The Effect of Dietary Nitrate and Anthocyanins on Anaerobic Exercise Performance

LOMA LINDA UNIVERSITY

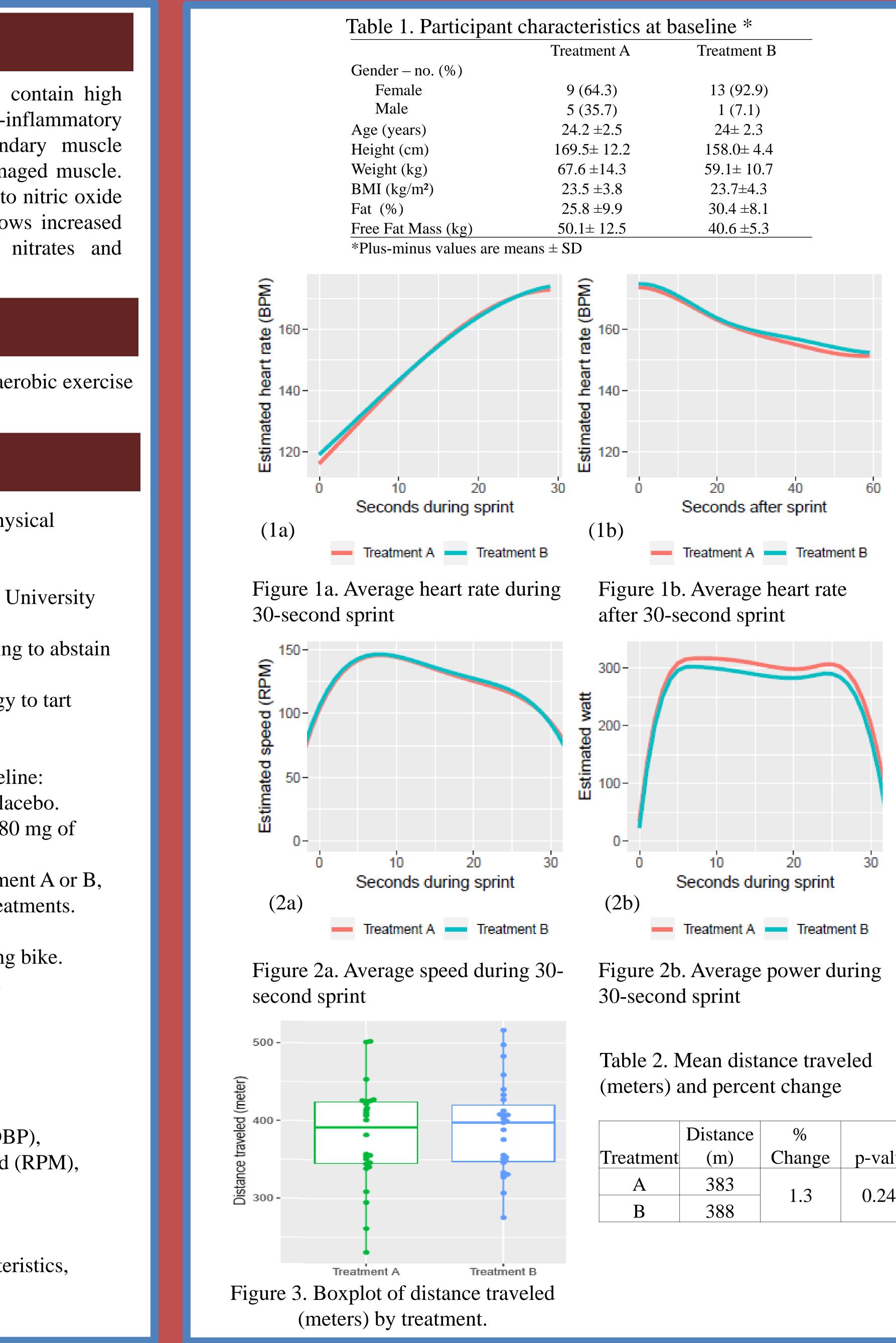
Yun Chieh Huang¹, Aurora Sanchez¹, Paul Tsai¹, JeJe Noval¹, Gurinder Bains², Bruce Bradley³, Pablo Mleziva³, Christine Wilson³, Sergio Ortiz⁴, Kristin Devore⁵, Keiji Oda⁶, Edward Bitok¹

Loma Linda University: ¹Department of Nutrition and Dietetics, ²Department of Allied Health Studies, ³Department of Physical Therapy, ⁴Center for Health Promotion, ⁵Office of Research Affairs, ⁶Center for Nutrition, Healthy Lifestyle, and Disease Prevention (Public Health)

Introduction

Beetroot (Beta vulgaris) and tart cherry (Prunus cerasus L) contain high levels of anthocyanins that possess potent antioxidant and anti-inflammatory properties. These reddish-purple pigments can blunt secondary muscle damage associated with a local inflammatory response in damaged muscle. Beetroots are a natural source of nitrates, which get converted to nitric oxide in the body. Nitric oxide is a vasodilator, and as a result allows increased blood flow in the body. Hence, ingesting both dietary nitrates and anthocyanins may yield benefits during exercise performance.

Purpose


To examine the effect of dietary nitrate and anthocyanins on anaerobic exercise performance among healthy individuals.

Methods

A double-blind, randomized crossover study conducted at the Physical Therapy laboratory of Loma Linda University.

Participants (N=28, 19-35 y/o) were recruited from Loma Linda University and surrounding cities (Table 1).

- Inclusion: Healthy, able to exercise on a stationary bike, willing to abstain from: caffeine, mouthwash, and high antioxidant foods.
- Exclusion: Orthopedic injuries, taking NSAIDs, known allergy to tart cherry and/or beetroot, pregnant or breastfeeding.
- Randomization of participants and supplementation after baseline:
 - Treatment A: 5.05g (3.62 mmol) of beetroot powder and placebo. Treatment B: 5.05g (3.62 mmol) of beetroot powder and 480 mg of a tart cherry capsule.
- 7-days run-in, 7-days of supplementation with either treatment A or B, followed by 7-days washout, then participants switched treatments.
- Modified Wingate Anaerobic Protocol on Monark 928E testing bike.
- Resistance equivalent to 10% of participant's body weight.
- Begin: 3-minute warm-up
- Test: 30-second sprint
- End: 2-minute cool down
- Study measurements:
- Systolic Blood pressure (SBP), diastolic blood pressure (DBP), heart rate, serum lactate and allantoin, power (watts), speed (RPM), distance (m), rate of perceived exertion (RPE).
- Statistical analysis:
- Linear mixed models, adjusted for baseline subject characteristics, treatment sequence (A-B, B-A), energy (kcal), sleep (hours), and workload (watts).

	Distance	%	
Treatment	(m)	Change	p-value
A	383	1.3	0.247
В	388	1.5	0.247

Table 3. Mea lactate and se	-	•	-	sure, heart rate ike test.	e, RPE,	
	Treatment	Pre	Post	% Change	p-value	
SBP	A	107.8	112.4	4.60	0.129	
	В	112.6	113.0	0.4		
DBP	A	72.0	71.6	-0.4	0.531	
	В	71.7	69.9	-1.8		
Heart Rate	A	68.8	93.9	25.3	0.613	
	В	65.6	93.5	27		
RPE	A	11.3	15.5	5.2	0.589	
	В	11.5	15.5	4		
Lactate	A	1.6	11	9.5	0.652	
	В	1.5	11.2	9.7		
Allantoin	A	18.7	14.2	-24.10	0.274	
	В	15.5	9.6	-8.50		

- (Figure 3).
- Significant increase in power (watts) output in Treatment B compared to treatment A (p < 0.05). • Estimated differences ranged from 15.3 to 19 watts (Figure 2b).
- No significant difference between treatments in speed (RPM) (Figure 2a)
- Treatment B had significantly higher heart rate (p < .05) than treatment A during the first 5 seconds of the sprint (Figure 1a). • The differences ranged from 1.6 to 2.7 bpm
- Treatment B had a significantly higher heart rate than Treatment A, 30 to 55 seconds post sprint (p < 0.05). • The difference ranged from 0.94 to 2.4 bpm (**Figure 1b**).

• Further research should be conducted to determine if a higher dose of beetroot and tart cherry has greater effect on anaerobic exercise performance.

LOMA LINDA **UNIVERSITY**

Results

25 participants (22 female) completed the study.

Treatment B had meaningful increase in distance traveled. • Mean distance of 5 meters (p = 0.25) further than Treatment A

Conclusion

- Supplementation with beetroot powder and tart cherry for 7 days may synergistically improve anaerobic exercise performance by maximizing potential heart rate and energy output.
 - Contact: Yun Chieh Huang, yhuang@llu.edu. Aurora Sanchez, aperez02@llu.edu. Paul Tsai, ptsai@llu.edu.