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ABSTRACT 

Title of Dissertation: Nonlinear Innovation Identification for Ship Maneuvering 

Modeling via the Full-Scale Trial Data 

 

This research involves a 4-DOF ship maneuvering identification modeling with 

full-scale trial data. In order to avert the inversion of the multi-innovation matrix in 

the traditional multi-innovation least squares (MILS) algorithm, based on the 

recognition concept new multi-innovation least squares (TMILS) algorithm to 

identify the innovation of the stochastic gradient hyperbolic tangent nonlinearity. 

And a lot of work and efforts have been made to ensure the consistency and final 

convergence. Therefore, combine relevant data and statistical indicators derivation a 

more effective hyperbolic tangent nonlinear innovation identification scheme to 

identify ship maneuvering motion. Compared with the previous results, this design 

scheme has significant computational advantages, requiring fewer parameters, higher 

accuracy, faster identification speed and higher computational efficiency. At the same 

time, an example is given to illustrate the effectiveness of the algorithm, especially 

for identification applications with full-scale trial data. 

 

KEY WORDS: Ship maneuvering model, nonlinear innovation, identification 

modeling, full-scale trial. 
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CHAPTER 1: INTRODUCTION 

1.1 Background Information 

Since the 21st century, economic globalization, capital internationalization and the 

rapid development of technologies have not only cast a profound influence on world 

economy and trade, but also brought many opportunities and challenges. Marine 

transportation is widely used all over the world owing to its superiority on capacity 

and economy [1-3]. 

 

As we all know, maritime transportation has always been one of the most effective, 

safe and environmentally friendly long-distance transportation methods for bulk 

cargoes. It is capable of undertaking more than 80% of the world's trade volume. And 

no trade between continents can be realized without the international maritime 

transportation. The shipping industry will become the key to the globalized economy 

for its crucial role in today's international trade. Therefore, safety, green and 

efficiency are particularly important for the marine shipping industry. 

 

In the field of ship maneuvering modeling, there are two purposes for the built of 

ship motion mathematical model. One is to establish a ship maneuvering simulator. 

That could provide a basic simulated platform for studying the performance of ship 

maneuvering motion and the training of seafarers. The other is to directly design the 

controller to implement the automation task for marine ships, e.g. the course-keeping 

task, the path-following one etc. Actually, the ship maneuvering mathematical model 

is mainly separated into two parts for the nonlinear mathematical model and the 

linear one. The former is employed to design of ship maneuvering simulator and to 

train and optimize the nonlinear controller such as neural network controller and 
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fuzzy controller. While, the latter one is to simplify the closed-loop performance 

simulation and can be systematically regarded as the basis of the linear controller, e.g. 

PID, LQ, LQG, H robust controllers
[4]

. Thus, the ship maneuvering modeling As a 

critical and essential topic in the relevant research fields, the ship maneuvering 

modeling involes the marine cybernetics, ship design evaluation and marine traffic 

simulation. Especially, the 4 degrees of freedom (DOF) motions have a close 

relationship with the analysis of ship maneuverability and navigation safety. 

Motivated by the abovementioned analysis, we should make more efforts to enhance 

the accuracy of ship maneuvering modeling. That could promote the smooth 

implementation of the work of IMO's (international maritime organization) 

philosophy, i.e. “Safe, Secure and Efficient Shipping on Clean Oceans” 
[5]

. 

1.2 Review of Previous Research 



 

11 



 

12 

1.2.1 The Development of Ship Maneuvering Mathematical Model  

The core basic problem of ship maneuvering identification lies in its mathematical 

model of ship motion. The research can date back to the work of Davidson and Schiff 

in 1946. This research considers the relation between the transverse translational 

motion and the heading change motion of the ship, for the first time proposes a linear 

equation describing the motion of the ship's operation and has been used and 

developed up to now. Around the 1970s, with the emergence of super large oil 

tankers and the development of advanced ship motion controllers, Modern control 

theory, advanced measurement technology and system identification theory have 

further promoted the mathematical model of ship motion development. Research 

work, achieved a lot of excellent results. From a methodology point of view, the 

research of ship motion mathematical model can be divided into two branches [14]: 

mechanism modeling and identification modeling. However, regardless the historical 

development or the theoretical development maturity, the research on identification 

modeling is based on the results of mechanism modeling to some extent. The 

combination of advanced identification technology and mechanism modeling 

structure is also a mainstream trend in the development of current ship motion 

mathematical models. 

1.2.2 The Identification Modeling for Ship Maneuvering Motions 

There are two main methods used in ship maneuverability prediction in the previous 

mathematical models: one is Abkowitz's [16] model, also called Global Model, in 

this model, the hydrodynamic force acting on the ship-propeller-rudder system is 

considered as a whole and the hydrodynamic expression is expanded in Taylor series 
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near the equilibrium point of the motion state of the ship-propeller-rudder system. 

The fluid dynamics acting on the hull are restricted by the Taylor series at the 

equilibrium position. The other is the MMG model 
[19]

, also called the separation 

model, which on the basis of the former model, decomposes the hydrodynamic force 

into three parts acting on the hull, propeller and rudder, the interaction among hull, 

propeller and rudder is fully considered. Compared with the holistic mathematical 

model, the separated mathematical model is established based on deep theoretical 

analysis and extensive experimental research, and pays more attention to the wide 

effectiveness in different ship motion states. The Abkowitz model and the MMG 
[19]

 

model are also called as hydrodynamic models. In addition to the hydrodynamic 

model, in the study of ship maneuvering and control also use a response model. This 

mathematical model reflects the response of the ship to the turning motion of the 

steering wheel and is mainly applied to the design of the autopilot, but it can also be 

applied to simple control motion prediction. 

 

In recent years, the research achievements of domestic and foreign scholars in the 

modeling of ship motion mechanism are common occurrence. Whether it is "holistic 

type" or "separation type", they are only different from the idea of analyzing the 

operation mechanism of the system. At present, there are three kinds of parameter 

acquisition methods in ship motion model: constraint model test, empirical formula, 

hydrodynamic calculation [20]. Identification modeling is the theory and method to 

study the system mathematical model based on the measurement data of ship model 

or the full-scale ship test. In 1980, Abkowitz constructed a nonlinear ship motion 

mathematical model by means of extended Kalman filter technology. And the basic 

data is from the full-scale ship test [18]. In this research, the linear hydrodynamic 
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derivatives were identified by employing the 10/10°Z test data. While, the nonlinear 

hydrodynamic ones were based on the 35° tuning maneuvering test. Then the 

identification results are used to predict and compared with the test results of the 

constrained ship model pool to correct the related model parameters. Besides, the 

research test object was ESSO large tanker, a perfect sea trial in the Gulf of Mexico 

in 1977，Eight days, $100,000, It is the largest maritime test in the field of ship 

modeling and design. It is a significant impact to the related research work. 

 

In recent years, with the maturity of modeling research of ship motion mechanism 

and the research of the defects of the above three methods of obtaining ship 

hydrodynamic, researchers have gradually shifted their focus to the research of 

identification modeling and have obtained some meaningful results. Under the 

framework of the MMG model, the extended Kalman filter is used to test the Z-shape 

of the ship, the data of rotary test and large angle Z-shaped test (using theoretical 

simulation test) are compared and identified. The significant conclusion can be 

referred by the authors that it is more accurate to utilize the large angle zig-zag test 

data in the identification experiment for marine ships. Furthermore, Hyeon explores 

model identification technology in aviation. Ebm (Estimation-Before-Modeling) in 

the ship motion identification method [22]. Zou Zaojian has applied the SVM 

method to ship model identification for the first time and has achieved many useful 

results [23-24]. However, in these studies, most of the identification results are based 

on the simulation data of the ship motion model without interference, the data of the 

real ship test is not accurate in the sensor measurement. The disturbance of the 

marine environment is inevitable and the scale effect of the ship model and the real 

ship dynamic performance is not considered in the current work. Perez T [25] carries 
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out model identification research on the premise of considering the actual survey 

conditions of ship engineering. A two-step identification algorithm is proposed by 

virtue of the sensitivity weight factor and the unscented Kalman filter. And a modern 

high-speed three-body ship is employed to make ship trials and simulation 

experiments. It has been proved that the method is accurate and available in practical 

engineering. Ross A [26] uses three common methods for ship maneuverability 

prediction (auto-ship model test, system prediction based on computational fluid 

dynamics theory and system simulation based on constrained ship model test), 

combined with system identification techniques (the article attempts extended 

kalman filtering technique and constrained least squares method) to carry out the 

study of hydrodynamic derivative estimation in the process of ship design. These 

characteristics require the instruments and equipment used in the attitude 

measurement of ships and the resources of ships that can be competent for the test 

measurement of real ships are limited. With the development of the identification 

theory, the system parameter estimation method and various identification 

application soft-wares have been greatly developed. The convergence rate and 

estimation accuracy of the identification method have also achieved rich results. The 

multi-innovation identification, the principle of hierarchical identification and the 

concept of coupled identification are new ideas in the field of model identification, 

which would provide the great significance support to the development of system 

identification disciplines. Therefore, the author desires to apply the new method into 

the research of ship motion identification modeling. And the "Yukun" Ship of Dalian 

Maritime University will carry out relevant tests to provide data for the identification 

and modeling work 
[27-28]

. 
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1.3 The Outline of the Identification Method  

System identification is the identification of model structure and system parameters 

of actual equipment. In practical engineering, the factory can be described by a 

mathematical model representing the relationship between the input and output of the 

system. Mathematical models generally have their specific structure and parameters. 

Therefore, system identification includes system structure identification and 

parameter estimation.In the existing research works, there are two common 

identification methods, the mechanism identification method and the statistical 

identification one. Previous has organic mechanism identification method and 

statistical identification method. The mechanism deduces the analytic expression of 

the system model obtains the structure form of the model and obtains the system 

parameters by the method of measurement. The latter studies the identification 

method to identify the structure and parameters of the system by measuring the input 

and output data of the system and making use of a large number of observed data. 

 

Gradually scholar develops a new way to determine system transfer function by the 

step response identification method (Impulse response identification method).  

 

At the end of the 18th century, German mathematician Gauss proposed that least 

squares could be used for dynamical system identification, for parameter fitting of 

static systems, for linear systems, and for nonlinear systems. The Least squares have 

off line identification methods and on line identification methods, recursive 

identification and iterative identification methods. Based on this, a gradient class 

identification method is developed, which requires less computation than least 

squares. Multi-innovation identification theory is a new identification theory 



 

17 

developed in recent years. The method of multi-innovation identification is inspired 

by the idea of discontinuous iteration of reference [29] algorithm. At first, the 

mathematical expression of the variable recurrence interval multi-innovation 

generalized projection identification algorithm is given by analogy method [30]. 

After in-depth study, the multi-innovation projection identification algorithm, 

multi-innovation stochastic gradient algorithm, multi-innovation least square 

identification algorithm and multi-innovation least square algorithm [30-33] are 

derived in detail. But from the beginning of the least squares algorithm, which cannot 

be identified online. Because it cannot identification online and it has a large amount 

of computation, but the recursive least squares only use the current system 

information when the parameters are updated. It leads to low identification accuracy 

and slow convergence speed. With the development of research, the identification 

error is reduced, and the identification speed is improved. But the identification 

accuracy is still very poor. The research focuses on improving the convergence speed 

and identification efficiency, but the identification effect is not well in the few data. 

So this paper shows the identification of nonlinear innovation hyperbolic tangent 

function with full-scale trial data based on multi-innovation least squares and 

stochastic gradient Algorithms [34-35]. This algorithm needs only a small amount of 

data, the calculation is simple and the accuracy gets greatly improved. This algorithm 

can be used in a variety of situations. 

1.4 Objective of Study 

Based on the research results in the system identification field and in order to 

improve ship maneuvering modeling, a hyperbolic tangent function nonlinear 

innovation identification algorithm is proposed by 4-DOF ship maneuvering 

modeling with full-scale trial data. Through performance analysis and simulation, it 
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shows that this scheme can reduce parameters, improve computational efficiency and 

increase accuracy. It does not need the known structure of ship maneuvering model. 

The engineering feasibility and effectiveness of the scheme are proved by the 

application experiment.Through compared experiments, comparison of results 

between different degrees of the same degree and different degrees of the same type. 

Build the implementation flow chart of the algorithm. The scheme combines the 

index and correlation coefficient to estimate the structure and parameters of the ship 

maneuvering regression model. The validity of the algorithm is verified by a series of 

full-size test data on the research ship "Yukun" of Dalian Maritime University. 

 

That is convicing and meaningful for applying the proposed algorithm in the 

practical engineering. It can be used to improve maritime safety and improve the 

efficiency of maritime transport. It can also be used in ship motion simulation and 

controller design. At the same time, it can protect the marine environment. In 

addition, the scheme can be extended to other online identification or prediction 

systems in the field of ocean engineering. It has important practical significance. 

1.5 Chapter Organization of this Paper 

This paper is mainly divided into five parts. Chapter Ⅰ introduces what are ship 

motion control and related modeling theories on ship control and maneuvering. 

Introduce the development of ship maneuvering mathematical model and 

identification algorithm in China as well as foreign countries and from the ancient 

time to the present. Introduce the ship maneuvering identification model methods 

and the significance of improving the effectiveness of the algorithm, as well. 

 

For Chapter Ⅱ, introduce the classification of the ship maneuvering mathematical 
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model and describe the basic theory. In addition, author derivation and verification 

the relevant formulas about kinematical equation and kinetics equation of marine 

ships. Besides, introduce autopilot models with the 1 DOF simplified forms (Nomoto 

model and Nonlinear Nomoto model). 

 

For Chapter Ⅲ, introduce the nonlinear innovation identification modeling process. 

And design the nonlinear innovation stochastic gradient algorithm and make related 

identification algorithm experiments. 

 

Chapter Ⅳ introduces what is 4 degrees of freedom (DOF) and carries out the 

identification experiments under the full-scale trial data. At the same time, propose 

the 4 degrees of freedom (DOF) nonlinear innovation hyperbolic tangent 

identification algorithm with full-scale trial data and verified is convergence. 

 

Chapter Ⅴ summarizes the full text. For the improved ship maneuvering modeling, a 

novel nonlinear innovation-based algorithm is proposed by use of the hyperbolic 

tangent function. The scheme can reduce the parameters and improve the calculation 

efficiency and accuracy. It does not need the known structure of ship maneuvering 

model. The feasibility and effectiveness of the scheme are proved by application test. 

In addition, the scheme can also be extended to other on-line identification or 

prediction systems in the field of ocean engineering. Further work will focus on the 

modeling of ship maneuvering recognition in the dual rate measurement engineering 

environment. 
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CHAPTER 2: INTRODUCTION 

2.1 Classification of Ship Maneuvering Mathematical Models 

In fact, the ship motion mathematical model is to abstract the ship motion dynamic 

characteristics into a group of special differential equations. 

 

The main purposes of building ship motion mathematical model include model 

prediction, real-time simulation and controller/observer design. According to the 

application purpose different, the complexity of the model structure and parameters 

varies are different. And through the mathematical models in different application 

backgrounds to act on the ship control system, the mathematical models of ship 

motion can be divided into three categories [36]: simulation model, design model 

(oriented to controller design) and design model (oriented to observer design). 

 

Simulation model: This kind of mathematical model can accurately describe the 

actual ship motion time domain response condition. It is mainly used to test the 

control algorithm in the theoretical research stage. The 6-dof nonlinear ship 

mechanism model is a typical simulation model, which can describe ship dynamics, 

execution servo system, measurement system, wind and wave and other Marine 

environmental disturbances. The large-scale ship control simulator adopts this kind 

of simulation model to provide a basic simulation test platform for studying the 

performance of ship closed-loop system. 

 

Design model (oriented to controller design): In general, this model is mainly used 

for control law design. Taking the PID controller as an example, the parameters of 

gain coefficient, integral coefficient and differential coefficient in the controller can 



 

21 

be utilize by using the Nomoto model and the closed-loop gain shaping algorithm. In 

this system, the Nomoto model is the design model. 

 

Design model (oriented to observer design): This kind of model is also a simplified 

expression of the simulation model. But it is different from the design model for 

controller design. It is mainly used to capture the influence of sensor noise and 

environmental disturbance on the dynamic response process of the controlled object.  

 

According to the different system characteristic equations, the ship motion 

mathematical model can be divided into linear model and nonlinear model. 

 

There are two purposes about the study of ship mathematical models: One is to 

establish ship motion simulators (also called ship motion simulators) with different 

degrees of precision, which is used to study the ship maneuvering characteristics, 

study the closed-loop control system of ship motion and evaluate the performance of 

ship motion controllers. This model must be nonlinear to contain as many 

mechanism details as possible. Currently, there are some advanced control strategies. 

Such as adaptive control, robust control, etc. Also require the system modeling to be 

able to describe nonlinear characteristics in essence. Furthermore, if the purpose of 

system modeling is to construct a simulation platform, such as a large ship 

maneuvering simulator, so we must adopt the nonlinear ship motion mathematical 

model to improve the reality sense of the ship maneuvering process. The other model 

is intended for ship motion controller design. This model is primarily linear. Up to 

now, linear feedback control theory is still the only branch to provide a controller 

design systematic approach. When using neural network control or fuzzy control, the 
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nonlinear ship motion mathematical model can provide training and learning data. 

From the view of controller design, the linear model can be applied in most cases. 

Because the closed-loop feedback control can make the relevant output variables in 

the system have a small deviation. Linear system theory is the most mature, largest 

and most complete achievement in the whole system analysis field. The baud 

diagram method, root trajectory method or in modern control theory the optimal 

control and filtering are built on the basis of linear model [37]. As the controlled 

object, it is the starting point to design a linear controller to build a linearized model 

of the ship's motion process. 

 

From the view of system description, the mathematical model of ship motion can be 

divided into transfer function type and state space type (differential equations form). 

 

The transfer function mathematical model is used to analyze the dynamic behavior of 

ship motion in the field. The transfer function is basis on the Laplace transform. 

Through describe the parameters of the system itself to change the input and output 

relation. The transfer function mathematical model usually cannot indicate the 

physical characteristics and structure of the system. And many other motion control 

systems can also be described by the transfer function of the same form. Nomoto 

model is a typical transfer function ship motion mathematical model. It is used to 

analyze the dynamic behavior of ship motion in the field of classical control theory 

and intelligent control. 

 

Ship motion controller is the foundation of ship motion controller. It can have 

multiple levels of modeling solutions. At the same time, different size models are 
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used for different design purposes and accuracy requirements. The mathematical 

model of classical control theory based on transfer function was limited by manual 

calculation at that time. With the development of computer technology, the 

mathematical model of modern control theory based on state space theory adopts the 

state space model composed of multiple differential equations.This kind of model 

focuses on time domain analysis and focuses on the internal states and internal 

relations of the system. Abkowitz model, Norrbin model and MMG model are all 

typical state space models [39].    

2.2 Basics Theory and Preliminaries 

The establishment of the ship motion mathematical model requires the construction 

of the reference coordinate system for describing the relevant motion variables. As 

shown in Fig. 1, there are the inertial coordinate system and the attached coordinate 

system respectively. In Fig. 1, 
0 0 0O X Y Z  is the inertial coordinate system, which is 

usually selected 0t   as the ship's center position of gravity at the moment, 
0OX  

pointing due north in the static plane, 
0OY  pointing due east in the static plane, and

0OZ  pointing to the center of the earth perpendicular to the static plane. O XYZ  Is 

the attached coordinate system, which is usually selected as the ship's center position 

of gravity else. And ox  points to the bow, oy  starboard and oz  keel along the 

ship longitudinal section. The ship motion with 6 degrees of freedom is the motion 

with the , ,ox oy oz movement and rotation of the three coordinate axes in the attached 

coordinate system. The motion includes longitudinal motion (forward motion), 

lateral motion (lateral drift) and vertical motion. The rotation is described by forward 

velocity u , transverse velocity v  and vertical velocity w . Motion includes yaw, roll, 

and pitch. The yaw angular velocity r , roll angular velocity p  and pitch angular 

velocity q . In inertial coordinates, ship motion can be described by space position
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 , ,x y z

 and attitude Angle  , ,  


.   Is the roll Angle,   is the pitch Angle and 

  is the forward Angle. 

 

It is convenient that make the reference frame to solve problems. Under normal 

conditions, the analysis ship motion, ship seaworthiness and the dynamics part of 

controller design are mainly carried out in the attached coordinate system. In this 

paper, the kinematics of ship trajectory problems, such as track keeping control and 

dynamic positioning control need to be discussed by inertial coordinate 

system .Therefore, the establishment of ship motion mathematical model usually 

requires specific consideration according to specific problems. In the following 

chapter, the author will directly introduce the relevant research work of ship 

modeling under the reference coordinate system shown in Fig. 1. 

 

Fig.2.1 Describes ship motion in inertial and appendage coordinates 

Heaving

       

Pitch    

 

   

  
 

   

 Inertial coordinate system 

Attached coordinate system 

Rolling  

       

Surge   

   

Sway 

    

Yaw           
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2.2.1 Kinematical Equation of Marine Ships 

Ship kinematics equation adopts the usual mechanical treatment method, chooses the 

coordinate system, determines the parameters characterized the motion and 

establishes motion equation. The ships arbitrary motion in real marine environment 

can be regarded as the superposition of moving and rotating motion. The ship motion 

with six degrees of freedom (linear motion along three coordinate axes and rotation 

motion around three coordinate axes) can be described in the attached coordinate 

system by using the motion velocity variable  , ,u v w


and the rotation angular 

velocity variable  , ,p q r

. And also in the inertial coordinate system by using the 

derivative of the position coordinate variable  , ,x y z


 and the derivative of the 

attitude Angle variable , ,  


 
  . For convenient description, the ship attitude vector 

and velocity vector shown in Eq. (2-1). There is a kinematic relation between the two 

units in Eq. (2-2). 

 
 

 

6

6

x y z R

v u v w p q r R

   







 (2-1)

 

  J v   (2-2)

 

 

Where,
 

 J   is the transformation matrix, specifically expressed as Eq. (2-3) and 

Eq. (2-4). 

  
 

 
1 3 3

3 3 2

, , 0

0 , ,

J
J

J

  


  





 
  
 

 (2-3) 
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 

 

1

2

cos cos sin cos cos sin sin sin sin cos cos sin

sin cos sin cos sin sin sin cos sin sin cos sin

sin cos sin cos cos

1 sin tan cos tan

0 cos sin ,cos

0 sin sec cos sec

J

J

           

           

    

   

  

   

   
 

    
 
  

 
 

  
 
  

0

 (2-4)

 

In fact, ship motion modeling tasks (such as ship dynamic positioning controller, 

path tracking controller design, etc.) in ocean engineering practice are mainly 

concerned with the changes of ship's bow Angle   and navigation trajectory ,x y . 

That the ship's motion in the horizontal plane. For most large ships, heave, pitch and 

roll have little effect on ship plane motion. Therefore, its influence can be ignored. At 

the same time, the attitude vector   3, ,x y R 


  and velocity vector   3, ,v u v r R


 

can be redefined. And get the ship plane motion relations (2-5) and (2-6). Thus, it 

satisfied    1

3 3R R I 

 . 

        1,R v R R R          (2-5)
 

  

cos sin 0

sin cos 0

0 0 1

R

 

  

 
 


 
  

 (2-6) 

2.2.2 Kinetics Equation of Marine Ships 

For the modeling of the kinetics equations, some assumptions are useful. (1) The ship 

is considered as a rigid body. (2) The coordinate system is a typical inertial system. 

Based on the Neuton geostatic and the momentum moment theorems, one can 

conduct the force analysis for the ship hull. The translational dynamics equations and 

the rotational dynamics equations can be derived as Eq. (2-7). 
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     

     

     

           

 

2 2

2 2

2 2

2 2

G G G

G G G

G G G

XX yy zz xy xz yz G G

yy zz xx

m u qw rv x q r y pq r z pr q X

m v ru pw x qp r y r p z qr p Y

m w pv qu x rp q y rq p z p q Z

I p I I qr I q rp I r pq I q r my w pv qu mz v ru pw K

I q I I rp

         
 

         
 

         
 

              

           

           

2 2

2 2

yz xy xz G G

zz xx yy xy yz xy G G

I r pq I p qr I r p mx w pv qu mz u qw rv M

I r I I pq I p qr I q rp I p q mx v ru pw my u qw rv N










             

               
  (2-7)

 

Where, , , , , ,X Y Z K M N respectively represent longitudinal force, transverse force and 

vertical force, roll moment, pitching moment and forward moment and m  represent 

the mass of the ship. , y ,G G Gx z  Is the coordinates of the ship's center of gravity in the 

attached coordinate system, , ,xx yy zzI I I
 
respectively represent ship's mass around 

, ,x y z  the moment of inertia of the axis. And , ,xx yy zzI I I  respectively represent the 

ship's mass , ,xoy yoz xoz  the moment of inertia of against the plane. 

 

In general, the hull is symmetric in the plane of the appendage xz  coordinate 

system. It exists under this condition 0, 0xy yz GI I y  
. 

Furthermore, based on the 

above considerations, on the basis of Eq. (2-7), slight pitching and heave motion as 

well as their coupling motion to other degrees of freedom can be ignored. And there 

are 0w q w q       . By making the above assumption, the ship's 4-degree of 

freedom dynamic relationship can be obtained [40] as shown in Eq. (2-8) 

 

 
 

 

 

2

G G

G G

xx G

zz G

m u vr x r z pr X

m v ur x r z p Y

I p mz v ur K

I r mx v ur N

    


   


  


  

 (2-8)

 

The dynamic relation of ship plane motion is Eq. (2-9). 
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 
 

 

2

G

G

zz G

m u vr x r X

m v ur x r Y

I r mx v ur N

   


  
   


 (2-9)
 

In the above ship dynamics model, the right side of the equation , , , , ,X Y Z K M N  is 

the force acting on the ship. It is a multivariate nonlinear function of ship motion 

variables and control variables. From the perspective of analysis and application, the 

forces acting on the moving ship can be divided into three categories, namely, control 

force, environmental disturbance force and fluid power. Control force via the control 

force generated by special control devices arranged on or outside the ship to make 

the ship carry out the expected control maneuvering, which usually includes the 

transshipment force of the rudder blade, the thrust force of the main propelling 

propeller and the side thrust force of the side thruster. The environmental disturbance 

force mainly includes wind force, wave force and flow force. The wind force mainly 

acts on the superstructure of the ship and its value is related to the apparent wind 

strength and the wind side Angle. Meanwhile its function point is related to the 

center of the side projection area of the superstructure. The wave force applied to the 

underwater hull surface decreases in strength from the surface downward, depending 

on the strength of the wind and the frequency of wave encounters. The wave force 

can be divided into primary force and secondary force. The primary force is an 

alternating force with high frequency and large value and its value can be an order of 

magnitude larger than the propulsive force. However, due to the filtering effect of the 

ship as a dynamic system, the ship motion amplitude caused by the wave is usually 

limited. The secondary force is a small value, slow time - varying partial value action 

and causes the ship drift movement. Fluid dynamics is the reaction force of the fluid 

on the surface of the ship in contact with it and is the sum of the positive pressure. At 

the same time, shear stress effects on the surface according to a certain distribution 
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law. The study of fluid dynamics is the most complex part of the forces on the hull. 

2.3 Autopilot Models with the 1 DOF Simplified Forms 

 

The response mathematical model also called the transfer function mathematical 

model. It can be used to analyze the dynamic behavior of ship motion in the classical 

control theory as well as in the field of intelligent control. This chapter introduce the 

Nomoto model and the nonlinear Nomoto model. First to introduce the former, 

considering the hull design left and right symmetry, the relevant hydrodynamic 

derivatives , , , , , , , , ,v r v r u u u u uX X X X X Y Y Y N N  are 0. Meanwhile, the left end of the ship 

kinematics equation is linearized to obtain the linear mathematical model of plane 

motion, as shown in Eq. (2-10). 

 0

0 +

u u

G v r v r

zz G G v r v r

m u X u X u

mv mu r mx r Y v Y r Y v Y r Y

I r mx v mx u r N v N r N v N r N









    

      

     

 (2-10) 

Where, the matrix form can be expressed as Eq. (2-11). 

 0

0

0 0 0 0 0

0 0

0 0

u u

v G r v r

G v ZZ r v r G

m X u X u

m Y mx Y v Y Y mu v Y

mx N I N r N N mx u r N







           
         

    
         
                    

 (2-11)

 

 X AX B   (2-12) 

Where, as Eq. (2-13) 

    
1 111 12 11' ' ' '

21 22 21

,
a a b

A I P B I Q
a a b

    
      

   
 

(2-13) 

And as Eq. (2-14) 
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   

     

     

     

   

' ' ' ' ' ' '
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' ' ' ' ' ' ' ' ' '
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' ' ' ' ' ' '
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' ' ' ' ' ' ' ' ' '
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/

/
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a I N Y m m x Y N m x LV S

a m x N Y m Y N V LS

a m x N Y m m Y N m x V S

b I N Y m x Y N 

    
 

      
 

     
 

       
 

   

     

     

2

1

' ' ' ' ' ' ' 2

21 1

' ' ' ' ' ' ' ' ' '

1

/

/G v v

zz r v G r G v

V S

b m x N Y m Y N V LS

S I N m Y m x Y m x N L

 

 
 

     
 

      
 

 
(2-14) 

Eq. (2-12) shows that under the premise of linearization, the forward motion of the 

ship is decoupled from the motion on the other two degrees of freedom. From the 

perspective of speed control, the freedom motion can be considered separately. There 

is a strong coupling between yaw and bow motion and the motion in these two 

degrees of freedom is closely related to the design of ship's course and track 

controller [41]. As is known to all, the famous Nomote model Eq. (2-15) 

  
 

   1

s K
G s

s s Ts





 


 (2-15) 

In fact, it is a typical characteristic parameter ,K T  to describe the ship handling 

characteristics, which has a definite physical meaning. The parameter K  reflects 

the advantages and disadvantages of the ship's cycle performance and is called 

"cyclist index". The larger the K , the larger the turning moment rudder can generate 

and the smaller the damping moment; On the contrary, the smaller the K , the 

smaller the turning moment and the greater the damping . It is called the “following 

index”, which reflects the ship’s rapid response to rudder equipment, course stability 

and the following performance. The smaller the T , the smaller the ship’s interior and 

the large the damping moment, vice versa. In engineering practice, the operator 

always hopes that the ship has a large positive value K  , a small positive value T  

and a good ship handling performance. In order to solve the linear response model, 8 
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ship parameters are required to be known, that is, speed V , length L , ship width B , 

full-load draft T , square coefficient 
bC , ship displacement  , longitudinal 

coordinates of ship's center of gravity 
Gx  and rudder blade area A . Furthermore, 

Nomoto model parameters ,K T  can also be identified by using real ship 

maneuverability test data (including z-shape test and cycle test). 

 

The linear response model is used in the sense of "linear average" to describe 

moderate amplitude maneuvering motion. The slope of the relative hydrodynamic 

curve of the state of motion is used to calculate the relative hydrodynamic derivative. 

In the nonlinear case, the relevant hydrodynamic derivatives will be mainly 

dependent on r  to change. Reference [42] shows a typical nonlinear response type 

of mathematical model research results, seize the ship dynamic     from the 

main vein, the differential equation is obtained preserves the nonlinear influence 

factors, even the ocean environment interfere or become a distraction rudder Angle 

together constitute a kind of input signal and the actual Angle   into the model of 

the ship..  

 

Based on the second-order Nomoto model Eq. (2-15), it can be further converted into 

the description form of differential Eq. (2-16). 

 
1 K

T T
     (2-16)

 

In order to describe the nonlinear hydrodynamic influence in the process of ship 

motion, introduce the nonlinear term    K T H   instead of Eq. (2-16). Thus shown 

as Eq. (2-17) 

   3H      (2-17)
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Further arrangement can get nonlinear response mathematical model Eq. (2-18) and 

Eq. (2-19). 

  
K K

H
T T

     (2-18) 

   31 1
:f f H

K K
       

 
      

 
 (2-19) 

Supplementary instruction, Fig. 2.2 f  
can be calculated according to Eq. (2-8) and 

the block diagram can use by Simulink simulation. Fig. 2.2 shows the structure 

diagram of the nonlinear response mathematical model discussed in this section 

 

+

Execute servosystem Nonlinear mathematical model

-

Helm 
order

-

+

 Fig.2.2 Description of ship motion variables in inertial and appendage coordinate systems 

 

2.4 Chapter Summary 

This chapter introduces the classification of mathematical models of ship operation, 

systematically elaborate responsive mathematical model basic theory and include 

Kinetics Equation of Marine Ships and Kinematical Equation of Marine Ships. 

Specific introduce the linear mathematical model of ship plane motion. Based on that, 

it is concluded that the linear/nonlinear response mathematical model (i.e., Nomoto 

model and nonlinear Nomoto model) deductive process. 
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CHAPTER 3: Nonlinear Innovation Identification for Autopilot 

Models 

In this chapter, first, introduce the nonlinear Nomoto model as the ship mathematical 

model. And then derive the stochastic gradient algorithm. The algorithm is deduced 

and verified by experiments. By the linear regression model, meanwhile, analogy 

introduce forgetting factor the stochastic gradient algorithm. Process the innovation 

with hyperbolic tangent function. At the same time, the nonlinear innovation 

identification via the hyperbolic tangent function is obtained. Finally, scholars 

through matlab programming get a comparison of the identification effect and 

through the calculation obtain the accuracy of the situation. After the model is 

constructed, the ship dynamics can be estimated by observing the comparison of the 

response. 

3.1 Problem Description 

The following factors must be considered :1. Reference research on nonlinear 

identification methods. Stability and parameter convergence are also discussed. 

2.Specifies a sequence of ship operations that can be used to identify. 3.Simulation 

and experimental data are used to estimate the parameters of the model. The results 

are discussed and the results of parameter estimation and convergence are given. It 

also shows which operations have the best convergence. The closed loop simulation 

system of autopilot based on model is used. The Eq. (3-1) is shown as: 

 

  3K K

T T
       (3-1) 

 

Where  is heading angle,   is yaw rate,   angular acceleration,  is rudder 
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angle, K  and T  are the ship maneuverability indices,  and   are the nonlinear 

coefficients of yaw rate  . And process the innovation with hyperbolic tangent 

function. Utilize the nonlinear Nomoto model and Nomoto model with random 

disturbance to carry out rotary simulation experiments. Comparison results by the 

improved and original algorithm. Simulink was imported into Matlab to implement 

the maneuvering model and Suggestions. An overview of the simulation environment 

is also described. 

 

Objective: To develop a nonlinear innovation algorithm :(1) To select model structure 

and parameter estimation according to ship dynamic characteristics in parallel. (2) 

This identification scheme is easy to implement and effective under two simulation 

conditions. Therefore, the purpose of this chapter is to develop a method to identify 

nonlinear innovation. (3) The algorithm can effectively improve the identification 

accuracy. 

3.2 Design of the Nonlinear Innovation Algorithm 

First, the formula of stochastic gradient algorithm is derived. On this basis, the 

nonlinear innovation algorithm is derived. Finally, the author deduced the nonlinear 

innovation hyperbolic tangent function. 

3.2.1 The Stochastic Gradient Algorithm 

Taking the nonlinear Nomoto model as the plant, it can be rewritten as the linear 

regression form, i.e. Eq.(3-2). Note, in the proposed algorithm, the differential 

operation can be calculated by using the differentiate operation, i.e. 

    1  r r t r t h , h denotes the sampling time span.  
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 (3-2) 

 

where ( )y t is system output, ( )t is regression information vector，   is the model 

parameters to be identified, ( )v t is zero mean value random noises. For the linear 

regression model (3-2), the stochastic gradient (SG) can be derived as follows
[43]

. 

 

    
 

 
 ˆ ˆ 1

t
t t e t

r t
  


   (3-3) 

 ˆ( ) ( ) ( ) ( 1)e t y t t t     (3-4) 

 
2

( ) ( 1) ( )r t r t t     (3-5) 

 

Where  ˆ tθ and  ˆ 1θ t   are estimates of θ  at current and last step respectively.
 

( )e t  is the innovation，which means useful information that can improve the 

estimation accuracy. Compared with the least squares method, the stochastic gradient 

algorithm does not need to compute the co-variance matrix and has less 

computational complexity. But its convergence speed is slower and identification 

accuracy is lower. 

 

3.2.2 The Nonlinear Innovation Identification Algorithm 

Inspired by the nonlinear feedback algorithm in the literatures [44]-[45] and the 
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stochastic gradient identification algorithm, the innovation can be processed by the 

nonlinear hyperbolic tangent function. That could improve the identification 

performance of the related model parameters. Thus, the improved stochastic gradient 

algorithm based on nonlinear innovation (NISG) is presented as Eq.(3-6), (3-7), 

(3-8). 

 

 
'( )ˆ ˆ( ) ( 1) ( )

( )

t
t t e t

l t
  


   (3-6) 

    ' tanht ee   (3-7) 

 
2

( ) ( 1) ( )l t l t t     (3-8) 

 

The definition of the related variables is same to Eq.(3-3). Note, in Eq. (3-7),   are 

the angular frequency and it can be selected randomly between 0.1- 1.0. 

 

Next, the convergence performance of the algorithm is analyzed according to 

martingale convergence theorem and stochastic process theory [45]. 

 

Let   v t  be a martingale difference sequence defined in probability space , ,K F P , 

where  tF an algebraic sequence is generated by   v t  and   v t  satisfies the 

noise hypothesis: 
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  (3-9)                                          
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Where: “ . .a s ”means “almost surely”. 

 

Lemma 1: For stochastic gradient algorithms Eq. (3-6), Eq. (3-8), the following 

conclusions are valid: 
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Lemma 2: For algorithms Eq. (3-6), Eq. (3-8), if there are constants 0 ,T U and 

integer, which can make the following strong persistent excitation conditions 

established. 

 

 

   

     

     

 

1
T

0

1
TI T I UI,a.s.

0 < T < U < , N

1

0 lim

N

I

t

t i
N

n

r t N nNT r t r t N nNU

nT t N r t nU t N

r t
nT nU

t







   

 

     

    

    

    (3-11)                                       

 

If the noise hypothesis Eq. (10) and the strong persistent excitation condition Eq. 

(3-11) holds. Then, the estimated parameters given by the stochastic gradient 

algorithms Eq. (3-3) and Eq. (3-5) almost surely converge to the true parameters, i.e. 
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 ˆlim t  . 

 

For the improved stochastic gradient algorithm based on nonlinear innovation, in the 

Eq. (3-7),  e t  is generally small in marine practice,    ' tanhe t e  is expressed 

by Taylor series expansion: 

 

  tanh
e e

e e

e e
e e e

e e

 

 
 






  

  (3-12)     

   

For Eq. (3-12),  r t  becomes    ' 0.5r t r t , Eq. (3-9)-(3-11) still hold. Then the 

estimated parameters given by the improved stochastic gradient algorithms Eq. (3-6) 

and Eq. (3-7) almost surely converge to the true parameters. 

 

3.3 Identification Experiments 

 

Using the stochastic gradient algorithms and the nonlinear innovation algorithm 

identify the linear parameters ,T K and nonlinear parameters ,  . Combining the 

identification of multi-information system with the main theory of nonlinear 

feedback control, propose a new identification algorithm of ship model parameters 

for nonlinear innovation processing via hyperbolic tangent function. In different 

rudder angles, comparison the condition of heading angle output. And by ship 

trajectory comparison confirm the effectiveness and universality of the method. 

Finally, comparison simulation experiments observe the convergence change and the 

improvement of identification accuracy 
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3 1
ˆInitialize: 1,  (0) 10

 t θ 1

Form variables: ( ),  ( ),  ( )e t l t e t

Compute ( ),  ( ) in Eq.(3-7),(3-8)l t e t

ˆUpdate the parameter ( ) in Eq.(3-6)tθ

ˆ ˆ( 1) ( ),  ( 1) ( )   t t l t l tθ θ

ˆObtain the estamation of model parameters ( )tθ

end   ?t t

1t t 

No

Yes

Start the NISG algorithm with 

( ) as the nonlinear innovatione t

 

Fig3. 1 The implementation flowchart of the NISG algorithm 

 

3.3.1 Nonlinear Innovation Identification for NOMOTO Model 

This example takes an automobile transport ship "Hual Trooper" as the simulation 

object. As shown in Table 3-1 and Table 3-2 through the Stochastic Gradient 

Algorithm observe T̂ and K̂  convergence condition. But in the experiment we have 

to switch 
1

T
and

K

T
. In ship mathematical model “Hual Trooper”

0.15, 47.61, 13.27, 11087.20K T      . As shown in Fig. 3.2 
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TABLE 3-1 PARTICULARS OF “Hual Trooper”  

Ship loading status Numerical 

Length between perpendiculars  mL  190.0 

Breadth(molded)  m  32.26 

Designed draught  mD  6.9 

Block coefficient bC  0.535 

Trial speed  knV  20.8 

Rudder area 
 R m2A

 
34.1 

  

TABLE 3-2 SHIP MATHEMATICAL MODED PARAMETER OF “Hual Trooper” 

Parameters Truth 

  0.15 

  47.61 

  13.27 

  11087.20 
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Fig.3. 2 using the stochastic gradient algorithm obtained Estimation of 1 ,T K T   

Thus，using the stochastic gradient algorithm obtained ˆ ˆ0.072, 22.9088K T  ，. As 

shown in Fig.3.3. Using the nonlinear innovation algorithm observe K̂  and T̂  

convergence condition.  
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Fig.3. 3.Using the nonlinear innovation algorithm obtained Estimation of 1 ,T K T   

Using the nonlinear innovation algorithm obtained ˆ ˆ0.1165, 40.2886K T  .  

As shown in Table 3-3. For the stochastic gradient algorithm: the error of K̂  is 52%, 

the error of T̂  is 52% and the mean error is 52%; For the nonlinear innovation 

algorithm, The error of  K̂  is 22.3%，the error of  T̂  is 15.3% and the mean error 

is 18.80%, the accuracy of the model is up to 81.2%. 

TABLE 3-3 Comparison of" Hual Trooper “PARAMETERS identification  

 
the stochastic 

gradient algorithm 

the nonlinear 

innovation 

algorithm 

K̂  52% 22.3% 

T̂  52% 15.3% 

Mean error 52% 18.80% 

Model accuracy up to 81.2% 

33.2% increase in identification 
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3.3.2 Nonlinear Innovation Identification for Nonlinear NOMOTO Model 

In order to further test the identification effect of the algorithm, add two parameters. 

Similarly, ship mathematics adopts nonlinear Nomoto model 13.27, 11087.20   . 

Using the stochastic gradient algorithm and the nonlinear innovation algorithm 

identify nonlinear parameters  、 respectively. As shown in Fig.3.4. 
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Fig.3.4 using the stochastic gradient algorithm obtained Estimation of , ,K T K T K T    
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Thus, under the stochastic gradient algorithm, the nonlinear parameters 

ˆˆ 12.9176, 10472   . The error of  is 2.6%, the error of  is 5.5% and the mean 

error is 4.05%. Similarly, using the nonlinear innovation algorithm identify 

parameters. As shown in Fig.3.5. 
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Fig.3.5 using the nonlinear innovation algorithm obtained Estimation of , ,K T K T K T    
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TABLE 3-4 Comparison of" Hual Trooper “PARAMETERS identification  

 
the stochastic 

gradient algorithm 

the nonlinear 

innovation 

algorithm 

̂  2.6% 0.04% 

̂  5.5% 2% 

Mean error 4.05% 1.02% 

Model accuracy up to 98.98% 

3.03% increase in identification 

 

Furthermore ， under the nonlinear innovation algorithm the parameters are

ˆˆ 13.3975, 11317   . The error of  is 0.04%，the error of  is 2% and the mean 

error is 1.02%. Therefore, the accuracy of the model is up to 98.98%. In order to 

further prove the accuracy and universality of the algorithm. Utilize identification 

parameters compared with reality model parameters. Use 5°, 10° and 20° rudder 

angles, respectively. Use zigzag test data. Compare the heading Angle   output 

conditions. As shown in Fig.3.6. At the same time, compare ship trajectories in 

different rudder angles. As shown in Fig.3.7. The accuracy of the mathematical 

model is confirmed using Matlab. Make the comparison more intuitive. It can be 

concluded that the identification accuracy is improved by 70 percent by calculation. 

It is proved that the nonlinear innovation algorithm is faster and more accurate. The 

algorithm is quick to identify. Looking at the identification process and the results, 

this algorithm has a faster identification speed, the data change is intuitive and 

comprehensive, and the accuracy of identification is improved. It can be seen that the 

random gradient algorithm improved by the hyperbolic tangent function is closer to 

the real value. 

 



 

46 

(
s)




(
)




time (s)

5  

10  

20  

Parameters by nonlinear innovation algorithm

Model parameters

Parameters by stochastic gradient algorithm

 

Fig.3.6 Comparison of the system output   under the different rudder angle. 

 

0 200 400 600 800 1000 1200 1400 1600 1800
-500

0

500

1000

1500

2000
Parameters by nonlinear innovation algorithm

Model parameters

Parameters by stochastic gradient algorithm

5  

10  

20  

  

Fig.3.7 Compare ship motion trajectories in the different rudder angles. 
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Combining the main theories of multi-innovation system identification and nonlinear 

feedback control, a new algorithm for the identification of ship model parameters for 

nonlinear innovation processing of the hyperbolic tangent nonlinear function is 

further proposed. Through the comparison and simulation experiments: The 

algorithm is quick to identify. Looking at the identification process and the results, 

this algorithm has a faster identification speed, the data change is intuitive and 

comprehensive, and the accuracy of identification is improved. 

3.4 Chapter Summary 

In this chapter, a novel nonlinear innovation based identification algorithm is 

proposed for the ship mathematical model. The nonlinear hyperbolic tangent function 

is used to deal with the identification of new interest. In this chapter, only the main 

theories of multi-innovation system identification and nonlinear feedback control are 

combined. The algorithm for identifying the parameters of the ship model with 

nonlinear innovation processing of the hyperbolic tangent function is further 

proposed. The computational complexity and accuracy problems are lower than that 

of the other existing algorithms. The algorithm presented in this chapter requires only 

a small amount of data and the calculation is simple and the accuracy is greatly 

improved. The algorithm can be used in a variety of cases. 
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CHAPTER 4: Nonlinear Innovation Identification for 4 DOF Ship 

Maneuvering Mathematical Model 

The identification problem was solved by establishing a 4-dOF ship maneuvering 

mathematical model. The existing research work rarely considers the choice of model 

structure, which is meaningful and inevitable in practical ship engineering. The 

engineering availability and effectiveness of the scheme are verified by application 

experiments. The identification scheme is effective and easy to be implemented 

under both simulation and real vehicle test conditions. 

4.1 System Description and Preliminaries 

Represents the expectation operator; E  Represents the absolute value of a 

determinant or scalar variable of a square matrix.   Is the trace of the square matrix, 

is the minimum eigenvalue of the symmetric matrix X , is the estimation and 

estimation error. That means the constant is positive. These come from everywhere. 

Is the current sampling time, represents the return value of sampling step, and the 

superscript ' 'represents the normalization of corresponding variable and prime 

number system [1-9]. 
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   

 (4-1) 

 

Where , , , ,u v r p   denote linear and angular velocities, roll angle respectively; are the 

mass of the ship, the moments of inertia with respect to the x-axis, z-axis and the 

corresponding added mass and added moment of inertia. In the third equation, XI is 

the X coordinate value for the added mass Xm .GZ denotes the metacentric arm with 
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respect to the x-axis. 9.8 /g N kg is the Newtonian universal of gravity. In addition, 

all of the above can be estimated with sufficient accuracy. The point of consideration 

is to determine the correct part of the equation. In this note, a damping force 

expression is attempted to describe the force or torque of the hull. According to the 

proposed identification scheme, detailed parts can be constructed automatically for 

different types of ships. It could be expressed as
2 3 2

H uu uuu uvX X u X u X uv      , 

as well as , ,H H HY K N . These coefficients , ,...,uu uuu rr
X X N are the so-called 

hydrodynamic derivatives that would be estimated by the proposed identification 

scheme: 
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 (4-2) 

Forces and moments for the propeller , , ,P P P PX Y K N  and the rudder , , ,R R R RX Y K N are 

expressed as 
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 (4-3) 
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 (4-4) 

Where , , , ,P P T Pt n D K J are the thrust deduction fractions, propeller revolution per 

second, propeller diameter, the thrust coefficient and the advance ratio of propeller, 

respectively, 0 1 2, ,J J J are the hydrodynamic coefficients for the open water propeller 

characteristics. For the rudder force/moment, , ,R HRx z denote the rudder angle, the 

x  and z  directional center of normal force acting on the rudder. Also , ,R H Ht a x are 
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used to describe the interaction of the hull and rudder. In the identification scheme, 

the parameter formulas        1- , 1 , 1 ,R H H HR R H Ht a a z x a x   are considered as 

coefficients to be estimated.  

 

The mathematical model Eq. (4-1)-(4-4) provides a generalized family model, which 

could describe the nonlinear dynamic for ships of different types. In order to address 

the identification problem, one introduces several new variables Eq. (4-5)-(4-7) to 

rearrange the ship maneuvering mathematical model. To facilitate the expression and 

save space, the ellipsis points are used in Eq. (4-6), (4-7), which denote the terms and 

hydrodynamic derivatives corresponding to Eq. (2): 
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Based on Eq. (4-5)-(4-7), the ship manicuring mathematical model Eq. (4-1) is 

rearranged as a linearized regression model Eq. (4-8). In the following representation, 

one would omit the subscript , , ,i u v p r in case that it does not affect reader’s correct 

understanding of the identification problem: 

 
T( , ) ( , ) ( ), , , ,i i i iZ V t V t t i u v p r      (4-8) 

In Eq. (4-8),    , , ,i iZ V t V t  are the output scalar and the information vector that 

consist of the measured ship manicuring motion variables V at time  , it t is the 

noise term. 

 

4.2 Design of the Improved Nonlinear Innovation Algorithm 

In order to show the superiority of the nonlinear innovation algorithm proposed in 

this note, the nonlinear innovation algorithm would be briefly presented for the 

comparison. Considering the linear regression model Eq. (4-8), the estimation ̂  of 

the parameter vector is generated by the following Eq. (4-9): 
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 (4-9) 

In Eq. (4-10), n  is determined by size of the information vector  t : 
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The nonlinear innovation algorithm can be presented in the form of Eq. (4-11). 
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Next, the nonlinear innovation algorithm will be further introduced and the 

convergence will be proved. 

 

4.2.1 The Improved Nonlinear Innovation Algorithm 

In this part, one presents a novel nonlinear innovation algorithm with a high 

computational efficiency. In order to tackle the burden-some problem, the matrix 

inverse      
1
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1 , 1 ,I l t P t l t 


    is decomposed into l sub-innovation update steps. 

The so-called nonlinear innovation algorithm is presented as Eq. (4-12). 
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Especially for ship maneuvering identification requiring large value algorithm or 

system feature extraction, nonlinear innovative algorithm is superior to other 

algorithms in computational efficiency. For industrial computing equipment, the 

computational burden is mainly caused by multiplication and addition of the 

operations included in the scheme. Therefore, the performance of the calculated load 
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can be described by The Times of multiplication and addition.
 

4.2.2 Convergence of the Nonlinear Innovation Algorithm 

The convergence is one important portion for the system identification scheme. For 

this purpose, as shown as Eq. (4-13) 

 1E[ ( ) ] ( 1) ( ) ( )tT t F T t h t g t      (4-13) 

Base on the proposed the nonlinear innovation algorithm, we conclude the main 

result stated as follows. 

Consider the 4 DOF ship maneuvering motion systems (1) with each DOF capable to 

be rearranged as the form of Eq. (4-8). The parameter estimation  ˆ
l t  uniformly 

ultimately converges to be the true value   by fuse of the nonlinear innovation 

algorithm. 

Define the following error variables as Eq. (4-14): 
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 (4-14) 

Thus, the error energy function ( )v t  is constructed as Eq. (4-15).  
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Note,      T1 , , 0it i P t t i   is used in Eq. (4-15). Furthermore, sum together  iV t  

for 1,2,...,i l  and one obtains as Eq. (4-16) and Eq. (4-17). 
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In order to use the martingales convergence theorem, one should pay attention to the 

characteristic of the last term in Eq. (4-17).  As shown as Eq. (4-18) and Eq. (4-19). 
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There exists a finite random variable 0TC  such that Eq. (4-20). 
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Since there exists    0 11 1

2 0 min 1/ ,
c

l ltr p t nc t n p p t c t          derived from the 

generalized persistent excitation condition (4-19), (4-21) is obtained.  
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4.3 The Nonlinear Innovation Identification for 4 DOF Ship 

Maneuvering Mathematical Model 

The hydrodynamic model of derivative substitution Eq. (4-1) can predict.
 
Combined 

with equation of motion of the ship,
 
Identification of ship motion is obtained finally. 
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The 4 DOF modeling is used as a simulation model. It is mainly used to test the 

effectiveness of the control strategies of fin stabilizer, rudder stabilizer or water tank 

stabilizer. The ship handling in waves is usually accompanied by nonlinear rolling 

motion with large amplitude.Therefore, considering the influence of rolling motion, 

the 4-DOF mathematical model of ship maneuvering is derived. By comparing the 

predicted results (including surge velocity, roll velocity, yaw rate, roll rate, roll Angle 

and rudder Angle) with the full-size test data, the validity of the recognition 

algorithm is verified. 

4.4 Identification Experiments with the Full-Scale trial Data 

The structure and parameters of the ship maneuvering equation should be carried out 

in strict accordance with the detailed requirements of the equation during the 

experiment, including the disturbance model which produces wind and the wave 

generated by irregular wind. First, the sea conditions are set as level 2 zigzag 

maneuver test  10 -20    to provide data for identification.And the other is for the 

zigzag maneuvering test  20 -20   . 

The main data and dimensions of “Yukun” ship are given in Table 4-1. 

 

TABLE 4-1 The main data and dimensions of “Yukun” ship  

Elements Values 

Length between perpendiculars  mL  105 

Breadth(molded)  m  18 

Mean draught  mD  5.4 

Block coefficient bC  0.5595 

Rudder area 
 R m2A

 
11.8 
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Fig.4.1 Comparison results with the identification model zigzag trial 10 -20    
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Fig.4.2 Comparison with the full-scale zigzag trial 10 -20  

 

Using the identification result; the predicted motions are compared with the 
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nonlinear innovation algorithm in Fig. 4-1 and Fig. 4-2. The simulation trials include 

zigzag tests with  10 -20   and  20 -20   . 

In this section, we consider a comprehensive experiment to verify the proposed 

recognition algorithm. 

All tests were carried out under moderate sea conditions (about grade 3) and at 

sufficient depth. In this article, we will consider three tests for manageable space. By 

identifying the test data, the structure and parameters of the zigzag test  10 -20    

ship maneuvering mathematical model are determined. Figure 4.3 and Figure 4.4 

compare the recognition result with the full-size zigzag  20 -20   , illustrating the 

performance of the algorithm in practical application. 
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Fig.4.3 Comparison results with the identification model zigzag trial 20 -20  
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Fig.4.4 Comparison with the full-scale zigzag trial 20 -20    

The relevant variables listed in Eq. (4-22) need to be estimated by fusing of the 

physical measurement. 
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 (4-22) 

Utilize the “Yukun” ship to obtain zigzag experiment data. Through comparison 

parameters modeling get identification results. The main data are given in Table 4-2. 
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TABLE 4-2 The identification result for “Yukun” ship 

parameters identification for the hydrodynamic force 
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Comparing with the simulation examples, the nonlinear innovation identification for 

ship maneuvering modeling via the full-scale trial data is more accurate. It's worth 

noting that there are three ways things can go wrong. (1) Some variables needed in 

the identification scheme cannot be directly measured. For example, acceleration and 

angular acceleration are derived from the differential relationship, and angular 

velocity is the same. Gradient is a useful Matlab function. (2) In the actual 

identification, the mechanism-based modeling component will introduce the 

uncertainty in the ship maneuvering model.While the identification process can 

compensate for these uncertainties, it cannot fully resolve them. (3) Ocean 
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interference is uncontrollable and has complex dynamic characteristics. In particular, 

the impact of possible currents on identification modeling is very serious. 

 

4.5 Chapter Summary 

This chapter introduces the research progress of nonlinear innovation identification 

of ship maneuvering based on the real ship test data. The main advantage of the 

scheme is that it has high computational efficiency and does not need to know the 

structure of the ship maneuvering model. As far as I know, few existing studies 

consider the choice of model structure, which is meaningful and inevitable in 

practical ship engineering. The practicability and effectiveness of the scheme are 

proved by the application experiment. In addition, the scheme can be extended to 

other online identification or prediction systems in the field of ocean engineering. 
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CHAPTER 5: SUMMARY and CONCLUSIONS 

By references study on system identification was carried out and suitable 

identification methods were chosen to verify the suggested maneuver’s convergence 

properties. Based on the related theory the nonlinear innovation identification for 

ship maneuvering modeling via the full-scale trial data has been developed. The 

identification results indicates it has better convergence properties than the others 

 

Based on the nonlinear innovation identification for ship maneuvering modeling via 

the full-scale trial data algorithm, the main contributions of this paper can be 

summarized as follows： 

 

(1) In this paper, a novel nonlinear innovation identification algorithm is proposed 

for the ship mathematical model. The nonlinear hyperbolic tangent function is 

used to deal with the identification of new interest. In this paper, the main 

theories of the stochastic gradient algorithm and nonlinear feedback hyperbolic 

tangent function and full-scale trial data are combined. The algorithm for 

identifying the parameters of the nonlinear innovation identification for ship 

maneuvering modeling via the full-scale trial data is further proposed. The 

computational complexity problems are lower than that of the other existing 

algorithms. The algorithm presented in this paper requires the calculation is 

simple and the accuracy is greatly improved. The algorithm can be used in a 

variety of cases.   

 

(2) The effectiveness of the proposed algorithm is verified by a series of 

comprehensive experimental data. That is convictive and meaningful for applying 
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the proposed algorithm in the practical engineering. 

 

Although the maneuver method presented in this paper has achieved good results in 

the simulation process, there is still an opportunity for further improvement in 

efficiency and parameter convergence. In the future, hyperbolic tangent function can 

be combined with other algorithms, such as multi-innovation identification, least 

square method, etc. Further optimize the data. Parameters can also be added to make 

the conclusion more accurate. More experiments were carried out with real ship data. 

 

 



 

64 

REFERENCES 

[1] Fossen TI. Guidance and control of ocean vehicles. New York: Wiley; 1998. 

[2] Fossen TI. Handbook of marine craft hydrodynamics and motion control. New York: Wiley; 

2011. 

[3] Zhang G, Zhang X. Concise robust adaptive path-following control of underactuated ships 

using DSC and MLP. IEEE J Ocean Eng 2013; 39(4):685–94. 

[4] Jia X, Zhang X. Intelligent control of ship motion and H∞ robust control [M]. Dalian: 

Dalian Maritime University Press. 2002: 15-33. 

[5] Wang X, Zou Z & Xu, F. (2013). Modeling of Ship Maneuvering Motion in 4 Degrees of 

Freedom Based on Support Vector Machines. ASME 2013 32nd International Conference on 

Ocean, Offshore and Arctic Engineering. 

[6] Norrbin NH. Theory and observation on the use of a mathematical model for ship 

manoeuvring in deep and confined waters. Report No.68. Sweden: SSPA; 1971. 

[7] Guoqing Z, Xianku Z, Wei G . Concise robust adaptive path-following control for 

underactuated ships [J]. journal of harbin engineering university, 2014. 

[8] The Maritime Safety Administration PRC, The Manila Amendments to the International 

Convention on Standards of Training, Certification and Watchkeeping for Seafarers. Dalian, 

China: Dalian Maritime University Press; 2010. 

[9] Zhang X, Zhang G. Researches on the Williamson turn for very large carriers. Naval Eng J 

2013; 125(4):113–20. 

[10] Fossen TI. Handbook of marine craft hydrodynamics and motion control. New York: Wiley; 

2011. 

[11] Ogawa A, Kasai H. On the mathematical model of maneuvering motion of ships. Int 

Shipbuild Prog 1978; 25(292):306–19. 

[12] Zhang X, Zou Z. Identification of Abkowitz model for ship maneuvering motion using 

ϵ-support vector regression. J Hydrodyn 2011; 23(3):353–60. 

[13] Perera PL, Oliveira P. Dynamic parameter estimation of a nonlinear vessel steering model 

for ocean navigation. In: Proceedings of the 30th international conference on ocean, offshore 

and arctic engineering, Rotterdam, The Netherlands, 2011. 

[14] Rajesh G, Bhattacharyya SK. System identification for nonlinear maneuvering of large 

tankers using artificial neural network. Appl Ocean Res 2008; 30:256–63. 

[15] Herrero ER, González FJV. Two-step identification of nonlinear manoeuvring models of 

marine vessels. Ocean Eng 2012;53:72–83. 

[16] Abkowitz MA. Lectures on ship hydrodynamics steering and manoeuvrability. Report Hy-5. 

Denmark: Hydro- and Aerodynamics Laboratory; 1964. 

[17] Liu Y, Ding F, Shi Y. An efficient hierarchical identification method for general dual-rate 

sampled-data systems. Automatica 2014;50:962–70. 



 

65 

[18] Jia X, Yang Y. Ship motion mathematical model. Dalian, China: Dalian Maritime University 

Press; 1999. 

[19] Araki M, Hosseini HS, Sanada Y, Tanimoto K, Umeda N. Estimating maneuvering 

coefficients using system identification methods with experimental, system-based, and cfd 

free-running trial data. Ocean Eng 2012;51:63–84. 

[20] Ding F, Chen T. Hierarchical least squares identification methods for multivariable systems. 

IEEE Trans Autom Control 2005;50(3):397–401. 

[21] Perera LP & Guedes Soares C. (2013). Lyapunov and hurwitz based controls for input–

output linearisation applied to nonlinear vessel steering. Ocean Engineering, 66(Complete), 

58-68.  

[22] Yoon HK, Rhee KP. Identification of hydrodynamic coefficients in ship maneuvering 

equations of motion by estimation-before-modeling technique. Ocean Eng 2003; 30:2379–

404. 

[23] Perez T, Fossen T. Time-domain models of marine surface vessels based on seakeeping 

computations. In: the 7th IFAC conference on manoeuvring and control of marine vessels 

MCMC, Portugal, 2006. 

[24] Ross A. Nonlinear manoeuvring models for ships: a Lagrangian approach[Ph.D. thesis]. 

Norway: Norwegian University of Science and Technology; 2008 

[25] Herrero E. R. and Francisco J. G. Two-step identification of nonlinear manoeuvring models 

of Marine vessels. Ocean Engineering, 2012, 53(10): 72-82. 

[26] Motoki Araki, Hamid Sadat-Hosseini, Yugo Sanada, et al. Estimating maneuvering 

coefficients using system identification methods with experimental, system-based, and CFD 

free-running trial data. Ocean Engineering, 2012, 51(9): 63-84. 

[27] Ding Feng. Coupled-least-squares identification for multivariable systems. IET Control 

Theory and Application, 2013, 7(1): 68-79. 

[28] Liu Yanjun and Ding Feng. Convergence properties of the least squares estimation algorithm 

for multivariable systems. Applied Mathematical Modelling, 2013, 37(2): 476-483. 

[29] Moustafa K A F. Identification of stochastic time-varying systems. IEEE Proceeding, Part 

D:Control Theory and Applications, 1983, 130(4): 137-142. 

[30] Ding F, Liu X P, Liu G. Multi-innovation least squares identification for system modeling. 

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, 40(3): 

767-778. 

[31] Ding F, Chen T. Performance analysis of multi-innovation methods. Automatica, 2007, 43(1): 

1-14. 

[32] Ding F. Several multi-innovation identification methods. Digital Signal Processing, 2010, 

20(4): 1027-1039. 

[33] Ding F, Xiao Deyun, Ding Tao. Multi-innovation stochastic gradient identification method. 

Control theory and application，2003, 20(6): 870-874. 



 

66 

[34] Han H Q, Xie L, Ding F, et al. Hierarchical least squares based iterative identification for 

multivariable systems with moving average noises. Mathematical and Computer Modelling, 

2010, 51(9-10): 1213-1220. 

[35] Zhang Z N, Ding F, Liu X G. Hierarchical gradient based iterative parameter estimation 

algorithm for multivariable output error moving average systems. Computer& Mathematics 

with Applications, 2011, 61(3):672-682. 

[36] Li Dianpu. Ship Movement and Modeling [M]. National Defense Industry Press, 2008. 

[37] Bolzern P, Colaneri P and De Nicolao G .Optimal robust filtering with time-varying 

parameter uncertainty .Int. J. Control, 1996, 63(3):557 -576 

[38] Jia Xinle, Yang Yansheng. Mathematical model of ship motion -- Mechanism modeling and 

identification Modeling [M]. Dalian: Dalian Maritime University Press, 1999. 

[39] Luo Weilin. Research on ship Maneuvering Motion Modeling based on Support Vector 

Machine [D]. Shanghai Jiao Tong University, 2009.  

[40] Yuan Yuan, Cheng Zhijun. Six degrees of freedom nonlinear coupling equations of ship 

motion in waves [J]. Journal of Shanghai Jiao Tong University, 2001(04): 57-59.  

[41] Tu Quanzhao. Research on control System of physical Simulation Platform of 2-DOF 

Parallel Mechanism [D]. Xiamen University, 2013.  

[42] Liu Chuan. Robust Neural network control for responsive Nonlinear ship Model [D]. Dalian 

Maritime University, 2004.  

[43] BAI Weiwei, REN Junsheng. Multi-Innovation Gradient Iterative Locally Weighted 

Learning Identification for A Nonlinear Ship Maneuvering System. China Ocean 

Engineering, 2018,32(3):288-30. 


	Nonlinear innovation identification for ship maneuvering modeling via the full-scale trial data
	tmp.1621407097.pdf.iEUfi

