). The simulation is designed in accordance to the 
hands-on material and provides the opportunity to create a graph concurrent with the 
context animation and to display the measurements of the hands-on material (and a 
corresponding trendline). This gives students the opportunity for systematic variation 
and parallel observation of the altering quantities, to induce schemes with a dynamic 
view and covariational thinking. Above, it facilitates the time consuming but little 
challenging representational switch from table to graph (Bossé et al. 2011). In the post-
processing phase the students verify their measurements and analyse the graph 
(interpreting and interpolating). Subsequently they get back to the real material to 
check their estimations from preparation phase. Finally, they elaborate on the answer 
to the overarching task (calculate the amount of material needed to build the treehouse) 
based on the insights from experimentation activities, bringing together the modelling 
and representational schemes developed.  

SETTING 2: ALTERNATIVE COMBINATION OF ARTEFACTS WITH A 
FOCUS ON COVARIATION 
In setting 1 proposed above the measurement plays a dominant role, which sets a focus 
on the individual values of quantities and on single states of the relationship. This leads 
to a pointwise view of functions (Monk 1992), promotes the action concept and 
concentrates on the correspondence aspect (see above). In accordance with 
Breidenbach et al. (1992) and Dubinsky and Wilson (2013) it would be desirable to 
shift this focus to a process concept and to covariation, especially since possible 
sources of student’ difficulties with functional relationships are seen in the dominance 
of numerical settings in school (Goldenberg et al. 1992). Together with the close 
relation of covariation to the difficult concept of variables (Leinhardt et al. 1990), this 
led to the call for a qualitative approach to functions (Thompson 1994; Falcade et al. 
2007; Thompson et al. 2013) to facilitate the idea of covariation. Thus, in a second 
setting explicitly choses a non-numerical approach for experimenting with immediate 
examination of covariation.  
The learning environment of setting 2 is structured accordingly to setting 1, with 
modifications in the experimental structure of the contexts: in the preparation phases 
of the first three contexts the students are only briefly introduced with estimation tasks 
based on hands-on material, before they use simulations to identify the related 
quantities. In the following experimental phase, the students observe the variation and 
covariation of the quantities in the simulations and verbally describe the relationships 
discovered. Subsequently graphs are generated within the simulations and in the post-
processing phase students are asked to analyse the form of the graphs and connect their 
insights with the relationship described in the previous phase, before they observe 
individual values of quantities to check their estimations and answer the overarching 
task like in setting 1. The last two contexts are again briefly introduced with hands-on 
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material and estimation tasks, followed by the request for verbal descriptions of the 
relationships. Based on these descriptions and on their insights from the previous 
contexts, students are asked to group the contexts by their kind of covariation. The 
students then continue with the experimentation phase and take measurements with the 
hands-on material and then proceed with simulations as in setting 1. In the post-
processing phase students are now asked to verify their hypotheses on the relationships 
and their grouping with the graphs and tables from the experimental phase. Finally, 
students check their estimations and answer the overarching task like in setting 1. 

CONTEXTS  
Both settings use a treehouse building story with identical overarching tasks. The 
contexts are implemented with the same hands-on material (see figure 1 and 2) and 
simulations, but different components of the simulations are visible in the settings.  
 

 
 
 

Figure 1: Hands-on material of the first three contexts in setting 1 and 2   

The contexts are chosen to represent a linear and a quadratic relationship and one with 
varying change rate: the perimeter of a circular disc determined by its diameter, the 
number of cubes needed for a “staircase” determined by the number of steps and the 
fill height of a vessel determined by the volume of water filled into. 
 
 
 
 

Figure 2: Hands-on material of contexts 4, 5 and bonus context 6 

Contexts four and five (linear and quadratic) are the weight of a package of nails 
determined by the number of nails and number of beams needed for a woodwork 
determined by the number of floors. A bonus context for quick learners depicts the 
diameter of a unrolling tape determined by the length of tape that has been unrolled.  
The simulations can be accessed in the digital classrooms 
(www.geogebra.org/classroom – for Setting 1, Team Engineers: Code HQX7 UZRQ – 
for Setting 2, Team Architects: Code D3XM DDSB). 

STUDY DESIGN 
A comparative intervention study (pre-post design) will contrast the two approaches to 
answer the following research question: 
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Is it possible to recognize differences between setting 1 and setting 2 in the processing of 
the tasks regarding the aspects of functional thinking and the conceptualization of function? 

The intervention will take place at the University of Koblenz-Landau, as part of the 
mathematics laboratory program, where school classes work in groups of four in half-
day projects with hands-on material and computer simulations. The intervention is 
preceded by a short test on functional thinking (FT-short, adapted from Lichti and Roth 
2018), to compare the learning outcomes in both settings, and a three-minute 
intelligence screening (Baudson and Preckel 2016). Both tests take place 
approximately one week before. The intervention is designed for three 90-minutes-
lessons including the post test of FT-short. A follow-up of the test is planned 4-8 weeks 
after the intervention. Two focus groups (low-/high-performer in FT-short) per school 
class will be videotaped. All student products and videos from the intervention are 
evaluated regarding the presence of the aspects of functional thinking (qualitative 
content analysis, validated category system from Lichti 2019) and the students’ 
function conceptualization is assessed using the indicators from Dubinsky and Wilson 
(2013).  
A pilot study intends to verify the comparability of the two approaches in terms of 
processing time and difficulty. Due to the corona shutdown and the ongoing rules for 
physical distancing the study is adapted to an online classroom supplemented with a 
“math box” containing the hands-on material. The dyadic approach and the videotaping 
in the pilot are replaced by an expert rating (questionnaire with four-point Likert scale 
N = 4 / open answers N = 9) and a reflective analysis based on the ALACT model 
(Korthagen 2017) with student teachers (N = 12, masters course in mathematics). The 
student pilot took place in two sessions with students from a high-school course held 
by the first author. They were assigned to the settings so that results in the FT pretest, 
overall math skills (half-term grade) and reading skills (half-term grade; two dyslexics) 
were equally represented in each setting. 

PRELIMINARY RESULTS AND DISCUSSION 
Here we present preliminary results of the student pilot study. One participant in each 
setting completed the whole program including the bonus context, two in setting 1 and 
three in setting 2 completed the 5th context (hence only bonus left) and the other 
students were still working on the 4th/5th context when time elapsed, so that regarding 
time both settings seem to be comparable. One identical task for both settings will be 
discussed in detail and compared with a related task of the FT pretest, indicating 
differences in the conceptual development. 
In task no.48 students are asked to describe how the fill height of the liquid rises in the 
curved vessel using the graph and a given word list (slow, fast, steep, flat, rise, broad, 
narrow). In setting 2 all students were able to combine the fill height at least with the 
form of the vessel in their description, while in setting 1 only two students did connect 
their description of the fill height to the graph or the vessel. One student in setting 2 
wrote:  
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“The liquid rises slow first and from the value 1 on it gets faster because the vessel is broad 
at the beginning. From the value 2 on it becomes slower, because the vessel has a curve in 
the middle and was narrow but now becomes broader. Until value 6 the vessel keeps even, 
but from 6 on it rises up fast because the vessel becomes narrower and narrower. At point 
10 there is a curve again, since the vessel is broader again.”  

Although this student is not capable of interpreting the slope (or the form) of the graph, 
the references to the values indicate a connection between the measurement points in 
the graph and the fill height in the vessel. The description of the varying fill height 
shows a dynamic perspective and the concurrent statements about the variation in the 
vessel form show a covariational conception. One could argue that this conception does 
not include the fill volume itself, but the variation is given in the form of the vessel 
since liquid is filled with a constant rate.   
Another student in setting 2 wrote:  

“When the line is steep in the graph, the water rises fast and the vessel is narrow. When 
the line is flat in the graph, the water rises slow and the vessel is broad.” 

From a semantic view this student is arguing with conditions rather than changes, 
which reminds of a grading in intervals or chunky thinking as described by Castillo-
Garsow et al. (2013). At the same time, he interprets the slope of the graph and connects 
it to the change in the fill height (representational switch), revealing a dynamic 
perspective, but the covariational conception does not include a dynamic perspective 
on the change of the form of the vessel (or at least it is not expressed).  
The most elaborate description in setting 1 was: 

“At first it rises slow because the glass is broad, then it becomes narrower and narrower 
and it rises faster.” 

Although this student grasps a variation in the fill height, the first argument points to 
the correspondence aspect and is based on simplification (constant diameter). The 
second statement shows a more dynamic view of the form of the vessel (“narrower and 
narrower”), but the related fill height is not described accordingly. Hence the 
covariational conception is only displayed in a preliminary stage. 
These analyses only show an extract of the student documents, but they already indicate 
different stages of dynamic view and covariational conception in the two settings. To 
get an idea of the development towards these stages, we conclude with statements form 
a related task in the pretest. In this task students have to assign two out of four given 
fill curves to two vessels (cylinder and frustum of a cone). They provided the following 
explanations (comparably in both settings):  

“the vessel will fill faster and faster; the vessel is even, and the graph is straight; it becomes 
constantly more; at the bottom it fits more; first it takes a while because it is broad at the 
bottom” 
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Compared to the statements discussed above, one can detect a development in a) the 
connection between vessel, fill height and/or graph, b) in the dynamic view of one or 
more quantities and the graph and c) from a correspondence conception towards the 
variation of quantities and covariation.  
Hence both settings are capable to foster functional thinking and the key aspect of 
covariation is addressed since students in both settings improved in the dynamic view 
and/or covariational thinking. The students in setting 2 seem to benefit more regarding 
the interpretation of the graph, which might be caused by the intensified usage of the 
multi-representational simulations. The qualitative approach of setting 2 might have 
set the focus on (co-)variation as intended, at least the improved dynamic perspective, 
better connection between quantities and rudiment covariational conceptions lead to 
this assumption. The main study will give more detailed insights to the development 
of the aspect of functional thinking and the conceptualization. 
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Potentials of a variety of technologies to foster problem solving have been explored in 
relation to dynamic geometry software extensively. This paper takes a step forward 
and looks beyond the ‘well-known’ DGS application, at the aptitudes and challenges 
of manipulatives created with 3D print-technologies for development of heuristic 
strategies in problem solving. It presents two specific designs of virtual and haptic 
manipulatives inspired from outdoor contexts. The designs can stimulate the interplay 
between heuristic strategies in problem solving in a narrow sense as “guess – check – 
revise“, “look for a pattern”, “problem reformulation“ and “solution drawing“, but 
also in a wider sense as “problem finding” and “problem solving further”. A specific 
task for the designs finalizes the paper and opens new aspects for research. 
Keywords: heuristic problem solving, virtual and tangible manipulatives, dynamic 
geometry software (DGS), 3D print-technology, design research.  

INTRODUCTION 
„Attempts to build problem-solving programs based on heuristics like those 
characterized by Pólya, have generally been unsuccessful“, yet teaching heuristics in 
school mathematics is valuable for plenty of reasons (Schoenfeld, 1985, p. 72). Despite 
the huge amount of research on mathematical problem solving and heuristics, adequate 
details about heuristic strategies whose development may be influenced by the use of 
novel digital and physical media are still lacking. Considering personal resources as 
„mathematical knowledge possessed by an individual“, Schoenfeld (1985, p. 15) 
argued that the selection and implementation of strategies in problem-solving is 
dependent on the type of the resource that is accessible to the individual (Schoenfeld, 
1985, p. 70). This paper examines heuristic strategies in connection to the usage of 
external resources for learning such as manipulatives. It tackles questions as, what 
heuristic strategies can be stimulated and how do they interplay in problem solving by 
the use of a particular virtual or physical material such as DGS and 3D prints? The 
focus is set on contents related to geometry at high school. 
The paper reports about part of the project „New possibilities for differentiation in 
mathematics education through digitalization“ at the Goethe University Frankfurt am 
Main. The project involves collaboration with schools in and out of the city and 
moreover, international joint research works with the Institute Federal de Educação in 
Brasil. 
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THEORETICAL GROUNDING 
Problem solving is one of the key competences in mathematics education emphasized 
in many national curricula (e.g. Carpenter & Gorg, 2000; KMK, 2012; BNCC, 2018). 
Problems requiring application of mathematical theorems and their proofs in geometry, 
e.g. in construction problems at secondary level, have been discussed in literature for 
a long time (e.g. Zech, 1998). In this section, problem solving and related heuristic 
strategies are discussed from two perspectives, i.e. in a narrow and wider sense.  
Problem Solving in a Narrow Sense 
Well established Pólya’s (1973) phases in problem solving: understanding the problem, 
deriving a plan, carrying out the plan and verification, have inspired rich research 
debates. Later literature has extended the list and the diversity of the initially suggested 
heuristic strategies in problem solving to a significant amount. For example, strategies 
as “draw a diagram”, “guess and check”, “look for a pattern”, “make a systematic 
list”, “use before-after conception” are discussed by Fan and Zhu (2007). Novotná et 
al. (2014) have examined the improvement of pupils’ abilities to solve problems when 
using the strategies: “guess – check – revise“, “systematic experimentation“, 
“problem reformulation“ and “solution drawing“ . Further, the German literature 
differentiates between general and content-specific heuristic strategies. Among the 
general strategies, Wittmann (2014) places the “use of representations and translations 
between them”, “working forward”, “working backward”, “analogizing”, “principle 
of invariance”, “specialization” and “generalization”. Exemplified content-specific 
heuristic strategies for two-dimensional geometry in secondary school involve: 
drawing of suitable auxiliary lines, a search for equally long distances and angles of 
equal or complementary sizes (isosceles or equilateral triangles, right-angled triangle, 
sides of a parallelogram, circle-radii, etc.), sum of interior angles in polygons, angles 
at an intersecting line of two parallel lines, a search for areas that are identical in terms 
of patterning or puzzling and so on.  
Problem Solving in a Wider Sense 
In a wider sense, problem solving is defined through three phases: “finding a problem”, 
“solving a problem” (in a narrow sense) and “further developing the problem” 
(Leuders, 2003).  “Finding a problem” refers to detecting, identifying and describing 
problems in outdoor contexts with reduced complexity, e.g. noticing geometric 
polygons and their properties in buildings. Further, problem solving in a narrow sense, 
involves application of mathematical competences for analyzing and verifying 
solutions in new ways or combinations, e.g. 2D constructions of geometrical figures 
with traditional Euclidean tools and novel digital technologies, which enables 
consolidation and flexible usage of previous knowledge. For instance, a virtual 
manipulative that has originated in a real outdoor context, e.g. architecture of buildings 
(finding a problem) can further be developed with DGS. “Problem solving further” 
leads to development of new ideas and strategies for solving the initial problem, but 
moreover, its variations or creations of new problems (e.g. creating figures to be used 
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in problems of patterning and tessellations, puzzles or tangrams). This opens new 
perspectives for further learning of other mathematical concepts in a network (e.g. 
tessellations obtained through congruence transformations or similarities). In this 
phase, a DGS creation can further be transformed into a physical manipulative, e.g. 
mosaic pieces of a palpable geometric shape or a pattern by using 3D print-technology. 
It is also possible that a physical exploration can trigger students in designing new 
patterns digitally with a DGS. 
It is worth mentioning that these three phases are not disjoint and necessarily sequenced 
in a static order, rather exchange and complement each other. They are all tidily related 
to the well-known heuristic strategies in problem solving in a narrow sense, but we 
reconstruct them for problem solving in a wider sense and identify them as spot, sketch 
and create. Further, we describe each of these heuristics in relation to the interplay of 
virtual and physical manipulatives. 

USE OF PHYSICAL AND VIRTUAL MANIPULATIVES IN MATHEMATICS 
EDUCATION 
Literature has by now recognized the benefits of using both physical and virtual 
manipulatives in mathematics classroom. Effects of balanced use of physical and 
virtual manipulatives have been studied regarding development of students’ 
representations in algebra (e.g. Suh & Moyer-Packenham, 2007) or development of 
middle school students' visualization and spatial reasoning skills (Drickey, 
2000). Sarama & Clements have concluded that “manipulatives are meaningful for 
learning only with respect to learners’ activities and that both physical and virtual 
manipulatives can be useful” (Sarama & Clements, 2016, p. 71). When applied in 
comprehensive, well planned, structured and goal-oriented settings, both types of 
manipulatives can inspire students to make their knowledge explicit, which helps them 
build “Integrated-Concrete knowledge” (Sarama & Clements, 2016) or develop 
heuristic strategies as spotting/identifying the problem; sketching, drawing, 
constructing and creating the virtual and the tangible manipulative. Likely, guided 
participation in activities that can be organized in the three ‘steps‘ might be appropriate 
to integrate DGS and 3D print technologies. 

RESEARCH METHODOLOGY 
Our methodological approach relays on the work of Kolb (1984) about experiential 
education that depicts learning as a cyclic process involving four modes: 1) concrete 
experience (i.e., doing stage; engaging in a hands-on activity), 2) reflective observation 
(i.e., thinking, recording, discussing the experience), 3) abstract conceptualization (i.e., 
concluding stage; generate new understandings about the practices), and 4) active 
experimentation (i.e., adapting stage; trying out new ideas as part of the learning 
process; testing hypotheses). Figure 1 illustrates how these phases meet our 
experiments. Within this cycle students are exposed to different sets of physical tiles 
of a given particular pattern which students have to discover first (colourful shapes in 
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Figure 1.a and 1.b.1). Students are asked to figure out the geometrical properties and 
relationships regarding angles and sides of an initial mosaic in which they apply 
different strategies as “guess – check – revise“ and “look for a pattern”. This process 
opens conjecturing debates (Figure 1.b.2) to generate ideas (Figure 1.b.3) and 
encourage students to develop their own dynamic digital representations by using 
heuristic strategies (Figure 1.b.4) that may wary from those used on the beginning 
(Figure 1.b.1).  

 
                  a)    b) 

Figure 1: a) 3D print, b) Kolb’s cycle about experimental learning 

After that and mediated by a teacher, students work further with physical manipulatives 
1) to check their strategies and refine their thoughts, restarting a new discovering cycle. 
The transfer from 4) to 1) requires strategies as “problem reformulation“ and “working 
backward” that can be stimulated by questioning what should the construction be like 
in order to produce new 3D printed tiles. This coincides with “problem solving further” 
in the wider sense. 
We have undertaken a case study with three students in upper secondary school 
participating in a mathematics training program. The empirical findings of these cases, 
each of them undergoing the above Kolb’s cycle will be reported separately from this 
contribution. 

PRESENTATION OF THE DESIGNS 
Linking open spaces and mathematics classroom can initiate engaging and creative 
learning environments. By spotting and capturing shapes through sketches in an 
intentionally chosen out-of-school environment offered by the teacher, students can be 
curious and inspired to bring in and experiment with own discoveries in math 
classroom or media lab. In continuation, we show such environments in two European 
cities, Wien and Berlin (Fig. 2, a) and Fig. 3, a), correspondingly). In this first step 
students are expected to discover, identify and describe geometrical shapes in objects 
suggested by the teacher - finding a problem in the wider sense, as described above. 
Once they spot a particular geometrical shape, they can complete a sketch which will 
be taken for further usage in a math classroom or a digital lab. In order to reduce 
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difficulties that may occur, students should be offered solid organisation, guidance and 
a paper-pencil worksheet for the required sketch.  

   

a) Spot 

(in reduced context) 

b) Sketch 

(paper-pencil) 

c) Create 

(with DGS) 

Figure 2: Problem solving in a wide sense with virtual and tangible manipulatives 
inspired by a rosette on a restaurant window in Wien  

Further on, such spotted and documented mathematical object can be created with 
interactive dynamic software in addition to the traditional construction with 
straightedge and compass – problem solving related to constructions (Zech, 1998) (Fig. 
2, b and Fig. 3, b). A traditional paper-pencil construction with straightedge and 
compass of this famous rosette tiling using different methods can be motivated and 
instructed by online educational videos [3]. This is an algorithmic phase containing an 
execution of the construction and documentation of the solution (construction 
description). For example, for the suggested constructions (Fig. 2, b and Fig. 3, b) 
students need to know and use different properties of plane geometric figures, inscribed 
and circumscribed circle of polygons, the interior angle sum theorem for polygons, 
congruent figures and congruence mappings like rotation. An analytical phase may 
follow. This phase comprises of justification of the correctness of the undertaken 
construction and considerations regarding the uniqueness of the solution. 
Finally, the produced virtual manipulative, e.g. a dynamic geometry file can further be 
used for turning it out in a 3D printed tangible manipulative, inspiring the re-design 
and creation of new mosaic patterns. This step coincides with the Leuder’s statement 
– developing further problem (Leuders, 2003) and it may be undertaken in a variety of 
ways. We illustrate the step creation through an example about tessellation (Fig. 2) and 
the re-design through different creation steps (Fig. 3). Such new situation may enthuse 
students to continue beyond the virtual manipulation and again re-design through 
overlapping three models: a real one through sketching or photographing, a virtual one 
by the use of Augmented Reality (AR) (Fig. 3.c) and the physical one obtained by the 
3D printing (Fig. 3.d).  
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a) Spot 

(in reduced context) 

b) Create 

(DGS and 3D print) 

c) Re-create 

(3D print and AR) 

d) Re-create again 

(DGS and 3D print) 

Figure 3: Problem solving in a wide sense with virtual and tangible manipulatives 
inspired by the rosette at Hachischer Markt in Berlin 

All of these suggested designs require diverse level of mathematical knowledge and 
integrated digital skills and are therefore appropriate for differentiation in mathematics 
education. Simple variations of posing the problems may lead to requirements with 
significantly different level of difficulty. Therefore, our expectations are related to 
offering possibilities for students’ individual trials, learning trajectories and results, 
rather than achieving homogeneity in a learning group. This diversity includes 
application of different heuristic strategies. Having in mind the affordances that may 
appear by increased number of learning materials, a systematical development of each 
teaching unit and activity is a necessity. Several task designs about symmetry of plane 
geometric figures and tessellation including 3D printed artifacts are suggested to 
sustenance pragmatically understanding of abstract concepts in math school curricula 
at different levels of education (Donevska-Todorova, 2020; Leung & Donevska-
Todorova, 2020; Lieban, Lavicza, & Reichenberger, 2020). In continuation, we suggest 
further possibilities for problem solving and task design with these manipulatives. 
Heuristic strategies in specific problem solving related to the manipulatives  
This sub-section offers suggestions for continuing and completing the activities during 
the creation of the manipulatives and their application along the Kolb’s cycle (Fig. 1.b). 
Tasks like the following one may stimulate different use of heuristic strategise when 
choosing unlike manipulatives. 

Task: Since the pattern in Figure 2 has an axial symmetry, which angles can be 
determined in each of the puzzle tiles?  

Strategies that may apply for this problem are “guess – check – revise” and “look for 
a pattern” in a paper-pencil environment. However, “problem reformulation“ by 
selecting subsets of the tiles which are congruent to each other and searching the angles 
only within one subset seems a more appropriate strategy when using the palpable 
manipulatives. The strategy “systematic experimentation“ seems also appropriate with 
the same manipulatives. This also relates to “problem solving further” in the wider 
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sense. However, when changing the manipulatives to digital ones such as DGS, the 
content-specific strategies as “drawing of suitable auxiliary lines”, “searching for 
angles at an intersecting line of two parallel lines” and “using sums of interior angles 
in polygons” may be more suitable. 

CONCLUSION AND FURTHER PERSPECTIVES 
In this paper, we have theoretically considered problem solving and the use of heuristic 
strategies which may diverge depending on the nature of the manipulatives used. We 
have suggested designs and explorations of virtual manipulatives with DGS and 
physical manipulatives with 3D print-technologies (Fig. 2 and 3) which directly refer 
to “guess – check – revise“, “look for a pattern”, “problem reformulation“ and 
“solution drawing“ strategies, but also “problem finding” and “problem solving 
further” in a wider sense. This directly addresses the posed research question which 
we have also illustrated with a specific task design related to the created manipulatives. 
Possible efficacious of the designs for fostering the strategies are in the process of 
empirical investigation according to the methodological approach (Fig. 1.b). Finally, 
this work has lightened new ideas for scientific observations related to support of 
creative mathematical thinking by the design of similar virtual and 3D printed 
manipulatives (Donevska-Todorova & Lieban, 2020). 

NOTES 
1. The used DGS in this paper is GeoGebra. The designed resources by the authors are available here: 
[1] https://www.geogebra.org/m/avhrrnde and [2] https://www.geogebra.org/m/hbfmucrs and [3] 
https://www.youtube.com/watch?v=ILD0Hvf5Xbo.  
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Student responses as a basis for whole-class discussions in technology-
rich environments 

Maria Fahlgren and Mats Brunström 
Karlstad University, Department of Mathematics and Computer Science, Sweden, 

maria.fahlgren@kau.se 
This paper reports a study of four upper secondary school teachers’ use of Connected 
Classroom Technology to select student responses to computer-based activities, and to 
use these responses to launch successive stages of a planned whole-class discussion. 
Although the preparation for the class discussion was quite successful, it was a 
challenge for the teachers to conduct the whole-class discussion, particularly in posing 
specific questions based on appropriate student responses. 
Keywords: connected classroom technology, mathematics education, whole-class 
discussion. 
In a previous study (Fahlgren & Brunström, 2018) we examined students’ written 
explanations of an observation made in a dynamic mathematics software (DMS) 
environment. We found that few students offered a complete mathematical 
explanation. However, most of them provided elements of explanation, many of which 
that could be useful as starting points for a whole-class discussion. This highlighted a 
need to provide support for teachers in surveying students’ computer-based work, 
preferably in real time, to inform such a discussion. For example, the participating 
teachers requested technological support to monitor all the students' work and to easily 
choose different student solutions for whole-class discussion. Nowadays, there is a 
type of technology available that can support teachers to achieve this which we refer 
to as Connected Classroom Technology (CCT). 
This led us to conduct a case study in a Swedish upper secondary school, working with 
four teachers and their classes. The overarching aim was to identify critical aspects 
when using CCT to prepare and conduct a whole-class discussion based on students’ 
responses to computer-based activities. A teaching unit consisting of three stages − 
introduction, pair work, and whole-class discussion − was designed and trialled with 
the four classes. In an earlier paper, we have provided a detailed description of the 
design of the teaching unit (Fahlgren & Brunström, 2019). In another paper we have 
reported on the teachers’ utilization of the CCT during the pair work stage (Fahlgren 
& Brunström, 2020). The focus in this paper is on the last stage of the teaching unit − 
the whole-class discussion. The research question is: What are the challenges for 
teachers when using CCT to select student responses, and use these responses to launch 
successive stages of a planned whole-class discussion? 

WHOLE-CLASS DISCUSSION BASED ON STUDENT RESPONSES 
The importance of following up students’ previous work in pairs or small groups and 
using it as a basis for a whole-class discussion is well established in the mathematics 
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education research literature (e.g. Franke, Kazemi, & Battey, 2007; Stein, Engle, 
Smith, & Hughes, 2008). At the same time, this literature highlights the challenge for 
teachers to orchestrate student- active classroom dialogues (Ruthven & Hofmann, 
2013; Stein et al., 2008). To address this, Stein et al. developed a model consisting of 
five practices to support teachers in their planning and implementation of whole-class 
discussion. The first practice, ”Anticipating likely student responses…” (p. 321) relates 
to the planning of the lesson. The second, third and fourth practices: monitoring, 
selecting and sequencing student responses, all relate to the stage of the lesson where 
students are working on activities. Finally, the fifth practice concerns the collective 
stage of the lesson where different student responses are displayed and discussed in the 
whole class. Although the model is primarily intended to serve as a road map for 
teachers, it provides a theoretical frame which researchers can use “…as a way of 
conceptualizing investigations of classroom discourse” (Stein et al., 2008, p. 314) as 
well. For example, Cusi, Morselli and Sabena (2017) used this model when 
investigating how CCT could be used to facilitate whole-class activities. 
Kieran et al. (2012), demonstrate the challenge for teachers to orchestrate follow-up 
discussions which take students’ computer-based work into account. In their study, 
only one of the (three) participating teachers really inquired into students’ thinking and 
utilized it as a point of departure for a whole-class discussion, although such 
discussions were an expected part of the researcher-designed lessons. However, this 
was not made explicit in the accompanied teacher guidance since it did not specify how 
to perform the discussion, although it included suggestions for mathematical content 
to discuss. Similarly, Ruthven and Hofmann (2013), in a design study, identified 
situations where disappointing classroom mathematical discussion arose from teachers 
not capitalising on promising student contributions. To address this, they suggest, there 
is a need to sensitise teachers, typically through making the potential of such 
contributions more explicit in the teacher guidance. 

METHOD 
The fieldwork for this study was conducted in spring 2019 with four upper secondary 
school teachers and their classes undertaking the 3-stage teaching unit already referred 
to. In undertaking the unit, two types of technology were used − a dynamic 
mathematics software (DMS), in this case GeoGebra, and a specific CCT, Desmos 
Classroom Activities. During the pair-work stage, the students used two computers; 
one with GeoGebra and one with an e-worksheet in Desmos. In contrast to the DMS, 
the CCT was a novel teaching resource for the participating teachers. 
When planning the teaching unit, then, we gave particular attention to providing 
teachers with guidance on making use of the CCT to examine students’ work during 
the central pair-work stage of the lesson, and to prepare examples from this work for 
use in the concluding whole-class discussion stage. This guidance was informed 
primarily by the Stein et al. model, with the necessary mathematical-conceptual detail 
derived through analysis of student responses (gathered from eight classes in a previous 
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study (Fahlgren & Brunström, 2018)) to the explanation task featured in the lesson 
(Task 1c in Figure 1). This analysis provided information about answers likely to be 
produced by students during the pair-work stage, i.e. relating to the first practice in the 
Stein et al. (2008) model – Anticipating likely student responses. 

Task 1 Quadratic functions can always be written in the form  where a, b and 
c are real numbers and . 

(a) Investigate, by dragging the slider c, in what way the value of c alters the graph. Describe in your 
own words. 

(b) The value of the constant c can be found in the coordinate system. How? 

(c) Give a mathematical explanation why the value of c can be found in this way. 

Figure 1. The first tasks including a request for an explanation (Task 1c). 

Detailed step-by-step guidance, based on the Stein et al. model (2008) and exploiting 
particular functionalities of CCT, was developed and discussed with the teachers. 
During the pair-work stage, teachers are encouraged to use two different CCT views to 
monitor the students’ work. In the Summary view, the teacher can survey all the 
students’ progression across the whole activity, and in the Specific item view, the 
teacher can monitor all students’ answers to a particular task (relating to the second 
practice in the Stein et al. model – Monitoring student responses). In the latter view, 
the teacher also can select appropriate student responses to display and use as a basis 
for the whole-class discussion (relating to the third practice in the Stein et al. model – 
Selecting student responses). In the view that we denote Presentation preparation 
view, the teachers can sequence the selected student responses (relating to the fourth 
practice in the Stein et al. model – Sequencing student responses). To support the 
selection and sequencing, the guidance included response categories to search for as 
well as a suggested sequencing of the responses (see Figure 2). 

Identify and select one or two appropriate student responses from the different categories 
(a) Repeating the answer to Task 1b, i.e. only indicating that it is where the graph intersects 

the y-axis 
(b) Providing example (e.g. “if c=3, it intersects the y-axis at 3” or referring to GeoGebra) 
(c) Comparing with the standard linear equation, e.g. “c corresponds to m” 
(d) Indicating that “c is independent of x” or that “c is the constant term” 
(e) x = 0 gives y = c 

Figure 2. Excerpt from the teacher guidance illustrating the response categories. 

Moreover, the guidance includes a probing question to pose in relation to each of the 
different response categories (see Figure 3) during the whole-class discussion. The 
detailed thinking behind the recommended sequencing and the corresponding 
questions is reported in Fahlgren and Brunström (2019), but the gist should be clear 
from inspection of the two Tables. At a planning meeting, the guidance was discussed 
and the researchers and the teachers agreed that it was appropriate. 
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(a) What is the distinction between Task 1b and Task 1c? (i.e. what is the distinction between a 
description and an explanation in mathematics? 

(b) Can examples be used as an explanation? Is it enough to refer to GeoGebra (as a 
mathematical explanation)? 

(c) What do m in f(x) = kx + m and c in f(x)=ax2 + bx + c have in common? 
(d) Could the explanation be strengthened further?, i.e. Why does this mean that the graph 

intersects the y-axis when y=c? 
(e)  These discussions should lead to a class agreement on what constitutes an approprate 

explanation in this particular case (Task 1c).  

Figure 3. Excerpt from the teacher guidance showing the questions suggested. 

DATA COLLECTION AND ANALYSIS 
We sought, then, to examine how teachers made use of CCT in preparing for, and 
implementing, the whole-class-discussion stage of the teaching unit. The main data 
consist of screen recordings of each teacher’s computer as well as audio recordings and 
field notes from the whole-class-discussion. In addition, a joint meeting with the 
teachers afterwards was audio recorded. The focus in this paper is on the student 
responses selected and on teachers’ utilization of these during the whole-class 
discussion, guided by the questions suggested in the teacher-support materials. 
All student responses were categorized based on the anticipated categories in Figure 2. 
This analysis provided information about the occurrence of student responses in each 
class as well as responses selected by the teachers. This enabled us to ascertain whether 
each teacher managed to select responses from all of the categories available in their 
class. Screen recordings of the Presentation preparation view provided information 
about the sequencing (of the selected responses) made by the teachers in preparation 
for the whole-class discussion. 
Next, the audio recordings were transcribed and screen shots from the screen 
recordings were inserted to indicate which response the teacher displayed when posing 
different questions. These transcripts were analysed to indicate the number of questions 
posed by each teacher in relation to different response categories. We also compared 
these questions with the suggested ones, categorizing the teacher's action as Suggested 
question (or equivalent), Some other form of question, or No question.  

RESULTS 
This section starts by presenting the findings related to the teachers’ preparation in 
terms of selection and sequencing of student responses. Then the findings concerning 
their conduct of the whole-class discussions is reported. 
Preparation for whole-class discussion 
The responses making up our category system are idealized in the sense that each 
appeals to a single distinctive idea. However, the empirical responses that we received 
from students could make reference to more than one of theses idealized responses 
and/or to further ideas absent from the category system. Consequently, these empirical 
responses were mainly of three types. First, there were those that (in our interpretation) 
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refer only to a single category. Second, some refer to more than one category or 
combine one category with other irrelevant information. Finally, there were responses 
that did not relate at all to the anticipated answer categories (categorized as “Other”). 
These responses were irrelevant, e.g. “Because the c variable is the slope in this case”, 
or not informative enough, e.g. “y=c”. 
Although the teachers found the selection process challenging, they all managed to 
select responses from all categories available (in their class). There were no category 
(b) answers available in any of the classes, and no category (e) answer in T4’s class. 
As indicated in Table 1, some of the selected responses did not only consist of one 
category or were categorized as “Other”. As will be demonstrated later, this caused 
trouble in the subsequent stage of the lesson.  
Table 1 shows the sequencing made by the teachers. The letters within brackets indicate 
our categorization of the different student responses. In cases when a student response 
includes more than one category (or further irrelevant information), both categories are 
indicated within the brackets. For example, in T1’s first presentation view, there are 
two student responses, one categorized as both (c) and (a) and the other as (a) only. 
Table 1 indicates that the teachers more or less followed the suggested sequencing, and 
that three teachers utilized the opportunity to display more than one response on the 
same presentation view.  

Presentation view  T1 T2 T3 T4 

P1 (c+a), (a) (a) (a) (a) 

P2 Other (c) (c) (c) 

P3 (c) (d+irr) (c), (c) (d), (c+e) 

P4 (c+d) (d) (a) (d+a+irr), (c+e) as in P3 

P5 (e) (d+irr) as in P3 (d)  

P6  (e) Other  

Table 1. The sequencing of different student responses in the four classes. 

Challenges in launching the stages of the planned whole-class discussion 
The times devoted for the whole-class discussion were 18 min. (T1), 10 min. (T2), 14 
min. (T3), and 5 min. (T4). The presentation of the results in this section is organized 
according to two identified critical aspects: Challenge in using the suggested questions 
and Challenges due to student response features.  
Challenge in using the suggested questions  
Table 2 shows the type of question posed by the teachers in relation to response 
categories (a), (c), and (d). In cases where several questions were posed, the number of 
questions is indicated within brackets. 
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Type of student 
response under 

discussion 

Type of question used by teacher 

Suggested question 
(or equivalent) 

Some other form of 
question 

No question 

(a) T3 T1, T2 T4 

(c) T3 T1(4), T2(2), T4(2)  

(d)  T2 T1, T3, T4 

Table 2. The number and types of question posed by the teachers. 

One of the teachers (T3) used the question suggested for category (a), while two of the 
teachers posed questions without referring to the distinction between a description and 
an explanation. Instead, T1 focused on assessing the quality of the explanation, “What 
do you think about that explanation?”, while T2 just asked whether the response could 
be regarded as an explanation. T4 made a point about the differences between “what 
you can see in the graph” (i.e. a description) and an explanation, although without 
posing any question. 
Questions related to category (c) responses were posed several times in three of the 
classes. For example, T1 posed questions in relation to three different student 
responses. However, the question closest to the suggested one, “What do these two 
have in common?”, was posed when pointing to the two formulas (written) on the board 
(y=kx+m and y=ax2+bx+c), i.e. not based on a student response. This was also observed 
in T2’s class, although at the end of the class discussion. One of the teachers (T3) used 
the question suggested for category (c); however, the teacher added some further 
questions that might have been confusing for the students. Most of the questions posed 
on this category are vague and of a more general character.  
In relation to category (d), only one teacher (T2) posed a question, “Is this a 
mathematical explanation?” The reason why T4 did not pose any question might be 
that a student provided a satisfactory explanation without any request from the teacher.  
Challenges due to student response features 
Student responses that include one category plus either one more category or some 
irrelevant information caused trouble during this stage of the lesson. Two of the 
teachers (T1 and T4) displayed responses including more than one category. Below are 
descriptions of these instances. 
Unfortunately, T1 initially missed to utilize the Presentation view for displaying the 
selected (and ordered) responses. Instead, the teacher utilized the Specific item view, 
and displayed the first answer in this view, which happened to be one of the answers 
in P1. The teacher read aloud the response categorized as (c+a):  
Because the value of c is m where the line intersects the y axis y = kx + m  m = c  
Then, the teacher asked “Comparing m and c, is there anyone who can explain this, the 
thinking behind it?” Since nobody responded to this question, the teacher shifted the 
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focus towards the part of the response that belongs to category (a), and asked “What 
do you think about that explanation?” In this way, the teacher did not follow the 
planned (and suggested) sequencing, probably because the displayed response include 
two response categories. 
When displaying the response categorized as (c+e), T4 directed the focus to the 
category (c) part of the response, despite that category (c) already had been displayed 
and discussed. S/he asked “But how do we, then, see that c is m?”. One student 
answered by providing a proper category (e) answer, i.e. focusing on the other part of 
the response. This illustrates how an answer that includes two response categories 
might influence the discussion in two ways. First, the same kind of response was 
discussed several times, and second, there was a mismatch between the question posed 
by the teacher and the student response.  
To summarize, the findings indicate that the teachers quite successfully followed the 
suggested selection and sequencing. However, challenges during the conduct of the 
whole-class discussion appeared when student responses including more than one 
category were displayed. Moreover, it was challenging overall for the teachers to 
follow the guidance in terms of the suggested questions. 

DISCUSSION 
Since this is a case study, the intention is not to provide generalizable results, but to 
identify some challenges appearing when teachers utilize CCT to orchestrate a whole-
class discussion based on students’ computer-based work. In this way, the findings can 
provide some guidance for future practice and research. 
Although the teachers found the CCT useful, the findings indicate that it was a 
challenge for them to follow the agreed teacher guidance. Particularly, the suggested 
question to pose in relation to different types of student response were used to a small 
extent, and when used, they most often were posed in a quite different way. Of course, 
there could be several reasons for this, not least the teachers’ own beliefs and 
knowledge as well as the classroom norms (Kieran et al., 2012). However, one reason 
probably was the need for teachers to make in-moment decisions in the classroom. One 
way to facilitate for the teachers to follow the teacher guidance would be to embed the 
planned questions into the presentation view together with the student responses. This 
could also address the challenge for teachers to base the discussion on proper student 
responses, a challenge also observed by Ruthven and Hofmann (2013). 
It was also a challenge for the teachers to follow the teacher guidance, in cases when 
they selected responses including more than one category. Two problems were 
observed during the whole-class discussions. First, the planned sequencing became 
disturbed, and second it became unclear what part of the response that was discussed. 
One way to deal with this would be to select only “clean” responses, if possible. This 
raises the question whether technology can support teachers with the challenging task 
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of categorising student responses on the spot. This is an important issue for future 
research. 
In this study, teachers were supposed to implement an agreed lesson design based on a 
systematic analysis (done by the researchers). In reflection, the study illustrates that 
this type of implementation is not straightforward. Some reasons for this and what 
could be done to support teachers have been discussed.  
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The design principles of an online professional development short 
course for mentors of mathematics teachers  

Eirini Geraniou and Cosette Crisan 
UCL Institute of Education, London, United Kingdom, e.geraniou@ucl.ac.uk  

This paper describes the design principles and content of an online asynchronous short 
course contributing to the professional development of prospective Mentors of 
Mathematics Teachers. We aimed at bringing together the participating teachers’ 
expertise and wisdom of practice, and the evidence from relevant research and 
professional literature in mathematics education through carefully designed online 
activities and ‘lightly’ orchestrated peer collaborations. We expect our course to 
develop the participating teachers’ appreciation of how their gained knowledge from 
research and literature empowers them to critically reflect on their own teaching 
practices and on how they support the practices of teachers they mentor. 
Keywords: professional development, research-informed mentoring, online 
community, online learning, subject specific mentoring. 
INTRODUCTION 
Practicing mathematics teachers in schools in England, UK and all over the world (e.g. 
Australia, Ireland, Germany) are expected to contribute to the professional 
development (PD) of less-experienced colleagues. Repeated government calls in the 
UK require that all school-based mentors are experienced in delivering high quality PD 
of colleagues, have a deep understanding of the specialist subject required for high 
quality teaching of the subject and understanding of how teachers develop this 
knowledge (Cordingley, Greany,  Crisp, Seleznyov, Bradbury & Perry, 2018).  
However, nationally and internationally support for mentors is sparse and rather 
generic, at the expense of subject specific support (ACME 2015, Barrera-Pedemonte, 
2016). Currently in England, in schools that work in partnership with teacher training 
institutions, mentors are offered subject specific PD support. This training though is 
limited to one or two twilight sessions in a year. Furthermore, the mentoring issues 
discussed and reported in the literature are mostly of a generic nature, i.e. more 
concerned with general teaching situations rather than with subject-specific teaching 
or teaching after initial training (e.g. Martin, 1996). According to the findings of the 
Developing Great Teachers review (2018), subject-specific Continuous Professional 
Development (CPD) that focuses on enhancing teachers’ understanding of the subjects 
they teach; how pupils learn in those subjects; and how to teach them, is more effective 
in terms of its impact on pupil outcomes, than generic pedagogic CPD.   
Additional factors such as time constraints, workload issues, caring responsibilities, 
costs of PD courses, prevent teachers accessing PD support. In particular, when the PD 
support is run at specific times in a year and physical attendance is required, teachers 
may be unable to take advantage of such support. Similar factors also account for a 
lack of engagement of teachers with the research. Despite an increasing recognition in 
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the UK of the need for teaching to be a research-literate profession, teachers repeatedly 
indicate that their working conditions do not enable them to spend time reading 
research to improve their understanding or to determine how to use it to adapt their 
practice (Royal Society and British Academy, 2018). 
To address some of the above factors and in particular accessibility issues, using 
modern technologies to support distance, life-long and online learning has become a 
common trend (e.g. Chen, 2007). Massive Open Online Courses (MOOCs) and Short 
Online Courses have made their appearance in the educational field worldwide (e.g. 
Laurillard, 2014). Laurillard and her colleagues have offered great insights into how 
best to design such online courses that “provide access to key materials and resources, 
and the opportunity to exchange ideas and experiences from [participants’] own 
institutional and national contexts” (p.5) and subsequently enable participants to co-
construct knowledge. This opportunity to exchange ideas and experiences and network 
with peers is of great importance in online learning environments, especially those 
relying on asynchronous mode of delivery, since it is viewed as a way to compensate 
for the lack of teacher presence (e.g. Liyanagunawardena, Kennedy & Cuffe, 2015). 
Murphy and Laferrière (2003) argued that the success of online teacher communities 
for PD happens when the course materials are high quality interactive instructional 
materials, valuing what participants experience and contribute to the learning of others. 
As expected, though, online learning brings a number of challenges. For example, 
participants’ online learning depends on the quantity as well as the quality of their 
peers’ postings (e.g. Geraniou & Crisan, 2019). Building a mutual trust between 
participants and working together to reach a successful learning outcome takes longer 
in an online asynchronous course compared to face-to-face learning opportunities (e.g. 
Haythornthwaite, 2002). Such challenges need to be carefully considered when 
designing online courses and deciding upon the pedagogical strategies for providing 
an effective learning experience.  
Our aim in this paper is to share our learning design and facilitation strategies adopted 
for an online asynchronous CPD course that offers a functional learning space with 
appropriate activities for critical self-reflection, meaningful discussions and where 
appropriate, co-construction of knowledge to take place. We begin by presenting the 
design of our ‘Key Ideas in Mentoring Mathematics Teachers’ (KIMMT) course that 
allows participants to learn from the course content and from each other while enrolled 
on an online asynchronous CPD course. 
THE RESEARCH-INFORMED COURSE DESIGN 
As mentioned above, our review of the mentor provision in England, but also 
worldwide, highlighted that there is an ever increased demand of new mentors in 
schools, a demand for support for mentors that is subject specific, and according to the 
recommendation of the Harnessing educational research report (Royal Society and 
British Academy, 2018), a need of support for all teachers to use evidence and insights 
from research to develop their practice. 
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Our aim was thus to design a PD course, with the following learning goals for 
prospective mentors: to be informed by the subject specific maths education research; 
to engage with the evidence from such research in their own teaching; and to 
consistently draw on such knowledge in their conversations with the mentees, hence 
promoting a research-informed teaching practice of their mentees.  
To orchestrate learning in such ways, we engaged with a research-informed framework 
for implementation of active learning practices into an asynchronous online 
environment, referred to in literature as ‘An Architecture of Engagement’ (Riggs & 
Linder, 2016) consisting of: Element 1: Syllabus Communication and Engagement 
Policy, Element 2: Course Orientation and Element 3: Modular Course Structure. 
Below we explain how this framework influenced the design of our course.   
According to Riggs and Linder (2016), a modular course structure helps to frame the 
architecture of engagement throughout the course. As such, our KIMMT course is 
designed as a short online course, with activities that spread over five weeks. An 
orientation for an online asynchronous course introduces participants to the structure 
of the course (Element 2: Course Orientation,  Riggs & Linder 2016), with each week 
requiring on average about four hours study time, as this is an amount of time 
manageable by teaching professionals, an argument supported by Laurillard (2014). 
The first week focuses on welcoming participants by sharing expectations for online 
meaningful engagement on this course, informing participants of communication 
policies and the course schedule (Element 1: Syllabus Communication and 
Engagement Policy, Riggs & Linder, 2016) and asking them to introduce themselves 
to the course’s online community. The other four weeks focus on powerful pedagogical 
inter-connected mathematics themes titled as “Fostering 
Algebraic/Geometric/Numerical/Functional Reasoning”. Every themed week consists 
of an ‘Introduction’ to the week and the learning goals, followed by three main 
activities relevant to the respective theme, and finally a ‘Concluding’ section focusing 
on “Reflections, Learning Live and Concluding Remarks” (Element 3: Modular Course 
Structure, Riggs & Linder, 2016).  
Our short five-week course (https://www.futurelearn.com/courses/key-ideas-in-
mentoring-mathematics-teachers) is available on the FutureLearn platform and was 
first launched in January 2020. FutureLearn is a MOOC learning digital education 
platform jointly owned by the Open University, UK and SEEK Ltd, extending thus the 
access to our course resources to teachers in schools located in the UK and abroad, 
hence promoting principles of inclusivity in education.  
The mode of delivery of this course is online and asynchronous, with ongoing online 
forum discussions between the participants and supported by us, aimed at promoting 
an Online Community of practice (Goos, 2014) for prospective Mathematics Mentors 
(OCoMM). This delivery mode facilitates self-paced studying that accommodates 
more flexibly the various needs of practicing mathematics teachers.  
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As Laurillard (2014) reported about the design of a MOOC for Teacher CPD, such a 
course “has an audience who can benefit from each other’s knowledge and experience, 
in addition to the information, ideas and research evidence the team could provide. The 
approach therefore was to ‘orchestrate peer collaborative learning’ as well as ‘curate 
the key resources’” (p.12). As such, creating opportunities for participants to share 
insights from their own teaching practices, to learn about research evidence, and how 
to apply the newly acquired knowledge to their own practices, were of paramount 
importance in the design of our course. We achieved these by organizing the content 
of the course in two main strands, which we refer to as ‘The Pedagogical strand’ and 
‘The Research strand’, while ‘The OCoMM’ provided the online space for learning 
throughout the course. 
COURSE CONTENT 
The two main interweaving strands of this course, namely the pedagogical and the 
research strands, are not context specific and as such the course offers learning 
opportunities to mathematics teachers who hold a variety of views about mathematics, 
its teaching and learning. Moreover, the research strand of this course draws from 
international mathematics education sources (handbooks, journals, conference 
proceedings, book chapters, etc.). We have selected descriptive and experimental 
research from relevant quantitative and qualitative studies recognised as influential in 
the mathematics education community worldwide, hence not adhering to a particular 
theoretical stance or view of mathematics teaching and learning. 
The Pedagogical strand 
For the main activities within each theme, we needed to choose which three 
pedagogical aspects of the teaching and learning of the maths topics to focus on. 
Considering the ‘Fostering Geometric Reasoning’ theme for example, our maths 
education research background enabled us to choose the most salient aspects of 
research in the teaching and learning of geometry, namely that geometric thinking and 
reasoning involve developing, attending to, and learning how to work with geometric 
images. So, one of the three activities is ‘Visualising’ and is designed to support 
participants to learn about the role visualisation plays in one's geometric reasoning and 
the importance of being pedagogically aware of what pupils ‘see’ when they ‘look’ at 
diagrams.  
On the other hand, our experience as classroom teachers and teacher educators 
informed our design of the activities, each consisting of a number of tasks, called 
‘steps’ in FutureLearn. The first step is ‘A Mathematical Problem’, usually related to 
a concept or a challenging topic to teach and is presented as a fictional scenario inspired 
from real life classroom situations that we experience ourselves as teachers, teacher 
educators, or read about in mathematics education literature. Biza, Nardi and 
Zachariades (2007) refer to such scenarios they used in the teacher education contexts 
“as tools for the identification and exploration of mathematically, didactically and 
pedagogically specific issues regarding teacher knowledge” (p. 308). In this first step 
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we ask the participants to ‘think about and suggest a solution to the ‘problem’ posed’ 
and share their thoughts in the Comments section of each step. We included prompts 
such as ‘What difficulties do you envisage pupils might have in tackling this question 
and communicating their solution both orally and in writing? When you have posted 
your response, consider that of another learner and offer your views and opinions on 
their answer'. The next step of each activity focuses on reviewing and synthesising 
maths education research related to the specific maths topic under consideration. 
The Research strand 
One of our main goals for developing this course was to promote and empower 
prospective mentors with ideas, suggestions, advice, etc., which are informed by 
relevant mathematics education specific research. We wanted to offer them the means 
for reflecting on how such ideas can be applied to their own practice. In this respect, 
each mathematics-specific situation introduced in the activities of this course is either 
preceded or followed by a step titled ‘What does the research say?’. In each such 
step, we provide a selective summary of the research insights and results related to the 
specific mathematics topics under consideration. This summary consists of a very 
concise review of the research, where important details of the research studies 
themselves are left out (a deliberate decision), while references were included for 
participants to investigate deeper and further. 
The review of research is then followed by a task that requires participants to engage 
with the research step and in the Comments section they are encouraged to reflect on 
how the reading could possibly help them gain an insight into the presented scenario. 
This step is important, as it precedes the step where we model for the participants how 
engagement with research could potentially support teachers in teaching the topic in a 
way that supports pupils’ understanding of the particular concept or topic. 
We have done this in a variety of ways. For example, participants are presented with a 
scenario in which a beginner teacher seeks advice from their mentor about how to 
address a particular misconception, or cognitive difficulty, or mistake, or flawed 
reasoning pupils propose. The participants are encouraged to act the role of a research-
informed mentor: ‘Reflect on your reading so far this week and imagine you are the 
mentor of the beginner teacher. In the Comments area, share your views on how you 
would advise them in this situation’. We want the participants to make sense for 
themselves of the research and start thinking about ways in which such newly gained 
knowledge could be applicable to their real-life classroom situations.  
In a final step, ‘Using research to support pupils’ learning’, we model how the 
research reviewed could be used in mentor-mentee conversations. These are usually 
videos of mentors-mentees in conversations, where the mentor makes explicit 
references to the research reviewed when offering explanations or suggestions to her 
mentee. This step provides a ‘solution’ to the ‘problem’ given to participants in the 
previous step. 
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The OCoMM 
When designing our course, one of the aims was to establish an online community to 
complement the learning on the course and ensure sustainability for our course goals. 
Our long-term goals were: (a) to empower mentors with research informed practice 
and instil in them a welcoming stance towards mathematics education research, and (b) 
to encourage peer collaborative learning and sharing good practice through a 
sustainable online mentors’ community of practice.   
The literature indicates that there is a need to facilitate and cultivate conditions that 
will nurture the development of the online community by community members. 
Learning in such communities does not just happen. As designers, we knew we had to 
create opportunities to purposefully foster the growth of our online community. Guided 
by Murphy and Laferrière (2003)’s finding that the success of online teacher 
communities for PD happens when there are opportunities for teachers to engage 
systematically and formally in this very process, we built in the design of our course 
such opportunities. Each activity has a number of online spaces for sharing and 
discussing ideas, allowing participants to dip into their wisdom of practice and feel that 
the experiences they bring to the learning on the course are valued.  
Similarly, Laurillard (2014) suggested that they promoted engagement with their 
MOOC’s resources by proposing discussions around “‘to what extent they could 
implement a teaching idea shown in a video’, and ‘how they would overcome the 
barriers within their own school’” (p.13). The activities are designed such that the 
participants are regularly prompted to share their thoughts and ideas. Even though 
reviewing the output of their peers was not a requirement as per the advice by Laurillard 
(2014), we relied on the participants’ own motivation in sharing their ideas and viewing 
this as an opportunity to reflect upon their own views and potentially reconsider and 
improve their current teaching and mentoring practice. It is the partnerships and 
interactions among the participants that define the learning community, and not the 
digital media, that are used (Riel, 1996). FutureLearn indeed provides the online space 
where participants ‘come together’ and interact as and when prompted by the activities 
of our course. Such interaction fosters the "process of building and rebuilding 
interpersonal relationships" (Di Petta, 1998, p. 62). We envisaged that our participants 
not only interact, but also "learn from each other’s work, and provide knowledge and 
information resources to the group related to certain agree-upon topics of shared 
interest" (Hunter, 2002, p. 96). 
CONCLUDING REMARKS IN LIGHT OF THE FIRST COURSE 
PRESENTATION 
One of our main goals for developing this course was to promote and empower mentors 
with ideas, suggestions, advice on their mentoring and teaching practice, which are 
informed by relevant mathematics education research.  
Reflecting upon the first course presentation and the participant feedback received via 
an end of course evaluation survey, we recognised that while FutureLearn provided the 
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online platform where participants ‘came together’, it was the OCoMM that provided 
the online space where participants started building relationships and learned together.  
In 2014 Laurillard claimed that engaging participants fully in online collaborative 
learning activities aimed at developing a research informed practice was still a 
challenge. In 2020, we found that the research-informed architecture of engagement 
framework supported us in establishing an OCoMM, where prospective mentors in 
particular, but also mathematics teachers in general from around the world, would 
network, contribute to each other’s reflective comments, share experiences, seek 
advice, co-construct knowledge, and discuss research informed mathematics teaching 
practice and how it can be applied.  
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This study reports the use of automated tutoring and scaffolding implemented in the 
module “arithmetic word problem” in the educational technology software 
MathemaTIC in grade 3 (age 8 to 10). We examined 246 students with access to 
MathemaTIC and receiving tutoring and scaffolding through a one-to-one learning 
setting with this technology. The control group (n=226) had access to the same 
learning tasks and worked with paper-and-pencil without MathemaTIC but with their 
teachers. Results showed that the experimental group finished with higher outcome 
scores than the control group. This paper will outline the study and attempts to explain 
these results. 
Keywords: educational technology, process skills, elementary school, mathematics, 
problem-solving 

INTRODUCTION 
Teaching arithmetic word problems in grade 3 (age 8 to 10) is reported by the teachers 
in Luxemburg, as one of the most challenging topics in mathematics. Teachers in our 
study suggested that students struggle in class to solve arithmetic word problems, due 
to a lack of comprehension in reading, understanding of the wording and identifying 
the arithmetic operations to execute. In these tasks, students required process skills 
such as arguing, communicating, representing, and problem-solving (Selter & 
Zannetin, 2018). Moreover, based on the result of the national school monitoring 
EpStan in mathematics and language, students with low reading skills are also those 
who are low performing in mathematics (Sonnleitner et al., 2018). Similar to the 
findings of LeBlanc and Weber-Russel (1996), there is a connection between well-
developed skills in reading and understanding of the mathematics course language and 
mastering process skills. Therefore, many students need continuous assistants from a 
teacher while learning to solve arithmetic word problems. In class, however, the group 
of students is heterogeneous, and a close follow-up is challenging to realize. 
In 2016, the Ministry of Education in Luxemburg developed, jointly with the Canadian 
company Vretta, an educational technology software for mathematics learning in 
elementary schools called MathemaTIC. A multidisciplinary team created a module 
inside MathemaTIC with an automated tutoring system to foster process skills in 
arithmetic word problems in grade 3 in order to create new learning possibilities and 
to address the low performances. The instructional design of the module aimed for one-
to-one learning in class and at home for students without additional guidance from 
teachers or parents. We carried out a quantitative study to obtain findings on the use of 
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this arithmetic word problem module by addressing the following two research 
questions: 

RQ1: Are students who learn process skills in arithmetic word problems with MathemaTIC 
likely to improve at the same degree compared to a traditional paper-and-pencil setting 
with the guidance of the teachers? 

RQ2: What are the limitations and opportunities of a one-to-one setting with 
MathemaTIC? 

Hence, we will present the design of the automated tutoring system and some results 
of the quantitative study in which we examined 246 students with access to 
MathemaTIC in a one-to-one learning setting without their teachers compared to a 
control group (n=226), that had access to the same learning items using paper-and-
pencil, but worked with their teachers. 

THEORETICAL FRAMEWORK 

 

Figure 1: Main view of the module “arithmetic word problem” 

The structure of the automated tutoring in the arithmetic word problem module was 
based on the Competence-Learning-Intervention-Assessment model by De Corte et al. 
(2004) and the Four-Component Instructional Design (4C-ID) model by van 
Merriënboer& Kester (2005) for learning complex skills. Both models suggested that 
students should learn through guided learning tasks and then apply the skills in tasks 
that are gaining in complexity and lowering in guidance. Furthermore, students should 
develop a cognitive structure applicable for these complex skills with meta-tools 
(Trouche, 2004) in the new tasks. Hence, in the module arithmetic word problems 
(compare figure 1), students started working on guided learning tasks (blue), followed 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

 

201 

by semi-guided tasks (red) and finally complex tasks without guidance (black). The 
scaffolding system, based on the multimedia learning theory (Mayer, 2005), consisted 
in listening to the wordings, interacting with the images and arithmetic operations, and 
self-regulating their solving process through (non-adaptive) guidance from a fictitious 
character (one for each of the four solving steps). The tasks were autocorrected, and 
direct feedback was given to the student. 
The different arithmetic tasks were addition and subtraction word problems as  
recommended in the curriculum for grade 3 (MENFP, 2011), based on the criteria for 
constructing and solving arithmetic word problems (Franke & Ruwisch, 2010) and 
structured through the semantic classification of Vergnaud(1982) in transformative, 
compositional and comparative problems. The tasks were related to situations and 
places from the students’ living environment: “Luc does a bike tour from Luxembourg 
to Echternach with his 3 friends. The odometer on his bike is at 125 km at the start of 
his trip. The tour is 42 km long. What will the odometer show when they get to 
Echternach?”. 

 

Figure 2: Guided use of a meta-tool: highlighting information and creating a scheme 

The first part of the module was dedicated to learning process skills (first 14 “blue” 
tasks after the key in figure 1). Students practised different process skills separately in 
guided learning tasks. These tasks then lead to discovery and manipulation of meta-
tools supporting the different process skills (i.e. identifying relevant information in the 
wording with a highlighter tool and creating a resolution scheme, compare figure 2) to 
make it easier for students to solve the problem. 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

202 

 

Figure 3: “Black” item without guidance 

The second part focused on using the learned process skills in the identified arithmetic 
word problems (15 tasks organised as 3 ovals on the top of figure 1). Thus, students 
solved the different typologies of arithmetic word problems (combination, 
transformation and comparison) with the help of the learned meta-tools (compare menu 
bar on the left of figure 3). Each typology was presented in a set of three levels from 
guided tasks (blue), semi-guided tasks (red) to complex tasks (black). In the guided 
tasks (blue) in each typology, students needed to follow four steps solving procedure 
using the learned meta-tools: they analysed the wording, modulated the content into a 
resolution plan, executed the arithmetic operations and verified their results. In the 
semi-guided tasks (red), students were asked if they wanted to use the meta-tools, but 
could choose not to utilise them. In the complex tasks (black), they solved tasks with 
multiple arithmetic operations and no scaffolding was offered. They could use the 
meta-tools, but without additional guidance. 

METHODOLOGY 
In this section, we describe the quantitative pre-/post-test approach we utilised to 
measure if students in grade 3 (age 8 to 10) who learn arithmetic word problems with 
MathemaTIC in a one-to-one setting are likely to improve at the same degree compared 
to a traditional paper-and-pencil setting with teachers. The experimental group worked 
with the arithmetic word problem module in MathemaTIC in a one-to-one setting, 
without a specific teacher guidance. Their teachers did only ensure access to 
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MathemaTIC and helped with technical issues. The control group did the same tasks 
using paper-and-pencil, however with the guidance and assistance of their teachers. 
Both groups worked for 20 hours (2 hours per week over a period of 10 weeks) on 
process skills in arithmetic word problems. During the study, we observed three 
different moments in the learning behaviour of the students within the experimental 
and control groups. Besides, we interviewed their teachers on their perception of the 
students’ learning with or without MathemaTIC based on the research questions RQ1 
and RQ2. 
Participants of this quantitative study were 48 randomly selected classes with 667 
students in grade 3 (age 8 to 10) in elementary schools in Luxemburg. We used the 
variables age, gender, and performance in mathematics of EpStan to identify matched 
pairs and assigned classes to experimental and control groups. We allocated 278 
students to the control group, working using paper-and-pencil, and 389 students to the 
experimental group, working with the arithmetic word problems module in 
MathemaTIC. At the end of the study, 34 classes with 472 (8 with a missing post-test) 
students remained: 246 (2) students in the experimental group and 226 (6) students in 
the control group. The dropout was due to local technical errors (low WiFi signal or 
non-working hardware) while using MathemaTIC or simply because of a missing post-
test for the whole class. Students in both groups performed an identical pre-test and 
post-test with 15 items based on the different typologies of arithmetic word problems 
(combination, transformation and comparison) with one or two operations and one item 
with a combinatorial problem. This combinatorial item allowed us to observe if 
students would transfer their learned skills into another typology of problem. Both tests 
have been created based on the experiences from author groups from the national 
school monitoring and based on the skills from the curriculum. 

RESULTS AND DISCUSSION 
Results from the experiment suggest that the use of the module “arithmetic word 
problem” in MathemaTIC is a promising approach to foster process skills in 
mathematics in a one-to-one setting. The statistical analysis below was carried out 
using the software R (R Core Team, 2020). 
Cronbach’s alpha (Revelle, 2019) indicates a good reliability for the pre-test (α=0.774) 
and the post-test (α=0.787). The detailed analysis shows that dropping one of the 16 
items will only slightly increase the reliability for question 1 of the pre-test (α=0.777) 
and that there are no reverse-scored items. Thus, from this point of view, all items are 
to be kept in the tests. However, several questions in the pre-test (Q1: 0.16, Q3: 0.27, 
Q11: 0.24) as well as in the post-test (Q1: 0.26, Q3: 0.26) have an item-rest correlation 
below 0.3. Hence, they do not correlate very well with the scale overall. The success 
rates are 81% vs. 76% for question 1 (low difficulty level), 18% vs. 38% for question 
3 (high difficulty level) and 3% vs. 9% for question 11 (very high difficulty level). 
Although extremely easy or difficult items only poorly allow to discriminate, they were 
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needed to sample content and objectives adequately. Thus, we kept all items for further 
analysis. 

 

Figure 4: Increase in score over time for the group 

We used lme4(Bates et al., 2015) to perform a linear mixed-effect analysis of the test 
result score predicted by the fixed effects time (pre-/post-test), control/experimental 
group and their interaction as well as the random effect student. Visual inspection of 
residuals plots revealed minor deviations from homoscedasticity and normality, which 
we accounted for by using bootstrapped confidence intervals. The main effect time has 
an estimate of 1.14 points (95% CI [0.56, 1.72]) for the control group. Thus, post-test 
scores of students from the control group were significantly higher than those in the 
pre-test. The main effect group has an estimate of -0.29 points (95% CI [-0.89, 0.28]) 
in the pre-test. On the one hand, both groups were comparable at the beginning of the 
study, because the confidence interval contains 0, and on the other hand, the 
experimental group probably had, in the pre-test, slightly lower test results than in the 
control group. Finally, the interaction effect time x group had an estimate of 0.90 points 
(95% CI [0.15, 1.68]). This effect underscores the fact that the performance gains of 
the experimental group, working with the educational software MathemaTIC, were 
significantly larger than those in the control group, resulting in somewhat better post-
test performance although starting with a somewhat lower pre-test performance 
(compare figure 4). 
During the classroom observations and the interviews, we were able to collect data in 
both groups on the motivation, participation and transfer of skills. Thus, in the 
experimental group, teachers reported that students' motivations to solve and discuss 
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arithmetic word problems were higher than during the regular course (without 
MathemaTIC) and that they voluntarily exchanged on the tasks after the resolution. 
Teachers attributed the increase of motivation to the gamification aspect of 
MathemaTIC as well as the guidance and direct feedback given by the educational 
technology. According to teachers’ reports, some students suggested in other teaching 
hours (without MathemaTIC) to use the learned process skills to solve mathematical 
tasks (i.e.: Calculating the area of the classroom floor). In the control group, teachers 
stated that there was no change in motivation and some students had significant 
difficulties (i.e. understanding wording or findings of the arithmetic operation) to solve 
all the given tasks on paper.  

CONCLUSION AND OUTLOOK 
Our findings highlighted that students in the experimental group improved their 
performances in arithmetic word problems significantly using the educational 
technology software MathemaTIC in one-to-one setting. Students learned meta-tools 
on process skills and successfully solved addition and subtraction word problems in all 
topologies without the direct guidance of a teacher or a parent. Teachers reported a 
high acceptance in class and an overall increase in motivation and participation of the 
students in mathematics courses. Thus, the module on arithmetic word problems in the 
educational technology software MathemaTIC is a viable alternative to the traditional 
paper-and-pencil course. Over time it could be a valuable asset to support students 
individually or in groups or even the entire class with MathemaTIC within traditional 
courses. 
We will perform further investigation on the fixed effects of gender, age, nationality, 
spoken language (L1) and the random effect school. Additionally, we will investigate 
all process skills in detail by performing a qualitative comparison of the pre-test and 
the post-test in our future analyses. Hopefully, we can further narrow the origin of the 
observed significant performance gains of the experimental group and we will report 
these analyses in future publications. 
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New curricular goals and new digital learning tools: conflicting or 
mutually reinforcing developments? 

Petra Hendrikse, Ria Brandt, and Victor Schmidt  
SLO, the Netherlands, p.hendrikse@slo.nl 

Ideas on a new national Dutch curriculum include a shift in the type of aims. Additional 
to the traditional aims, aims described in terms of active verbs are formulated, like ‘to 
abstract’, ‘to model’ and ‘to reason’. At the same time there’s a shift going on from 
books to digital learning tools. In this paper we explore whether both developments 
conflict with each other and if so, what might be done to turn this into mutually 
reinforcing one another.  
Keywords: curriculum, learning goals, mathematical thinking, digital tools. 

DEVELOPMENTS IN CURRICULA: CONTENT AND/OR COMPETENCES? 
The international group of experts on science and mathematics education (SME) came 
to the conclusion that new perspectives for evidence-based policy for SME were 
needed (UNESCO, 2012). In a report it is argued that additional to traditional emphasis 
on content in curriculum description, acquisition of competencies like  

(1) thinking mathematically, (2) posing and solving mathematical problem, (3) modelling 
mathematically, (4) reasoning mathematically, (5) representing mathematical entities, (6) 
handling mathematical symbols and formalisms, (7) communicating in, with and about 
mathematics, and (8) making use of aids and tools,  

should be described. Curriculum developers are called to strike a balance between 
learning goals in terms of content and learning goals in terms of competencies. In recent 
publications both on research and on national curricula the call of UNESCO seems to 
be acknowledged.  
In PISA’s definition of mathematical literacy (OECD, 2018) the focus is on active 
engagement in mathematics. This definition encompasses verbs like formulate, 
employ, interpret and reason (mathematically). In a model of mathematical literacy in 
practice which is used by PISA, a set of fundamental mathematical capabilities is 
mentioned, which consists again of a combination of (nouns derived from) verbs, such 
as communication, representation, devising strategies, mathematization, reasoning and 
argument. Speaking about mathematics as an activity has a long tradition (Clarkson, 
1968). From the onset in 1990 the Connected Mathematics Project at Michigan State 
University (Edson, Phillips & Bieda, 2018) wants to design learning environments in 
which pupils go through the process of exploring, conjecturing, reasoning, 
communicating and reflecting and need higher-level thinking, reasoning and problem 
solving. Österman and Bråting (2019) indicate a similar shift in the vocabulary in 
curriculum documents from nouns like notions, concepts, theories, methods and results 
to generic competences described in verbs like conceptual understanding, problem 
solving, reasoning and communication skills. In short there is a tendency to speak in 
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terms of verbs when thinking about mathematics education. Though different authors 
use different words, some tend to be used by all, like reasoning. Others differ from 
each other but are somehow connected to each other, like problem solving and 
mathematization, which is part of problem solving. Verbs like communicating are 
mentioned often.  

LEARNING GOALS: IMITATING OR CREATIVE REASONING  
Lithner (2017) shows that in many countries learning materials, teaching and 
assessment promote rote learning. Pupils are most often confronted with a learning 
environment in which they can learn facts and simple procedures but not how to find 
solution methods themselves. Tasks can be solved by imitating given procedures. 
These kind of tasks do not meet the requirements for learning competencies like 
reasoning abilities, problem solving and modelling. In a report of the European 
Commission (Rocard, Csermely, Jorde, Lenzen, Walber-Hendriksson, & Hemmo, 
2007) a similar conclusion is drawn: in most European countries pupils often merely 
reproduce activities and have few modelling activities. In education focus seems to be 
on memorizing and retaining information, instead of (conceptual) understanding. Since 
mathematics teaching methods are essentially deductive, the presentation of concepts 
and intellectual frameworks comes first and is followed by the search for operational 
consequences. The common teaching in European countries lacks scaffolding the 
development of before mentioned competencies. In order to make a change other types 
of tasks are needed. In line with the need for different types of tasks, the research 
programme on learning by imitative and creative reasoning (Lithner, 2017), might 
trigger this change. The goal of this research programme is to design tasks that do meet 
the requirements for the acquisition of competences. Lithner concludes that for 
teaching it depends on the goals whether one should teach through algorithmic 
reasoning or through creative mathematically founded reasoning. Learning goals like 
problem solving need teaching through the latter.  
Limiting the focus only to tasks which support the development of competencies, is 
insufficient. Teachers capability of teaching while using such tasks, is also important. 
The OECD (2018) notices that teacher seem to lack the needed requirements, as in they 
don’t adopt more active, co-operative and project-based strategies in their teaching. 
UNESCO (2012) describes several requirements teachers need to have: (1) capability 
of dealing with the unexpected, (2) identifying the mathematical potential of pupils’ 
ideas and work that have not been anticipated, (3) capability of helping pupils to link 
their results in particular context to targeted more general learning goals on both 
content and way of presenting. Instead of knowing in advance what pupils will say, 
draw or write down, the teacher needs to react on what pupils bring forward. This might 
be a new insight, new way of saying, or new form of presenting.  
Another major recent change in education are digital tools and technology entering 
education more and more. This change enlarges the number of needed teaching 
capabilities. The framework that focuses on Mathematics Knowledge for Teaching 
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(MKT) has evolved into a new theoretical framework Mathematical – technological 
pedagogical content knowledge (M-TPACK) (Guo & Cao, 2015), in which teachers’ 
knowledge of integrating technology into the mathematics classroom is integrated 
(Thomas & Palmer, 2014). In the next paragraphs we will elaborate on the combination 
of pedagogical technological knowledge (PTK) and the scaffolding of the development 
of mathematical thinking skills. 

NEW DIGITAL LEARNING ENVIRONMENTS 
Digitalisation is a worldwide development in many aspects of live, not restricted to 
education. However in education this development goes beyond the digitalisation of 
learning materials. It also influences the content of education. Time needs to be spent 
on how to use the digital systems (Gravemeijer, Stephan, Julie, Lin & Ohtani, 2017) 
and learning goals might need to change in order to prepare pupils for a digital society. 
The OECD (2018) predicts that the demand for people with non-routine high level 
cognitive skills will increase; another plead to add learning goals like competences.  
New technology tends to result in a call for integrating it into education. Again and 
again expectation is that the new technology will improve learning. Nowadays ICT is 
labelled promising and seem to have replaced for example television. In the 20th 
century expectations on the use of television were high, among others that it would 
help to clarify mathematics and illustrate it attractively (Ficken, 1958). Recently 
developers and researchers articulate similar expectations on technology, for example 
that due to technology pupils learn mathematics better or in a more smooth way (Edson, 
Phillips & Bieda, 2018), that computer simulations are the basis for attractive learning 
environments (Vreman-de Olde, 2006) or that they will result in deeper learning due 
to the possibility of multiple (dynamic) representations (van der Meij, 2007). Since 
television didn’t change mathematics education fundamentally in the past 50 years, we 
might be a bit more cautious about the change technology will bring. Drijvers, 
Doorman, Boon, Reed and Gravemeijer (2010) already remarked that integration of 
technology in mathematics education lacked behind expectations. Hence let us 
consider in advance more closely what technology can and should bring. In this paper 
we focus on (1) offering of possibilities that otherwise would be impossible or take too 
much time, (2) offering of feedback, and (3) presenting information in another way 
than a one dimensional text.  
Offer possibilities that otherwise would be impossible or take too much time 
New technology that widens our world always has been a reason to integrate this 
technology into our lives. Motorised vehicles make it possible to travel larger distances 
in less time. Airplanes even made it possible to fly on high altitudes. In what way can 
technology widen pupils’ world? Sins (2006) states that computer models can 
overcome the lack of mathematical skills needed for describing and predicting complex 
phenomena and enables discussing complex real world phenomena at a higher level. 
Calculators have already fulfilled several possibilities to take away the calculation from 
the pupils, for example the calculation of roots, the sine, etc. Computer programs like 
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Excel make it possible to calculate the mean of large amounts of numbers. What might 
technologies like Virtual Reality and Augmented Reality add?  
Offered feedback 
Getting feedback is essential for learning. Output of tools is in itself (implicit) feedback 
that needs to be interpreted. There’s much to discuss on this issue, but we would like 
to focus on explicit feedback generated by the tool. Feedback can be given on many 
different aspects like the correctness of the final answer, the chosen solution strategy, 
the diversity of given possible solution strategies or how the thinking process is 
presented. It can also have different goals, for example to help pupils discern whether 
they understand or to enlarge pupils’ self-confidence. Teachers are limited in the 
number of pupils they can provide with feedback in a certain amount of time. In order 
to have technology support teachers, UNESCO’s demands are actual, e.g. technology 
should (1) have capability of dealing with the unexpected, (2) identify the mathematical 
potential of pupils’ unanticipated ideas, (3) have capability of helping pupils to link 
their results in particular context to more general learning goals. 
Presenting information  
In textbooks information is presented in one dimension: from the top side of the page 
downwards.  As a result connections between tasks, definitions, etc. must be made by 
the pupils or the teacher. It is desirable that information can be presented in such a way 
that these connections become more visible.  
To summarize technology can have large impact on learning if it (1) enables to 
experience mathematics like in real life, (2) offers feedback needed for all learning 
goals, and (3) presents information in such a way that connections between units are 
more explicit. 

STATE OF THE ART IN DUTCH MATHEMATICS EDUCATION AND 
FUTURE WISHES 
In 2017 the Dutch government decided that the whole Dutch national curriculum, all 
subjects at both primary and secondary level, should be updated. At date this 
curriculum revision is still ongoing. For mathematics this is a chance to make the 
curricula of primary education and lower secondary education more coherent with each 
other. In 2015, learning goals for upper secondary education were revised, based on 
ideas from a report titled “thinking and acting” (vernieuwingscommissie wiskunde 
cTWO, 2013) which are in line with the tendency of formulating goals in terms of 
verbs. A major change between the new and previous curricula was the addition of six 
mathematical thinking skills (Curriculum.nu, 2019): (1) modelling and formulating 
algebraic, (2) ordering and structuring, (3) analytical thinking and problem solving, (4) 
manipulating formulas, (5) abstracting, and (6) logical reasoning and proving. To date 
this addition is restricted to upper secondary education and has not yet been added to 
the description of the learning goals of primary and lower secondary education. In the 
proposals for the new mathematics curriculum, which are still under construction, 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

 

211 

mathematical problem solving, abstraction, logical reasoning, representing and 
communicating, modelling and algorithmic thinking are added to the curriculum. 
Another change is the addition of a learning goal on using tools and technology to the 
traditional content learning goals. The proposal combines traditional content, 
mathematical activities and technology.   
A parallel recent development in Dutch education is the digitalisation of learning 
materials. Remark the use of the expression ‘digitalisation’ instead of ‘creation of 
digital learning environments’. Digitalised textbook assignments are only a small part 
of the many different and diverse possibilities in digital environments.  An example of 
the result of digitalising textbooks is given in figure 1. The digital environment hardly 
differs from a textbook and doesn’t really offer new possibilities. All animals are drawn 
the same size, the ruler is already placed, an assisting line is already drawn.  

 
Figure 1: A ‘real-life’ problem in a digital learning tool. 
Technology does offer new possibilities in this example, since it is not possible to 
measure an elephant in a classroom in real-life. Virtual reality has great potential: for 
large animals pupils would have to reach high, for small animals they would have to 
bend down in order to measure. It would enrich the learning environment if pupils 
would have to choose the tool with which they would like to measure. In order to have 
a more open task, pupils could be asked to choose several ways to order the animals 
(for example length of tail or length of ear) and draw a conclusion (for example 
ordering is dependant/independent of the subject chosen to be measured). A reason for 
current formulation of problems is the frequent absence of possibilities to check such 
endless variety of possible answers by technology. Digital tools for the most part lack 
the three capabilities formulated by UNESCO (2012). It is questionable (if possible at 
all) if it benefits to develop digital tools that anticipate on all possible objects of 
ordering, since for example the length of tales might result in a different order than 
height. And what about the criterium ‘identifying the mathematical potential of pupils’ 
ideas and work that have not been anticipated’? 
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Technology checking only the final numerical answer doesn’t provide feedback on the 
chosen solving strategy. It is comparable to a teacher asking pupils only their final 
answer. If a pupil for example answers 8 to the question ‘5+3=’, it is undesirable if this 
correct answer was reached by counting fingers (if the child is not just mastering the 
concept). The same is valid for the answer 8 to the question ‘2x + 3= 19’ if it was 
reached by trial and error. For this reason in the Netherlands at secondary level math 
tests pupils are asked to write down their elaboration next to the answer most of the 
time. They are used to do so while working on problems in class on paper. However, 
many digital tools don’t offer the possibility to add elaborations. If adding is possible, 
it quite often has to be done in a strictly prescribed protocol, e.g. the tool forces pupils 
to a fixed number of steps via a fixed strategy. These limitations in freedom of 
elaboration hinder pupils in following their own preferred strategy in their own 
preferred number of steps. Digital tools would have a great surplus if they would offer 
pupils freedom in manner of writing their elaboration and if they would give feedback 
on the elaboration. With the new curriculum in mind, feedback should also be given 
on aspects like abstraction and reasoning.  
Why is there such a prominent demand for digital tools checking answers? Dutch 
education aims to teach each pupil at its own level. To provide an assignment at the 
suited level, either the teacher has to select a set of assignments for each individual, 
which is time consuming, or the digital tool selects assignments. The latest can be done 
on the basis of the correctness of the answer of the preceding assignment (as argued 
before it is desirable if this would be on the basis of the correctness and efficiency of 
the answer and the elaboration). In the Netherlands a consequence of each pupil 
working on an individual set of assignments has led to classes in which pupils 
simultaneously work on different topics. This has muted the discourse (which is rare 
in many Dutch classes anyway), which is amongst others undesirable in the light of the 
(social) duty schools fulfil to have pupils learn to deal with ambiguity regarding other 
people’s opinion, conceptions, learning methods and speeds. Digital environments 
might support discourse differently, by having pupils discuss with pupils from other 
schools working simultaneously on the same assignment or have a discourse over time 
with their classmates. Digital environments might connect two pupils who both solved 
assignments correctly but used different strategies. These pupils can discuss the 
efficiency and effectivity of each strategy. Pupils with different social, economic and 
cultural backgrounds can be connected to each other. This leads to the need to learn to 
communicate about ones work and to present owns learning in an understandable way, 
skills aimed for in the new Dutch curriculum. Tools might also provide the teacher with 
an overview of which strategy was used by which pupils. Additional the environment 
can send examples of different solution strategies which the teacher can show on the 
digital blackboard so all pupils can see them while discussing. Ordering and selecting 
pupils work by technology, relieves the overload for the teacher. These are examples 
of new possibilities which could be offered by technology in order to support and 
strengthen the discourse.  
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Another consequence of giving pupils assignments on the basis of their performance 
in the current digital tools is pupils seeing solely the assignment they are working on. 
Thinking about relations between assignments, is hard. Questions like ‘what is the 
difference between the assignments in this paragraph from the latter’ or ‘what solution 
strategy did you use on what type of assignments’ are powerful questions. Digital 
environments would have a great surplus if they could provide an overview of the 
assignments. It would, for example, be nice if a pupil could order the environment to 
show all the assignment in which a certain solution strategy was used. But maybe a 
first step would be to show a conceptual map and see to which ‘archetype’ the current 
assignment belongs. Some digital environments in the Netherlands already provide 
pupils some information about the concept and level an assignment belongs to and what 
their mastery level of this concept is, but this can be improved. 

CONCLUSION 
In the Netherlands developments in digitalising learning materials and curricular 
changes are conflicting at quite some aspects, like the focus on the final numerical 
answer in digital environments and the new curricular call to focus on capabilities like 
reasoning. However there are many possibilities that both developments can reinforce 
each other in future. There’s work to be done! 
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A “toolbox puzzle” approach to bridge the gap between conjectures 
and proof in dynamic geometry [1] 
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The paper presents the findings of the analysis of two Danish grade 8 students working 
together to prove conjectures, which they formulated based on guided explorations in 
a dynamic geometry environment, in the frame of a design based research project. The 
case indicates that the designed task can bridge a connection between conjecturing 
activities in dynamic geometry environments and deductive reasoning. The students 
manage to explain theoretically, what is initially empirically evident for them in their 
exploration in the dynamic geometry environment. The proving activity seems to make 
sense for the students, as a way of explaining “why” the conjecture is true. Certain 
findings coming from other groups are also presented. 
Keywords: Dynamic Geometry Environments, Conjectures, Proof, Toolbox puzzle 
approach. 

INTRODUCTION AND THEORETICAL BACKGROUND 
An ongoing issue in the mathematics education research field concerns the role of 
dynamic geometry environments (DGE hereinafter) in relation to proof. Several studies 
highlight the potentials of DGE in relation to development of mathematical reasoning, 
abilities in generalization and in conjecturing (e.g. Arzarello, Olivero, Paola & Robutti, 
2002; Laborde, 2001; Leung, 2015; Baccaglini-Frank & Mariotti, 2010; Edwards et al., 
2014). However, it is not clear whether such activities in DGE can support students’ 
development of abilities in deductive argumentation. Some studies indicate that the 
empirical nature of the DGE investigations may impede the progression of deductive 
reasoning (e.g. Marrades & Gutiérrez, 2000; Connor, Moss, & Grover, 2007). That is 
to say, once the students have explored a construction in the DGE and discovered some 
relationship, they may become so convinced by the empirical experience that it does 
not make sense for them to prove (again) what they “know”. However, other 
researchers suggest that students’ explorative work in DGE does not have to risk 
development of deductive reasoning (Lachmy & Koichu, 2014; Sinclair & Robutti, 
2013). Seemingly, the didactic design surrounding the work in the DGE and the role 
of the teacher is of utmost importance (e.g. Mariotti, 2012). De Villiers (2007) argues 
against a common method, which is for the teacher to devalue the result of the students’ 
empirical investigation as a means of motivating students to undertake theoretical 
validation. Instead, he suggests highlighting the role of proof as an explanation. The 
teacher may turn the theoretical validation into a meaningful activity for the students 
as a challenge to explain “why” their DGE investigations are true (de Villiers, 2007). 
Trocki (2014) suggests that motivating the students to theoretically justify their 
empirical explorations may also be incorporated into the task design itself.  
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In light of the ongoing discussion in the field on the role of DGE in conjecturing and 
proof, the following research question arises: How can students’ conjecturing activities 
in DGE be combined with theoretical validation, to make theoretical validation a 
meaningful activity for the students? 
This research question is investigated as a part of a larger design-based research 
project, in which the overarching mathematical aim is to utilize potentials of DGE in 
order to support students’ development of mathematical reasoning competency, which 
is a notion from the Danish KOM framework (Niss & Højgaard, 2019). The KOM 
framework is a competency-based approach to describe what mathematical mastery 
entails, and it is integrated into lower secondary school curriculum as well as most 
other educational levels in Denmark. The mathematical reasoning competency 
includes abilities concerning reasoning, conjecturing and proving (Niss & Højgaard, 
2019, p. 16). The specific designed task that is reported upon in this paper aims at 
bridging a connection between students’ conjecturing activities in the popular DGE 
software, GeoGebra, and proving. However, diverging understandings exist regarding 
the meaning of the notion of proof in a teaching and learning context (Mariotti, 2012; 
Balacheff, 2008). Therefore, I will briefly impart what is implied by the notion of proof 
in the context of school mathematics, both in the research field and in this project.  
Mariotti (2012) elaborates on different understandings of proof in school context and 
unfolds two extremes; 1) proof as the product of theoretical validation of already stated 
theorems, and 2) proof as the product of a proving process, which includes exploration 
and conjecturing as well as proving conjectures. Sinclair and Robutti (2013) state that 
the view on proof in the context of school mathematics has largely shifted to comprise 
proof as a process, and that this may in part be attributed to the facilitation of 
experimentation provided by digital technologies. The KOM framework does not 
address proof using the same terminology, however, proof as a process resonates with 
the emphasis stated in the KOM framework concerning the ability to investigate and 
do mathematics (Niss & Højgaard, 2019). Therefore, in this project, proof is 
understood as a process that includes exploration, conjecturing and deductive 
reasoning.  
In the following sections, the method and educational context of the study is explained, 
followed by a description of the task design principles. Then a case is presented of two 
students working together on the task, followed by an analysis of the data. Finally, 
some conclusions are made concerning the specific case, but also referring to results 
coming from other groups and to research aims going forward. 

METHOD 
The research project is anchored in the frame of design-based research methodology 
(Bakker & van Eerde, 2015). Based on analysis of DGE literature, a hypothetical 
learning trajectory was proposed (see more in Højsted, 2019; 2020a), leading to the 
development of a didactic sequence that included 15 tasks. The sequence design was 
also influenced by results from a survey (Højsted, 2020b). The didactic sequence was 
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tested and redesigned in three design cycles in three different schools that each lasted 
approximately three weeks (14-16 lessons). The data presented in this paper is from 
the second design cycle. To investigate the research question in this paper, a “toolbox 
puzzle” task was designed with the aim of supporting the students to first formulate 
conjectures based on guided investigations in GeoGebra, and then to undertake 
theoretical validation of the conjectures.  
Data from each design cycle was acquired in the form of screencast recordings of the 
students’ work in GeoGebra; external video of certain groups (chosen in collaboration 
with the teacher to comprise a spectrum of high-low achieving students); and written 
reports that were collected from the students. 
In this paper, data is analysed from one pair of students, Ida and Sif, in order to 
investigate to what extent the toolbox puzzle design supports them in proving their 
conjectures and if the activity seems meaningful to them. Some results coming from 
other groups is also mentioned in the conclusion 

EDUCATIONAL CONTEXT 
The study took place in an 8th grade (age 13-14) mathematics classroom in Denmark 
during a period of three weeks. The students had some previous experience using the 
geometry part of GeoGebra, which is common in Denmark, since ability in relation to 
dynamic geometry programs are highlighted in the curriculum mathematics common 
aims already from grade 3 (BUVM, 2019). However, the students had no experience 
related to theoretical validation of conjectures or theorems, which is not surprising 
since it is almost non-existent in lower secondary school in Denmark, which is evident 
at curriculum level, in textbooks and in practice. In that light, it is no shock that Jessen, 
Holm and Winsløw (2015) found that Danish upper lower secondary school students 
lack in reasoning abilities. 

TASK DESIGN 
The initial tasks in the didactic sequence were designed to highlight the theoretical 
properties of figures, and how they are mediated by DGE in the form of invariants, e.g. 
by constructing robust figures in “construction tasks” (Mariotti, 2012). In subsequent 
tasks, the students were engaged in constructing and investigating the constructions in 
order to make conjectures. Generally, the design heuristic of Predict-Observe-Explain 
(White & Gunstone, 2014, p. 44-65) was applied to some extent in most tasks. The 
students were required to make a prediction concerning some geometrical properties, 
and to justify their prediction. Afterwards, they were to report what they observed and 
explain in case there were differences between prediction and observation, leading to 
conjectures about the geometrical constructions. Afterwards, the students were 
expected to explain why their conjectures were true. They were provided with a toolbox 
(on the right in figure 1) that contained theorems to be used in their argumentation. In 
the design, theoretical validation was portrayed to the students as an activity of finding 
out and explaining why conjectures are true, as suggested by de Villiers (2007). The 
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toolbox was introduced to the students as a helping hand of already established truths 
comprising the necessary clues to find out why their conjectures were true, much like 
pieces to solve a puzzle. 
The task [2] reported upon in this paper consisted of an initial construction part, 
followed by questions (Predict-Observe-Explain) to guide the students to discover and 
make a conjecture about the relationship of an exterior angle of a triangle with its 
interior angles. Finally, the students were encouraged to explain/prove the conjecture 
in a proof sheet (on the left in Figure 1), using a toolbox, which contains a support 
drawing as well as information (angle over a line is 180°, and the angle sum of a 
triangle is 180°) to be used in the argumentation.   

 

Figure 1: The proof sheet and toolbox. Solved by Ida and Sif 

THE CASE OF IDA AND SIF 
Ida and Sif were described by their teacher as medium to high achieving students. In 
the previous task, they found the proving activity and the toolbox to be confusing. The 
following excerpt ensues after Ida and Sif have constructed the figure from task 9, they 
have guessed, investigated and put forward the correct conjecture (9a-9f) and are about 
to try to explain/prove why it is true (9g):  

516 Ida The sum of the two interior angles… [Writes the conjecture in the proof 
sheet (Figure 1) translated: “The external angle is as large as the sum 
of the two internal angles”] 

517 Sif Beautiful! Okay, now we have to prove it. Oh no… 
519 Sif Now that again… 
520 Ida a plus c equals b, and see. Basic Rule 1: The angle over a line is. The 

angle sum of a triangle is. [reading from the tool box] 
521 Sif Yes! I understand. Look… [points to the support drawing in the tool 

box] 
522 Ida Ohh. 
523 Sif Super! In here, that's what's missing. [points to angle b in the support 

drawing (see figure 2)]  
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Figure 2: Using the toolbox to explain 
… 
533 Sif And add this one here, to here. [pointing to angle b being added to a+c 

and to d respectively] 
534 Ida That's right, so it makes 180. AND it makes sense. Is there more to say? 
535 Sif That is… just how it is. 
536 Ida We know that the sum in a triangle is 180 degrees and that the sum… 

the angle sum of a line is 180 degrees. Therefore, when we are missing 
an angle here… 

In the events that follow, they write their answer (Figure 1), but express difficulty in 
doing so, because they expect that they must use algebra in their answer: 

574 Ida How do we write that in mathematical language? 
… 
595 Ida Ah okay! And a plus b and c yes. And b plus d it also gives 180 
597 Sif This one plus this one, is the same as these three. [pointing to b+d and 

a+b+c] 
598 Ida That's right. It's actually right. Oh, b plus d equals a plus b plus c 

because this makes 180, and this makes 180. 
 

Analysis 
We can notice from lines 517-519 that Sif is not excited about the prospect of having 
to prove the hypothesis. In fact, it was observed in several groups, that the activity of 
theoretical validation was not enthusiastically undertaken immediately. It was also 
evident, that the proving part was the most challenging part of the task, which may 
partly explain the lack of enthusiasm. However, the mood towards the proving activity 
changed in the case of Ida and Sif, and in some other groups as well, when they had 
worked on 2-3 tasks of this type, which indicates that they had to get accustomed to 
the task design. Some of the difficulty may be attributed to the openness and 
unfamiliarity of the answer format, since several students could put forward their 
reasoning verbally, but struggled to write down their argumentation. Ida and Sif also 
struggle with this issue (line 574-590). However, they find it easier to write the answer 
in subsequent tasks, after the teacher explained that they could write their arguments 
using natural language narratives. 
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In line 520, we see that Ida immediately turns to the toolbox information, reading aloud 
the two pieces of information provided, which indicates that she has realised the 
usefulness of the toolbox. Sif listens and seems to recognize that adding angle b to a+c 
and d respectively in both cases gives 180° (line 521-533), which she manages to 
support Ida to grasp and elaborate as well (line 534-536). They manage to reason 
deductively that their conjecture is valid, and after some struggle, write their answer 
algebraically (Figure 1). The sequence of utterances from the students indicate that it 
is a sense making activity for them, and that there seems to be intellectual satisfaction 
attached to their experience (line 534-536). 

CONCLUSION AND FORTHCOMING REPORTS 
The study indicates that the “toolbox puzzle” approach can bridge a connection 
between conjecturing activities in DGE and deductive reasoning. The students 
explained theoretically, what they initially guessed purely visually and secondly 
investigated empirically in DGE. Importantly, the activity of conducting the theoretical 
validation seemed to make sense to them.  
It was apparent that Ida and Sif had to become acquainted with the structure of the 
toolbox puzzle approach, before it became a sense making activity for them. This point 
was also evident in other groups. Additionally, several groups found it difficult to write 
down their arguments even though they could convince each other verbally and with 
the help of gestures. 
Most groups of students succeeded and seemed to enjoy the exploration and 
conjecturing part of the tasks in the sequence. However, medium-low achieving 
students struggled to string together coherent deductive reasoning, and some never 
managed to overcome the toolbox puzzle part of the task on their own.  
Other aspects of interest in this study is to what degree the students use DGE as they 
are trying to make a deductive argument, and what role the DGE plays in this regard. 
There are some indications that the students go back to the DGE in order to exemplify 
arguments to each other. Notably, early analyses also show that some students return 
to DGE in order to verify what they have proven(!). In that case, even though proof as 
an explanation makes sense to the students, it does not highlight the status of their 
product. I.e. the value of theoretical validation is not yet appreciated. This interplay 
between the theoretical validation and ensuing DGE actions will be the focus of 
attention in the ongoing project, which I hope to report on in future publications. 

NOTES 
1. A short earlier version of this paper was accepted for presentation at the 14th International Congress 
on Mathematical Education (ICME-14). 

2. Task 9 a. Construct an arbitrary triangle and extend one of the sides. b. What is the relationship 
between the exterior angle c and the interior angles a and b? Guess first before you measure! [There 
is a figure with the mentioned angles on the task sheet]. c. Measure the angles and find the 
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relationship. d. Drag to investigate which situations the relationship applies to. e. Discuss with your 
partner and make a conjecture about the relationship between the exterior angle and the interior 
angles. f. write the conjecture in the proof sheet. g. You can see in GeoGebra that it is true, but can 
you explain why it is true? Use the information from the TOOLBOX to argue. 
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Designing periodic logos: a programming approach to understand 
trigonometric functions 
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This paper addresses the problem of students’ understanding of trigonometry and 
analyses students’ meaning making process while engaging in an alternative learning 
approach centered on periodicity. The research studies the potential of a 
programmable 3D modeller called MaLT2 for exploring and understanding 
trigonometric functions through their periodic nature and its artistic quality. It 
describes an empirical study investigating students’ meanings while using the digital 
medium in order to construct periodically animated logos. It has only been 
implemented in a pre-pilot level to a small group of 9th and 10th grade students in 
order to gain important feedback regarding students’ produced meanings for the 
design of the main research. 
Keywords: trigonometric functions, periodicity, digital media, artistic design. 

INTRODUCTION 
Trigonometry can be seen as a mathematics field where diverse mathematical concepts 
reside. The fundamental trigonometric components, sine and cosine, can be perceived 
through different representations, namely the right-angled triangle, the unit circle and 
the graphical and functional representation. They can be examined through different 
mathematical domains like algebra, geometry and mathematical analysis. With regards 
to students’ learning, the complexity of these concepts and the diversity of their 
approaches led to many difficulties in their understanding. However, the existing 
literature on learning and teaching trigonometry is sparse compared to other 
mathematics fields and is mainly focused on addressing these difficulties (Chin, 2013).  
There is a range of research emphasizing the meaning making processes of students 
while engaging with tasks outside the traditional school curriculum structure. Adopting 
an approach not necessarily bound by the ways mathematical concepts are organised 
in traditional curricula raises worthwhile questions regarding the understanding of 
trigonometric functions through them being put to use by students while engaging with 
expressive and explorative digital tools. Existing literature suggests that digital 
technology has enabled the access to hitherto obscure and inaccessible properties of 
many mathematical concepts and the creative engagement of students with rich 
meaning making processes on them (DiSessa, 2001, Hoyles & Noss, 2003). This 
particular study places periodicity in the centre of students’ exploration, forming an 
alternative approach for investigating trigonometric functions. Approaching 
periodicity as a main property of trigonometric functions can also bring to light other 
elusive algebraic, geometric or analytical properties of these functions, as well as the 
links between them. Moreover, applications of periodicity possess an artistic quality 
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which is able to reinforce students’ creativity and imagination. Periodic behaviour can 
be rich in artistic features like symmetry, uniformity and harmony which can be 
externalized through digital tools within an animated artefact.  
In this study, we examine the potential of a digital medium, called MaLT2, which 
introduces the integration of three tools: 3D graphics, a Logo programming language 
and dynamic manipulation of variable procedure values. The integration of these three 
tools in this particular way provides an environment interesting enough to consider as 
a distinct representation. Programming to create figural animated models can be 
employed to represent the periodic nature of trigonometric functions and also to 
provoke students’ creativity and imagination. That way, MaLT2 can play a twofold 
role; for expressing both mathematical and artistic ideas. Thus, a question emerges: 
what kind of mathematical meanings can be produced by students while engaging with 
MaLT2 for expressing an artistic idea around periodicity?  
In order to answer this question, we designed an experimental activity with MaLT2, 
which was implemented to a pilot level to a small group of 9th and 10th graders. Then 
we searched for students’ instances that indicate meaning making on mathematical 
concepts used. These instances are briefly presented in the results in order to provide 
elaboration of this process - which will hopefully be further developed in the future. 

THEORETICAL FRAMEWORK  
Our theoretical approach concerning task design and the ensuing study of student 
activity is socio-constructionist (Harel & Papert, 1991; Kafai & Resnick,1996, 
Kynigos, 2015). We give particular attention to learning through the construction and 
tinkering of personally meaningful artefacts (Papert, 1980). Constructionist design 
aims at fostering students’ creativity and meaning making on mathematical ideas used 
in the creation of artefacts (Healy & Kynigos, 2010). These terms, which play a pivotal 
role in this study, are both defined in a constructionist perspective. Mathematical 
meaning making is approached as the way that a student understands, uses and thinks 
of a certain mathematical concept, forming a unique dimension for every student 
(Kynigos et al, 2020). Under this scope, creativity is conceived as construction of math 
ideas or objects which can be expressed through exploration, modification and creation 
of digital artefacts.  
The social aspect is also an important component for the analysis of students’ meaning 
making in our study. Our aim is for students to embody the role not only of the creator 
and the designer, but also that of the publisher, who is encouraged to externalize his 
tacit ideas (Kafai, 2006). According to Kafai (2006), when artifacts are published 
intensively and densely in a learning collective, meaning making process happens 
naturally. 

DIGITAL MEDIUM AND TASKS 
MaLT2 (Machine Lab Turtle-sphere, http://etl.ppp.uoa.gr/malt2/) is an online 
environment of our lab’s design which integrates a UCB inspised Logo textual 
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programming (Harvey, 1985) with the affordances of dynamic manipulation and 3D 
graphics (Reggini, 2985, Kynigos & Grizioti, 2018). Dynamic change of figural 
models by manipulating procedure variable values enriches the opportunity for 
constantly exploring new properties, formulating assumptions in order to create a 
personal expectations, getting instant feedback on them. In this way students engage in 
a never-ending loop of interaction with the artefact. In this circle of exploration, 
mathematics becomes a tool for expressing ideas. But its most important feature is the 
potentiality of the artefact being personally meaningful for a student; as meaningful as 
a painting is meaningful to its painter.  
The tasks were divided into two phases of an “artistic challenge”. The first phase 
included decoding and reconstructing a given 2D animated logo specially designed by 
us. It represented a periodically reshaping right-angled triangle, as its perpendicular 
sides included sine and cosine functions of a variable (t), which corresponded to one 
of its acute angles. The only accessible sources were the virtual outcome in motion 
while changing the values of (t) by dragging a cursor, as well as the corresponding 
length of each side at every instance (Figure 1). The second phase involved free 
construction of a new animated logo with the added requirement for it to be 3D. The 
last part of the activity included presentation of the constructed artefacts and voting for 
the most impressive one, according to students’ criteria. The main hypothesis beneath 
this challenge is that by designing a geometric logo and its motion by themselves 
through programming, students would physically grasp the essence of the 
trigonometric functions and experience their inner properties in a meaningful and 
creative way. 

PRE-PILOT IMPLEMENTATION OF THE RESEARCH 
The methodological tool being used for the main research is that of “design 
experiments” (Collins et al., 2004). It is found on designing and implementing an 
educational intervention in classroom and searching for relations between the learning 
process and the use of digital media by students during the implementation phase. Up 
to this time, the idea described above is formed in an initial experimental stage and 
only involved five students of 9th and 10th grade, working together in two groups (three 
9th graders at the first group and two 10th graders at the second) in an out-of-school 
context. Students engaged in a 3-hour-activity, during which they were encouraged to 
use the digital tools as both explorative and expressive mean. They were already 
familiarized with the environment of MaLT2 and its functionalities. 
During the first phase, students explored the changes of the periodically moving 
triangle and managed to uncover the -as mentioned by one of them- “bizarre functions” 
which caused the fluctuation of the triangle’s perpendicular sides; sine and cosine. This 
“uncovering” was reinforced by students’ intimacy of trigonometry in the triangle 
model, but they extended its borders; they handled sine and cosine as functions, 
emphasizing to their dynamic features. They collaborated in order to produce the code 
that constructs the requested shape (Figure 1).  
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Figure 1. Instances of the animated 2D-logo in Phase 1. 
Student 4: So we have only one variable and we need to express both angles and 

sides of the triangle? Apart from the hypotenuses which always equals 
100. 

Researcher: Exactly. Can you recall any way to connect them? 
Student 5: (…) What if we use sine or cosine? (…) If “t” is one of the angles, then 

everything can be expressed by it! 
Student 1: (…) That’s it! Oh my, this is so cool! How can sine and cosine do that? 
Student 4: If we just use the command “sine t” alone and change the value of t, we 

get this up and down movement. I hadn’t realized this about sine before! 
By dragging the slider which controls the values of the variable (t), they realized the 
dynamic power of sine(t) and cosine(t) on their own construction. The revealing 
periodicity impressed them and consisted of a strong motive for making more 
complicated constructions.  
During the second phase, both groups used the trigonometric functions in their designs. 
Even though students had only engaged with the trigonometric concepts as ratios (in 
terms of a triangle or the Cartesian coordinate system), they naturally adjusted to their 
functional aspect and its properties. They perceived these concepts as functions that 
cause the periodical fluctuation of a segment and exploited them to formulate 
geometric 3D figures whose sides move (change length) periodically through the 
changes of a variable. They experimented with various mathematical ideas and each 
time they were improving their previous construction in order to achieve a desirable 
result. Their engagement with the digital medium awakened their creativity as they 
were exploring, modifying and creating new artefacts filled with mathematical 
features.  
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Figure 2. Instances of the animated 3D logo as constructed by the first group 

The first group ended up constructing the animated logo presented in Figure 2. They 
experimented a lot with the complementary relation between sine and cosine and 
created a harmonically moving artefact based on the discovered trigonometric 
properties. The following part of their conversation reveals some steps of their 
experimentation: 

Student 1: We could also use cosine apart from sine. 
Student 2: Won’t it be exactly the same? 
Student 1: (Adds the command “fd 50*cos(:t)” in their code.) It’s almost the same. 

Only some seconds late. (…) When the cosine is the biggest the sine 
disappears. It becomes zero. 

Student 3: (…) We can use cosine as height and sine as length to make a folding 
rectangle. 

Students made the “folding rectangle” and observed its motion while changing the 
values of the variable t. This observation led to further exploration and meaning making 
on trigonometric properties, such as the domain and codomain of trigonometric 
functions and their rate of change: 

Researcher: How would you describe this motion? 
Student 3: The rectangle is like folding and unfolding periodically. 
Student 1: When sine(t) takes the biggest length, cosine(t) takes the lowest; zero. 

(…) The highest sine(t) can be is 1 since 50⋅sine(t) is 50. 
Researcher: For which values of t does this happen? 
Student 1: When t=90, 270, 450, 630...  (…) So basically all the odd multiples of 

90.  
Researcher: What about the speed of the fluctuation? 
Student 3: (While dragging the slider of t steadily.) It seems it isn’t steady. I think 

it’s faster when it goes from the biggest to the smallest length. 
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Figure 3. Instances of the animated 3D logo as constructed by the second group 

The second group constructed a different 3D artefact (Figure 3). After trying many 
possible ideas based on random use of the trigonometric functions in their code, they 
decided to make a “periodically moving cube”: 

Student 4: (…) We can focus on making a known geometric shape. Such as a cube! 
Student 5: Yes, we have made a cube before! We can make a procedure that 

constructs a square whose sides change periodically. We can use sine 
as sides! 

Student 4: (…) Do you want to see what will happen if we add cosine to one of its 
sides? It may look better like before! (After trying it) Wow! I told you! 
I can’t believe we make this! 

Student 5: It’s like... When the squares whose sides have sine get bigger, the 
square whose sides have cosine gets smaller and vice versa! The result 
is very satisfying and relaxing!  

Student 5: (…)Yes, (there is a difference) between the velocity that each side 
grows and shrinks. When the side is the biggest, it kind of slows down. 

Students in this group, after some time of experimentation, had the idea of constructing 
a cube whose sides correspond to the trigonometric functions (60⋅sint and 60⋅cost) in 
order to create a periodical variation by changing the values of the variable t.  The last 
comment was made after moving the cursor of the variable t with a steady rhythm. It 
indicates the production of meaning on the rate of change of sine and cosine, as well 
as on the difference between them.  
Both groups discovered the functional relation between sine and cosine after 
exploration through the digital medium and exploited it in their constructions. During 
the presentation of their final logo, the second group referred to this relation as 
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“harmonically counterbalancing”. The “periodically moving cube” logo was chosen as 
the most “impressive” one by both groups: 

Researcher: Why did you vote for the logo of the other group? 
Student 1: Because they used the trigonometric functions more cleverly! It could 

be even better if we made some adjustments!  
While presenting their final constructions, they adjusted the role of the publisher and 
shared their thinking process followed in order to reach to a desirable result. During 
this last part of the activity, they externalized the meanings constructed on the 
mathematical concepts around trigonometric functions, which involved many 
properties from the algebraic, the geometric and the analytical domains. 

CONCLUSION 
MaLT2 worked as a programmable “digital canvas” for students, as they explored and 
expressed both their mathematical and their artistic ideas through them. It hosted the 
notion of periodicity which created an artistic moving effect on geometric constructs 
that impressed the students. Even though the research was implemented to a small 
group of students, the results were enlightening enough to compose a valuable 
feedback on the way students used mathematical notions in order to create a 
periodically animated artefact. The instances described in the results indicate that this 
learning situation provokes naturally meaning generation on various mathematical 
ideas from different fields such as the connection of squares sides to the cosine 
function.  
Except for the creating process, students also experienced this activity as a social 
process with elements like collaboration, expression, competiveness, social evaluation 
and appreciation starring in it. Students’ meanings on these properties can be analyzed 
at a profound level since the process of their generation is externalized through the 
construction and constant re-modifying of their artefacts as well as their argumentation 
over the most “impressive” one. After reflecting on this small scale study, we aim at 
designing more tasks that would involve creative creation with MaLT2 in order to 
further elaborate the way students produce meanings in this learning situation. 
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Place value understanding is recognised as a critical component in the development of 
number understanding for young children. In this paper we investigate the usefulness 
of a purpose built app in supporting children’s understanding in German and 
Australian contexts. In particular, we investigate whether the app supports the 
development of bundling and unbundling. Our findings indicate positive and negative 
aspects of the use, which have implications for both teachers and app designers.  
Keywords: apps, place value, curriculum, professional development 
In addition to the development of an ordinal and a cardinal concept of numbers, and 
the part-whole concept, the concept of place value is an important component of 
children’s early learning in mathematics. Our number system is based on five 
principles: the principle of bundling and unbundling; the decimal system; the principle 
of place value; the multiplicative principle; and the additive principle (Kortenkamp & 
Ladel, 2014; Ross, 1989). Teachers require a complete understanding of the didactical 
concept of place value, as well as compatible working materials (e.g. place value apps) 
to use, to assist children in understanding place value. Whilst there are other apps that 
are designed to teach place value (Number Pieces; PV MAB), here we focus only on 
the Place Value Chart app as it was the one used in the research. 
The importance of place value 
The decimal number system is a powerful tool for writing mathematics and doing 
arithmetic as any rational number can be written using only ten different digits in a 
unique way (Larkin et al., 2019). The starting point of place value is the notion of unit 
– in our system ten ones form a new unit. This underlying process of repeated bundling 
means that we can represent whole numbers greater than nine by bundling in tens, and 
tens of tens, and tens of tens of tens… until no further bundling is possible (Houdement 
& Tempier, 2019; Kortenkamp & Ladel, 2014). Researching the teaching of place 
value is necessary. Fuson (1990, p. 345) reports that “less than 50% of third graders in 
the National Assessment of Educational Progress (NAEP) could do items identifying 
the hundreds digit, and only 65% identified the tens digit correctly”. Rogers (2012, p. 
648) notes that “despite the unchanging and recursive nature of our base-ten system, it 
seems some students never manage to fully unravel the hidden code that underlies place 
value”. Kortenkamp and Ladel (2014, p.35) indicate the prevalence and persistence of 
misconceptions identifying that place value “is difficult to understand and to teach”.  
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Place value in the German and Australian curriculums   
The nationwide German curriculum is substantiated in special curriculums of the 
separate federal states. As an example, in the curriculum of Baden-Württemberg place 
value is mentioned at several junctures. One instance indicates that students should be 
able to use the decimal place value system and to recognise its structure (ones, tens, 
hundreds, bundling, unbundling). In grade 1/2 the number range is up to 100. The 
number range in grade 3/4 is up to 1000. For grade 3/4 the aim in the sub-strand 
“numbers and operations” is that the student should be able to use the building of the 
decimal place value system and to recognise and understand its structure (ones, tens, 
hundreds – as group of three, thousands, ten thousands, hundred thousands, million; 
bundling, unbundling) (Ministerium für Kultus, Jugend und Sport, 2016, p. 24). 
Similar content is incorporated in the curriculum documents of Brandenburg (LISUM, 
2015). Likewise, the Australian curriculum: Mathematics (ACARA, 2018) is 
prescriptive in relation to place value, indicating the range of numbers that children 
work with. In year 1 children work with numbers up to 100; year 2 up to 1 000; year 3 
up to 10 000; year 4 up to 100 000. In effect, one “place” is added each year.  
Place value chart app 
The app “Place Value Chart” (Kortenkamp, 2012-2018) shows a virtual place value 
chart, with tokens that can be moved between columns, to represent different amounts. 
In the app, numbers are represented by touching the screen and thus creating tokens. 
An example: to represent the number five, the user has to tap five times (or 
simultaneously once with five fingers), in the corresponding column, in this case the 
Ones-column. Tokens can be deleted by moving them out of the chart or by shaking 
the iPad. The app focusses on bundling and unbundling: by moving one token to the 
adjacent column to the right, the token will be unbundled into ten tokens. Moving 
tokens to the adjacent left column bundles ten tokens into one token in the adjacent 
column (N.B. only if more than ten tokens of the smaller value are available). In this 
way moving tokens in the app creates a change in representation, e.g. 234 can be 
represented as 2H 3T 4O or as 1H 12T 14O. The app offers various settings including 
as language, number of columns, column labels, counting base, and word/symbolic 
representations of totals.  
Limitations of current curriculum approaches to PV and research questions  
Both German and Australian curricula suggest that students learn about place value in 
a rigid way – with prescribed upper limits to the numbers with which children should 
work at each year level. We argue that this approach has detrimental impact on how 
children develop generalised understanding of place value, rather than an 
understanding determined by (and in our view limited by) the number of places 
prescribed in the curricula. This likely results in piecemeal, context specific knowledge 
(10 ones = 1 ten; 10 tens = 1 hundred) rather than generalisable knowledge (10 units 
always equals one unit in the adjacent column to the left). Two questions guided this 
research: 1. Were children in year 1 and 2 capable of generating new columns for 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

 

233 

standard partitioning? and 2. In what ways did the app support children in 
understanding bundling and unbundling?  

METHODOLOGY 
School 1 is a rural school in Baden-Württemberg, Germany. 43 students from two 
different classes at the end of year 2 took part. One classroom teacher taught both 
classes. School 2 is a rural school in Brandenburg, Germany. 61 students from three 
different classes at the start of year 3 took part and each class was taught by their own 
teacher. School 3 is an urban school in Queensland, Australia. 130 students in eight 
classes took part, four from year 1 (59) and four from year 2 (71). Each class was taught 
by their own teacher. The schools selected were a convenience sample located near 
each respective university. Teachers at the schools self-selected to be part of the 
research. The teaching consisted of three lessons of approximately 45-60 minutes each. 
The content of the lessons included bundling and unbundling, standard and non-
standard representations of numbers, the need to add a column (hundreds) when 
representing three digit numbers in standard representation, and using the app. 
Research design 
The researchers met with teachers and school leaders at each of the schools. The 
researchers and teachers collaboratively planned a series of place value lessons that 
incorporated the use of the app. At this stage teachers also received a one-hour 
professional development session on place value, delivered by a member of the 
research team. All students with permission to participate completed a post intervention 
test (this test replicated the activities that students had been completing on the app e.g. 
they were required to represent various numbers on paper, using physical circular 
stamps that “mimicked" the use of tokens on the app). These tests were then marked 
by the researchers (correct response, incorrect response, no response). A range of codes 
were assigned to the incorrect responses indicating a typology of errors. RQ1 addresses 
the issue of whether or not children added an additional column when required for 
standard representation. RQ2 addresses the impact of the app on student performance 
in the post intervention test and is answered from test data and device data logs from 
the school in Brandenburg.    
Data collected 
Data collected include: Four sets of post-intervention tests that assessed whether 
children added an additional column when required (e.g. 97 + 5 where only the tens 
and ones columns are shown; Two sets of video data children completing the lessons; 
and one set of matched iPad data to posttests (Brandenburg school). The different data 
collected - i.e. video or data logs - is a consequence of differences in ethical clearance 
from the different schools.  
The findings 
The project generated a number of very interesting findings in relation to the children’s 
understanding of place value. However, we focus here only on whether the affordances 
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of the app assisted (or limited) children’s understanding of the general structure of 
place value (bundle and create a new column) and standard partitioning (i.e. use the 
least number of tokens to represent an amount). In this article we focus on the results 
of the component of the post-intervention test that required children to add an 
additional column to represent a number in its standard representation. The items 2a, 
2b, 2c and 2d were structurally similar: In an initial place value chart with two (T,O) 
or three (H,T,O) columns a number x was represented by tokens. Then the children 
were asked to represent the number x+y for a given y in a second, empty chart with the 
same number of columns with the least possible number of tokens. The students 
answered the questions by using a stamp that created tokens. 

Figure 1: Students’ answers to task 2a-d 

Tasks 2b–d were constructed in a way that it was only possible to create a standard 
representation (and thus the representation with the least number of tokens overall) by 
adding a column (space was provided for children to do so). In Figure 1 we show the 
students’ results grouped by school (QLD1 = Queensland school, end of year 1; 
QLD2 = Queensland school, end of year 2; BW = Baden-Württemberg school, end of 
year 2; BB = Brandenburg school, start of year 3) and class id. The bars show the 
frequency of answers in relation to the number of children in a class. We only 
distinguish answers that result in a represented number that was stamped by more than 
2.5% (at least 6 children) of the overall number of children (n = 234). The green bottom 
bars depict the number of correct results, where an answer is “correct” if the number 
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represented matches the result of the addition (e.g. 7+5 = 1T2O or 12O). The “best” 
answer is the one with the least number of tokens, which could only be obtained in 
tasks 2b–d by adding a column, and is the bottommost bar in dark green.  
The most apparent and relevant results were: Adding a column was done rarely, apart 
from class QLD2b (No student at BB did it, but many created a maximum bundling 
with the available columns); many wrong answers were created across almost all 
classes by stamping the second summand only (dark red bars); and there was a great 
deal of variety amongst the classes in relation to their bundling. 
In a second step, we connected the log data from the iPad to individual children and 
their test results for students in Brandenburg. In this way, we can analyse how 
individual children worked with the app and connect it to their test results. In order to 
better understand the cross-task behaviour, we grouped the correct answers by partition 
type: Standard is an answer where at most 9 tokens are used for each place, i.e., the 
standard representation of a number; Max bundling is an answer where at most 9 tokens 
are used for each place except the highest one, i.e. the representation closest to a 
standard representation of a number if there are not enough columns (e.g. 102 is 
10T2O); Incomplete bundling is an answer where there are more than 9 tokens in any 
place except the highest one, i.e. the representation could be transformed into a 
representation that uses less tokens without adding a column (e.g. 102 is 9T12O). As 
no student in Brandenburg added any columns, the only task where they could achieve 
a standard partition was task 2a. The second-best answer they could give in 2b-2d was 
a max bundling. Incomplete bundling, on the other hand, is an indication of a missing 
component of place value understanding (rather than potentially a consequence of 
being unsure as to whether adding another column is permissible). 
The log files of the app contain detailed and time-stamped information about all user 
interaction and configuration data of the app. In particular, they contain information 
about student’s actions for: changing the number by adding or removing tokens 
(CREATE, REMOVE); rearranging tokens in a column without changing the value 
(REARRANGE); successful and unsuccessful bundling by moving a token to a column 
on the left (BUNDLING, REJECTED); unbundling by moving a token to a column on 
the right (UNBUNDLING); and clearing all tokens by shaking the iPad (SHAKE). 
While the detailed information can give deep insights into what students actually did, 
we wanted to quantitatively measure the degree of meaningful interaction. We 
achieved this by counting the frequency of certain actions. Children who worked more 
with the app had the potential to achieve more interactions, so this measure is 
dependent on the teaching and thus the classroom under consideration. However, as 
we are investigating a possible connection of overall interactions in the app to the 
achievements in the test, it is feasible to combine all three groups.  
We compare the distribution of interactivity ratings (that is, the frequency count of 
actions over all three lessons for a student) with the partition types in correct answers 
of these students. In the case of the SHAKE action, which is the least intentional action, 
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we expect to see no difference in the distributions for the three types. Figure 2 shows 
the boxplots of the distributions and confirms this ad-hoc hypothesis. 

 

Figure 2: Distribution of SHAKE actions 

For the SHAKE action, we see similar distributions of its frequency in all three 
conditions. On the other hand, the other actions listed above showed a different picture, 
similar to Figure 3, where we can see that the activity frequency distribution of students 
who bundled incompletely is lower compared the ones of those who found standard 
partitions or max bundlings. 

 

Figure 3: Distribution of intentional actions 

The interaction measure we used in Figure 3 is the sum of the frequencies of 
(successful) bundling, removal of single tokens, and rearranging within a column. We 
chose these three actions as they are most likely to be intentional. Of the actions that 
are logged, these appear to be the most intentional ones to us. The lower quartile 
Q1 = 2267.75 of the max bundling group and the lower quartile Q1 = 2256.75 of the 
standard group are close to the upper quartile Q3 = 2318 of the incomplete bundling 
group, showing that the interaction of those who performed better on the test is usually 
higher than those who did not perform as well.  
DISCUSSION 
Classifying the answers, we see a variety of representations of correct (numerical) and 
incorrect results. Most of the incorrect results occurred only a few times, often just 
once. This is unsurprising as we included tasks that are beyond the expected place value 
students’ competencies. We can, however, still identify some typical mistakes. The 
most striking one is stamping only the summand (5 or 50) instead of the sum. This can 
be caused by misreading or misunderstanding the task. In most classes, about 10-15 % 
of the students made this mistake. However, two of the classes did stand out: In QLD2b 
the mistake occurred only with task 2c, where the two-digit number 50 had to be added, 
and in BB3c this mistake did not occur at all. The reason for this can be either that the 
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students had less trouble reading and understanding the task text, perhaps caused by a 
classroom culture that pays more attention to reading exactly, or they might have been 
given additional instructions by the teacher when the test was administered. As we have 
no video data from the test sessions, we cannot identify the true reason.  
In the first task, 2a, most students successfully did a max bundling if they obtained 
correct numerical results. With the year 1 classes, many children answered 57: This 
shows that they did not have a place value understanding yet, but stamped both 
summands individually in separate columns. This is an expected problem if place value 
understanding is still developing. From the data we see that the German classes 
performed better than the average on all tasks. In Australia, both the year 1 class 
QLD1b and the year 2 class QLD2b performed at or better than the average, while the 
other classes performed below average on all tasks. So, while we would expect German 
classes perform better due to their longer school experience, we also observe that 
younger children, even year 1 students, can show the same or better performance.  
Our initial question investigated whether children would add an additional column to 
represent a total with the least number of tokens (often requiring the addition of a 
column). We do not see this behaviour in general. Out of the 234 students, only 17 
added a column in one of the tasks; 10 of them did this in all tasks where necessary, 5 
did it just once, and 2 did it in two out of three tasks. It is not possible to trace this to 
either teaching or the use of the Place Value app as, although no students in 
Brandenburg added a column, they performed better than other groups if we just look 
at the numerical result without taking the representation into account.  
In addition to the possibility that some children were unsure whether they were 
‘allowed’ to add a column in the paper test version, we also see that the app itself 
imposes a constraint on students’ actions. As the number of columns can only be 
changed by accessing system preferences, separate from the app, the action of adding 
a column is not within easy reach. It is not a common action to “just add a column”, 
even though the students know that it can be done. This result might imply that the app 
is helpful for developing a proper place value understanding, as this should encourage 
students to do max bundling of a number until they arrive at the standard 
representation. If there are not enough columns, then the idea of repeated bundling 
would cause adding columns to the left until every column is holding less than 10 
tokens. On the other hand, inspecting the data more carefully we see that many students 
did a max bundling, i.e., they tried to be as close to a standard representation as they 
could without adding a column. And, when asked, the students knew that another 
column to the left will enable them to continue the bundling process. 
The data collected from iPad logs, only available for BB3a-c, supports the theory that 
students who did more intentional actions within the app exhibited a better place value 
understanding in the test. Comparing the distributions of activity for students who did 
a max bundling in all tasks 2b–d with the distributions of activity for students who 
found the standard representation in 2a or those who did not bundle completely, we 
see that the distributions matches only in the first case. This means, that the activity of 
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students who tried to bundle as much as possible matches the activity of those who 
found the standard representation in task 2a, while the group of lower-performing 
students (in terms of bundling) showed lower activity. 
CONCLUSIONS AND IMPLICATIONS 
Our findings show that merely using the Place Value Chart app in the classroom is not 
a guarantee for the development of place value understanding. Some of the findings 
might be influenced by side effects of test administration. In future research it will be 
necessary to standardise how the test is administered to the students. We also found 
that there could be a design issue of the app, in combination with a pedagogical issue: 
Students did not add columns to the charts in the test, although from video data we saw 
that they knew that it is necessary. On the positive side, the group of students who did 
max bundlings, was the group that had a higher frequency of targeted activity in the 
app than those who failed to bundle. 
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Although the function concept is central in mathematics and is included in many 
curricula worldwide, many students find it difficult to understand. In this study, we 
consider function as covariation between two variables. This study aims at exploring 
students’ understanding of covariation while learning in an augmented reality (AR) 
environment. Groups of 16-year-old students carried out the Hooke’s Law experiment 
using AR headsets. Students’ interactions were video-recorded, and semiotic lenses 
were used to analyze their covariational reasoning. Findings show that the AR-rich 
environment promoted the students’ covariational reasoning with mostly elementary 
levels, but also with some indications of high levels.    
Keywords: augmented reality, covariational reasoning, multimodality 

INTRODUCTION 
Function concept is central in mathematics and is included in many curricula 
worldwide. However, many students find it difficult to understand and graduate from 
high school with a lack of knowledge of this concept (Akkus, Hand and Seymour, 
2008). Several studies were conducted on teaching the function concept, some using 
digital technologies that include computers and simulations. These studies found that 
the use of dynamic technology tools fosters students’ understanding of the function 
concept (e.g., Hoffkamp, 2011). Although several attempts have been made in recent 
years to integrate AR technology into science and mathematics education (e.g., Yen, 
Tsai and Wua, 2013), less is known about augmented reality (AR) affordances to foster 
pre-calculus concepts. In this paper, we aim at shedding light on the role of AR 
technology in fostering students’ understanding of the function concept. For this 
reason, we designed an innovative AR tool and explored its effectiveness in fostering 
covariational reasoning as an indication of understanding the function concept.  
The reported study is innovative for two reasons: (1) It proposes a new prototype for 
employing AR in an educational setting using a special headset, presenting a dynamic 
object in a real environment with virtual representations. In contrast to the design 
presented in this paper, typical ways of using this technology involve augmenting static 
objects rather than dynamic ones (for example, a 3D view of a cell when observing a 
cell picture on a biology book page). (2) It explores covariational reasoning as 
mathematical representations juxtaposing a dynamic real-world object, showing that it 
is innovative in mathematics education.  
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THEORETICAL FRAMEWORK 
Covariation reasoning: In this study, we address function as a dynamic process of 
covariation. Thompson and Carlson (2017) described understanding covariation as 
holding a sustained image in the mind of two quantities values (magnitudes) that 
change simultaneously. They discussed understanding function by describing 
meanings and thinking styles that can be attributed to someone who understands the 
essence of function and suggest five levels of covariation: (1) pre-coordination of 
values; (2) gross coordination of values; (3) coordination of values; (4) chunky 
continuous covariation; and (5) smooth continuous covariation. In the first level, 
students can predict the change of each variable value separately but cannot create pairs 
of values. In the second, students perceive a loose link between the overall changes in 
the two quantities values, such as “this quantity increases as the other decreases.” In 
the third, students can match values of one variable (x) to values of another one (y), 
creating a discrete set of pairs (x, y). In the fourth, students may perceive that the 
changes of two variables occur simultaneously and that they vary in piecewise 
continuous covariation. In the fifth, students perceive that an increase or decrease in 
the value of one variable occurs simultaneously with changes in the value of the other 
variable and see that both variables change smoothly and continuously. In this paper, 
we observe students’ actions regarding the function concept through the theoretical 
lens of the Action, Production and Communication (APC) space. 
Multimodality and the APC space: “Multimodality” refers to the importance and 
mutual coexistence of a variety of cognitive, material and perceptual resources in 
mathematics learning processes, and in general, in the creation of mathematical 
meanings. Radford, Edwards and Arzarello (2009) argued that “these resources or 
means include verbal and written symbolic communication, as well as drawing, 
gestures, manipulation of physical and electronic devices, and various types of physical 
movements” (ibid, pp. 91-92). Earlier studies show gestures playing an important role 
when students solve problems and explain mathematical concepts (e.g., Edwards, 
2009). Gestures are just part of a whole arsenal of students’ resources available to 
bridge their experiences with daily life phenomena and formal mathematics (Arzarello 
& Sabena, 2014). Data analysis in this study was done according to the APC space 
perspective (Arzarello & Sabena, 2014). This method considers multimodal resources 
and analyzes learning processes to understand conceptual knowledge. The APC space 
model consists of three main components - body, physical world and environment that 
are vital in mathematical activities in the classroom social context. Hence, it is 
important to examine them in analyses of learning processes. The three crucial APC 
components (action, production and communication) of students’ learning processes in 
mathematics highlight their active role in the learning process (Arzarello & Sabena, 
2014). According to this perspective, a suitable mathematical learning environment for 
students must include three specific activities: action and interaction (e.g., with 
classmates, teacher, tools or students themselves); production (e.g., answering or 
asking questions, conjecturing); and communication (e.g., delivering a solution to a 
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teacher or classmate, verbally or in writing, using appropriate representations). The 
APC space considers the students’ environment, including the tools they use, as being 
crucial for learning, thinking and the inquiry process. Our analysis addresses all 
students’ multimodal resources: speech, body gestures, drawings and interactions with 
the physical model. 
Augmented reality: AR is an innovative technology that incorporates a wide variety 
of techniques for presenting computerized materials (such as text, images and video) 
about the real world as seen in the normal state (Kaufmann et al., 2005). AR combines 
several layers of virtual objects that are augmented over physical objects in the real 
world, creating a unique reality in which virtual objects and the real environment 
coexist. AR technology has many advantages. It contributes greatly to student learning 
because it integrates the benefits of physical and virtual learning experiences (Bujak et 
al., 2013). It can help students learn challenging scientific content thanks to its ability 
to present information and details visually that are not naturally visible. In addition, it 
allows students to experience interactive 3D simulations, leading to deeper insights 
about phenomena that might be difficult to understand; it simplifies objects’ visual 
appearance and helps students think about their symbolic representations; and it 
enables students to observe virtual objects in a perspective they choose while still being 
able to see other students (Bujak et al., 2013). Two research questions guided this 
study: (1) What levels of covariational reasoning arise among students as they learn in 
an AR-rich environment? (2) How does the use of an AR-rich environment facilitate 
covariational growth? 

METHOD 
Research context and participants: This study is based on 
qualitative research method. Research experiments were 
conducted with four groups of three 10th- and 11th-graders 
studying in two high schools in southern Israel. The 
participants study advance mathematical topics (geometry, 
algebra, and calculus). They had studied linear functions in 8th 
grade and quadratic functions in 9th grade. The meetings were 
held in a scientific laboratory at Ben-Gurion University of the 
Negev. Each session lasted for 90-120 minutes. Each group 
carried out the physical Hooke’s Law experiment, which 
examines the relationship between mass and elongation of a 
spring (Figs. 1, 2). At the beginning of the experiment, students 
received an explanation about each part of the experiment, as 
well as about using the technology. Each group worked on task 
sheets (see link) corresponding to both physical experiments.  
Data collection and analysis: Learning activities were video-recorded and students’ 
interactions, gestures and materials (written notes, files) were collected. Thus, a solid 
set of data was obtained that was analyzed using the deductive approach (Patton, 2002). 

Figure 1. Hooke’s law 
experiment 

Figure 2. Virtual 
data as seen through 
the AR headset 
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(1) All videos were observed to get a general impression about the process. (2) The 
analysis refers to the covariational reasoning levels (Thompson and Carlson, 2017). (3) 
Transcription of the observations was done. Students’ statements and interactions, 
peer-to-peer interactions or interactions with the model, were recorded and 
documented. (4) Accurate encoding of transcripts was done and statements and 
instances of our data categories were sought for, including scans of transcripts to 
identify expressions indicating levels of covariational reasoning. These expressions 
were categorized into appropriate levels of covariational reasoning. 

FINDINGS 
Covariation level 2 - the evolution of quantities: This example illustrates how 
students were engaged in the second level of covariational reasoning. It happened when 
they coordinated the weight of cubes and the shape of the graph. Tal, Hila and Maya 
wore the AR headset and observed the spring elongation. After identifying the virtual 
object that displayed the length of the spring (blue line in Fig.2), they added cubes one 
by one while looking through the headset to observe the variation in spring length. 
Twenty minutes after beginning the experiment, Hila noticed for the first time that the 
graph began to appear on the screen. She went on to say, “It seems to me that if we add 
more cubes, the function will continue.” Later on, the girls changed the spring with a 
new one and again added cubes. The changes were observed simultaneously through 
the AR headset. Here, Maya also saw the graph and described its direction through 
body gestures (a sloped increasing hand movement) while stating “it is from zero to 
10” after continuing to add cubes, Hila reported (excitedly) that she saw the graph 
“from zero – absolutely increasing... really inclines to the side.” Afterwards, the 
researcher asked them to share their insights. 

Hila:   The more weight we add, the greater the graph function. 
Maya and Hila: It inclined to the right. (gesture with their hands to the right (Fig. 3a). 
Researcher:  What do you mean? 
Hila:   If the graph started out like this, the more I add, the more it inclines to 

the right (Fig. 3b). 
Maya:  Increasing. 
Hila:   Yes, increasing, pulling more up like this. 

 
Figure 3. (a) Hila and Maya gesture the inclination to the right”; (b) Hila gestures “if 
the graph started out like this”; (c) Hila gestures the inclination to the right.” 
Hila explains her insights and says: “as we add weight” and refers to hanging more 
cubes on the spring, “The graph inclines more to the right.” Maya agrees with Hila’s 
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insight. Tal, the third student, does not take part in the discussion and continues to 
observe the model through the AR headset. It is worth noting that Hila uses non-
mathematical terms to describe the graph as “inclining to the right.” The gestures in 
Fig. 3b&c suggest that the students express the graph rotation without using the word 
“slope”. Maya immediately adds that the graph is “increasing” and adds a mathematical 
element here to the description Hila had provided.  
In this example, Hila and Maya describe a relationship between two objects: cube 
weight and graph shape. In the experiment, they hung cubes one by one while 
observing the graph generated by AR. As a result of their actions, they conclude that 
“as we add weight, the graph inclines to the right.” This type of covariation could refer 
to the second level: students see general changes in the values of two quantities, but do 
not coordinate specific pairs of values. As we argue in the Discussion, this phenomenon 
can be seen as one of the greatest potentials of using AR: the students deal with a real 
experiment and add cubes to the spring. They see changes in the graphical visualization 
simultaneously. They initially use the concept of “weight” (quantity) to explain the 
observed phenomenon. Hence, the quantities the students coordinate (weight and 
changes over time) emerge while conducting the experiment.  
Covariation level 3 - the mathematization process: We 
show how Uri, Shilat and Shahar engage in the third level of 
covariation they encountered when coordinating between 
cube weight and spring length. The students performed the 
experiment using the AR headset and observed that the 
addition of each cube really increases spring length: “Every 
time we add 100 grams, we get 5.19 (cm) for the first 100 
grams. For the second 200 grams, 6.15. At 300 grams, 6.83 
and then 6.00 at 400 grams”. The students performed several actions during the 
experiment: while Uri and Shilat added cubes and observed the resulting values on the 
spring through the headset, indicating its length at each moment, Shahar documented 
the values on the notes page. She prepared a table with the left column representing 
cube weight and the right column the corresponding spring length value (Fig. 4). 
Shahar describes the relationship between two covariation variables: cube weight and 
spring length. The way she read and wrote the data suggests that the covariation type 
she expresses is of level three (Thompson & Carlson, 2017). In terms of using AR, this 
example represents an important step in the mathematization process: function is an 
abstract object. A representation (graph or table of values) is not a mathematical object 
itself; it is a representation of an abstract object. Hence, the real phenomenon as well 
as the mathematical representations are not self-explaining, rather they must be 
connected conceptually by the students. This example gives insights into strategies 
students use in order to reconstruct a mathematical conceptual meaning behind 
observed phenomena (real situation and augmented reality experiment). 
Covariation level 4 - the multimodal process of meaning-making: We illustrate how 
students engaged in the fourth covariation level they encountered when coordinating 

Figure 4. Matching cube 
weight and spring length 
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between cube weight and spring length. In the experiment, a few minutes after Xenia 
concluded that table and graph were changing simultaneously, Ronnie explains her 
insight about the connection between spring length and number of cubes: Ronnie: 
“Here you see this is at 0.7, and here at 0.4, it means that the slope between each other 
is lower, meaning that at the beginning, the line was more... less… seems steep, more 
like this... (Fig. 5), and then such a break point, and then it will become more (Fig. 6) 
...., and then you understand? It will increase at such a velocity.” 

   
Figure 5. Ronnie shows a 
slight slope with her hand 

Figure 6. Ronnie shows a 
steep slope with her hand 

Figure 7. Table prepared 
by the students 

Ronnie explains her insight to the group members. She finds it difficult to communicate 
it verbally and therefore uses body gestures to convey the message to her classmates. 
After generating a table connecting spring length and number of cubes (Fig. 7), Ronnie 
refers to the difference between the first two rows in the table as being 0.7 and between 
the second and third rows as being 0.4 (“This is 0.7 here and 0.4 here”). She describes 
that the graph starts out at a more moderate slope “less steep" (Fig. 5), and at some 
point becomes a section of the graph that is steeper (Fig. 6). As Ronnie relies on the 
table they had prepared together with the differences, we conclude that she links the 
two variables: number of cubes and spring length. This type of coordination may be 
associated with the fourth covariation level (Thompson & Carlson, 2017) because 
Ronnie describes the graph as two continuous segment lines separated by a point, 
which she describes as a “break point” at which the change in slope occurs. In terms of 
using AR technology, this example shows an important step in the process of meaning-
making: here, the students use a mathematical strategy (determining differences) in 
order to reconstruct the conceptual (in this case, functional) relationship. Although, the 
result leaves questions unanswered (e.g., How to explain the “different differences” 
0.4 – 0.7 – 0.8?), it still reveals how students use concepts (like analyzing differences 
between given quantities) in order to reconstruct mathematical structures. 

FINAL REMARKS 
The findings show that the participants engaged in the second, third and fourth levels 
of covariation. We also found that the students mostly engaged in the second and third 
levels of covariation, and less in the fourth one. This could be attributed to the nature 
of the Hooke’s Law experiment, namely, hanging cubes one by one and observing the 
spring elongation after each addition. Students who focused on the table of values 
mainly engaged in the third level, while students who focused on the length-mass graph 
mainly engaged in the second or fourth levels of covariation. The second and fourth 
covariation levels illustrated in examples 1 and 3 differ somehow from the 
covariational reasoning defined in (Thompson & Carlson, 2017). In their definition of 
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covariational reasoning, they refer to two values of quantities that vary simultaneously. 
In the two examples presented above, students covary quantity (mass) with object 
(graph) (e.g., the more mass we add the more the graph is inclined). Inspired by 
Arzarello (2019), to distinguish between the covariational reasoning defined in 
(Thompson & Carlson, 2017) we introduce the term “second-order covariation,” 
which refers to two objects that covary simultaneously.  
The first and third examples help us hypothesize that second-order covariation is 
complicated just like covariational reasoning. In both the first and third examples, the 
students resorted to gestures as a semiotic means to thinking with and through them, 
while in the second example, their thinking was mainly mediated by words and text. 
We also conjectured that the higher level of second-order covariation is more complex 
than the lower covariation level. In contrast to the students’ gestures in example 1, 
which were in tune with the students’ statements and could be considered as a means 
of communication to answer the researcher’s question, in the third example, gestures 
exchanged the students’ statements, which they were unable to express through their 
thoughts. Hence, it seems that the students resorted to gestures as a means of thinking 
(Vygotsky, 1978) The three examples show that the students continue to interact with 
the virtual objects displayed by the headset even after removing it. Considering that the 
students removed the headset after a short time of use, continuing the interaction with 
the virtual objects suggest that the design of the AR, which juxtaposes real-world 
objects with virtual objects, was found to be effective for transferring external signs 
such as the mass-length graph or table of values of mass-length to become instruments 
for the students (Trouche, 2003). Other than identifying the covariation levels, the three 
examples also show results in terms of the process of meaning-making. Example 1 
shows that the use of AR technology can support the emergence of quantities that the 
students deal with (Thompson and Carlson, 2017). When the students deal with a real 
object and a graphical representation, they ascribe a quantity (weight) to the box. In 
order to make sense of the graph, they introduce a second quantity (length). Such 
observations must be connected conceptually, and example 2 shows how students 
organize such a process of mathematization (focused collection of observed quantities). 
Finally, example 3 gives insight into the multi-modal process of meaning-making 
within the small group discussion: the students determined the relevant quantities 
(compare example 1), they focused, prepared and organized the (for them relevant) 
information (compare example 2), and they now interpret and give meaning to the 
phenomena using different (mathematical) strategies and corresponding mathematical 
gestures, as well as verbal and written signs. These insights are closely linked to the 
categories of Thompson and Carlson (2017) in such a way that their procedural 
character provides insight into the emergence, evolution and connection between the 
different covariation levels.  
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A digital worksheet for diagnosing and enhancing students’ 
conceptions in functional thinking 

Edith Lindenbauer 
University College of Education Upper Austria, Linz, Austria, edith.lindenbauer@ph-

ooe.at  
This paper reports on results related to one out of six digital worksheets designed by 
me for a qualitative study conducted in an Austrian middle school class. All of these 
digital worksheets were designed based on typical problems related to functional 
thinking discussed in the literature, and they aim at diagnosing and enhancing 
students’ conceptions in this field. In the study utilizing these materials, grade 7 
students participated in diagnostic tests and interviews aimed at examining their 
conceptions. Furthermore, they were video recorded while utilizing the digital 
worksheets in order to investigate their interactions and a possible enhancing influence 
on their conceptions. In this article, I briefly introduce the research project and focus 
on results related to one of the digital worksheets. 
Keywords: digital task, functional thinking, representations, lower secondary school. 

INTRODUCTION AND THEORETICAL BACKGROUND 
Functional thinking is an important concept in mathematics education. In this project, 
it mainly comprises Vollrath’s (1989) relational and covariational aspects. Literature 
review reveals various problems in this field such as graph-as-picture errors or 
difficulties related to the aspects of functional thinking, especially in comprehending 
the dynamic covariational aspect (e.g., Clement, 1989).  
Concerning dynamic aspects of functional thinking, the development of technology-
based resources offers new opportunities. Dynamic mathematics software supports 
students’ development of functional thinking because it allows to examine multiple, 
dynamically linked representations and thus to emphasize relational and covariational 
functional aspects (Lichti & Roth, 2018). However, representations also must be 
considered critically, as they can constrain students’ thinking about the concepts 
involved and are interpreted by students according to their prior knowledge (Vosniadou 
& Vamvakoussi, 2006). Therefore, in this project the overarching question arose 
whether digital mathematics tasks can support students in an early stage of learning 
functions (lower secondary education) in developing mathematically correct 
conceptions.  
In addition, the term conceptual understanding emerged during this project. I follow 
the interpretation of Barmby, Harries, Higgings, and Suggate (2007) who defined 
understanding as making “connections between mental representations of a 
mathematical object” (p. 42) which result in a network of representations for a concept. 
In the next section, I present one of the digital tasks designed for this project. 
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DIGITAL TASK DESIGN: THE BILLIARD WORKSHEET 
The presented digital worksheet Billiard (Figure 1) is based on an example by 
Schlöglhofer (2000) and designed for discussing a possible graph-as-picture error. The 
included applet simulates the following situation: From point P a billiard ball is shot 
along an indicated path. The distance d of the ball from the upper boundary of the 
billiard table is a function of time t and is modelled as a piecewise linear function.  

 

Figure 1: Digital worksheet Billiard, https://www.geogebra.org/m/sqqgkkmz  

Due to the prior knowledge of the participating students, the applet focuses on the 
transfer of the functional dependency between iconic situational model (left) and 
graphics window (right) with the option to display the graphical representation in trace 
mode. Due to the characteristic feature of this task, the graphical representation mirrors 
the path of the ball in the iconic situational model, but the boundary between the two 
windows should not be interpreted as “mirror”. Both representations of the functional 
dependency are positioned side by side to avoid the impression that the x-axis 
corresponds to the length of the billiard table or horizontal distance of the ball. On the 
right side of the applet, the function of distance over time d(t) can be displayed as trace 
in a Cartesian coordinate system. This pointwise appearance is intended to highlight 
the relational aspect of the functional dependency as each point visualizes the relation 
between specific values of time and distance. The dynamic feature of the animation 
aims at emphasizing the covariational aspect because during the animation (or by 
moving the slider), students can observe the distance changing as a function of time. 
In this research project, I additionally used a second version of this digital worksheet 
using two parallel coordinates – called dynagraph – instead of perpendicular axes (see 
Task 2 in https://www.geogebra.org/m/tnqamu4x).  
To design the worksheet, I considered several student tasks. First, students should 
explore the situation, identify the dependent variable, and explore relationships 
between distance and time. Afterwards, students were asked to predict the general 
course of the function graph. Digital materials were designed with the option to include 
graphical representations; when included, students were encouraged to examine 
connections between graphical and situational representations. I also included several 
questions addressing either relational (e.g., to determine function values for given 
arguments x from graphs) or co-variational aspects (e.g., to describe changes of the 
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function value as a function of the independent variable). Moreover, students should 
additionally examine characteristics of functions such as extrema. 

RESEARCH DESIGN OVERVIEW 
Like previously mentioned, I designed several digital worksheets addressing student 
difficulties outlined in literature. These materials were implemented in a qualitative 
case study integrating features of Grounded Theory (Charmaz, 2006) conducted with 
28 students of grade 7 for examining (i) the intuitive students’ conceptions concerning 
the selected tasks, and (ii) students’ interactions with the designed digital worksheets 
as well as possible influences of the digital worksheets on their conceptions. I collected 
several types of data within five stages: (1) diagnostic test 1, (2) diagnostic interviews, 
(3) intervention with the digital worksheets, (4) diagnostic test 2, and (5) diagnostic 
interviews. In the following, I concentrate on information and results concerning the 
presented digital worksheet “Billiard”. 
First, all 28 students solved a paper-based version of the billiard task in the first 
diagnostic test, and I conducted six diagnostic interviews. The results should reveal 
possible student responses and levels of conceptual understanding and thus examine 
the first question. For investigating the second question, all participants worked with 
both versions of the presented digital billiard worksheet (Cartesian coordinates and 
dynagraph) approximately for one lesson and without teacher guidance because I first 
wanted to focus on the influence of the digital tasks; for data collection, ten students 
were videotaped. Afterwards, I conducted a second diagnostic test with a slightly 
varied version of the presented billiard task and further five diagnostic interviews to 
enlighten the influence of working with the digital worksheets on students’ 
conceptions. During data analysis I followed qualitative coding procedures according 
to Grounded Theory – initial, focused, and theoretical coding (Charmaz, 2006). 

RESULTS 
In this section I first present an analysis of student responses to the first diagnostic test 
and interviews. This part highlights possible student answers as well as indicates levels 
of conceptual understanding; in addition, these results could be further developed into 
a diagnostic tool for formative assessment. Then, I continue to outline exemplary 
results of students’ interactions with the digital worksheet. In a final version, the paper-
based task of the diagnostic test was implemented within the digital worksheet (see 
Task 1 in https://www.geogebra.org/m/tnqamu4x). 
Analysis of student responses to a paper-based version of the billiard task 
In the first diagnostic test, students worked on the billiard task in a paper-based version 
of task presented in Figure 1. Students were asked to describe verbally the change of 
the distance d during the movement of the ball, to translate it into a graph representing 
the distance d(t) as a function of time and to explain their considerations. Students’ 
responses were analyzed, condensed and divided into eight different types:  
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Solution type Description 
1: Correct 
solution 

This type includes a qualitatively correct graphical representation of the 
distance d as a function of time t including a correct verbal description. 

2: Distance to 
nearest 
boundary 

Distance d was interpreted as respective distance to the nearest 
boundary. Based on such interpretation, the graphical representation 
would be correct. 

3: Graph too 
long 

The first part of the graphical representations 
resembles a qualitatively correct solution. 
Still, two additional linear pieces involving a 
minimum at the end of the graph are included. 
Possible reasons for this error could be a 
misinterpretation of the distance d (see 
solution type 2) or a confounding influence of the presented iconic 
situational model. 

4: Confused 
axes 

A further incorrect student response revealed a confusion of x and y-
axis resulting in a graph rotated by 90°.  

5: Incorrect first 
part 

The changing distance was correctly described; however, it did not start 
at t=0 but included an additional horizontal line 
from t=0 to the point where the correct part 
started. This solution may imply a local 
correspondence graph-as-picture error, as the 
graph resembles the situation where the starting 
point P is not located on the left border. 

6: Graph-as-
picture error 

The solution resembles the shape of the 
path on the billiard table. The image 
shows a typical graph-as-picture error, 
with the label “starting point” at the 
point representing d(0) of the graph.  

7: Measuring 
path length 

This happens when students estimate the length of the billiard ball 
travelled path instead of considering the distance from the upper 
boundary. Such an error is possibly influenced by the students’ prior 
knowledge. 

8: Merging 
situational 
model and 
speed 

Here, two different misinterpretations can be 
identified. First, the solution resembles the 
shape of the path on the billiard table and thus 
indicates a graph-as-picture error. Moreover, the 
student interpreted the graphical representation 
as speed-time diagram probably caused by her 
previous experience in mathematics teaching. 

Table 1: Student solutions task Billiard 

I analyzed the student responses for possible reasons indicating their conceptual 
understanding and condensed the solution types within five categories. The solution 
types could not be related unambiguously to one category as incorrect solutions could 
be explained by different reasons. The categories and their relations are visualized in 
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Figure 2. On the left, a violet shaded area visualizes problem solving from a situational 
perspective, which includes understanding of the presented situation. On the right, the 
green shaded area represents students’ ability to abstract the functional dependency and 
to transfer it to a graphical representation. The solution categories can be related to 
these representations and thus additionally demonstrate students’ progress in the 
representational transfer between situational and graphical representation. 

 

Figure 2: Solution categories developed by the researcher for the billiard task  

First, the position of category Graph-as-picture error (types 6 and partly 8) indicates 
that students argued from a situational perspective, and they did not manage to translate 
the functional dependency to a graphical representation. There appears to exist a 
comprehension gap possibly based on students’ difficulties in understanding and 
interpreting Cartesian coordinates. Second, category Overlap (types 3, 5, and possibly 
4) contains both graph-as-picture misinterpretations and partly correct translations, 
illustrated by the two dark arrows pointing at this category. Therefore, students with 
such type of solutions partly managed to abstract the functional dependency and 
translate to a graphical representation but were also influenced by situational 
representations. Third, students who created a qualitatively correct graphical 
representation were able to interpret function graphs by reasoning from an abstract 
perspective. On the right-hand side, below the green shaded area representing the 
ability to abstract a functional dependency from a situational model to a graphical 
representation, the category Misinterpretation of dependent variable (types 2 and 3) is 
visualized. As illustrated by the arrow pointing upwards, based on this 
misinterpretation of distance students assigned to this category were able to translate 
correctly to a consistent graphical representation. Finally, the influence of prior 
knowledge is represented by category Prototype (types 7 and 8). Students partly were 
not able to grasp the presented situation when trying to identify the dependent variable. 
Data analysis revealed that students’ interpretations of the presented situation and 
identification of the dependent variable seemed to be influenced by previous teaching 
experiences, which is visualized by an arrow directed upwards. The arrow pointing to 
the right top symbolizes students who were able to create a consistent graphical 
representation based on a misinterpretation of the dependent variable. The opposite 
direction of this arrow exemplifies that additionally function graphs were 
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misinterpreted in a way that reveals the influence of prior knowledge. The pale arrows 
symbolize less definite and strong relations to the representational registers. 
Exemplary results from interacting with the digital billiard worksheet 
Depending on students’ prior conceptions and their understanding of Cartesian 
coordinates, the digital worksheet appears to have an adaptational influence on their 
conceptions, which means that they are not able to alter conceptions to a greater extent 
but adapt them partly to the direction of a correct conception. In addition, for students 
whose conceptual understanding can be assigned to the situational perspective (Figure 
2), the animation in the situational model of the worksheet can support them in 
understanding and (dynamically) visualizing the situation as well as for identifying and 
qualitatively describing the dependent variable. For example, during an interview 
Mario first confused variables time and distance. However, after watching the billiard 
task animation, he managed to identify the dependent variable and to describe it 
qualitatively correctly during the movement of the ball as follows: 

67. Mario:  So, it [the distance] would have to be smallest here (first touch of ball 
on side) and here largest (starting point) . . . Then it increases (second 
part of path) . . . and here (last part of path) . . . it decreases again.  

Certainly, one cannot determine from this study how lasting such adaptational 
influence would be particularly for students who were not able to abstract functional 
dependencies (completely) and to represent them in Cartesian coordinates. For 
instance, Konstantin managed to solve the billiard task almost correctly in the second 
diagnostic test after the intervention but could not further explain his answer later in 
the diagnostic interview conducted nine days later. This agrees with the conceptual 
change approach that emphasizes that actual restructuring existing conceptions would 
require more effort and time (Vosniadou & Vamvakoussi, 2006). Data analysis further 
indicates that if students are not able to abstract and translate the functional dependency 
to Cartesian coordinates, they were unable to overcome their comprehension gap by 
working with the digital worksheets without teacher guidance. Probably, they would 
profit from teachers’ assistance to help them reflect and reconsider their perceptions 
and interpretations. 
Participating students tended to interpret visual characteristics of graphs in trace mode. 
In trace mode, the graphical representation does not appear as line but as “sequence” 
of points. Depending on the speed of the animation, these points do not necessarily 
appear at the same distance. On the one hand, such behavior could be problematic if 
students, for example, try to interpret the denseness of points, which is mathematically 
not relevant but depending on the processor performance. In such case, an option would 
be to implement a line instead of trace mode for graphical representations. Also, in 
dynagraph representations a drawn trace pattern appears to make it more difficult for 
students to detect and read an actual functional value from the y-axis. On the other 
hand, trace mode can emphasize the relational aspect of functional dependencies. It can 
be used to mark extrema in dynagraph representations and consequently to compare 
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function values with a maximum value as, for instance, two students did when working 
with the dynagraph version of the presented task. 
During the study a new misinterpretation, which I called reflection, evolved. Reflection 
is a visual feature that students assign to graphical representations when the shape of 
the graph resembles a reflected image of the situational model. Pia, for example, 
perceived this visual feature when discussing this digital worksheet (Fig. 1).  

102 Interviewer: How do the graphical representation in the coordinate system and 
situational model fit together? 

103 Pia: It is upside down, no. It has been reflected. 
104 Interviewer: Why? 
105 Pia: Because it is a graphical representation? 

A following discussion did not lead to any further explanations. Her uncertainly 
expressed last answer shows that Pia only recognized this visual characteristic, but she 
could not interpret it with respect to the functional dependency. In case of an 
overgeneralization of this characteristic, it could lead to misinterpretations related to 
graph-as-picture errors. Consequently, results also reveal a potential difficulty of 
utilizing the digital worksheet without teacher guidance, especially for students who 
are not able to interpret mathematically relevant features in a correct way. 
In sum, this project resulted in a model representing various levels of students’ 
conceptual understanding of the billiard task and helped to understand the role of the 
digital worksheet in the learning process. Now the question arises, how to combine 
these results and implement this digital task into regular teaching for diagnosing and 
enhancing students’ conceptions. 

DISCUSSION AND OUTLOOK 
In the preceding section, I identified several typical student errors connected to a 
billiard task grouped within five categories visualized in Figure 2. Although this model 
could be refined in further studies, it outlines among others the main stages of the 
representational transfer that students working on the task had to conduct from 
situational to graphical representation. The analysis of all student responses further 
suggests a comprehension gap between both representations that can be interpreted as 
obstacle students have to overcome for managing to translate to and interpret graphical 
representations. Possible reasons for this gap could be students’ difficulties in 
understanding and interpreting Cartesian coordinates or students’ inability to focus on 
more than one feature or variable. The latter can be examined under the more general 
term of covariational reasoning (Johnson et al., 2017). In essence, the results reveal 
different levels of conceptual understanding, which are relevant for implementing the 
digital task in regular class and could be utilized for diagnostic purposes in a formative 
assessment tool. Results concerning students’ interactions with the digital worksheet 
show (only) an adaptational influence on conceptions. Especially lower achieving 
students seem to need a teacher’s or peer’s support to draw their attention to 
mathematically relevant features and to reflect their perceptions and interpretations. 
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Considering design of dynamic materials, using trace mode could either support or 
hinder learning. Therefore, teachers should consider whether in their case it could 
provide an opportunity for learning or is better avoided.  
These results lead to considerations how to utilize the digital task in regular teaching. 
New developments in classroom collaboration including dynamic math element 
question types (e.g., Zöchbauer & Hohenwarter, 2020) will enable to implement the 
digital task presented in this paper for formative assessment. GeoGebra enables 
teachers to save student responses, which could be analyzed and assigned to the model 
presented in Figure 2, thus enabling diagnosis of students’ conceptions concerning this 
task. Based on this categorization, teachers could design specific lessons plans for each 
group of students including the digital worksheet to enhance their conceptual 
understanding. 
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In this paper we juxtapose and give examples of mathematical aspects of how 
programming is included in teaching in three different countries; Denmark, Sweden 
and England. We look at cases of both curriculum standards and resources in order to 
describe the nature of the relations between programming and mathematics. The 
methodology consists of a case-based analysis, and can be seen as a first step in 
developing an understanding of the nature of the relations between programming and 
mathematics as it is enacted in different educational systems. We discriminate between 
specific, explicit, implicit and weak relations and use these terms to describe the 
differences between the cases. 
Keywords: programming, computational thinking, mathematics education, digital 
competencies. 

INTRODUCTION 
Many countries include programming as a part of the curriculum in compulsory 
education. This is done in relation to different academic topics and to different degrees. 
The aim of preparing students for the digital society is a general trend across many 
educational systems (Bocconi et al., 2016). Mathematics has a special role in relation 
to this ambition. Computer science shares many aspects of methods and objects with 
mathematics and the preferred thinking styles and learning objectives to some extent 
coincide (Misfeldt & Ejsing-Dunn 2015, Wing, 2006), which of course has to do with 
the fact that computer science as a discipline originates from that of mathematics. 
The widespread ambition of teaching programming in compulsory school has increased 
significantly over the last years and different countries are adopting different routes. 
Currently, relatively little work has been done in comparing these approaches (Bocconi 
et al., 2016). In this paper, we make a first attempt at comparing the mathematical 
aspects of how programming is adopted in compulsory school. We address this by 
looking at cases of governmental curricular descriptions and teaching materials from 
England, Sweden and Denmark in order to address the research question: Based on 
three different case studies, what types of relations between mathematics and 
programming in school exist?  

THEORETICAL PERSPECTIVE AND METHODOLOGY 
The ambition of using programming as a means to reform mathematics education has 
been around for the last 40 years, and has led to educational innovations such as 
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programming languages for kids and theoretical frameworks describing the learning of 
mathematics with programming (Papert, 1980). However, it was not until Jeanette 
Wing’s (2006) much-cited paper was published that the effort of making programming 
into an integrated part of compulsory education became mainstream (Bocconi et al., 
2016). Wing (2006) described computational thinking as decomposition, data 
representation and pattern recognition, abstractions and algorithms. Educational 
research and practice has attempted to clarify and activate computational thinking as 
teachable competencies. This is often done by highlighting how computational 
thinking relates to mathematical processes such as abstraction, problem solving, 
modelling and algorithm building (Kafai & Burke, 2013).  
From a methodological perspective, we conduct an open juxtaposing (Bereday, 1967) 
of different cases of including programming into schooling with focus on both the 
official mathematics curriculum and the specific language used in teaching materials. 
Our argument builds on case-based reasoning, in the sense that the three combinations 
of teaching materials and governmental curricular documents that we look at are seen 
as having the particularity of specific cases (Yin, 2011). In the following three sections, 
we describe cases of how programming is included in the compulsory school in 
England, Sweden and Denmark. We focus on the rules and curriculum standards that 
underpin this movement and on examples of curriculum materials dedicated to support 
such a change. 

CASE 1: PROGRAMMING IN COMPUTING CLASS IN ENGLAND 
In England, the former ICT curriculum was replaced by the ‘new’ subject of computing 
in the National Curriculum of England in 2014. This new computing curriculum was 
developed with the support of representatives from the industry, computer scientists, 
government officials and teachers (Larke, 2019). It aimed at providing school students, 
from the age of 5 onwards, with the necessary skills, knowledge and thinking to 
become digital literate and be able to actively participate in a digital world. Common 
computing activities in secondary classrooms in England are, for example ‘Pair 
Programming’, where one pupil programs whilst the other looks on offering advice and 
they swap at key points or after a certain time; ‘Debugging/Programming’, where 
pupils are given some code with errors they need to fix and/or parts they need to amend 
to add new functionality; and ‘Predict and test’, where students are given code snippets 
they need to read (trace) and understand to predict output. 
We focus on an activity (Unplugged: Polygon Predictions) taken from the 
ScratchMaths (SM) project (www.ucl.ac.uk/ioe/research/projects/scratchmaths), 
which aimed at investigating the learning of computing alongside mathematical 
concepts. The SM project team has designed an integrated curriculum to teach 
mathematical ideas by using Scratch, a programming environment, targeting 9-11 year 
old students (end of primary school in England). Students are presented with three 
scripts and are asked to “Read each of the scripts. Draw and/or explain in words the 
picture that it will create (it creates various polygons). Students may think that the 
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scripts will deliver the same outcome due to the same codes being used, even if they 
are not in the same order. All three scripts lead to the creation of a square with a side 
of ‘50 steps’, but each square will ‘look’ different. Students would need certain 
computational thinking skills to identify those differences (Ainley, 2019). The teacher 
needs to model how to predict the outcome of a script, ideally after allowing students 
to spend a few minutes on this themselves. The teacher would then run a class 
discussion to model how to deconstruct each script. Students are expected to ‘access’ 
their mathematical knowledge of the properties of different polygons, in this case those 
of a square. As Ainley (2019), a teacher who has used this activity with her students, 
reported, “in my own experience, ScratchMaths has improved teacher subject 
knowledge, computational thinking, problem-solving, and my student’s understanding 
of block coding in Scratch. From a computing point of view, that’s pretty good!” (p.21). 

CASE 2: PROGRAMMING IN ALGEBRA IN SWEDISH MATH CLASS 
In 2017, the Swedish national curriculum was revised in order to strengthen students’ 
digital competence (Swedish National Agency of Education, 2018). The main idea was 
to teach programming in mathematics and apply it in technology. In the mathematics 
curriculum, a major part of the programming is included in the core content of algebra. 
An additional item connected to algorithms is included in the core content of problem 
solving. The revised curriculum is reflected in new editions of Swedish mathematics 
textbooks, where stepwise instructions and algorithms have been incorporated in close 
connection to the algebraic content ‘patterns’ (Bråting, Kilhamn & Rolandsson, 2020).  
We provide an example of a programming activity for grades 7-9, taken from a Swedish 
government-provided online material. The aim of the activity is to show how 
programming can be used to explore new mathematical ideas. The task is to program 
an algorithm for finding prime numbers. The idea is to use programming as a tool for 
mathematical problem solving, and at the same time develop a deeper understanding 
for divisibility and number sense. The activity consists of three steps. In the first step, 
the students work with the algorithm ‘Sieve of Erastothenes’ with pen and paper. 
Especially, the students are encouraged to discover general patterns. Some students 
may even be able to conclude that they only need to investigate the numbers up to 
. In the second step, the students together with the teacher are supposed to construct an 
algorithm with pseudo-code that can answer whether a number is a prime or not. In the 
third step, the students are to translate the pseudo-code to Python or a similar 
programming language. In the material, the meaning and usage of algorithms are 
discussed as a help for the teacher. It is emphasized that the algorithm can solve all 
problems in a given class, and not only a procedure to solve a single problem. That is 
to say that the mathematical definition of a problem is considered.  

CASE 3: PROGRAMMING IN A NEW SUBJECT IN DANISH SCHOOL 
The Danish government is investigating a two-tier strategy to implement programming 
in compulsory school. This involves the integration of programming into a wide range 
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of topics and the development of a specific topic ‘technology comprehension’ which 
is being tested in Danish classrooms. The curriculum was piloted in 2017, and is 
currently (2018-2021) tested in a larger project. The key learning objectives of 
technology comprehension are: (1) students engage in digital production; (2) students 
learn to develop, modify and evaluate digital products; and (3) students learn about the 
role of informatics as a change agent in the society. Technology comprehension is 
described as an individual topic as well as in relation to arts, design, science, social 
science, first language and mathematics. The test curriculum standards for introducing 
technology understanding in mathematics has six focus areas: (1) digital design and 
design processes, (2) modelling, (3) programming, (4) data algorithms and structures, 
(5) user studies and redesign, and (6) computer systems. The test curriculum for 
technology comprehension as an individual topic – which we will focus on here, since 
it currently seems the most likely decision regarding how to move forward after the 
test phase – consists of four areas: (1) digital citizenship, (2) digital design and design 
processes, (3) computational thinking, and (4) technological agency.  
An example activity designed to support the work with ‘technology understanding as 
its own topic’ in grade 8 is the well-known two-person hand-game ‘rock-paper-
scissors’. Students are to use data generated from playing this game to get an 
understanding on how data can help with predicting future outcomes. The associated 
teaching material is divided into three different stages: coincidences; from 
coincidences to patterns; and challenges. In the first stage, the students will develop a 
simple computer script in Python for playing ‘rock-paper-scissors’. The script will have 
the player choose between 1 and 3, corresponding to the different outcomes a player 
can make, likewise for the computer, but this time it will be chosen randomly. The 
students reflect on data based on multiple runs and consider to what extent knowing 
the probability will affect one’s game. In the second stage, the students will keep on 
collecting data to see how the probability changes as a consequence of the previous 
game. The students will also work with bigger sets of data and use all outcomes to 
measure the probability. In the third stage, the students will use what they learned to 
create a new game, where they can gather data, use it for predictions and thereby win 
the game. This will show the students that a game, which has a completely random 
outcome in the beginning, can be programmed so that the popabilites of certain 
outcomes changes as a fuction of data about previous played games. The students will 
present their program to each other and provide feedback.  

JUXTAPOSING THE THREE DIFFERENT APPROACHES  
The different material involves programming in various programming languages. In 
none of the countries, the curriculum standards endorse specific programming 
languages. Yet, while both Danish and English curricula talk about the learning 
outcomes of programming activities on rather abstract terms (value for the society, 
engagement in digital production), the Swedish case shows that curriculum standards 
can be quite specific in relation to what type of programming language (e.g. visual 
versus textual programming) the students should work with at different levels. If we 
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look at the examples of teaching sequences from the different countries, they all point 
to specific programming languages/environments that students and teachers should 
work with. This is no surprise since the specification of course is a help in terms of 
instructing teachers and students on how to handle specific difficulties and develop 
specific solutions in these environments. All three cases of teaching activities point to 
the ability to work with and handle algorithms as an important part of the work with 
programming. In the following, we consider the cases of curriculum standards and 
materials that relate to programming and computational thinking and compare how 
they refer to mathematics. In order to describe the differences between the three cases 
we are distinguishing between four different ways to see relations between 
mathematics and programming: (1) specific relations to mathematical concepts or 
processes, when a curriculum standard text or an educational resource states the 
relation to a specific area of mathematics or a specific mathematical process; (2) 
explicit relations to mathematics, when mathematics, mathematical working processes, 
and mathematical competencies are referred to explicitly; (3) implicit relations to 
mathematics, where we can interpret the activity or educational intention as embodying 
mathematical work, but where this relation is not uttered in an overt way; and (4) no or 
weak relations to mathematics. 
The English Computing curriculum puts emphasis on students’ developing 
programming skills and computational thinking, understanding and applying “the 
fundamental principles and concepts of computer science, including abstraction, logic, 
algorithms and data representation” (DfE, 2013, p.1), whereas the National 
Mathematics curriculum in England refers to the use of ICT tools when necessary 
based on the teacher’s judgement (DfE, 2014), without any reference to programming, 
computational thinking or digital competencies. Therefore the computing curriculum 
argues for an explicit relation to mathematics stating examples of relatively specific 
relations (e.g. abstraction, logic, algorithms, data representation), but the mathematics 
curriculum only refers to the use of ICT tools when necessary, and without any 
mentioning of computational thinking, which suggests a documentational weak or no 
relation between programming and mathematics. Even in computing lessons, the links 
to mathematics may not be as strong due to the subject knowledge of the teacher, who 
may or may not be a computer science specialist, and may or may not have strong 
mathematical knowledge (Larke, 2019; Mee, 2020). The Scratchmaths example we 
presented was an intervention especially targeting the potential that Scratch offers for 
the learning of certain mathematical concepts and was chosen due to its potential to 
showcase how the relations between programming and mathematics can be specific 
and explicit, even if in the national curriculum documents these relations are implicit, 
weak or non-existent. In the example we presented, the specific relation between the 
characteristics of polygons and the ways in which a square in particular can be 
constructed in Scratch are suggested. In the class discussions, students are expected to 
explore and de-construct the scripts by relying both on their mathematical thinking and 
competencies (knowledge of what a square is, its properties and ways to construct a 
square), but also digital competencies (knowledge of Scratch language and familiarity 
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with programming in Scratch), hence making the relation between programming and 
mathematics explicit. Still, despite Scratchmaths being a great initiative, the current 
reality in the English educational system remains as having mostly implicit, weak or 
no relations between programming and mathematics in practice.  
In Sweden, the connection between programming and mathematics as a subject is quite 
clear. The Swedish mathematics curriculum document has incorporated programming 
in the core content of algebra, but also within the mathematical problem solving 
content. However, there is no explicit formulation or explanation regarding how 
programming connects to algebra or algebraic concepts in the curriculum document; 
in that sense the relation is explicit and relatively specific. The main focus of the 
programming content in the mathematics curriculum is on algorithms. In the described 
teaching activity, there is a specific relation between programming and mathematics in 
the sense that the students are to learn programming as well as developing a deeper 
understanding of divisibility and number sense. It is also noticeable that the students 
are encouraged to discover patterns, which could be seen as a specific relation between 
computational thinking and algebraic thinking. According to the instructions to the 
teacher, the aim with the activity is to use programming as a tool for problem solving, 
which also is in line with the mathematics curriculum document for grades 7-9. The 
usage of programming as a tool for solving mathematical problems may be interpreted 
as an explicit, but not specific relation between programming and mathematics in the 
sense that the students do not learn mathematics primarily. The main focus in this 
activity, as well as most of the activities in the government provided teaching material, 
is to work with algorithms, structure and the approach of breaking down a problem in 
smaller steps. This is interpreted as an explicit, non-specific relation between 
programming and mathematics. 
In relation to Denmark, it of course makes a difference if we talk about technology 
comprehension as its own topic or as a part of mathematics. Yet, in both cases, the 
relations to mathematical concepts and processes are rather unspecific. In the latter 
case, there is of course an explicit relation to mathematics. Both because of the 
placement of the curriculum standards in relation to the topic mathematics, but also 
because the standards highlights aspects that are meaningful from a mathematical 
perspective such as modelling and data algorithms and structures. The educational 
material is built around a challenge that focuses on the breakdown of a well-known 
game into a programmable structure. It is strongly related to algorithmic thinking and 
modelling. The inferences that students make are scaffolded to move from naive 
decisions based on prejudiced opinions towards inferences based on data and 
probabilities. This has explicit, but not specific, relations to statistics. The design of a 
game also allows the students to enact design thinking and problem solving. From a 
mathematical point of view, this teaching sequence highlights statistics and 
probabilities as well as modelling and problem solving. In terms of specific relations 
to mathematics, these appear in the curriculum standards regarding technology 
comprehension as part of mathematics, but also in the specific curriculum material 
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(especially relations to statistics). When it comes to explicit but not specific relations 
to mathematics, the entire version of the curriculum, where mathematics is part of 
technology comprehension is exemplifying this. Implicit relations to mathematics are 
present in the standards for technology comprehension as an individual topic.  

CONCLUSION  
In order to answer the question about the differences and similarities in the approaches 
taken by England, Sweden and Denmark to incorporate programming into school, and 
in particular how specific and explicit materials and curriculum standards relate 
programming and computational thinking to mathematics, the materials in the 
presented cases suggests two observations. The first observation is that the curriculum 
standards of different countries have different disciplinary affinities to programming. 
In Sweden, programming is clearly related to mathematics and the standards are both 
explicitly and specifically related to algebra and programming. Neither England nor 
Denmark have the same level of specificity in this relation, mainly because none of 
their curriculum standards has chosen to relate programming to specific mathematical 
topics. The second observation is that even though the curriculum standards differ in 
specificity of the relations to mathematics, this difference cannot be seen in the 
example cases of the teaching materials. Clearly, the data presented is too sparse to 
allow general claims. Nevertheless, the explicit relations to mathematical problem 
solving are seen in all the activities, and this together with some relatively specific 
relations to mathematical content applied in the materials. In conclusion, we point to 
the fact that all three countries – England, Sweden and Denmark – to some extent build 
on mathematics, when introducing programming in their school curriculum. Yet, there 
is a large difference in specificity as to how mathematics enters curriculum standards. 
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An investigation on the use of GeoGebra in university level calculus 
Reinhard Oldenburg 

Augsburg University, Germany 
Geogebra has shown great potential in school mathematics and some areas of 
university level math. However, it seems unclear how integration into a more abstract 
calculus should be done. The purpose of this paper is to describe the approach taken 
and reports some promising results. 
Keywords: Calculus, Geogebra, logic, formal mathematics 

INTRODUCTION 
The shift to formal mathematics is a major obstacle for first year university students 
and it is currently of broad interest in Germany (e.g. Hoppenbrock et al. 2016) and 
internationally (e.g. Gonzales-Martin et al. 2017). In Germany students enter university 
after having gained a high school diploma. The curriculum of these schools includes 
some basic calculus (derivatives and integral) but on a very informal level where proofs 
play almost no role at all. Thus, when starting at the university they experience a 
substantial gap that results in high failure rates in examinations after the first term 
(typical failure rates 70-80%).  
The learning of calculus has been investigated by many researchers. A recent overview 
is given by Bressoud et al. (2016). Insight has been gained into many problems that 
students face when learning university level calculus, e.g. problems with logic (e.g. 
Selden& Selden (1995), Shipman (2016)) and proofs (e.g. Stavrou (2014)). A wider 
overview is also given in (Winslow 2018).  
The use of technology is discussed in a variety of papers as well. Tall (2003) has argued 
that technology allows for an embodied approach to teaching calculus by making 
notions dynamic and visible. Similarly, Moreno-Armella (2014) argued that the 
traditional teaching approach is not able to bridge the tension between intuition and 
formalism. He suggests some dynamic activities that illustrate limiting processes and 
involve differentials as small changes. 
A lot of research has investigated the use of dynamic math software such as Geogebra 
(Hohenwarter 2019) for the learning of mathematics in general and also of calculus. 
However, the majority of research concentrates on the high school level. Beyond high 
school college calculus is investigated to some extent but there are only a few 
investigations about using Geogebra at the university level of analysis. In Tall et al. 
(2008) an overview is given that aims mainly at the high school level but presents also 
ideas beyond that. One paper that focusses on university level analysis is Attorps et al. 
(2016). They find positive effect in teaching Taylor approximations using a variation-
theory based approach. d’Azevedo Breda and dos Santos dos Santos (2015) 
investigated complex numbers. Nobre et al. (2016) have positively evaluated the use 
of Geogebra in a calculus course for computer science students. However, the topics 
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touched are more of the college style calculus. Much the same can be said about 
Machromah et al. (2018).  
The contribution of this paper is new as it addresses rigorous university analysis.  

THE STUDY DESIGN 
The course 
The course “Analysis I” was taught by the author in the summer term 2019 (duration 
14 weeks). 180 students were enrolled into the course with 141 taking the examination 
at the end. Students’ age and sex was not recorded for reasons of privacy but age was 
approximately 20 and sex distribution almost equal.  
The main learning objective of this course is to introduce students to the rigour of 
mathematics. This course is taken mainly by students aiming at a bachelor in 
mathematics, but also students from physics and trainee teachers for high schools. The 
content includes logic, axiomatic theory of natural, rational, real and complex numbers, 
sequences, series and convergence, limits, continuity, differentiability, sequences of 
functions, Taylor series, and integral. The approach is rigorous, i.e. all statements are 
proven and exercise for students included a lot of proof tasks. The course consists of 4 
h lecture per week, 2 h exercises in a huge group, and homework exercises which are 
graded and discussed in small groups (2 h / week).  
The setting implies that many concepts have to be re-learned by the students, e.g. in 
high school the sine and cosine functions are defined geometrically while in this course 
they are defined by the exponential series. Traditionally, computers are practically 
absent from such courses. However, for the redesigned course reported here, computers 
were used to some extent (also Mathematica). This paper concentrates on the use of 
Geogebra. About half of the students reported that they knew Geogebra from high 
school. The use of Geogebra was twofold: 

• Demonstrations in the lectures. Many concepts, e.g. addition and multiplication of complex 
numbers, epsilon-strip-concept of convergence, convergence of function sequences (in general and 
particular for Taylor series), epsilon-delta-definition of continuity, local linearity of differentiable 
functions etc were visualized.  

• Non-mandatory home work. Every week a set of homework assignments were given and some of 
them were mandatory and graded, however, for legal reasons, the computer assignments were 
voluntary.  

Task design 
The following example illustrates the use of Geogebra in homework assignments: 

Exercise: Investigate where the function  𝑓: :3;
"
, ;
"
= → ℝ, 𝑓(0) ≔ 0; 𝑓(𝑥 ≠ 0) ≔

;
C4DE

 has a derivative. 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

 

265 

In doing this it is very useful to plot the function as this gives the idea that it may 
be differentiable in the origin with 𝑓	’(0) = 1, which is a bit contra intuitive. (I 
learned this nice example from Peter Quast, Augsburg).   

 
The didactical principle behind this task design is a kind of variation theory (Maton & 
Booth 1997). In mathematics education this theory has been mainly applied in 
elementary school mathematics. A very typical example is the use in a teaching 
experiment on logarithms (O’Neil & Doerr 2015). In my own conceptualization the 
theory says that learning materials should be arranged to allow the individual genesis 
of a concept by contrasting examples and counter-examples, experience relations to 
hold of a variety of examples, identify single aspects, exclude counter examples and 
fuse several aspects to the general concept. Applied to the concept of differentiability 
this leads to the following learning trajectory: Students learned the concept definition 
𝑓G(𝑥) ≔ lim

K→L
0(MNK)30(M)

K
 already in high school. This definition emphasizes the aspect 

of rate of change which is applied to determine the slope of tangents. Thus, in my 
course the derivative was introduced in the following varied manner: 𝑓 is differentiable 
in 𝑥L if there is a function 𝑞: 𝑈 → ℝ, 𝑥Q ∈ 𝑈 defined on some open neighbourhood of 
𝑥L and continuous in 𝑥L such that 𝑓(𝑥) − 𝑓(𝑥L) = 𝑞(𝑥) ⋅ (𝑥 − 𝑥L), i.e. Δ𝑦 = 𝑞(𝑥) ⋅
Δ𝑥. This definition emphasizes local linearity and students were demonstrated in the 
lecture that graphs of differentiable functions appear straight when zoomed in at a 
sufficient scaling factor. Variation theory then suggested to explore a bunch of 
functions to sharpen the concept. The example given above in the example is the most 
challenging in this series.  
Assessment 
The general research question would be if this kind of using Geogebra helps students 
to master the course. In this generality, of course, the question cannot be answered 
empirically, and more precise questions will be posed later on. 
In general, empirical intervention studies at university level are not easy to carry out. 
Ideally, one would randomly split courses into groups with different treatment and 
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measure results. However, splitting a course requires teaching resources that are rarely 
available and spitting also raises the ethical issue if some students are offered better 
conditions than others. In this situation the problem that computer exercises could not 
be made mandatory turned out to offer a new possibility for research: Students 
themselves decided if they did the computer exercises or not. Hence, this provided two 
groups without ethical problems. However, one should not assume these two groups to 
be equivalent. It seems likely that students doing the exercises might be more 
interested, more motivated and thus stronger overall. The methodological trick to solve 
this problem was to give two different kinds of tasks: One that could potentially profit 
from the computer exercises because the mathematical content was related and another 
that was not expected to benefit from doing the computer exercises. The categorization 
of the tasks into these groups was done by my own expertise; the tasks used for 
assessment are detailed below. They were chosen to reflect some of the many teaching 
goals of this course, especially they should assess the understanding of the logical 
argumentation about sets, sequences and functions. 

FIRST STUDY 
The mathematical topics dealt with in the beginning were logic and sets. During the 
first week the following (non-mandatory) computer exercise was given: 

Task (voluntary): Logic with Geogebra 
a) Geogebra can plot the set of solutions of certain (not too complex) inequalities 
in the two variables 𝑥, 𝑦. Try this out using the following inequalities: 
1) 𝑥 + 1 > 𝑦 − 𝑥/2  2) 𝑥 ⋅ 𝑦 < 4        3) 𝑥" + 𝑦" < 9       4) 2𝑥" + 𝑦" > 5 
b) One may also plot logical combinations of inequalities. Try out: 𝑥 > 1 ∧ 𝑥 <
4,  𝑥 > 1 ∨ 𝑥 < −1,  𝑥 > 0 ∧ ¬𝑦 > 0,  𝑥 > 0 → 𝑦 > 0  
c) Find ways to describe these sets: 
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The rationale behind this task should be obvious: Students should have the opportunity 
to work in visually appealing setting with logical operators that gives direct feedback. 
The importance of feedback is widely acknowledged (e.g. Hattie & Timperley 2007), 
so this should be effective. 
During the second week the students had to do homework exercise that had to be done 
on paper and were graded. Two of these mandatory exercises are given below: 

Exercise 1 
a) Prove: 𝑀 = 𝑁 ⟺ 𝑀 ⊂ 𝑁 ∧ 𝑁 ⊂ 𝑀. 
b) Prove both de Morgan laws for sets.    
c) Illustrate the symmetric set difference 𝑀∆𝑁 ≔ (𝑀 ∪ 	𝑁) ∖ (𝑀 ∩ 𝑁) and 
prove: 𝑀 ∖ 𝑁 = 𝑀∆(𝑀 ∩ 𝑁). 
Exercise 2 
Find pairs of equal sets and prove equality resp. inequality: 
𝑀; = {(𝑥, 𝑦)|¬(𝑥 > 2 ∧ 𝑥 < 3)},𝑀" = {(𝑥, 𝑦)|𝑥 ⋅ 𝑦 > 0} 
𝑀i = {(𝑥, 𝑦)|𝑥 > 2 ∧ 𝑦 > 0 ∨ 𝑦 < 0}	 
𝑀j = {(𝑥, 𝑦)|𝑥 > 0 ∧ 𝑦 > 0 ∨ 𝑥 < 0 ∧ 𝑦 < 0} 
𝑀k = {(𝑥, 𝑦)|𝑥 ≤ 2 ∨ 𝑥 ≥ 3},𝑀n = {(𝑥, 𝑦)|¬((𝑥 ≤ 2 ∨ 𝑦 ≤ 0) ∧ 𝑦 ≥ 0)} 

My expert classification was that Exercise 2 might benefit from doing the Geogebra 
task, while little effect of Geogebra use on exercise 1 was to be expected. Thus, the 
hypothesis was that students who decided to do the Geogebra tasks would perform 
substantially better on exercise 3 but not better or only slightly better on the other tasks.  
To assess which students took the voluntary Geogebra task students were asked 
explicitly to indicate if they did do the Geogebra task and then they were asked to rank 
the intensity on a Likert scale from 0 (not done) to 5 (intensely). 
Unfortunately, several of the master students that ranked the students’ papers forgot to 
write down these engagement variables and due to privacy issues, it was not possible 
to get this information. Hence, the usable data set consists of a rather small sample of 
n=23 students, 11 of them indicated that they had worked on the Geogebra task (group 
G), 12 indicated that they didn’t (group N). Statistics (all done in R, www.r-project.org) 
is thus limited but here are the results: 
E1, E2 denote the score students achieved at exercises 1 and 2 respectively. These 
variables can be considered to be normally distributed as the Shapiro test gives p-values 
for E1 of 0.33 for the whole group and of 0.48, respectively 0.45 for the N and G 
groups. However, E2 cannot be considered to be distributed normally. Thus, the 
Wilcox test is applied to discover group differences between the N and G groups.  
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Exercise Wilcox-Test Cohen d: G-N 
E1 0.27 -0.371 
E2 0.014 * 0.842 

Conclusion: The students who worked on the Geogebra task scored significantly better 
on the third tasked, as expected. The fact that they performed worse (although not 
significantly) on exercise 1 came as a surprise and there is no good explanation yet. It 
is likely that this is just due to the small number of students, but it may also be that 
good and theoretically-minded students did not do the computer exercises.  
Another way to explore the findings statistically is to use a linear regression model that 
includes the information (provided by the students) on the intensity of their technology 
use T. Although this is not normally distributed, a linear model was devised: E2~T+E1 
and it turned out, that T is significant, the whole explained variance is R²=0.44. Given 
the fact that many other issues influence performance on such tasks this should be 
regarded as being rather high.  

SECOND STUDY 
The second study was conducted almost at the end of the course, in week 12. The 
methodology was the same as in the first study. While the first study focussed on a 
very small intervention the second study was more designed to account for the whole 
learning effect during the term.  
A total of n=97 students’ exercise responses could be used in the statistics. First, there 
were two Likert-scale items to judge agreement with a statement from 0 to 10: 

a)  “I used Geogebra regularly for this course.“    Mean: 3.4, Std. dev.: 3.0 
b) “Geogebra is a useful tool for learning in this course.“  Mean: 6.7, Std.: 2.6 

Those students who marked 5 or more on the first question were considered to be the 
Geogebra user group (G, 37 students), the others the non-users (N: 60 students) 
The marked mandatory exercises that were used in this study were the following:  

Exercise 1 Prove for which 𝑘 ∈ {1,2,3}  the functions 𝑓p: ℝ → ℝ, 𝑓p(𝑥) ≔

qsin(𝑥) + 𝑥
p ⋅ sin :;

M
= , 𝑥 ≠ 0

0, 𝑥 = 0
 are differentiable and if the derivatives are 

continuous.  
Exercise 2: Prove: If 𝑓:ℝN → ℝ	 is differentiable and  ∃𝑐 > 0∃𝑑 > 0: ∀𝑥 ≥
𝑑: 𝑓G(𝑥) > 𝑐, then lim

M→x
𝑓(𝑥) = ∞. Give an example that shows that the 

conclusion is not valid if one only demands: ∀𝑥 ≥ 𝑑: 𝑓G(𝑥) > 0. 
The choice of these tasks was mainly driven to match the topics of the lecture in that 
week but some theoretical considerations came into play: Given the application of 
Geogebra to explore the concept of derivative (explained above) I assumed that 
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Geogebra-affine students can use the tool to foster their intuition about what is going 
on here. Thus, it was expected that this task benefits from using Geogebra. However, 
it seems not obvious that the transfer from the graphical setting to a written proof that 
as required here can be made. The second task does not invite for plotting as no 
concrete function is given. Moreover, it deals with quantifiers that are not touched on 
in any Geogebra activity. As above, students’ solutions were marked and graded by 
points by master students. For all these variables, the hypothesis of normal distribution 
was checked using the Shapiro test and had to be rejected.  
Our general hypothesis is that students who used Geogebra regularly performed better 
than others. More specifically: Use of Geogebra should boost results of Exercise 1 
because students who used Geogebra regularly could be expected to investigate this 
functions’ graphs and used zooming in to investigate the limit empirically. For exercise 
2 I didn’t expect a benefit of using Geogebra besides the baseline effect caused by the 
fact that Geogebra use was likely to correlate with motivation and engagement. Wilcox 
tests were performed to test this hypothesis.  

Exercise Wilcox-Test Cohen d: G-N 
E1 0.00 ** 0.52 
E2 0.63 0.05 

These results nicely confirmed the hypothesis. 

DISCUSSION AND CONCLSION 
Geogebra is a tool that can be used both in high school and at the university level and 
thus offering the advantage that students experience some continuity in the tool as the 
experience the rather radical change of mathematical culture from school to university. 
The study adds evidence to the proposition that Geogebra can be used to boost students’ 
performance on certain tasks of rigorous analysis. Besides the usefulness to visualize 
graphs in this study the plotting of solutions to logical combinations of inequalities 
proved to be a useful teaching tools that should be studied in more detail. 
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Eliciting students’ thinking about change: filling a vase in a computer 
application 

Sonia Palha and Daan van Smaalen 
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Computer applications and digital tasks can be designed in ways that support 
mathematical learning. In this paper we discuss the results of a teacher experiment 
involving a computer application that was designed to elicit students’ covariational 
thinking when learning about graphs. The application provides adaptive feedback 
based on students’ graphs, that are created using free-hand drawing.  We focus on 
students’ learning with two animations of the application. Analysis of students’ graphs 
and written explanations showed that most students improved their initial graph or 
they kept the same graph as it was originally correct after working with the application. 
These results and its implications will be discussed.  
Keywords: dynamic graphs, covariational reasoning, task design, digital application. 

INTRODUCTION 
The design of digital resources and tasks that promote students’ covariational reasoning 
has shown to be a challenge in the field of mathematical education. Several researchers 
have designed and investigated tasks involving dynamic computer environments to 
elicit covariational thinking. However, in some cases students working on the tasks 
don’t engage in the intended reasoning (Johnson, McClintock, & Hornbein, 2017). One 
of the aspects that affect students’ engagement in covariational reasoning is students’ 
conceptions of quantities and change (Castillo-Garsow, Johnson, & Moore, 2013; 
Thompson & Carlson, 2017). There is few research that focuses on this aspect and how 
computer applications can be designed to afford it in ways that promote covariational 
reasoning (Johnson et al, 2017).  
In our research, we developed an interactive digital application, Interactive Virtual 
Math (IVM), that elicits students to generate and adapt their graphs. The innovative 
aspect of the application is that it generates adaptive feedback based on students’ 
graphs, they created using free-hand drawing on a tablet screen or with a mouse on a 
computer (Palha & Koopman, 2017). The aim of this paper is to present part of the 
results of a teaching experiment with the application that was conducted at secondary 
school involving 20 students. We focus on the learning occurring with two features of 
the IVM-application that were designed to elicit students’ covariational reasoning 
when learning about graphs. The results provide interesting insights into students’ 
thinking that can be useful for researchers, task designers and curriculum developers.  

THEORETICAL PERSPECTIVES AND TASK DESIGN 
Covariational reasoning framework 
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Thompson and Carlson (2017) developed a framework explicating levels of students’ 
covariational reasoning. The levels are presented in Table 1. We framed our research 
and analysis of students’ reasoning in this framework. We illustrate this with the well-
known problem filling the bottle (Carlson, Jacobs, Coe, Larsen & Hsu, 2002): a 
spherical bottle (or vase) is filled with water at a constant rate, imagine how the height 
of the water in the vase varies as function of the volume of water. At the highest levels 
the researchers placed smooth continuous covariation and chunky continuous 
covariation, which entails that students conceive quantities varying smoothly through 
intervals simultaneously. The difference is that in a smooth continuous covariation the 
covariation is continuous within any interval. While at chunky continuous covariation 
students envision change in chunks. For instance, in the case of the vase-task a student 
at chunky continuous level imagine the water level rising for each increment of water 
added, including all values of volume and height between successive values, but 
without envisioning height and volume passing through those values. At lower levels 
of the framework, Thompson and Carlson (2017) place coordination of values (e.g. 
focus on the water’s height in the vase and the number of cups of water added to the 
vase with no thought given to intermediate values of volume or height), gross 
covariation and pre-coordination (e.g. notice that after some amount of water is poured 
into the vase, the water level on the vase rises).  

Level Description 

Smooth continuous 
covariation 

The student envisions changes in one quantity’s or variable’s value as 
occurring simultaneously with changes in another variable’s value, and 
envisions both variables varying smoothly and continuously. 

Chunky continuous 
covariation 

The student envisions changes in one variable’s value as happening 
simultaneously with changes in another variable’s value, and envision 
both variables varying with chunky continuous variation.  

Coordination of 
values 

The student coordinates the values of one variable (x) with values of 
another variable (y) with the anticipation of creating a discrete collection 
of pairs (x, y). 

Gross coordination of 
values 

The student forms a gross image of quantities’ values varying together, 
such as “this quantity increases while that quantity decreases.” The student 
does not envision that individual values of quantities go together.  

Precoordination The student envisions two variables’ values varying, but asynchronously.  

No coordination The student has no image of variables varying together.  

Table 1: Levels of covariational reasoning 

According to this framework within the context of filling the vase, a student  
"conceiving of how the values of height could vary as a vase continually fills (smooth 
continuous variation) with liquid would be more advanced than just conceiving of the 
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height as increasing, without attending to values for which it might be increasing (gross 
variation)"(Thompson & Moore, 2017; Johnson et al, 2017). 
Covariational reasoning with the support of technology 
Computer applications can support students to develop functional thinking by making 
multiple representations available and allow for actions on those representations 
(Kaput, 1992 in Ferrara, Pratt, & Robutti, 2006). Research on covariational thinking in 
the field of functions show that computer applications can enable students to draw, 
move and modify graphical representations from covariational relations. Also, with the 
evolution  of technology, software design has ‘increased fluidity between 
representations” (p. 252, Ferrara et al., 2006), which have been found to be beneficial  
in exploiting the connectivity between representational systems.  
Design of the digital environment 
One theory often used in task design is Marton (2015) theory of invariance. According 
to this theory the task designers develop task sequences that incorporate certain patterns 
of variation. The idea is to foster students’ discernment of critical aspects. In the design 
of the IVM-application and sequence of tasks we defined a critical aspect for students 
to discern: smooth continuous covariation between height and volume. The IVM 
application contains a sequence of tasks about dynamic phenomena and requires 
students to draw a graph representing the relation of the two variables that covary. The 
IVM-application uses the well-known problem filling the bottle (Carlson, Jacobs, Coe, 
Larsen & Hsu, 2002).   
Sequence of tasks: The tasks we developed regard the same dynamic event. The first 
task is about a spherical vase, based on the bottle filling task. The other four tasks 
involve different forms of vases. Together the five tasks address main types of rise: 
decreasing followed by increasing rise (task 1), decreasing rise (task 2); constant rise 
(task 3), increasing followed by decreasing rise (task 4) and increasing rise (task 5). To 
solve the vase task, the students need to consider how the dependent variable (height) 
changes (rise) while imagining changes in the independent variable (volume). The 
coordination of such changes involves covariational reasoning. 
The application incorporates several components that assist students in solving the 
tasks and support their reasoning. Two of these components are the animations: fill the 
vase and move the dots.  
Animation fill the vase: At the start, the application presents the learner with the 
animation shown in Fig. 1 (left). Every time the student pushes the arrow button, a 
constant amount of water will flow into the vase, with a distinct color. Because of the 
different colors, the students can easily notice that the same amount of water 
corresponds with different increments in height. Because the student can fill the vase 
with more (up to six) layers if desired, he or she can observe the variation in height and 
try to visualize it. The student can vary the size of the cup. 
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Figure 1. Animation fill the vase (left) and animation move the dots (right) 

Animation move the dots: When students fail to represent the covariational relationship 
correctly the application displays the animation move the dots, see Fig. 1, (right). This 
animation relates the dynamical event (represented in animation fill the vase) to the 
more abstract representation (cartesian graph). The student sees an empty cartesian 
graph in which he or she can move given dots to the estimated height every time the 
same amount of water is added. The student moves the first dot to the position he/she 
thinks that the height of the water will reach and then press an arrow button on the 
water-reservoirs left to the vase. The water fills the vase to a certain height. The student 
compares the estimated height to the height actually reached and uses the comparison 
to move the dot to a more precise location. This animation allows students to interact 
with the elements of a cartesian graph (dots and axes), and it stimulates students to 
consider the variation of the quantities in relation to each other and at a more abstract 
level (within a graph representation).  

METHOD 
Students’ covariational reasoning was investigated through qualitative analysis of 
students’ graphs and written answers to the spherical vase task and using the 
covariational reasoning framework of Thompson and Carlson (2017). The spherical 
vase task allows for reasoning at all levels and has been used by Thompson and Carlson 
and several other researchers to investigate covariational reasoning. First, the task is 
presented to the students as a paper and pencil task at the start of the lesson and again 
later in the IVM-application (task 1), after they have worked with the animations filling 
the vase and moving the dots. 
Context and participants 
We used data from a teaching experiment conducted in one regular secondary school 
in The Netherlands. The participants were twenty 10th grade students (14-15 years old) 
at general education. In the Netherlands, students usually are introduced to graphs in 
dynamic events during the first year of lower secondary education (12 -13 years old). 
They are posed tasks similar to the one of the filling vase and requested to draw and 
interpret the related graph. Later on they learn to draw graphs pointwise and using 
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tables. Typically, when students are asked to draw a graph, they are used to construct 
the table first and then to draw the graph pointwise. Although mathematical reasoning 
is valued in the Dutch curriculum there is no explicit attention for covariational 
reasoning.  
Data collection and analysis  
The IVM-application was used during one lesson (about 20 minutes). At the beginning 
of the lesson the teacher asks the students to individually solve the spherical vase task 
and explain their reasoning. After filling in the task the teacher collected students 
answers and tablets were distributed. The teacher provided instructions about how to 
access the computer application. Each student worked individually with the IVM-
application. Both authors were present and observed the lesson using a semi structured 
observation form. 
The collected data consists of researchers’ records of the lesson observation, students’ 
written answers to the pre-knowledge task and to the tasks in the digital application. 
Firstly, students’ answers to the pre-knowledge task were analysed using the 
covariational reasoning framework presented in Table 1. Students’ conceptions of the 
covariational relation were studied from their graphs and written explanations. The 
graphs were categorized according to its shape. In some cases it was not clear whether 
parts of the graphs were representing an increasing or decreasing rise. In that case the 
graph was coded as 'unclear'. Students’ explanations were categorized according to the 
way they refer (or not) to change and different directions of change, as students’ 
perception of change is a key aspect in the covariational framework that distinguish 
higher and lower levels of reasoning. Based on this information the students were 
assigned to one of the covariation framework-levels.  
Secondly, we focused on students’ concepts of change while working with the two 
animations. In both animations, students are asked to describe in words how the height 
varies while the water is pouring into the vase. Analysis of these explanations provide 
insight in the influence of the animation-features on students’ discernment of change 
and covariation.  

RESULTS 
Students pre-knowledge 
Very few students generated an acceptable graph (n=4) in the pre-assessment task. That 
is a graph with a decreasing rising curve followed by an increasing rising curve. 
Instead, most students produced graphs representing variation in one direction: 
decreasing rising curve (n=4), increasing rising curve (n=5), strictly increasing curve 
(n=6).  Analysis of students’ reasoning with the covariational framework showed that 
most students reasoned at lower levels, as shown in the second column of Table 2. The 
most predominant level was the pre-coordination level. An example of a student 
reasoning at this level is: “as the amount of water increases, the water becomes more 
and more”. And an example of a student reasoning at gross variation level is: “as the 
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height of the water increases, the amount of water increases”. Only one student 
reasoned at chunky continuous covariation: “because it is smaller at the bottom of the 
vase, it first goes up quickly, then it widens, so it goes less quickly, then it becomes 
smaller again, and it goes up faster”. No student reasoned at smooth continuous level. 
 

 Reasoning levels Pre-knowledge 
(N=20) 

smooth continuous covariation 0 
chunky continuous covariation 1 
coordination of values 2 
gross coordination  2 
pre-coordination 11 
unclear 4 

Table 2: Students’ levels of reasoning at pre-knowledge 

Students’ graphs with the IVM-application  
Twelve students drew an acceptable graph of the spherical vase with the IVM-
application; eight of them had previously drawn incorrect graphs in the pre-knowledge 
assignment and four already produced correct graphs in the same assignment. 
Specifically, the eight students who improved their graph had previously drawn a linear 
graph (n=5), an increasing concave down graph (n=2) and a concave up curve (n=1). 
The graphs of the other students (n=8) were not correct but most of them showed 
attempts to improve their initial graph. Only one student drew the same incorrect graph 
again and one student did not provide an answer.  
Students' transfer: variation of the vase shape 
Analysis of the graphs generated in tasks 2, 3, 4 and 5 showed that the majority of the 
students who had generated an acceptable graph of the spherical vase-filling also drew 
acceptable graphs with regard to 3 or more of these tasks. This result suggests that 
students could transfer their ability to draw a graph by the spherical vase to other vase 
shapes. 
Students perceptions of change while interacting with the two animations  
The average time of students’ working with the IVM-application was 15.5 minutes. All 
students get the animation fill the vase which is aimed at supporting students in 
visualizing the variation of the variables height and volume individually and in relation 
to each other. In the application students were requested to describe how the height 
varied while the water was pouring into the vase. Eighteen students provided an 
explanation. Students who draw an incorrect graph in the spherical vase task were led 
to a second animation move the dots. This happened for 15 students. However, students 
written explanations in the application were too unclear or incomplete and therefore 
they did not provide much information about students’ thinking. For this reason, we 
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focused our analysis in students’ explanations provided by the first animation move the 
dots.  
Most students’ explanations (n=14) showed that students’ discerned change (n=6) or 
different directions of change (n=8) while interacting with the animation fill the vase. 
The other students’ explanations were unclear (n=3), didn’t show discernment of 
change (n=1) or did not provide explanation (n=2). 
An example of a students’ explanation that entailed different directions in change was 
the following:  “first the water went slowly to the middle and then it went faster”. The 
student draw a smooth curve representing a concave up graph followed by a concave 
down graph, which is not correct. But, the fact that the student perceived different 
directions in change when playing the animation can mean that the animation elicited   
students’ thinking at the levels of chunkey or smooth continuous reasoning.  
An example of a students’ explanation that referred to change (but not different 
directions in change) was: “it continues to fill in the same way and so the height 
increases more and more". This student draw a concave up graph. In this case students’ 
perceived change in one direction (increases more and more) when playing the 
animation and we considered that the animation did not elicited students’ thinking at 
higher levels, but elicited thinking about change. We don’t know in what extend the 
student played with the animation and how many times he pushed the button and 
observed the water falling. These are questions that we could not answer with our data 
but they could provide more insight in the way the animation can elicit (or not) 
covariational thinking.  
There were also situations in which the students’ explanation referred to change but 
the student generated an acceptable graph with different directions in change. An 
example of  an explanation of this type was: "the height changes per part because the 
vase becomes wider in some parts". In this cases was not clear if the animation elicited 
(or not) students thinking at higher levels, but elicited thinking about change.  

CONCLUSION 
Although there is several research on the learning of functions with technology, there 
are only a few studies that provide concrete directions on how computer applications 
can be designed to afford students thinking in ways that promote covariational 
reasoning (Johnson et al, 2017). A better understanding of how specific task features 
elicit and impact students’ thinking can provide useful directions for designers and 
task-users. The results of this study suggest that the IVM-application (Interactive 
Virtual Math) can elicit students’ covariational reasoning. Most students improved 
their initial graph or they kept the same graph as it was originally correct after working 
with the application. These students could transfer their ability to draw a graph by the 
spherical vase (task 1) to other vase shapes (tasks 2-5). Moreover, the students 
discerned change or different directions of change while interacting with the animation 
fill the vase, which is a characteristic of the two higher levels of the covariational 
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reasoning framework of Thompson and Carlson (2017). Key design features of this 
animation were the request for students to explain how one variable varied in relation 
to the other and the different colored-layers that were thought to help to visualize the 
variation of both variables individually and in relation to each other. These results 
extend the work of several researchers on the relation between students conceptions of 
change and covariational reasoning (e.g. Johnson et al., 2017).  
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Student use of mathematics resources in Challenge-Based Learning 
versus traditional courses 
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In this study we used qualitative methods to investigate which kinds of resources 
students used, and how they used them, in two programmes: (1) Challenge-Based-
Learning projects (CBL), and (2) Calculus and Linear Algebra courses (Pepin & Kock 
2019). The main data collection strategy consisted of focus group interviews with 
student groups working on the CBL projects. Results show that students working on 
CBL projects used resources outside the realm of curriculum resources offered to them 
in traditional courses, including internet resources and digital modelling and signal 
processing tools. The supervisor appeared important to provide feedback, which for 
some students led to an iterative Actual Student Study Path. This may have implications 
for the development of a CBL curriculum. 
Keywords: Actual Student Study Paths, curriculum resources, higher education 
mathematics, challenge-based learning.  

INTRODUCTION 
In traditional university mathematics courses, students orchestrate different resources 
and follow various Actual Student Study Paths (ASSPs) depending, amongst others, on 
the course organization and their preferred ways of studying (Pepin & Kock 2019). We 
have shown this to be the case for first year engineering students studying Calculus 
(CA) and Linear Algebra (LA) (ibid). Digital resources (e.g. the university’s Digital 
Learning Environment - DLE) constitute part of the resources used by students in these 
courses (Pepin & Kock, 2019). However, universities of technology tend to move 
towards more challenge-based projects (Malmqvist, Rådberg, & Lundqvist 2015), in 
which groups of students work, interdisciplinary, on authentic engineering tasks.  
Typically, studies on the use of resources include the curriculum resources made 
available or recommended as part of mathematics courses. For example, in a review 
study Biza, Giraldo, Hochmuth, Khakbaz, and Rasmussen (2016) have described the 
opportunities afforded by introductory university mathematics textbooks, and their 
actual use by students in traditional lecture/tutor group courses. However, in these 
courses there are also social resources (e.g. lecturers, tutors, peers) that students tap 
into, and digital and other resources mobilized by students themselves. In challenge-
based courses students have to develop their own learning/study strategy, including 
their learning trajectories (i.e. what to do to learn). Subsequently they have to build the 
resources into the challenge-based project development according to their needs. 
Hence, we expect that student needs regarding the selection and use of resources in a 
challenge-based learning environment differ from those in traditional lecture/tutor 
group courses. 
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We ask the following research question: What kinds of resources were selected by 
students, and how did students’ ASSPs unfold in CBL projects, as compared to 
traditional courses?  

THEORETICAL FRAMES 
In this study we use the theoretical frames of (a) Re-sources, (b) Actual Student Study 
Paths, and (c) Challenge-Based Learning for our purpose of comparing ASSPs in 
traditional mathematics courses versus studying mathematics in innovative 
approaches, such as CBL.    
Several studies lean on the notion of resource to study what kinds of resources and 
materials students have access to, use, and orchestrate for their study of mathematics 
and engineering (e.g. Anastasakis, et al., 2017). To clarify the concept of curriculum 
resources, Pepin and Kock (2018) referred to mathematics curriculum resources as “all 
the resources that are developed and used by teachers and pupils in their interaction 
with mathematics in/for teaching and learning, inside and outside the classroom.” 
Curriculum resources would thus include text resources (e.g. textbooks, teacher 
curricular guidelines, worksheets); other material resources, such as manipulatives and 
calculators; and web based/digital resources (e.g. the DLE, videolectures). Digital 
resources are generally distinguished from digital educational technologies (e.g. digital 
geometry software) (Pepin & Gueudet, 2018). General resources are the non-curricular 
material resources mobilized by students, such as general websites (e.g. google 
Scholar, Wikipedia, YouTube). Cognitive resources are the mathematical frameworks 
and concepts students work with. In terms of social resources, we refer to formal or 
casual human interactions, such as conversations with friends, peers or tutors.  
Using the lens of resources, we (a) investigated students’ own perceptions of how they 
manage their learning/studying, and (b) coined a term that linked to the patterns we 
observed in these perceptions. We drew on Simon and Tzur’s (2004) Hypothetical 
Learning Trajectory approach, and other works in this field. However, when 
investigating students’ study trajectories, we considered: (1) the alignment and 
orchestration of resources, not of tasks or activities; (2) the students’ perspective, that 
is, how they actually orchestrated the resources for their own learning (and not how it 
was done by teachers/lecturers) and how they gave meaning to these self-
created/orchestrated paths. In an earlier study we called these Actual Student Study 
Paths (ASSP- see Pepin & Kock 2019) and outlined selected study paths for the first-
year courses of CS and LA.   
Malmqvist, Rådberg, and Lundqvist (2015) have defined challenge-based learning 
(CBL) in the following way: 

Challenge-based learning takes places through the identification, analysis and design of a 
solution to a sociotechnical problem. The learning experience is typically 
multidisciplinary, involves different stakeholder perspectives, and aims to find a 
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collaboratively developed solution, which is environmentally, socially and economically 
sustainable. (p.1) 

Often mathematics is the content area where students struggle to see its value, until 
they arrive at an engineering problem/challenge that typically cannot be solved without 
mathematics. Therefore, one way to stimulate students to appreciate the value of 
mathematics is to frame the mathematics learning around engaging, authentic problems 
related to a ‘real’ challenge (Rasmussen & Kwon 2007). These learning environments 
aim not only to foster student learning, but also to promote collaboration between 
university, business and the public sector and to create societal and technical prototype 
solutions to difficult, strategic challenges. Students play a key role in these 
environments, not only in problem-solving, but also in driving a collaborative, multi-
perspective dialogue on defining the problem to be solved. In addition to a physical 
arena, the CBL labs typically provide a set of methods for addressing a societal 
challenge, from problem identification to solution concept.  

THE STUDY 
In the Innovation Space (IS) of a Dutch engineering university, groups of 4-5 bachelor 
students worked together in multi-disciplinary teams (e.g. industrial design, 
mechanical engineering, innovation sciences) on a challenge, set by a stakeholder from 
outside the university. The projects were unstructured but the students had to fulfill 
Bachelor End Project (BEP) requirements of their respective disciplines. This setup 
provided students with opportunities to investigate and analyze an authentic situation 
and to develop a (prototype) solution in the form of an artefact. Different projects 
included various degrees of mathematics in the form of mathematical modelling and 
signal processing with the help of digital tools. No particular resources were 
stipulated/provided, except that each group had a supervisor (from one of the university 
departments) and an outside stakeholder, who supported the projects. Earlier, students 
had followed lecture/tutor group based mathematics courses (e.g. CS, LA), where they 
were provided with particular resources.  
In our previous study (Pepin & Kock 2019) we had used a case study approach to 
investigate 24 students’ orchestration of resources (coming from nine different 
engineering departments) in two first year mathematics courses in the same 
engineering university. In the present study we explored 6 students’ use of resources 
for their challenge-based Bachelor End Projects. 
Our data collection strategy had a similar approach as in the previous study:  

• Individual and focus group interviews with four student groups working on IS 
projects. In two of these projects mathematical knowledge was important for the 
students to understand, model, or solve the problem. In this study we focus on 
these two groups, the Parkinson project and the Garden of Resonance project. 
The interviews were conducted in English, which was a second language for 
most students.  
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• Students were asked to draw Schematic Representation of their Resource System 
(SRRS - see Pepin & Kock, 2019), to illustrate the particular resources each 
student used, and how. During the interviews, students were asked to explain 
their resource use based on their SRRSs. The SRRSs served as a methodological 
tool, to help the researchers understand the use of resources.   

• Selected observations in the IS environment included observations of mid-term 
and end-of-project presentations; observations of student working places in the 
IS labs; observations of supervisor meetings where the projects were discussed 
(including assessment).  

• Examination of documents/curriculum materials provided by the university and 
lecturers for the students: e.g. syllabi, resources provided by the different 
engineering departments (mainly to understand the contexts in which students 
were working in the IS as compared to their ‘home departments’). Moreover, we 
examined two final student reports.  

• Informal interviews/discussions with course leaders were conducted, in order to 
understand the context of and the way of working in the IS. 

In terms of analysis, the interviews were first transcribed and interview quotes with a 
reference to mathematics and mathematics resources were selected and coded. Second, 
student drawings were compared with their explanations and the selected quotations 
(within case comparison): how they explained their identification of (for them) suitable 
resources and the orchestration of these resources; this resulted in selected resources 
and self-reported study paths. Third, these self-reported study paths were compared 
across the cases. This resulted in particular types of study paths for the interviewed IS 
BEP students who referred to mathematics resources. Fourth, the findings from the 
previous study were compared with the results from this study, taking-into-account the 
context and course organization. 

RESULTS 
In the Parkinson project the students focused on the so-called freeze of gait issue. 
During a freeze of gait episode, patients unexpectedly feel as if their feet are stuck to 
the ground while they are trying to take a step. Patients have an increased risk of falling 
as a result of a freezing episode. Present research is directed at understanding the 
occurrence of these episodes. In the project students were working on the development 
of a prototype sensor to detect a freeze of gait situation.  
The students realised that some of their previous courses and learning experiences were 
useful as cognitive resources: 

Yea, calculus physics, modelling, and … Like, you have calculus mathematics and 
modelling, those are very important basic skills for an engineer I think. … I think for 
example when you want to calculate the stride length, you have to integrate. So, then you 
need to have had a basic of calculus. (Int Foc C) 
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Students mentioned the importance of mathematics as an important tool in the project. 
Students C and D specifically mentioned CS, and the techniques of double integration 
from an acceleration to a displacement. Moreover, the students were dealing with 
issues of measurement errors, the filtering of signals, and analysis in the frequency 
domain. For this, they mastered and employed digital tools, in particular 
Matlab/Simulink. Student D explained the resources he used to obtain the knowledge 
needed for the project, as shown in his SRRS (Figure 1):  

Because the double integration was really a hard thing (…) I contacted a master student 
who helped me further with the Matlab and Simulink part. I also asked my own supervisor 
or tutor. I also got in contact with another faculty staff member, …He helped me with the 
sensor part, and filtering signals. …And [the supervisor] helped me a little bit, but he didn't 
have the time to figure it out himself. So, I was all by myself and looking it up on the 
internet, and YouTube videos and Matlab documents and such. (Int Foc D) 

 

Figure 1. Student D SRRS. (Transcribed from original drawing for readability.) 

From the SRRS and interviews, we identified particular self-reported study paths. for 
example, student D (see Figure 1) put a literature study at the centre of his work. He 
interacted with several social resources when he got stuck, including the authors of 
scientific papers, and knowledgeable peers. Student C built knowledge from university 
courses and knowledge he had developed following his own interests, using internet, 
literature, and social resources. He appeared confident that he could develop and add 
“another level of expertise” when needed.  
In the Garden of Resonance project the students, under the guidance of an artist, 
assisted in creating a work of art consisting of huge sound scales, that made it tangible 
how all matter is constantly vibrating (see www.gardenofresonance.com). The students 
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attempted to model and design sound scales producing a sound spectrum with 
frequencies that had a calming effect on the listener.  
The students of this project appreciated the support of social resources: (a) their peers; 
(b) professors / supervisors; and (c) the artist originating the project: 

I helped [H] in working out a little bit of the calculations for his model. And I was not able 
to do that, I guess, when I didn't do any mathematics before. So, otherwise you really have 
to find out how the concepts work. (Int Foc V) 

Yea, and [what] she [the acoustics professor] kind of does is, she lets me go run in the wild 
with all the knowledge. And then tells me "It's good that you found all that, but you need 
to especially need to take care of that.” And then I go back again, get up and do it again.  
(Int Foc H) 

Digital mathematics tools, such as Matlab and its signal processing toolbox (e.g. Fast 
Fourier Transform - FFT), were important for the students to model the problem and 
analyse their data (see Figure 2).  
Students referred to previous courses as resources for the project. However, they had 
wanted to see the relevance of the knowledge in those courses: 

Maybe the knowledge about that process, that takes time. (…) If I would have had my 
classes as I would have had now. And if I would have had my tests in a different way, in 
which I needed to use the knowledge that I had obtained into modelling something, or 
making something. But then making it by myself and not making it in a whole team that 
all get really specialized in one piece so that you still don't have oversight of what you are 
doing. That would have created a sense of, kind of a sense of how knowledge becomes. 
(Int Foc H) 

The students explained the different ways of using (and learning) the mathematics in 
traditional courses and for the project: 

Like the calculus and the physics ones, those are essential. Because they actually teach you 
like the tools to handle some problems. But where I think like the project work, … like 
there would be a moment where you sit down with somebody, and actually sketch out the 
project. Actually, sketch out what steps you need to take, and what information you might 
want to research on that. (…) What the format is now [of the traditional courses], is that 
you get a lot of information that you might use sometimes. But because you get like 
information like "Here you got it." And then you don't do anything with it. "Yea, ok. I'm 
now just trying to pass the test, and then I'll forget it I guess”. (Int Foc H) 

In terms of different student study paths, we observed that student H (Figure 2) 
described an iterative path of developing knowledge using different material and social 
resources, subsequently being corrected by feedback from his professor/supervisor, 
after which the process started again. Students N and V drew SRRSs with categories 
of resources they had used, but without a specific sequence. Their categories contained 
curriculum materials from the university, but also social resources from within and 
outside the university and a range of general resources, often web-based. Digital 
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software tools such as Matlab were important resources to shape the mathematical 
practice of the students and to help develop a solution to the challenge, based on the 
mathematical concepts involved.  

 

Figure 2. Student H SRRS 

Compared to the first year CS and LA courses (Pepin & Kock 2019), the CBL projects 
had no pre-determined structure or study path. In the CBL projects the multi-
disciplinary student group had to find their own ways of defining and solving the 
problem. Whilst the suggested resources for the CS and the LA course/s were pre-
selected, and partly well-defined and aligned, there were no pre-defined  resources for 
the CBL projects, apart from the supervisors and the peer support. 

CONCLUSIONS 
The findings show that in their CBL projects the students used resources other than the 
curriculum resources offered to them in traditional courses. These included cognitive 
resources, digitally accessed scientific papers, digital software tools, peers, and experts 
in the field. The ASSPs were either (a) iterative/cyclical and feedback based, or (b) 
focused on the common project goal, or (c) on the supervisor providing advice, with a 
combination of approaches being quite common. This was in contrast to the more 
sequential ASSPs, described in our earlier study, which students had used to 
individually master mathematical content for examination purposes. Indeed, some 
students mentioned the importance of the basic mathematics courses as cognitive 
resources. In these, the ASSP appears to have its benefits in terms of students 
developing confidence with particular mathematical concepts. However, the CBL 
ASSPs show that students need to develop confidence when dealing with uncertainties 
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in a multidisciplinary group. For example, students experienced uncertainty when they 
looked for conceptual mathematics resources and digital modelling resources, to 
address the CBL problem. They acquired confidence with the help of the social 
resources at their disposal, in particular with their supervisor. An implication is that 
students have to be supported with CBL trained supervisors, in addition to suitable 
curricular, technological, and social resources. This will help them develop as self-
determined, open-minded, and mathematically-knowledgeable engineers, willing and 
able to solve engineering challenges.  
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Citizen empowerment in mathematics curriculum:                           
design of exemplary digital learning environments 

Stefan Pohlkamp and Johanna Heitzer 
RWTH Aachen University, Germany, stefan.pohlkamp@matha.rwth-aachen.de  

Mathematics behind social contexts – whether in political or economic concepts – has 
a low presence in school curriculums despite its importance for a civic participation. 
This paper is a plea that mathematics education must contribute to citizen 
empowerment in a subject-specific way. Therefore, it provides an analysis of how 
digital learning environments can facilitate an access to the mathematics of civic 
topics. The design of concrete examples illustrates how students can gain elementary 
insights in civically relevant mathematics through dynamic exploration and 
autonomous simulation. These digital learning environments give ideas how to 
promote empowerment through mathematical skills and to enlarge the curriculum. 
Keywords: citizen empowerment, digital learning environment design, curriculum 
accessibility, dynamic exploration, modelling in civic contexts. 

MOTIVATION 
“It [mathematical literacy] assists individuals to recognise the role that mathematics 
plays in the world and make the well-funded judgments and decisions needed by 
constructive, engaged and reflective citizens” (OECD 2017, p. 67). This partial 
characterisation of mathematical literacy as defined in the PISA framework specifies 
the pursuit of students’ empowerment as one principal objective for a mathematics 
curriculum. The learners as future fully-fledged citizens should be able to identify the 
mathematical perspective on a civic issue and to integrate this perspective into the 
formation of their own opinion. Civic affairs are often complex, interdisciplinary and 
controversial which used to limit an exploration within mathematics education. 
Nevertheless, the mathematical side of a public topic should not be ignored in advance 
solely because it is mathematical.  
As a consequence, this paper is a proposition for the constructive design of digital 
learning environments in which citizen empowerment can be addressed as a topic of 
mathematics education. The starting point is the thesis that using the advantages of 
digital technologies facilitates new approaches to discuss the mathematical perspective 
on civic issues. Firstly, it is important to know the significance and the challenges of 
citizen empowerment as an objective of a mathematics curriculum. Secondly, the 
question is to determine features of digital learning material that simplify an 
examination of relevant civic issues with students. These considerations result in 
concrete digital learning environments. By analysing exemplary civic topics by means 
of mathematics, students discover how a mathematical perspective enriches the 
individual opinion formation and the public debate. 
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CITIZEN EMPOWERMENT FOR ALL? 
To begin with, a common understanding of the extent and content of citizen 
empowerment is needed, as well as its significance in mathematics education. Principal 
links between mathematics education and education for democracy consist in the social 
functions of mathematics and the fact that the learners become autonomous members 
of society – besides pedagogical methods to promote self-determined cooperative 
learning (Skovsmose 1998). As the first aspects are content-orientated, they can easily 
be integrated in a set of learning targets that are specific to mathematics educations. 
Apple (1992) differentiates between a functional mathematical literacy that prepares 
mainly for working life and participating in the consumer society and a critical 
mathematical literacy “to support open and honest questioning of our society’s means 
and ends” (pp. 428f.). To give a concrete example, empowerment through mathematics 
education is more than making your tax return but understanding the mathematical 
dynamics of tax rates for different incomes. The social impact of mathematics applies 
to the mechanism behind the phenomena and therefore often remains invisible: 

Applied mathematics are only interesting and really indispensable for general knowledge, 
when real life examples illustrate the functioning of mathematical modelling (Winter 1995, 
p. 38, transl. by the authors). 

Winter (1990) names two categories of citizen empowerment through mathematics 
education: Civic Calculating and Political Arithmetic. While the first comprises a basic 
understanding and autonomous handling of the everyday mathematics as percentage 
calculation, rule of three, statistics etc., the second aims for a more critical context-
orientated analysis including a deeper mathematical understanding. Winter places the 
topics of Political Arithmetic at the earliest in the curriculum of an upper secondary 
education. The hidden mathematics of civic issues is indeed often part of complex 
modelling relying for example on discrete mathematics or functions with several 
variables, content beyond the school curricula. Regarding education for all and equal 
civil rights, it would be a problem if mathematical insights within the scope of citizen 
empowerment were not accessible for everyone. 
Citizen empowerment is not limited to communicative competencies and reflection but 
also includes specific mathematical knowledge and skills. As to the example of taxes, 
an understanding of a progressive tax bases upon the differentiation between absolute 
and relative values. Otherwise, even with one fixed tax rate (e.g. the biblical tithing) a 
rich person would pay more in absolute numbers than a less wealthy citizen. This 
argumentation recurs to fundamental mathematics; furthermore, Vohns (2017) 
analyses the topic of taxes with the perspective of a civic education: the effects of an 
income tax threshold lead to an asymptotic curve of the average tax rate. In addition, 
the widely discussed marginal tax rate is a concrete practice of differential calculus. 
Both are mathematical topics of an upper secondary education, but essential for the 
understanding and critical judgement of a politically mature citizen who regularly pays 
taxes and whose vote for a political party can depend on its fiscal policy.  
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The mathematical side of civic phenomena reveals the “formatting power of 
mathematics” (Skovsmose 1998, p. 197). Mathematics is used to define and to arrange 
socially relevant concepts. Whereas a definition of poverty generates one fixed value, 
tax rates is an instance of establishing functional dependencies. They have in common 
that mathematics has been used to shape reality (normative modelling [1]). Winter’s 
Political Arithmetic not only analyses the current circumstances, but also compares 
them with possible alternatives. In fact, the formulating and reflecting of different 
mathematical approaches to the same civic problems are the core of a critical 
mathematical citizen empowerment. 
One principal idea of citizen empowerment through mathematics education is 
disclosing and questioning the prescriptive function of mathematics in civic contexts. 
Since the connections between mathematical assumptions and social consequences are 
manifold and demanding, a way of popularisation of the central dynamics is needed to 
illustrate how the use of mathematics in civic contexts forms social reality. 

NEW ACCESS VIA DIGITAL TECHNOLOGIES 
This paragraph presents constructive settings and didactical findings that give guidance 
for the design of digital learning material towards citizen empowerment. The difficulty 
while studying topics of citizen empowerment is the high intrinsic cognitive load 
defined by the simultaneous consideration of multiple factors. Therefore, the task 
design to this content should reduce the extraneous cognitive load incorporated in the 
task itself to facilitate the intelligibility in general (Sweller 1994). 
One concept for task design is Wittmann's (2001) substantial learning environment: It 
ties important aims and contents of teaching mathematics to fundamental matter 
beyond this educational setting while being flexible and offering a multitude of 
learners’ activities. This didactical concept seems suitable for the essential challenges 
of the above-mentioned mission, the more so as there are further criteria for digital 
learning environments: They promote explorative learning, focus on relations and on 
interdependencies, their handling is rather self-explanatory and their inherent tasks can 
be adapted (Brüning et al. 2008). In such a learning environment, the two main 
advantages of digital mathematics tools are the systematic variation and the dynamic 
visualisation (Heintz et al. 2017). On the one hand these explorative activities appeal 
to the students’ curiosity and ludic drive, on the other hand they can reduce efforts in 
calculation and mathematical notation hindering the accessibility. 
Weigand (2017) presents a three-dimensional competence model for the use of digital 
technologies in mathematics classes with the axes Activity, Representation and 
Understanding which categorises classroom activities and can be transferred to the 
context of this paper: with embracing citizen empowerment, learners should engage in 
open, interactive tasks like discovering and explaining instead of directed exercises as 
calculation. The dynamic representation of the mathematical aspects of the civic issue 
is the core of the following exemplary learning environments whereupon multiple 
dynamic representations are preferable. The objective is to reach a relational 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

290 

understanding in the sense of a qualitative evaluation how a mathematical decision 
affects the context in question [2]. 
Designing learning material for citizen empowerment is contextualised in the area of 
mathematical application and modelling. Geiger (2017) links this part of the 
mathematics curriculum with the challenge of integrating digital technologies into the 
task design: digital technologies support principal functions of mathematical 
applications. They increase the Accessibility to complex problems whereby a higher 
level of Authenticity of the example is reached. By giving direct feedback, they 
stimulate a Development of the students’ mathematical and contextual knowledge. 
One effective way to initiate civic learning and developing a reflective attitude is 
confronting students with paradoxes. Bokhove (2017) attests the success of 
intentionally provoking cognitive crises: in this way, students have to react to 
something unexpected which turns their way of thinking upside down. For achieving 
citizen empowerment, it is helpful to expose intriguing counter-intuitive phenomena. 
However, empirical psychological results show another alternative: once learners have 
been in the position to produce own fake news in an online game, they are more aware 
and critical when consuming misinformation afterwards (Roozenbeek & van der 
Linden 2019). In analogy, learners could be more observant of the formatting use of 
mathematics if they had their own experience in manipulating mathematical models in 
civic contexts.  
A digital learning environment that targets citizen empowerment must profit from new 
ways of visualisation and simulation facilitating the access to topics with multiple 
interdependencies. Interactive exploration, interest awakening paradoxes and 
experiencing self-efficacy are keys making civic topics accessible for a relational 
understanding without overstraining students with higher mathematics. 

EXEMPLARY CONTEXTS AS DIGITAL LEARNING ENVIRONMENTS 
As a first example, apportionment methods in proportional electoral systems are a 
classic civic issue with relevant mathematical content. While students can easily derive 
the largest remainder method (also known as Hamilton method) from the rule of three, 
its most famous disadvantage, the Alabama Paradox [3], has traditionally been taught 
by tables of historical examples or by constructed minimal numbers. The dynamic 
digital exploration via the developed material represents a new approach despite the 
wide range of literature about apportionments and their geometrical visualisations (e.g. 
Gauglhofer 1988, Bradberry 1992). In fact, apportionment methods are functions with 
multiple variables (numbers of seats, number of parties and their votes); they are based 
on algorithms and not defined by an equation. Varying the parameter S, the number of 
seats, leads to an analysis of the Hamilton method: Are there any regularities? Which 
party gets which seats? In this environment (Fig. 1) students can discover the Alabama 
paradox: Why do two parties get the 272th seat? Why does one party lose a seat? Once 
the students can explain the visualisation, they can interpret this illogical phenomenon 
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in its contextual meaning. For a further understanding, a spreadsheet next to the 
visualisation presents the typical table with quota and remainders for the chosen S, so 
that a combined representation leads to the resolving of the paradox. Instead of 
focussing on calculation, students elaborate their skills on authentic data (as the 
numbers of the German federal election 2017 [4]). Unlike abstract single cases, the 
dynamics make the paradox more accessible while giving a bigger picture of the 
Hamilton method.  

 

Figure 1: Dynamic Exploration of the Alabama Paradox 

Taxes are a good second example for socially relevant mathematics (examples for 
didactical analyses are Daume 2016, pp. 42-50, or Henn 2017). As stated above, citizen 
empowerment in this area consists in revealing fundamental mechanisms. Figure 2 
shows a digital learning environment in which students can determine an income tax 
threshold on a simple linear or quadratic tax rate: While manipulating the threshold, 
they see in the left graphic the resulting tax rate (the dashed line is the tax rate without 
threshold) and in the right one the average and marginal tax rate. In this dynamical 
simulation students discover that the bigger a threshold the gentler is the slope of the 
average tax rate. The average tax rate approaches the marginal tax rate more slowly. 
Graphically and without calculus, the latter can be understood as the tax rate of the next 
euro earned. Based on this learning environment fundamental concepts as fiscal drag 
become obvious; in analogy, other crucial points of a progressive tax system as the 
transitions between different rates can be analysed. In this manner, the students can 
model important characteristics of a subjectively fair tax system. The dynamics not 
only support a visualisation in order to perceive a certain phenomenon but display a 
central lesson for citizen empowerment: mathematics behind civic topics are not static 
but manipulatable. Formulas in such context are not laws of nature but conventions. 
By being able to identify mathematical assumptions, civic engagement can lead to 
another outcome. 
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Figure 2: Dynamic Simulation of an Income Tax Threshold 

Lastly, business valuation (e.g. Hitchner 2017) gives an economic context for a third 
example. Market capitalisation regularly gives cause for headlines [5]. A digital 
analysis easily shows the unstable character of this value as it is based on the share 
price. Reflecting the news values on the knowledge that the business value – measured 
as market capitalisation – can change every day promotes a critical attitude towards 
such information. In a next step, students can correlate the market capitalisation of 
different companies or examine long-term effects by referring to mean share prices. 
For an own judgement it is not only important to verify parameters within one method, 
but to know that there are different methods as well. Putting business valuation on the 
agenda of a mathematics curriculum is the occasion to discuss the principle of an 
income approach as an alternative. This financial context of discounting allows a real-
life introduction of the geometric series. The main advantage in this digital learning 
environment is that students are relieved of excessive and/or complicate calculation by 
a (multiple) dynamic representation of the results. Within a short space of time, 
students can check variants of one model and contrast them with other approaches. By 
doing so, they can focus on mathematical interrelationships and their contextual 
meaning as well as on a reflection about the role of mathematics in economic models 
in general. 

EXPERIENCES AND CONCLUSIONS 
In workshops it could be shown that the understanding of the learning environments 
doesn’t differ between lower and upper secondary students supporting the initial thesis 
of an enlarged accessibility through the digital opportunities. Besides, the developed 
material includes units enriching the regular curriculum like apportionments as 
dynamical deviations from the intercept theorem. 
The use of mathematics is not limited to science, technology or engineering but is 
indispensable in many social, economic and political applications. In addition to 
cognitive competencies a mathematics curriculum should aim for citizen empower-
ment: politically mature students reassess mathematical decisions in civic affairs and 
formulate alternatives. Even if the mathematics in such topics often belongs to upper 
secondary level, digital technologies can make principles accessible, such as 
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assumptions and characteristics of the modelling process. Mathematical-contextual 
interdependencies can be visualised dynamically and are open for exploration and 
manipulation. Digital learning environments promote examining paradoxes, retracing 
simulations and comparing different approaches rather than calculating single 
situations. They are particularly apt for a visualisation of interrelationships and 
alternatives in socially relevant contexts. This dynamic approach enlarges the 
perception of mathematics: it is not only a tool for description but also shapes reality.  

NOTES 
1. For an elementary characterisation of normative modelling see Freudenthal 1978. 

2. The original meaning of relational understanding is specific to the contexts of functions (Weigand 
& Bichler 2010). 

3. The Alabama paradox is the phenomenon when a party (or a state in the American Congress) loses 
a seat although the number of seats has been increased (Balinski & Young 2001).  

4. Effectively, the Webster method is used for the German federal election, discovering the Alabama 
paradox only serves here as a means to introduce the actual method. 

5. E.g. “Alphabet Becomes Fourth U.S. Company to Reach $1 Trillion Market Value”, The Wall 
Street Journal, 16 Jan. 2020, https://www.wsj.com/articles/alphabet-becomes-fourth-u-s-company-
to-ever-reach-1-trillion-market-value-11579208802 (last accessed 9 Feb. 2020). 
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The paper focuses on a case study in which three Israelian students are engaged in an 
Augmented Reality activity. By wearing special glasses, the involved students see 
mathematical semiotic representations juxtaposed to the real incline plane experiment 
(Galileo law). The virtual AR signs consist in a table and a graph made with the data 
caught from the Galileo experiment. Students are supposed to make sense of these 
virtual data guided by some questions contained in a worksheet task. Our hypothesis 
is that in order to connect and make sense of the semiotic representations observed 
within AR environment, students develop an inquiry approach to mathematics. 
Keywords: Augmented Reality, Logic of Inquiry, Galileo law, semiotic representations. 

INTRODUCTION 
Technological development has allowed new ways of teaching and learning 
mathematics experimentally. Previous research has shown the possibility to simulate 
physical experiments, to catch data and to make mathematical model of them. 
Augmented Reality (AR) technology empowers these affordances, by embedding 
virtual mathematical signs inside the learning environment where real physical 
experiments are performed. This is the first result reached by the group of the 
augmented reality projects1, in which through special glasses it is possible to see both 
the real word phenomenon and, simultaneously, its mathematical model (Swidan et al. 
2019). In fact, the AG technology, developed by the Ben-Gurion University research 
team, is able to trace moving object and to augment them with virtual mathematics 
representation. 
In this paper I will focus on a case study to examine how the AR experiments of real 
world phenomena boost students’ inquiry based-learning (for more information about 
the development of the AR technology, see Schacht & Swidan (2019) and Swidan 
(2019)). Inside this learning environment, students are not passive receiver of 
knowledge but active inquirer who have to find ways to interpret the real experiment 
through the mathematical signs provided by the augmented environment. Inquiring 
processes are essential to mathematical reasoning. As highlighted by J. Dewey (1938, 
p. 3-4) “[…] all logical forms (with their characteristic properties) arise within the 
operation of inquiry and are concerned with control of inquiry.  
In order to analyse the way in which augmented environments may assist students in 
inquiring mathematical knowledge, I will adopt the logic of inquiry approach, which 
has already been used to analyses students cognitive process within dynamic geometry 
environments (Arzarello & Soldano, 2019). 
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Logic of Inquiry  
The logic of Inquiry is a new type of logic, coherent with the classical one, developed 
in the 1970 by the Finnish logician J. Hintikka (1998, 1999). According to Hintikka, 
the study of logic should not concern only the study of logical rules which allow the 
mathematician to avoid to make logical mistakes but should also concern the study of 
good ways of reasoning. Interrogative games describe the model for developing logical 
reasoning: they are two players games between an inquirer and an oracle. The oracle 
represents the source where new pieces of information comes from, it can be “a 
databased stored in the memory of a computer, a witness in a court of law, or one’s 
tacit knowledge partly based on one’s memory” (Hintikka, 1998). The inquirer asks 
the oracle strategic questions and uses the answer to develop his reasoning. Imagine 
that the inquirer starts from a theory T and would like to reach a conclusion C (see 
Figure 1). The inquirer asks a first question to the oracle and, with the received answer, 
he is able to add a piece of information T1 to the theory T. The inquirer repeats this 
questioning process until he obtains all the pieces of knowledge that allow him to 
deduce the conclusion C. 

 

Figure 1: Model of interrogative games 

The way of reasoning described by interrogative games allow the introduction of new 
hypothesis/theories in the discourses: it is an abductive way of reasoning.  
Abductive reasoning is a natural way of thinking, which characterizes everyday life. 
Paying attention to our way of reasoning, it is possible to notice that we are 
continuously formulating abductions. For example, imagine the situation in which you 
are in the car and there is a long queue in front of you. You cannot see the end of the 
queue because a curve limits your vision. Naturally, you start making hypothesis for 
explaining the queue: maybe there is a traffic light after the curve or maybe a car crash 
has blocked the circulation. 
The notion of abduction has been introduced by Peirce (1960, p.372), who describes 
abductions as follows:  

[…] abductions look at facts and looks for a theory to explain them, but it can only say a 
"might be", because it has a probabilistic nature. The general form of an abduction is: 

- a fact A is observed; 
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- if C was true, then A would certainly be true; 

- so, it is reasonable to assume C is true. 

Using the car queue example, A is “there is a car queue curve” and C is “there is a 
traffic light after the curve”. I know that if there is a traffic light after the curve then, 
probably, there is a car queue curve just after. This reasoning can be wrong, in fact also 
if there is a car crash after the curve, then there is a car queue just after. Abductive way 
of reasoning is subjected to a certain degree of probability to be wrong. Hintikka (199) 
observes that the probability to be right increases if the selection of the theory that 
allows to explain the facts is made in a strategic way, namely using the same strategic 
principles which are activated while playing strategic games. In order to make a good 
move during a chess game match, a player should know definitory rules, namely how 
chessmen may be moved on the board, what count as checking and checkmating, but 
he should also know strategic principles, namely how to make the moves, which of the 
numerous admissible moves in a given situation it is advisable to make. In the example 
of the car queue, you will select the most probable C evaluating the time you stay in 
queue, the sound of ambulance, etc. 
Previous researches have highlighted that dynamic geometry environment can develop 
a Logic of Inquiry approach to mathematics (Soldano & Arzarello (2018), Soldano & 
Sabena (2019)), our hypothesis is that, the same result may be observed inside AR 
environment.  
To test our hypothesis, AR activities based on physical experiments, have been 
designed. The case study described in this paper is based on the Galileo law that 
describes the movement of a cube which slides down on an incline plane. The AR 
glasses display AR data juxtaposed to the real experiment. The data are represented in 
the graphical and numerical register (Duval, 2006). The table shows numbers which 
represent the distance the cube moves in real time times. The graph displays a distance-
time function as a set of discrete points made with the same data contained in the table. 
The simultaneous display of the graph and the table of numers give to students the 
opportunity of making conversions from a semiotic representation to the other (Duval, 
2006).  

METHODOLOGY 
The case study involved three voluntary students of grade 11 who have studied 
quadratic function at school but are new to Galileo’s law. The experiment was 
performed inside the laboratory of Ben Gurion University in Israel, supervised by 
Osama Swidan. The researcher plays the role of observer and intervenes only to help 
the students to manage technology or to trigger the discussion. Collected data consist 
in video and audio recording of two-hours experiments. 
The technological devise used in the experiments are AR headsets which uses cellular 
phones app. The app, trace dynamic objects and represent the dynamicity of the object 
by mathematical representations.  
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The three students had at their disposal two pairs of AR glasses, hence while two 
students are looking in the glasses, the third one takes care of the experiment. The 
experiment on which students are required to investigate is what we called the “AR 
Galileo experiment”, because reproduce with AR technology the experiment made by 
Galileo to verify the hypothesis that a falling object would gain equal amounts of 
velocity in equal amounts of time, namely the distance made by a falling object is 
proportional to the square of time. In order to test it, Galileo decelerated the motion of 
the falling object by using a ball rolling down an inclined plane. In doing that, he 
assumed that a ball rolling down a ramp would speed up in the same way as a falling 
ball would since free falling is essentially equivalent to a completely vertical ramp.  
The AR experiment consists in a cube which slides down a slanted surface as seen in 
Figure 2. 

 

Figure 2: Screenshot of the AR experiment as seen through AR glasses 

Through the glasses, students see the cube movement, numbers which represent the 
real time distance run by the cube and their graphical representation. Students should 
make sense of the observed virtual mathematical signs and connecting them with the 
cube experiments. In this attempt they are guided by the following questions: 

Hypothesis: Without using the AR glasses, what kind of relationship 
do you expect to observe? Discuss your conjecture with 
your classmates and try to reach a consensus. 

Experiment: Conduct an experiment with your AR-device to check 
your conjecture. 

Reflection:  
 

- What do you observe? 
- Could you confirm your conjecture? 

Table 1: Worksheet task given to the students 

In order to design the tasks (see Table 1), we referred to the three epistemological 
phases suggest by Barzel et al., (2013). The exploration phase consists of rich and open 
exploration tasks (Freudenthal, 1973), which allow students “to actively and 
collaboratively re-invent ideas, concepts, procedures and relations” (Barzel et al., 2013, 
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p. 286). In our task, this phase is triggered by the “Hypothesis” and the “Experiment”. 
The organization of knowledge phase which is meant “to establish a shared 
understanding of the core concepts, theorems and procedures” (Barzel et al., 2013, p. 
286). This phase is mainly triggered by the first question of the “Reflection”. The 
practice phase in order to render students’ “knowledge and skills more stable and 
flexible by repeated practice and transfer” (Barzel et al., 2013, p. 287). This phase is 
mainly triggered by the second question of the “Reflection”. 

ANALYSIS 
All the conjectures made by the students before the AR experiments are formulated 
within the physical field. They conjectured relationships between the slippery of the 
incline plane and the velocity of the cube and between the inclination of the plane and 
the slippery of the cube. 
After the first experiment, in which one student releases the cube on the inclined plane 
while the other two are looking through the AR glasses, students start describing the 
virtual mathematical signs that they observed with their AR glasses, namely the AR 
graph and numbers. Here it is reported the transcript: 

1 Student 1: It makes a straight line. 
2 Student 3: Me too! Straight line upward then rightward. 
3 Student 1: It has a lot of numbers in it, 22, 21, 21... 

The observed mathematical signs are not linked to the cube experiment, the students 
use the personal pronoun (it) (line1 and 3) without explaining its reference.  
The following excerpt refers to the moment in which the students are making the first 
controlled experiment. It is a type of experiment suggested by the researcher in which, 
in turn, one student moves the cube upward and downward on the inclined plane, while 
the other two students are observing in the AR glasses.  

4 Student 3: Now move it fast up. Now much less dense.  
5 Student 1: Correct! 
6 Student 3: So when she moves it (cube) up it (graph) goes down and when she 

moves it (cube) down it (graph) goes up. 
During this controlled experiment the students start to observe relationships between 
the cube movement and the AR graph. In particular they observe a relationship between 
the velocity of the cube and the density of the points (cube fast à point less dense, see 
line 4) and also between the position of the cube and the shape of the graph (cube 
upward à graph downward, cube downward à graph upward, see line 6). All their 
observations are correct since when the cube goes faster, in the same interval of time 
it runs more distance and so the points captured by the device are more distant and 
appear less dense. The controlled experiment plays a central role from the inquiry point 
of view, enabling students to create connections between the cube movement and the 
observed AR graph. 
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After that, students make other experiments without controlling the cube movement. 
After the fourth experiment, the students start taking in consideration the other AR 
representation, namely the table, as the following excerpt shows:  

7 Student 1: Do you see that on the side it is written ‘centimetre’? 
8 Student 2/1: Yes! 
9 Student 1: It seems that it starts from 68,7. Thereafter it decreases, arrived to 58,3. 
10 Student 3: Maybe it is the distance it does? 

Tring to making sense of the observed numbers, Students 3 makes an abduction. Her 
hypothesis is right: these numbers shown on the AR device do represent the distance 
made by the cube. However, she does not make explicit the starting point from which 
the distance is computed and that the other column of the table shows data of the time. 
Differently from what students did with the graph, in this case they are not able to 
formulate relationships between the numbers shown in the table and the cube 
experiment, namely they do not say that when the cube is moving up, numbers 
represented the distance decrease and when the cube is moving down, numbers 
increase. 
Then students decide to make a second controlled experiment. This time, students start 
looking in glasses when the cube is still at the end of the plane.  

11 Student 3: Listen to me! When there is not move, there is not ascent or descent. 
Only when it made its way, it (graph) makes the changes. When it 
arrives here, in a situation that it is not move it was a straight line  

Thank to this controlled experiment, Student 3 observes the relationship between the 
absence of movement and the type of graph produced by the AR devise, namely an 
“horizontal” straight line. 

CONCLUSION 
In the analysed excerpts from the video we observed the activation of the Logic of 
Inquiry approach. First of all, when the students start observing the AR mathematical 
signs after the first experiment. Then after the two controlled experiments when the 
students start linking the AR signs with the cube experiment. Finally, when students 
formulate an abduction in order to make sense of the numbers in the table. Noticing 
mathematical signs, observing relationships between them and the cube movements 
and formulating abductions are first steps of every inquiry. The AR environment plays 
the role of oracle to which students made implicit questions in order to make sense of 
the observed signs and to discover relationships between them. This role is emphasized 
during controlled experiments suggested by the researcher.  
The students involved in the case study deeply explore the relationship between the 
cube movement and the AR graph, whereas they have some difficulties in finding the 
relationship between the cube movement and the information containing in the AR 
table. Figure 3 summarizes with a continuous two-side arrow the mathematization that 
students successfully made though their inquiry (the cube movement is mathematized 
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in the AR graph) and with a broken arrow the mathematization they are not able to 
made or they made only partially (cube movement is not mathematized in the AR 
table).  

 

Figure 3: Students mathematization of the cube movement 

We suppose that if students were able to mathematize the cube movement through the 
data contained in the AR table, they will be able to convert the AR table in the AR 
graph (dotted arrow in Figure 3). The reason of the partial unsuccessful result is 
partially due to some technological bags which are no more present in the last version 
of developed technology. Through the results of this case study we understood the 
importance of making controlled experiments and we decide to add them in the design 
of the new version of worksheet task. 

NOTES 
1. The team of the project is made by: Arzarello F. (University of Torino), Abu-Asbe, 

O. developer of the AG technology, (Ben-Gurion University of the Negev), Fried M. (Ben-
Gurion University of the Negev), Jaber O. (Ben-Gurion University of the Negev), El-Sana, J., 
the AR advisor (Ben-Gurion University of the Negev), Sabena C. (University of Torino), 
Schacht F. (University of Duisburg-Essen), Soldano C. (university of Torino), Swidan O., the 
research project coordinator, (Ben-Gurion University of the Negev). 
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Mathematically gifted students have needs that deserve to be considered by the 
mathematics education research. One of these is learning proof and the incidence of 
dynamic geometry software in such a process. In this document we present some 
considerations for the design of 3-dimensional geometry problems that contribute to 
achieve this goal. We rely on hypothetical learning trajectories and a characterization 
of the types of proofs to show how dynamic geometry software can favour the learning 
of proof while solving problems based on 3-dimensional geometric concepts and 
properties. 
Keywords: mathematically gifted students, proof learning, dynamic geometry software, 
design of problems, 3-dimensional geometry. 

INTRODUCTION 
Nowadays it’s common to find students with different mathematical abilities in any 
classroom, including some mathematically gifted students (MGS) (Benedicto, Acosta, 
Gutiérrez, Hoyos, & Jaime, 2015). MGS have a mathematical ability higher than 
average students with the same age, grade or learning experiences. Despite this, many 
teachers do not recognize that MGS require special attention, they believe that MGS 
learn easily on their own (Jaime, Gutiérrez, & Benedicto, 2018). Research has shown 
that mathematical talent, like any other skill, must be fostered through experiences, 
appropriate teaching, and challenges. This leads to investigate MGS’s mathematical 
thinking processes and the way these students process and assimilate new mathematical 
ideas (Dimitriadis, 2010). 
Research on the understanding of mathematical proof and the development of proving 
skills is a lively field of mathematics education. Research has shown that, in a proving 
process, there is an epistemological discontinuity between the phases of identification 
of a conjecture and elaboration of its proof. However, the ways in which dynamic 
geometry software (DGS) may influence aspects of proving, such as exploration, 
conjecture, and explanation, make this resource a strong mediator between those 
phases (Sinclair & Robutti, 2013). Considerable research efforts have been made on 
designing DGS environments based on plane geometry to teach proof and deductive 
reasoning (Sinclair & Robutti, 2013; Marrades & Gutiérrez, 2000). The recent 
availability of 3-dimensional (3D) DGS offers a new context for teaching and learning 
proof, with differential characteristics, that need to be explored. Research on 3D DGS 
environments is just starting; particularly, the design and analysis of 3D DGS 
environments based on space geometry and focusing on the learning of proof require 
specific attention, since research on this topic is scarce. 
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The design of a teaching sequence based on problem solving requires anticipation of 
possible students’ behaviour and outcomes. The hypothetical learning trajectories 
(Simon & Tzur, 2004) are an efficient tool for the achievement of this goal. This is 
particularly true with MGS. 
The objective of this document is to present a 3D DGS environment based on a 
sequence of space geometry proof problems aimed to promote the learning of proof by 
MGS. Such an experimental environment can provide useful information about MG 
students’ processes of reasoning and can serve as an inspiring example to prepare 
sequences of space geometry problems based on 3D DGS to teach proof. We present 
an ongoing research, since, at the time of writing this document, we are completing the 
design of the experimental setting, to start the experiments later. We first present the 
theoretical framework supporting the environment, consisting of a classification of the 
types of proofs produced by students and the construct of hypothetical learning 
trajectories, as the organizer of the sequence of problems. Then, we present and analyse 
some of the designed activities. 

THEORETICAL FRAMEWORK 
Hypothetical learning trajectories and digital technologies 
Hypothetical learning trajectories (HLT) are a construct for the design of mathematical 
instruction and conceptual learning (Clements & Sarama, 2004; Simon, 2014). A HLT 
involves three components: i) a goal about students’ learning, ii) a set of mathematical 
problems that are expected to lead to the stated goal, and iii) a hypothetical learning 
process, i.e., an expectation on the way students’ thoughts and understanding shall 
evolve when they engage with the designed problems. 
Simon (2014), echoing other authors, mentioned that this framework allows to describe 
students’ thinking and learning in specific mathematical domains. It contemplates 
projection of routes, through mathematical problems, that promote mental processes 
and higher level of mathematical thinking. Adopting a HLT requires a clear learning 
goal and awareness that common aspects are recognized in ways of learning by 
students. It is also necessary to recognize that HLTs are permeated by opportunities 
emerging throughout the designed instruction, since their hypothetical character gives 
rise to the possibility that teachers modify aspects of the intervention when they 
consider it necessary (Simon & Tzur, 2004). In a HLT, learning goals are seen as a 
guide and the point to reach, hence they provide elements for the selection of problems 
and contribute to build the hypothetical learning process (Simon & Tzur, 2004). 
According to these authors, this reveals a relationship between the last two components 
of the model, since problems are selected considering a hypothesis about the learning 
process, while the learning process is conceived through the problems selected. 
Sacristan et al. (2010) studied nuclear ideas of HLT in the light of digital technologies 
and their impact on learning. For them, student’s learning varies and takes different 
forms according to the situations proposed to them and the tools involved, DGS in our 
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case. This recognition leads to deep conceptual levels not commonly reached in the 
school context, because interaction between students and digital technologies promotes 
transitions from particular to general, concrete to abstract, intuition to formalization, 
among others. Despite this, mathematics education research on HLT with digital 
technologies, in particular with 3D DGS, is in a primary state of development. 
Characterizing the types of proof 
Some researchers have attempted to recognize students’ conceptions of mathematical 
proof and what is convincing for them, although they focused on particular aspects and 
left others aside. Marrades & Gutiérrez (2000), based on Balacheff (1988) and Harel 
and Sowder (1998), propose an analytical framework allowing a broad understanding 
of students’ actions and productions when they solve proof problems. For Marrades 
and Gutiérrez, the term proof encompasses reasons given to convince someone about 
the truth of a mathematical fact. This model allows analysing all activity performed by 
students when they generate a conjecture and establish a way to prove it. The model 
contemplates two categories, empirical and deductive proof. 
Empirical proofs take examples as the main element of conviction. Observing 
regularity in different cases leads students to establish a conjecture and prove it based 
on those examples. Examples can be used to prove a conjecture in different ways: in a 
perceptual or intuitive way, by choosing examples without any specific planning (naïve 
empiricism). A carefully chosen special case can be used to verify a property and 
consider it true in general terms (crucial experiment). A specific example can be 
selected as a representative of the family it belongs to and used to identify abstract 
properties after its observation and handling (generic example). In deductive proofs, a 
decontextualization of the arguments involved takes place. Generic aspects of the 
problem, mental operations, and logical deductions are used to organize proofs, so 
conjectures are deductively validated. Examples may be used as a help to organize 
arguments, but specific characteristics of the examples are not part of the proof. 
Deductive proofs can be organized and supported by specific examples (thought 
experiment) or based on abstract mental operations, without specific examples, and 
pertinent mathematical definitions and properties (formal proof). Marrades and 
Gutiérrez (2000) consider that these categories allow evaluating the improvement or 
changes of students’ proof skills across a learning process. 

CONSTRUCTION OF A HYPOTHETICAL LEARNING TRAJECTORY 
The goal of this HLT is to favour the learning of proof by Spanish MGS studying lower 
secondary education (11-14 years old). In addition to the ordinary schooling, these 
students have participated in programs of attention to giftedness (AVAST) and 
mathematical talent (ESTALMAT). As students are not in the same grade or school, 
the teaching experiments are organized as individual clinical interviews. 
GeoGebra is the DGS environment to solve problems. We have created 22 geometric 
problems, asking to make a construction and prove its correctness, based on objects 
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and properties related to spheres, lines, planes, parallelism, equidistance, perpendicular 
bisectors, mediator planes, tangency, etc. Students, through dragging of points and 
mobilizing perceptual clues, should discover mathematical ideas that will be used later 
in other problems. To benefit from the integration of 2D and 3D representations in 
GeoGebra, some problems ask to explore a property of 2D figures and then work on 
the corresponding property of 3D figures. For instance, when studying the equidistance 
between points in space, it is possible to start working in 2D with perpendicular 
bisectors and circumferences and then ask students to extend their findings to bisector 
planes and spheres in 3D. This organization of problems should allow students 
reaching a deeper level of understanding by integrating and articulating different 
objects of 2D and 3D geometry. 
Regarding learning to prove, construction problems offer an opportunity in which 
students must use the tools provided by the software, as well as the geometric 
relationships learned from previous problems, in order to construct objects with some 
properties associated to equidistance and prove that the constructions are correct. In 
this sense, transit through various equidistance relationships, knowledge and gradual 
mastery of various software tools, as well as geometric relationships, configure a 
scenario in which students have availability of more theoretical and instrumental 
elements to solve new problems. Hence, we expect that the teaching sequence will 
induce an increment in MGS’s deductive abilities. Teacher’s role becomes relevant, 
since he has the possibility of talking to the students and asking them questions based 
on their productions, to induce them to express ideas in a higher level of proving.  
As can be seen, this instrumental and conceptual integration combines objects of 2D 
and 3D geometry, as well as a non-basic knowledge of GeoGebra tools, in situations 
that require making particular geometric objects and proving that the construction 
works. Such an orchestration is not usual in conventional curricular configurations at 
this school level, so we consider that these problems are challenging for MGS. We 
present two problems to illustrate two moments of the HLT designed. 
Two problems in the sequence 

Problem 6: Open GeoGebra and activate the 2D view. Construct three points, A, B, and C. 
Use the Circumference by three points tool to construct the circumference that contains the 
three points. 

Determine the centre of the circumference shown on the screen. How do you guarantee 
that the construction is valid? Do you think that this point is unique? How could you justify 
your answer? 

Open the 3D view and close the 2D view. Construct a point M which is at the same distance 
from A, B and C, but is not located in the same plane as these points. How could you 
guarantee that M is at the same distance from the other three points? Do you think that M 
is unique? If so, why do you think so? If not, what property do points M have? 
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Problem 6 has two parts. First, the centre of the circumference determined by three 
points has to be found and the construction has to be justified. Before solving this 
problem, students will have solved another problem and learned that perpendicular 
bisector is the locus of points equidistant from two fixed points, so now students will 
be able to find the intersection of the perpendicular bisectors of two pairs of given 
points and use that property to prove that this point is the centre (Fig. 1a): the 
intersection of the perpendicular bisectors is the centre of the circumference because 
each perpendicular bisector contains the points that are equidistant from the two points 
that determine it, and their intersection is a point simultaneously equidistant from the 
three points. Another way to determine the centre is by using the perpendicular bisector 
of only one pair of the given points. This line determines a diameter of the 
circumference, so its midpoint is the centre (Fig. 1b). 

a)                          b)  

Figure 1: Finding a point equidistant from three given points in 2D 

Those two solutions illustrate deductive proofs. However, MGS may also produce 
empirical types of proof. For example, students may create a point and place it on the 
centre of the circumference with the help of the distances from this to points A, B and 
C (naive empiricism). Next, the problem asks about the uniqueness of this point. We 
expect an affirmative answer to this question. One way to support it is to construct any 
point and determine the distances from it to points A, B and C, to show that the only 
point equidistant from them is the centre (experiment crucial). If the centre of the 
circumference is the intersection of two perpendicular bisectors, it is possible to 
guarantee its uniqueness because the intersection of the two lines is unique (thought 
experiment). 
The second part of the problem is based on the construction made in 2D, now seen as 
part of the 3D space. Students are asked to create a point M at the same distance from 
points A, B, and C, but not located in the plane of these three points. We believe that 
students may produce quite diverse approaches, but having in common the combined 
use of the dragging of point M and the distances from it to points A, B, and C (Fig. 2). 
When point M is located fitting the condition, dragging it vertically will allow students 
to find other solutions. A proof of this result may be based on showing that distances 
are equal when the point is dragged vertically (naive empiricism) or involve geometric 
objects such as the sphere with centre M that contains any of the other points and note 
that this kind of dragging does not affect that points A, B and C always belong to the 
sphere, so the equidistance is conserved (generic example). We do not expect a 
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deductive justification because it needs an element that is not known by students, 
namely perpendicularity between lines and planes, which is the learning goal of the last 
question in this problem. 

 

Figure 2: Finding a point equidistant from three given points in 3D 

Problem 11: Open GeoGebra and activate the 3D view. Construct three non-collinear 
points, A, B, and C on the base plane (grey). Construct a plane equidistant from the three 
points. Is this plane unique? What property does this plane satisfy, in addition to being 
equidistant from the three points? Explain why the property is true. 

a)   b)   c)  

Figure 3: Finding an equidistant plane 

In a previous problem, students will have constructed in 2D a line equidistant from 
three non-collinear points and they will have learned that the line is determined by two 
of the midpoints between A, B, and C. Problem 11 has two solutions. A solution can 
be formulated with the help of the mentioned property, that is, by constructing the line 
MN, where M and N are midpoints of A - B, and A - C respectively. Then, a 
perpendicular plane to the plane containing A, B, and C is constructed, which also 
contains the line MN (Fig. 3a). In this case, the proof of such a result will require 
constructing perpendicular lines to the new plane through A, B and C, as well as 
segments AB and AC. As these segments determine congruent triangles, compliance 
with the requested property in the problem can be proved. Students will be expected to 
recognize that any plane containing the line MN satisfies the stated property (Fig. 3b). 
In this case, the proof is similar to the previous one. 
Another solution is any plane parallel to the plane determined by A, B and C. In this 
case, the proof can be based on constructing the perpendicular lines to the planes 
through A, B, and C (Fig. 3c). Since these lines are parallel, and their points of 
intersection with the two planes (A, B, and C; G, D, and F) determine pairs of parallel 
segments, three parallelograms are formed, so their opposite sides are congruent, in 
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particular, AG, BD, and CF are congruent, thereby reaching the desired result. These 
solutions are deductive proof where some examples are used to help to find the 
properties necessary to build the proof (thought experiment). However, it is also 
possible to develop different types of empirical proofs based on specific examples and 
numerical values of distances. 

CONCLUSIONS AND CONSIDERATIONS 
We have created a HLT which has served as an organizer for designing a sequence of 
problems of spatial geometry in a 3D DGS environment, whose objective is to support 
learning of proof by lower secondary school MGS. On the other side, the Marrades and 
Gutiérrez (2000) framework allows us to characterize proofs produced by the students 
and recognize their progress from empirical to deductive proofs along the sequence. 
We consider that this is an advance in the research on the use of HLT to design teaching 
sequences of space geometry problems in 3D DGS environments to promote MGS’s 
learning of mathematical proof. 
Nature of learning is related to the means through which it occurs (Sacristan et al., 
2010). In our case, GeoGebra provides the possibility of exploring simultaneously 
related concepts and properties in 2D and 3D configurations (e.g., perpendicular 
bisector and mediator plane), as well as allowing MGS explore geometric contexts 
usually not studied at school level. This allows students to integrate different 
geometrical objects and get experience to move from empirical and perceptual proofs 
to deductive and formal ones (Sinclair & Robutti, 2013). 
The HLT we have created offers the possibility of integrating concepts and properties 
from school geometry and others that are not studied in secondary school. This 
integration, framed in situations that demand the construction of specific geometric 
objects, as well as the proof of the validity of such constructions, produces contexts 
that are challenging and interesting for MGS, due to their non-routine nature. 
Furthermore, GeoGebra allows MGS to explore the proposed situations, thus favouring 
their creativity and problem-solving strategies. These are aspects that, in line with 
Dimitriadis (2010) and Jaime and Gutiérrez (2017), make this proposal a valid option 
to promote the talent of MGS, with 3D DGS being a relevant part of it. 

REFERENCES 
Balacheff, N. (1988). Aspects of proof in pupils' practice of school mathematics. In D. 

Pimm (Ed.), Mathematics, teachers and children (pp. 216-235). London: Hodder & 
Stoughton. 

Benedicto, C., Acosta, C., Gutiérrez, A., Hoyos, E., & Jaime, A. (2015). Improvement 
of gifted abilities in a 3d computer environment. In N. Amado & S. Carreira (Eds.), 
12th International Conference on Technology in Mathematics Teaching (pp. 24–28). 
Faro, Portugal: University of Algarve. 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

310 

Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. 
Mathematical Thinking and Learning, 6(2), 81–89. 

Dimitriadis, C. (2010). Developing mathematical giftedness within primary schools: A 
study of strategies for educating children who are gifted in mathematics (Doctoral 
dissertation). Brunel University School of Sport and Education, Uxbridge, UK. 

Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory 
studies. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate 
mathematics education (Vol. 7, pp. 234-283). Providence, RI: American 
Mathematical Society. 

Jaime, A., & Gutiérrez, A. (2017). Investigación sobre estudiantes con alta capacidad 
matemática. In J. M. Muñoz-Escolano, A. Arnal-Bailera, P. Beltrán-Pellicer, M. L. 
Callejo, & J. Carrillo (Eds.), Investigación en Educación Matemática XXI (pp. 71–
89). Zaragoza, Spain: SEIEM. 

Jaime, A., Gutiérrez, A., & Benedicto, C. (2018). Problemas con extensiones. 
Propuesta para estudiantes con alta capacidad matemática. Uno, 79, 7–14. 

Marrades, R., & Gutiérrez, A. (2000). Proofs produced by secondary school students 
learning geometry in a dynamic computer environment. Educational Studies in 
Mathematics, 44(1–3), 87–125. 

Sacristán, A. I., Calder, N., Rojano, T., Santos-Trigo, M., Friedlander, A., Meissner, 
H., … Perrusquía, E. (2010). The influence and shaping of digital technologies on 
the learning - and learning trajectories - of mathematical concepts. In C. Hoyles, & 
J.-B. Lagrange (Eds.), Mathematics education and technology. Rethinking the 
terrain (pp. 179–226). Boston, MA: Springer. 

Simon, M. (2014). Hypothetical learning trajectories in mathematics education. In S. 
Lerman (Ed.), Encyclopedia of mathematics education (pp. 272–275). Dordrecht, 
The Netherlands: Springer. 

Simon, M., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual 
learning: an elaboration of the hypothetical learning trajectory. Mathematical 
Thinking and Learning, 6(2), 91–104. 

Sinclair, N., & Robutti, O. (2013) Technology and the Role of Proof: The Case of 
Dynamic Geometry. In M. A. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & K. 
F. S. Leung (Eds.), Third International Handbook of Mathematics Education (pp. 
571-596). New York: Springer. 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

 

311 

Equation Lab: fixing the balance for teaching linear equations using 
Virtual Reality 

Lui A. Thomsen1, Morten Elkjær²  
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This paper presents the theoretical foundation, design and evaluation of a teaching 
experiment using a virtual reinterpretation of the balance model. We present the design 
of the virtual reality application Equation Lab. The design of the application intends 
to address issues of equation solving with negative numbers concerning the balance 
model, identified in the literature. The application was used in a teaching experiment 
in a Danish lower secondary school. We report findings indicating that a particular 
student exhibited interesting behaviour, both during and after the teaching experience, 
indicating an affordance for students in acquiring new equations solving strategies as 
well as learning about negative numbers.  
Keywords: Virtual reality, equation solving strategies, negative numbers, balance 
model. 

INTRODUCTION 
Vlassis (2002) asks if we should reject the balance model as a tool for teaching 
equations. Traditionally, the balance model has been a common tool for teaching and 
discussing the concept of linear equations for algebra beginners in lower secondary 
school (Otten et al., 2019; Pirie & Martin, 1997; Rhine et al., 2018). However, the 
balance model also comes with some limitations as a tool for teaching linear equations. 
In fact, several studies show that the balance model has severe shortcomings in 
representing and letting the learner work with negative numbers (Pirie & Martin, 1997; 
Vlassis, 2002). The present study describes a virtual reinterpretation of the balance 
model as a tool for teaching linear equations using Virtual Reality (VR). Specifically, 
for the teaching of linear equations involving negative numbers. VR allows teaching 
to surpass the constraints of real-world physics (e.g., allowing for the creation of 
objects with gravitationally repulsive behaviour, conceptually representing negativity). 
This reinterpretation of the balance model is done with the intention of still maintaining 
identified affordances of the balance model as a tool for teaching linear equations 
(Otten et al., 2019). 

THEORETICAL BACKGROUND 
In this section, we outline the theoretical considerations leading to the first design 
iteration of Equation Lab. Initially, we will cover the different aspects of difficulties 
that children in lower secondary school experience while learning the concept of 
equations and equation solving. Jankvist and Niss (2015) present two categories of 
difficulties related to understanding the concept of equations: 
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“The first kind of difficulty ... is to do with goal-oriented transformation of equations  

(and, more fundamentally, algebraic expressions) into equivalent ones by way of 
permissible operations.” (...) ”The second kind of difficulty, which appears to be of a  

more fundamental nature, is to do with what an equation actually is, and with what is meant 
by a solution to it.” (Jankvist & Niss, 2015, p. 276) 

Traditionally, the balance model has often been used for introducing and teaching 
linear equations (Otten et al., 2019; Pirie & Martin, 1997). According to Otten et al. 
(2019) the balance model is used in teaching equations due to three rationales related 
to equality concept, physical experiences, and learning through models and 
representations. The balance does an excellent job in representing the equal sign. In 
fact, using the balance model is seen to enhance the understanding of the concept of 
equality in general (Otten et al., 2019). When the balance is levelled, the two sides 
represent equal value and are thereby interchangeable; making it good for 
demonstrating the idea of the scales facilitates the use of the rule of elimination of like 
terms. Regarding the second rationale Otten et al. (2019) state that learning about 
equality through the physical experience of using the balance model is beneficial, 
giving learners a greater understanding of the concept of linear equation. Research 
studies underline the importance of movement and gestures working with the balance 
to develop mental models of mathematical ideas (Otten et al., 2019). Also, offering 
students experiences with manipulation of balance, equality can be recognized, 
defined, created, and maintained. Suh and Moyer (2007) emphasize that using 
manipulatable concrete objects can help provide meaning, through linking procedural 
knowledge and conceptual knowledge of algebraic equations. However, caution when 
using such manipulatives for teaching formal equation solving is necessary, because 
not all students automatically connect their actions on manipulatives with their 
manipulations on abstract symbols (Suh & Moyer, 2007). The real-time feedback some 
models provide, allows students to verify the results of their manipulations and their 
reasoning processes in order to construct knowledge. Learning through the use of 
models and representations is beneficial, because the learner can use the representation 
of the model to give sense of the abstract algebraic object (Otten et al., 2019).  
When students engage in solving equations, different strategies come into play. Linsell 
(2009) suggests that instead of trying to determine how difficult a given equation is, it 
is more useful to look at the strategies that the students can apply. Furthermore, these 
strategies do not only describe alternative approaches to solving linear equations, but 
also represent the stages of conceptual development (Linsell, 2009). This indicates that 
teaching equation solving strategies and the rationale behind these strategies is 
beneficial to understanding the concept of linear equations. Teachers occasionally try 
to help students to learn the working backward strategy, by introducing phrases like 
"change side – change sign" (Rhine et al., 2018). However, this strategy can lead to 
students making errors or getting an improper conception of the equal sign. Herscovics 
and Linchevski (1994) found that students tend to detach the minus sign preceding a 
number. This way the students do not handle numbers correctly when doing 
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transformations (working backwards or change side-change sign) of an equation 
leading to them inversing subtraction with subtraction.  
Vlassis (2002) emphasises that the introduction of negatives (both negative terms and 
negative coefficients) is what detaches linear equations from concrete models such as 
the balance. She categorizes the linear equations that are detached from models, as 
abstract versions of both arithmetic and non-arithmetic equations. Furthermore, Vlassis 
(2002) identifies equations that include negatives are perceived as being particularly 
difficult. Pirie and Martin (1997) mention that subtracting a negative number in order 
to cancel it out is a common error when learning with the balance model. A further 
specific difficulty is that a solution needs to be perceived as a weight and not just a 
number (Pirie & Martin, 1997).   
VR can provide educators with teaching tools that overcome physical constraints 
identified in research on the traditional use of the balance model. VR allows designers 
to create compelling and engaging learning experiences with a modified balance 
model. This paper seeks to investigate how such an experience can influence a 
student’s understanding of the concept of linear equations, while identifying 
affordances and limitations of the design. Research show that gamified VR has been 
linked to high student engagement and motivation (Checa & Bustillo, 2019). When 
being exposed to the multisensory stimuli of VR, a user may experience a sensation of 
presence. Different factors of the design contribute to this sensation (e.g., virtual avatar, 
interactivity). The sensation of presence can induce the two psychological effects of 
place illusion (the illusion of “being there” in the virtual environment) and plausibility 
illusion (the illusion that virtual events are really happening) (Slater, 2009). These 
effects may contribute to students’ perceiving the experience with the modified balance 
model as compelling and plausible.  
Analysis of the presented literature has led us to establish two research questions 
related to teaching and learning equation solving in VR: 
1. With emphasis on manipulation of negative numbers and equation solving 

strategies, how can an immersive experience with a reinterpretation of the balance 
model support students’ understanding of the concept of linear equations?   

2. Based on a user study, what influential factors can be identified and how can we 
overcome or enhance effects related to transferability from the virtual experience 
to pen-and-paper?  

REQUIREMENTS 
This section will specify the design requirements of the virtual environment, based on 
analysis of the theoretical background. The requirements of the design will relate to the 
characteristics of representation and interaction of the immersive experience.  
The system should depict the balance model in a recognizable way, while indicating 
equality dynamically through real-time simulation, as this is described as a clear 
advantage over a static representation (Otten et al., 2019). It will be necessary to modify 
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the programmed behaviour of the simulation to alter the physical laws allowing for 
negative numbers in the context of balance. Moreover, each term of the equation should 
be depicted as an independent virtual object. This means that each term should be 
represented by encasing the algebraic notation inside a virtual object. Thereby, the 
terms of 7𝑥 and 5 cannot be distinguished from each other, apart from the algebraic 
notation itself. Due to the focus on negativity, the terms of equation in the teaching 
sequence has been limited to only encompass integers and integers coefficients. 
Decimals, fractions and parentheses should be investigated in future research with new 
objectives.  
To ensure that any equation can also be solved, we see it necessary to set up the 
following interaction and transformation capabilities. First, it should be possible to 
move a virtual object from one side of the scales to the other, not to mention remove 
an object from the balance entirely. In addition, it must also be possible to transform a 
virtual object (i.e., the term) to achieve a solution in the traditional way. Therefore, we 
consider it necessary to be able to add, subtract, invert and divide. We want to make it 
possible to remove equal parts from each side of the weight bowl. At the same time, 
we want it to be possible to undo transformations. For example, dividing of 7𝑥 by 7, 
should create 7 virtual objects with the value 𝑥. Because of this, it will be possible to 
undo the division by reassembling the 7 virtual objects. We limit the set of possible 
divisors to natural non-trivial factors of the object or coefficient of the object. 
Moreover, it is not possible to multiply virtual objects, since it is not a necessity to 
solve equations with integers and integer coefficients. 

DESIGN 
In this section, we explain the design of the application called Equation Lab. The task 
of the user is to solve linear equations using the modified balance model in VR.   
The objective of the task involves the user applying transformations (specified in 
design requirements) that results in the unknown being isolated (as a term) on one side 
and a number (as a term) on the other. While the user transforms the equation at hand, 
the user can check the status of equality by reading the deflection of the balance (see 
Figure 1). For readability, an additional indication of equality can be read in the colour 
of the beam between the pans (i.e., green for equality).   
The virtual environment surrounds the user with a desk containing elements 
characterized as mechanics and dynamics. The mechanics of Equation Lab can be 
divided into two types related to interaction and transformation. The user can either 
move objects (see Figure 1) from one side to another on the balance, remove objects 
from the balance or transform objects via User Interface (UI) (see Figure 1). The user 
can move objects by reaching for it with a virtual hand and pressing a button to grasp. 
While the button is pressed, the user can freely move the object around and place in a 
new position by letting go of the button. The UI appears when an object is placed on 
the workspace. The UI lets the user split, invert or divide by a number when a single 
object is placed. The user chooses a setting with the slider and executes the command 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

 

315 

pulling the down rope corresponding to the desired mechanic. When multiple objects 
are placed on the workspace, the user can add the objects, if they are compatible. 

 

Figure 1: Virtual environment of Equation Lab 

The mechanics vary depending on the value of the number or the coefficient 
represented by the object in the workspace area. The balance reacts to the objects in 
real-time based on the sum of values in interactive objects on either side of the balance. 
Moreover, the balance instrument incorporates the modified physics simulation that 
allows objects with ultimate negative value to have repulsive gravitational force. In 
other words, an object with a negative value placed on the pan will lift it up.  
As described in the requirements section, the overall purpose of designing and 
developing a virtual setting featuring the balance model is for the user to be able to 
solve any linear equation within the limitations we set. When implementing the 
mechanics deemed necessary to solve any equation, one must naturally explore what 
side effects, good or bad, are relevant. Traditionally the balance model only affords 
formal transformations of equations within the limitations of the mathematics that are 
representable. This means that a user can only remove or add positive weights. By 
formal transformations, we refer to Kieran (2007) and Linsell (2009), which connects 
these to performing the same legal action to both sides of an equation. Not all legal 
transformations are accessible using the traditional balance. For example, a subtraction 
resulting in a negative amount cannot be performed. Manipulations with additive 
inverses are not a part of the set of actions on the traditional balance. Therefore, the 
traditional balance model does not afford the strategy of change side-change sign and 
do only support a limited amount of formal transformations. The consequences of 
being able invert elements in Equation Lab together with the ability to move terms 
between the two sides create possibilities regarding equations solving strategies. The 
emergence of different possible strategies for solving equations with the balance model 
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are not specified directly within the design requirements but are an immediate 
consequence hereof. We shall touch more upon this discussion in a later section. 

USER STUDY 
In the following section, we outline the methodology and procedure of the user study, 
in form of a teaching sequence, performed using Equation Lab. Initially we explain 
how data was gathered before, during and after the teaching sequence. Afterwards, we 
discuss and conclude on how the data we collected led to answering the research 
questions presented in the introduction.  
Participants were ten students (six male and four female) from the same Danish 7th 
grade and their male teacher. The teacher of the class chose the ten participants based 
on gender, performance level in math and game experience. Gender and performance 
level were the most important to us. The students engaged in the teaching sequence 
with Equation Lab, individually for approximately 30 minutes, conducted by the 
authors. Before the actual teaching sequence with Equation Lab, the participants 
answered a pre-test survey consisting of 14 questions including demographic questions 
and solving tasks with different types of linear equations.  
After the teaching sequence with Equation Lab, the teacher of the class agreed to do a 
two-week period teaching linear equations. This two-week period was not taught using 
Equation Lab, but in a way, the teacher would normally teach linear equations. After 
these two weeks, we did an interview with the teacher to hear about the possible 
differences, learning with Equation Lab had made. 

FINDINGS FROM TEACHING SEQUENCE WITH EQUATION LAB 
Two of the equations the students solved in the environment were −6𝑥=24 (Vlassis, 
2002) and 7𝑥−3=13𝑥+15 (Bodin, 1993). These equations fall under the abstract 
categories (Vlassis, 2002). These equations were chosen because they are great 
examples of an arithmetic and a non-arithmetic equation with negative numbers.   
In this section, we showcase and discuss the behaviour of a particular student who at 
first glance responded very well to the teaching with Equations Lab. In an interview, 
two weeks after the teaching sequence, the teacher of the class pointed out that Albert 
(the male student in question) showed interesting behaviour when solving equations in 
class. The teacher of the class explained that Albert had taken the experience of 
Equation Lab to heart, when solving equations. In class Albert had used the invert 
mechanic when solving equations similar to the ones from the teaching experience 
(−6𝑥=24 and 7𝑥−3=13𝑥+15). Data from the pre-test suggests that Albert was not able 
to solve 3𝑥−4=5𝑥−12, 12−𝑥=15 or 7=3−𝑥 before the teaching experience with 
Equation Lab. Additionally, Albert solved lesser abstract equations such as 3𝑥=15, 
14−𝑥=8, 𝑥+5=21, and 3𝑥−4=23, but only using the ‘guess and check’ or a counting 
strategy.   
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We did an interview with Albert, after interviewing his teacher, to try to understand 
how he adopted and used to the workflow from Equation Lab on pen and paper. In this 
interview, we let him solve additional equations with negative numbers using pen and 
paper. This interview was not part of the pre-planned data collection. Video from this 
interview shows that Albert was not able to guess the solution to the equation −5𝑥= 25, 
however, he was able to solve it using the invert mechanic. Inverting each side before 
having an additional guess helped him out. He was now able to see that in order to have 
5 times an unknown number to result in a negative number the unknown had to be -5. 
Additionally, Albert was able to apply the version of change side-change sign from 
Equation Lab to 4𝑥−10=𝑥+2. However, here he was not successful. He ended up with 
4𝑥−𝑥=2−10 after attempting to collect corresponding terms on either side. When we 
asked him, why he had chosen to subtract 10 instead of adding and explaining that 10 
should be added because it was in fact −10 that he should have inverted. His response 
was that the minus sign preceding 10 was not close enough to the number 10 for him 
to consider our proposal. 

CONCLUSION 
In this paper, we investigated the concept of teaching linear equations in VR. Through 
analysis of the literature in math didactics and VR, we established requirements related 
to the task in VR, implemented a novel prototype fulfilling the requirements, and 
conducted a user study involving a pre-test survey, observational data from teaching 
sequence and post-test surveys.   
This study is highly preliminary, and due to the experimental nature of the concept, the 
findings may lead to new directions for future user studies in this branch of research in 
teaching mathematics using VR (e.g., negativity in equations, transferability between 
different situations, enhancing engagement through VR, the potential of virtual 
pedagogical agents).  
Conclusively, we have identified certain positive prospects of teaching equation 
solving strategies Equation Lab. With the balance modification, allowing the presence 
of negative numbers, teachers can use the balance model to teach strategy-oriented 
equation solving. The transformations make sense and feel intuitive to students, since 
teachers and students can observe, reflect and discuss the consequences of pressing 
down on one side and pulling up on the other side. Based on the case of Albert, we 
believe that learning about negative numbers and how they influence linear equations 
can help provide understanding of what an equation is, by utilizing the affordances of 
the balance model in this new setting. Students may get a better understanding of 
negative numbers as a solution and of the goal-oriented transformations of linear 
equations. However, several design considerations are eligible for further research to 
understand the influence of representation and interaction on transferability from 
Equation Lab to traditional settings (e.g., classroom). The detachment of the minus 
sign (Herscovics & Linchevski, 1994) was indeed present in the post interview with 
Albert. 
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The paper describes one of five cube cross-section lessons designed and carried out in 
our mixed methods research project. The research is focused on how the interplay of 
physical and digital manipulatives can be integrated into solid geometry to develop 
students’ spatial visualisation. Altogether, a paper workbook, 3D prints and dynamic 
GeoGebra applets form a five-set toolkit each corresponding to one of the five designed 
lessons. In this paper, Lesson 3 will be described in detail, which, like the others, has 
been particularly influenced by the instrumental genesis approach.  
Keywords: visualisation, external representations, instrumental genesis, 3D prints, 
GeoGebra software 

INTRODUCTION 
Drawings, constructions, pictures or visual models are classic examples of how three-
dimensional objects can be represented. These representations can be shown in the 
paper-and-pencil, physical and digital environment, and in the last two can be 
dynamically manipulated. The use of digital resources has grown steadily in the past 
years due to the promotion of technologies at various levels of education. Lieban 
(2019) pointed out that digital materials often seemed to be developed more to replace 
physical resources than to supplement them. Focusing on solid geometry, Camou 
(2012) proposed the positive impact of designing and implementing a multi-
representational approach to exploring three-dimensional objects (in Sinclair et al., 
2016). In this context, the mixed methods research was conceived with the aim of 
supporting the development of students' spatial visualisation by integrating the multiple 
manipulatives into solid geometry lessons. We anticipate that this development could 
lead to the correct perception of paper-and-pencil representations of 3D objects, and, 
therefore, to the correct cross-sectional drawings of cubes in worksheets. A paper 
workbook, 3D prints and dynamic GeoGebra applets form the toolkit designed and 
implemented in this project. Altogether, the material consists of five follow-up sets 
each corresponding to one cube cross-section lesson. The aim of this paper is to present 
and describe Lesson 3 in detail, which, along with the others, has been particularly 
influenced by the instrumental genesis approach defined in the following section. The 
objects of the lesson are as follows: (a) to support the development of spatial 
visualisation, (b) to appropriately manipulate and implement manipulatives in cross-
sectioning a cube, (c) to apply solid geometry knowledge and personal experiences 
with manipulatives in cross-sectioning a cube.  
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THEORETICAL BACKGROUND 
Gutiérrez (2006) emphasizes the importance of close relationships for visualisation and 
spatial geometry. The concept of a visualisation model was introduced in (Gutiérrez, 
1996) to define visualisation or spatial visualisation as a set of four visual elements: 
mental images, external representations, visual abilities and visual processes. In this 
paper, the external representations are discussed and considered as any type of 
graphical (static or dynamic, physical or virtual) or verbal representations of terms, 
objects or their properties. A detailed revision of the rest visual elements is introduced 
in (Vágová, 2019; Vágová et al., 2020). 

 

Figure 1: Research design overview 

In our mixed methods research, that applies both design-based (see Bakker, 2019) and 
action research (see Cohen et. al, 2018), two types of external representations were 
designed in Phase 1 (see Figure 1): 3D physical representations by 3D prints and 3D 
virtual representations by GeoGebra software. The inspiration comes from two 
sources: Phase 0, in which the solid geometry lessons were observed in three different 
grammar schools (Vágová, 2019), and Lieban (2019) who presented and discussed 
some perspectives of the physical and digital modelling in mathematics education.  
From our point of view, these representations complement each other and offer a more 
holistic perspective on the spatial arrangement of solid shapes.  
The availability of technology in the mathematics classroom challenges the way to 
orchestrate the educational process (Drijvers et al., 2009). The process of manipulating 
3D prints and GeoGebra applets has played the main role in our project intervention. 
With this intention, the five-set toolkit has been particularly influenced by the 
instrumental genesis approach. The essence of this theory lies in the process by which 
a particular artefact becomes an instrument for a user. An artefact is any device working 
as a tool, and an instrument refers to a mental construction of the artefact developing 
and applying by the user while using this artefact (Drijvers et al., 2009; Rabardel, 
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2002). In our project, the artefacts are represented by physical (3D prints) and digital 
(GeoGebra applets) resources that become instruments for the students when 
manipulating them. The idea of such multiple resources is to support the development 
of students' spatial visualisation (graphic external representations, mental images, 
visual abilities and processes), which could lead to a better understanding of solid 
representations in plane and cube cross-sections. A more detail description of this idea 
is given in (Vágová et al., 2020).  Following Lieban’s (2019) study, there is a 
terminological non-convergence using physical and digital resources in education. 
While some researches (e.g. Hershkovitz, 2016) consider physical and virtual resources 
to be manipulative, others do not include the digital ones (e.g. Faggiano et al., 2018). 
In our research, both physical and digital resources are considered to be manipulatives 
as stated by Lieban (2019). For physical manipulatives, the term ‘manipulative’ refers 
to the artefacts that can be manipulated.  For the digital ones, it refers to the interaction 
of the user with the resource and not the manipulation of the physical device itself. In 
order to get the objects, the following research question is addressed: How should the 
combined use of physical and digital manipulatives be integrated into cube cross-
section lessons to develop students’ spatial visualisation? Subsequently, a detailed 
description of Lesson 3 will be presented and discussed.  

DESIGNED CUBE CROSS-SECTION MATERIAL: LESSON 3 
Material Cube Cross-Section. Connecting the digital and the physical world includes 
a paper workbook, 3D prints and dynamic GeoGebra applets, where the last two are 
considered to be artefacts in the sense of the instrumental genesis approach. When 
students use the printed workbook (3D prints/GeoGebra applets), we say they work in 
the paper-and-pencil (physical/digital) environment (later PaPE, PhyE, DigE) and it is 
a resource of 2D paper-and-pencil representations (3D physical representations/3D 
digital representations). 

 

Figure 2: Combination and sequence of the assigned resources in lessons 

The designed toolkit is divided into five sets, each corresponding to one of the five 
cube cross-section lessons (see Figure 2). Each set is specific due to the different 
combination and sequence of the assigned resources. Every environment (resources) 
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has its own symbol and the movement from one to the other is specifically indicated in 
the worksheet. The cycle of solution steps in Lesson 3, as well as the transition among 
the working environments, can be described as follows (see Figure 3): 

• STEP 1 - represents the transition from the PaPE to the PhyE. Based on 2D 
paper-and-pencil representation shown in the workbook, students are looking for 
the corresponding 3D prints (see also Figure 4 and Figure 5).   

• STEP 2 - represents the interconnection of the PhyE and the DigE. By 3D prints 
observation and manipulation, students cross-section a cube in the applet.   

• STEP 3 - represents the transition from the interconnection of the PhyE and 
DigE to the PaPE. By acquired experiences from the 3D prints manipulation and 
digital geometric construction, students cross-section a cube on paper in W3 
worksheet. The construction steps are discussed and compared with the 3D 
prints and digital construction. 

 

Figure 3: Cycle of solution steps in Lesson 3 

To summarise, in Lesson 3, students initially open a task in the printed workbook (Step 
1) and then manipulate 3D prints in interaction with the GeoGebra applet (Step 2). 
Afterwards, they cross-section a cube in the worksheet and write down the construction 
steps (Step 3). The idea of the interplay of physical and digital manipulatives is to 
support a better perception of paper-and-pencil (2D) representations of solids and right 
cross-sectional drawings of a cube by students. The following section describes the 
individual resources designed for Lesson 3 in detail.  

WORKSHEET W3 AND ITS PHYSICAL AND DIGITAL MANIPULATIVES 
Paper-and-pencil, physical and digital environments are those contexts in which 
students solve tasks Cube C13 – Cube C18 in Lesson 3 (see Figure 2 and Figure 3). 
The most important and key resource is the printed workbook because of its 
guide/manual character referring to the transition among the working environments. It 
means the PaPE is the starting point from which students move to the other 
environment(s) and always return to it. To underline, a cycle of solution steps of each 
worksheet begins and ends in the PaPE (e.g. see Figure 3). This relationship is also 
illustrated in Figure 2, where the symbol of student work, which shown in the PaPE, is 
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centred in a single line.  To repeat, the aim of such multiple manipulatives is to support 
student work in the PaPE. Subsequently, each designed resource is characterised in 
detail.  
Worksheet W3 
As mentioned above, the workbook is the key resource and the physical and digital 
manipulatives are complementary. To make it easier for students to orient themselves 
on the worksheets, the same layout was followed in the design process. In the 
beginning, there is a list of working environments in which students will solve the 
individual tasks. Each environment is assigned a symbol, as well as pictures of 3D 
prints and GeoGebra applet are shown. Importantly, there is a “gateway” to the digital 
world (see Figure 4). Using a web page link or scanning a QR code, students move 
from the PaPE to the DigE.  

 

Figure 4:  Illustration of worksheet W3 

Afterwards, an exemplary well-solved task and six unresolved tasks follow the 
introductory part of the worksheet. The exemplary solution (see Figure 4) demonstrates 
when and how to move and work in that concrete environment to support cross-
sectioning a cube on paper. As shown in Figure 4, every task is divided into two parts. 
In the first one, students have to find the corresponding 3D prints and accomplish a 
cube cross-section by using the GeoGebra applet. In the second one, student cross-
section a cube and write down the construction steps.  
3D prints  
In our research, five categories of 3D prints were proposed, the entire classification of 
which is given in (Vágová et al., 2020). The W3 worksheet includes the following:  

• Category A – white transparent cubes demonstrating the cube cross-section 
points. The section points are painted pink and every print is named. In this 
category, 3D prints are labelled A10-A16. 

• Category C – grey transparent cubes demonstrating the cube cross-section 
construction.  The section points are painted pink and every print is named. In 
this category, 3D prints are labelled C10-C16. 
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Figure 5: Illustration of 3D prints supplementing W3 in Lesson 3 

The 3D prints were labelled strategically. The letter A and C represent the 3D printing 
category. The first number (1 or 2) represents the transparent or opaque character of 
the 3D print. The second number (1 – 6) was randomly added to the 3D print regardless 
of the task number. Moreover, in each set, the cube cross-section points are painted 
differently. Only the fifth set, which is the last one, is an exception, since there are no 
3D prints. As it can be inferred from Figure 5, the 3D prints represent the cube cross-
section process. The idea is to allow students to "familiarise themselves" with the 
different stages of the geometric construction. In this way, students can take, play, 
observe and discover various geometric problems. Mathematics thus becomes alive, 
real and physical, because it is on the table and can be captured and manipulated from 
different perspectives.  
Operative GeoGebra Applets  
In our project, demonstrative (passive) and operative (active) GeoGebra applets were 
proposed. The demonstrative applets are those which do not require any skills with 
GeoGebra software. Students manipulate the objects only by moving the sliders. The 
demonstrative applets are integrated into Lesson 1, Lesson 2 and Lesson 4. A more 
detail description of these applets is given in (Vágová, et al., 2020). On the other hand, 
the operative applets require basic skills with GeoGebra software. Students construct 
basic objects such as point, intersection, line, parallel line, polygon and intersection of 
two surfaces.  The operative applets are integrated into Lesson 3, which is described 
in this paper (see Figure 5), and also into Lesson 5.   
The W3 worksheet, along with the others, is available to students in the GeoGebra 
online book published on the GeoGebra platform. By using the web page link or 
scanning the QR code (see Figure 4), students move from the PaPE to the DigE. In 
addition, the content of the online book is the same as the content of the paper 
workbook. The online book is supplemented with the PDF format of the paper 
workbook as well as 3D prints photos.  In Lesson 3, there are six operative applets each 
corresponding to one of the six tasks Cube C13 – C18. All applets have the same design 
(see Figure 5) consisting of a cube with the section points, a menu, a toolbar, and a 
cube opacity slider. 
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Figure 5: Illustration of applet Cube C16  

When students enter the DigE, the 3D digital representation of a cube opens. The digital 
image corresponds to the cube image in the W3 worksheet and Category A of 3D prints. 
In this way, students perceive three different external representations of the same 
situation and from three different environments. Students can rotate the digital cube, 
move it and change the opacity by the cube opacity slider. The DigE is therefore 
considered as a “bridge” connecting the PhyE and the PaPE. The aim of the operative 
applets is that students cross-section a cube step by step. In the toolbar, they select a 
basic object (e.g. line) and using the menu, they can also change the type or colour of 
the objects. When students are cross-sectioning a cube, the 3D prints of category C can 
be used in a navigational or control sense. Students either cross-section a cube by 
following the 3D print and discover the context or they cross-section a cube themselves 
and compare it with the 3D print. Afterwards, by acquired experiences from the 3D 
printing manipulation and digital construction, students cross-section a cube on the 
paper worksheet.  

DISCUSSION 
In this paper, Lesson 3 was presented and discussed in detail. This lesson is one of the 
five cube cross-section lessons that were designed and carried out in our mixed 
methods research project. Altogether, three different resources were designed. A paper 
worksheet as the key resource and the physical and digital manipulatives are 
complementary. In addition, the digital environment is a “bridge” connecting the 
paper-and-pencil and physical environment. Every resource was designed strategically 
and each of them has its own advantages and disadvantages. The physical and the 
digital ones are considered to be artefacts which could support the development of 
students’ spatial visualisation. Afterwards, this development could lead to a better 
understanding of paper-and-pencil representations and right cross-sectional drawings 
of a cube. The aim of the project was to design such multiple resources that would 
complement each other and offer a more holistic view on spatial arrangements in solids. 
It means the artefacts that would become instruments for students when manipulating 
them. Currently, we are in the process of qualitative and quantitative data analysis of 
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Phase 2. The following publication steps will lead to the remaining worksheets and the 
findings and results of this intervention.  
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Several researchers refer the importance of outdoor photography for the 
understanding of math contents. However, we do not have enough knowledge about 
how preservice teachers pose problems in real life contexts. This paper describes a 
study where elementary preservice teachers capture photographs in their environment 
that allow task design. In particular, we want to identify what features of the 
environment were privileged and to understand what are their main difficulties and 
reactions when designing mathematical tasks. Results suggest that participants 
favoured elements related to buildings and expressed difficulties in the design of high-
level cognitive tasks. This experience had a positive impact on them, providing a 
“closer look” at everyday objects, developing their “mathematical eye”.  
Keywords: Photography, Task design, Problem posing, Problem solving, Preservice 
teachers. 

INTRODUCTION 
Nowadays we are experiencing deep changes in different areas of society, in particular 
in mathematics education. So, school mathematics requires effective teaching that 
engages students in meaningful learning through individual and collaborative 
experiences, giving them opportunities to communicate, reason, be creative, think 
critically, solve problems, make decisions, and make sense of mathematical ideas 
(NCTM, 2014). In this context, we must stress the importance of complementing 
learning with other mathematical learning experiences as the outdoors. The process of 
acquiring information and the development of knowledge by students can occur in 
many ways and in many places, because the classroom is just one of the "homes" where 
education takes place (Kenderov et al., 2009). The use of the surroundings as an 
educational context can promote positive attitudes and additional motivation for the 
study of mathematics, allowing learners to understand its applicability and its 
connections (Kenderov et al., 2009; Vale & Barbosa, 2019). In this scope, we consider 
that seeing through photos (digital images), captured through a digital camera, the 
connection between the mathematics discovered in and outside the classroom, and not 
viewed as separate entities, can be a good learning strategy. On the other hand, several 
authors (e.g. Silver, 1997) say that along problem solving teachers must propose 
problem posing tasks, as an important mathematical experience that students must 
develop, as it allows them to apply their mathematical knowledge, while allowing the 
teacher to realize what mathematics students know. Furthermore, research findings 
show that mathematical problem solving and problem posing are closely related to 
creativity, thus being a possible pathway for students to develop this ability (e.g. 
Leikin, 2009; Silver, 1997). 
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This work intends to promote contact with contextualized mathematics, focusing on 
everyday life features, walking through and analyzing the place where we live, 
connecting some of its details through mathematical problem solving tasks, designed 
by preservice teachers. The main purpose is to foster positive attitude towards 
mathematics, through the observation and exploration of the urban environment. It is 
important that future teachers are aware of mathematics around them, with all the 
complexity but also beauty and challenge that it encloses. On the other hand, it is an 
opportunity for students to formulate problems, which implies making decisions about 
what to consider and what to ignore in the situation under study, applying and 
mobilizing personal mathematical knowledge in the face of a situation, specifically a 
realistic one. In this context, images of a real situation, captured through a digital 
camera, have fundamental importance in solving and formulating problems, playing an 
important cognitive role in mathematics teaching and learning (Arcavi, 2003).  
So, our challenge was to characterize how preservice teachers pose problem solving 
tasks, in particular when they have to use photography in real life contexts. This paper 
intends to give some insights in this regard. We focus on the role of capturing photos 
in the environment for the purpose of formulating mathematical tasks, establishing 
connections between mathematics and reality. Thus, we aim to answer the following 
questions: 1) What features of the environment were privileged by the preservice 
teachers’ mathematical eye? 2) What difficulties did they show in the tasks design? and 
3) What reactions did they evidence during this experience?  

THEORETICAL FRAMEWORK  
Task design 
Students must have mathematical experiences outside the classroom, observing 
everyday life, natural and architectonic heritage surrounding their schools, to discover 
connections of school mathematics with buildings, gardens, streets and so on, creating 
and solving tasks in real contexts (Bragg & Nicol, 2011; Kenderov et al., 2009; Meier, 
Hannula & Toivanen, 2018). Hence, it is important to create opportunities for 
preservice teachers to apply their knowledge about problem posing and problem 
solving to design tasks outside the classroom, for their own students. Formulating 
problems helps beginning teachers (and students) to consolidate problem-solving skills 
and to strengthen their mathematical knowledge and skills. Also, by doing it in the 
environment, allows seeing the applicability of mathematics in everyday life, as well 
as developing their own creativity.  
Silver (1997) considers problem posing as being either the generation (creation) of a 
new problem or the reformulation of a given problem. Stoyanova (1998) considers 
problem posing as a process by which, on the basis of mathematical experience, 
students construct personal interpretations of concrete situations and formulate them 
as meaningful mathematical problems. Brown and Walter (2005) propose two 
strategies for formulating problems. The Accepting the given strategy starts from a 
static situation, which can be an expression, a table, a condition, an image, a diagram, 
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a phrase, a calculation or a set of data, from which we formulate questions to have a 
problem, without changing the starting situation. The What-if-not strategy extends a 
given task by changing what is given. From the information contained in a problem, 
we identify what is known, what is asked for and what limitations the response to the 
problem involves. By modifying one or more of these aspects or questions, new and 
more questions can be generated (Barbosa & Vale, 2018). For Sullivan and Liburn 
(2002) three main features underlie the creation of good questions: they require more 
than remembering a fact or reproducing a skill; students can learn by doing the tasks, 
answering the questions and teachers learn from each students’ attempts; and there may 
be several acceptable answers. So, posing good questions makes good tasks. The 
authors propose practical and accessible methods for posing open-ended questions 
using a three-step process. Method 1 - Working Backward, includes identifying a topic; 
thinking of a closed question and writing down the answer; making up a question that 
includes (or addresses) the answer. Method 2 - Adapting a Standard Question, includes 
identifying a topic; thinking of a standard question; adapting it to make a good 
question. These methods can provide also information about the way we choose a 
mathematical photo. Either we look for the mathematical potential of an object (or 
phenomena) in a photo or we look for an object that matches a predefined subject. Any 
of these methods can generate tasks of different cognitive levels of demand (Smith & 
Stein, 2011). 
Photography and mathematical eye 
Several researchers (e.g. Meier et al., 2018; Munakata & Vaidya, 2012) work on 
photography outside the classroom as a way to motivate students, increase interest and 
understanding of content, through the connection between mathematics and everyday 
situations. In addition, this type of approach gives students the opportunity to conduct 
their own transformative and aesthetic experience. This type of photograph, that we 
call mathematical photo or problem picture, according to Bragg and Nicol (2011), is a 
photo of a real object, phenomenon, activity or situation that is accompanied by one or 
more questions or a mathematical problem based on the context of the photo. 
According to these authors, an image-based question can stimulate students' curiosity 
in answering the question and their engagement in the process of creating immediate 
questions or a problem. Gutstein (2006) argues that good tasks do not necessarily reside 
in the task itself but rather in the relationship between the task and the solver (student 
or teacher), related to students’ interests and lives, aspect that reinforces the use of 
photos (digital images), because they are chosen by the user. Taking a photo creates an 
affective connection between everyday situations and mathematical concepts, which 
engages students with the tasks (Meier et al., 2018; Vale & Barbosa, 2019). 
Developing a mathematical eye is a competence that students must acquire, because 
we live in a world where visual features are a crucial component in the society and in 
many professions. We apply the common term “mathematical eye” to refer to the use 
of mathematics as a lens to see and interpret things/elements that surround us. It means 
to see the unseen, interpret things in the world as a boundless opportunity, and discover 
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mathematics involved by seeing the world around us with new eyes, eyes that are open 
to the beauty of mathematics and its relation to the beauty of nature (Stewart, 1997). 
We can also use the term “geometrical eye”, coined by Godfrey (1910) as the power 
of seeing geometrical properties detach themselves from a figure. For most people 
mathematics that surround them often remain "invisible" to their untrained or 
inattentive eye. We have to educate their mathematical eye, so that they can identify 
contexts and elements that can support rich mathematical tasks (Vale & Barbosa, 
2019). Saying that students must develop their mathematical eye means that we have 
to discover new ways of looking and consider familiar things either in daily life, work 
or inside/outside the classroom. It means seeing common objects from a new 
perspective, whose level of detail varies with each individual's knowledge and 
experience. Barnbaum (2010) uses the metaphor of a detective when observing a crime 
scene. The detective will see a lot more details than an ordinary person. He also claims 
that the art of re-seeing must be taught. According to Arcavi (2003) visualization must 
become more visible in the teaching of mathematics. He discusses mathematical 
visualization in a more figurative and deeper sense, as seeing the unseen, not only what 
comes within sight but also what we are unable to see. It becomes a tool for students to 
learn mathematics (Vale, Pimentel & Barbosa, 2018). Using photos provides 
opportunities to use real world as a starting point to develop mathematical eye and 
build mathematical problems, affording teachers with knowledge about students’ 
visual attention. Furthermore, according to Meier et al. (2018) the use of photos 
motivates students, increases creativity and provides that “everyday life outdoors and 
science/mathematics can be connected in a meaningful way through the experience of 
photography” (p.147).   

METHODOLOGY AND SOME PRELIMINARY RESULTS 
An exploratory qualitative methodology (Erickson, 1986) was adopted with a group of 
13 elementary preservice teachers of a teacher training course conducted in a school of 
education in a Didactics of Mathematics curricular unit. Throughout the classes these 
pre-service teachers were provided with diversified experiences, distributed in 
curricular modules, focusing on problem posing and solving. We privileged learning 
outside the classroom, creativity, and the establishment of connections, particularly 
between mathematics and daily life. The preservice teachers were asked, in pairs to:  

1) explore the surroundings, taking a city tour analyzing the rich architectonical 
urban area, where they had to capture, with their mobile phone camera, a set of 
life shots with potential to formulate mathematical tasks;  

2) choose some of the photos. The choices resulted from the analysis of the 
mathematics underlying each photo and the group discussion;  

3) formulate tasks and present the respective solutions. In order to create a task 
using photos we used the respective digital image, applying the accepting the 
given problem posing strategy (Brown & Walter, 2005) and then the future 
teachers used method 1/method 2 to pose questions (Sullivan & Liburn, 2002);  

4) create a poster including the photo, the formulated tasks and their solutions;  
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5) present, discuss and assess the posters by all students who participated in this 
experience, using an assessment grid that focused on the assessment of the tasks 
and the poster in global terms. The future teachers also made a written report 
describing their reaction to the experience. Figure 1 illustrates some of the 
different moments of this activity. 

 

Figure 1: Examples of the different moments of the activity 

Data was collected in a holistic and interpretive way, including observations of the 
whole experience, the set of photos chosen, the written reports (describing their 
reaction throughout the different phases of the experience, including how they chose 
and created the tasks) and the assessment grid applied to the posters. Data was crossed 
and analyzed in an inductive way, according to the nature of the data and the research 
questions. Thus, we organized the analysis according to the following categories: 
features of the environment and photos; problem posing and its difficulties; reactions 
to the experience. 

The photos chosen by the teachers showed that their gaze focused on elements such as 
buildings/facades, flower boxes and prices. The choice of photos was based on 
"possibilities for good questions", as assumed by the participants. Only one group 
sought for photos that fit what they had already thought to propose. Based on the 
photos, they managed to build proposals suitable to the contents already in mind, being 
able to naturally highlight connections between mathematics and the environment. The 
participants supported this selection by referring to the mathematical content suggested 
by the captured images. They mentioned that these photos were the ones that most 
inspired them to formulate the tasks. The objects of reality were transformed into 
mathematical objects, having aroused, for the most part, the mobilization of contents 
in Geometry and Measurement, followed by Numbers and Operations. The level of 
demand of most of the tasks was of low level, using the application of basic concepts 
and procedures. For example, Figure 2 shows two of the tasks created by the 
participants. We consider that the first task has a low level of demand and can be solved 
without the solver being present on the spot. The other task has a high level of demand 
and the solver needs to be on the spot to collect the necessary data to solve the task.  

Margarida 
received money 
for her birthday 
totalizing 
€100,40. With this 
money, she 

Watch the 
Avenue closely. 
For the Medieval 
Fair, the Avenue 
will be decorated 
with ribbons of 
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decided to go shopping at a fashion 
store that had the price table shown in 
the image. Help Margarida decide what 
she can buy in the store with the money 
she received. 

colored handkerchiefs placed in a 
zigzag pattern supported on the lamps 
along the Avenue (1 ribbon for every 
two lamps). How many ribbons will it 
take to decorate all the lamps? 

Figure 2: Examples of two tasks 

A group of students choose a photo of a flower pot and proposed a routine problem of 
geometry (Figure 3). However, despite of having the opportunity to contact with the 
object in the real context they used unrealistic data, when formulating the task: they set 
the radius of the flowerpot to 3 meters, but the real measurement was about 20 cm. It 
would be more interesting if the solver had to actually do the measurement on the spot, 
instead of accessing the data through the task.  

 

The gardener wants to build a fence 
around the flower pot. Find out the 
minimum length of the fence to be 
placed around it, knowing that the 
radius of the pot has 3 meters length. 

Figure 3: Example of a task with unrealistic data 

All these future teachers were engaged in this experience; however, they said that the 
formulation of the tasks was not an easy process, mainly in diversifying the nature and 
the contents of the tasks. They also stated that they will use photography with their own 
elementary school pupils. 

SOME CONCLUSIONS  
We synthesize the main ideas taking into consideration the research questions that 
guided the study, and the data that emerged from the empirical work. The main features 
of the environment privileged by the preservice teachers’ mathematical eye were 
buildings. The architectural details caught their attention in terms of possibility for 
mathematical exploration (Barbosa & Vale, 2018). The choice of photos was mainly 
based on the possibilities for good questions (Bragg & Nicol, 2011). The use of photos 
as a means for promoting mathematics learning had a positive impact on students, 
providing a "closer look" at everyday objects, looking for the underlying mathematics 
in a more conscious and intentional way (Meier et al., 2019; Vale & Barbosa, 2019). 
Task formulation was not an easy process for the future teachers, which can be 
explained by the fact that they did not have much experience with task design. This 
was one of the reasons for the expression of difficulties in going beyond the problems 
of direct application, formulating tasks that lacked originality. This implies a regular 
work so that there is a positive impact on the quality of the proposals. In agreement 
with Barnbaum’s (2010) ideas, the more knowledge, training and experience we have, 
the more detailed and deeper the mathematical eye will be. We however observed that 
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some of the students were able to formulate challenging tasks. All managed to build 
proposals with suitable contents for elementary school students, being able to naturally 
highlight connections between mathematics and the environment. Environment 
engages students to capture photos that inspire them in different ways influencing 
students’ motivation for learning in the extent to which they relate their school learning 
to their daily life (Gutstein, 2006). 
This study adds to our understanding that outdoor photography can help students in 
task design as a significant aspect of mathematics curriculum and of our practice as 
teacher educators. But we need more studies to help us how to include an instruction 
for (preservice) teachers to develop their mathematical eye as well as to create rich 
tasks to be proposed to their pupils in the scope of outdoor mathematics education. We 
believe, as Bragg and Nicol (2011), that through creating problem photos, teachers and 
students will see mathematics through a new lens.  
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In the topic-specific Didactical Design Research project ‘PAZ-digital’, the tablet app 
‘Kombi’ is being developed. ‘Kombi’ is a digital tool for iOS and Android tablets to 
solve combinatorial counting problems in primary and lower secondary school. It aims 
at supporting the development of sustainable structuring and counting strategies. This 
article outlines the project, discusses the challenges of solving counting problems 
analogously and presents digital potentials to overcome these. Moreover, it outlines 
basic design principles of ‘Kombi’. To determine to what extent the implemented 
principles and potentials are targeted, we carried out an exploratory interview study 
with experts and students. The empirical results of the 1st design cycle are presented 
and discussed with a view to the further app development. 
Keywords: combinatorics, design principles, digital tool, tablet app, development. 

INTRODUCTION AND RELEVANCE 
One of the four main themes at the ERME Topic Conference on MEDA refers to issues 
related to task design in the digital age. This paper is a contribution to this theme as it 
focusses on the development and evaluation of a digital tool, designed for primary and 
early secondary school in order to solve combinatorial counting problems. The need 
for developing such a tool is based on theoretical and empirical requirements and 
challenges in solving combinatorial counting problems as well as special potentials of 
digital media, which – in our opinion – can counteract these challenges. 

THEORETICAL BACKGROUND 
Combinatorics and the development of a conceptual understanding  
The field of combinatorics is of great importance not only in the context of probability, 
but also in computer science. It deals with combining elements into (new) objects: “The 
aim of combinatorial questions is to determine all permissible combinations […] and 
their quantity” (Höveler, 2018, p. 82) in an economical way. However, various studies 
have shown that solving combinatorial counting problems is particularly difficult for 
learners of different ages (e.g., Batanero, Navarro-Pelayo, & Godino, 1997; English, 
2007), supposedly due to a lack of conceptual understanding (Lockwood, 2014). 
From a mathematical perspective, it is possible to use three different approaches to 
solve combinatorial counting problems (1) systematic listing, (2) counting principles 
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and (3) combinatorial operations (Höveler, 2018). In order to develop a conceptual 
understanding, a propaedeutic thematization in primary school is recommended, which 
focusses on the structured notation of the objects (Höveler, 2014), referred to as ‘set of 
outcomes’ (e.g., Lockwood, 2014). Such a “set-oriented perspective [which focuses on 
the specific set of objects and its structuring] may help students to find more 
meaningful ways of understanding and articulating issues that arise as they solve 
counting problems” (Lockwood, 2014, p. 36). Therefore, Lockwood (2014, p. 36) 
highlights the need for teachers to be “more conceptually and less procedurally 
focused”, and to relate the set of outcomes with possible counting strategies. Höveler 
(2018) demands a focus on this relationship already in primary school. 
Challenges in the development of a combinatorial understanding and 
counteracting them with digital potentials 
With regard to the focus on the development of a conceptual combinatorial 
understanding in primary school, organizational and content-specific challenges were 
identified. When considering the challenges, the potential of digital media quickly 
became apparent (Höveler & Winzen, accepted). 
In order to develop a set-oriented thinking, the structured listing of the set of outcomes 
is essential but usually requires time and flexible materials: Studies with elementary 
school students show that after an initial non-structured approach, children become 
more structured in the process (e.g., English, 2007; Höveler, 2014). In this context, 
English (2007) indicates the need of hands-on, moveable materials. In her study with 
7- to 12-year-old children, the students who had access to these materials, “were able 
to develop and modify their solution strategies, detect and correct their errors, and 
develop generative procedures on their own” (English, 2007, p. 154). Working with 
movable materials seems to be more helpful than making notations on a sheet of paper. 
However, due to the combinatorial explosion (e.g. Höveler & Winzen, accepted), 
providing hands-on movable materials poses a particular challenge for regular 
classroom activities (Winzen & Höveler, 2020). The digital potential ‘dynamization 
and flexibility’ (e.g., Clements & McMillen, 1996) can be a possible solution as it 
offers to change arrangements of objects or their representation easily.  
Furthermore, we identified a lack of fitting between mental operations described by the 
learners and the possible analogue actions (Höveler & Winzen, accepted): For 
example, learners verbalize the idea of the strategy ‘exchange pairs’ which is 
characterized by duplicating all created objects and changing the arrangement of the 
elements in the new objects (Höveler, 2014). Others pursue the idea of the ‘odometer 
strategy’ (e.g., English, 2007), where in a first step a constant “item is repeatedly 
selected until all possible combinations containing that item have been formed. [In a 
second step on] […] exhaustion of this item, a new constant item is chosen and the 
process repeated” (English, 2007, p. 145). In reality, however, in both strategies each 
object has to be created individually. The potential ‘fitting between virtual 
representations and mathematical ideas’ (e.g., Schulz & Walter, 2019) may help to 
overcome this obstacle as using digital tools may offer new actions which can lead to 
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a better fitting between mental operation and action (Clements & McMillen, 1996). 
Furthermore, during the problem-solving process children articulate the use of a 
systematic strategy, but in some cases forget to create all possible objects with this 
strategy. The digital potential ‘offloading’ (e.g., Schulz & Walter, 2019) may help to 
reduce the extraneous cognitive load: Since appropriate functions are embedded within 
the app, the learners no longer need to create each outcome individually. 
The joint exchange about strategies and their viability also proved to be a great 
challenge: Besides the missing possibility to restructure objects in order to modify 
strategies, the volatility of the problem-solving process is problematic so that the 
procedures are often difficult to understand (Huhmann, Höveler & Eilerts, 2019). The 
digital potential ‘documentation process’ (e.g., Parnell & Bartlett, 2012), for example 
by video or screen recording, may help to overcome this problem. In addition, the 
digital storage of different solution strategies can simplify the structural comparison 
and also offers to use these solutions again in the later learning process. 

THE PROJECT ‘PAZ-DIGITAL’ 
Aims and research framework  
For the reasons given above, the ‘PAZ-digital’ project aims at developing and 
researching a subject-appropriate software for solving combinatorial counting 
problems, namely the tablet-app ‘Kombi’. This software should offer different 
functions in three special areas: Firstly, the individual virtual solution of counting 
problems in a play space (Wollring, 2006). This play space offers to create and 
structure sets of outcomes spatially on the basis of different elements. A distinction is 
made between a flexible, virtual manipulative, named free play space, which does not 
provide specific tasks and a task-based play space which offers specified counting 
problems. Secondly, a virtually shareable document space (Wollring, 2006) allows 
sharing and working with sets of outcomes from other students in order to facilitate the 
joint exchange about structuring and counting strategies and the development of 
sustainable strategies in general. Thirdly, the central findings should be screened and 
sound recorded in an additional research diary and could be taken up again in later 
teaching sequences. The latter will prospectively counteract the volatility of the 
problem-solving process and enable a better exchange about the solution strategies. 
To develop the ‘Kombi’ app, the project follows the approach of topic-specific 
Didactical Design Research (e.g., Prediger & Zwetzschler, 2013), which cyclically 
interlocks processes of development and research. During the cyclic development 
process there are different priorities: In the 1st and 2nd cycle the focus is on the 
development of the play space, whereas in the 3rd and 4th cycle, the document space 
and the research diary are worked on primarily. This article focuses on the 1st design 
cycle and therefore presents the theoretically and empirically based development of the 
(free) play space and the already implemented design principles. 
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Functionality of the free play space and implemented design principles in the 1st 
design cycle 
In the current version of the free play space, two design principles have already been 
implemented: dynamization and interactivity of actions (design principle 1) and 
strategy macros (design principle 2). In the following we will outline how the free play 
space can be used to solve combinatorial counting problems in three steps to explain 
these already implemented design principles (Figure 1). We use the block tower 
problem (“Here are three blocks in different colors. How many two-tall towers can you 
build?”) – a typical combinatorial problem in elementary school – as an example. 

Figure 1: Solving a combinatorial problem in three steps in the free play space 

Step 1: Selection of task variables  
The challenge of time and flexible materials is faced with the implementation of design 
principle 1 and the digital potential ‘dynamization and flexibility’. A part of this design 
principle becomes apparent in the first step: In the free play space the player can choose 
between three available element categories to create objects depending on the given 
task (Figure 1, step 1, light gray field). For the given task we pick the element category 
‘colors’. In the first place, the height and the alignment of the object envelope need to 
be set. It is currently possible to select between a horizontal and a vertical alignment 
of the object envelopes and between two to six element fields. For the two-tall towers, 
we pick a vertical orientation and the height two. Finally, it needs to be chosen how 
many and which elements out of the previously chosen element category are given to 
create the objects; in this case three different colors of 14 possible colors were picked. 
Step 2: Creation and structuring of the objects  
In the second step the colored two-tall towers can be created by pulling the object 
envelope into the white surface and filling it with selected elements; for instance, with 
the color black (Figure 1, step 2a). In this step the potential ‘dynamization and 
flexibility’ is considered: Like blocks on a table, the created objects can be moved 
freely on the surface. Furthermore, they can be reordered, shifted and deleted 
individually or as a group by drawing a lasso around several objects (Figure 1, step 
2b). For better visibility, a zoom option is planned.  
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Furthermore, strategy macros (design principle 2) can be used. With their 
implementation we aim to overcome the missing fit between mental operations 
described by the learners and the appropriate possible material actions. A basic and 
already existing strategy macro is the ‘duplicating of existing objects’. In the context 
of the block tower task, it is possible to duplicate a two-tall tower with a black block 
on the top as often as required, so that only the lower blocks need to be colored. This 
corresponds to a sub-step of the essential structuring strategy ‘odometer strategy’ 
(English, 2007). In this respect, the strategy macro considers the digital potentials 
‘fitting between virtual representations and mathematical ideas’ and ‘offloading’, 
theoretically. 
Step 3: Saving and sharing 
In order to simplify the joint exchange about strategies the solution can be saved and 
in future also be recorded, shared with other app users or be analyzed and reflected in 
the document space (Figure 1, step 3).  
Research questions and methodology of the 1st design cycle 
The main goals of the empirical study in the 1st cycle were to check the manageability 
of the basic functions already available in the free play space and to ascertain the test 
subjects’ wishes to expand the strategy macros. The following research questions were 
leading: 
(1) What potentials and challenges does the current app version show when experts 
and learners are dealing with the basic functions? (2) Which additional functions are 
desired by experts in mathematics education and third graders within the scope of the 
play space, especially with regard to the strategy macros? 
The data collection was based on clinical, guideline-based interviews (e.g., Hunting, 
1997) with a total of five experts in mathematics education and eight third graders. As 
experts are more elaborate when it comes to solving combinatorial problems, they were 
included in the study and it was expected that they could think about possible 
extensions of the app on a meta level. The third graders were important as subjects in 
order to see how intuitive the use of the app is for the target group. In the interviews, a 
guideline-based introduction to solving combinatorial counting problems was given 
first, followed by an exploration phase in which the functions of the app for creating 
and structuring the set of outcomes could be explored freely. In the third phase, experts 
and learners were requested to solve a specific task before they were finally asked to 
express their wishes for further developments of the app with a special focus on the 
strategy macros. For the data analysis, the videotaped interviews were analyzed by 
sequence analysis (Dinkelaker & Herrle, 2009): The test persons’ ways of use were 
compared. Aspects which were identified in several interviews, were analyzed in more 
detail in order to draw conclusions for the further app development. 

RESULTS  
Design principle 1: Dynamization and interactivity of actions 
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Regarding the selection of elements and the creation of the objects, it should be noted 
that neither the experts nor the students had any difficulty in selecting the elements and 
the object envelopes, nor in describing their function. In contrast, putting together an 
object turned out to be a challenge for all interviewees: They tried to push individual 
elements together into an object within the surface. Without the interviewer’s help, 
only a few of them discovered that they had to pull the previously created object 
envelope into the surface and then fill it with elements in order to create an object. This 
may be due to the fact that the students’ analogue approach differs from this digital 
procedure: Firstly, there is no object envelope and secondly, elements are directly 
combined to form an object. Once the object envelope was in the surface, the 
interviewees could fill in the objects without any problems. With regard to creating the 
whole set of outcomes, functions such as deleting, repeating and undoing, and changing 
an element in an existing outcome were used intuitively by everyone. Other functions 
needed a brief introduction: In order to perform actions like the above on several 
objects, they had to be circled with the lasso first. It became apparent that the 
interviewees used the simple option of dynamic arrangement for restructuring and 
often showed an increasing systematization in their own procedures. During the 
interviews, additional requests for further development became apparent: zooming in 
and out, alignment of the objects to a grid in the sense of a structuring and simultaneous 
addition of several object envelopes. It became apparent that the digital potential 
‘dynamization and flexibility’ has been implemented well so far, but further 
development is necessary to ensure flexibility in solving the problems. 
Design principle 2: Strategy macros 
The results regarding the strategy macros show that the imaginable digital potentials 
have not been fully exploited yet: Results with regard to the ‘duplicating of existing 
objects’ function, which was found to be theoretically helpful, were diverse. On the 
one hand, three of the five experts used the duplicate function, reasoning that 
duplication is strategically wise, because it can outsource actions such as the repeated, 
individual creation of objects. This justification coincides with our theoretically 
assumed potential. Yet on the other hand, the experts pointed to a hurdle of the current 
app version: When duplicating, the repeated pasting of the duplicated objects is not 
possible so far. This means that the duplicating process must be carried out repeatedly 
to implement the digital potentials ‘fitting between virtual representations and 
mathematical ideas’ and ‘offloading’. Furthermore, two experts pointed out that 
duplicating in combination with swapping the arrangement in the objects would be a 
helpful function. This procedure corresponds with the already mentioned sub-strategy 
of forming ‘exchange pairs’ and represents the idea of permuting objects. As three 
children and another two experts tried intuitively to swap the arrangement by twirling 
fingers, this function shall be implemented as a new strategy macro. 
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CONCLUSION  
The results of the empirical investigation show that the current version of the free play 
space can largely be used intuitively by experts and learners to solve combinatorial 
counting problems. Using the basic object envelopes and selecting elements seems to 
be self-explanatory. However, the creation of an object is not. When using the app in 
class, it is therefore essential to discuss this function. Design principle 1 dynamization 
and interactivity of actions, in particular the options of shifting, deleting and the lasso 
function, had a significant contribution to the increasingly structured approaches of the 
learners. In this respect, the current app version already contains significant advantages 
of analogue, moveable materials (cf. English, 2007) without including their additional 
challenges in everyday teaching (e.g., lack of availability). With regard to design 
principle 2 strategy macros there is a need for further development: Thus, the strategy 
macros are to be expanded by further functions which make it possible to carry out 
analogue (sub-)strategies such as ‘exchange pairs’ or the ‘odometer strategy’. 
Concerning the further development of the app, the main focus is on the extension of 
the strategy macros in the play space. In addition, a first version of the document space 
and its functions is to be created, so that based on the sets of outcomes, counting 
strategies can be derived and additionally a set-oriented thinking can be developed. 
Regarding the basic development of apps and their use, two central conclusions can be 
derived: (1) A one-sided theory-based app development is not sufficient as only 
empirical surveys provide information about the actual use of theoretically worked out 
app potentials. (2) Virtual manipulatives (as well as analogue tools) are not self-
explanatory. In this respect, they are ‘learning material’ and need to be addressed in 
classroom, before they can be used as ‘learning aid’ (Schipper, 2009). 
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Theme 2 
Mathematics Curriculum Development and Task Design                          

in the Digital Age  
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Smartphone math-apps in learning environments (SMiLE): a project 
focussing on the development and evaluation of teacher training 

concepts 
Christian Barthel1 and Matthias Brandl2 

University of Passau, Didactics of Mathematic, Germany,             
1christian.barthel@uni-passau.de, 2matthias.brandl@uni-passau.de  

THE PROJECT SMiLE 
The poster provides a brief overview of the project structure. General facts include: 

• SMiLE is a part of the so-called ‘Global Teacher Research and Education 
Exchange Program Passau’ funded by the German Academic Exchange Service 
(DAAD program: “Lehramt.International”). 

• Core of the project SMiLE: Collaboration with the Bavarian Ministry of 
Education on their ongoing project ‘CAS in Exams’. 

• Main goal of SMiLE: To develop and to evaluate teacher training sessions on 
how to use GeoGebra Apps in math classes in Bavarian high schools. 

• Further project participants of SMiLE: University of Pedagogical Sciences 
(UCPEJV), Havana, Cuba and Södra Latins Gymnasium, Stockholm, Sweden. 

THE PROJECT CAS IN EXAMS 
The ‘CAS in Exam’ project is carried out in several Bavarian high schools 
(Gymnasium) by the Bavarian Ministry of Education. Students of the participating 
schools are allowed to use GeoGebra Apps on mobile devices in the so called ‘Exam 
Mode’ in exams from the 8th grade onward. The aim is to officially allow GeoGebra 
Apps on mobile devices in combination with the ‘Exam Mode’ in exams in all Bavarian 
high schools. The Professorship for Didactics of Mathematics at the University of 
Passau is in charge of the scientific supervision of this project. As part of the project 
SMiLE, appropriate teacher training courses are to be developed to facilitate the 
introduction of GeoGebra on mobile devices in exams across Bavarian high schools. 
The objectives of the scientific supervision are amongst others: 

• To identify key elements for the training of students at university and further 
education of teachers. 

• To develop a training concept to strengthen the use of GeoGebra in classrooms 
and thus to increase the appreciation of GeoGebra on mobile devices in 
mathematics. 

THEORETICAL FRAMEWORK 
The scientific basis for the project SMiLE is a design-based research (DBR) approach. 
Bakker (2014) describes a major aspect of DBR as follows: 
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A key characteristic of DBR is that educational ideas for student or teacher learning are 
formulated in the design, but can be adjusted during the empirical testing of these ideas, 
for example if a design idea does not quite work as anticipated (p. 3).  

The DBR approach fits the project structure because the adjustment and further 
development of teaching content during the project is essential. The research cycles are 
entered via two parallel designs. For this purpose, a workshop on the use of GeoGebra 
in exams and e-learning courses corresponding to the mathematics curriculum starting 
in 8th grade will be elaborated. The organisational structure for the implementation 
across Bavaria is provided by the Bavarian Teacher Training Academy. The poster 
presents first results and further steps in the project that serve as the basis for discussion 
and debate.  
POSSIBLE IMPLICATION FOR RESEARCH IN THE AREA 
As the use of Apps on mobile devices like smartphones and tablets in exams is new 
terrain for research, there is few literature on this specific topic. Nevertheless, the ICMI 
Study 17 (Hoyles & Lagrange, 2010) provides a summary of a range of efforts to 
examine the use of digital technologies (DT) in mathematics education. Referring to 
this study, Weigand (2014) concludes in his article “Looking back and ahead—
didactical implications for the use of digital technologies in the next decade” that this 
study can be understood “as a request and as a challenge to develop new ideas—
visions—in order to advance the integration of DT in mathematics education” (p. 4). 
Considering these results and results of various other studies on the use of digital 
technologies, the challenge that arises is to train teachers and students in a way that 
math classes can be meaningfully and sustainably enriched by the use of digital 
technologies. The employment of digital technologies can train a wide variety of 
student competencies. A prerequisite for the successful use of digital technologies is 
that students and teachers can rely on appropriate digital resources and training. 
Furthermore, teachers have to be trained in a way that the teacher-student interaction 
with curricular content is effectively guided. The project SMiLE seeks to contribute to 
this aim.    

REFERENCES 
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Fostering creativity through design of virtual and tangible 
manipulatives 

Ana Donevska-Todorova1, Diego Lieban² 
1Goethe University Frankfurt am Main, Institute of Didactics of Mathematics and 

Informatics, Germany, donevska@math.uni-frankfurt.de;  
²Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul,       

Bento Gonçalves, Brazil, diegolieban@yahoo.es  
THEORETICAL GROUNDING AND CURRENT RESEARCH STATE 
“How does creativity interact with expertise in problem solving and problem posing 
when mathematics meets real objects” has already been investigated (Singer & Voica, 
2017, p. 75). According to Flores, Park, & Bernhardt (2018) “creativity is fostered, 
promoted and developed when […] learners pose and solve problems” also with the 
use of technology. Beyond problem solving, which we examine in a narrow and a wider 
sense by combining physical and digital manipulatives in (Donevska-Todorova, 2020; 
Donevska-Todorova & Lieban, 2020), the activities discussed in this work show new 
paths for students to become more creative and innovative mathematics learners and 
users. Recent studies (Lee & Carpenter, 2015; Leikin & Sriraman, 2017; Sánchez, 
Font, & Breda, 2019) call attention to the importance of nurturing creativity in school 
environments and the needs to introduce teaching practices that could foster creative 
processes in regular school activities. In addition, schools allow development of 
creativity skills for contributing to critical thinking, problem solving, autonomy and 
collaboration. Nevertheless, it seems that there are still only a few initiatives in teacher 
training programs related to fostering creativity and due to this there are numerous calls 
to develop such programs to change this situation (Sánchez, Font, & Breda, 2019). In 
their study with prospective teachers in Spain, the authors identified connections 
between the use of manipulatives and the development of creativity. The teachers 
explained activities where students’ creativity could be fostered by the use of digital 
tools and other physical resources. However, pre-service teachers may not always 
recognise mathematical creativity, but a plastic or artistic creativity that students 
practice in making a certain object. Yet, even such exercises may contribute to 
involvement in a new mathematical activity later. This perspective reinforces the 
importance of introducing the use of manipulatives in digital and palpable formats and 
may further encourage students in designing their own pieces of artwork, logical games 
or two and three-dimensional visualizations and puzzles. Creativity in that sense relates 
to guided creations from scratch or adapting and redesigning existing materials by 
bringing new ideas into play. Regardless of where students obtain the inspiration from, 
they can use mathematical background knowledge and plenty of integrated skills for 
their brainstorm processes, constructions and designs.  
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RESEARCH QUESTION AND METHODOLOGY                                                    
Our research calls the fostering of creativity in mathematics education through the 
design of tangible and virtual manipulatives into question and we initially approach it 
through a first cycle of design research (Kelly, Lesh, & Baek, 2008). 
RESULTS AND FURTHER PERSPECTIVES 
As designing and evaluating resources is one of the themes of the ERME Topic 
Conference MEDA 2020, the poster shows authentic designs of virtual DGS and 
tangible 3D printed manipulatives that can support development of creative and 
divergent mathematical thinking during posing and solving construction problems, and 
tessellations offering a stable base for further discussions. 
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A conceptual approach on mingling Augmented Reality, 3D printing 
and ancient architectural modelling using GeoGebra  

Shereen ELBedewy1 and Zsolt Lavicza² 
Johannes Kepler University Linz, Faculty of Education, Department of STEM 

Education, Austria, shereen_elbedewy@hotmail.com; lavicza@gmail.com 
In this poster we are introducing a hybrid concept of new technologies and 
investigating its effects on teachers/students learning while applying them on ancient 
architectural models. We are addressing technologies as augmented reality, 3D 
printing/scanning and 3D modelling using GeoGebra.  
Keywords: data transformation, augmented reality, 3D scanning/printing, architecture 
modelling, mathematical education. 

INTRODUCTION 
In this conceptual poster the main idea is to mingle most recent technologies to help on 
reflecting on ancient architectures to interpret mathematical concepts during the 
modelling process. As (Rossi, 2018) shows in her articles the clear relation of ancient 
architectures and mathematics as proved in the ancient Egyptian architecture. Most of 
the ancient architecture were based on mathematical concepts although the theories and 
rules applied belong to an old version of mathematical knowledge and in our modern 
mathematics it is different. But by this study we are bridging between past 
mathematical theories and trying to apply it on today’s modern mathematical concepts. 
This is by replicating, enhancing or even reconstructing ancient architecture. Ancient 
Architecture is the only link we can consider reliable to understand the past 
mathematical and geometrical theories accompanied by ancient documents. As for the 
ancient Egyptian architecture we found the Rhind Mathematical Papyrus which was 
dated from around 1650 B.C., which prove and elaborate their mathematical 
knowledge. We are adopting new technologies to bridge the gap between past and 
present with the teachers and the students. We are applying data transformation to show 
the models in many forms, digital by modelling using GeoGebra, augmented reality, 
3D scanning and physical by using the 3D printing technologies. Now we will take 
some samples and findings from other researchers showing the importance of using the 
technologies we proposed and their impact on mathematical studies. The importance 
of 3D scanning comes with many promising technologies as laser or structured light 
scanners, but they are expensive so other alternatives for this could be computational 
photography and photogrammetry techniques. They provide 3D models from real 
existing models by using dense images combined together and captured from different 
angles as elaborated by (Martínez-sevilla et al., 2018). These technologies can be 
applied to architectural models resulting in 3D representations which can help the 
students to reflect on their mathematical understandings. Moreover, combining 
augmented reality with 3D scanning in the digital form or relying on the AR GeoGebra 
option will give students the opportunity to experience more technologies. AR has an 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

350 

impact in the science classroom as shown in the review of (Gopalan et al., 2018) they 
found that instead of using text and images only, the assistance of audio or three-
dimensional models as in AR will give students a better understanding. 3D Printing is 
a potential technology in education as(Szulżyk-Cieplak et al., 2014) believe that 3D 
printers have direct effect on the processes of teaching. As printed physical models 
help in delivering to the students a better understanding of the creation process. They 
believe that it enhances the students’ involvement during the classrooms and that it 
gives them an edge in transferring their ideas into reality. As all these practices aim is 
to increase and foster the creative thinking of both teachers and students in finding and 
expressing their mathematical knowledge using different technologies and applying 
them to architecture. Lastly this will bring us to combing all these ideas in a research 
question that we will find an answer too during this research journey:  What are the 
best practices that help teachers and students in modelling ancient architecture using 
AR,3D printing/ scanning and using GeoGebra? what are the practices direct/ indirect 
impact on their mathematical knowledge? 

FUTURE WORK 
As a future step to this emerging research ideas is to develop methods for the teachers 
and students in the classroom and playing around with these various technologies 
presented in this research. The data that will be collected at each stage of the research 
using different data collection methods like interviews, insights and surveys will all 
end up in formulating the methodology of this research. And the methodology findings 
at each stage of the project will help in formulating the project stages and paths as well 
as giving answers to the research question.  
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Montessori materials created in the maker spirit 
J. Handl1, E.P. Ulbrich1, D. Lieban² 

1Johannes Kepler University Linz, Austria; points.edges@gmail.com, 
eva.ulbrich@gmx.at, 

²IFRS, Brazil / Johannes Kepler University Linz, Austria; diegolieban@yahoo.es 
We connect the principles of manipulatives in Montessori education to the maker 
movement. A manipulative is an object designed to let the learner perceive a 
mathematical concept by manipulating it. Existing examples were used, and students 
were encouraged to explore, digitalize, adapt, and produce them in makerspace-like 
facilities. This combines benefits from such manipulatives and the possibility to develop 
new versions of them with additional features such as being more inclusive. 
Keywords: Manipulatives, Montessori, digital fabrication, maker movement. 

MONTESSORI METHOD AND MAKER MOVEMENT 
In classical Montessori education, manipulatives are often used to support 
constructivist reasoning. Many originate from teachers such as Montessori herself 
(Laski et al. 2015). While such manipulatives are usually created or prepared by 
teachers, it can have benefits to encourage students to recreate and adapt them. In our 
approach we suggest a combination between the creative spirit and the digital tools 
found in the maker movement and manipulatives developed for Montessori education. 
We describe a manipulatives-adaptation-lifecycle from an idea to a creation of a 
physical manipulative enriched with additional ideas and return to a digital 
representation. These recreated manipulatives should follow the Montessori spirit but 
can encourage students to add additional attributes and new ideas.  
Manipulatives in Montessori education have general attributes such as defined by Laski 
et al. (2015). They found four principles: First, manipulatives should be sustainable. 
Second, a concrete and transparent representation of a concept should slowly move to 
abstraction over time. Third, manipulatives should differ from everyday objects and 
avoid distracting features. And fourth, connections between the manipulative and the 
mathematical concept should be explained to the students, for example, arranging 
triangles into a hexagon. A digital preparation on, for example, GeoGebra and a digital 
production such as laser cutting, 3D printing, or CNC milling lets students discover 
intrinsically how mathematics and a manipulative are connected. We assume that a 
digital component can foster the other three principles. 
Schools often lack the possibility to acquire and maintain machines for digital 
production. The maker movement offers open makerspaces using free and open source 
software and machines to encourage and enable as many people as possible including 
students to produce their own ideas. Usually makerspaces provide digital production 
technologies.  
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DO-IT-YOURSELF OPEN RESSOURCES MONTESSORI 
In a do-it-yourself spirit in combination with makerspaces, the maker movement allows 
students to develop and produce their own artefacts. In 2020, over 1700 FabLabs and 
even more maker- and hackerspaces exist worldwide. They give support for teachers 
and workshops especially designed for children. Using digital fabrication in 
makerspaces, Montessori puzzles and manipulatives can be turned into computer 
games. With open source plans, they can be recreated as classic manipulatives. For 
example, in the Montessori four colors game, students have to move around color 
plates to the designated position that corresponds to the assigned game card. The 
process of creating manipulatives complies with the aforementioned principles. If 
objects are created by students, they include their personal preferences and if created 
using the mentioned technologies, support a long lifespan. This leads to higher 
sustainability. Skills to identify connections between a mathematical concept and the 
manipulative are trained during the creation process.  
Lutz created the above-mentioned Montessori four colors game using GeoGebra, 
which allows students to playfully find their first sorting algorithms. Campuzano, Lutz,  
and Lieban added downloadable SVG instructions for laser cutting to the game on the 
GeoGebra platform (https://www.geogebra.org/m/ddtky6by#chapter/502856). Lieban 
recreated physical versions of the manipulatives with his classes in Brazil to stress the 
physical and digital connection. In digital development, the main motivation was 
exploring Boolean logic for giving automated feedback on the material and introducing 
basic coding practices to math teachers. The games shown in the poster can be played 
digitally and downloaded to be created physically. When doing this, students are able 
to adapt materials towards inclusivity. So not only are materials more durable but also 
open to adaptation for a wider group of students.  

OUTLOOK 

A makerspace-like facility is currently set up in Lieban’s school to investigate 
manageability of such maker-oriented workshops and we also intend to establish some 
abroad connections in the maker culture. Connecting schools with the maker movement 
will allow the creation of their own varieties of Montessori materials. Completely new 
manipulatives could be developed and tested against Montessori principles. Creating 
more materials on GeoGebra for students to explore and create them will be the next 
goal to gain more data for further research.  
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Towards implementing computational thinking in mathematics 
education in Austria 

Corinna Kröhn, Jakob Skogø, Sara Hinterplattner, and Barbara Sabitzer 
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corinna.kroehn@jku.at, jakob.skogo@jku.at, sara.hinterplattner@jku.at, 
barbara.sabitzer@jku.at  

INTRODUCTION 
When Austria introduced the new mandatory subject “Digital Education” in September 
2018, computational thinking finally made it into the curriculum. Schools can choose 
to offer specific subjects or dispense the content into already existing subjects where 
seen fit. Computational thinking (CT) tools and methods found their way into multiple 
scientific fields (Orton, et al., 2016) but overall, research shows that it is better to 
implement CT in other subjects than to teach it as a stand-alone subject because it tends 
to be separated from real-world problems (Weintrop, et al., 2015). Therefore, Weintrop 
et al. (2015) published a set of ten core CT skills, which we will refer to in this poster 
as computational thinking skill (CTS-#) 1 to 10 (see Table 1). 

Set of computational thinking skills (CTS) 

- CTS-1: Ability to deal with open-ended 
problems 

- CTS-2: Persistence in working through 
challenging problems 

- CTS-3: Confidence in dealing with 
complexity 

- CTS-4: Representing ideas in 
computationally meaningful ways 

- CTS-5: Breaking down large problems into 
smaller problems 

- CTS-6: Creating abstraction for aspects of 
problem at hand 

- CTS-7: Reframing problems into a 
recognizable problem 

- CTS-8: Assessing strengths/weaknesses of a 
representation of data/representational system 

- CTS-9: Generating algorithmic solutions 
- CTS-10: Recognizing and addressing 

ambiguity in algorithms 

Table 1: Set of computational thinking skills (Weintrop, et al., 2015) 

ANALYSIS 
This poster presents our interpretation as to where Weintrop’s 10 CTS can be 
implemented and trained in the subtopics of the current curriculum of Austria’s lower 
secondary mathematics education. Topics in the Austrian mathematics curriculum in 
lower secondary education are divided into four areas: (1) working with numbers and 
units, (2) working with variables, (3) working with geometric shapes and bodies, and 
(4) working with models and statistics (RIS, 2020). There are 33 subtopics in grade 5, 
25 in grade 6, 26 in grade 7, and 19 in grade 8, giving us a total of 103 subtopics. 
CTS-1 could be found in solving and interpreting equations or formulas, comparing 
different models, working with linear functions, calculating approximations and 
bounds and in justifying the Pythagorean Theorem. In total we found 19 applications 
for this skill. As CTS-2 is a very opened skill, it is possible to match it to any topic of 
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the curriculum. 28 topics could be matched to CTS-4, whereas most of them were 
found in grade five. Each topic in the mathematics curriculum of years five to eight 
deals with breaking down large problems into smaller ones. Therefore, CTS-5 is also 
one of the leading skills. On the contrary, there were only 7 topics that could be 
matched to the skill “creating abstraction for aspects of problem at hand”. CTS-7 could 
be found in each lesson, as it represents one of the core aspects of mathematics, while 
CTS-8 is present only in the topic “working with statistics and models”. Moreover, 
CTS-9 “generating algorithmic solutions” is part of an everyday mathematics lesson. 
Recognizing ambiguity in algorithms (CTS-10) is a skill that is not found very often in 
grades five to eight.  
An interesting fact is that subtopics with CTS decrease from grade 5 (60%) to grade 8 
(53%) but the overall implementation is very stable. It needs further investigation if 
this is related just to the topics or to the matching of CTS. Of course, the matching of 
CTS witch the single subtopics is subjective and needs further review of more than just 
three teachers.  

CONCLUSION AND OUTLOOK 
In this poster we have examined possible applications of CT in the current mathematics 
curriculum. We found out that already lots of CTS are implemented without adding 
extra content, whereas some of them are highly represented and some are very special 
and rare. In the upcoming months, we will concentrate on the further investigation of 
matching the CTS to the subtopics.  
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Introduction to algebra via image processing 
Reinhard Oldenburg 

Augsburg University, Germany 
Image processing is an interesting application of mathematical functions and can even 
be used as a context for the introduction of algebra. This poster introduces a webpage 
that can be used for image processing and algebra learning. 
Keywords: image processing, algebra curriculum, variable, function. 

CONVENTIONAL APPROACH TO ALGEBRA IN SCHOOL 
There much more ways to introduce algebra to students than can be discussed in this 
poster. However, results are often far from optimal and a hypothesis of my project is 
that this is due to lack of motivation. The research question is thus: How to improve on 
this? One of the most prominent approaches uses pattern sequences (e.g. P. Drijvers: 
Secondary Algebra Education, chapter 4, Sense publishers) that yield number 
sequences that are described in general by an expression. This pattern based approach 
dominates e.g. in the papers submitted to the algebraic thinking TWG of CERME. 
Kohanová and Solstad (2019) report a study with Norwegian mathematics teacher 
students who showed low performance in the following task in Fig 1. Only 50% were 
able to produce a sensible algebraic expression for the general case in part d). My 
hypothetical explanation is that such linear pattern generalization tasks like this lack 
relevance and provide no intellectually challenging insights (e.g. how to derive a 
formula for 1+2+…+ n). In contrast, this poster introduces an approach based on the 
theory of constructionism (Papert) and abstraction in context (Hershkowitz et al. 2001) 
that has been shown to be highly motivating. 

Fig. 1: Task from Kohanová and Solstad (2019) 

IMAGE PROCESSIG APPLET 
The idea of using image processing as a context for learning algebra has been 
developed in a sequence of German language papers starting with Oldenburg (2006), 
but it has never been exposed to the English-speaking didactics community. It allows 
tasks that are completely opposite to the figural pattern tasks, namely authentic, 
relevant, and aesthetically appealing. The idea of the applet (which is the most 
elementary one out of a sequence of applets) is very simple: On the left there is a grey 
scale image. Brightness of each pixel is encoded as a number from 0 (black) to 100 
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(white). A transformation can be achieved by changing the brightness according to a 
rule (function) specified by an algebraic expression in the variable b (for brightness). 
The resulting image (the image of the function, a nice language association) is shown 
on the right. Some transformations: b+20 (lighter), b/2 (reduce contrast), 100-b 
(negative), 10000/b (nonlinear negative). 

 

Fig. 2: The applet http://myweb.rz.uni-augsburg.de/~oldenbre/webBV/Statisch/onepix5_en.html 

The didactical conception includes the following considerations: The introduction of 
an expression involving a symbolic variable solves a real problem (namely to tell the 
computer how to compute brightness for each pixel for a huge number of pixel), the 
calculation is transparent (it can be checked for each pixel), algebraic action gives 
attractive results, and the concept of function as a mapping is introduced. Moreover, 
the question is triggered, if different expressions can have the same effect. This puts 
expression equivalence in the reach of the teaching unit. 

EXPERIENCE 
The applet has been used in a limited number of classrooms and with a larger group of 
5th graders (approx. 11 years old) on the occasion of public presentation of the 
university activities. Due to severe restrictions of data collection in public schools no 
evaluation in regular classrooms could be conducted (and this poster is part of the effort 
to collaborate on this project). Subjective impressions from the many occasions are 
extremely positive. Usually the whole episode takes 45 minutes and virtually all 
students engage in the activities and a lot of discussions between students is stirred up, 
e.g. if some expression did not show the effect they expected. 
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 Digitally increasing the qualitative understanding of the derivative 
Gerben van der Hoek and Sonia Palha 

Huizermaat, The Netherlands, gvdhoek@gsf.nl, HvA, The Netherlands, 
s.abrantes.garcez.palha@hva.nl 

Students difficulties with interpreting and using graphs in a meaningful way are well 
documented in the literature. In the Netherlands students are required to be able to 
sketch the graph of the derivative of a function given only the graph of that function. 
In this explorative study we investigate on the performance of a digital environment 
designed to enhance the qualitative understanding of the derivative. 
Keywords: derivative, feedback, digital environment, learning with technology. 

AIM AND RATIONAL OF THE STUDY 
It is a known fact that students often struggle with making a sketch of a derivative in 
the absence of a formula that can be computed. This is also collaborated by Stahley 
(2011). Previous research (e.g. Sari, Hadiyan and Antari, 2018) shows that digital 
environments provide opportunities for students to explore graphs in a qualitative way.  
In our research we investigate how students learn to sketch the graph of a derivative 
within a digital environment developed by Van der Hoek (2019). Furthermore, we 
investigate on a GeoGebra applet as a possible addition to the environment. We use an 
adapted version of the framework of Vos, Braber, Roorda, and Goedhart (2010) to 
investigate students’ understanding of the derivative. Within this framework we 
distinguish five levels of qualitative understanding where a student exhibiting a certain 
level also possesses the previous levels: no operable knowledge (L0), knowledge of 
some connection between the slope of the function and the derivative (L1), knowledge 
of the location of points on the graph of the derivative relative to the horizontal axes 
(L2), understanding the derivative as slope that is, the derivative represents the course 
of the slope of a graph (L3), understanding the derivative as gradient, that is a point 
on the graph of the derivative represents the gradient of a tangent (L4). In this paper 
we present the results of an explorative study which involved 4 students.  

THE DIGITAL ENVIRONMENT AND GEOGEBRA APPLET  
The environment presents an animation video explaining the relation between a graph 
and its derivative followed by four tasks to sketch the derivative of a given graph 
digitally. Feedback on the sketch can be obtained using a button. This feedback is 
designed to increase the level of understanding. Since it proves difficult to design 
feedback to increase to L4 we also developed a GeoGebra applet in which the gradient 
of a tangent is plotted as the student moves it along a graph. 

METHODOLOGY 
We used individual semi structured interviews to investigate students learning. Four 
students (age 16, 17) participated in this study. First, they were given a pre-
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examination. Two of the students (students 1 and 2) then had the opportunity to practice 
using the digital environment while the other two students (3 and 4) practiced using a 
textbook. Directly after that, a post-examination was conducted. A third interview took 
place three weeks later. During the last interview all the students also interacted with 
the GeoGebra applet. 

RESULTS 
Analyses of students interviews shows that students 1 and 2 have risen two levels after 
three weeks. However, students 3 and 4 had the same rise in understanding. 
Furthermore, we found that student 3 achieved a rise from L3 to L4, the highest 
recorded level, after interacting with the GeoGebra applet.  

PRELIMINARY CONCLUSIONS AND IMPLICATIONS 
Based on these results we may carefully conclude that the contribution of the 
environment to the qualitative understanding is roughly the same as the contribution of 
a textbook. Which begs the question: What may we add to the environment to make a 
difference? Interacting with the GeoGebra worksheet did give student 3 a more 
profound understanding of the relationship between a function and its derivative. Why 
does this interaction lead to better understanding? And how may we implement this 
interaction in a digital learning environment? These are questions that we want to 
discuss at MEDA and incorporate in our future work 
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Evaluating educational standards  
using assessment “with” and “through" technology 
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This paper reports on a feasibility study of creating a standardised assessment 
instrument to evaluate students' competencies found in the German national standards. 
The study aimed at combining widespread tools in math-classes, such as dynamic 
geometry and spreadsheets, in an integrated and computer-driven way. We report on 
the mathematical and technical feasibility: What limits were reached, and which 
opportunities have appeared? The report provides indications that a development 
process is feasible but that an attention to the task description is required, as the 
student may be unaware of the manipulations to perform tasks. 
Keywords: assessment, educational standards, affordances, dynamic geometry, 
spreadsheets 

INTRODUCTION 
The possibilities of using digital media in (mathematical) learning processes increases 
more and more. Therefore, large-scale assessments have to be adapted to new ways of 
learning and to new competencies. The current technical state of the art is to focus on 
accepting a final answer from students (Pelkola, Rasila & Sangwin, 2017) though the 
collection of log-data is considered to be enhancing assessment.   
In Germany a large-scale assessment called VERA is conducted based on a paper-
pencil-test once a year in grade 8 (14 y old) (IQB, n.d.). Turning it into a digital test 
environment could bring many advantages: assessing mathematical digital competency 
(Csapo, Molnar & Toth, 2009; Geraniou & Jankvist, 2019), using rich and dynamic 
items, or the integration of automatic scoring (Drijvers, 2018). This paper is based on 
a first feasibility study with an evolved test instrument that combines key features of 
the existing paper-pencil-assessment with innovative ideas. 
BACKGROUND 
Standardized competency assessment is a form of testing that aims to measure the 
competencies reached by all testees in a comparable way. The results can inform on 
the attainment of teaching (as is the case of TIMSS or PISA studies, but also as any 
examination), on the general competency considered important (as is the case for the 
PIAAC study) or for other research purposes. Standardized assessment has often been 
made with paper and pencil and this remains the dominant practice for mathematics 
competency testing as the manipulation of mathematical objects on computers remains 
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fragmented and isolated. Nevertheless, both theoretical considerations as well as 
studies demonstrate the strong potential of testing with a computer. This applies 
particularly to the higher objectivity of automatic scoring and the larger amount of 
information obtained through log-files (e.g. as described by Goldhammer & Zehner, 
2017). Aspects such as the individual task solving behavior, the testee’s self-
confidence or the dependency on a particular expression media can be assessed. 
Among other aspects, this feasibility study aims at exploring how achievable it can be 
to obtain such extra information. 
In mathematics education, assessment constitutes a large area. The notion of computer-
based mathematical assessment becomes more commonplace by the fact that 
computers are often used to support mathematical learning activities. Stacey and 
Wiliam (2012) differentiate assessment with digital technology, where the computer-
tools (even calculators) support mathematical processes but not assessment processes, 
from assessment through digital technology, where it is driven by computer activity. 
Sangwin et al. (2009) propose ways to automatically evaluate certain answer types and 
create a competency model based on the use of particular assessment tools. Such 
methods are mostly applied with formative assessment in which results help to enhance 
the learner's competencies rapidly. In contrast, little best practice is known for 
summative evaluations of mathematical competencies, whereby the technical state of 
the art is to focus on accepting a final answer from students (Pelkola, Rasila & 
Sangwin, 2017). Fine-grained analysis on the manipulation of mathematical tools is an 
evolving domain: Multiple research around intelligent tutoring systems have given the 
rise to successful training tools such as the Algebra Tutor (Koedinger et al., 2008). 
They are largely specialized and almost impossible to integrate within a summative 
evaluation where the overarching goal is to evaluate the breadth of competencies and 
not to depend on specialized tools, each including specialized user-interfaces. Since 
this study aims at a broad competency evaluation, a versatile and generic tool to 
perform standardized assessment has been chosen: the product CBA-ItemBuilder 
(Rölke et al., 2012). 
However, as noted by Drijvers et al. (2016), widespread digital tools for performing 
mathematics exist and are even part of learners’ everyday lives. The ICILS studies 
showed that German schools are equipped below-average regarding to technology-
related resources for both teaching and learning (Fraillon et al., 2019). The strived body 
of competencies, the national educational standards (NES), is based on a subject-
related normative competence structure model that explains which competencies 
students should gain until the finalization of different grades. The NES are oriented at 
general educational aims. In the case of mathematics education, the NES describe a 
competence model with three dimensions: competencies, basic concepts (i.e., contents) 
and levels of requirements (i.e., difficulties) as shown in Figure 1 (KMK, 2003). 
Aiming at evaluating the educational system and investigating which competencies 
students have achieved by certain grade levels, the nationwide paper-pencil test VERA 
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(VERgleichsArbeiten [comparison 
test]) is carried out in Germany. 
VERA is based on the described 
normative model of competence. 
Though the subject-related use of 
digital tools and media is not 
mentioned directly in this model, the 
basic concepts can be divided into 
different facets where it is mentioned 
partly. Nevertheless, more and more 
teachers integrate digital media to 
enhance learning processes. Therefore, 
the integration of tools very similar to 
the learned tools appears to be a good approach to the paradigm of assessment with 
technologies while gaining the benefits of assessment through digital technology: 
Using technology with affordances (in the sense of Kaptelinin, 2013) that are well-
known to learners such as radio buttons, or that are either part of familiar digital tools 
for doing mathematics or very similar to them. In the case of the NES, this includes 
calculators, spreadsheets and dynamic geometry systems. 
The analysis of student answers using these technologies is only partially widespread. 
While the use of dynamic geometry systems for learning is common, the analysis of 
the correctness is not: Pioneering works such as in the ThEdu workshops, of Kovács, 
Recio and Vélez (2018), or of Kortenkamp and Richter-Gebert (2004) have not yet 
yielded a widespread applicability (Pelkola, Rasila & Sangwin, 2017) even though they 
demonstrate elementary validation strategies such as the use of simple predicates to 
indicate when two points are close to each other. Finally, there seems to be a need of 
analyzing the use of spreadsheets for learning purposes. 
Our feasibility study explores the creation of a standardized assessment tool that can 
be deployed under general school conditions to assess mathematical competencies, 
including the application of digital tools and, therefore, even assessing mathematical 
digital competency (Geraniou & Jankvist, 2019), by means of a computer-based tool. 
Since we aim at using the schools' infrastructure, this exploration implies certain 
technical challenges: Some parts of the infrastructure may break because of the 
computer resources used by several actors (e.g. the bandwidth consumption, but also 
the installation of incompatible software). Moreover, the intent to combine assessment 
with technology with assessment through technology raises several validity concerns 
(Drijvers, 2018). In contrast, the combination also offers the opportunity to reach 
educational validity compared to using technically simple MC-items only (Sangwin & 
Jones, 2017). 

Figure 1. The normative competency 
structure model of the NES for the subject 
mathematics (see KMK, 2003). 
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RESEARCH DESIGN 
Taking into account the described opportunities and limitations, we have set forth in 
this project to investigate the feasibility of assessing the dimensions of the NES using 
digital means despite the under-average equipment. The special demands of this as well 
as the associated paper-pencil test instruments played a special role in developing the 
test. They had an impact on the item design process, the technical realization and its 
technical deliveries. Besides exploring which contents of the NES can be assessed at 
all, we intended to investigate technical opportunities of embedding dynamic geometry 
and spreadsheet software. Because of its many opportunities, automatic scoring and a 
log-data-collection empowered by computer-based-assessment were included. The 
following question defines the focus of the first feasibility study: To what extent can 
competencies of the NES be assessed by digital means and integrating a variety of 
digital tools that are common to the testees? 
To answer this question by means of an explorative study, we developed a construction 
process spanning from the design of items to the delivery. During the process we 
constantly investigated technical possibilities and limits. The first step was to analyze 
the contents of the NES that could be assessed at all or could be assessed better than 
with paper-pencil. In contrast to comparable studies (see Csapo, Molnar & Toth, 2009; 
Pelkola, Rasila & Sangwin, 2018), the focus was not laid on designing items that can 
be assessed in a paper-pencil test as well or using items that already exist. Instead, 
innovative items with integrated digital tools or enhanced tasks through embedding 
video or audio material should be designed. Concluding, this study aimed at increasing 
the sophistication: dimension F should be reached in the sense of the assessment 
possibilities proposed by Hoogland and Tout (2018). On this basis, the item authors, 
who most work as mathematics teachers in Germany, have designed tasks that – in 
terms of structure – are mainly inspired by the paper-based VERA tasks, but which 
incorporate the innovative possibilities mentioned above. The item authors did not use 
tools of constructing tasks completely in a digital format but designed documents with 
descriptions of the items and prepared files for the digital tools. Once the documents 
were developed, two rounds of reviews were conducted by experts in mathematical 
didactics. Between the two rounds a detailed discussion on the items took place and 
the items were revised. This process of item construction followed partly the 
established development process of paper-based items (see Rupp & Vock, 2007). It 
was repeated three times and the subsequent selection followed a few criteria: Firstly, 
diverse media with a broad spectrum (dynamic geometry, spreadsheets, video, audio, 
picture, calculator) should be included so that technical possibilities and limits as well 
as students' usage of different embedded media can be evaluated; secondly, different 
facets of the NES (different contents, competencies and difficulties) should be 
assessed. 
Following the motivation of assessing with technology (Drijvers et al., 2016), several 
digital tools for mathematics have been considered. One of each category was 
expected. Because the brief testing time, test-specific learning should be limited to a 
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minimum. It was, thus, important that the tool affordances (see Kaptelinin, 2013) are 
similar to those of the tools known by the testees. Moreover, to avoid the need for a 
technique-oriented workflow, the tools were to be integrated in a webpage. 
For dynamic geometry, the strong diffusion of GeoGebra at schools and its abilities to 
be used on the web made it a de facto candidate. It is important to note that a GeoGebra 
construction embedded in a webpage, just as an activity that can be found among the 
GeoGebraTube server, is not necessarily including all functions of a desktop 
application. Multiple parameters allowed to restrict the set of actions. 
For spreadsheets, the dominant tool is Microsoft Excel, a tool that only lives in its entire 
function set on desktops of Windows and macOS computers. Desktop alternatives 
often used at school include OpenOffice and LibreOffice. While multiple web-based 
spreadsheet services exist such as Collabora or Office365, we have either evaluated 
their incompleteness, bandwidth demand, license or incompatibility with regards to 
privacy. Only two tools remained with an open-source license and with an almost 
complete runnability on the client: EtherCalc or OnlyOffice. The latter was chosen for 
its greater visual and functional similarity to the dominant tool. 
Using the item authoring tool CBA-ItemBuilder the chosen tasks were converted from 
design sketches into the digital format by item-implementors embedding all the 
external resources. This was followed by an internal reviewing process focusing on the 
technical problems: loops of revisions followed, so that a test instrument was designed 
for a 45-minute test period and could be conducted in nine classes. In total, 229 students 
took part. Beforehand, a system check was able to show that the schools were suitable 
for participation by checking technical requirements and carrying out test-like 
scenarios on randomly selected computers within the participating schools. Both 
system check and testing were observed and documented by the test leaders. 
Automatic scoring was applied (with MCQs, with GeoGebra predicates). The logfiles 
generated by the CBA-ItemBuilder were converted into Excel-files and GeoGebra- and 
OnlyOffice-snapshots were extracted to visualize the final stage.  
RESULTS 
On the basis of the described research process, especially two strands of first results 
can be presented: concerning the assessment and the technical realization. 
Assessment: First of all, it can be stated that this study was able to assess elements 
from all the basic concepts (see Figure 1): carry out targeted measurements in their 
environment, take measurements from source material, use them to carry out 
calculations and evaluate the results and the methods in relation to the situation; operate 
mentally with lines, surfaces and solids; draw and construct geometric figures using 
appropriate tools such as compass, ruler, triangle ruler or dynamic geometry software; 
use percentage calculation for growth processes (for example, interest calculation), also 
using a spreadsheet; systematically collect data, record it in tables and present it 
graphically, also using appropriate tools such as software. Those contents were spread 
over the different competencies and levels of requirements.  
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It could be observed that students have been comfortable using the web-browsers and 
the standard input affordances such as plain text fields or radio buttons. However, 
several students were unclear how to enter simple mathematical formulae such as the 
multiplication sign in a regular text field with the keyboard (normally written with the 
special characters ⋅ or ×). We assume that providing a symbol bar may be enough but 
the need to input more complex formulae (e.g. roots or fractions) might appear. Based 
on the analysis of GeoGebra-snapshots, difficulties can be extracted: In cases where a 
construction was presented without specific buttons (e.g. a cube in a 3D space), some 
learners have simply not discovered the possibilities to explore a solid from all its 
facets. In others, testees moved provided elements such as points without any 
discernable mathematical activity. In cases where a construction was required to be 
done either by using the adequate tool directly or by constructing the different steps (a 
perpendicular bisector), some testees simply moved provided elements or did 
something not appropriate for the task. However, the assessment seems to have been 
successful with dynamic geometry constructions when the operations were simple and 
explained by small sentences (e.g. "drag the dots according to the cube" or "move the 
girl to estimate the height"). Therefore, the difficulties may sometimes be attributed to 
a lack of appropriate usage of dynamic geometry tools, but sometimes also to missing 
(not digital) mathematical competencies or mathematical knowledge. As for the 
spreadsheet, even simple tasks such as entering =4+5 could not be executed correctly; 
instead the testees entered 4+5 or 4+5= which lead them to ask the test leader why the 
calculation was not executed. 
Technical Realization: Among the biggest technical challenges was the use of the 
schools' infrastructure because of the reported equipment limitations in Germany. 
Thanks to the new runtime technology for the CBA-ItemBuilder concluding its 
development (using contemporary frameworks for JavaScript), the delivery technology 
could be refined with lower dependency on the network: Ensuring that most web-
resources are stored in cache prior to starting and delivering the measured assessment 
data (results and logs) in an asynchronous way. This study has provided good signs 
that this approach is doable in schools: In classes where preparation in advance was 
done only a little significant lag was perceived. In a few cases, web-browsers became 
unstable; changing the computer was then the go to solution. 
The web-embedding nature has shown to be viable. In this study, it was based on the 
principle of iframes (webpages in webpages) which communicate to the CBA-
ItemBuilder to send and receive their data. As long as an introspection of the tools' 
state was technically feasible, it was possible to gather the changes of interesting 
objects (e.g. movements of points); this was the case for GeoGebra but not yet for 
OnlyOffice. However, the storage of state was possible in both cases, thus, enables 
evaluators to view the last created state (a geometry construction or spreadsheet).  
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CONCLUSION AND FUTURE WORKS 
Concluding the feasibility study on evaluating the NES, a first analysis showed that an 
assessment of several facets seems doable as a large-scale assessment in future. Though 
technical realizations (e.g. the input of formulae) have to be developed further and 
affordances should be adapted to student habits, first the Item Response Theory is used 
to investigate the scalability. This would be a step in ensuring the quality criterions and 
therefore making the tests comparable (Drijvers, 2018). In order to estimate why 
students were not familiar with all integrated tools, it is planned to conduct a survey on 
the use of digital media and tools in mathematics education in connection with an 
upcoming study. Further, for this upcoming study a greater amount of participating 
schools (20) is planned. Moreover, the workflow described above is going to be 
adapted, so that the item authors directly design tasks using the CBA-ItemBuilder and 
embedding the digital tools. We expect to make the workflow more effective and 
problems regarding the affordances or the technical realization faster to detect and 
handle in this way; this enriches the ongoing ItemBank conceptual development 
(Chituc et al., 2019), but requires more item-authoring capabilities. In summary, the 
goal to assess the NES for mathematics education with and through technology requires 
further development on technical aspects as well as on considerations and studies about 
how to ensure the essential quality criterions for a nationwide standardized competency 
assessment. Nevertheless, the opportunity of assessing students’ competencies in 
mathematics education was demonstrated. As Hoogland and Tout (2018) claimed, this 
study did not tend to reduce contents or competencies, but instead focused on 
enhancing assessment and innovative items.  
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computational thinking and programming activities 

Said Hadjerrouit, Nils Kristian Hansen 
University of Agder, Institute of mathematical Sciences, Kristiansand, Norway 

 said.Hadjerrouit@uia.no, nils.k.hansen@uia.no 
This paper aims at exploring the challenges students face when engaging in 
mathematical problem-solving through computational thinking (CT) and 
programming by a combination of theoretically derived insights and task-based 
activities. The main method used is a semi-structured interview of one undergraduate 
student who was presented with a mathematical task to solve while responding to 
questions in a dialog with the teacher on the mathematical problem solving process 
through CT and the programming language MATLAB. Conclusions are drawn from 
the results to promote CT and programming in mathematics education. 
Keywords: Algorithm, computational thinking (CT), MATLAB, mathematical problem-
solving, usability 

INTRODUCTION 
Mathematics students are expected to have basic CT skills in parallel to emerging 
programming languages (Wing, 2014). Moreover, CT as a competency for future work 
in society should be acquired by all university mathematics students. It is argued that 
CT can improve mathematical problem-solving by benefitting from the power of 
computational processes and programming languages (Shute, Sun, & Asbell-Clarke, 
2017). This study explores the challenges students face when engaging in mathematical 
problem-solving through CT and MATLAB. 
THEORETICAL BACKGOUND 
CT, or similar designations such as algorithmic thinking, is becoming an important 
learning goal at all levels of mathematics education. According to Misfeldt and Ejsing-
Duun (2015), CT is described as the ability to work with algorithms understood as 
systematic descriptions of problem-solving and construction strategies. Similarly, 
Wing (2014) describes CT as “the thought processes involved in formulating a problem 
and expressing its solution(s) in such a way that a computer—human or machine—can 
effectively carry out”. More precisely, algorithmic thinking can be defined as the 
process of solving a problem step-by-step in an effective, non-ambiguous and 
organized way that can be translated into instructions to solve problems of the same 
type by an individual or a computer (Filho & Mercat, 2018). The main commonality 
between CT and mathematical thinking is problem-solving processes (Wing, 2008). 
CT is also quite similar with engineering thinking in terms of design and evaluation of 
processes (Pérez-Marína et al, 2018). Moreover, CT and algorithmic constructs such 
as variables and flow statements (if-then-or-else, for, repeat, etc.) are closely connected 
to arithmetical and mathematical thinking (Lie, Hauge, & Meaney). This close 
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connection might provide opportunities for mathematical problem-solving by means 
of CT and programming. Thus, students' mathematical background and problem-
solving skills are critical for building efficient algorithms for problem-solving rather 
than trial-and-error and getting the program to run (Topallia & Cagiltay, 2018). 
Moreover, CT requires students to be engaged in a continuously changing, problem-
solving process in interaction with the computer.  
Drawing on these research studies, the paper proposes a three-step approach to solve 
mathematical problems by means of CT and programming languages. Firstly, students 
should have a good mathematical background to benefit from CT and programming 
languages. More specifically, they should be able to benefit from their knowledge to 
make sense of a mathematical task and have a good understanding of it before 
formulating an algorithm and programming the solution. Secondly, CT, in turn, should 
enable students to analyse and decompose the mathematical task and design an 
algorithm and how to perform it step-by-step before programming it. Engaging 
students in mathematical problem-solving through CT may enable a better 
understanding of mathematics beyond textbook mathematics and paper-pencil 
techniques. Thirdly, students should be able to translate the mathematical problem and 
the associated algorithmic solution to the constructs of the programming language. This 
presupposes that the language is usable. Performing programming activities in 
mathematics education may provide opportunities to gain knowledge that is otherwise 
difficult to acquire without experimenting with the program and thinking 
algorithmically. However, this might be difficult to achieve unless the mathematical 
tasks are well-designed, and the programming language is usable.  
When referring to the term “usability”, the research literature focuses on educational 
software such as GeoGebra, CAS, SimReal, etc. (Artigue et al., 2009; Bokhove & 
Drijvers, 2010; Hadjerrouit, 2019). However, programming languages are different 
from educational software and how they are used to implement mathematical problems. 
Hence, evaluating the usability of programming languages might not be as straight 
forward as it may seem. Still, three usability criteria can be applied to programming 
languages with slight modifications. Firstly, the extent to which the language is easy 
to use and allows a quick familiarization with it. The second criterion aims at whether 
the constructs of the programming language (variables, if, for, while, etc.) are difficult 
to grasp. The third criterion is the feedback provided by the language in terms of error 
messages, and whether these are useful to foster a successful implementation of the 
mathematical problem through correcting and improving the program.  
Finally, engaging students in mathematical problem-solving through CT and 
programming languages should be placed in a pedagogical context to enable a good 
degree of autonomy so that the students can work on their own and have a sense of 
control over their mathematical learning. Clearly, students should be able to acquire 
knowledge without being completely dependent on the teacher. Moreover, CT and 
programming languages should be a motivational factor for learning mathematics and 
should support students’ engagement in problem-solving by means of motivating tasks 
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that are tied to the students’ mathematical activities. Another pedagogical issue 
concerns students’ interactions with the language and the feedback it provides to foster 
computational thinking when solving mathematical problems.  
THE STUDY  
Context of the Study and Research Question 
This work is a single case study conducted in the context of a first-year undergraduate 
course on programming with applications in mathematics. The participant was one 
student from one class of 8 students enrolled in the course in 2019. The student had 
average knowledge background in mathematics, but no experience with programming 
languages. The course introduced the basics of algorithmic thinking and the core 
elements of MATLAB, that is variables, flow statements, e.g. loops, if-then-or-else, 
for, repeat, etc. MATLAB suits well mathematical problem-solving because the 
solutions are expressed in familiar mathematical notation. The research question is: 
What challenges do students face when engaging in mathematical problem-solving 
through CT and MATLAB? 
Mathematical Task 
The mathematical task presented to the student is: The length of a curve may be 
approximated using Pythagoras' theorem by positioning a triangle adjacent to the curve 
(Fig. 1, left, below). The length of the green line between A and B may then be 
approximated as . The task is to write a MATLAB function approximating the 
curve length of  between two given x-values (Fig. 1, right, below). 
 

  

Figure 1: The mathematical task 

The student was then presented with the following skeleton of a MATLAB function: 
function length=length estimate (x1, x2), length=? The student was asked to enter the 
formula, based on x1 and x2, and replace the question mark. The MATLAB function 
sqrt(x) can be used to calculate the square root √x. 
Data Collection and Analysis Method 
The main data collection method is a task-based semi-structured interview of one 
student who was presented with a mathematical task to solve, while responding to 
questions in a dialog with the teacher on the mathematical solving process by means 
of CT,  algorithms, programming activities with MATLAB, and teacher assistance. 
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The order of the interview questions follows roughly the three-step approach to 
problem-solving presented in the theoretical framing, sometimes moving back and 
forth depending on the student’s responses. Likewise, the data analysis method relies 
on the three-step approach to problem-solving, that is:  

a) Understand the mathematical problem 
b) Analyse and decompose the mathematical task, and then design an algorithm 

and how to perform it step-by-step before programming it 
c) Finally, translate the algorithmic solution to the programming language code 

More specifically, the student is expected to solve the task in three steps as follows:  
a) Understand the task, that is using Pythagoras' theorem to calculate the 

hypotenuse 
b) Formulate an algorithm, that is find the lengths of the triangle hypothenuse 

using the function  and relate it to  and  
c) Translate the algorithm into MATLAB code, corresponding to: function length 

= lengthEstimate (x1, x2); length = sqrt((x2-x1)^2 + (2^x2 - 2^x1)^2) 
The analysis of the results seeks indications of problem-solving through CT by means 
of MATLAB according to this three-step approach. This is not the same as analysing 
and coding in the sense of grounded theory without theoretical background. Rather, the 
analysis tries to address the research question about the challenges encountered when 
solving a mathematical problem through CT and MATLAB. The interview data were 
transcribed and analysed according to an inductive strategy based on the interplay 
between the three-step approach to problem-solving and the empirical data collected 
by means of the semi-structured interview (Patton, 2002). 
RESULTS 
The results describe how the participating student engages in mathematical problem- 
solving through CT, MATLAB and teacher assistance. The student was given the task 
described above, and paper and a pen to use. It took some time before the student made 
sense of the mathematical task. The teacher asked the student to develop a skeleton of 
the solution. The student did, and started thinking about the length, but suggested an 
incorrect solution, based only on the values of x1 and x2. After some calculation trials, 
the student noticed that the attempted solution was wrong. Then, the teacher 
encouraged the student to think computationally. 

T: But before you start using MATLAB, are you going to make an algorithm 
(..), for problem-solving before you start using MATLAB? 

S: I just have to sit and think about it. 

But still, the student continued guessing and calculating without thinking 
computationally. After an attempt to make sense of the task and calculate the length of 
the curve connecting it to the hypotenuse with a trial and error approach, the teacher 
provided a hint. 
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T: Now you say you know the hypotenuse and calculate y. But the hypotenuse 
is the unknown numeral here, the one you are supposed to calculate. 

S: Yes. 

T: So now you have turned the problem around (…). It is just that that thought 
was a little backwards, maybe. 

S: Yes, it is quite possible. 

After this short dialogue, the student started using MATLAB without developing an 
algorithmic solution and a clear strategy for solving the problem. The teacher then 
engaged in a discussion to guide the student step by step towards an algorithmic 
solution. Afterwads, the teacher tested the function “on zero and one and then I got 
1.4". Likewise, the student tested the formula and found 1.4142. The dialogue 
continued: 

T: (…). Do you have anything to say about (…) like that afterwards?  

S: No, I am, I was a little bit in doubt about how to (…) First, it was the task 
you asked about (…) and then it was (…) and then I thought (…) f(x) is the 
function in x2 would be that point minus the function of that point (…) that 
it would be the length. But that is where I was wrong, I felt (…) Because you 
meant it to be here (…) and I understand that now. 

T: Yes, that is the point, (…). That is why you have to use Pythagoras to find 
(…) Did you think (…) There was a hint here, wasn't there? Square root? 

S: Yes, yes, yes, the square root (…). I knew it was probably wrong, but I just 
didn't quite understand what it was. 

T: Well, because there was a clue there that you couldn't use, wasn't there. Then 
you realize that there is something (…) 

This excerpt shows there is little indication that the student was following a problem-
solving strategy based on a clear understanding of the problem before formulating an 
algorithm and starting programming. A few minutes later, the teacher asked the student 
if there is a tendency to favour pen and paper to solve the task algorithmically before 
starting using MATLAB since developing an algorithm does not automatically require 
using the computer. 

S: If I have it in my head, sometimes I start with MATLAB, and then I write 
some sort of sketch before going through it carefully. If I am not sure, I will 
start with paper. 

T: Maybe the task was not quite clear? 

S: Yes, so far, but I had probably forgotten some of the principles there. 

T: Principles related to MATLAB or to the mathematical assignment? 

S: To the mathematical problem.  
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Again, this excerpt shows that the student does not have a good understanding of the 
mathematical task in order to develop an algorithmic solution before programming it. 
Therefore, the teacher reminded the student about the importance of algorithmic 
thinking before translating the solution into MATLAB code.  

T: Now, the point of the assignment is that you should be able to translate the 
mathematical solution into MATLAB code. That is really the point here. 

S: Yes, I felt that when I understood the mathematical solution, I had no trouble 
putting it into MATLAB. It was simply that I had (…) forgotten a bit the 
length thing there. That f of that minus f of that is delta y, then. 

Despite the challenges in understanding the task, the student admitted that the 
assignment was not about advanced mathematics such as calculus. Nevertheless, the 
student pointed out that the task is related to a logical way of thinking, which is 
implicitly associated with CT, but not to calculus or algebra as this excerpt shows:   

S: It is not exactly (…) very advanced mathematical functions that we have been 
working on. It is not quite calculus. That is a lot of plus and minus and logical 
stuff that isn't (…) 

T: Which is not directly related to mathematics? 

S: Yes, yes, it is related to very basic mathematics. As many people know, and 
so it is related to a (…) logical way of thinking that, yes, as one might find 
(…) may find some of it in mathematics, but it is (…) it does not recall very 
much, so purely mathematical, about calculus or algebra. Although one can 
put some formulas into it too, then. 

Then the teacher asked the student to elaborate on this issue and how to connect 
mathematics and the programming constructs of MATLAB.  

S: Let us see. Yes, I feel it is on two levels, calculus learning and MATLAB, 
somehow (…) if I was just working with MATLAB (…) I do not feel like I 
am getting any better at calculus, because these are two different things. 

T: We probably should have had two courses (…) First a basic course in 
programming, and then a course in (…) because it is very difficult (…) to 
teach high level mathematics and low-level programming. 

S: Yes, I think high-level math, then you need some knowledge in pretty good 
programming. But our basic understanding of programming is far from it. 

The excerpt shows the student considers programming very different from 
mathematics. There is also no indication that CT could help to bridge the gap between 
the two subjects. On possible explanation of the disconnection between mathematics 
and programming is that the student does not clearly see the connection between the 
mathematical task and the programming solution (length = sqrt((x2-x1)^2 + (2^x2 - 
2^x1)^2)). Another explanation is the lack of CT skills which makes it difficult to 
connect the task with the language constructs of MATLAB. As a result, it seems that 
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there is such a large difference in level between the two subjects that the student was 
challenged to connect the mathematics task to MATLAB. 
DISCUSSION AND PRIMILILARY CONCLUSIONS 
The research question addressed in the paper is: What challenges do students face when 
engaging in mathematical problem-solving through CT and MATLAB? The first 
challenge is the lack of mathematical knowledge, which hindered the student to make 
sense of the task, have a good mathematical understanding of it, and then develop a 
problem-solving strategy that can be translated into an algorithm, and implemented 
using MATLAB. The second challenge is related to the implementation of the 
algorithmic solution in MATLAB. This was a challenging task as the student struggled 
to become familiar with MATLAB constructs due to lack of background knowledge 
and experience with programming. This shows that the minimum requirement to 
engage in mathematical problem-solving through computational thinking (CT) and 
programming is a combination of good background knowledge in mathematics and 
familiarity with the programming language in question in terms of usability and 
effective implementation of the solution. A third challenge is directed towards the 
integration of mathematical and programming skills to a coherent whole. To make 
mathematics interact better with programming, the pedagogical context around first-
year undergraduate mathematics courses should be well designed to ensure a smooth 
integration of CT and MATLAB into the courses in terms of varied and intrinsically 
motivating tasks that are suited to the students’ knowledge level. Moreover, as this 
study shows, the role of the teacher is still important to assist students in designing 
algorithms and implementing computational solutions. Clearly, student autonomy 
cannot be fully expected for novices without good knowledge background in 
mathematics and familiarities with programming. Hence, the acquisition of CT skills 
for mathematical problem-solving should consider pedagogical modalities. 
In conclusion, the outcome of the study can be summarized as that both lack of 
mathematical skills and programming experience have led to problems with 
completing the task. Even though the participating student is representative for the 
average student enrolled in the course, the study is limited to be generalized from an 
empirical point of view, but it forms an hypothesis that can be explored in subsequent 
studies whether mathematical skills really form a prerequisite for programming 
mathematical problems, perhaps with students from computer science. Other relevant 
questions are: To what extent is CT compatible with mathematical thinking? What is 
the importance of CT in bridging the world of mathematics and programming? 
Nevertheless, two preliminary conclusions can be drawn from the study. Firstly, the 
relationships between mathematics, CT, and programming languages are quite 
complex in educational settings. Secondly, engaging in mathematical problem-solving 
through CT and programming seem to require both good background in mathematics 
and algorithmic thinking. Future work will use both quantitative and qualitative 
methods, and a theoretical approach that helps to analyse in more depth the interactions 
between mathematics, CT, and programming.  
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Towards a shared research agenda for computer-aided assessment of 
university mathematics 
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In this article we describe our plan to develop a shared research agenda for computer-
aided assessment of university mathematics, drawing on input from the community of 
mathematics education researchers and university teachers interested in this topic. 
Such an agenda will help to establish a programme of research aligned with practical 
concerns, which would contribute to both theoretical and practical development. As 
well as describing the process that we will follow, we provide three illustrative 
examples of use-inspired research questions that have arisen in our own teaching of 
university mathematics. 
Keywords: computer-aided assessment, university mathematics, research agenda. 

INTRODUCTION 
The past two decades have seen growth in the technical sophistication of computer-
aided assessment of mathematics (Sangwin, 2013) and in its widespread use. Indeed, a 
recent survey of university mathematics departments in the UK found that many were 
introducing computer-aided assessment since increases in student numbers had made 
“previous methods of assessment unsustainable” (Iannone & Simpson, 2012, p13). 
This presents a need for practitioners (i.e. university teachers) to be informed by 
existing research on computer-aided assessment, and conversely for researchers to 
direct attention at emerging practical concerns. What is needed is a programme of “use-
inspired basic research” that contributes to both improved theoretical understanding 
and improved practice (Lester, 2005). In this paper, we set out our plan for a 
collaborative approach to establish an agenda for such a programme of research. 
A model for our approach is provided by a recent project to establish a research agenda 
in numerical cognition (Alcock et al., 2016). In that project, 16 researchers from a 
variety of relevant disciplines undertook a systematic process to identify important 
open questions in the field, modelled on similar exercises in other fields (Sutherland et 
al., 2011). 
In the next section we describe the qualitative process to achieve a similar outcome for 
computer-aided assessment of university mathematics. Following that, we give three 
examples of ways that teaching and research have interacted in our own recent work, 
to suggest some possible directions for the shared agenda. 

COLLABORATIVE PROCESS 
Our planned process is set out in Table 1. Following the model of Alcock et al. (2016), 
we will begin with an online phase to gather and prioritise an initial set of questions 
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(Stages 1 and 2). We anticipate around 30 researchers will collaborate on the project, 
sourced from the authors’ professional contacts and relevant conference proceedings 
(e.g. MEDA, EAMS, BSRLM). Researchers will be asked to suggest research 
questions online (Stage 1) and then review one another’s questions (Stage 2) according 
to the below scope and criteria. 
This will be followed by a series of in-person meetings to discuss and further prioritise 
the questions (Stages 3-5). A key forum for these discussions will be a new Working 
Group of the British Society for Research into Learning Mathematics, which will meet 
in June and November. Between July and October, input from the broader community 
will be sought at international conferences, including MEDA 2020 in Linz. Discussions 
will take place in groups of collaborators, each group led by one of the authors, to focus 
on clarifying, refining and winnowing questions. This will include identifying any 
questions that are already addressed in the literature. 

Stage Description Purpose 
1 Online form Gathering suggested research questions 
2 Online survey Inviting participants to rate the importance of 

each question, to focus attention on the most 
important questions in the next stage 

3 BSRLM Working 
Group (13 June) 

Discussing the questions; suggest refinements 
and possible grouping into themes 

4 Conference 
discussions 

Discussing the questions and prioritising, with 
input from a broader range of participants 

5 BSRLM Working 
Group (14 November) 

Using the priorities identified in Stage 4 to 
produce a focused list of questions 

Table 1: Summary of the collaborative process 

Following this process, the project leads will prepare a manuscript summarising the 
process and the resulting set of themes and research questions. The manuscript will be 
shared with participants for comments, before it is submitted for publication.  
Scope. The scope of possible research questions is broad, but has limits. In particular, 
questions should directly relate to computer-aided assessment of mathematics in 
universities around the world: 

• Computer-aided – relying on technology in a fundamental way; 

• Assessment – concerning formative or summative assessment, rather than 
teaching or learning tools (though of course the line between these and formative 
assessment is blurry); 

• Of university mathematics – based on any and all topics or task-types which are 
relevant to mathematics as studied at university. 
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Question criteria. When filtering and prioritising questions, participants will be asked 
to bear in mind the selection criteria used by Alcock et al. (2016, p24-25): 

“the eventual questions should: 

• address an important gap in knowledge; 

• be formulated specifically (not as a general topic area); 

• be clear, where appropriate, about specific interventions and outcome measures; 

• be answerable specifically (not by ‘it all depends’); 

• have a factual answer that does not depend on value judgements; 

• be answerable through a realistic research design; 

• be of a scope that could reasonably be addressed by a research team.” 

The criterion “be answerable through a realistic research design” is important because 
we seek to set a research agenda that will be acted upon. (We are grateful to a reviewer 
of an early draft of this paper for making this suggestion.) For example, it might be 
enlightening to randomise students into a computer-aided assessment or control group 
for the duration of their higher education study, but this would not be practical and a 
research question that required such a method would be excluded by this criterion. 
Themes. We do not wish to pre-judge the grouping of questions into themes (Stage 3), 
but it is worth noting that the scope of possible research questions is broad enough that 
they could reasonably be grouped into themes. One example would be simply 
delineating cognitive and affective issues, while another is given by the tentative 
“onion model” shown in Figure 1, where research questions are concerned with 
different levels of generality. Of course, once we have gathered participants’ questions, 
we will be in a better position to define and delineate themes. 
 

 

Figure 1: A possible theme structure for the research questions.  

CASE STUDIES 
In the following sub-sections, we describe three ways that research questions about 
computer-aided assessment of university mathematics have naturally arisen from our 
work teaching university mathematics. These serve as examples of possible research 
questions which could arise though the process described above. These examples also 
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illustrate how a programme of “use-inspired basic research” (Lester, 2005) could 
inform both theoretical and practical development.  
Example 1: Feedback on common errors 
Modern computer-aided assessment tools, such as STACK, have the ability to interpret 
a student’s response and offer feedback accordingly (Sangwin, 2013, section 6.10). 
This presents the opportunity to identify errors based on common misconceptions, and 
give corrective feedback. In particular, the question author may anticipate answers that 
would follow from the students holding a certain mathematical misconception or, in 
Fischbein’s (1989) language, a “tacit model”, which is an understanding held by the 
student that will “influence, tacitly, the interpretations and the solving decisions of the 
learner” (p9). Existing work on e-assessment has found that “elaborated feedback” 
giving more detail than just the correct answer leads to improved performance (Attali 
& van der Kleij, 2017; Shute, 2008), but it is not known whether such feedback 
addressing tacit models is effective in adjusting the models that students use. 
This arose as a practical concern when using STACK to deliver a fully online course 
in introductory university mathematics (Kinnear, 2019). For the topic on integration, 
several questions have the potential to expose the tacit model that “definite integral = 
area” without proper regard for areas above and below the x-axis. These questions were 
programmed to detect and give specific feedback on this misconception, as can be seen 
in the example question shown in Figure 2. 

 
Figure 2: Example of a STACK question giving feedback on a common error. 
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Figure 3: Association of feedback on tacit model, or misconception, use during initial 
practice with its use during subsequent assessments. 

Analysis of the student response data shows that this feedback is frequently triggered; 
for the example question shown in Figure 2, 50/528 of responses triggered the 
feedback. Furthermore, there is some observational evidence that the feedback is 
helpful: Figure 3 shows that students who use the tacit model (and receive targeted 
feedback) multiple times when working through the course learning materials go on to 
use it less frequently in the topic assessment than students who used the tacit model 
just once or not at all during learning. 
This motivates the broad research question: what are the features of feedback 
addressing specific misconceptions that help students to resolve those misconceptions? 
This could be addressed through experimental studies, testing different versions of the 
specific feedback across different university mathematics topics, and with qualitative 
investigation of students’ solution strategies. 
Example 2: Learner-generated examples 
The pedagogical approach of prompting students to generate examples has been 
suggested as an effective way to help students engage actively with mathematics 
(Watson & Mason, 2006). Computer-aided assessment could be used to underpin wider 
use of this approach, making use of the ability to evaluate the properties of many 
student responses and give appropriate feedback (Sangwin, 2003). However, there is 
currently a lack of empirical support for the efficacy of promoting example generation 
(Iannone et al., 2011). 
Example generation questions were a feature of the online course described by Kinnear 
(2019). The use of such questions with a large number of students presents an 
opportunity to contribute to the theoretical and empirical basis for this pedagogical 
approach. However, questions about the approach’s efficacy arguably fall outwith the 
scope of our planned process, as they do not inherently rely on computer-aided 
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assessment. That said, there are many possible questions about example generation that 
do specifically relate to computer-aided assessment; here, we outline two. 
One question is: to what extent can current computer-aided assessment tools 
meaningfully judge typical student responses? For example, asking for an example of 
a function which has a limit of 0 as x → ∞ would require using the underlying computer 
algebra system (CAS) to evaluate the limit of whatever function is supplied by students, 
and it is not clear a priori that the CAS will be able to do this for the range of examples 
that might be offered by the students. Answering this question would rely on both 
design work to identify suitable topics and questions, and empirical work to gather 
typical student responses. 
A second question is: how does the use of computer-aided assessment affect students’ 
example generation strategies and success, relative to the same tasks on paper or orally? 
Students’ strategies have been studied in previous work (e.g. Iannone et al., 2011) but 
computer-aided assessment brings additional constraints that warrant further 
investigation. Returning to the example of the function with a given limit, students may 
immediately be able to offer a sketch of such a function, but be unable to write the 
corresponding expression. They may think of an example which has a piecewise 
definition, but not know how to enter this in proper syntax (if it is even possible in a 
given computer-aided assessment system). Answering this question would likely 
require in-depth qualitative investigation of students’ strategies, e.g. through 
observations or clinical interviews. 
Example 3: Assessing proof comprehension 
Proof is a hallmark of the discipline of mathematics, and differentiates mathematics 
from other subjects.  We know mathematical proof is difficult to learn. The ability to 
accept mathematical expressions and manipulate them enables computer-aided 
assessment to advance well beyond multiple choice questions. However, most current 
systems are still a long way from being able to accept a complete mathematical 
argument from a student in free-form text. 
There is currently a lot of practical development of computer-aided assessment, much 
of it instinctive and practitioner-based rather than theory-based. This research is based 
on the following pragmatic theoretical epistemological position: 

“to successfully automate a process it is necessary to understand it profoundly.  It therefore 
follows that successful, or even partial, automation of a process necessitates the 
development of a certain kind of understanding.” (Sangwin, 2019, p314) 

This leads to two directions for research questions. First, we are likely to learn much 
about students’ understanding of proof through online tests, e.g. tests developed to the 
standard of the proof reading-comprehension tests of Mejia-Ramos et al. (2012). As an 
example of the kinds of proof-based misconceptions we have explored with online 
assessment, we asked our students to read a proof by induction for the formula for the 
sum of the squares of the natural numbers from 1 to n, where P(n) is the statement that 
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12 + 22 +…+ n2 = n(n+1)(2n+1)/6. Students were then asked to write out P(3). Of the 
350 attempts online, 26% of students wrote only 3(3+1)(2*3+1)/6, confusing the 
equation P(3) with the value of the sum of the series. If students really do confuse the 
formula for the value of the sum of the series with the equation expressing a complete 
induction hypothesis, then there is little hope of them correctly completing a proof by 
induction. 
This observation arose by asking the kind of free-entry answer current computer-aided 
assessment facilitates, and examination of such common mistakes. Questions which 
separate concerns associated with proof are likely to lead to productive research 
questions about how students learn proof. 
A second direction for research questions is to use students’ work to shed light on the 
nature of the subject itself. By its very nature, students’ work is often incomplete, 
incorrect and/or inconsistent. This is neither pejorative, nor following a deficit model 
of learning. Indeed, the attempt to assess such work automatically throws interesting 
light on the forms of reasoning used and what professionals will accept as criteria for 
acceptable proofs. For example, Sangwin & Köcher (2016) examined questions from 
specimen examination papers and identified “reasoning by equivalence” as the most 
important single form of reasoning in elementary mathematics. The attempt to produce 
automatically assessed examinations identified an important form of reasoning, finding 
common ground in different areas of the subject.  

CONCLUSION 
In this paper, we have outlined three examples of fruitful bi-directional interactions 
between university mathematics teaching and mathematics education research. We 
have also outlined our plans for a collaborative process to gather, collate, refine and 
prioritise a set of research questions, to establish a shared research agenda for the 
community interested in computer-aided assessment of university mathematics. Such 
an agenda would help to drive forward both theoretical and practical developments. 
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From paper-and-pencil to computer-based assessment:                         
an example of qualitative comparative analysis 

Alice Lemmo 
University of L’Aquila, Italy; alice.lemmo@univaq.it 

Comparative studies on paper-and-pencil and computer-based test principally focus 
on statistical analysis of students’ performances. In educational assessment, 
comparing students’ performance does not imply a comparison between the solving 
processes followed by students. The purpose of this study is to present a comparative 
qualitative analysis based on observing and subsequently comparing the behaviour of 
students involved in solving tasks in different environments. This analysis allows to 
highlight similarities and differences in the solving process with regard to the 
administration environment. 
Keywords: Computer based assessment, Comparative study. 

INTRODUCTION 
The use of new technologies into teaching and learning processes has opened new and 
wide frontiers of study in the field of mathematics education. Regarding assessment, 
on the one hand research in computer based tests concerns the validity of these tests, 
on the other it focuses on their comparability with existing paper tests. In these two 
perspectives, large-scale surveys were conducted; they involve students from different 
educational levels, from primary to secondary instruction (Drasgow, 2015; Way, 
Davis, & Fitzpatrick, 2005).  
The first studies conducted on the topic involve the National Assessment of Education 
Progress (NAEP). Russell & Haney (1997) carry out a study to compare the effects of 
administering a test in two environments (paper and pencil vs computer) on 
performance (in terms of scores) of secondary school students. The findings reveal 
differences concerning the type of response: no substantial differences are identified in 
the case of multiple-choice items, while some differences are found regarding open-
ended items.  
Other research is conducted in the Texas statewide tests in mathematics, 
reading/English language arts, science and social studies (Way, Davis, & Fitzpatrick, 
2006). Differently from previous results, these studies show that the scores obtained in 
computer-based tests are higher than those with paper and pencil. Contrasting results 
are observed for example in Florida State Assessment in high school reading and 
mathematics (Nichols & Kirkpatrick, 2005). In fact, significant differences in students’ 
performance are found, with scores measured on the paper test resulting slightly higher 
than digital test results.  
The research studies listed represent a very small part of those developed on the topic; 
from these and many others, it is clear that surveys mainly follow a statistical approach 
to comparison. In particular, they focus on measuring performance, referring to scores 
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in terms of correct or wrong answers, and then on a purely quantitative analysis. In 
addition, there is no shared perspective on whether computerised tests can be compared 
with those adopting a paper and pencil format. Such contradictions can be reasonable 
also because investigating computer-based assessments need to consider their 
characteristics in terms of affordances and constraints. Ripley (2009) defines two 
approaches: migratory and transformative. Migratory approach is the use of 
technological support as a tool of administration; it consists in a transition of tasks 
conceived in paper format into digital format. Transformative approach involves the 
transformation of original paper tests integrating new technological devices which 
support interactive tools (graphs, applets, etc) that enhance new affordances.  
In this perspective two important questions arise: is it possible to define a certain level 
of comparability between tranformative tasks? Is it possible to design categories for 
comparing the behaviour of students who are involved in comparable transformative 
tasks? The first research question is described and discussed in previous studies 
(Lemmo & Mariotti, 2017). The main purpose of this paper is to define categories to 
observe, describe, analyse and subsequently compare the behaviour of students 
engaged in mathematics tasks in the computer and paper and pencil environment using 
a transformative approach.  

THEORETICAL FRAMEWORK 
In order to define appropriate categories to describe a situation of migration from paper 
to computer, we start from the theoretical framework of problem solving defined by 
Schoenfeld (1985). In the first pages of Mathematical problem solving (1985), the 
author explains and describes the aims of his research:  

[…] the goal of the research that has generated this book is to make sense of people’s 
mathematical behaviour – to explain what goes on in their heads as they engage in 
mathematical tasks of some complexity (Schoenfeld, 1985, p.5) 

In these pages, Schoenfeld refers to mathematical behaviours rather than to processes, 
approaches, strategies, heuristics… his goal is to observe and then describe as 
accurately as possible, what happens during a solution process. The term behaviour 
seems to fit in with the aim of our analysis; we adopt this term to refer to what takes 
place when students deal with a task. The qualitative observation of the protocols 
presented by Schoenfeld is based on four categories related to knowledge and 
behaviour of a possible solver in front of a generic task. This categorization allows an 
analysis of the solving process through elements that can be studied separately. 
Schoenfeld defines Resources as the knowledge of certain disciplinary facts that the 
solver uses to solve a task. Heuristics are the set of general rules for problem solving. 
They are suggestions that help a solver to better understand a problem or achieve 
progress towards a solution. In other words, Heuristics can be interpreted as the set of 
strategies that can be adopted to solve the task. The third category, called Control, 
includes a series of practices that the solver adopts in order to: choose which of the 
available information to use; plan the solution process… Finally, the Belief systems is 
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linked with solver metacognitive aspects (for a detailed description, see Schoenfeld, 
1985, chapters 2, 3, 4 e 5). We define behaviour profiles referring to the 4 categories 
in order to highlight students’ behaviour during the task solution process and to reveal 
possible differences and similarities that may depend on the administration 
environment. The profiles necessarily depend on the characteristics of the tasks 
selected in the study. For this reason, we will describe the profiles in the next 
paragraph. 

METHODOLOGY 
The tasks 
For the experimentation we choose to administer tasks designed starting from the 
applet created by Freudenthal Institut Research group in Mathematics education [1]. 
The applet named the broken calculator (Fig. 1), is one of the tasks administered to 
students and it is the one that we explain as an example.  

Figure 1: Screenshot of the application: The broken calculator 

The task asks students to determine a procedure to obtain the goal number using only 
the working keys. The interface of the applet looks very similar to a real calculator (fig. 
1); the darkened keys represent the buttons not working while the blue ones are the 
only ones that the solver can use. 
Task design in the two environments 
The purpose of our study is to conduct a qualitative research on the behaviour of 
students involved in the solution of tasks assigned within the two environments: paper 
and computer. Therefore, defining tasks that can be administered in the two 
environments and can be considered comparable between them is essential. In line with 
these purposes, we built two tasks, one in the computer environment and one in the 
paper and pencil environment, starting from the broken calculator applet. In Figure 2 
we present the task in the paper and pencil environment. The task in the digital format 
appears equal, the difference is that the user can use the calculator as a real calculator. 
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“You have a broken calculator; the functioning buttons are only the blue ones that you see in the picture. It 
could be possible to obtain the number written near the word goal only using the functioning buttons?”	

Figure 2: The broken calculator in the paper and pencil environment 

Analysis profiles 
The main interest of the experimentation is to highlight students’ behaviours during the 
task solution process with the aim of highlighting possible differences and similarities 
that may depend on the administration environment. In order to do this, it is essential 
to define profiles that can guide us in the analysis of the students’ solving processes, 
as they will appear in the collected protocols. In this perspective, we outline a priori 
hypotheses with reference to the behaviours that students might adopt in solving the 
task. Starting from these hypotheses, we define the profiles. 
The task focuses on the use of a calculator, for this reason, the Resources that the 
student should involve are those evoked by the use of the calculator according to the 
requests of the task. In particular, disciplinary contents concerning formalisms and 
properties of arithmetic calculation can be recalled. Like all traditional calculators, the 
solver can use the numeric keys to construct numbers with two or more digits. The 
positional representation of numbers is therefore an additional resource that may be 
available to the student although not necessary. These two hypotheses can be 
schematised by identifying three possible solver profiles concerning Resources (R): 

- R0: the solver does not recall the content and procedures necessary to solve the task; 
- R1: the solver recalls the contents and procedures necessary to facilitate the resolution of the 

task; for example, those referring to the positional decimal representation of numbers. 
- R2: The solver recalls the content and procedures strictly necessary to solve the task; for 

example, only those related to formalisms and properties of operations and not those related 
to the positional decimal representation of numbers. 

In the process of finding a solving expression to obtain the goal number, the Control 
category plays a crucial role but is difficult to identify. One aspect that we can observe 
is the choice to keep memory of the operations activated: 

- C1: the solver remembers the activated procedures by writing them down, step by step; 
- C2: the solver remembers mnemonically activated procedures; 
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Concerning Heuristics category, there is no single procedure to achieve the solution. 
In general, it can be assumed that there are two main heuristics and consequently we 
can identify two profiles referring to the students who adopt them (E): 

- E1: the solver analyses the goal number in terms of the result of one or more operations; 
- E2: the solver proceeds with a try-and-error approach based on available keys. 

In particular, the student identified with E1, starts from the analysis of the goal number 
in order to identify possible operations that give as a result this number. After 
identifying these operations, he/she looks for those that are possible according to the 
restrictions imposed by the task and identifies the resolving expression. On the other 
hand, students identified with E2, start from the analysis of the available keys and try 
to find an increasingly accurate approximation of the goal number.  
The category that guides the solution process in all its phases is the Beliefs System. 
This is a strictly personal and subjective category that depends on the experiences of 
individuals. It is not easy to outline a priori profiles to describe this dimension. For this 
reason, it is a category not explored in our study.  
The experimentation 
The experiment was carried out in 2013 and involved a sample of grade 6 and 8 
students from an Italian Secondary School in Bologna. The sample consists of 16 
students, respectively 4 couples of grade 6 students and 4 of grade 8. Each mathematics 
teacher selected in her class two pairs of students considered for her equivalent by level 
of knowledge and abilities in mathematics. One pair solve the task in paper and pencil 
environment while the other in the computer environment.  
In both environments, a test consisting of 5 tasks was administered to the students: 2 
of them of the broken calculator. The test was administered between December 2013 
and January 2014. No time limit was imposed. The entire experiment was videotaped. 

PROTOCOL ANALYSIS 
In the follow we discus data collected; we highlight similarities and differences that we 
found between students’ behaviour in the solution of the task. These similarities and 
differences are first discussed in the same environment and then in the two 
environments.  
We describe the students’ solution process of the first task of the broken calculator: the 
task asked students to obtain the number 58 using the keys:  
Analysis of students’ behaviour in the digital environment  
In Table 1 there are students profiles elaborated by the protocol analysis. The name 
“P_cbt” refers to pair of students involved in the digital tasks. Couples 1 and 2 are 
composed of grade 6 students; couples 3 and 4 are made up of grade 8 students. 
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 P_cbt_1 P_cbt_2 P_cbt_3 P_cbt_4 
Resources R2èR1 R2èR1 R1 R1 
Control C2 C1 C2 C2 
Heuristics E2 E2 E2 E2 

Table 1: students’ profiles in the digital environment 

As we can see from Table 1, there are differences and similarities between the 4 couples 
of students with respect to profiles. Common traits are highlighted in grey. 
In facing the task, all the couples recognise the Resources necessary to solve it and also 
those that can facilitate its resolution, i.e. the positional representation of the numbers. 
Going into detail, the students have two different attitudes. The first two couples 
recognise the possibility of using two-digit numbers thanks to the interaction with the 
calculator after few minutes (they pass from R2 to R1), while the other two 
immediately recognise this possibility (R1).  
All couples choose to adopt a trial-and-error strategy starting with the working keys 
(E2). However, students differ according to the choice of operations to be used: pair 1 
and 3 use multiplication as preferred operation while pair 2 and 4 use all operations 
without any particular preference. Regarding the Control, only one couple choose to 
use the calculator to keep track of the calculations (C1). The others do not use the 
calculator and use mental calculation. This causes several interruptions in the solution 
process also caused by the lack of feedback on the correctness of the calculations.  
We continue the discussion considering the couple of students who face the task in 
paper and pencil environment. In Table 2 there are the profiles through which we 
describe the students. The name “P_ppt” refers to students involved in the paper and 
pencil tasks. The numbers refer to couples of the same class of the ones in cbt. 

	 P_ppt_1	 P_	ppt	_2	 P_	ppt	_3	 P_	ppt	_4	
Resources R2	 R2	 R2	 R1	
Control C2	 C2	 C2	 C2	
Heuristics E1èE2	 E2	 E2	 -	
Table 2: students’ profiles in the paper and pencil environment 

Observing Table 2, we can notice that the first three couples are characterised by the 
same profiles; the only isolated case is the couple 4 which we describe separately. This 
fact might suggest that if students are involved in a task in a familiar environment, they 
act on common behaviour patterns: R2-C2-E2. All students of the three couples choose 
an exploratory strategy (E2) using a predominantly mnemonic control system (C2). 
None of the three pairs recognised among the numeric keys the possibility to use them 
as digits but only as numbers (R2). 
Regarding Resources, the first three couples of students interpreted the numbers 
presented on the keys as the only ones available to identify the solving expression. No 
couple use paper to do calculations or keep track of procedures; the use of the pen is 
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limited to writing down the solving expression of the task. In general, the three couples 
choose an exploratory approach; only one couple starts to look for the factorisation of 
the goal number but gives up the strategy in a few minutes (they pass from E1 to E1). 
Couple 9 significantly differs from the other: after 30 seconds, the students identify the 
solving expression. Such a fast solution does not allow us to hypothesise the type of 
approach adopted and for this reason, we cannot make inferences regarding Heuristics. 
The main difference between this couple and the others is that they are the only that 
use two-digit numbers (R1). 
Let us consider the comparison of the profiles in the two environments. Concerning 
Control and Heuristics, the most frequent profile among students is C2-E2 in both 
environments. Therefore, for these categories the environment does not reveal 
correlation with the students' choices. However, it has a considerable influence in terms 
of the Resources. In fact, the possibility of using the calculator seems to have an effect 
on the Resources mobilised: all the students who engage the task in the digital 
environment identified themselves with the R1 profile; on the contrary, in the paper 
environment, the presence of only an image seems to limit this awareness linked to the 
positional representation of the figures (R2). 

CONCLUSION 
In the last decades, there is no shared perspective on whether computerised tests can 
be compared with those adopting a paper and pencil format. Such contradictions can 
be reasonable if these studies have been carried out on the assumption that comparing 
student performances can provide information about the problem-solving processes 
performed to provide the answers.  
In this paper we propose categories for qualitative comparative analysis of student 
behaviour in the two environments. The categories of analysis are inspired by the 
framework developed by Schoenfeld (1985).  
The discussion of the results highlights differences and similarities in relation to the 
profile patterns identified in the two environments. In particular, students who face the 
task in paper and pencil environment are categorised by the same profile pattern. This 
does not happen in the digital environment. These aspects would not be observable 
comparing performance (in terms of correct/wrong answer) because all couples of 
students determine the solution of the task regardless of the environment. Starting from 
equal performance, we notice that Resources activated by students are distinct in the 
two environments. Such difference necessarily influenced the procedures activated 
with similar heuristics.  
The analysis currently has a strong limitation; in particular, it is not possible to ignore 
the task because the profiles are built ad hoc. A possible future development could be 
to design other studies with other tasks or with the same but on a larger scale. In this 
way it would be possible to validate these results for even wider use and to outline 
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generic indicators that would allow the study of correlations also in a more general 
perspective regardless of the task being considered. 
The use of categories to identify analysis profiles can open perspectives for assessment 
in mathematics. Categories allow to isolate particular variables of students’ behaviour 
in order to identify where students have difficulties in solving a task. These difficulties 
may not necessarily strictly depend on mathematical aspects but may be transversal, 
for example, related to the text comprehension of the task or to the environment in 
which it is administered. In addition, the attention to some variables based on profiles 
allows to improve formative assessment and to propose specific didactic situations 
focused on processes and not on products. 

NOTES 
1.   http://www.fi.uu.nl/wisweb/applets/mainframe_en.html 
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Semi-automated assessment: the way to efficient feedback and reliable 
math grading on written solutions in the digital age? 

Filip Moons and Ellen Vandervieren 
University of Antwerp, School of Education, Venusstraat 35, 2000 Antwerp, 

Belgium, filip.moons@uantwerp.be  
Process-oriented feedback is powerful in math teaching yet highly labour-intensive. As 
a consequence, digital assessment with fully-automated feedback has received much 
attention. Despite this, digital assessment faces shortcomings concerning students’ 
input: it only reads specifically-formatted answers, and learners solve higher-order 
questions more naturally when using paper-and-pencil. Therefore, we investigated the 
use of a semi-automated assessment (SA) method in which teachers write atomic 
feedback that can easily be reused for multiple students. SA is implemented in Moodle. 
During a lab study (n = 1800 corrections), we examined (1) whether SA saves time; 
(2) whether SA delivers more reliable scores compared to handwritten assessment; and 
(3) how teachers perceive SA. Mixed effect models were used for data analysis. 
Keywords: digital assessment, feedback, semi-automated assessment, atomic feedback, 
reusable feedback. 

INTRODUCTION 
Process-oriented feedback is a crucial instrument in learning processes (Hattie & 
Timperley, 2007): it tells students which mathematical operations were appropriate 
(strengths), which were not (weaknesses) and how task solutions can be improved 
(strategies) (Rakoczy et al., 2013). To provide good process-oriented feedback, 
teachers need ‘interpretative knowledge’ (Mellone et al., 2020) of students’ errors. 
Fully-automated feedback (FA) versus paper-and-pencil assessment (PP) 
Because it is time-consuming for teachers to provide such feedback, considerable 
research has been devoted to fully-automated assessment (FA) in mathematics 
education (Sangwin, 2013). FA provides extensive, immediate feedback for students, 
substantial time profits for teachers and often endless training possibilities as questions 
can be automatedly generated.  
Less attention has been paid to overcoming the drawbacks of FA. First, preparation of 
FA questions is challenging as it is complex to create the accompanying correction 
schemes that give partial grades and adapted feedback. The central weakness is, 
however, the fact that not all mathematics questions can be easily automated; especially 
higher-order thinking questions are solved by students more naturally using paper-and-
pencil (Threlfall et al., 2007). Furthermore, almost all digital test environments offer 
too little mathematical tools that allow students to express themselves mathematically, 
as they would with pen and paper. Answer possibilities are mostly limited to pre-
defined response fields instead of free answering formats used in paper-and-pencil 
assessments (PP) (Kocher & Sangwin, 2016). Hoogland & Tout (2018) have shown 
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that, as a consequence, a lot of FA-questions focus on lower-order goals, such as 
procedural skills. Besides, for higher-order questions, no difference between the effect 
of immediate and delayed feedback is found yet (van der Kleij et al., 2015), tempering 
the need of FA for that kind of questions. All in all, FA does not easily allow to assess 
open-ended, challenging problems triggering higher-order thinking. 
In mathematics, students’ answers will contain systematic error patterns, meaning that 
different students often make analogous mistakes (Movshovitz-Hadar et al., 1987) and 
teachers keep on noticing the same mistakes again. As paper-based assessment still has 
an essential place in mathematics teaching (Threlfall et al., 2007), it is surprising that 
using these error patterns to speed up the assessment process remains largely unstudied 
in the literature. In the present research, we want to bridge the gap between FA and PP 
and develop a new, semi-automated assessment method (SA). 
Semi-automated assessment with atomic feedback (SA) 
SA is a method in which students work out their solutions using paper-and-pencil, but 
the teacher assesses them digitally, making it different from PP-tests who are 
handwritten assessed by the teachers.  

Figure 1: An example of classic versus atomic feedback 

In SA, teachers have to write atomic feedback items. These feedback items are all 
saved, so they can easily be reused when another student makes the same mistake. The 
system suggests relevant items to reuse. The teacher can see the solutions of the 
students on-screen or asses directly from the students’ sheets. It is possible to assess 
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test-by-test or question-by-question. SA generates a student report that can be printed 
or viewed online in an e-learning system.  
To achieve high levels of reusability in SA, teachers must give atomic feedback: 
instead of writing long pieces describing lots of different mistakes at once, they must 
(1) identify the independent error occurring, and (2) write small feedback items for 
each error, independent of each other (see Figure 1). As such, SA can create point-by-
point feedback only covering those items that are relevant to a student’s solution. In 
addition, clustering of feedback is allowed, meaning sub-items can be added to 
feedback items.  Clustering ensures that feedback can be written as atomic as possible 
and avoids teachers’ need to write too specific items, which would compromise the 
reusability.  It also allows related feedback to be orderly shown to students. Besides, 
the feedback cluster will be a decisive factor for the algorithm to decide which feedback 
will be suggested for reuse to the teacher. However, to support maximal flexibility, a 
feedback item can be part of different clusters.  
If a question must be graded, the teacher can associate feedback items with partial 
scores to be subtracted. It is also possible to associate items with a threshold (e.g. ‘if 
this feedback item is given to a student, a student can get at most 50% of the points’). 
The teacher can always still manually change the associated score of an item.  
Solutions to assess handwritten students’ tests digitally are available, like Gradescope 
(Singh, A. et. al., 2017), but the integration of reusable atomic feedback items has never 
been studied before. 
Envisioned benefits of semi-automated assessment 
SA might be a promising go-between for FA and PP, throwing off the current 
limitations of FA. First, SA gives rise to potentially significant time savings: solutions 
are assessed reusing already given feedback as much as possible. This might enable a 
faster feedback and grading process than PP, especially when a question has already 
been assessed many times, filling the database with lots of reusable feedback. Second, 
SA allows students to write down any mathematical expression, using the structure 
they prefer for their reasoning, and hence fully expressing themselves mathematically. 
Third, SA does not limit the use of open-ended, challenging higher-order thinking 
questions as there are no pre-defined response fields; the assessment work is in the 
hands of the teacher. Fourth, a teacher only gives feedback when a mistake occurs (no 
need for a crystal ball), omitting the need to develop complex correction schemes 
beforehand as is the case for FA (Sangwin, 2013). The loss of immediate feedback is 
a drawback, but remember that no significant difference in effect is found yet between 
delayed and immediate feedback for higher-order thinking questions (van der Kleij et 
al., 2015). In many cases, SA assessment might thus be a valid assessment method, 
combining the strengths of PP- and FA-assessment (see Table 1).  
This study aims to verify these envisioned benefits experimentally. As we are currently 
collecting data, we have organised the rest of this proposal as follows: we introduce 
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the guiding research questions, examine the followed methodology and conclude by 
looking at possibilities for further research. 

Table 1:  Advantages and disadvantages of different types of assessment 

RESEARCH QUESTIONS AND HYPOTHESES 
(RQ1) Does SA-feedback lead to significant time savings compared to PP-

feedback and can we predict them? 
Hypotheses: As SA-feedback and SA-grades are reusable, we hypothesise that SA will 
be faster than PP. It might be possible that SA only becomes faster when a certain 
threshold (cf. number of tests assessed) is reached, as the database first must be filled 
with reusable feedback. Before that threshold, we hypothesise that there will be no 
significant time difference between SA and PP. To predict possible time savings, we 
seek for reusability measurements of the used feedback items, e.g. the ratio of already 
used feedback items to all feedback items used to correct a student’s solution. When a 
solution is assessed with exclusively new feedback items, this ratio will be 0. If 
assessing a solution requires 5 different feedback items, of which 4 have already been 
used before, the reusability factor equals 0.8.  
(RQ2) Is teachers’ SA grading more reliable compared to PP-grading? 
Hypotheses: Reliability is the degree to which an assessment produces stable and 
consistent results (Feldt, 2004). We focus on intra-rater reliability: how consistent is 
a teacher’s grading (for a particular set of tests) over time? Extensive research has 
shown that teachers’ PP-assessments are biased in numerous ways as teachers tend to 
forget how they handled the same mistakes before (Parkes, 2012). Because SA 
remembers already given feedback and associated grades, we hypothesise that the SA-
grading stability will be better. With respect to inter-rater reliability, we expect no 
significant differences between SA and PP-grading, because in the current experiment 
teachers only use their own atomic feedback items. However, a follow-up study with a 
group of assessors contributing to and sharing the same database of atomic feedback 
items, is planned. 

Feedback & Assessment 
 

Paper-and-pencil based (PP) 
Computer-assisted 

Semi-automated (SA) Fully automated (FA) 
- delayed feedback - delayed feedback + immediate feedback 
+ natural mathematical 
expressions 

+ natural mathematical 
expressions 

- too little mathematical tools 

+ no pre-defined response 
fields 

+ no pre-defined response fields - pre-defined response fields 

+ questions are easy to 
develop 

+ questions are easy to develop - need for an automated correction 
scheme and anticipation on mistakes 

+ high-order thinking 
questions possible 

+ high-order thinking questions 
possible 

- high-order thinking questions 
difficult 

- time consuming + time profits + time profits 
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(RQ3) A) How do teachers perceive SA? B) What about the feedback quality in 
the different conditions? 

Hypotheses: We hypothesise that teachers will appreciate the way SA integrates in 
their classroom practice as opposed to FA, which can sometimes feel a bit alienating. 
However, learning to write atomic feedback and using the SA-tool might be difficult. 
We will also compare the quality of given PP- and SA-feedback. As teachers are 
constantly remembered of already given feedback under SA, this could increase their 
interpretative knowledge (Mellone et. al., 2020). 

METHODS & MATERIALS 
Materials 
Development of MathSA 
We developed an SA-tool called ‘MathSA’, and integrated it as an advanced grading 
method in the open-source e-learning platform Moodle. The Moodle-framework 
contains a lot of features (e.g. a grade book, uploading assignments,…) and is the most 
popular e-learning platform.  
Test on linear equations 
In close cooperation with a math teacher, we developed a test on linear equations, 
consisting of three equally weighted questions: (1) solve an equation (easy/procedural), 
(2) manipulate a formula (complex/procedural, see Fig. 1) and (3) a modelling question 
consisting of a word problem (complex/problem-solving). The three questions 
combined form a representative, standard test on linear equations. 
Survey based on the TAM-model 
We will develop a short, validated survey based on the Technology Acceptance Model 
(Davis, 1989) in order to measure how teachers perceive SA.  
Participants 
60 students of Grade 9 in one secondary school in Flanders (Belgium) solved the test 
on linear equations. We gathered informed consents from all students. 
30 Belgian secondary math teachers with at least 3 years of working experience will 
participate voluntarily in a lab study. They were contacted through announcements in 
math teaching magazines and subscribed via www.mathsa.uantwerpen.be.  We aim for 
diversity among participating teachers in gender, experience and school type. We plan 
to organise a focus group on MathSA and atomic feedback with 8 of the participating 
teachers. They will be selected based on their answers in the survey (cf. diversity in 
terms of gender, experience and views on technology). We received ethical clearance. 
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Design 
All students conducted the test on linear equations in an authentic context: the students 
had been studying linear equations during classes, they were accustomed to the test 
lay-out, and afterwards, the grades were incorporated in the students’ grade reports.  
During the lab study, each teacher will assess all 60 solved tests.  For each teacher 
individually, a random selection of 30 tests will be assessed under the SA-condition. 
The remaining 30 tests will be assessed under the PP-condition. This yields 1800 test 
corrections in total and indicates a within-subject design. With respect to RQ2, we will 
ensure every test is marked the same number of times under each condition. To avoid 
bias coming from a growing familiarity with the test, exactly half of the teachers will 
start with assessing PP-tests; the other half will first handle their SA-tests.  
During the whole study, participating teachers will not be informed about the research 
questions, to prevent bias in their grading style. To control for bias due to inexperience 
with MathSA (cf. SA-condition), we provide sufficient training opportunities during 
the lab study, before we start with the actual experiment. 
In RQ1, the dependent variable is the time a teacher needs to assess a single question. 
The independent variable is the assessment condition (PP/SA). As the assessment time 
also depends on: the teacher (categorical), the quality of the student’s answer 
(measured by the test score), and the familiarity the teacher has with the test items 
(number of 1 to 30, indicating how many tests the teacher has already corrected under 
the same condition), these are all included as moderating variables. 
For RQ2 (reliability of SA-grading), at least one month after the lab study, teachers 
will be asked to grade the same tests again under the same condition. This period in 
between guarantees that teachers will largely have forgotten how they handled 
particular tests. We will calculate the differences in scores between both measurements 
(score lab study – score month after) and use this as the dependent variable. The 
assessment condition (PP/SA) will be used as the independent variable. We will 
include the teacher (categorical) and the quality of the student’s answer (measured by 
the average of the test scores given by all the teachers during the lab study) again as 
moderating variables. 
To answer RQ3a, we will survey the participating teachers and conduct a focus group. 
To compare the given feedback under both conditions and whether they show different 
levels of interpretative knowledge (RQ3b), text mining will be used. 
Procedure  
In February 2020, 64 students (9th grade) solved the test on linear equations during their 
regular math class. It was conducted like every other test by their teacher and solved 
with paper-and-pencil. The researchers were not present during this test taking. 
Students were asked afterwards if the test could also be used for the research. All 
students agreed. We randomly deleted 4 tests to have exactly 60 tests. 
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We have been conducting the lab study on different moments in the months of July and 
August 2020. Due to the Covid-19 crisis, it wasn’t feasible to gather all the 30 teachers 
at the same time in one place. During the lab study a presentation about useful process-
oriented feedback in mathematics was given. Second, teachers were trained to get 
familiar with MathSA and the formulation of atomic feedback. Before the start of the 
actual experiment, all the teachers got half an hour to get familiar with the MathSA-
tool. We offered some students’ answers on entirely different math topics than the topic 
of the test of the experiment as training possibilities.  During this training, teachers got 
tips to make good atomic feedback and had the opportunity to ask questions. Third, 
half of the teachers started assessing under the PP-condition: they wrote detailed 
feedback on each test and graded it. They were allowed to develop a personal correction 
scheme in advance. Every time they started to asses a test, they had to push the space 
button on the computer in front of them, so that the time needed to correct the test could 
be tracked. The other half of the teachers started assessing under the SA-condition, 
providing atomic feedback and scores with MathSA. The tool automatically keeps 
track of the time used for each test. In both conditions, participants were never allowed 
to return to an already corrected test. Fourth, after the break, the groups swapped 
conditions (SA/PP) and assessed the other, remaining tests. Finally, they were asked to 
fill in the survey.  
After all the lab experiments on different dates are executed, we will organise the focus 
group with 8 participants online at the end of August.  
In September 2020, a month after the lab study, the participants will receive the 
ungraded copies of their 30 PP-tests by post. They will be asked to re-grade them and 
will be invited to re-grade the remaining 30 SA-tests online. Their previous SA-
corrections will have disappeared, but their feedback items of the lab study will have 
been saved. They will have one month to re-score the 60 tests under the same condition 
as during the lab study. Their PP-grades will be sent back to us through an online form. 
At the start of the experiment, all participants have been informed about this additional 
individual work (about 3 hours), but they do not know that they must re-grade the same 
tests.  
Data analysis 
We will construct mixed models (i.e. models containing both fixed effects and random 
effects) to examine the time differences (RQ1) and the consistency differences (RQ2) 
between SA and PP. In both models, the fixed effect is the condition (PP/SA). The 
random effects are the moderating variables mentioned in the design. The survey data 
will be analysed and cross-tabulated with teachers’ characteristics (e.g. age, 
experience, technology acceptance score). We will also link the survey with the 
qualitative data from the focus group. 
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FURTHER RESEARCH 
This paper describes the first study of this doctoral research. The goal of this first study 
is to explore SA as a new assessment method and get an indication on how SA behaves 
when teachers use it. The next step of the project is to focus on the students’ point of 
view and conduct quasi-experimental studies to measure students’ learning effects. We 
also plan an integration of SA-assessment with Bayesian networks for elaborate student 
tracking. 
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Digital feedback design in the Heidelberger MatheBrücke 
Guido Pinkernell 

University of Education Heidelberg, pinkernell@ph-heidelberg.de 
The Heidelberger MatheBrücke is an online learning environment that contains digital 
randomized tasks and adaptive feedback for consolidating mastery and understanding 
of concepts and procedures that are central for secondary school mathematics. It is 
designed for use in summative learning contexts, which has lead to certain decisions 
regarding the design of the feedback and the used knowledge model. This paper 
outlines the underlying theoretical considerations and specifies the MatheBrücke’s 
feedback design and knowledge model. 
Keywords: assessment, feedback, basic knowledge 

INTRODUCTION 
There is a growing interest in digital feedback in mathematics education. In their 
analysis of the impact of technology on assessment in mathematics from 2012, Stacey 
and Wiliam made few explicit references to feedback. Of course, assessment without 
giving some information about the outcome and what to do about it is not helpful, 
hence feedback must be seen as a necessary part of assessment. An upcoming MEDA 
analysis of digital assessment systems in mathematics education, however, contains a 
separate section that explicitly focusses on the feedback design of the digital 
assessment systems (Fahlgren et al., in press). So why is there a specific interest in 
feedback when assessment and feedback can be seen as only two sides of the same 
coin?  
Feedback is communication. While assessment concentrates on diagnosis, feedback 
focusses on the act of informing about the outcome of assessment and how to proceed 
from there. Furthermore, feedback needs to adapt to cognitive and individual traits of 
the learner to have the desired effects. Adaption, again, could show in several ways, 
for example language, content, and timing, all visible especially in feedback relating 
to single task performance. Yet to be valid, feedback needs a theoretical basis for 
pointing to differences between expected and actual knowledge in detail. Intelligent 
Tutoring System design (ITS) requires a knowledge model which serves as a basis for 
automated response analysis and feedback preparation. So two questions come into 
view when conceptualizing digital feedback in mathematics education. (a) What are 
the aspects of mathematical knowledge about which feedback aims to inform? And (b) 
how should feedback be designed so that it is effective for the learner? In this paper, 
both questions will be addressed with a focus on the specific demands by the online 
learning platform Heidelberger MatheBrücke. These will be outlined in the first of the 
following three sections, before proceeding to answering both questions. 
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THE HEIDELBERGER MATHEBRÜCKE 
The Heidelberger MatheBrücke [1] is an online learning environment with digital 
randomized tasks and adaptive feedback for consolidating the mastery and 
understanding of concepts and procedures that are central for secondary school 
mathematics. The MatheBrücke is to be used in summative, not formative learning 
situations. This means that students who work with the material are expected to have 
already some experience with the concepts and procedures addressed. While the 
MatheBrücke addresses basic concepts and procedures, it does not address higher order 
competencies such as problem solving or reasoning. This accounts for the third 
objective of the MatheBrücke. It aims at developing a routine disposition of basic 
knowledge which can be adapted and applied to a variety of problem solving situations. 

KNOWLEDGE MODELLING 
An essential prerequisite for adaptive feedback in Intelligent Tutoring Systems (ITS) 
is a knowledge model against which the actual performance of the student can be 
assessed. A common approach to domain knowledge modelling requires identifying 
and defining knowledge components (Brusilovsky & Millán, 2007).  
If made explicit at all, the knowledge models of existing assessment systems appear to 
be based on general cognitive constructs as declarative, procedural and conceptual 
knowledge (e.g. Tacoma et al., 2018). These are central parts of well-known 
transdisciplinary knowledge models as e.g. by Bloom, Anderson and Krathwohl. They 
are also often used in mathematics education (e.g. Hiebert & LeFevre, 1986, de Jong 
& Ferguson-Hessler, 1996). However, some researchers question the suitability of the 
procedural/conceptual dichotomy for modelling mathematical knowledge. Star and 
Stylianides (2013) have shown that mathematics teachers generally see procedural 
knowledge as being inferior to conceptual knowledge, thus overlooking the 
epistemological significance of symbolic language in mathematics. For Kent and 
Foster (2015) procedural fluency itself can be positive evidence of understanding 
mathematics. In fact, a process model of solving equations by Block (2015) identifies 
a complex interplay of mental actions that is far from merely applying procedures 
without reflection. Hence, there seems to be good reason for “abandon[ing] the 
conceptual/procedural framework entirely and select new words or phrases to describe 
knowledge outcomes of interest.” (Star & Stylianides, 2013, p. 179) 
The knowledge model of the MatheBrücke follows a genuine mathematics educational 
approach to conceptualizing mathematical knowledge. While aspects of declarative, 
procedural and conceptual knowledge are still, if only implicitly, present, its central 
constructs are specific forms of accessing or understanding mathematical concept that 
are well-established within mathematics education. Details will be presented in the 
following section. 
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The WiGORA frame of reference 
Following the MatheBrücke’s aims as outlined above, the knowledge model is meant 
to be a concise and summative view on what facets of knowledge of a given 
mathematical object a student needs to have at his or her disposal once it has been 
taught. Further, the facets of knowledge are considered normative, i.e. they are meant 
to cover mathematically sound ways of accessing a mathematical object. And last, this 
framework is for conceptualizing an “intelligent content knowledge base” (Klieme et 
al., 2007) for developing higher level competencies, it is not a framework for higher 
level competencies itself. The acronym WiGORA derives from the German labels of 
the five facets of knowledge that make up the frame of reference (Pinkernell, 2019): 
Declarative knowledge (“Wissen”) refers to the ability to recall or identify correct 
definitions, rules or characteristic properties of a mathematical concept or procedure 
as well as the necessary terminology associated with it. Declarative knowledge 
basically is knowledge about facts and information (Anderson, 1976). It also comprises 
prototypical knowledge that characterises, but not necessarily defines, the object 
(Rosch, 1983, Tall & Bakar, 1992). 
Explanatory models (“Grundvorstellungen” or GV for short) refers to the ability to 
recall or identify conceptualisations of a mathematical object that "make sense" (vom 
Hofe & Blum, 2016). The concept GV is one of the key concepts of German 
Stoffdidaktik, which “should be able to, on the one hand, accurately fit to the cognitive 
qualifications of students and, on the other hand, also capture the substance of the 
mathematical content at hand” (vom Hofe & Blum, 2016, p. 227). 
Representational flexibility (“Repräsentationale Flexibilität”) refers to the ability to 
switch within and between representational forms or registers of a mathematical object. 
Following Duval (1999), this ability is specific to understanding higher level 
mathematics since a mathematical concept, being essentially abstract, can not be 
addressed otherwise. 
Operational flexibility (“Operationale Flexibilität”) refers to the ability to apply, adapt 
and modify mathematical procedures for situational needs. This facet refers to the 
cognitive construct of operations in the sense of Piaget and Aebli. Characterised for 
example by reversibility or transitivity of the mental operations involved (Fricke, 
1970), corresponding tasks would require reversing procedures or selecting efficient 
procedures over routine (“strategic flexibility”: Rittle-Johnson & Star, 2007). 
Knowledge application (“Anwendung”) refers to the ability to identify a mathematical 
concept or procedure as suitable for solving a problem. Here, the concept or procedure 
is considered a potential model for mathematising situations within or outside 
mathematics (“Mathematisierungsmuster”: Tietze, Förster, Klika & Wolpers 2000). 
This facet, as all five facets do, focusses on meaning and use of a given mathematical 
object. It does not refer to the modelling process or parts of it, but it addresses the 
content knowledge base of modelling. 
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FEEDBACK DESIGN 
To be used at the end of a teaching unit or school level, the Heidelberger MatheBrücke 
is not for summative purposes. Feedback here therefore needs to be addressed to users 
who have some experience with the mathematical concepts and procedures. The 
following gives an overview of relevant results from feedback research and then 
derives the specific feedback design presently being implemented. 
Theoretical background 
Defining Feedback: For educational purposes, a generally accepted definition of 
feedback is that of Hattie and Timperley (2007) according to which feedback is 
“information provided by an agent […] regarding aspects of one’s performance or 
understanding.” (p. 81) The addressee is an individual, who could be, for example, a 
student who is informed about his knowledge of teaching content, or a teacher about 
his knowledge of the effects of his teaching.  
Adaptive feedback: Giving feedback also intends to activate the addressee to close the 
gap (Boud & Molloy, 2013). Thus, feedback must be perceived as “advice for action” 
(Ras et al., 2016), it needs to adapt to cognitive and personal traits of the learner 
(Brusilovsky & Millán, 2007).  

simple 
components 
of feedback 
(SF) 

knowledge of 
result (KR) 

i.e. stating whether the answer is correct or 
wrong 

knowledge of 
performance (KP) 

i.e. stating the rate of correctness 

knowledge of the 
correct result (KCR) 

e.g. naming or outlining a correct response 

elaborate 
components 
of feedback 
(EF) 

knowledge about 
task constraints (KTC) 

e.g. hints or explanations on type of task 
or required  processing rules 

knowledge about 
concepts (KC) 

e.g. hints, explanations or visualizations 
of concepts, terms, properties 

knowledge about 
mistakes (KM) 

e.g. hints or explanations of location and types 
of errors 

knowledge about 
how to proceed (KH) 

e.g. hints, guiding questions or corrections, 
successful strategies, or worked-out examples 

knowledge about 
metacognition (KMC) 

e.g. hints, guiding questions or explanations on 
metacognitive strategies 

Table 1: Content related classification of feedback components (Narciss, 2008) 

Adaptivity manifests itself in content and amount of information and timing as two 
major parameters of feedback design (Mory, 2004). Timing refers to whether feedback 
is given immediately or after a specified delay. Content and amount of information 
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refers to type and number of feedback components, for which Narciss (2008) gives a 
concise overview (cf.table 1). 
In fact, research has shown that the use of worked out examples leads to comparably 
high learning gains (cf. Renkl, 2002). However, while novices profit from worked out 
examples, this might not hold for students on a higher expert level. Also, timing plays 
an important role, esp. when looking at the general achieving level as a persistent 
individual trait. Following Shute (2008), information for low achievers should be made 
promptly, those for high achievers should be delayed to allow time for revision. A 
metastudy by Van der Kleij et al. (2015) confirms the significance of elaborate 
feedback (EF, cp. Table 1) and timing for learning outcomes in digital learning 
environments. Their findings suggest that the effects of EF as compared with simple 
(SF) or no feedback at all are more substantial for higher order learning outcomes than 
for lower learning outcomes. However, timing does not seem to make a difference 
when looking at its effects on higher or lower order learning outcomes. 
Levels of content related feedback The previous findings relate to feedback on 
performance in single tasks. Task level is one of four levels of the Hattie and Timperley 
model (2007) which together refer to the addressee’s different cognitive and personal 
traits. When operating at task level or process level, feedback informs about knowledge 
and processes needed for task performance. When working at self-regulation level and 
self level, feedback informs about meta-cognitive or affective aspects. It seems that, 
with upcoming interest in Intelligent Tutoring Systems (ITS), yet another level is 
needed to locate effects of cognition related feedback. ITS design requires to address 
aspects of knowledge of a domain as a whole (Brusilovsky & Millán, 2007), so it is 
feedback at domain level that informs about performance and processes related to 
concepts and procedures or abilities and competencies that relevant for knowledge of 
the domain. 
Feedback in the MatheBrücke 
In accordance with the study results reported above, the MatheBrücke´s task level 
feedback aims to provide as little information as necessary to activate reflection on 
each level of expertise. For this, feedback here follows a multi-staged design, each new 
stage offering more detailed information if needed, which can be accessed only after a 
delay of a certain time and, additionally, after a deliberate click by the learner. Table 2 
shows the outline of a two-staged feedback that has been object of a small-scale study 
on comparing two types of feedback in the MatheBrücke. The data indicated that even 
low-achievers could benefit from a two-stage feedback where worked out examples 
were not given immediately but delayed for 60 seconds (Pinkernell, Gulden, Kalz, in 
press). 
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 components 

appears 
without delay 

KR: “Unfortunately, 
your answer is wrong.” 

KM: “You probably 
made this error: …” or KTC:  “The first step of the 

correct solution would be …” 
“Load another question of the same kind 

and try again!” 
appears 

after 60 sec. 
KH: “Click here 

for a worked out example…” 

Table 2: Structure of a two-staged feedback in the Heidelberger MatheBrücke 

SUMMARY AND OUTLOOK 
The Heidelberger MatheBrücke is an online learning environment with digital 
randomized tasks and adaptive feedback for consolidating mastery and understanding 
of concepts and procedures that are central for secondary school mathematics. The 
underlying knowledge model of each domain of the MatheBrücke comprises (a) central 
concepts and procedures of the domain that are identified on a curricular basis and (b) 
facets of mastery and knowledge that are expected to show when engaging with those 
central concepts and procedures. It is primarily meant for summative learning 
situations, not formative, hence the feedback is designed to specifically address 
learners that have some experience with the concepts and procedures of the domain. 
To adapt to various levels of expertise, the feedback design follows a multi-staged 
approach, each step increasing the amount of information about correct answers, errors 
made and processing knowledge that is required for successful solutions. Presently, the 
knowledge model serves as a frame of reference for preparing and selecting tasks. It is 
not yet being used for feedback on domain level. Feedback presently operates on task 
level only, where further designs of multi-staged structure are being explored. 

NOTES 
1. mathebruecke.pinkernell.online 
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Towards comprehensive technology-supported formative assessment 
in math education – a literature review 

Nilay Aral and Stefan Oppl 
Danube University Krems, Department for Continuing Education Research and 

Educational Technologies, Austria, nilay.aral@donau-uni.ac.at 

INTRODUCTION 
Formative Assessment (FA) aids to support the improvement of students' 
comprehension, and identify individual learning needs during the learning process with 
a variety of methods in the lesson (Wiliam, 2011). It evaluates students’ level of 
competence gain to enhance the ongoing learning process. In math education, FA is 
particularly important because more than 80% of class time is spent working on tasks 
and solving problems (Hiebert et al., 2003), which are the main focus areas of FA. This 
potential has been recognized in research for several years and FA in math has been 
examined extensively (Rakoczy et al., 2019). The manifold of FA practices, however, 
has led to the development of a wide variety of tools with different foci and support 
approaches. This leads to challenges in tool selection and deployment in a given 
didactical setting. Scientifically, the conceptual and technical developments have 
largely followed disjoint support strategies and can hardly benefit from each other by 
adopting their learnings and the empirical findings about their impact. We aim at 
providing a comprehensive, yet structured, appraisal of existing technology-supported 
FA instruments in math education. We, therefore, propose a review-framework based 
on a conceptual foundation in FA and demonstrate its use by reviewing the state-of-
the-art on technology-supported FA in math education. We believe this review will 
serve the interest of teachers, researchers, and technology developers. The former will 
benefit from this poster by learning about different tools, while the latter two will be 
able to compare their own approaches to those of peers. 

METHODOLOGY 
As mentioned above, the amount of existing literature on FA in math education exceeds 
the limits of what can be reviewed in-depth for the poster proposal. We thus have 
applied certain boundaries to limit the scope of our review. First, we only seek papers, 
which explicitly cover FA topics in math education. Second, we solely examine papers, 
which are published after 2012, as technological developments lead to the limited value 
of older contributions. Third, we only analyze papers that aim to explicitly support FA 
via technological tools. We queried the following term in Google Scholar/Web of 
Science and filtered papers which are not older than 2012. 

("formative assessment" OR "formative feedback" OR "formative evaluation" OR 
"assessment for learning")("maths" OR "math" OR "mathematics") 
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LITERATURE REVIEW 
Wiliam (2000) has identified five different classes of supporting activities that can be 
included in FA: sharing success criteria with learners (SSC), classroom questioning 
(CQ), comment-only marking (CM), peer- and self-assessment (PSA), and formative 
use of summative tests (FST). We analyze the 14 papers we have identified in our 
literature search with respect to their technical foundations, the types of FA they 
support, and the empirical evidence they provide on their effects in Table 1. 

Table 1: Concept matrix for reviewed papers. 

We reach two major arguments about the use of technology in the FA of math subjects. 
First, there is no existing technology that spans across all five classes of FA methods. 
Especially, PSA and CQ results are not combined in a single tool. While this is not 
surprising given the different foci of support (mainly: presence-based vs. online), the 
trend towards large-scale blended learning settings makes it worthwhile to explore the 
potential of a comprehensive support system. Providing such technological support in 
this field could, in particular, be useful for large-scale classroom settings, where 
individual formative feedback can hardly be provided by teachers themselves. The 
review also shows that particular web-based tools are developed with different 
technologies and most of the systems do not offer any integration into widely-used 
platforms such as Moodle. Therefore, standardization and integration can be a future 
problem. This poster guides the reader on how to quickly compare available FA studies 
that utilize technological tools. We will further explore this direction of research 
because approaches addressing all identified types of FA methods have a strong 
potential to guide students in their learning processes based on more complete data and 
without the need to switch between systems.  

REFERENCES 
Aral, Nilay, & Oppl, Stefan. (2020). Towards comprehensive technology-supported 

formative assessment in math education – List of references. Zenodo. 
http://doi.org/10.5281/zenodo.3950047  

Literature Technology1 Web Platform SSC CQ CM PSA FST Scale2 Lvl3 
Azmi & Kankarej, 2015 Various/MD ✓       90S 3 

Barana & Marchisio, 2016 Maple/MD ✓ Moodle   ✓  ✓ 2C 100T 2 
Brunström & Fahlgren, 2019 CCT  Standalone ? ? ? ? ?   

Cusi et al., 2016 CCT  Standalone  ✓    1C 18T 1 
Faber et al., 2017 Snappet ✓ Standalone  ✓   ✓ 1808S 24T 1 
Gaona et al., 2018 WIRIS ✓ Moodle     ✓ 5507S 3 

Isabwe & Reichert, 2012 P2PASS/MD ✓ Standalone ✓   ✓  12S 3 
Isabwe, 2012 P2PASS/MD ✓ Standalone    ✓  27S 3 

Isabwe et al., 2013 MD ? Standalone ✓   ✓  45S 3 
Isabwe et al., 2014 A-PASS/MD ✓ Standalone ✓   ✓  45S 3 

Lee et al., 2012 CRS  Standalone  ✓   ✓ 38T 2 
Martin et al., 2016 AMC/MD ✓ Standalone ✓    ✓ 148T 1 
Olsher et al., 2016 STEP/MD ? GeoGebra  ✓     2 

Wünsche et al., 2019 CodeRunnerGL ✓ Moodle   ✓  ✓ 300S 3 
1  MD: Mobile Device, CCT: Connected Classroom Technology, CRS: Classroom Response System     2  S: Student, T: Teacher, C: Classroom  
3  1: Primary, 2: Secondary, 3: Tertiary level of education 
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Computer-aided assessment based on dynamic mathematics 
investigations 

Mats Brunström, Maria Fahlgren, Mirela Vinerean, and Yosief Wondmagegne 
Karlstad University, Department of Mathematics and Computer Science, Sweden, 

mats.brunstrom@kau.se 
In the poster, we will present a planned study focusing on the design of DMS tasks and 
elaborated feedback within a CAA system. The study will be conducted in a first year 
engineering mathematics course during autumn 2020.  
Keywords: computer-aided assessment, feedback, engineering mathematics, dynamic 
mathematics software.  

BACKGROUND 
It is well established that the transition from secondary school mathematics to 
university mathematics is a major issue among mathematicians and mathematics 
educators. Larger student groups, and hence less teacher contact, and changes of study 
methods towards more independent study requires a greater responsibility among 
students. To tackle this issue, many educators in higher mathematics education have 
introduced continuing assignments to increase students’ engagement (e.g. Rønning, 
2017).  

At Karlstad University, a developmental project to increase first year engineering 
students’ learning in mathematics was initiated in 2015, based on experiences from 
research projects at upper secondary school (Fahlgren, 2015). The focus has been on 
the development of student activities designed for a dynamic mathematics software 
(DMS) environment, in this case GeoGebra. The intention behind these activities is to 
deepen students’ understanding by providing learning environments where they can 
explore and communicate mathematics with peers. Course evaluations indicate that 
students appreciate this part of the course. For example, in the latest course evaluation 
when requested to answer the open question “What has been good with the computer-
based activities?”, 119 out of 193 students in some way expressed that it gave them 
increased understanding. Since the project turned out well, today these activities 
constitute mandatory parts of the first year engineering mathematics courses at 
Karlstad University. However, due to the limited time available to the course teachers, 
the feedback provided to students on their submitted answers has so far only been on 
correctness. Moreover, the feedback has often been delayed since it has been a 
challenge for the teacher to assess (in a short time) a large number of student responses. 
One way to reduce the workload of correction is to outsource it by using technology 
(Rønning, 2017).  
COMPUTER-AIDED ASSESSMENT 
The past decade has seen a rapid development of technology that facilitates assessment 
in mathematics, as well as in other subjects. A common name for these types of 
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technology is computer-aided assessment (CAA) systems. One advantage of using 
these types of technology is that they are time saving by providing automated 
correction of student responses. Furthermore, besides providing students with 
immediate feedback on their submitted answers, CAA can also be used to provide 
feedback on students’ ongoing work, e.g. appropriate hints and suggestions. In 
addition, there are CAA systems, e.g. STACK, in which it is possible to embed 
dynamic interactive environments, such as GeoGebra (Sangwin, 2015). However, it is 
a challenge to design CAA-tasks and elaborated feedback addressing students’ 
conceptual understanding and mathematical reasoning. One way to tackle this could be 
to create tasks which request students to construct ‘examples’ that meet certain 
mathematical conditions (Olsher, Yerushalmy, & Chazan, 2016). 

THE PLANNED STUDY 
We plan to perform a study during autumn 2020. The focus will be on the design of 
DMS tasks and elaborated feedback of the ambitious type outlined above within a CAA 
system. The purpose is to provide feedback based on students’ responses. The aim of 
the study is to investigate students’ utilization and perception of various types of 
elaborated feedback provided in a CAA system. The study is planned to be conducted 
in a first year engineering mathematics course involving approximately 200 students. 
To better understand students’ way of using (or not using) the provided feedback, we 
plan to perform a survey that will be followed up by focus group interviews. The main 
focus will be on comparing and contrasting what impact various types of elaborated 
digitized feedback might have on students’ learning strategies.  
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Silent video tasks and the importance of teacher collaboration for task 
development 

Bjarnheiður (Bea) Kristinsdóttir1, Freyja Hreinsdóttir1, and Zsolt Lavicza2 
1University of Iceland, School of Education, Iceland, bjarnheidur@gmail.com; 

2Johannes Kepler University, Linz School of Education, Austria 
In a design-based research project aiming to develop silent video tasks, results from a 
first implementation phase indicated that silent video tasks might be a helpful tool for 
teachers practicing formative assessment. Consequently, the second implementation 
phase was planned with upper secondary school teachers who had previous experience 
with formative assessment methods. This poster displays important aspects of 
collaboration with teachers in task design. 
Keywords: task design, formative assessment, use of technology, silent video tasks, 
upper secondary school. 
Silent videos are short (less than 2 minutes long) animated video clips that show 
mathematics dynamically without text or sound. With the aim to assess students’ 
understanding of the video’s mathematical topic, the teacher selects and shows a silent 
video to students as a whole group before splitting them into groups of two that prepare 
and record their voice-over for the video. The video topic is usually connected to a 
topic covered in the previous week(s). For example, the video topic could be chosen to 
be the area of a triangle, linear functions, or the unit circle. Students’ responses get 
listened and reacted to in a whole group discussion lead by the teacher addressing 
issues such as word use, clarity, meaning, and understanding. This discussion’s goal is 
to reach some common understanding of the mathematics shown in the video. After 
the first implementation phase of this design-based research project, where I (the 
presenting author) worked with four randomly selected Icelandic upper secondary 
school mathematics teachers and their students, results indicated that silent video tasks 
could be a useful tool for teachers using formative assessment. Comparing them to the 
following six characteristics of technology-based formative assessment strategies, 
defined in the FaSMEd project (Wright, Clark, & Tiplady, 2018), silent video tasks 
seemed to fulfil all but the first criteria: i) provide immediate feedback: this was not 
fulfilled as feedback was given 1-3 day(s) later; ii) encourage discussion: students 
communicated both when preparing and listening to their responses to the silent video 
task; iii) provide a meaningful way to represent problems and misunderstandings: on 
the basis of students’ responses, misunderstandings could be discussed in teacher-lead 
group discussion; iv) give opportunities to use preferred strategies in new ways: when 
preparing recordings, students–who normally sat silently in mathematics class–talked 
about mathematics among themselves v) help raising issues that were previously not 
transparent for teachers: students’ responses uncovered misunderstandings that 
teachers did not expect and had not been present in other conventional tasks; and vi) 
provide different outcomes feedback: it was possible to give feedback to the whole class 
via discussion but it depended on the teacher and their habits or beliefs, whether they 
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did so or not (Kristinsdóttir, Hreinsdóttir, & Lavicza, 2020). To develop the silent video 
tasks further in a second phase, I worked with three teachers and their students in two 
upper secondary schools. The schools were purposefully selected to have teachers with 
previous experience of using formative assessment and technology in their 
mathematics classrooms. Even though I had indications that silent video tasks might 
be useful for formative assessment, I wanted to see how teachers with experience of 
formative assessment would use them. Would they use students’ responses and the 
results from the group discussion to make decisions about the next steps in instruction 
as suggested by Wiliam (2011, p. 43). The research question was: How can silent video 
tasks be used for formative assessment in the mathematics classroom? During 
preparatory interviews in the second implementation phase, before implementing a 
silent video task, the three teachers underlined the importance of immediate feedback. 
They suggested to bring the whole group discussion forward such that it would be 
included in the lesson immediately after receiving students’ responses – as opposed to 
playing them in a follow-up lesson 1-3 day(s) later. Also, they suggested that instead 
of only selecting some sample responses from students, all responses would be listened 
and reacted to. Similar to findings by Hoppe, De Groot, and Hever (2009), teachers 
were active and critical not only as adopters of this new tool in the classroom but also 
as co-designers in the development process. Further preliminary results regarding the 
participating teachers’ influence on the development of the task instructional sequence 
will be presented on this poster. 
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To learn about differential equations by modelling  
Mette Andresen 

University of Bergen, Department of Mathematics, Norway, mette.andresen@uib.no 
Expressive modelling is in harmony with the Danish mathematics education narrative 
where students must work intellectual independently and perform creative 
mathematical reasoning. This paper reports from a case study of students’ modelling 
differential equations systems using exploratory, tailored interactive ICT tools. The 
study aimed to throw light on the question, if and how the students’ use of exploratory 
tools contributed to their concept formation in terms of emergent models. The students 
in the study’s two cases took distinct starting points for the modelling process. 
However, their reports in both cases showed signs of emergent models of the 
differential equations models.  
Keywords: Differential equations modelling, exploratory ICT tools, emergent models 
of differential equations, epidemic models. 

INTRODUCTION 
This paper presents a case study of students’ modelling with differential equation (DE) 
systems using a variety of ICT tools. The aim of the case study was to give an insight 
of the interplay between the DE model, the problem modelled, and the tool used for 
modelling. It focused on how exploratory ICT tools could not only mediate the 
exploration of a model, but also support expressive modelling in the meaning of 
students’ reinvention of the DE model. The study took a mathematics education point 
of view on modelling, with emphasis on modelling for concept formation in terms of 
emergent modelling. Its basis included results about the interplay between students’ 
modelling and the use of ICT (Andresen, 2006).  

THEORETICAL FRAMEWORK 
Modelling for concept formation: ‘Emergent Models’ 
Hans Freudenthal’s view on mathematics and the principles of Realistic Mathematics 
Education (RME) are basic to the articulation of concept formation in terms of 
emergent models (Gravemeijer & Stephan 2002): Horizontal and vertical 
mathematizing are characterised in RME, in (Gravemeijer & Stephan 2002), by the 
passing of four levels of activity (situational, referential, general and formal). The 
progressive mathematizing is driven by reflections where a new mathematical reality 
is created at each level. This four-layer model was basis for the design heuristics of 
emergent (mental) models (Gravemeijer & Stephan 2002) and, according to Cobb 
(2002, p193) the model might ‘facilitate (…) the analysis of mathematical learning in 
instructional situations’. Further:’The explication of a mapping between a situation 
and a model might then be viewed as a description of the way that the situation became 
structured during modeling activity.’ (Cobb 2002 p 193). In this study, the four layer 
model serves to facilitate the analysis of students’ concept formation by offering a 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

420 

structure: the textual analyses display signs of students’ activity stratified with regard 
to the levels. The progressive mathematisation, then, is detected as variation between 
the levels and interpreted as (elements of) the students’ concept formation in the form 
of an emergent model of the mathematical content. Accordingly, the learning outcome 
is viewed as emergent models of essential mathematical concepts, following Cobb 
(2002). In this study of modelling with DE the essential concepts encompass solution, 
slope field, equilibrium solution and null-clines (examples below). Besides, students’ 
learning about DE models as such was also a goal in the two cases.  
The distinction between explorative and expressive modelling 
This study draws on a distinction between expressive and explorative modeling. 
Expressive modeling is understood as an activity aiming to capture a problem by a 
mathematical model, be it ready-made or under creation. It encompasses, hence, 
expression in mathematical terms of quantities and relations in connection with some 
sort of problem solving. Expressive modeling is in harmony with Niss’ description of 
a Danish mathematics education narrative where students have to work intellectual 
independently (Niss 2020 p 320). The creative mathematical reasoning (CMR) by 
Lithner (2008) is pivotal in this narrative. Expressive modeling is also in harmony with 
the design heuristics of emergent models. Explorative modeling is understood as an 
activity aiming to explore a mathematical model, be it ready-made or under creation. 
Explorative modeling is, for example, the prevailing form in school mathematics 
modeling tasks that present a model and ask for the results of giving a certain input. 
(Berget & Bolstad 2019, in Norwegian). In the case of DE models students can explore 
a model, i.e. the epidemic SIR models (see 1.1 in Table 1), by the use of tailored, 
interactive ICT tools. Explorations may encompass students’ producing graphs or 
running simulations based on various input and adjustments of parameters. Such 
tailored ICT tools were in the study labelled ‘exploratory tools’. Sequences of 
expressive modeling will normally encompass processes of explorative modeling. The 
modelling sequence in Blomhøj and Jensen (2003) is overall expressive: It 
encompasses six sub-processes, each of them requiring creative non-routine activities. 
However, those sub-processes will include exploration and try out of (parts of) the 
(mathematical) models under construction. Andresen concluded (2007) that sequences 
of explorative work may serve to support the students’ concept formation and at the 
same time prepare them for expressive modelling. In this study, the direction 
(explorative vs expressive) of modeling is detected in smaller and larger subsections 
of the overall modeling proces described in the texts, by condensation and 
interpretation of the meaning of the subsection.  
Interplay between tool and modelling 
In this study the students used exploratory (interactive ICT) tools designed for DE 
models, i.e. the epidemic SIR model [1]. According to the theory of instrumental 
genesis an artefact, i.e. the exploratory tool, becomes useful, and then denoted an 
instrument, only after the user’s formation of mental utilisation scheme(s) (Drijvers & 
Gravemeijer 2005). The instrumental genesis proceed through activities in a two-sided 
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relationship as a process in which the tool impacts the learner’s thinking 
simoultaneously with the learner’s getting familiar with the tool. In this study students 
explored the explorative tool and, simultaneously, explored the SIR model by use of 
tools. Thereby, they would generate an instrument from the explorative tool. For the 
students, this process of instrumental genesis was tightly intertwined with the process 
of modelling the real-world problem with DE systems. Modelling a real world problem 
would request expressive modelling and imply students’ use of tools for that purpose. 
The students, therefore, needed to generate one or more instruments to fulfil the 
demands of expressive modelling of the real-world problem. Similarly, the students’ 
getting familiar with the exploratory tool by exploring it, implied that they explored 
the SIR model. The requested generation of an instrument was intertwined both with 
explorative and expressive modelling of the epidemic. This entwinement is the core of 
the interplay between tool and modeling in the study. 

METHODS 
Materials for analysis 
This study analyses 2 cases of modelling epidemics with DE systems. The cases 
occurred in the course ’Modelling in and for mathematics teaching and learning’ which 
is a 15 ECTS compulsory course in our masters’ programme in mathematics education 
for teachers, in the following called students. Our programme requests at least 60 ECTS 
in mathematics and at least two years of professional practice as mathematics teachers. 
The course was based, among others, on the textbook (Blanchard, P., Devaney, R.L. 
and Hall, G. R., 2002), and included lectures on DE, mathematical modelling, and on 
mathematics education content; mathematics tasks; and two projects. In the first of the 
two projects the students worked in groups (2-3 persons) with the aim “To formulate, 
complete and present a project that encompasses a simple differential equation model.” 
Students’ learning goals of this project were: 1) to learn about DE by doing a modelling 
project, and 2) to get personal experiences with learning mathematics from doing a 
modelling project. Each group was free to choose what problem and what DE model 
they wanted to study, and what tools they wanted to use for the study. The students 
were not familiar with mathematical modelling; neither did they know the DE models 
in advance. At the course’s oral, individual examination, the students were interviewed 
about their projects (10 minutes) besides 10 minutes talk about DE. In the final course 
evaluation, each of the two project reports counted 25%, and the oral examination 
counted 50%.  
The two cases are based on group reports from the modelling project, picked out of 17 
reports prepared and submitted by groups of students and evaluated by the author, in 
2014 – 2019. In the two reports the students used exploratory tools tailored for the 
epidemic models SIR, SEIR and SEIRS. The reports were picked out from the sample 
because they had the DE models and the exploratory tool in common and were prepared 
by gender – mixed groups. They were graded ‘B’ (best 10 - 15%) which reflected the 
general level of reports in the course. Further, they were prepared in two different 
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semesters, and the modelling processes had distinct overall directions (explorative and 
expressive, respectively+).   
Research question: 
How can exploratory tools contribute to students’ concept formation. 
Analysis 
Each case implied a qualitative textual analysis (Kvale 2001; Ju & Kwon 2007) of one 
report (15 and 30 pages, in Norwegian). The overall direction of the modelling process 
and all the applied tools were identified. For each of the mathematical concept(s) 
related to DE, signs in the text were identified and interpreted (not disjunctively coded) 
regarding and the level of activity in accordance with (Gravemeijer & Stephan 2002): 
1) situational level with descriptions in natural language and own wordings, 2) 
referential level where a ‘model of’ was created and inquired. A ‘model of’ was 
identified by the students’ use of situation related terms and half-way formalised 
explanations, for example, that ‘the amount of sick persons will grow exponentially 
over time’, 3) general level with creation and handling of a ‘model for’. A ‘model for’ 
was identified by the students’ use of general expressions and terms with no visible 
relation to the situation, for example, that ‘We find that the graph of I(t) hits the 
maximum value if the parameter has a value of 0.259’ and 4) formal level with general 
reasoning and considerations, which were very rare in the reports. In each case, then, 
the concept formation in terms of progressive mathematization was condensed. The 
‘direction’ of modelling was interpreted based on meaning condensation of naturally 
delineated subsections of the text. The delineation of subsections was not a division 
into disjointed classes; smaller subsections of explorative modelling could be 
embedded in an expressive modelling section and vice versa. The subsection’s 
direction was labelled a) expressive modelling, i.e. the process was driven by the 
problem or b) explorative modelling, i.e. the model was the starting point. Finally, the 
two cases were juxtaposed; the combinations of tools, concept formation and directions 
of modelling were discussed with the aim to throw light on the research question. 

DATA AND FINDINGS 

Case 1 
In case 1 the students reported on modelling an epidemic flu in a boarding school. Data 
was found in a table in the textbook (Blanchard et al. 2002). The SIR model was chosen 
from the outset. The students used exploratory tools tailored for SIR (and, later on, for 
the SEIR and SEIRS epidemic models). In the excerpts (Table 1) from the first part of 
the report the students use ‘Solver for the SIR epidemic model’ by Warren Weckesser 
as their tool. In general, and in the sub-processes, the students took as their starting 
point the DE model rather than the flu epidemic. The models were explored 
successively by applying them at the original set of data and juxtaposing the results. 
Both in the case of SIR and, later on, SEIR and SEIRS, the exploratory tool was used 
to explore the model. The subsections where the model’s parameters were fitted with 
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data by use of the tool, though, were expressive according to the description above. 
From an overall perspective, the successive exploration of various models, fitting their 
parameters with data and, finally, juxtaposing the results, could be interpreted as an 
expressive modelling process. The frequent variation between the levels of activity 
indicate progressive mathematising which lead to emergent models, e.g. of DE systems 
and of the SIR model’s mechanisms and parameters. 
 

Case 1, Excerpts. Translated from Norwegian by 
the author 

Level of 
activity 

Tool, 
direction 

Concepts, 
notions 

1.1 This leads to the following model: 

Equation 1: 𝑑𝑆/𝑑𝑡=−𝛼𝑆𝐼  

Equation 2: 𝑑𝐼/𝑑𝑡=𝛼𝑆𝐼−𝛽𝐼  

Equation 3: 𝑑𝑅/𝑑𝑡=𝛽𝐼  

The system is autonomous, since the changes of 
S, I and R over time t depend only on the 
dependent variables, and not on the independent 
variable t 

3):  

model for 

 

No tool 

Explor. 

 

SIR model, 
DE system, 
autonomous 
system 

1.2 The parameters α and β in equations 1,2 and 
3 in the SIR model from section 2.1 are a 
mathematical description of how the population 
(pupils) will move between the three groups S, I 
and R. The parameters are fixed number values 
which vary according to which disease spread to 
be modelled. The parameter α describes how 
quickly the population gets infected, while β 
describes how quickly the infected get healthy 

3) → 2):  

model for 
→ model 
of 

No tool 

Explor.  

Parameters 
of the SIR 
model 

1.3 To determine β Warren Weckesser's model 
was used. After 6 days, the peak for I (t) appears 
to be 282763≈0.37 when 𝛽 = 0.44  

3): model 
for 

Tool. 
Explor 

SIR model: 
recovery rate 
𝛽; 

1.4 We also read the same result from figures 2 
and 3. This value, which is 0.025, says that 2.5% 
did not get the disease during the course of the 
epidemic. In our report on the outbreak of illness 
at a boarding school in England, this means that 
out of 763 people, 19 will not be registered with 
symptoms. 

3)  → 1): 
model 
for → 
situation 

Tool. 

 

 

Parameters 
in SIR 
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1.5 The curve shows an increase in the number of 
infected in group I until the vectors change 
direction and shows a rapid decrease in the 
number of infected individuals in I. 

2); model 
of  

Tool. 
Explor.  

Direction 
field, 
mechanisms 
of SIR 

Table 1: Case 1 

Case 2 
The students in case 2 studied the development of epidemics, based on WHO data 
about Ebola in Congo. Firstly, though, they used GeoGebra for a preliminary inquiry 
of mechanisms in the SIR model, and for an exploration of the SIR model (using the 
same data as in case 1). They turned to model the Ebola epidemic in Congo by SIR 
using successively GeoGebra, the ‘Slope and Direction Field’ tool and the Ness SIR 
tool. The students modified SIR to SEIR and then inquired the mechanisms in the new 
model (SEIR). They pinpointed characteristics not only of the models but also of the 
epidemics, such as the population’s geographical distribution, the individual and 
collective interaction, and realistic values of the models’ parameters.  In case 2the 
students explored the models by applications of them on data and, vice versa, they also 
used the models to inquire data about epidemics. The excerpts (Table 2) from case 2 
illustrate a frequent variation between the levels of activity which indicate students’ 
concept formation in terms of emergent models, i.e. of the SIR model and its 
characteristics. 

Case 2, Excerpts. Translated from Norwegian by the 
author 

Level of 
activity: 

Tool, 
Direction 

Concepts, 
notions 

2.1	 𝛽 = 0.0714 was probably not the best value to 
choose. This implies that it takes an average of 14 
weeks for a person to recover. If we instead think that 
on average it takes a week to recover from the flu, then 
β = 1. 

1) → 2); 
situation 
→ 
model of 

GeoGebr. 

Expres. 

Recovery 
rate 𝛽 

2.2 At lower α there is no solution as the two curves 
are not intersected. Therefore, we see that to get 
𝐼𝑚𝑎𝑥=282/763 with β = 1 must α=3.64. 
R0=α/β=3.64/1=3.64 that is about the same value we 
got last time 

3); 
model 
for 

GeoGebr. 

Explor. 

Ranges of 
α; infection 
rate α; 
recovery 
rate	 𝛽; 
reproduct. 
factor R0 

2.3 We will look at how the model can be expanded 
and adapted to work more in line with our data and 
initiatives to stop the Ebola outbreak. 

4) 
Formal 

SIR tool 

Expres. 

 

SIR 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

 

425 

Table 2: Case 2 

CONCLUSION  
The exploratory tools were used for exploration in both cases. In case 1 the students’ 
modelling process took outset from the DE models, either expressed in formal 
mathematics (1.1; 1.2) or expressed by the explorative tool (1.3; 1.4; 1.5).Since the 
students took the SIR model as their starting point, the exploratory tool was closely 
fitted with the model and strongly supported their mathematising. In case 2 the 
students’ modelling process took outset from the epidemics (2.3;2.4). They used the 
tools for expressive modelling (2.1) which encompassed subsections of explorations 
(2.2) by use of the same tools. Table 2 includes examples (2.1; 2.2) of expressive and 
explorative use of GeoGebra which is not designed as an exploratory tool as well as 
examples (2.3; 2.4) of expressive and explorative use of exploratory tools. This 
illustrates that the students in case 2 managed to use either types of tool in either 
modelling situation. Both types of tools supported their mathematising.  
The textual analysis in both cases showed formation of central concepts in DE, 
exemplified in Table 1 and 2 regarding the SIR model and its parameters. The 
exploratory tools served to support students’ concept formation in modelling processes, 
either as tools for explorative or expressive modelling subsections of the process.  

NOTE 
1. Tools used by the students:                                                                                                                

- SIR tool Weckesser, Warren (2007) Solver for the SIR Epidemic Model;                                               
- SEIRS tool Nesse, Hans (2015), Global Health-SIR model (with vaccine);                                              
- SEIR  tool: Nesse, Hans (2015), Global Health-SEIR-model; all three found at: 
http://math.colgate.edu/~wweckesser/software/                                                                                    
- Slope and Direction Fields, found at: 
https://homepages.bluffton.edu/~nesterd/java/slopefields.html;                                                               
- GeoGebra; found at: https://www.geogebra.org/classic 
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2) → 1); 
model of 
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Students’ experiences with dynamic geometry software and its 
mediation on mathematical communication competency 

Cecilie Carlsen Bach1 and Angelika Bikner-Ahsbahs²  
1Aarhus University, Denmark, ccb@edu.au.dk; ²University of Bremen, Germany  

This paper presents preliminary findings of a design experiment conducted in an 
everyday classroom addressing the interplay between mathematical communication 
competency and the use of GeoGebra. Results indicate that both the students’ 
instrumentation behavioural profiles and their communication profiles are tightly 
interconnected and both are influenced by the students’ mathematical knowledge. 
Keywords: communication, competencies, instrumental genesis, GeoGebra.  

INTRODUCTION 
Both mathematical competencies and use of digital technologies have influenced the 
Danish school system (Niss & Højgaard, 2019). The mathematical competency 
framework (KOM) consists of eight competencies, all embedded in the Danish 
mathematics curriculum for primary and secondary school (Ministry of Education, 
2019). But, research on the interplay between competencies and the use of digital 
technology is very limited, specifically with respect to mathematical communication. 
Some research indicates that using technology may foster communication in class 
(Drijvers, Ball, Barzel, Heid, Cao, & Maschietto, 2016). Jungwirth (2006) describes 
that mathematical communication changes when using technology into “computer-
related talk”, i.e. empractical talk, which tends to be “less connex, less coherent, but 
more linked to the context than conversational talk” (p. 378). In this case, mathematics 
is used more separately from the digital tool. Yet, it is not clear, how mathematical 
communication and technology use are related. Research in this area is highly relevant 
because technology use in class necessarily entails communication as talking is present 
in everyday teaching and students’ mathematical communication competency may 
mediate their experience with digital technology and vice versa. We therefore aim at 
exploring how mathematical communication competency and technology use in 
mathematics mutually mediate on each other. To achieve this aim, a dedicated task is 
designed for an empirical case study conducted in a lower secondary classroom. 
Research questions are: How is the students’ (aged 14-16) use of a digital tool (i.e. 
GeoGebra) related to their oral mathematical communication and what conditions 
hinder or foster using the tool as well as activating mathematical communication 
competency? 

RESEARCH FRAMEWORK 
KOM defines mathematical competency as “someone’s insightful readiness to act 
appropriately in response to a specific sort of mathematical challenge in given 
situations” (Niss & Højgaard, 2019, p. 14). This is applied to the mathematical 
communication competency and students’ use of technology. Mathematical 
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communication competency contains two aspects: First, the student as a sender of 
information must be able to express oneself mathematically; second, the student as a 
receiver of mathematical expressions must be able to interpret and study other’s 
expressions as mathematical ones (Niss & Højgaard, 2019). Since mathematical 
objects are mental object, they are only accessible by mathematical representations. 
Representations can be multifunctional, not specific for mathematics (e.g. natural 
language and geometric figures) or mono-functional, specific for mathematics (e.g. 
symbolic languages and graphs) (Duval, 2017). In mathematical communication, at 
least one mathematical representation is used. In oral mathematical communication a 
term can expressed, graphs described and so forth. Mathematical communication can 
take various forms: written, oral, visual and gestural. A competent student can engage 
in mathematical communication with different people and in different contexts. Three 
dimensions characterise a student’s competency in a given situation. Degree of 
coverage concerns student’s ability to bring both aspects of the competency into action. 
With respect to communication, it is to send and receive. Radius of actions refers to 
how many task contexts the student is capable to activate when communicating 
mathematically (e.g. linear functions only, or linear functions applied to velocity). 
Technical level refers to how complex the student communicates with respect to 
conceptualisation and technicalities (Niss & Højgaard, 2019).  
Using Guin and Trouche (1998), instrumental genesis describes the process of 
mastering transforming an artefact into an instrument for a student. Such a process 
involves instrumentation, which describes how the tool affects students’ actions and 
their use of the tool, for instance, strategies or techniques when solving a task. Guin 
and Trouche have identified five student instrumentation profiles when using CAS, 
which entail their mathematical knowledge as well as their behaviour, addressing the 
relation between CAS and the graphical environment. The profiles vary and they are 
situational, meaning that they describe how students act and handle a task in a certain 
situation. Students with a random work method show difficulties with both CAS and 
paper-pencil, many errors and no use of verification strategies. These students use trial-
error and copy-paste techniques. The mechanical work method characterises students 
who do limited calculations and only simple manipulations. Reasoning bases on 
machine results and mathematical argumentation is shortened and needs investigations 
to understand. The resourceful work method shows various kinds of investigation 
strategies: calculator, paper-pencil techniques and theory knowledge. Students with a 
rational work method are good at reviewing available information and tools and they 
do not prefer to utilise the calculator. Instead, they tend to use paper-pencil techniques 
for argumentation or proving. Finally, students with a theoretical work method use 
mathematical knowledge systematically, verify machine results and do semiotic 
interpretations to understand. 
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METHODOLOGY AND METHOD 
Our case study was conducted in a (regular) 9th grade mathematics classroom (students 
aged 14-16) in Denmark in December 2019. The participating class utilises GeoGebra 
in everyday mathematics teaching and in testing situations. 
Presentation of the task  
We designed our task using the principle of zooming-in/zooming-out, allowing us to 
focus on geometry and functions, as well as on using technology and communicating 
alternately. The task environment is created for communication by forcing the students 
to share their experience, distribute responsibilities, explore a conjecture and test it. By 
embedding different representations in GeoGebra, we expected to activate further 
communication (Guin & Trouche, 1998; Niss & Højgaard, 2019). The task is based on 
a task described in Johnson and McClintock (2018), originally focusing on quantitative 
reasoning and the understanding of functions as co-variations where students “conceive 
of functions as specialised relationships between quantities” (p. 303). We revised this 
task to make it fit our purpose of research.  First, we built on concepts that the students 
are already familiar with (e.g. rectangles and triangles). Second, we rearranged the 
setting. The task consists of two parts: 1) filling a rectangle, 2) filling a triangle. The 
students got a paper for notetaking and links to the pre-set of GeoGebra Templates as 
in Fig. 1. 

       

Figure 1. Left side: Task 1 – Filling rectangles. Right side: Task 2 – Filling triangles.  

Both tasks have eight subtasks. Subtasks for the individual students alternate with tasks 
for student pairs. The questions concern the relationship between the figures to the left 
and point P placed in the coordinate system. In both tasks, the students have to present 
the algebraic expression of the function p and construct the graph in the coordinate 
system in GeoGebra. The function p states the relationship between the height of a 
figure (task 1: rectangle, task 2: triangle/trapezoid) and its area. In task 1, p is a linear 
function y=3x. In task 2, p is a quadratic function y=–0.5x2+x. 
Data include three subtasks. In subtask 1, the students identify the figures on the left 
and measure height/width and state the area. In subtask 5, the students individually fill 
a table, stating the area of the rectangle to a given height (e.g. Fig. 2). In subtask 6, the 
students have to construct the functional relation between AB and the area of the 
rectangle by writing the algebraic expression in the input field. Further, they have to 
name the type of function and identify the dependent and independent variables. 
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Data collection and aggregation 
Data are collected in a class of 23 students who worked for four hours in pairs. They 
used one computer each because we want to understand the individual process of 
instrumental genesis (Guin & Trouche, 1998). The teacher chose two focus pairs. Both 
pairs are high-achievers in mathematics, and one of the pairs (the one in transcript 3) 
is proficient with technology, too. The purpose of this case study is to reveal theoretical 
insight. To achieve this, contrasting cases sharing a specific commonality are useful to 
consider. With respect to our topic, we have chosen proficiency with technology as the 
contrasting dimension, and high achievement in mathematics as the commonality. The 
latter choice was done because difficulties high achievers show may exist among other 
students, but not vice versa. 
Data comprise video recordings of the two focus pairs working together, and four 
individual screencasts from all students in the focus pairs. Screencast included audio 
screens and webcam recording, and the students’ worksheets. Video data are 
transcribed true verbatim, after translation intelligent verbatim but including the 
students’ interactions with GeoGebra. Data are analysed based on the theoretical 
concepts provided in the framework. 

TRANSCRIPTS OF STUDENTS’ WORK AND THEIR DATA ANALYSES 
Transcript 1: Clara and Dea work with subtask 1, talking about the rectangle.  
Clara and Dea just opened the task (Fig. 1, figure to the left). 

1 Clara Talk about what you see in GeoGebra. Isn’t is a rectangle? 
2 Dea Yes it is just a rectangle. Identify height, width and area of the figure.  
3 Clara  You just have to use the functions there [she is looking through all the 

buttons to find the right one]. 
4 Dea The height, we can see it. 
5 Clara  principally, we can calculate it. [Still turning the mouse around to find 

the right button to hit]. 12.28 [the area is stated in the rectangle]. 
6 Dea  The height must be 4. Can’t you measure, you can see how long the line 

segments are? [Clara looks at buttons, Dea in the input field]. 
7 Dea  We can just look in the side. Line segment BC is 3.  
8 Clara That must be the width, right? 
9 Dea  Yes. 
10 Clara Then the other must be… 
11 Dea We can see that… 
12  Clara Line segment AB. (Dea waits 4.09 and points on the screen with her 

pen.] 
Transcript 2: Clara and Dea try to construct the function p 
In Task 1, Subtask 5, they individually fill the table in Fig. 2. In transcript 2, Clara and 
Dea work on subtask 6 trying to find an algebraic expression for the function p. 
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Figure 2. Clara’s table stating the relation between the height, AB, and the area of 
ABCD.  

14 Dea We can see that it increases with 3 cm2 for every cm AB increases with 
1. That is the relationship. Height of AB is 1, then the area of the 
rectangle is 3. [After a short while, a teacher comes in.] 

15 Teacher Yes, what is the value of x when looking at the figure? If you look at 
point P, what is the x-coordinate then the same as? And the y-coordinate 
for P? 

16 Clara  The area. 
17 Teacher What characteristics does a function have? How do you make a 

function? 
18 Dea  An x and a y. 
19 Clara But what if it changes all the time [pointing at the point P]. 
Dea begins to write in the input field, x=, then x=3, instead of an equation. She realises 
that it is wrong and writes x=6. This is also wrong, she quits. Finally, she writes x=ab3. 
Clara writes f(x)=, then she googles ‘function equation’, turns back to GeoGebra and 
writes f(x)=1x+3, looks at the graph done by GeoGebra and deletes it. 

Transcript 3: Adam and Ben construct the function p. 
In Transcript 3, Adam and Ben do not have the same results in subtask 5. As Adam 
and Ben construct the graph in subtask 6, the conversation starts:   

20 Adam  What kind of function is it? 
21 Ben It is this one [he points at the table from subtask 5]. I think we should 

use yours. It is a little easier.  
22 Adam Then we write down here [he points with the mouse at the input field] 
23 Ben Every time it moves …  
24 Adam Isn’t just like y=3x [He writes the function in the input field and moves 

a bit around in GeoGebra with the navigation, looking for P – to see if 
P is on the line]. So now we actually have made that function, right?  

25 Ben Yes. It is a linear function. 
26 Adam Function equation. It is a table equation. Linear function? 
27 Ben Linear. 

After, they identify the dependent and the independent variable in the function. 

ANALYSIS OF MATHEMATICAL COMMUNICATION COMPETENCY 
In this paper, we focus on mathematical representations of mathematical objects (Niss 
& Højgaard, 2019; Duval, 2017) by identifying the use of representations, and how the 
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students’ relate them (Duval, 2017) and whether and how they understand functions as 
co-variation (Johnson & McClintock, 2018).  
Communication in Transcript 1 concerns rectangle as object, and students’ ability to 
identify width, height and area. Representations involved are rectangle, numbers and 
mathematical terms. Both students are active as senders and receivers by building on 
each other’s expressions. The talk however is empractical: Focus is on the use of 
GeoGebra as they discuss how to find height and area (Jungwirth, 2006).  
The object changes to functions in the following transcripts. Transcript 2 shows 
communication consisting of the following representations: table, mathematical terms, 
algebraic expression in GeoGebra, graphs in the coordinate system and rectangle. Clara 
and Dea show difficulties when translating between representations: Dea writes x=3 
and x=6 when trying to construct the function p. Translation is also difficult for Clara 
who writes y=1x+3 (instead of y=3x). They are able to express the relationship 
between the height and the area in the table in natural language (line 14) (Duval, 2017), 
but they do not identify variables. Therefore, they cannot regard functions as 
specialised relationships between variables; hence, they do not address co-variation 
(line 19). Missing to translate the representations correctly makes their communication 
less clear because the relationships between the representations are not stated. They 
rather use terms and state relationships within the rectangle (line 14), not identifying 
the variables within the function and sharing information and techniques nor build on 
each other’s statements. Drawing together, their communication competency appears 
to be empractical, since they receive and do (teacher sends, the students receive and 
do in GeoGebra, line 15-18).  
In Transcript 3, Adam and Ben utilise table, natural language using mathematical 
terms, algebraic expression in GeoGebra, point P and the graph. Adam and Ben 
translate from one representation to another (line 20-25) (Duval, 2017). They show 
well developed understanding of functions as co-variations, knowing dependent and 
independent variables, hence, regarding functions as a specialised relationship. Adam 
and Ben interpret and state the different representations, taking receiving roles and they 
use representations as senders. Adam asks questions when sending, which clarifies his 
interpretation and understanding of Ben’s and his own work (line 20, 24 & 26). Only 
at the beginning of the conversation, their talk has empractical parts (line 22 and 24). 
While their communication is influenced by the tool, mathematics is not separated, but 
rather explicitly related to the tool by stressing relations between the representations. 
Adam and Ben are active and both send and receive simultaneously, which makes the 
communication participatory.  
Adam and Ben’s degree of coverage (i.e. receiving and sending information), is 
broader than Clara and Dea’s because Adam and Ben participate actively by sending-
receiving to each other based on the tool (Transcript 2) and Clara and Dea are receiving 
from another one-sending to the tool, where communication between each other is only 
dominated by handling the tool. This leads to two profiles: a participatory ‘sending-
receiving’ communication and an empractical ‘receiving-doing’ communication. 
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Transcripts 1 and 2 emphasise that students’ communication competency profiles differ 
in situation and context (Niss & Højgaard, 2019). 
Analysis of students’ Instrumentation behaviour  
To analyse the instrumentation behavioural profiles, we identify how the students 
understand the mathematical knowledge involved (e.g. semantic interpretation or 
comparisons), use information tools (e.g. use of theory, paper-pencil, calculator, 
GeoGebra, Google, peers, or the teacher) and strategies (e.g. trial-error) (Guin & 
Trouche, 1998).   
Clara and Dea use GeoGebra each to get information to solve the task in Transcript 1. 
They also use the button that finds the area in figures. They use GeoGebra as their 
information tool, for instance, the input field. Clara keeps trying all buttons to find the 
right one, indicating a trial-error strategy (e.g. line 6). Their use of GeoGebra indicates 
a mechanical work method based on their dependence on the machine, and no use of 
paper-pencil. The situation changes in Transcript 2, when the task concerns functions. 
Instead of using each other as information tools, they use the teacher and Google (line 
15, 17 & 21). They do not translate from table to algebraic expression (Duval, 2017). 
Dea tries to construct the function by writing x=3 and x=6 in the input field. In the 
graphical window, she validates her results as being incorrect, but she does not provide 
mathematical knowledge to correct them. Here we find a trial-error method, also shown 
in Clara’s use of GeoGebra. Clara also uses Google to do the copy-paste technique. 
Clara also validates the results without being able to adjust it to the correct function 
equation. In Transcript 2, Clara and Dea mostly have either a random work method or 
a mechanical work method because they do not take mathematical knowledge into 
account. Their strategies, trial-error and copy-paste indicate a random work method. 
However, validation based on machine results suggests a mechanical work method. 
This reveals a combination of the two profiles: a random-mechanical work method. 
Adam and Ben show two other profiles, theoretical work method and resourceful work 
method, because they utilise semantic interpretation as a tool to understand (line 21-
24), when they translate from table to algebraic expression and to graphic, the latter by 
GeoGebra. Their information tools are theory (knowledge about translations between 
representations), the students themselves, the input field and GeoGebra. They use 
graphs in GeoGebra to validate their results (line 24-27) (Guin & Trouche, 1998). 

CONCLUDING DISCUSSION  
This paper indicates that participatory communication and theoretical-resourceful 
work method are closely linked as well as empractical communication and mechanical-
random work method. In addition, the students’ understanding of functions affects both 
the communication profiles and the work method in GeoGebra. Adam and Ben 
understand functions as co-variation and they can easily translate representations using 
their level of theoretical knowledge. They use a theoretical-resourceful work method 
fostering the activation of communication competency. Communication is 
participatory due to their understanding of functions. In contrast, Clara and Dea’s 
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communication is more empractical due to their lack of mathematical understanding, 
the latter thus constraints activating communication competency. Key for all profiles 
is their dependence on the ability to understand and translate representations (Guin & 
Trouche, 1998; Niss & Højgaard, 2019), where weakness in translating between 
representations (Duval, 2017) hinders both, communication competency as well as 
instrumental genesis of GeoGebra. Available information tools instead foster the 
students’ use of GeoGebra, and thus their communication (Guin & Trouche, 1998). If 
students are too contingent on one tool and lack mathematical knowledge, 
communication cannot flexibly refer to mathematics linked to the tool, thus, resulting 
in empractical talk (Jungwirth, 2006) as in the case of Clara and Dea. This paper 
indicates that the relation between the tool and students’ mathematical knowledge is 
the important aspect rather than just the relation between the tool and the students’ 
instrumentation processes. 
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This paper relates to an ongoing project using design-based research as a methodol-
ogical approach in which students with no prior experiences of using programming as 
a mathematical tool are observed trying to solve mathematical problems with the help 
of programming. The Instrumental Approach is used as conceptual framework in which 
the concept of instrumental genesis describes the process where the programming 
environment as an artefact together with student-developed mental schemes forms an 
instrument in order to solve mathematical problems. The development of schemes is of 
special interest in this paper where Vergnaud’s components of a scheme provide a 
framework for analysing transcripts of talk between student pairs and the 
programming code that they generate.  
Keywords: mathematics education, computer programming, instrumental genesis. 

INTRODUCTION 
During the past decade, there has been a renewed recognition of programming as an 
important digital competence to be developed as part of the general education of all 
students, and of its particular relationship to mathematical competence. This has been 
recognized in changes to curricula in many countries: in France, Finland, and Sweden, 
for example, programming is included in mathematics curricula. In Sweden, where the 
study described in this paper took place, programming was in 2018 included in 
mathematics from year 4 in lower secondary school. In upper secondary school, 
programming is to be used as a tool for mathematical problem solving. 
Papert (1980) argues that using programming in school and in mathematics could have 
positive effects on children’s learning and could help students to develop new cognitive 
skills. According to Hoyles and Noss (2015), the use of programming in mathematics 
education is seen by most students as an engaging activity where they can 
independently “build, learn from feedback and debug” (p. 7). Programming is also a 
means for developing creativity and ability in problem solving (Romero, Lepage, & 
Lille, 2017) and offers a natural opportunity for students to be exposed to mathematical 
concepts closely related to programming, e.g. iterations (Noss, 1986). But although the 
introduction of programming has the potential of offering new possibilities for 
learning, Drijvers and Gravemeijer (2005) argue that the integration of new 
technologies in mathematics education can be complicated and that it would be naïve 
to believe that “we can separate techniques from conceptual understanding and that 
leaving the first to the technological tool would enable us to concentrate on the latter” 
(p. 164). Instead they argue that machine techniques and conceptual understanding 
must be interwound and be developed simultaneously. Drijvers and Gravemeijer 
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(2005) consider this interwinding as a fundamental part of The Instrumental Approach 
which will be described in the following section.  

THE INSTRUMENTAL APPROACH 
The Instrumental Approach originates from the field of cognitive ergonomics 
(Rabardel, 2002) and considers the process where a subject, involved in a goal-driven 
activity, uses an artefact (a material or abstract object) to act towards a given objective. 
During the process when the subject appropriates the artefact to her/his needs and 
integrates the artefact with her/his activity the subject develops mental utilization 
schemes associated both with use of the artefact and with the objective of which the 
artefact should act towards (Rabardel, 2002). These schemes can be usage schemes – 
directed towards the artefact itself - or instrumented action schemes - directed towards 
the object of the activity. The artefact together with the associated mental schemes 
constitutes an instrument for the subject, where the instrument is regarded as a 
psychological construct. The process through which the instrument is formed is called 
the instrumental genesis and is, in this ongoing research project, followed with special 
interest when studying how students (the subjects) use a programming environment 
(the artefact) when solving a mathematical problem (the objective).  
The development of schemes 
In order to study the instrumental geneses of students, the development of mental 
schemes is therefore of special interest. Vergnaud (1998) argues that mental schemes 
can be divided into four different components; goal and anticipations, rules of action, 
operational invariants, and possibilities of inferences and this paper will focus on 
students' use of different rules of action and operational invariants. The rules of action 
are considered by Vergnaud (1998) as the generative part of the scheme, directed by 
operational invariants (Buteau, Gueudet, Muller, Mgombelo, & Sacristán, 2019). 
Every action is built upon some information or concepts and Vergnaud (1998) thus 
regards concepts-in-action as a vital part of the operational invariants. The second part 
of the operational invariants consists of theorems-in-action, regarded as “proposition[s] 
which [are] held to be true” (p. 168) by the subject when s/he acts. Vergnaud (1998) 
argues that there is a relationship between concepts-in-action and theorems-in-action 
since “concepts are ingredients of theorems” (p. 174).  
Buteau et al. (2019) used Vergnaud’s (1998) four components of a scheme as an 
analytic frame in order to analyse how university students engage in mathematical 
inquiries using programming as a mathematical tool. They argue that their use of the 
framework has “deepen[ed their] understanding of what is at stake in terms of students’ 
learning in this particular context” (p. 17) and has served as a means to illustrate 
students’ instrumental geneses. In accordance with the work of Buteau et al. (2019), 
Vergnaud’s (1998) components of a scheme will serve as an analytic framework for 
this study and the research question that the study is addressing is: What are the 
instrumental geneses of upper secondary school students’ use of programming 
environments in trying to solve mathematical problems pre-designed to lend 
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themselves to programming? The question of methodology which this specific paper 
addresses is: How can Vergnaud’s (1998) components of a scheme be operationalized 
for this study? Since the instrumental geneses in this study relate to students’ use of 
programming environments as a mathematical problem-solving tool, the schemes 
developed during the intervention relate to the problem-solving process as a whole and 
not to specific parts of it. But due to limited space within this paper, only a specific 
section of the problem-solving process will be described.  

METHOD 
The findings presented within the paper are part of a research project using design-
based research as the overarching research method. In 2019, 27 eleventh grade students 
in a Swedish upper secondary school participated in the teaching intervention of the 
first design cycle of a lesson in which students are intended to solve mathematical tasks 
using a non-standard problem-solving strategy (e.g. an exhaustive trial) involving use 
of the programming environment. The students were, at the time of the intervention, 
taking the same introductory course in programming and thus had basic knowledge of 
coding but no experience of using the programming environment as a mathematical 
tool during their ongoing course in mathematics. Due to the students’ prior study of 
coding, it was assumed that they had already developed basic usage schemes related to 
the use of the artefact (programming environment). The focus of this study is thus on 
the development of instrumented action schemes directed towards mathematical 
problem solving.  
Data collection and data analysis 
During the intervention students worked in pairs and three of the pairs were followed 
more closely through the use of screen-capturing software which also recorded the 
conversation between students in each pair. This data was of special interest when 
studying the development of schemes since it allowed the researcher to identify stable 
behaviours important when analysing students’ instrumental geneses (Buteau et al., 
2019). The researcher (who acted as the teacher) also wore a microphone to record 
conversations between students and the researcher. All voice recordings collected 
during the teaching intervention of the first design cycle were transcribed using NVivo. 
During the analysis, data from the recordings were grouped into themes relating to 
different parts of the problem-solving process. Then these themes were coded in an 
iterative process using Vergnaud’s (1998) components of a scheme. Both verbatim 
abstracts and code generated by students have served as evidence when analysing the 
development of students’ schemes.  

RESULTS AND ANALYSIS  
In this section, examples will be given of how verbatim abstracts from conversations 
between students during the intervention have been used together with the generated 
programming code to analyse the development of students mental schemes using 
Vergnaud’s (1998) components of a scheme as the analytical framework. In this paper, 
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the use of rules of action and operational invariants will be of special interest. The 
mathematical problem will not be described in detail in this paper but concerns finding 
the ages of three sisters. The problem can be mathematised algebraically in terms of 
relationships involving the ages of the sisters but not in a manner which permits the 
students to solve the problem using algebraic methods already known to them. 
Therefore, it was anticipated that the students might use the programming environment 
in order to conduct an exhaustive trial, a process which will be analysed in the 
following sub-section.  
Developments of schemes relating to the implementation of an exhaustive trial 
During the intervention, the researcher asks a pair of students called Sophie and 
Richard to describe their problem-solving strategy and how this had been implemented 
using the programming environment. Sophie explains how the pair have used nested 
loops in order to conduct an exhaustive trial: 

Sophie:  Yes, we have a nested for-loop so the first one... Eh... Or starting with a is 
zero and every time it goes around then a increases by one. But before that 
happens, b is set to a plus eleven and then comes the next for-loop which 
then tests every age between a and b, which is then the mid sister. And if this 
formula we came up with is true then the loops should stop. […] 

The outer loop (Fig. 1) is thus used by the pair to systematically increase the value of 
the variable a which concerns the age of the youngest sister. Within this loop the value 
of b, the age of the oldest sister, can be calculated using a given relationship between 
a and b. The inner loop is used to vary the variable concerning the age of the mid sister 
and thus runs for integer values between a and b. Within the inner loop an IF statement 
is used to test a mathematical condition within the task involving the ages of the sisters.  

 

Figure 1: Screen shot visualizing the nested loops generated by Sophie and Richard 

Based on the verbatim abstract above, several rules of action used by the pair could be 
identified: (a) formulating the problem situation as amenable to solution through 
exhaustive trial; (b) making use of programming to implement a solution strategy 
based on exhaustive trial; (c) creating iterations through defining conditions for 
loop(s); and (d) making use of the conditional operator IF to (i) evaluate given 
conditions in order to (ii) perform different actions based on the validity of given 
conditions. It could be argued that these rules of action are justified through several 
concepts-in-action involving the ideas of (a) conducting an exhaustive trial; (b) 
systematically combining variables; (c) establishing a loop relating to a variable; (d) 
nesting loops (and statements within them) in order to achieve an appropriate sequence 
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of variable-related actions; and e) using conditions within loops and conditional 
operators in order to extract a solution within a given range. These concepts-in-action 
form two theorems-in-action which guide the actions of the pair: (a) Systematically 
combining variables serves as a means of achieving an exhaustive trial when more 
than one variable is in play and (b) Establishing nested loops relating to the key 
variables in play is a means of systematically combining these variables. 
The ideas of students Emilia and Fredrik, on the other hand, are less developed. In 
particular, they struggle to articulate – either orally or in code – how to systematically 
combine variables. In the nested loops shown in Fig. 2, the outer WHILE loop is used 
to check if the variable guldmynt_f (dependent on the sisters' ages, and recalculated 
with each traversal of the loop) is less than or equal to 432 (a crucial value in the 
problem). The inner FOR loop includes the same condition and initialises a control 
variable i incremented on each traversal, which is then (mis)used within the loop, 
apparently with the intent of systematically increasing the variable b, the age of one of 
the sisters.   

 

Figure 2: Screen shot visualizing the nested loops generated by Emilia and Fredrik 

Fredrik then realizes that the other age variables a and f are never assigned new values 
within the loops.  

Fredrik:  We should increase everyone? I think. 

Emilia:  No, but we just need... We just need to increase the age of Cinderella 
(variable a) because the others increase automatically because we have 
written a plus twelve there and a little something else as well. 

Fredrik:  Yes but... We still need to increase f. 

Fredrik deletes the calculation of b in line 18 and inserts f = f + i instead. Later, Fredrik 
returns discussion to the control variable i, which he relates to testing values associated 
with an (unspecified) year and age: 

Fredrik:  But we need to find out what year it is... Because now they are zero years 
old... That's why we have to test values all the time. 

Emilia’s and Fredrik's way of coding indicates the use of concepts-in-action based on 
the ideas of (a) conducting an exhaustive trial; (b) establishing a loop relating to a 
variable; and (c) nesting loops (and statements within them) in order to achieve an 
appropriate sequence of variable-related actions. But their failure to code loops which 
will systematically increase the values of variables indicates that the pair, unlike Sophie 
and Richard, have underdeveloped rules of action relating to how to use nested loops 
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to combine variables in order to conduct the exhaustive trial. As a consequence, there 
is also a lack of theorems-in-action guiding the pair’s actions.  
A third pair of students, Christian and David, initially have a clear view about how to 
use the programming environment as a mathematical tool.  

Christian:  Actually, you could set it up mathematically… Or... and then just use brute 
force by testing lots of different combinations with the computer. 

Although not made explicit by the verbatim extract above, the program structure (Fig. 
3) later reveals the pair’s intention of conducting an exhaustive trial in order to solve 
the given task. Unlike the other pairs, Christian and David also realize that they can 
take advantage of the fact that the ages of the sisters must take integer values, and so 
use this to establish an additional condition.  

Christian:  But yes, what we can do is just have a eh... WHILE TRUE and then we have... 
And then we have... And then we check for that one so then you have like 
eh... If this… and then you have like and-signs for... Eh.... And check if 
something is INT (integers). 

 

Figure 3: Screen shot visualizing the single loop generated by Christian and David 

This additional condition allows the pair to create a program (Fig. 3), which only uses 
a single loop involving three variables corresponding to the age of each sister. The 
variable controlling the loop is As (age of the youngest sister), initialised as 0, and, at 
the start of each iteration, increased by 1. Thus, the loop systematically examines what 
happens as As increases from 1.  Within the loop, the Be (age of the oldest sister) is 
then specified as Be = As + 11 and the third variable Fu (the age of the mid sister) is 
calculated as Fu = 432 / Be (although it should be noted that the underlying definitions 
of the ages used in these two calculations are not compatible with each other). The IF-
statement in line 12 checks three conditions which need to be met in order for the 
combination of ages to be a solution to the problem. The first two conditions check if 
Fu is the mid sister and the third condition checks if the value of Fu holds an integer 
value. If Fu is an integer, the difference between Fu and the rounded value of Fu equals 
zero. If all the three conditions are met the program should print the ages of the sisters. 
The verbatim extract together with the code generated by Christian and David expose 
how the pair has used several different rules of action during the development of the 
program: (a) formulating the problem situation as amenable to solution through 
exhaustive trial; (b) making use of programming to implement a solution strategy 
based on exhaustive trial; (c) creating an iteration through defining conditions for a 
loop; and (d) making use of the conditional operator IF to (i) evaluate given conditions 
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in order to (ii) perform different actions based on the validity of given conditions. 
These rules of action are justified through several concepts-in-actions involving ideas 
of (a) conducting an exhaustive trial; (b) computing linked variables when more than 
one is in play; and (c) using conditions within loops and conditional operators in order 
to extract solutions within a given range. These concepts-in-action are related to a 
theorem-in-action used by Christian and David stating that: Computing linked 
variables when more than one is in play serves as a means of reducing the number of 
variables to be systematically varied in an exhaustive trial.  
The examples given in this section are small extracts from students’ problem-solving 
process when trying to solve a mathematical problem using a programming 
environment as a mathematical tool. Yet, they illustrate different approaches used by 
students in order to conduct an exhaustive trial and also difficulties relating to 
conceptual and computational understanding. The way Sophie and Richard try to 
conduct an exhaustive trial differ from the method used by Christian and David. This 
is illustrated by the components comprising their developed schemes, although some 
generic components relating to the problem-solving strategy are common. Emilia’s and 
Fredrik’s scheme could be regarded as deficient since it lacks several essential 
components relating to the use of nested loops, an action often perceived as 
conceptually difficult for novice programmers (Mladenović, Boljat, & Žanko, 2018).  
DISCUSSION 
Following Buteau et al. (2019), we have explored approaches to operationalizing 
Vergnaud’s (1998) components of a scheme when studying students’ instrumental 
geneses. Using conversations between students (and between students and the teacher) 
together with their generated code has made it possible for the researchers to extract 
different components of schemes explicitly stated by students (or shown in their 
program structure). This in turn has presented a possibility for the researchers to search 
for similarities and differences within different schemes as well as analyzing which 
components are missing from deficient schemes. This is illustrated by the example 
where Emilia and Fredrik, just like the other two pairs, had begun to develop an 
instrumented action scheme directed towards mathematical problem solving, involving 
the use of exhaustive trial to solve the mathematical problem. But the lack of well-
functioning rules of action relating to the use of nested loops, in order to systematically 
combine variables, hindered this pair to implement their problem-solving strategy. This 
deficiency within their instrumented action scheme illustrates that Emilia and Fredrik 
may have had under-developed pre-existing usage schemes directed towards the 
artefact itself relating to the use of (nested) loops. 
We also argue that defining specific components of the scheme based on conversations 
between students should not be seen as a straightforward process. In the analytic and 
iterative process there has to be a balance between defining components, on the one 
hand, generic enough to be able to search for commonalities across cases, but on the 
other hand still specific enough not to lose the key characteristics of each case.  
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Since most of the data involves conversations between students during an ongoing 
problem-solving process involving a particular situation, it cannot strictly be argued 
that the findings provide evidence of “the invariant organization of behavior for a 
certain class of situations” (Vergnaud, 1998, p. 167). But, at the least, the data shows 
how, in solving the task, students generate proto-schemes or schemes-in-progress 
which together with the artefact start the formation of an instrument. Indeed, this is no 
more than the notion of a dynamic, constructive process of instrumental genesis. 
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We investigate how the instrumental orchestration can contribute to our understanding 
of the teaching to university students of using programming technology for 
mathematical investigation projects. Our case study highlights a dual role the 
instructors play, as policy maker and as teacher, to orchestrate students’ instrumental 
geneses, and the integration of projects as a key element of the exploitation mode. 
Keywords: instrumental orchestration, schemes, programming, university education.  

INTRODUCTION AND CONTEXT 
In the field of mathematics education, programming for learning has a legacy of half a 
century that started with the designing of the LOGO programming language for 
learning (Papert, 1972). Studies working in this area have largely focussed on learning, 
whereas pedagogical design was mainly tangentially analysed (e.g., Noss & Hoyles, 
1992). However, with the recent increased integration of programming in schools and 
curricula, we see a crucial need for studies about teaching and teacher education 
concerning programming such as that of Benton et al. (2018).  
In this paper, we address this need under the fourth theme of the conference, namely 
Theoretical perspectives and methodologies/approaches for researching mathematics 
education, by presenting a preliminary study concerning the theoretical contribution of 
the instrumental orchestration (Trouche, 2004) to analyse the teaching to university 
students of using programming for mathematical investigation projects.  
Our study is part of a five-year naturalistic research that takes place in the context of a 
sequence of three university mathematics courses, called Mathematics Integrated with 
Computers and Applications (MICA) I-II-III taught at Brock University since 2001. In 
these project-based courses, math majors and future math teachers learn to design, 
program, and use interactive environments to investigate mathematics concepts, 
conjectures, and applications (Buteau et al., 2015). The research aims at understanding 
how students learn to use programming for ‘authentic’ mathematical investigations, if 
and how their use is sustained over time, and how instructors support that learning.  
The question guiding the study presented in this paper is: What do we learn about the 
teaching of using programming for authentic mathematical investigations by using the 
theoretical frame of the instrumental orchestration, considering programming as an 
artefact? Building on previous work on students’ instrumental genesis of using 
programming (Buteau et al., 2019a) and on constructionist facets of a related teaching 
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(Buteau et al., 2019b), this study focuses on teaching aspects that aim at steering 
students’ instrumental geneses. Next, we present the instrumental approach, and how 
we use it when the artefact is programming. We then present our methods, and illustrate 
the use of instrumental orchestration by analysing the case of the MICA II teaching. 
Finally, we discuss insights gained from using the instrumental approach. 

INSTRUMENTAL APPROACH: SCHEMES, GENESIS, ORCHESTRATION 
The instrumental genesis approach (Rabardel, 1995) provides a lens to describe how a 
student, in an activity with a math goal, learns to use an artefact (e.g. programming) 
and learns mathematics at the same time, through the development of schemes. It 
introduces a distinction between an artefact, which is produced by humans, for a goal-
directed human activity, and an instrument, developed by a subject along his/her 
activity with this artefact for a given goal through a process called instrumental genesis. 
The instrument is composed by a part of the artefact and a scheme of its use (Vergnaud 
1998), either as a usage scheme–“oriented towards the management of the artefact”– 
or as an instrumented action scheme– “oriented to the carrying out of a specific task” 
(Trouche, 2004, p.287). In math education, the instrumental approach was first used to 
study learning processes of secondary school students using calculators (Guin et al. 
2005). These studies used a detailed definition of schemes based on Vergnaud’s work. 
Namely, a scheme, defined as a stable organization of the subject’s activity for a given 
goal, comprises four components: i) the goal of the activity; ii) rules-of-action (RoA), 
generating the behaviour according to the features of the situation; iii) operational 
invariants: concepts-in-action and theorems-in-action (TiA), which are propositions 
considered as true and governing the RoAs; and iv) possibilities of inferences.  
Trouche (2004) added that students’ instrumental genesis may need to be guided by a 
teacher and proposed the concept of instrumental orchestration. He explains that the 
instrumental orchestration refers to the teacher’s intentional organization, arrangement 
and didactic use of various artefacts in the class (including digital ones), with the 
purpose of steering the students’ instrumental genesis. Drijvers et al. (2010) added the 
idea of didactical performance to explain the different adjustments, which are made in 
response to the events of the class. These authors (2010, p. 215) summarize the 
resulting three elements of the instrumental orchestration: i) Didactical configuration: 
“an arrangement of artefacts in the environment, or, in other words, a configuration of 
the teaching setting and the artefacts involved in it”; ii) Exploitation mode: “the way 
the teacher decides to exploit a didactical configuration for the benefit of his or her 
didactical intentions [it] includes decisions on the way a task is introduced and worked 
through, on the possible roles of the artefacts to be played”; and iii) Didactical 
performance: “involves the ad hoc decisions taken while teaching on how to actually 
perform in the chosen didactic configuration and exploitation mode.” We next describe 
how we use the instrumental approach when considering programming as the artefact.  
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Programming for Mathematics Investigations: Students’ Instrumental Genesis 
The general goal of the students’ activity is to investigate a complex situation, 
combining mathematical knowledge and programming. By using programming for this 
goal, students develop an instrument, associating some aspects of programming 
(artefact) and schemes of use for specific sub-goals such as those described in the 
development process model (see Fig.1). For example, the scheme of articulating a 
mathematics process in the programming language, as a sub-scheme of the scheme of 
designing and programming an object (Step 3 in Fig.1). Thus a student’s instrumental 
genesis in this context means that a student develops a complex web of schemes which 
ramifications include, among others, those in Fig.1 (Buteau et al. 2019a). 

 

Figure 1. Development process (DP) model of a student engaging in programming for a 
pure or applied mathematical investigation (Buteau et al., 2019a). 

METHOD 
We investigate the teaching of using programming for authentic mathematical 
investigations using the case of the instrumental orchestration of one MICA II 
instructor, Bill, during Winter 2019. Bill is a mathematician, a remarkable teacher with 
long teaching experience (over 30 years) who played a key role in the development and 
teaching of MICA courses–he is not researcher in this project. Data included all course 
material and semi-structured task-based interviews with Bill for each of the 4 assigned 
and 1 original math investigation projects. Data also included a 2000 departmental 
program description document when the MICA courses were adopted. For this paper, 
we use only Bill’s first project assignment for which he chose 4 short investigation 
problems involving Monte Carlo integration (we discuss Bill’s choice further below): 
P1-Buffon Needle problem; P2-area between two curves; P3-hypervolume of the unit 
hyper-sphere in R4; and either P4- Buffon-Laplace problem or P5-the infinite limit of 
the probability that two randomly selected integers smaller than n are relatively prime. 
Bill’s interview and project guidelines were analyzed by identifying potential students’ 
schemes that might have, implicitly or explicitly, intentionally been promoted by Bill.  
In this study, we did not directly observe Bill’s teaching. Only a part of his teaching 
was accessible through the course material he produced. This is a limitation of our 
naturalistic research, but we also collected student data from Bill’s class allowing to 
relate shortly their instrumental genesis with Bill’s orchestration. Next, we outline each 
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orchestration component of a MICA instructor using our understanding of the teaching 
of MICA courses (e.g. Buteau et al., 2019b), and illustrating them using Bill’s teaching.  

INSTRUMENTAL ORCHESTRATION OF PROGRAMING: A CASE STUDY  
Didactical Configuration 
The choice of programming technology use in MICA courses and the teaching setting 
configuration was established in 2000 by the mathematics department (including Bill) 
at Brock University, and has since remained. The teaching format involves 2 hrs of 
lecture (in a regular lecture room) and 2 hrs of computer lab (1 computer per student), 
weekly. In regards to the artefact, there is an agreement among the instructors that 
MICA I-II courses mainly use vb.net language with Visual Studio. There are now two 
MICA III courses; one for math and science majors moving on to C++ programming 
language with GNU IDE, and the new MICA III course for future mathematics teachers 
using vb.net, Scratch and Python with Jupyter Notebook. Specifically, in the case of 
Bill’s teaching in 2019 of MICA II, he decided to also introduce Excel technology as 
part of his second assignment. Bill justifies: “I also think… that every math major has 
to be able to use Excel, because this is one of the standard tools in the outside world.” 
(B.A2.143) 
Exploitation Mode 
The main didactical intention grounding how programming technology would be 
integrated into a sequence of three MICA courses was also established in 2000 by the 
mathematics department: students would learn to exploit programming for 
mathematical work. The 2000 departmental document stipulates: 

[Students] will confront problems from pure and applied mathematics that require 
experimental and heuristic approaches. In dealing with such problems, students will be 
expected to develop their own strategies and make their own choices about the best 
combination of mathematics and computing required in finding solutions. 

Also, the core of each MICA course was to be pure and applied programming-based 
mathematics investigation projects that account for 70-80% of a student’s final MICA 
course grade. This is a key element of the exploitation mode (here again, the 
‘instructor’ is viewed as a ‘policy maker faculty’ rather than a ‘teacher’): Through these 
projects, the department appears to thus intend that students engage in the process 
described in Figure 1 (Buteau et al., 2019a). During lectures, the instructor introduces 
students to mathematics that is needed for the assigned individual mathematics 
investigation projects which are worked on during the labs. We interpret such projects 
as aiming at developing and/or re-enforcing various students’ schemes, such as the 
scheme of articulating a math process in the programming language. Since the 
instructor chooses the topic and direction of these mathematics investigations, and 
communicates it through detailed guidelines, we interpret such projects to aim at 
students developing their web of schemes associated mainly to steps 3 to 7 of the DP 
model (Fig.1). Each MICA course also involves a final original project, in lieu of a 
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final exam where students work individually or in pair, and choose a topic of their own 
and the direction of the mathematics investigation. Such final projects can be viewed 
as an intention for students to develop further or mobilize their complete web of 
schemes including those associated to steps 1 and 2. For the individual MICA instructor 
(as a ‘teacher’), the ways s/he decides to exploit the didactical configuration in order 
to meet the didactical intentions envisioned and decided by the department, include 
decisions about the mathematics content and related investigation projects. It also 
includes decisions about the ways the content is developed in lectures and synchronized 
with the investigation project work in the labs. In terms of the choice of mathematics 
content in MICA II course, the instructors over the years have selected various topics 
and areas of mathematics relevant to a computational approach for investigations, often 
according to their own, evolving mathematics interests and research (Buteau et al., 
2019b). For example, Bill comments on the computational relevance of P5 
investigation and his personal interest in this area:  

[P5] generated a lot of great discussion… I love the idea… I like analytic number theory, 
I love the idea that, um, there are patterns… I jump up and down about that with the 
[students]... I can sell this assignment to my students. (B.A1.174)  

We associate Bill’s choice of ‘relevant topic’ to Step 1 (Fig.1), and interpret it as an 
implicit guidance to students (to develop a scheme of) identifying when a programming 
approach is an added value for the work, such as for math that cannot be done by hand.  
Using various resources (including their own research), the MICA II instructor designs 
programming-based mathematics investigation projects and develops guidelines 
aligned with both the planned lecture content and planned guidance in lab as student 
work through the projects. For example, Bill designs MICA II project assignments by 
‘playing on the computer with some math’ and decides on parts of an assignment (and 
guidelines) by thinking on the potential difficulties that MICA II students may confront 
e.g. when programming the mathematics (Steps 3-5 in DP model). Bill mentions:  

I actually tried many many many things before we got the formula that you have here and 
I would try something and I'd say "That's too hard, that comes too fast, this has to go, this 
has to be sequenced differently." (B.A1.43)  

We also interpret Bill’s expectations from students to be able to mobilize usage 
schemes of programming in vb.net (Step 3) developed in MICA I. He says e.g. that P1 
is “to keep them calm” as “there are no new programming tricks..it's all review”. In P1 
he gives students a code to build from. By providing the students with a “well written 
piece of code”, Bill says that it “helps them review …proper coding practice”; e.g. 
“how to change from math coordinates to graph coordinates… separately and clearly;” 
etc. Bill requires students to submit, for P3, a print out of their code rather than the 
program; he says “I'm telling them I'm going to actually read the code on the page, it 
sends that signal” (B.A1.154). We interpret it as Bill’s intention to students’ developing 
their scheme of coding with rule-of-action ‘I write codes according to standards’. As 
for the project guidelines, they outline the topic to be investigated, within the 
mathematics context developed (i.e. synchronized) in the lectures, together with some 
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details of the investigation design (such as input and output) sometimes complemented 
with some partial code (as for P1 mentioned above). We associate these respectively 
to Steps 1, 2, and 3 in the DP model. For example, Bill says: 

the idea that we can take a real-world situation, and we can distill from that the 
mathematics, and then take that mathematics and write a simulation based on that 
mathematics… I'm thinking about that all the time, that, that sequence. (A1.96-98)  

The guidelines sometimes also detail how to use the program for the mathematical 
investigation (e.g. by suggesting range of parameter values) and/or emphasize the need 
to interpret output within their mathematics knowledge (e.g. by requiring to justify 
their conclusion from the investigation). We associate these respectively to Steps 5 and 
6 in the DP model. For example, Bill’s guidelines for P3 read: 

The output should show the mean and standard deviation of the samples. Estimate the 
hypervolume accurate to one decimal place and use your observations to explain why you 
are confident that your first decimal place is correct.   

This suggests to the students that they must apply their statistics knowledge in order to 
appropriately use their program and justify their answer (Step 5-6 cycle). In fact, Bill 
mentions that he revised the guidelines due to his dissatisfaction from past students’ 
poor interpretation of their program output (i.e., more guidance needed for Step 6).Bill 
deliberately includes a more challenging question (selection between P4 or P5) as part 
of assignment 1 where he plans close to no extra guidance beyond the statement of the 
problem (i.e. Step 1): “But there has to be a question on every assignment that, is 
something to think about… This one is solo. Um, they don't get very much help from 
me” (B.A1.162-4). We interpret Bill’s intention that students mobilize and develop, 
without his help, their whole web of schemes for this particular investigation task. 
Didactical Performance 
The ways a MICA instructor teaches in lectures and labs involves ad hoc decisions 
aligned with how they have planned to support students’ learning to use programming 
technology for pure and applied mathematical work mainly through their individual 
mathematical investigation projects. Based on interactions with students, individually 
or collectively, and on observations of interactions among students, the instructor takes 
decision as to how to respond. This response may take form as individual help 
addressing an identified student’s difficulty to develop/mobilize a certain scheme, or 
as a class intervention aiming at steering the collective development a certain scheme. 
Bill recalls many individual interventions during the labs. E.g. we interpret Bill’s 
expectation from students to mobilize their scheme of debugging (programming cycle 
in DP model) when needed. He explicitly mentions it to students: “it will be unusual 
for either me or the TA to debug your code, that's not our job” (B.A1.207-8). He recalls 
an intervention with a student, aligned with his expectations, as he sits down beside the 
student: “Explain the principles and the ideas… If you're desperate, we might look 
through your code.” (B.A1.216) We interpret Bill’s response as a reminder to the 
students of this schemes’ effective rules-of-action: ‘step back from the code’, ‘think 
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through the big picture of the code design’, and ‘think of the different parts of the code’. 
Aligning with his planned ‘close to no extra guidance’ for P5 that we associated with 
students’ mobilizing their whole web of schemes for this task, Bill mentions helping 
individual students by responding with guiding questions: “Investigate: what does it 
mean?...How big should n be? And my answer is ‘I don't know’.” (B.A1.164; 170). As 
for a collective response in lab, Bill e.g. comments addressing the students’ difficulty 
of explaining their output from the program in P3, which we interpret as steering the 
collective mobilization and development, for this task, of schemes associated to step 6: 

I'm very interactive in the lab … so when we get to working on this question I'll be talking 
about variability… it's an opportunity to work on the board with them… none of this sits 
by itself. (B.A1.140) 

DISCUSSION 
The research question guiding this paper concerned what we learn about the teaching 
of using programming for authentic math investigations by using the frame of the 
instrumental orchestration. Drawing on our case study of MICA II teaching, we discuss 
here elements of answer to this question, and indicate directions for future research.  
The identified didactical configuration, main didactical intention and the project 
element as part of the exploitation mode turned out to be the same for all MICA 
courses adopted by the department and also followed by MICA instructors (i.e., can be 
viewed as operational invariants of the collective ‘MICA instructor’). This 
configuration and exploitation mode element stress a ‘student-centered’ approach, 
whereby the core of the courses is on individual student projects that aligns with a 
constructionist approach (Papert, 1980). The 20 years of sustained MICA 
implementation could suggest that this didactical configuration and exploitation mode 
element support well the teaching of programming-based math investigations.  
The instructor aligns with the collective exploitation mode; namely through his/her 
choices of ‘content’ through project guidelines and planned guidance in lab and 
lectures according to his/her intention of steering the collective students’ instrumental 
genesis of their complex web of schemes associated with the programming-based 
mathematical investigation activity. This gives insights on how the institutional 
decisions support well the individual instructors. The exploitation mode of MICA II 
teaching also highlights that, unlike most technology-rich mathematics courses, the 
choice of integrating programming comes before to the choice of mathematics content, 
and has led to describe the math content at the individual level, rather than the usual 
collective level (as a ‘policy maker level’). The didactical performance of MICA II 
teaching pointed to the significance of the lab setting as a key element of the didactical 
configuration to facilitate the MICA II instructor to steer both individual and collective 
students’ development of schemes. Unlike the didactical configuration, these other two 
components of MICA instrumental orchestration seem to be evolving. For example, 
Bill’s refining of the project guidelines to explicitly steer the students’ mobilization or 
development of the scheme to mathematically interpret the program output.  
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In terms of future research, we note that the project guidelines, as a collection, appear 
to steer students to develop or mobilize their whole complex web of schemes associated 
with the math investigation activity. Studying aspects of investigation project tasks, as 
part of the whole task collection, that affect which and how different schemes are 
guided in the project guidelines (and in lectures and labs), will lead to essential 
recommendations for practice.  
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Within the Instrumental Approach (IA) the newly developed notion of justificational 
mediation (JM) describes mediations that aim at establishing truth of mathematical 
statements in the context of CAS-assisted proofs in textbooks. Here we study JM with 
the intent to broaden the notion to the context of informal justification processes of 
early secondary students interacting with GeoGebra. Seeing JM as a process that has 
the objective of changing the status of a claim, we use Toulmin’s model and combine 
it with the IA to unravel the structure of the process through an analytical tool. The 
study is part of a broader project on the interplay between reasoning competency and 
GeoGebra with lower secondary students.  
Keywords: digital environment, Instrumental Approach, justificational mediation, 
reasoning competency, Toulmin’s model. 

REASONING COMPETENCY AND JUSTIFICATIONAL MEDIATION  
During the last decades, the use of digital technologies in mathematics education has 
increased, as well as the body of research in this area (e.g., Hoyles & Lagrange, 2010). 
In Denmark, this development has coincided with the promotion of mathematical 
competencies, seen in the KOM-framework as “…someone’s insightful readiness to 
act appropriately in response to a specific sort of mathematical challenge in given 
situations.” (Niss & Højgaard, 2019, p. 6). In the wake of this development, a need has 
arisen for understanding the interplay of students’ enactment and development of the 
specific mathematical competencies and their use of digital technology (Geraniou & 
Jankvist, 2019). What might “readiness to act appropriately” mean in the context of 
digital technology? How can such readiness be identified and nurtured? These are 
examples of broad questions that gave rise to this study. 
We follow Geraniou and Jankvist (2019) who took some first steps in weaving together 
the KOM framework with the Instrumental Approach (IA), which is also widely used 
in the European research community. The IA suggests that the use of  tools involves 
pragmatic mediation, concerning the subject’s actions on objects and epistemic 
mediation, concerning how the subject gains knowledge of objects’ properties through 
the tool (Rabardel & Bourmaud, 2003). However, Jankvist and Misfeldt (2019) suggest 
that a third form of mediation, justificational mediation (JM), may be useful in the 
context of CAS in proofs and proving activities. JM concerns how the status (e.g. 
probable, likely, true or false) of statements for a student is modified through the use 
of a digital environment (Jankvist & Misfeldt, 2018; 2019). However, the authors have 
advanced the notion of JM within the context of CAS-assisted proofs in textbooks in 
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upper secondary school, which touches on the more formal part of the reasoning 
competency. Still the authors ponder whether students think about justification, insight 
and performing mathematical labor as different things and how (Jankvist & Misfeldt, 
2019).  So, other situations relating to the less formal side of the reasoning competency 
spectrum should be considered and studied separately within this frame. 
Within the KOM-framework’s reasoning competency, we study students’ 
mathematical informal argumentations that take place within the digital environment 
GeoGebra, focussing on the processes through which an uttered statement changes 
status: it may either be rejected or believed to be true to a greater degree than in its 
initial form. The ways in which students justify their claims within an environment like 
GeoGebra can assume forms that are closely related to the environment itself, as well 
as to the underlying mathematical theory within which the objects are placed. Hence 
we ask: how can we analyze JM and what insight into it can we gain? 
Seeing JM as a process of argumentation, our analytical tool is derived from Toulmin’s 
model, and, because JM occurs in a digital environment, we make use of constructs 
from the IA. We now explain how the theoretical frame is set up. 

THEORETICAL FRAMEWORK: CONSTRUCTING A TOOL OF ANALYSIS 
Although the original intention of Toulmin’s model was to analyze finalized 
argumentations (Toulmin, 2003), there are numerous examples in mathematics 
education where it is used to analyze students’ processes of argumentation (e.g. 
Pedemonte, 2008; Simpson, 2015), also in the context of digital environments (eg. 
Hollebrands, Conner & Smith, 2010).  These studies, however, do not usually situate 
the model within the research field of educational use of digital technologies in 
mathematics, and hence do not draw on the theories used in this field. In this study, we 
suggest an analytic tool that does exactly that. 
With respect to the IA, we consider GeoGebra as an instrument. Such a notion arises 
from the use of an artefact and the development of scheme. In this context the artefact 
is GeoGebra itself, but in other cases it could be a specific tool within it (such as 
dragging, or a slider). Schemes of utilization are developed by a solver to accomplish a 
specific task (Rabardel, 2002). Scheme is understood according to Vergnaud's 
construct: “the invariant organization of activity for a certain class of situations” 
(Vergnaud, 2009, p. 88), that relates an “invisible part” to a student's visible actions. 
Schemes are made up of various aspects, including a generative aspect: rules to 
generate activity; namely the sequences of actions; information gathering; and controls 
and an epistemic aspect: operational invariant; namely concepts-in-action; and 
theorems-in-action, with the function to pick up and select the relevant information and 
infer from it goals and rules. 
In the following, we will introduce elements from Toulmin’s model and explain how 
we interpret them within the IA and with respect to JM.  
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JM through Toulmin’s model in the context of GeoGebra 
In Toulmin’s model, the claim is a statement of the speaker, uttered with a certain 
indication of likelihood (qualifier); the claim is justified through other elements of the 
argument (data, warrant, backing). The first utterance of the claim indicates the start of 
the JM process, in which the aim is to change the qualifier. In younger students’ 
informal argumentation, the aim is seldom to construct rigorous mathematical proofs 
but rather to convince themselves of the existence of mathematical relations and facts 
(Jeanotte & Kieran, 2017). Hence, a change in the status of the qualifier will often be 
from likely to more likely, and less often from likely to true. We recognize such a 
change of status of a claim by students’ restatement of the claim accompanied by a new 
qualifier. The change of the status is reached through the generation of data that for the 
solver constitutes evidence and facts supporting the claim, and through the warrant 
that consists of inference rules that allow the solver to connect the generated data to 
the claim (Toulmin, 2003). The warrant is often implicit, in which case, it must be 
inferred from the utterances and gestures of the students. We can infer the warrants and 
analyze the generation of data through the notion of scheme introduced above. The 
generation of data is the product of the generative aspect of the schemes used (e.g., 
dragging, creating objects on the screen and interacting with them, utterances and other 
hand-gestures) that are carried out by students. Warrants are the epistemic aspect of the 
schemes used. One last element remains; backing. This element requires some careful 
consideration, which we elaborate in the next section. 
Toulmin describes the backing of a warrant as “…other assurances, without which the 
warrants themselves would possess neither authority nor currency” (Toulmin, 2003, p. 
96). However, Simpson (2015) identifies three different uses of backing in 
mathematics education research. In the context of JM, we consider the backing to be 
an explanation of why the warrant is relevant (Simpson, 2015). Central is, that the aim 
of JM is to change the status of the claim, so the backing must explain why the warrant 
is relevant for generating data that allows the change in the status of the claim. Thus, 
the backing becomes fundamental to the JM process. Currently, we have reached the 
following formulation of backing in JM processes: 
If the claim is true, I can generate data, within the specific instrument, that is consistent 
with the claim. 
This seems closely related to Vergnaud’s (2009) notion of theorem-in-action, a 
sentence that the solver believes to be true, but that may in fact be false. Though it can 
be, it is not a mathematical theorem, and it can bridge domains of different natures. In 
our case it bridges the phenomenological domain of GeoGebra with the theoretical 
domain of algebra (also see Baccaglini-Frank, 2019). We recognize, that there might 
be variations of such a formulation, but we are currently studying this form.  



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

454 

METHODOLOGY  
The task we analyze in this paper comes from a broader project, in which a series of 
tasks were designed by the first author and assigned to students in three classrooms of 
grade 7 students (in all 61 students). All students had prior experience using 
GeoGebra's geometric tools, as well as constructing points and sliders in the algebra 
view, but they had never used the slider to vary points, which is central in this task. 
The students worked in pairs for two 90-minute sessions while being video recorded. 
All together 17 pairs was recorded. The video recordings captured the screens and the 
students, both from the computer’s camera and from a second handheld camera 
controlled by the first author, who was present during all the sessions.  
The example below, is of a pair students, Lilly and Mia, who were described by their 
teacher as a particularly “talkative” pair, who usually participated with confidence to 
math class, even though they were not considered to be “the best” students. The tasks 
was posed and solved in Danish. The task as well as the excerpt have been translated 
to english for this paper. 
We selected this example because of its short length and the fact that it contains many 
aspects of the process of JM. Indeed, in these 75 seconds the students changed the 
status of an initial claim from likely to more likely. This episode, therefore, constitutes 
a unit of analysis. 

AN EXAMPLE AND ANALYSIS OF JM 

We use the following transcript to illustrate the analytical tool and how it is applied in 
an analysis of students’ justification processes. The two students are working on a task, 
where they are asked to predict how two given points A = (1,s) and B = (s,1) will move 
in the coordinate plane in GeoGebra. If the two points are constructed in the algebraic 
view, a slider for the interval [-5,5] will appear for the variable s, the slider can either 
be dragged or animated, and its movement induces the points to move in the coordinate 
plane as s varies. To ensure that the students predict, rather than construct and 
animate/drag the slider, the GeoGebra interface in this specific task is limited to the 
graphics view, showing a coordinate plane along with the cursor, the point tool, and 
the pen tool. An orange textbox also appears with the coordinates of the given points. 

Lilly and Mia make a conjecture about a line through AB and discuss it, despite the 
task does not mention any lines. Lilly holds the mouse throughout the excerpt. 

1. Lilly: [Reads out the task] Show in the coordinate system how you think point 
A and B move as s changes value. 

2. Mia: I have the feeling they are making such a slanted line like this (Fig. 1a). 
3. Lilly: Yes. 
4. Mia: That is what I imagine. 
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5. Lilly: If I make a point now called A right? [Places point with point tool in (2, 
2.98)] So this, this is A. 

6. Lilly: And then we can say that ehm, A is equal to one comma s, right? [moves 
the curser to point at the coordinate sets in the orange text box (Fig. 1b)] 

7. Mia: What should s be? 
8. Lilly: One here, and then s could be… [Moves A towards (1,0)] 
9. Mia: Four. 
10. Lilly: Four, so it will be here then [Moves A to (1,4) (Fig. 1b) along x=1]  
11. Mia: Yes. 
12. Lilly: Then we do B. 
13. Mia: [Points to approx. (4,1) with her index finger (Fig. 1c)] Yes, that is what 

I said, then it becomes such a slanted line.  

Figure 1. a, b, and c:    ) 
a) Mia's gesture, b) screenshot of Lilly's placement of point A, c) Mia points to screen 
approximately at (4,1)  
 
Analysis of the example 
In the analysis, we identify the structural elements and relate them to JM. Figure 2 on 
the next page visually illustrates Lilly’s and Mia’s JM process.  
A process of JM starts in Lines 2-4 when the following claim (C1) is stated and 
gestured: “they [A and B] are making such a slanted line like this” along with the 
qualifier “feeling” which indicates likelihood, not certainty. Lilly seems to base her 
claim on the initial data consisting of the algebraic expressions A = (1,s) and B = (s,1); 
moreover, she describes the line in her claim through a gesture (Fig. 1a), identifying 
certain geometrical features of such a line, possibly its “slant”. Now the students go on 
to generate data for the claim using the instrument with the aim of changing the status 
of the claim, as we are about to show.   
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Figure 2: Illustration of Mia’s and Lilly’s JM process  

Throughout lines 5-11 new data is generated by using the instrument. In line 5 and 6, 
the students create a point and establish the relationship between the algebraic notation 
of A and the created point. Throughout lines 7-11 data on this relationship is expressed 
by moving the point on (1,s) from (1,0) to (1,4). On this basis we infer the warrants, 
schemes, used by the students to connect the data to the claim: an ordered pair of real 
numbers corresponds to the x-coordinate and y-coordinate of a point in the coordinate 
plane; two points makes a line; a variable can take on any real number; and A = (1,s) 
moves along the line x = 1. We note that the third warrant depends on the instrument, 
as the movement of points only exists tacit within the instrument. This is an example 
of how warrants can contain both theoretical elements and phenomenological elements, 
linking the algebraic domain to the GeoGebra environment, as we discussed earlier. 
We infer the backing to be what we conjectured: If the claim is true, I can generate 
data, dependent on the specific, instrument that is consistent with the claim.  
In lines 12 and 13, the students generate data regarding point B that is imagined and 
gestured on account of the same warrant and backing as lines 5-11. In addition, the 
restatement of the claim in line 13 indicates a change in its status of the claim: the 
utterance “Yes, that is what I said” suggests that the qualifier has changed from likely 
to more likely. Overall, to reach the change in status the students drew on their 
conceptual knowledge, as well as their knowledge about how variables are expressed 
within the tool. The restatement of the claim and change in its status also concludes a 
unit of analysis for the process of JM.  

Data
A= (1,s) & B= (s,1)

Line through AB (imagined 
and gestured )

Point A visualised for         
s ∈ [0, 4] in the coordinated 

system 
Point B imagined and 

gestured on the screen for 
the case s = 4

Warrants
Ordered pair of numbers 

corresponds to the x-
coordinate and y-coordinate 
of a point in the coordinate 

plane 
Two points make a line
A variable can take on 

numerical values
A = (1,s) moves along the 

line x =1

JM Backing
If the claim is true, I 
can generate data, 
within the specific 
instrument, that is 
consistent with the 

claim

Qualifier1
I have a feeling

Qualifier2
Yes, that is 
what I said

Claim1
they [A & B] 
are making 

such a slanted 
line like this 
+ (figure 1a) 

Claim2
then it [AB] 

becomes such a 
slanted line 
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CONCLUDING DISCUSSION OF OUR ANALYSIS 
In this study we seek to gain insight into informal argumentation processes as part of 
what we consider the students the reasoning competency and how this interplay with 
their use of GeoGebra. We do this with a focus on a particular form of mediation - 
justificational mediation (Jankvist & Misfeldt, 2019), arising from research that 
combines the KOM-framework and the IA (Geraniou & Jankvist, 2019). Here we 
designed an analytical tool inspired by Toulmin's model and grounded within the IA. 
In the following we will discuss and reflect upon the insights we have gained of this 
endeavour.  
The use of Toulmin's argumentation model has allowed us to identify and amplify the 
importance of the qualifier as indication of change of status of a claim. This has served 
as a structure for identifying a unit of analysis of what can be considered a processes 
of JM. This supports that such a mediation is governed by the aim of changing this 
status of a claim; it has also allowed us to connect the generative aspects and epistemic 
aspects of schemes (Vergnaud, 2009) to the structure of an argument.  
However, there are also limitations with this approach that relate to Toulmin's 
argumentation model. We do not yet find that this tool appropriately captures the crux 
of the matter, which is the interplay between theoretical and phenomenological 
components in students' informal argumentations. Aspects of this interplay can be seen 
through the notions of scheme and theorem-in-action, that we have adapted to the 
warrants and backing of the model. This adaptation feels like a long "stretch" with 
respect to what Toulmin's model has been previously used for in mathematics 
education (Simpson, 2015). Moreover, we have transformed Toulmin's model into a 
structure with two claims (or rather a first claim and then its restatement) and two 
qualifiers, to highlight the process of change in status of the claim and how it occurs.  
These stretches seem to be leading rather far from the initial model, and we wonder 
how appropriate it might be to still refer to Toulmin's model at all, also considering a 
posteriori how we have sort of "substituted" elements from the IA to parts of the model. 
Moreover, we have not yet been able to explicitly interweave the KOM-framework 
with the theoretical lenses used. To sum up, has referring to the IA and to Toulmin's 
argumentation model together supported us in understanding JM? To some extent yes, 
as it has provided some insight into students' instrumented activity involved in 
changing the status of a claim; however, it does not yet completely satisfy us.  
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The semiotic potential of Zaplify: a touchscreen technology for 
teaching multiplication 
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The Theory of Semiotic Mediation suggests that artefacts might evoke mathematical 
meanings if they have semiotic potential. Multiplication models that have traditionally 
been used as artefacts tend to have a static structure, which might limit students’ 
physical interaction with the artefact and might hinder the representation of 
multiplication as a dynamic process. This paper presents an analysis of semiotic 
potential of a dynamic array model that is embedded in a touchscreen application. The 
analysis shows that this artefact might provide students with both visual and haptic 
experiences of multiplication, and it has the semiotic potential to evoke multiple 
meanings of multiplication.   
Keywords: Theory of semiotic mediation, semiotic potential, digital artefacts, 
multitouch technology, multiplication. 

INTRODUCTION 
Multiplication is often introduced in second grade as repeated addition which can be 
problematic when children encounter multiplicative relations involved in more 
advanced topics (Squire, Davies, & Bryant, 2004). Indeed, there are important 
ontological differences between repeated addition and other models of multiplication 
(Confrey, 1994; Schwartz, 1988; Vergnaud, 1988).  
Many researchers have conducted intervention studies to develop multiplicative 
thinking through models different from repeated addition. Some of these studies have 
incorporated the use of manipulatives (e.g., Tzur et al., 2013); others have used 
conceptual tools such as T-tables (e.g., Vergnaud, 1988). In this paper, drawing on the 
theory of semiotic mediation (Bartolini Bussi & Mariotti, 2008), I examine the semiotic 
potential of Zaplify, a multitouch digital artefact designed to develop multiplicative 
thinking through a dynamic array model. 

THE THEORY OF SEMIOTIC MEDIATION 
The Theory of Semiotic Mediation (TSM) draws on Vygotsky’s theoretical construct 
of semiotic mediation, and focuses on the relationship between artefacts, tasks 
conducted with the artefacts, and mathematical meanings. Bartolini Bussi and Mariotti 
(2008) define an artefact as any object that is made by human beings. Even though all 
artefacts share this material aspect, they are separated into three types, according to the 
phenomenological experience of their users (Wartowsky, 1979, as cited in Bartolini 
Bussi & Mariotti, 2008). A primary artefact is used to navigate one’s environment. A 
secondary artefact is used to preserve and to transmit skills, which is necessary for the 
use of primary artefacts. Finally, tertiary artefacts do not have a practical goal in the 
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sense of primary artefact yet have an autonomous world with certain rules. For 
example, if I move the handle of a door, I can open the door physically. Here, the 
handle is the primary artefact which helps me open the door. If I hold my hand in the 
air as if grabbing the handle and rotating my fist downwards, this gesture helps me 
remember how to open the door. Therefore, it constitutes a secondary artefact. The 
rotation of the handle might be modelled as an angle, which is a mathematical concept. 
In this case, this model constitutes a tertiary artefact.  
Even though this categorization of artefacts might present them as mutually exclusive 
entities, the same artefact might be used both as a primary and as a secondary artefact 
(Maschietto & Bartolini Bussi, 2009). For example, for a novice learner, an abacus 
might be interpreted as a tool to record the counting activity. Whereas for an expert, 
such as a teacher, the abacus might represent the place-value. Mariotti and Bartolini 
Bussi explain this phenomenological aspect of the artefact use in Rabardel’s’ 
instrumental genesis.  
According to Verillon and Rabardel (1995), an artifact is a man-made material object, 
either concrete or symbolic. An artefact becomes an instrument for a subject when s/he 
integrates the artefact with his/her activity. Therefore, an instrument is a psychological 
construct which has two components: the artefact and the subject’s utilization schemes 
[1]. For example, a glass is an artefact which is initially designed for containing liquids. 
If a cook uses the glass to crash some walnuts, this artefact becomes an instrument for 
the cook. The cook’s crashing scheme involves placing the walnuts on the cutting plate 
and pressing the bottom of the glass on the walnuts.  
In a social context, these utilization schemes allow individuals to use an artefact to 
achieve a given task. While using the artefact, individuals conduct certain operations 
and create signs both to achieve the given task and to create shared meanings with 
others to collaborate in the task. This semiotic activity is essential for the process of 
internalization, which is defined as the individual elaboration of the previous socially 
lived experiences. Artefact use evolves into signs through this internalization process.  
Mariotti and Bartolini Bussi (2008) distinguish artefact signs from mathematical signs 
in semiotic activities. The former plays a role in expressing the relationship between 
the task and the artefact and the latter expresses the relationship between the artefact 
and mathematical knowledge. In other words, the artefact signs are associated with the 
operations conducted to achieve the task and mathematical signs are aligned with the 
existing mathematical culture. Thus, the artefact mediates two meanings and this 
double relationship constitutes the semiotic potential of the artefact. The evolution of 
artefact signs into mathematical signs is the aim of mathematics education and this is 
achieved by the semiotic mediation of the artefacts and the cultural mediation of the 
teacher. At this point, Mariotti (2012) considers the analysis of an artefact’s semiotic 
potential as an a priori phase in designing a successful teaching sequence because the 
specific utilisation schemes can be predicted from examining the tasks in relation to 
the artefact. In this paper, the analysis of Zaplify’s semiotic potential aims to unearth 
various meanings of multiplication it could mediate. 
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MULTIPLICATION 
The literature indicates two approaches to define multiplication: the static and the 
dynamic. While the former approach emphasizes the relationships between the 
quantities, the latter focuses on the underlying actions in multiplicative situations.     
Schwartz (1988) situates the meaning of multiplication within modelling activity. He 
claims that the identification of quantities and referents is the basis for such an activity. 
Within this context, Schwartz defines multiplication as a referent changing operation 
that maps a quantity in one space to another quantity in a different space and suggests 
a graph model to represent multiplication, in which axes represent the distinct referents 
of multiplication. Thus, multiplicative situations require the identification of three 
referents and three relationships between them.  
Vergnaud (1988) also emphasizes the context of multiplicative situations and claims 
that different aspects of a concept can be illustrated with varying situations and a 
situation cannot be analysed via only one concept. Therefore, he suggests a 
multiplicative conceptual field that involves a set of situations, schemes, concepts and 
theorems and formulations and symbols. Like Schwartz, he proposes that identifying 
the relationships between three variables is essential for multiplication. However, he 
points out four quantities of multiplication and the functional relationship (one-to-
many correspondence) between them. In order to represent these relationships, 
Vergnaud suggests T-tables to model multiplicative situations. 
Confrey (1994) takes a dynamic approach, describing multiplication in the context of 
the construction of numeric quantity. She proposes a splitting model for multiplication, 
which is described as “an action of creating simultaneously multiple versions of an 
original, an action often represented by a tree diagram” (p. 292). Even though counting 
the results of splitting action might correspond to the model of repeated addition, 
Confrey warns that “the cognitive act of recognizing a situation as multiplicative and 
displaying it appropriately occurs prior to this counting action” (p. 311). Confrey 
therefore approaches multiplication in terms of process rather than the structure of the 
product.  
Davydov (as cited in Boulet, 1998) takes a mixed approach by pointing out both a 
multiplicative action and the relationships between the quantities. He defines 
multiplication as an arithmetic procedure that reflects an operation of transfer from a 
smaller unit of count to a larger unit of count. According to this, in 3x4, 3 is the 
multiplicand and represents the quantity of the smaller units; 4 is the multiplier and 
represents the quantity of the larger units. He also identified two types of relations 
between the quantities modelled in Figure 1: (1) many-to-one correspondence between 
the smaller units and the larger unit, (2) inclusion relations in composition of the 
product on two levels.  
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Figure 1: Multiplication as transfer of units (taken from Boulet, 1998). 
In this paper, I focus on a dynamic array model, which is found in the Zaplify world of 
the multitouch application TouchTimes (Jackiw & Sinclair, 2019). I analyse this tool 
for two reasons. First, arrays are useful to model the multiplicative relationships 
(Maffia & Mariotti, 2018). Second, unlike the static models, a dynamic model might 
allow users to experience multiplication also as an action that brings simultaneous 
change in the units.   
ZAPLIFY 
Zaplify is an iPad application designed to enhance multiplicative thinking. It starts with 
an empty screen. When the tablet is placed horizontally on a surface, four of the 
fingerprints appear just above the lower horizontal edge of the tablet, while the other 
three fingerprints appear on the left vertical edge of the tablet (Figure 2a). Then a 
diagonal and seven fingerprints appear on the screen at the same time (Figure 2b). 
While the fingerprints automatically disappear in a few seconds, the diagonal line stays 
on the screen until the user touches on the screen (Figure 2c).  

          
Figure 2: (a) Fingerprints, (b) Both fingerprints and diagonal line, (c) Diagonal line. 

These fingerprints and the diagonal line are introduced automatically by the app to 
guide users to place their fingers both horizontally and vertically in the designated areas 
which are separated by the diagonal. When a user places and holds any finger on the 
screen, a “lightening rod” (referred to as “lines” henceforth) that passes through the 
point of touch appears either horizontally or vertically, according to the position of the 
touch. Touches in the upper triangular area produce horizontal lines, while the touches 
in the lower triangle produce vertical lines. Screen contact can be made with one finger 
at a time or with multiple fingers simultaneously. Multiple fingers that maintain 
continuous contact can create either only horizontal lines, only vertical lines or both, 
according to the position of the fingers (Figure 3a-c). 

   
Figure 3: (a) Horizontal lines, (b) vertical lines (c) both horizontal and vertical lines. 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

 

463 

Whenever a horizontal line intersects with a vertical line, an orange disc gradually 
appears on the screen. The numerical value of the total number of intersections, which 
is the product of two factors, appears at the upper right corner of the screen (Figure 
3c). No numeral appears at the upper right corner without any intersection (Figure 
3a,b).  

SEMIOTIC POTENTIAL OF ZAPLIFY 
An analysis of possible utilization schemes that are associated with specific tasks 
reveals the semiotic potential of an artefact (Mariotti, 2012). Therefore, I identify the 
semiotic potential of Zaplify by examining the possible utilization schemes that might 
emerge during two Zaplify tasks that are designed to mediate several features of 
multiplication. I illustrate the semiotic potential of Zaplify with some examples from 
ongoing research.  
Task 1: Unitizing 
In this task, students are asked the following questions respectively: 1) How can you 
make one dot?; 2) How can you make a pair of dots?. Students must create 
perpendicular lines to create a single dot. So, they should place one of their fingers 
below the screen and the other finger on the left of the screen. Placing fingers on 
different sides of the diagonal would create one horizontal and one vertical line. This 
spatial separation of the fingers together with the distinct orientation of the lines might 
evoke Schwartz’s (1988) distinction of two separate referents in multiplication. 
Creating two perpendicular lines, students would obtain a dot at the intersection point. 
This intersection is the necessary action for the dot to appear. Therefore, even though 
the children do not create the dot directly, this functionality might trigger signs that 
would point out the relationship between the intersection point of the lines and the dot. 
Thus, it might evoke the relationship between the lines and the point, which is aligned 
with the relationship between the factors and the product.  
The drawings in Figure 4, made by a second grader, demonstrate how this task creates 
signs related to the factors and the product of a multiplication. The student made the 
first drawing after her first interaction with Zaplify. She was asked to play freely and 
explore Zaplify with a partner and explain it with drawings. She made the second 
drawing after the unitizing task, which was her second interaction with Zaplify. 

  
Figure 4: Drawings of a second grader after different tasks with Zaplify.  

As seen in the drawings, the multiplicative relationship between the number of lines, 
fingers and the dot was mediated after the unitizing task. Students written accounts also 
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point out the evolution of signs towards a multiplicative meaning. For example, in the 
first drawing, the student wrote “We touch the balls and let’s say if you place two 
fingers, we obtain four points”. In the second drawing, she wrote “We made one 
straight (line). We also made one perpendicular (line). A ball was created.” 
In order to make two dots, students must place two fingers on the left, creating two 
horizontal lines and one finger below the screen creating a vertical line, or vice versa. 
Placing two fingers would not create any dots until the students place their finger 
below. Placing one finger would intersect the other two lines at two points and create 
two dots simultaneously. These simultaneous intersections at multiple points on a line 
might evoke the idea of unitizing through many-to-one correspondence. In other words, 
a smaller unit (represented by each horizontal line) would be transferred into the larger 
unit (represented by the vertical line) and creates the unit of unit (represented by the 
dots), according to the Davydovian approach.  
Task 2: Skip counting 
Prior to this task, a teacher models a skip counting sequence by making a pair of dots 
on a horizontal line and increasing the number of horizontal lines one by one. Then the 
teacher poses the skip counting task by asking students to “find a different way to skip-
count by twos, by making vertical lines without changing the number of horizontal 
lines”. Students might focus on how changing the number of lines affects the 
composition on all perpendicular lines. This is a more transformational approach to 
multiplication than repeated addition and focuses on how each line “spreads” across 
every perpendicular line. 
As in the previous task, students should place their fingers on two different sides of the 
diagonal. This spatial separation of fingers again evokes two distinct units of 
multiplication. As the students place a new finger below the diagonal, a new vertical 
line and multiple dots will appear, respectively. The number of the dots will be 
determined by the number of horizontal lines because each horizontal line intersects 
with many vertical lines. Each vertical-making finger will create the same number of 
dots consecutively. Thus, this action evokes the simultaneous spread of each smaller 
unit on the larger units, one-to-many correspondences between the units. At the same 
time, this simultaneous spread might evoke two-level inclusion relations in which each 
smaller unit is included among them and in the larger unit at the same time.   

CONCLUSION AND DISCUSSION 
The analysis of the semiotic potential of Zaplify shows that this artefact provides both 
visual and haptic experiences, and triggers richer utilization schemes to evoke various 
aspects of multiplication. Placing fingers separately and creating dots at the intersection 
points of distinct lines are aligned with the three variables of multiplication (Schwartz, 
1988). Moreover, unitizing and spreading actions evoke multiplication both as a 
dynamic process (Confrey, 1994) and as the web of functional relationships between 
the variables (Vergnaud, 1988).  
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Drawing an array on a paper or making composite units by connecting unifix cubes 
might seem similar to Zaplify in terms of their semiotic potential. However, these 
utilization schemes fail to represent the simultaneous change in multiplication. For 
example, drawing is a continuous action. Therefore, intersections between the 
perpendicular lines and the dots would be temporally separate. Whereas in Zaplify, 
both the intersections and dots would be created simultaneously and might evoke 
Confrey’s description for multiplication which is creating simultaneously multiple 
versions of an original.  
The experience of simultaneous change might strengthen students’ understanding of 
the multiplicative relationships between the factors and the product. Increasing a factor 
by one changes the product with respect to the other factor. However, students may 
apply additive reasoning in these situations and may conclude that the product would 
increase by one (Squire, Davies, & Bryant, 2004). Experiencing simultaneous changes 
upon manipulating each factor in Zaplify, learners would sense both many-to-one and 
one-to many correspondences between the factors in multiple ways. 
Aligning two numbers vertically or horizontally in T-tables might suggest many-to-
one correspondences between the quantities in a more simultaneous manner compare 
to drawing arrays or connecting cubes. However, writing two entries in a T-table may 
not evoke a multiplicative relationship between the quantities. For example, in a T-
table, aligning 1 and 2 horizontally might evoke an additive meaning where 2 is 
obtained by adding 1. Whereas in Zaplify, the change in the units is accomplished with 
both visual and haptic experiences that are not compatible with additive thinking: the 
user must press three fingers to see two dots on the screen.   
In summary, the analysis of the semiotic potential of Zaplify unearthed important 
nuances in potential utilization schemes which can mediate richer meanings for 
multiplication compared to the existing artefacts which are also designed to develop 
multiplicative thinking. The analysis of the semiotic potential of artefacts may help 
teachers distinguish the semiotic potentials of different artefacts and unfold their 
potential to a great extent in the classroom. The next step would be to study to what 
extent Zaplify mediates these meanings in mathematics classrooms.  

NOTES 
1. Verillon and Rabardel defined the utilization schemes in the Piagetian tradition as “the structured 

set of the generalizable characteristics of artifact utilization activities.” (1995, p. 86). 
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Hybrid environments of learning: potential for student collaboration 
and teacher efficiency 

Veronica Hoyos, Estela Navarro, and Victor J. Raggi  
National Pedagogical University, Mexico, vhoyosa@upn.mx 

It is presented an exploratory study around the impact on transforming school teaching 
and learning practices by means of designing and implementing hybrid learning 
environments, and, in this case, it was set up one on the subject of functions. This topic 
is studied, in the first year of a bachelor's degree in finances, during two weeks of face-
to-face activity in the classroom; but in this exploratory study, the topic was addressed 
using a hybrid environment of learning where, in the first week, the students worked 
alone in a virtual environment previously designed, and teacher intervention happened 
until the second week, in the classroom. The results of this exploratory study showed 
refinement or validation of student conceptions through collaboration, and efficiency 
in the teacher’s practice.  
Keywords: hybrid environments of learning, learning collaboratively, autonomous use 
of online materials, change of classroom practices.  

INTRODUCTION 
According to Heffernan et al. (2012, p.101), if school practices must change in order 
to keep pace with the development of new technologies and to meet students' 
expectations regarding their use, then the efforts on teacher’s education and in-service 
teacher development must be altered, there must be a greater number of interactive 
educational technologies developed in the cloud and implemented in the classroom. In 
the same way, if technologies are intended to have a powerful and lasting impact on 
the way that teachers teach and how much students learn, then technology 
developments and how they are used matter (Idem, p.102). 
This paper presents some of the results of an exploratory study of the impact on 
transforming teaching practices and student learning, by using a hybrid learning 
environment, in this case to deal with the topic of functions in a first year of a bachelor's 
degree in finances. To carry out the exploration, two sequences of activities were 
designed, all of them were uploaded in a digital platform type moodle 
(http://pascal.ajusco.upn.mx/moodle). The first sequence focused on the general 
definition of a function, its characteristics and examples; the second sequence dealt 
with linear and quadratic functions, its definition, characteristics and examples. Three 
videos related to the content already specified were also elaborated, one appropriate to 
the first sequence, and two more for the second sequence. The main tool for virtual 
interaction between students consisted in promoting their participation at online 
forums. There, students were distributed in five groups (with 10 students in each) to 
upload, individually, their own examples of functions, so they should share and 
comment on them. It was planned that the students worked autonomously on all the 
designed activities in the digital platform (uploading own examples, commenting the 
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other ones, reviewing elaborated videos on the topic, answering items of questions, 
etc.) during a week, and only during the following week both parts of the content (the 
general definition of function, and the linear and quadratic functions) were addressed 
conjointly by both students and teacher into the classroom. 
The goal of the exploration we are presenting here, was to explore on the design and 
use of hybrid environment of learning, looking for student’s support and engagement. 
More precisely, the interest of this exploratory study consisted of identifying the 
characteristics of the interaction patterns among the students, when they worked in the 
forums. We searched for productive collaboration among the students and for the 
learning of the topic of functions via a specific hybrid learning environment. 

THEORETICAL FRAMEWORK 
According to Heffernan et al. (2012, p. 92), it is clear that the materials and activities 
developed in a digital teaching platform can be used in a multiplicity of ways to change 
the teacher's routine, for example: in the planning of a lesson, because it can help the 
teacher to look towards a goal and a sequence; in the recovery of data from past lessons, 
to modify lesson plans based on current data on students' knowledge of the subject; in 
the evaluation of the lesson, since it can help the teacher to determine the success or 
retention of a lesson; and, finally, when students receive feedback from their classmates 
about their actions, which can later be capitalized by reviewing the topic in class or by 
solving questions associated with the feedback on the exam. Moreover, everything 
produced by the students in the virtual (or online) environment is registered in the 
digital platform, which is one of the main advantages present in the use and design of 
this digital medium (Dedé & Richards, 2012). 
Besides, it is noteworthy that Sutherland and Balacheff (1999) announced the 
possibility, now already materialized, of implementing online courses, or using digital 
devices for teaching, freed from tutoring, accessible outside the school and managed 
by digital means like the Internet. Through these devices, such as videos or forums, 
students are left with the responsibility of unchaining their own ways of appropriating 
knowledge, and possible advances in learning a subject are made mainly through the 
exchange of opinions among peers. Actually, massive open online courses (MOOCs), 
for free preparation on college, and/or for professional development, have come to 
materialize these new educational trends (see Hoyos, 2016). 
Pioneering implementation and conceptual tools to analyze massive online courses, G. 
Siemens (2005) and S. Downes (2010) introduced a new theory on connectivist 
learning. They introduced initial and simple terms as nodes, connection and network1 
(Siemens, 2005), which have been since then extensively used in empirical research 
(see Wang et al., 2018), seeking to establish a new alternative way of learning, the one 
denoted by the term connectivism. Moreover, discussing two distinct models for 
MOOCs’ design (xMOOCs and cMOOCs), Wang et al. (2018, p. 45) argued that “the 
xMOOC model is now much familiar to learners and teachers in that they often use 
systems developed for more traditional online courses and use a predominance of video 
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micro lessons and machine marked quizzes for student feedback. [These courses] have 
been criticized as not providing sufficient learner support and engagement.” 
While the design of cMOOCs is aimed at counteracting the deficiencies found in the 
earlier xMOOCs, for us, as researchers on the design of online mathematics education 
(i.e., not only interested on the design of MOOCs), this argumentation suggested 
another type of response and situation, precisely the one of exploring such criticism by 
means of using certain resources associated with the design of blended courses, or, 
more specifically, we decided to explore on the design and use of hybrid environment 
of learning, looking for student’s support and engagement. In fact, this research 
proposal emerged from considering to exactly combine two very distinct ways of 
delivering a course: one part corresponding to a traditional online course (it function 
as above Wang et al. mentioned in relation to xMOOCs), specially designed for 
students to work autonomously on the study matter, and on the other hand, during a 
second part of the course, the topic would be addressed in a face to face classroom 
under teacher guidance. Finally, it’s important to note that in general one of the 
research questions, in relation to the design and implementation of hybrid learning 
environments, is the search or observation of interaction patterns among participants. 
Therefore, the interest of this exploratory study consisted of identifying the 
characteristics of the interaction patterns among the students, when they worked in the 
forums. We searched for productive collaboration among the students and for the 
learning of the topic of functions via a specific hybrid learning environment. 
As it was just mentioned above, connectivism is a theory that underlies the design and 
implementation of specific online and hybrid learning environments, and it was 
emerged linked mainly to the use of the Internet, as well as virtual education. However, 
many researchers still question what this theory explains, provides or suggests, for 
example, regarding the incorporation of technology in the classroom (see, for example, 
Kop & Hill, 2008). Whether it could do this regardless of previous theories or as an 
extension of some of them, or of theoretical models that have so far been applied to 
study the integration of technology in school (to see some of these models, see Zbieck 
& Hollebrands, 2008; Olive et al., 2010; Ruthven, 2014). Although, according to 
Downes (2010), what connectivism has to exhibit is to what extent is an emerging 
theory, and empirically proving in what sense is a new paradigm, that would 
specifically explain the case of network learning and collective distributed knowledge. 
At last, it is also important to mention that for Kop & Hill (2008), the connectivist 
metaphor is particularly timely in the present time, given that Internet browsing and 
the means by which information is dispersed in this medium provide a point of 
reference to validate the claims of Siemens (2006) in relationship with the need to 
redesign education. From these authors’ point of view, connectivism frames learning 
in terms of students connecting to nodes in a network, which in effect suggests that 
knowledge does not reside in a location but rather is a confluence of information that 
is originated from a multiplicity of individuals seeking to inquire regarding a common 
interest and providing feedback to each other. And, finally, it is worth to highlight that 
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in the present exploratory study the connectivist metaphor has been concretized in 
students' networks, where they represented nodes connecting and interacting, virtually, 
by means of a series of digital forums we set up in a digital platform of teaching. 

METHODOLOGY, ANALYSIS, AND RESULTS  
In this exploratory study, a group of 61 students was enrolled to participate in the 
implementation of a hybrid learning environment in a college algebra course; 50 of 
them had active participation in the online forums that were opened to this effect. Three 
videos for presenting the topic of functions to the students were also elaborated and 
uploaded in the platform, definitions and examples were discussed there. As part of the 
activities, questionnaires were also prepared and uploaded. All the materials were 
hosted on a digital moodle-type platform, namely http://pascal.ajusco.upn.mx/moodle. 
It could be said that the main tool for student virtual interaction was their participation 
in digital forums. Five online forums (with 10 students each) were opened for students 
to upload (individually crafted) examples in each sequence of activities, following the 
written teacher instructions to share and comment on them. The general plan was that 
throughout the first week the students should work virtually, within the platform, 
autonomously, and during the following week the topic would be addressed in class, 
face-to-face, under teacher guidance.One member of the researchers’ team was in 
charge of videos and quizzes’ elaboration as well as of the topic’s teaching at the 
classroom. She was formally interviewed by means of a semi-structured interview that 
was also registered, in order to retrieve what had happened in the classroom during the 
face-to-face week of teaching. 
Besides, everything elaborated by the students in the digital platform was a subject of 
analysis and classification. Specifically, we used the SOLO taxonomy to classify 
student responses included in their activity in the forums, mainly those that showed 
their individually crafted examples of functions, in order to identify refinements and 
validation of conceptions on the topic, achieved or included in student's feedback or 
the exchanges among them. The SOLO taxonomy by Biggs and Collis (1982) was 
inspired by Piagetian descriptions of qualitative differences in handling the same tasks 
and was intended to help in the analysis of student’s responses to open-ended questions 
in school (Marton, 2015, p.115). The different categories refer to different ways of 
handling the same task, and basically they consist in four different levels: in 
prestructural level, no crucial aspects of the task are mastered; in unistructural level, 
one crucial aspect of the task is mastered; in multistructural, several crucial aspects are 
mastered; finally, in relational level, several crucial aspects are related to each other. 
Moreover, it was useful for visualizing the classification of the students' elaborations, 
take a spreadsheet to identify productive exchanges, namely those related to refinement 
or validation of students' conceptions. Due to the space available in this paper, only a 
small part of the spreadsheet content is presented here (see Figure 1). Summarily, the 
SOLO taxonomy was used in this study as a tool for classifying all examples developed 
individually by the students on the topic of linear and quadratic functions. In addition, 
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a spreadsheet was used to visualize student interrelationships derived from their 
activity in the forums. 

 
Figure 1. Compilation of student examples of functions, according to SOLO taxonomy 

On the other hand, complementary data were obtained from the teacher interview, 
precisely on the role of the topic in the course’s syllabus, and on the role of what the 
students had done online in the classroom, as it is shown in next segments.   

Teacher:  In this case, I, as a mathematician, what I knew was that they [the students] 
needed to know any type of function [the teacher refers to the general characteristics of a 
function, that is, to its definition]; to be able to see its [functional] expression, to know how 
its graphic was going to be; and also see its graph and know what was the corresponding 
[functional] expression; and to know what were properties of those functions [she referred 
to the linear and quadratic functions], things that are immediate and automatic. The 
course’s syllabus [on the topic of functions] goes a long way in that sense. 
... 
Interviewer: How was everything that the students had done online used in the classroom? 

Teacher:  In this respect what happened was that with the concept of linear function and 
quadratic functions, I would have worked two weeks into the classroom, if the virtual 
module of the course had not existed. However, what happened was that I decided that in 
a week, students would go on their own using the virtual module. What I did was that the 
following week, after they worked on this, I went back to what they had worked on, but 
instead of spending so much time [like I used to do] I spent only a week in face-to-face 
working. It is as if the two weeks that I would have dedicated to the subject, instead of 
doing it face-to-face, now I did one [week] in a virtual type for students to work with the 
concepts and to become familiar with them, and in the other [week], I did it face-to-face. 
What happened with the virtual [part of the course] the thing was that it allowed me to 
move faster, during the face-to-face week, knowing that they had reviewed the materials. 
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Schematic Analysis of Patterns of Interaction or Collaboration Among Students 
From a relational level 

Student MAA:  Very clear the example [of student JL] of the fingerprints, [fingerprints of 
one person] only corresponds to one pattern, [for example] there is no other person with 
my fingerprints 

Student LMC:  Another example of a linear function in daily life is as follows. Let us 
suppose an electricity charge whose fixed amount is for 100 pesos. Our consumer in 
question has had a consumption of x watts amount and each watt price is 2 pesos. The 
function would be expressed in the following way: f (x) = 2x + 100. Thus 2 is our value in 
a, and 100 is the constant that we add. [Also] a very good example [the one of AS] about 
something that has an application in daily life, although it should be mentioned that this is 
only valid for uniform movements (where speed is constant). [In addition, I also] 
understand the example [the one given by CF] and it seems valid to me, but I consider that 
because having two antecedents for the same image (this does not meet the definition of 
function) we would need just one person wanting two things at the same time and not that 
two people are the same since x1 could be equal to x2 without this affecting the function as 
long as f (x1) is equal to f(x2). [Finally, also] I agree with another example [the one given 
by MAA], two phones can have the same price, therefore, the same image can have two 
antecedents, but a singular phone would not have two prices (obviously if we only talk 
from a provider) so an antecedent could not have two images. 

From a multistructural level 
Student YAS: Very good example [the one given by BA] related to a physical 
phenomenon, as it is the trajectory and free fall. [Another] example of a fairly common 
linear function in our day to day is the speed that any object can have, that is, the distance 
it travels in a given time. Speaking a little more specifically, assuming that a car on a flat 
road tends to travel 20 km in 5 minutes, with a linear function, the distance it will travel in 
25 minutes could be determined. The algebraic expression, in this example, could be f (x) 
= 4x. Where x represents the [number of] minutes you want to calculate to see the distance 
traveled. 

From an unistructural level 
Student ALA: When throwing a ball, it first goes up and forward, then falls while   
continuing to advance, thus forming a path shaped like an inverted parabola. 

From prestructural level 
Student MAA:  A clear example of everyday life is the consumption of a product, an 
example is the purchase of phones, there are different phones: price levels, with x = the 
phone and y = the price depending on which phone you would like, the price increases, but 
all phones have the same function: communicating. [Another] excellent example [is the 
one given by CS], it was very clear to me how we apply linear functions in daily life. [It is 
also] an excellent example [the one given by AS] because it helps you understand what a 
linear function is, very simple, with an example from daily life. 
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DISCUSSION AND CONCLUSIONS 
Teaching and learning in a hybrid environment become productive when the 
implementation of digital materials previously designed serves to detonate conceptual 
questions that can be subsequently addressed in the classroom. By means of the 
exploratory study presented here we found different patterns of interaction among the 
students, derived from the autonomous activity of the students at the forums, as it’s the 
interest of searching for the connectivist framework. We have shown that these patterns 
were established according to distinct levels of mastery of the topic in question. In 
other words, paraphrasing what the teacher said during the segments of the teacher 
interview we have shown above, we can see that “the students worked with the 
concepts and became familiar with them”, at different levels of understanding we could 
add.  It is to say that the virtual work of the students at the platform has suggested how 
the teacher could retake the topic in the classroom “to move faster”, as she (the teacher) 
already said.  Student interaction, or the collaboration among them, via the forums, 
became a real source of information of the distinct levels of student understanding of 
the topic in question, in this case on linear and quadratic functions at the first year of 
finance at college. It also allowed students to think beforehand about the topic in 
question, actively participating in the virtual modality, and trying to propose 
mathematical examples, which even if not mathematical correct were productive for 
triggering mathematical collaboration between peers. Moreover, student autonomous 
practice in the virtual environment really had an impact on classroom teaching, it 
enriched teacher information on student knowledge, prior to learning and teaching 
practices in the classroom. In fact, and according to Heffernan et al. (2012), the 
implementation of the hybrid environment of learning changed teacher routine and did 
make both learning the subject more meaningful and teaching more effective. In 
summary, this paper contributed to the study of the impact on transforming teaching 
and learning mathematics in the classroom, in particular exploring the opportunities 
offered by the design and implementation of hybrid learning environments that 
incorporate the use of multimedia in digital platforms for student collaboration and 
network learning, in the sense already indicated by Downes (2010). 

NOTES 
1. According to Siemens (2005), “a network requires at minimum two elements: nodes and 

connections. Nodes carry different names in other disciplines (vertices, elements, or entities). 
Regardless of name, a node is any element that can be connected to any other element. A 
connection is any type of link between nodes.” 
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The social development of knowledge in a new pedagogical setting:  
the same activity presented as three different interactive diagrams 

Elena Naftaliev 
Achva Academic College, Israel, elenanaftaliev@gmail.com 

Teaching with technology-based interactive curriculum materials (TBICMs) should be 
considered more than a technological change; indeed, it is an attempt to create new 
paths for the construction of mathematical meaning. The paper investigates how 
students addressing the same activity presented as three different Interactive diagrams 
(IDs) participated in collaborative learning processes. The process allowed us to 
analyze the social development of knowledge in a new pedagogical setting. The results 
showed that the participants collaborated to generate an interactive text based on the 
given IDs. The text became an instrument which supported the development of 
knowledge. 
Keywords: Technology-based interactive curriculum materials, collaborative 
learning, animation, interactive diagrams. 

INTRODUCTION 
There are profound differences between the traditional page in math curriculum 
materials that appears on paper and the new page that derives its principles of design 
and organization from the screen and the affordances of technology. In traditional 
curriculum materials, content is displayed in a static mode and students are invited to 
interpret it with limited possibilities of interaction, e.g., by pointing to a figure or 
tracing with a pencil. In contrast, recent technological advancements have enabled the 
production of TBICMs: a new type of materials that enables a broader interaction 
between the users and content. TBICMs comprise a set of IDs, namely, a relatively 
small unit of an interactive materials that can be used for different purposes: an 
exposition, a task, an exercise, etc. In such materials, students are invited to interpret 
the content by interacting with it, e.g., by playing a video clip, interacting with a graph, 
or changing the given examples. 
Teaching with TBICMs should be considered more than a technological change; 
indeed, it is an attempt to create new paths for the construction of mathematical 
meaning. Computer technologies allow the design of a variety of IDs for the same task. 
The findings of our long-term research show that similar tasks with different IDs 
should be considered to be different learning settings (e.g., Naftaliev & Yerushalmy, 
2011, 2017; Naftaliev, 2018). The interesting question is whether and how students 
who had been asked to address similar activities that included different IDs can share 
their work, participate in a group discussion and participate in social development of 
knowledge in a new pedagogical setting. This paper addresses the question. 
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FRAMEWORK FOR PEDAGOGICAL FUNCTIONALITY OF IDS 
Naftaliev & Yerushalmy studied how, as the core of engaging tasks, IDs can be 
designed to form a pedagogical tool for various teaching intentions and students’ needs 
and developed a semiotic framework for pedagogical functionality of IDs (e.g., 
Naftaliev & Yerushalmy, 2011, 2017; Naftaliev, 2018). The framework proposes three 
dimensions, or functions, for defining the pedagogical functionality of IDs, which 
address a variety of learning and teaching settings: a presentational function, which 
refers to the type of example in the ID and consists of three types of examples: specific, 
generic, and random; an orientational function, which refers to the mode of 
representations in the ID, i.e., metric, schematic, or metric/schematic; and an 
organizational function, which refers to the connection between all the components of 
the ID, i.e., elaborating, guiding, and illustrating).  
Although examples in an ID are usually designed to be modified by the user, the 
example that initially appears in the ID determines the nature of its presentational 
function. Three types of examples are widely used in IDs: specific, random, and 
generic. Specific examples serve as a dynamic illustration that helps to analyze the 
situation without being able to change the information. Random examples are specific 
examples generated within given constraints. Generic examples are those in which the 
ID is structured to be representative; it presents a specific example as part of the given 
task, but it is not intended to present the specific data of the activity. Rather, it is aimed 
to help learners become aware of the representativeness of the example through a 
process of inquiry.  
The tone in which the ID addresses the learner is subject to design decisions that regard 
the orientational function. Netz (1999) identified a connection between types of 
diagrams and the practices of ancient Greek mathematicians regarding their use. “The 
most significant question from a mathematical point of view is whether the diagram 
was meant to be metrical: whether quantitative relations inside the diagram were meant 
to correspond to such relations between the object depicted. The alternative is a much 
more schematic diagram, representing only the qualitative relations of the geometrical 
configuration. … they very often seem to be schematic in this respect” (ibid, p.18). 
Based on Fish and Scribner (1990), Mason (1995) drew attention to the importance of 
sketches rather than paintings as a metaphor for providing stimulus to students: “A 
painting has richness of detail, but its completeness of detail means that the observer 
has to work in order to see through the whole, to make contact with and examine details 
and yet retain a sense of connection to the whole; a sketch provides just enough to 
invoke Gestalt powers of closure and to initiate a process of construal” (Mason 1995, 
p. 386). The framework considers schematic vs. metric modes of the ID as an important 
factor in reader orientation. An example that appears in an ID can have an accurate 
metric appearance, namely, quantitative relations inside the diagram are meant to 
correspond to such relations between the objects depicted. The alternative is a 
schematic diagram, representing only the qualitative relations. The design of the ID 
has made it possible to address the given graphs as a sketch in a schematic mode, but, 
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at the same time, the sketch can be interactively unfolded into a detailed metric 
diagram. For example, the graph that is represented in a schematic ID could also serve 
as a metric ID by providing the values of ordered pairs for any point on the plane, 
according to the users’ choice.  
The organizational function of IDs refers to the ways in which an ID can be organized, 
namely, illustrating, elaborating, and guiding. The three ways differ in their settings, 
as each is characterized by its own constraints and resources and is intended for a 
different aspect of inquiry. Illustrating IDs are simply operated, unsophisticated 
representations. For example, an animation with a limited degree of interventions by 
activation of controls in it (fig. 1). At any time, users can freeze the positions on the 
track, continue the run, or initialize the race. Elaborating IDs provide the means that 
students may need to engage in activities that lead to the formulation of a solution and 
to operate at a meta-cognitive level. The same animation that serves as an illustrating 
ID in the previous example can be part of an elaborating ID when set within other tools 
and representations (fig. 1). The elaborating ID provides four adjacent linked 
representations: a table of values that represents distance and time; a two-dimensional 
graph of distance over time; a one-dimensional graph which traces the objects' 
positions at each time unit; and an animation. The variety of linked representations and 
rich tools in this elaborating ID enables various options in viewing and interactions 
with the ID: as a schematic and/or as a metric diagram, as discrete information and/or 
as a continuous flow of information. Guiding IDs are used for guided inquiry; in 
addition to providing resources that promote inquiry, they set the boundaries and 
provide a framework for the process of working with the task. The guiding IDs are 
designed to call for action in a specific way that supports the construction of the 
principal ideas of the activity. They serve to balance constraints and open-ended 
explorations and to support autonomous inquiry. For example, the guiding ID in the 
fig. 1 was designed around a known conflict about a time-position graph describing a 
"motionless" situation over continuously running time. The ID consists of two 
representations of motion: an animation and a hot-linked position-time graph. The task 
is to establish a one-to-one correspondence between the graphs and the animation. The 
graph and the animation are only partially linked: motion occurs simultaneously on the 
animation and on the graph but there is no colour-match, so the identification process 
requires extracting data from the simulation and the graph in order to link them. The 
following constraints contribute to making the task an interesting challenge: the small 
number of animated representations, the partial linking between the representations, 
the absence of representations and controls that could turn the given schematic nature 
of the representations into an accurate metric diagram, and the exceptional example in 
a list of examples that are aimed at focusing on a motionless situation over time. 
As computer technologies allow the design of a variety of IDs for the same concept, 
deciding which design to adopt in order to convey certain pedagogical functions is 
considered one of the urgent needs facing educators in the use of TBICMs. 
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THE SOCIAL DEVELOPMENT OF KNOWLEDGE IN A NEW 
PEDAGOGICAL SETTING 
In collective practices, common goals  are accomplished through the interrelated 
activities of individuals: individual activities are constitutive of collective practices; 
and at the same time, the joint activity of the collective gives shape and purpose to 
individuals’ goal-directed activities (Saxe, 2015). Saxe defined three dimensions for 
analyzing the development of mathematical knowledge by students: the micro-, socio-
, and ontogenesis. Each kind of development has its roots in activity as individuals use 
forms, like the IDs in our case, to serve varied functions to structure and accomplish 
emerging goals. Micro-genesis involves the short-term process whereby individuals 
structure forms into means to accomplish goals in activity. Socio-genesis involves the 
spread in use of forms as means for structuring and accomplishing goals in a 
community of individuals. Ontogenesis involves the interplay between the forms that 
students use and the functions that they serve over the course of student’s development. 
A coordinated analysis of these three dimensions of activity was used in our research.  
The fig.1 shows the research design. The interviews were sorted by students into 
groups of three. Each participant followed a four-step procedure that enabled us to 
examine and track the role of IDs in the student’s knowledge development process. 
The activity, which asked the students to describe a motion situation, was first 
illustrated by a video clip and subsequently as an Illustrating, Elaborating or Guiding 
IDs, all based on the animation. At Stage A the students were given a preliminary task, 
presented by videoclip.  The task designed to evaluate their knowledge and solution 
techniques. At Stage B the Students were given a task similar to the one they received 
in Stage A; the difference was that the task included the ID. The purpose of the 
interview was to learn how the students constructed their knowledge using the diagram. 
At Stage C, the three students who had been asked to address similar tasks that included 
different diagrams participated in a group discussion. The students could use all the 
diagrams they worked with in stages A and B. At Stage D the students were given the 
similarly printed task (fig. 2) and the question to be answered was “What can the 
students do alone, without the assistance of interactive texts?”. The 14-year-old 
students volunteered to participate in after-school meetings. All interviews were video 
recorded. Each participant followed the four-step procedure that enabled examining 
and tracking the role of IDs in the students’ knowledge development process 
concerning mathematical models of motion. 
In this paper, I focused on the second step of the activity, asking the students (Elad, 
Helena and Or) who had already been asked to address similar activities that included 
different IDs to share their work and participate in a group discussion. This section 
includes an analysis of Elad, Helena and Or collaborative work.  
At the first stage, in their individual work with the video activity, the learners put 
emphasis on getting the story right, which required attending to details such as the 
runners' body motion: “When they ran, they moved their body a little bit back and their 
feet a little bit forward and… this maybe gave them, I think, more acceleration. And in 
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the end the one that was on the left won. They all made almost the same movements; 
just that there were some that started running and some that jumped out later and some 
that jumped a little sooner.” The video clip kept the students too close to the situation 
and prevented them from thinking in the abstract.  

Figure 1. Four-step study procedure Figure 2. The printed task 

At the second stage, Elad, the student who worked with the illustrating ID, started by 
activating the animation. Throughout the process, he stopped the animation several 
times. During each pause, Elad examined the runners’ respective positions and 
described the changes in speed.  Elad described each runners’ changes in speed with 
reference to their relative positions at specific moments. He mistakenly interpreted 
continuous change of speed by comparing relative positions. For example, he argued 
that passing another runner must have meant speeding up, whereas, in reality, the 
runner maintained a constant speed. To cope with the challenge, Elad resorted to a 
failed attempt at drawing graphs by himself to complete the diagram.  
Helena, working with the elaborating ID, started by activating the representation and 
tools in the ID.  She learned about the wide variety of options and representations 
available in the ID, but there was no evidence showing developing knowledge 
concerning mathematical models of motion processes. 
 Or, the student who worked with the Guiding ID, began his work by identifying a 
visual and kinematic conflict: while all seven dots moved on the graphs, one of the dots 
in the animation stopped and remained still. To resolve this conflict, he focused on 
discrete events much like Elad, using discrete events to match the motions described 
in the animation and graph extracting discrete motion characteristics such as: average 
speed, time and distance. He successfully matched the dots yet failed to resolve the 
conflict.  
At the third stage, in the group discussion, Or decided to open the conversation with 
the question which remained unsolved in his individual work (Fig. 3). He demonstrated 
the problem while activating the Guiding ID with which he worked. Elad and Helena 
were intrigued by the question and it became the goal of their collaborative work. They 
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began by familiarizing themselves with the options of the ID to resolve the conflict. 
When they were unsuccessful resolving the conflict using the Guiding ID and realized 
their diagrams were different, Helena suggested using representations and tools from 
her Elaborating ID to accomplish the goal they defined for themselves. Each time she 
suggested adding only one option from the Elaborating ID. They used it firstly to 
develop meaning regarding the motion presented in the Elaborating ID. Then, they used 
the ideas which they developed to resolve the conflict using the Guiding ID. The 
following presents the process which took place in the last step of their work in which 
they successfully resolved the conflict.  

 

 

 

 

 

Figure 3. “…has anyone solved it?” Figure 4. 2D and 1D (traces) graphs  

Following a suggestion from Helena, the students activated the animation with traces, 
resulting in the generation of a 1D graph of the motion (Fig. 4). While running the 
animation and generating of a 1D graph, they read the race from the traced motion 
using the size of the spaces between the traces as a gauge for speed: 

Helena: Press on traces. You see! Where they are stopping?  

Or:  Ahh… Yes, it describes every time point. 

Elad: It describes the steps, the distance of the steps. 

Helena: Here, you see the black starts [green] to advance more.  

Elad:  Pink starts with greater steps. If the traces describe the steps then here he starts to 
slow down as the time goes on and here it stays at the same speed. 

Helena: And the black [green] is really fast.  

Elad:  But in the end he speeds a bit. The black [green] almost doesn't, he starts with 
slowness, as the time goes on, his steps only enlarge.  

Helena: The red doesn't change… and the red… at the same speed 

Elad:  And the red, like I told you in the beginning, remember?  That the red is always at 
the same distance, at the same speed, the same steps. And the blue at the 
beginning until the middle at the same speed, same steps and towards the end 
he starts to slow down. 

Following the interpretation of the 1D graph as describing speed, the students checked 
whether this option was available in the Guiding ID. Once they verified it was not, they 
returned to work with the Elaborating ID. They began by interpreting the 2D graph 
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based on the 1D graph in static mode with which they became familiar. In the end they 
were able to describe the speed by using only the 2D graph. 

Table 2. Knowledge developments in the second and third stage 

Helena: Wait, in his [Or’s] diagram there is it [the traces]? Check....  It is interesting what 
happened with the pink in his [Or’s] diagram [Guiding ID]. 

Or: I think that this [the Elaborating ID] is the best. 

Helena: The red is running at the same speed. The black in the beginning runs really slow, 
and then he ups his speed more and more [they closed the 1D graph and 
continued work only with the 2D graph]. The blue runs really quick and then 
he starts to slow down. The pink runs fast, in the middle he slows down and 
then in the end again he runs fast. 

Once they have succeeded in interpreting the 2D graph in the Elaborating ID, they were 
able to resolve the conflict they had about the motionless process presented by the 
Guiding ID: 

Or: Yes. So, as the line is steeper, then his speed is... ehh... it is steep and… that's it, I see 
that in the end it turns into a straight line, plain, something like this. That 
means that he slowed the speed and even stopped in place. 

Elad: If this shows distance, then it means that the distance here does not change. 

The episode describes the students’ exploration concerning the description of speed in 
the mathematical models in four stages: (1) analysis of a dynamic mode of 1D graph 
which was linked to the running animation; (2) analysis of a static mode of 1D graph; 

Knowledge development 
concerning Characteristics of 
Motion and the elements of IDs 

In stage 2 In stage 3 

Elad with 
Illustrating ID 

Helena with 
Elaborating ID 

Or with 
Guiding ID 

Helena, Or 
and Elad 

Familiarize him/herself with the 
elements of the IDs 

P P P P 

Discrete Characteristics 
(Animation): average speed, time 
for distance, distance 

P 
 

P P 

Discrete Characteristics (Graph): 
average speed, time for distance, 
distance 

  
P P 

Continues Characteristics 
describing the motion process 
(Animation and Graph): speed, 
time, and distance  

   
P 
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(3) analysis of shapes of 2D graphs and (4) analysis of a motionless process represented 
by 2D graph. The Table 2 summarizes the changes which occurred in the students’ 
knowledge at the end of the process. We can see that they were able to analyze not only 
discrete characteristics but also continuous characteristics describing the motion 
process.   
The results showed that the development of knowledge occurred when the students 
engaged in a reflective activity concerning other members’ reasoning and instruments 
involved in the collaborative process. As a result of the collaboration, students 
generated an interactive text: they posed a new question, decided what component from 
what ID to bring to discussion, decided on the sequence between the components, 
defined the role of each component, and created a representation of the data. The 
analysis clarified that choosing and combining representations from similar tasks, 
which were designed as different IDs, reflected students’ personal choices to anchor 
their inquiry in the more familiar ones.  
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authoritarian proof schemes 
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In this paper, we analyze and discuss an empirical example related to students’ so-
called techno-authoritarian proof schemes, i.e. when digital technologies come to play 
the authority of establishing mathematical truth. The example stems from a pilot study 
concerning the interplay between the uses of original historical sources, in this case 
Euclid’s Elements, and digital technologies, here the dynamical software environment, 
GeoGebra. As part of the analysis, we make use of the constructs of justificational, 
epistemic and pragmatic mediations as analytical tools for planning the work with 
proofs and proving using digital technologies. We conclude that digital tools can 
indeed support students’ work with original mathematical sources, and that these 
sources further can support an explicit and common awareness of difficulties and 
possibilities while working with proofs and proving within these technologies, not least 
in trying to counteract the activation of students’ techno-authoritarian proof schemes. 
Keywords: Digital technologies, GeoGebra, proof scheme, techno-authoritarian 
proof-schemes and original mathematical sources 

THEORETICAL OUTSET 
In a context of using digital technologies (DT) in proofs in mathematics textbooks, 
Misfeldt and Jankvist (2018) suggest that DT may play the role of an authority, leaving 
students with the impression that the DT itself establishes mathematical truth and 
justification. They do so by relying on Harel’s and Sowder’s (2007) notion of a proof 
scheme, i.e. “A person’s (or a community’s) proof scheme consists of what constitutes 
ascertaining and persuading for that person (or community)” (p. 809). While 
ascertaining is the process employed to remove a person’s own doubts about the truth 
of an assertion, persuading is the process employed to remove other people’s doubts. 
Harel and Sowder distinguish three types of different proof schemes. Our usually 
accepted deductive proof scheme within mathematics, i.e. that one is convinced of the 
truth of a mathematical result by means of logical deduction in the form of conventional 
proofs etc. Next, empirical proof schemes that come into play when using specific 
empirical examples to justify general statements. Finally, external conviction proof 
schemes, which are manifested as: an authoritarian proof scheme, e.g., that something 
is held to be true because some authority (e.g. the textbook or the teacher) says so. 
Misfeldt and Jankvist (2018) coin the term techno-authoritarian proof schemes as 
referring to students being convinced by DT of the truth of a mathematical statement 
(theorem, etc.). Yet, they only suggest that this was likely to be the case, based on their 
analyses of the blackboxing (Buchberger, 2002) use of Computer Algebra Systems 
(CAS) in Danish mathematics textbooks.  
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Furthermore, Misfeldt and Jankvist (2018) distinguish between three types of 
mediations; justificational mediations, epistemic mediations and pragmatic 
mediations, when CAS is used in proving activities. These three types of mediations 
build upon theoretical constructs from the area of using digital technologies (e.g. 
Rabardel & Bourmaud, 2003). Jankvist and Misfeldt (2019) explain how these three 
types of mediations are connected to proofs and proving:  
Epistemic mediations are connected to proofs that explain (Hanna, 1990), as well as to 
deductive proof schemes (Harel & Sowder, 2007). Justificational mediations are 
related to proofs that only proves, i.e. without explaining. Furthermore, such 
mediations are connected to external conviction proof schemes. If statements are true 
because the CAS says so, CAS mediates a justificational process. Pragmatic 
mediations may be connected to one or more of the different proof schemes, including 
the empirical proof scheme, by providing necessary but laborious calculations and 
manipulations required for a certain argument. (p. 249) 
Jankvist and Misfeldt (2019) used these three types of mediations to analyze Danish 
upper secondary mathematics textbooks addressing the didactical effects of CAS 
assisted proofs herein. Justificational mediations are to some extent related to techno-
authoritarian proof schemes—or rather, they have a high risk to lead to such proof 
schemes. The risk is amplified, if students and teachers are not aware of this while 
using DT in their work with reasoning and proving. Jankvist and Misfeldt (2019) also 
refer to research literature (e.g. Dreyfus, 1999) emphasizing that students often do not 
know what a proof is and have not been told what counts as a mathematical 
argumentation. In this paper we present an empirical example from the first author’s 
ongoing PhD study. This study addresses the interplay between a use of primary 
historical (original) sources and DT (for other related examples, see also Balsløv, 2018; 
Chorlay, 2015; Jankvist & Geraniou, 2019; Jankvist, Misfeldt & Aguilar, 2019; Olsen 
& Thomsen, 2017; Thomsen & Olsen, 2019), here in the form of working with Euclid’s 
Elements and Dynamic Geometry Environments (DGS), more precisely GeoGebra 
(GG). We analyze this empirical example in the light of the three types of mediations 
related to techno-authoritarian proof schemes. The analysis to illustrates how working 
with the interplay between original sources and GG can be a potential way to address 
what a proof is and what counts as a mathematical argumentation⸺thereby trying to 
counteract the activation of techno-authoritarian proof schemes while working with 
GG.  

CONTEXT OF THE EMPIRICAL CASE 
The empirical case stems from the pilot study of the PhD. An expert teacher at a small 
school with only eleven 6th grade (12-13 years of age) students took place in the pilot 
study. The activities of the study were planned in collaboration with the teacher. Its 
outset was a previous teaching module, where both the teacher and the students had 
previously worked with one of Euclid’s propositions and GG (as analyzed by Olsen 
and Thomsen, 2017). In general, the students were quite familiar with GG. The pilot 
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study had a duration of two modules, 1x90 minutes and 1x180 minutes. The teaching 
sessions were a combination of classroom discussions, using a common projection 
screen, and group work of two-three students with a shared computer. At first, the 
teacher introduced the class to Euclid’s five postulates from Book I of The Elements 
[1]. Next, they were to work with Propositions 6 and 7 of Book IV: (6) To inscribe a 
square in a given circle; (7) To circumscribe a square about a given circle. The 
students were provided with the construction part of Proposition 6 and were asked to 
follow this in order to inscribe a given circle using GG. Afterwards they got the proof 
of Proposition 6. The student groups were asked to discuss the meaning of the different 
steps in the proof using their construction in GG. For Proposition 7, the students were 
only provided with its title, i.e. to circumscribe a square about a given circle. Following 
their previous work on Proposition 6, they were asked to, first, construct the situation 
of Proposition 7 in GG and explain how they did this, and, second, to formulate a proof 
of why it was indeed a circumscribed square about a given circle. Throughout this 
work, the teacher had discussions with each of the student groups. They also had 
several common classroom discussions based upon selected groups sharing their work 
at the projection screen. Finally, the students had to answer questions about proofs and 
proving in general.  

THE EMPIRICAL CASE 
The empirical case is based on the students’ work with Proposition 7. In general, the 
students found this work somewhat difficult. The group of students that we are 
concerned with here encounter several difficulties, and they were actually still in doubt 
about their proof when presenting it. They base their proof on their construction in GG. 
They rely on GG’s functionality of producing two perpendicular lines. When 
presenting their proof in the classroom, the following conversation took place: 

Student 2:  If EG is of equal length of DH, as the diameter of the circle, then EG, AG, 
CE… 

Teacher:  EG? 

Student 1:  [points to the figure] AG, CE… 

Student 2:  And CA are the same length, if they all are equal to DH, then it must mean 
that they all are of equal lengths. 

Teacher:  But are they?  

Student 2:  Yes. 

Teacher:  That is what you needed to show they are. If they are, then it is true. […] Do 
you see what I’m getting at? 

Student 2:  Yeah, but that was the same for them. [the previous group that presented] 

Teacher:  No, they mentioned the thing with the right angles. 

Student 2:  But we were also going to do that. 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

486 

Teacher:  Okay. Let’s continue then. 

Student 2:  We just haven’t reached that part yet.  

Teacher:  Okay. Go ahead. 

Student 2:  Yeah well, but I just wrote something… 

Teacher:  Let’s try. Let’s try. 

Student 2:  [...] [pointing to the screen] In our construction, when we made them, then 
they intersected like this, perpendicularly. So, the corners must be the 90. I 
don’t know. I just wrote something…  

Teacher:  [Directed to the class] It was a nice try.  

Student 2:  I was going to ask you, you know. But you started… [the classroom 
presentations] 

Teacher:  It was a good attempt. Student 2 says that in the construction, they have 
constructed it so that [...] the two lines that meet in C were perpendicular by 
asking GeoGebra to make sure of this. Having done it like that they know 
that they are perpendicular. I don’t know, if I think it is a ‘bad’ argument, 
because what you say is true. You did use GeoGebra. And in the way you 
constructed it, it was perpendicular. So, it must also be perpendicular now. 
You used GeoGebra to argue for this, the way you constructed it. It’s alright.  

It seems as the students are in doubt if their argumentation counts as a proof and that 
they find it somewhat confusing, when they end up arguing with GG as the authority. 
The teacher tries to make them see that they have constructed the proof by relying on 
a functionality in GG. After the common presentations, all groups have a little time to 
finish their work in GG and their written poofs. Figure 1 presents a screenshot of the 
film recording of the group’s computer screen, while they are working with the task 
(the two constructions at the bottom of the screen are connected to the students’ work 
with Euclid’s Proposition 6, Book IV) and their final written proof.  
Right side of Figure 1 reads:  
“(The sides) -EG is equal to DH, which is the diameter, and when EG, AG, CE & CA 
are equal to DH, then it means that all the sides of the quadrilateral are of equal length. 
(The angels) -When we in our construction have made sure that the lines that intersect 
in point C intersect perpendicularly, then the angle in the triangle at point C must be 
90 degrees. The same is true for points E, G, A & C.” 
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Figure 1. Left: The students’ construction in GG. Right: The students’ attempt at a 
proof for Proposition 7.  

DISCUSSION 
Euclid’s proof for Proposition 7, following to some extent that of Proposition 6, 
involves, as the teacher insinuates, a long line of arguments before we are able to 
deduce that DIB is a right angle. Following this, it is argued that DBC is a right angle, 
and hence that AGEC is right-angled. Since AGEC was previously shown in Euclid’s 
proof to also be equilateral, it is thus a square. Hence, a square has been circumscribed 
about a given circle.  
The students, however, ‘shortcut’ the proof by applying GG’s functionalities of making 
lines of equal lengths and making perpendicular lines. From a strictly deductive point 
of view, they simply do not ‘clean up’⸺or at least they leave it to GG to do this. And 
it is in this sense, we believe, that we witness something where GG served as a 
justificational mediator, which—if it was not for the students’ work with the previous 
proposition and the teacher’s support and questions to their argumentation—could 
have lead to the students’ activation of techno-authoritarian proof schemes. In one way, 
you can say that the ‘authority’ is embedded in the way GG is developed. This is a 
challenge in itself, when working with the interplay between original historical sources 
such as Euclid’s Elements, and digital technologies (Jankvist & Geraniou, 2019; Olsen 
& Thomsen, 2017). From a discursive point of view (Sfard, 2008), this is also an 
example of viewing the original source and the digital technology as two different 
discourses (Olsen & Thomsen, 2017). The  pilot study example indicates that if we 
want to support students’ development of mathematical reasoning and proving, while 
working with the interplay between historical sources and digital technologies, we 
might have to take into account more specifically some of the embedded ‘discourses’ 
of GG, e.g. Euclid’s geometry (Thomsen, in review). More precisely, it could be an 
idea to have the students investigate both the language and the method of building a 
deductive mathematical proof in, say, one of Euclid’s propositions, and at the same 
time articulate which options the GG functionalities provide in relation to this. Such an 
approach might also support epistemic mediations and help the students realize what 
mathematics the GG ‘buttons’ have blackboxed (Lagrange, 2005), and in that way 
assist in counteracting activation of techno-mathematical proof schemes.  
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If more time had been available, the teacher could have organized a common discussion 
in the classroom putting Harel’s and Sowder’s (2007) concepts of ascertaining and 
persuading into play. The students could have discussed why the presenting group was 
not convinced about their own proof, and whether their classmates were convinced or 
not. This could have lead to a discussion of relating the fact that when reasoning and 
proving using GG, students probably will encounter similar challenges, where GG 
serves a pragmatic or a justificational mediation process. Even if the students do agree, 
and to some extent accept to rely on the functionalities of some of the GG buttons, they 
might do so in a more reflective way, not only in a techno-authoritarian manner. 
Working with the interplay between original sources and DT in this way have a 
potential to foster reflective discussions in the classroom about what count as 
mathematical proofs and argumentations. The students could also have used the 
dragging function in GG to investigate what happens to the length and the angles if 
some of the points are moved. In this way, GG can serve as a pragmatic or epistemic 
mediator depending on how the students reflect on the visualization of the examples.   
On the other hand, if we look at the empirical example from the perspective of the three 
types of mediations, we observe that things may be more complex than merely an 
activation of techno-authoritarian proof schemes. Since the presented example is based 
on working with proving in the DGS of GG, it makes the starting point of using the 
three types of mediations as an analytical tool somewhat different than using them in 
addressing the didactical effects of CAS. The users of GG are in many ways offered a 
visual support when proving. Besides this, before making their own proofs, the students 
had worked with Euclid’s Proposition 6, Book 4, which made them aware of the 
deductive way of proving. This might be the reason why the group was not convinced 
by their own proof before presenting it to the rest of the class.  
In the empirical example, the students’ use of GG actually can be seen as all three types 
of mediations. They started using GG as a pragmatic mediator, which turned into 
justificational mediations in an attempt to use it as an epistemic mediator. Allow us to 
explain. The students constructed a circumscribed square about a given circle by using 
the functionalities of GG and based their proof on that construction. Thereby it might 
be seen as they in one way used an empirical proof scheme, while they constructed a 
figure with equal lengths of the sides of the square and the diameters of the circle. This 
can be seen as a proof building on an empirical example of how to construct a 
circumscribed square about a given circle. Hence, the students’ use of GG turned out 
to be as a justificational mediator. To some extent, the students ended up reasoning that 
the corner was right angled and the sides had equal length, because they had 
constructed it that way and GG said so. Their doubt concerning if this was a proof in 
some way show that they might have been aware of using GG as an epistemic mediator, 
i.e. they wanted to formulate a proof that explains (Hanna, 1990).  
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CONCLUSION 
Based upon an empirical example, we have emphasized the importance of teachers 
being aware not to support students’ activation of techno-authoritarian proof schemes 
when working with digital technologies. This might be a struggle in many classrooms 
when using GG, for example, because Euclidian geometry is embedded in the way the 
software is developed (Thomsen, in review). This implies that we should consider 
defining some didactical guidelines for working with proofs and proving in digital 
environments. Digital tools can support students’ work with original mathematical 
sources, and these sources can further support an explicit and common awareness of 
difficulties and possibilities while working with proofs and proving within these 
technologies, not least in trying to counteract the activation of students’ techno-
authoritarian proof schemes.  

NOTES 
1. E.g. see https://mathcs.clarku.edu/~djoyce/java/elements/bookI/bookI.html #posts 

REFERENCES 
Balsløv, C. U. (2018). The mutual benefits of using CAS and original sources in the 

teaching of mathematics. Master’s Thesis. Copenhagen: Danish School of 
Education, Aarhus University. 

Buchberger, B. (2002). Computer algebra: The end of mathematics? ACM SIGSAM 
Bulletin, 36(1), 3–9. 

Chorlay, R. (2015). Making (more) sense of the derivative by combining historical 
sources and ICT. In E. Barbin, U. T. Jankvist, and T. H. Kjeldsen (Eds.): History 
and Epistemology in Mathematics Education – Proceedings of the Seventh 
European Summer University, pp. 485–498. Copenhagen: The Danish School of 
Education, Aarhus University. 

Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6–13. 
Harel, G. & Sowder, L. (2007). Toward comprehensive perspectives on the learning 

and teaching of proof. In Lester Jr, F.K. (Ed.). Second Handbook of Research on 
Mathematics Teaching and Learning (pp. 805–842). Charlotte, NC: Information Age 
Publishing. 

Jankvist, U. T. & Geraniou, E. (2019). ICT as a way of making original sources more 
accessible to students. In E. Barbin, U. T. Jankvist, T. H. Kjeldsen, B. Smestad and 
C. Tzanakis: Proceedings of the Eight European Summer University on the History 
and Epistemology in Mathematics Education, Oslo, Norway, July 2018. Oslo: 
METU. 

Jankvist, U.T. & Misfeldt, M. (2019). CAS assisted proofs in upper secondary school 
mathematics textbooks. REDIMAT – Journal of Research in Mathematics 
Education, 8(3), 232-266. doi: 10.4471/redimat.2019.3315 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

490 

Jankvist, U. T., Misfeldt, M. & Aguilar, M. S. (2019). Tschirnhaus’ transformation: 
mathematical proof, history and CAS. In E. Barbin, U. T. Jankvist, T. H. Kjeldsen, 
B. Smestad, and C. Tzanakis: Proceedings of the Eight European Summer 
University on the History and Epistemology in Mathematics Education, Oslo, 
Norway, July 2018. Oslo: METU. 

Lagrange, J. (2005). Using symbolic calculators to study mathematics: The case of 
tasks and techniques. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The Didactical 
Challenge of Symbolic Calculators: Turning a Computational Device into a 
Mathematical Instrument (pp. 113–135). New York, NY: Springer. 

Misfeldt, M. & Jankvist, U. T. (2018). Instrumental genesis and proof: Understanding 
the use of computer algebra systems in proofs in textbooks. In M. Tabach, H-S. 
Siller, L. Ball, P. Drijvers, S. Ladel & C. Vale (Eds.). Uses of technology in primary 
and secondary mathematics education: Tools, topics and trends, (pp. 375–385). 
Cham: Springer. ICME-13 Monographs https://doi.org/10.1007/978-3-319-76575-4 

Olsen, I. M. & Thomsen, M. (2017). Matematikhistorie og it i 
matematikundervisningen i grundskolen. (Unpublished master’s thesis). 
Copenhagen: Danish school of Education, Aarhus University. 

Rabardel, P. & Bourmaud, G. (2003). From computer to instrument system: a 
developmental perspective. Interacting with Computers, 15(5), 665–691. 

Sfard, A. (2008). Thinking as communicating: Human development, the growth of 
discourse, and mathematizing. New York: Cambridge University Press. 

Thomsen, M. (in review). Working with Euclid’s geometry in GeoGebra – 
experiencing embedded discourses. Submitted paper for the conference Norma 20 

Thomsen, M., & Olsen, I. M. (2019). Original sources, ICT and mathemacy. 
Proceedings of the Eleventh Congress of the European Society for Research in 
Mathematics Education (CERME11, February 6-10, 2019) (pp. 2060–2061). 
Utrecht the Nederlands: Freudenthal Group & Freudenthal Institute, Utrecht 
university and ERME. 



 

Proceedings of the 10th ERME Topic Conference MEDA 2020 - ISBN 978-3-9504630-5-7 
 

 

491 

Digital curriculum resources’ connectivity:  
an attempt to conceptualization 

Hendrik Van Steenbrugge1, and Janine Remillard2 
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Pennsylvania, USA 
We attempt to conceptualize digital curriculum resources’ (DCRs) connectivity feature 
by relying on the frameworks of boundary crossing/boundary objects and 
multimodality. We exemplify our framework on three example DCRs from Flanders 
and the USA and consider impact of connectivity on social relations and issues of 
control and empowerment. 
Keywords: connectivity, boundary object, multimodality, social relations. 

CONNECTIVITY: A MODE AS BOUNDARY OBJECT  
Connectivity is a characteristic feature of digital curriculum resources [1] (DCRs) 
(Gueudet, Pepin, Restrepo, Sabra, & Trouche, 2018). Yet, its conceptual basis is 
underspecified. Therefore, in this contribution, we aim to conceptualize DCRs’ 
connectivity, and do so by relying on the frameworks of boundary crossing and 
boundary objects (Akkerman & Bakker, 2011) and multimodality (Bezemer & Kress, 
2008).  
Akkerman and Bakker (2011) describe a boundary as an intersection of sociocultural 
practices, leading to discontinuity in action and interaction. It is in the dialogic nature 
of boundary crossing that learning potential resides. Boundary objects, then, are 
“artefacts doing the crossing by fulfilling a bridging function (Star, 1989)” (Akkerman 
& Bakker, 2011, p. 133). Here, we understand DCRs’ connectivity as a boundary 
object: it is an artefact taking up a bridging function. Along this line of thought, 
connectivity is a decisive mode, distinguishing DCRs from their printed counterparts. 
Relating primarily to the framework of boundary crossing and boundary objects, we 
propose four modal resources that make up the mode of connectivity: the domains 
between/within which connections are made, the nature, the visibility, and the direction 
of the connection (See Table 1). 
In their review, Akkerman and Bakker (2011) noticed that boundaries are encountered 
within and between the domains of work, school, and everyday life. Relating to DCRs, 
domains that can be thought of are school, everyday life, a virtual world, the content 
(e.g., mathematics), the publishing enterprise, and policy. People and objects play a 
central role at boundaries and boundary crossing, so both people and objects are central 
to a boundary’s nature (Akkerman & Bakker, 2011). Hence, we understand the nature 
of the connection to be a second modal resource. In the context of this study, people 
can be thought of as the teacher, students, colleagues at school, curriculum designers, 
and family. Objects can be material and semiotic resources, content strands, and units 
within a resource. A third modal resource is the visibility of a connection. Akkerman 
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and Bakker relate to Williams and Wake (2007) to describe that boundary objects, if 
unnoticed, might function as black boxes, and that the opening up of these boxes can 
make these objects as sites of learning potential. From this line of thought, it follows 
that the visibility of connections is an important feature, as invisible connections might 
hinder that a DCR’s connectivity functions as a boundary object. Adler (2000) argues 
that resources need to be both visible and invisible: they need to be visible to be noticed, 
and then need to become invisible or transparent to let the mathematics shine through. 
As this process of transparency is not a feature from the resource per se, but from the 
use of the resource (Adler, 2000), this is an issue we don’t explore in this contribution. 
Instead, the modal resource of visibility captures whether or not connections are made 
explicitly visible by the DCR’s design. Direction of the connection is the fourth modal 
resource. Yerushalmy (2014) describes how digitalization has challenged the 
traditionally assumed role of authority that goes with the printed textbook. DCRs can 
have authority over its users, but they can also allow for more agency on the part of 
their users (e.g., Bezemer & Kress, 2008).  
Domain(s) of connection 
Connections within and/or between the domains of school, everyday life, a virtual 
world, mathematics as a discipline, publishing enterprise, policy.  
Nature of the connection 

People Teacher, students, colleagues (e.g., care teacher, principal), family 
members, curriculum authors. 

Objects  Material resources: connections between resources (e.g., connection 
between print and digital resource, between two or more digital 
resources, between DCR and official curriculum). 
Semiotic resources: connections between different representations 
(e.g., link between a static visualisation of a relationship to a dynamic 
interactive visual). 
Content domains/mathematical topics: connections within and 
between different domains (O’Halloran, Beezer, & Farmer, 2018) 
(e.g., connection to previous learned theorems, connecting geometry 
content to fractions content).  
Structure of material resources: connections between different frames 
or units of the resource (Bezemer & Kress, 2015) (e.g., connections 
between/within chapters and lessons). 

Visibility of connection 
Invisible  Connections that are not transparent to the user (Usiskin, 2013).  
Visible  Connections that are accessible to the user (O’Halloran et al., 2018)    

Direction of connection 
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Resource ¬ 
other 
resources/ 
people 

The connection is primarily focused toward the resource: other 
resources and/or people are connected to the resource (e.g., some 
DCRs allow teachers to add links and documents to a digital teacher’s 
guide). 

Resource ® 
other 
resources/ 
people 

The connection is primarily reaching out from the resource: the 
resource is connected to other people and/or resources (e.g., a DCR’s 
learning trajectory can be designed in such a way that it becomes a 
tool of students’ learning). 

Resource « 
other 
resources/ 
people 

The connection goes in both directions, connecting people/other 
resources to the resource, while it simultaneously connects the 
resource to other people and resources. 

No direction The connection does not specify or impose a specific direction. 

Table 1: Four modal resources that make up the DCRs’ mode of connectivity 

We will exemplify the proposed framework on three examples of DCRs, but first, we 
describe each of these three DCRs in brief. 

THREE EXAMPLES OF DIGITAL CURRICULUM RESOURCES 
Pepin, Gueudet, Yerushalmy, Trouche, and Chazan (2015) distinguish three types of 
DCRs. An integrative e-textbook is most closely related in nature to a printed 
curriculum resource. It typically includes a digital version of the printed resources, but 
also includes some additional adds-on, such as links to the digital world outside the 
DCR and the possibility to add own materials. An evolving e-textbook is a DCR that 
is constantly developing, typically by a core community of users. The interactive e-
textbook is a toolkit based on a set of learning objects that students proceed through 
according to their own ability and interest. 
The three DCRs included in this study are examples for the first and third type of DCR 
as distinguished by Pepin et al. (2015). Bingel, developed by VAN IN publisher in 
Flanders, Belgium, and the digital environment of Everyday Mathematics, developed 
by the University of Chicago, USA and published by McGraw-Hill are exemplary for 
integrative e-textbooks. Math-Mapper, developed by Scaling Up Digital Design 
Studies at North Carolina State University, USA, is an example of an interactive e-
textbook. We provide a description of these three DCRs below. Given space 
restrictions, these descriptions are incomplete, but aim to help understanding how these 
resources fit in the abovementioned typology. 
Bingel is a digital platform that includes a teacher version and a student version. The 
teacher version includes a planner, which helps to organize lessons according to a 
weekly schedule defined by the teacher. Bingel will then propose to order the lessons 
according to the sequence in the printed resource, but allows teachers to reorder the 
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lessons. In a lesson mode, Bingel lists the specific lesson goals, goals of the official 
curriculum, needed materials and lesson guide in a similar way as in the printed 
version, but also allows to insert notes and links, and add or delete goals. It also 
provides lesson slides to be projected on an interactive whiteboard, such as digital 
versions of the student textbook pages, with the feature to record the notes made during 
class. Bingel has a feature that allows teachers to track student progress when solving 
exercises digitally. Progress can be monitored during the lesson, and outside of the 
lesson on a class, student or task level. Bingel also provides an overview of the goals 
achieved and the goals still to be achieved during a grade. It is adaptive to students in 
that it provides exercises for individual students based on their actual performance. 
Teachers can then see whether the difficulty level during a series of exercises went up, 
down, or stayed the same. Likewise, upon completion of a test and after the teacher 
submitted student scores, Bingel suggests a series of exercises per student based on 
their test score. It does not provide a rationale, however, about the grounds on which it 
selected specific exercises for specific students. Bingel also includes features to support 
teacher collaboration and additional student differentiation, but schools have to pay 
additionally for these tools. Also, Bingel allows the school principal to view a class’s 
progress, and to compare the progress among classes. The student version includes a 
virtual world in which a class lives on an island. Students can choose an avatar, which 
they can modify depending on the money they earned. They earn money by means of 
solving exercises on their class Island. There is also a feature that allows students to 
take a picture of a page in their paper version curriculum resource, which then allows 
students to do more related exercises on their digital island. 
The Everyday Mathematics digital environment has several features similar to Bingel. 
For instance, it also allows teachers to add notes and documents to the digital version 
of the teacher’s guide. It differs, however, in at least two significant ways from Bingel. 
Everyday Mathematics visualizes the learning sequence so that teachers can check how 
the Common Core State Standards (CCSS) are addressed and built up over lesson 
activities, lessons, and units for a complete grade level. In contrast to the static learning 
sequence in the printed version, teachers can scroll over the content across an entire 
grade. Likewise, in the digital lesson mode, teachers can click on goals of activities, 
which brings them then to a spiral to which this goal belongs to, which supports 
teachers’ understanding of the function of a particular activity in relation to the spiral. 
Another feature that distinguishes Everyday Mathematics from Bingel is the 
extensiveness of the virtual community where teachers can connect with other teachers 
and with the curriculum developers. The platform allows teachers to share materials 
and videos, and initiate and participate in discussions, in which curriculum developers 
can also join. The platform also provides professional development modules, most of 
which require an additional cost. 
Math-Mapper is an example of an interactive e-textbook. It is designed for middle 
school mathematics and addresses four fields of topics, which are broken down into 
big ideas, clusters, and constructs. The clusters and constructs are structured according 
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to a learning trajectory. All of this is highly visualized: students and teachers can zoom 
in on the map and see how big ideas are made up of clusters, and how clusters are made 
up of constructs. The order of the constructs indicates the order in which these 
constructs are supposed to be learnt, and zooming further in on the constructs visualizes 
a learning trajectory per construct. The learning trajectory is coupled to the CCSS and 
typical misconceptions. Math-Mapper is used both by students and teachers. It includes 
a diagnostic assessment tool, which allows students to visually situate their 
performance in relation to the learning trajectory. Likewise, it also allows the teacher 
to track performance of a class and students in relation to the learning trajectories in a 
highly visual manner. Math Mapper also contains a planning tool, which helps the 
teacher to plan lessons (and adjust planning) in accordance to the big ideas. Based on 
the planning set by the teacher, students can practice certain constructs and check their 
performance by means of taking an assessment. While practicing, students can follow 
the order of exercises as suggested by Math-Mapper or they can decide themselves 
what level in the learning trajectory they want to work with. The connection between 
the exercises and the learning trajectory is highly visible so that students easily can 
monitor their progress. 

EXEMPLIFYING THE PROPOSED FRAMEWORK AND CONSIDERING 
IMPACT OF CONNECTIVITY ON SOCIAL RELATIONS 
The specific configuration of modes and modal resources of curriculum resources has 
implications on the social relations at stake (Bezemer & Kress, 2008, 2015; 
Yerushalmy, 2014). In classroom teaching, the social relations are between the teacher, 
students, content, and artefact (Rezat & Sträßer, 2012). Here, we exemplify how the 
proposed framework (See Table 1) can help to analyse the mode of connectivity of the 
three example DCRs. We will also relate the specific configuration of the mode of 
connectivity to implications on social relations. More in particular, we will discuss how 
DCRs’ connectivity a) configures the social relations between teacher, students, 
artefact and content, b) expands the web of social relations, and c) can in-source or re-
source teachers.  
Configuring typical social relations  
As a connection (or boundary object), a learning sequence can bridge between multiple 
domains. For instance, it bridges between the domains of content, school, policy, and 
publishing enterprise when DCRs are being developed. Here, we focus on the social 
practice of classroom teaching, and focus on the connection between the domains of 
content and school. As to the nature of connection, the learning sequences embedded 
in the three selected DCRs connects content domains and/or mathematical topics to 
each other, but also to students, the teacher and the DCR. Though, as we describe 
below, the visibility and direction of this type of connection differs across the three 
DCRs, having a bearing on the social relations at stake. 
Bingel adjusts the difficulty level of exercises based on students’ individual 
performance. Its adaptivity is based on situating students’ performance in relation of a 
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thought sequence, but the sequence itself is not made visible to students and teacher. 
The direction of the connectivity goes from the students and teacher to Bingel. The 
relationships Bingel – students, and Bingel – teacher are affected.   
In contrast to Bingel, the learning sequence in the digital environment of Everyday 
Mathematics is made visible to the teacher. Teachers can trace activities to their 
locations in the learning sequence and can see how a sequence spreads out over a 
number of activities or lessons. The connectivity goes primarily toward the resource: 
the learning sequence helps the teachers to understand how content in the resource is 
structured. In helping the teacher to understand how the curriculum resource is 
sequenced, the teacher is supported to make thoughtful modifications, which indicates 
that this connectivity also has the potential to go from the resource to the teacher. 
Particularly the relationship Everyday Mathematics – teacher is affected. 
Math-Mapper’s learning sequence is the most visible of the three DCRs. Contrary to 
Everyday Mathematics, the visible sequence also connects to the students. The 
sequence proposes a pathway, both for students and teachers, which can be adjusted 
from the students’ or teacher’s side. This indicates that the social relation between 
Math-Mapper and students, and Math-Mapper and teacher goes in both directions. 
Possibly, because the learning sequence becomes a tool for deliberative use by both 
students and teacher, the social relation between students and teachers, going in both 
directions is also stressed. The relationships Math-Mapper – students, Math-Mapper – 
teacher, and students – teacher are affected. 
Expanding the web of social actors 
A distinguishing feature of Bingel and Everyday Mathematics’ digital environment is 
the possibility to connect to colleagues such as other grade teachers, care teachers, and 
the school principal; parents; and curriculum developers. These are people located in 
the domains of school, everyday life, and the publishing enterprise. Although 
relationships with these social actors can also exist in a non-digitalized environment, 
the connectivity of DCRs provides new opportunities. Bingel, for instance, has a 
feature that allows parents to track their child’s results and performance. It has a similar 
feature so that school principals can track progress of classes. The Everyday 
Mathematics digital community platform allows teachers to exchange information such 
as video recorded lessons with one another, and it is also a platform where curriculum 
developers can interact directly with teachers. This type of connection, and the 
visibility of these connections offers unprecedented ways to expand the web of social 
actors in relation to teaching and learning mathematics. 
In-sourcing versus re-sourcing 
Our analysis of the connection learning sequence, discussed above, reveals that the 
direction of the connection differs among the three DCRs. In Math-Mapper, the 
connection is bidirectional between both resource and students, and resource and 
teacher. In Everyday Mathematics, it has the potential to go in both directions, but 
mainly goes from the teacher toward the resource. As for Bingel, the direction goes 
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toward the resource as well. We see this pattern of direction toward the resource also 
in the adaptivity connection. Here we focus primarily within the school domain and 
zoom in on the teacher and the resource to describe the nature of adaptivity. In Bingel 
and Everyday Mathematics, teachers can make modifications and add materials and 
notes, but the main idea is that the teachers adhere to the resource’s existing structure. 
In other words, teachers are sourced into the DCR. Math-Mapper, on the other hand, is 
designed to accommodate to a teacher’s existing teaching practices and in such a way 
allows teachers to re-source their practice. The difference between in-sourcing and re-
sourcing reflects Gueudet et al.’s (2018) idea that some DCRs have “a connectivity 
directed towards the publisher’s productions”, while other DCRs have “a more 
networking kind of connectivity” (p. 556).  

INSTRUMENTS OF CONTROL AND EMPOWERMENT 
Earlier, we wrote that learning resides in the dialogic nature of boundary crossing. 
Akkerman and Bakker (2011), relating to Oswick and Robertson (2009) also warn, 
however, that boundary objects can possibly reinforce power structures and 
occupational hierarchies. Looking back holistically on the three issues described in the 
previous section, we see this playing out to different extents in the connectivity of the 
three example DCRs. The invisibility and directionality in the learning sequence from 
teacher and students toward Bingel stresses the position of Bingel over the teacher. 
Providing parents and the principal opportunities to follow and compare progress may 
potentially empower these social actors over teachers. Characteristic of the integrative 
nature of Bingel, teachers primarily are sourced into the resource. This sketches a web 
of social relations in which other actors than students and teacher are empowered, 
potentially leading to more a submissive role for teachers. 
Everyday Mathematics has an integrative nature as well, but by visualizing its learning 
sequence, this DCR supports teachers to take a more active role in the expanding web 
of social relations. Math-Mapper, due to the visibility of its learning sequence and 
connectivity toward students and teacher, functions as a tool to empower students as 
owners of their own learning and teachers and curriculum resources to be active and 
powerful partners in this process. These reflections suggest that there is value exploring 
how DCRs’ connectivity impacts issues of control and empowerment.  

NOTES 
1. Digital curriculum resources (DCRs) refer to digital resources that are curricular in nature, in that 
they contain a scope and sequence and are designed to support instruction over time. 
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