
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

8-2020

Inventory management of the refrigerator's produce bins using Inventory management of the refrigerator's produce bins using

classification algorithms and hand analysis. classification algorithms and hand analysis.

Sarah Virginia Morris
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Other Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Morris, Sarah Virginia, "Inventory management of the refrigerator's produce bins using classification
algorithms and hand analysis." (2020). Electronic Theses and Dissertations. Paper 3497.
Retrieved from https://ir.library.louisville.edu/etd/3497

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3497&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=ir.library.louisville.edu%2Fetd%2F3497&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.louisville.edu/etd/3497?utm_source=ir.library.louisville.edu%2Fetd%2F3497&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thinkir@louisville.edu

INVENTORY MANAGEMENT OF THE REFRIGERATOR’S PRODUCE BINS

USING CLASSIFICATION ALGORITHMS AND HAND ANALYSIS

By

Sarah Virginia Morris

B.S., University of Louisville, 2017

A Thesis

Submitted to the Faculty of the

University of Louisville

J.B. Speed School of Engineering

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in Electrical Engineering

Department of Electrical Engineering

University of Louisville

Louisville, KY

August 2020

ii

INVENTORY MANAGEMENT OF THE REFRIGERATOR’S PRODUCE BINS

USING CLASSIFICATION ALGORITHMS AND HAND ANALYSIS

By

Sarah Virginia Morris

B.S., University of Louisville, 2017

A Thesis Approved on

July 27, 2020

by the following Thesis Committee:

Dr. Karla Welch, Thesis Chair

Dr. Olfa Nasraoui, Committee Member

Dr. Jacek Zurada, Committee Member

iii

DEDICATION

I dedicate this thesis to all my family and friends for their love and support

throughout this process.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Welch, for her guidance, advice, and

support during this past year. I would also like to thank Dr. Nasraoui and Dr. Zurada for

their support and agreeing to serve on the committee.

Special thanks to Michael Schroeder, John Ouseph, and Stephanos Kyriacou.

Your collective knowledge guided me throughout this thesis.

I would like to thank the staff of GE Appliances, my manager Tim O’Connell, Dr.

Kelecy, and the rest of the staff who provided infinite opportunities to continuously learn

and grow. Also, thank you for allowing me to conduct this research in your facilities and

providing all the resources requested.

Lastly, to Devin, thank you for your support, wisdom, humor, and love.

v

ABSTRACT

INVENTORY MANAGEMENT OF THE REFRIGERATOR’S PRODUCE BINS

USING CLASSIFICATION ALGORITHMS AND HAND ANALYSIS

Sarah Morris

July 27, 2020

Tracking the inventory of one’s refrigerator has been a mission for consumers

since the advent of the refrigerator. With the improvement of computer vision

capabilities, automatic inventory systems are within reach. One inventory area with many

potential benefits is the fresh food produce bins. The bins are a unique storage area due to

their deep size. A user cannot easily see what is in the bins without opening the drawer.

Produce items are also some of the quickest foods in the refrigerator to spoil, despite

being temperature and humidity controlled to have the fruits and vegetables last longer.

Allowing the consumer to have a list of items in their bins could ultimately lead to a more

informed consumer and less food spoilage. A single camera could identify items by

making predictions when the bins are open, but the camera would only be able to “see”

the top layer of produce. If one could combine the data from the open bins with

information from the user as they placed and removed items, it is hypothesized that a

comprehensive produce bin inventory could be created. This thesis addresses the

challenges presented by getting a full inventory of all items within the produce bins by

observing if the hand can provide useful information. The thesis proposes that all items

must go in or out of the refrigerator by the main door, and by using a single camera to

vi

observe the hand-object interactions, a more complete inventory list can be created. The

work conducted for this hand analysis study consists of three main parts. The first was to

create a model that could identify hands within the refrigerator. The model needed to be

robust enough to detect different hand sizes, colors, orientations, and partially-occluded

hands. The accuracy of the model was determined by comparing ground truth detections

for 185 new images to the model versus the detections made by the model. The model

was 93% accurate. The second was to track the hand and determine if it was moving in or

out of the refrigerator. The tracker needed to record the coordinates of the hands to

provide useful information on consumer behavior and to determine where items are

placed. The accuracy of the tracker was determined by visual inspection. The final part

was to analyze the detected hand to determine if it is holding a type of produce or empty,

and track if the produce is added or removed from the refrigerator. As an initial proof-of-

concept, a two types of produce, an apple and an orange, will be used as a testing ground.

The accuracy of the hand analysis (e.g., hand with apple or orange vs. hand empty) was

determined by comparing its output to a 301-frame video with ground truth labels. The

hand analysis system was 87% accurate classifying an empty hand, 85% accurate on a

hand holding an apple, and 74% accurate on a hand holding an orange. The system was

93% accurate at detecting what was added or removed from the refrigerator, and 100%

accurate determining where within the refrigerator the item was added or removed.

vii

TABLE OF CONTENTS

DEDICATION ... iii

ACKNOWLEDGMENTS ... iv

ABSTRACT .. v

LIST OF TABLES .. x

LIST OF FIGURES .. xii

INTRODUCTION .. 1

BACKGROUND .. 6

 Trends in Computer Vision ... 6

 Brief History of Computer Vision .. 7

 Convolutional Neural Networks ... 9

 Internet-Connected Appliances and Inventory Management 21

 Trends in CV Applied to Hand Analysis .. 25

METHODOLOGY ... 28

 Data Collection ... 29

 Camera Setup and Specifications ... 29

 Collecting Images to Develop the Dataset ... 31

 Dataset Annotation ... 33

 EgoHands dataset ... 36

 Hand detection .. 37

 TensorFlow Object Detection API ... 38

 Python Environments ... 44

 Metrics for Evaluating the Models and Algorithms ... 45

 Model Training and Real-Time Metrics ... 48

 Hand Detector Experiments ... 49

 Hand tracking .. 50

 Centroid Tracking .. 50

 dlib Correlation Tracker ... 51

 Determining Direction of Movement ... 52

 Distinguishing Between Hands .. 53

viii

 Determining if a Hand is Inside the Refrigerator ... 54

 Hand-Object Interaction.. 55

 Hand Holding Item or Not, using TensorFlow Model ... 56

 Hand/Object Segmentation ... 57

 Hand Analysis from Segmented Images .. 62

 Video for Testing ... 62

 Image Classifier using CNN ... 64

 Inventory Detection Pipeline .. 71

 Storing Inventory Information .. 74

RESULTS ... 76

 Hand Detection ... 76

 Determining the Best Model for Hand Detection ... 76

 Supplementing the Dataset with the EgoHands Dataset .. 77

 Results for Each Model in the Real-World Application .. 78

 Model Trained with Left and Right Hand Class .. 80

 Hand Detector Limitations ... 81

 Hand Tracking .. 82

 Centroid Tracking .. 82

 Correlation Tracker .. 86

 Direction of Movement .. 92

 Distinguishing Between Hands .. 97

 Hand Analysis ... 98

 Hand Empty or Not .. 98

 TensorFlow Object Detection API for Produce Detection ... 99

 Image Background Removal .. 102

 Image Classifier .. 112

 Object Add or Remove Logic ... 114

 Frames Per Second ... 115

 Hand within the Refrigerator .. 115

 The Algorithm .. 117

 Storing Inventory Information .. 127

ANALYSIS ... 129

CONCLUSIONS AND FUTURE WORK ... 135

Future Work .. 135

ix

REFERENCES ... 140

APPENDIX A ... 150

APPENDIX B ... 153

APPENDIX C ... 155

CURRICULUM VITA ... 159

x

LIST OF TABLES

Table 1. TensorFlow detection model zoo metrics [92]. .. 43

Table 2. Hand detector experiments and corresponding classes....................................... 49

Table 3. Class weights for each class to ensure a balanced dataset. 68

Table 4. Performance results for various models, compared with published results. 76

Table 5. mAP results for each model on the local dataset. ... 77

Table 6. Precision and recall (left) and confusion matrix for EgoHands then local dataset

(faster_rcnn_inception_v2_coco). .. 77

Table 7. Precision and recall (left) and confusion matrix for local dataset

(faster_rcnn_inception_v2_coco). .. 77

Table 8. Precision and recall (left) and confusion matrix for models: (a)

ssd_mobilenet_v2_coco (b) rfcn_resnet101_coco. ... 78

Table 9. Disk size of each hand detection model.. 79

Table 10. Example hand tracking sequence where the tracker swaps the left and right

hand. .. 83

Table 11. dlib correlation tracker applied to a video sequence, detector running every

fourth frame. ... 87

Table 12. Movement direction, shown by the red arrow, for one interaction. 92

Table 13. Video sequence showing the original frame and the extracted foreground using

MOG2. .. 103

xi

Table 14. Video sequence showing the original frame and the extracted foreground using

GrabCut ... 105

Table 15. HSV color space values for skin thresholding. ... 107

Table 16. Skin threshold applied to frames corresponding to Figure 44 interaction. 107

Table 17. Skin threshold applied to the detected hands corresponding to Figure 44

interaction. .. 109

Table 18. Precision and recall data for image classifier in production application. 113

Table 19. Confusion matrix for image classifier in production application. 114

Table 20. Number of frames per interaction (adding an item to the shelf) for different fps.

... 115

Table 21. Example interaction and add/remove logic .. 120

Table 22. Predicted and ground-truth classes for 14 interactions. Incorrect predictions are

highlighted. ... 127

Table 23. Selected papers on research into inventory management systems in the

refrigerator. ... 150

Table 24. Selected papers on research into produce classification. 151

Table 25. Annotation count by item for LabelImg annotations. 153

Table 26. Annotation count by item for Semi-Automatic Image Annotation tool, Anno-

Mage. .. 154

Table 27. Class breakdown for object classifier dataset. .. 154

xii

LIST OF FIGURES

Figure 1. Household food waste by category.. 3

Figure 2. An image of a typical consumer’s produce bin. .. 4

Figure 3. Object detector performance on the popular PASCAL VOC dataset over time

[14]. ... 9

Figure 4. An example of a convolution with a 3x3 kernel, no padding, and stride of 1

[18]. ... 11

Figure 5. An illustration of how the early convolution layers allow further layers to create

more complex features [20]. ... 12

Figure 6. Activated feature maps after different convolutional layers (left), and the

corresponding image patch the activated the feature map (right) [21] [22]. 13

Figure 7. Architecture of LeNet-5 [24]. .. 16

Figure 8. Models available in Keras [37].. 17

Figure 9. Speed and mAP comparison for each generation of R-CNN [42] 19

Figure 10. The Faster R-CNN Network [23]. ... 20

Figure 11. FridgeEye, the battery-operated camera and automatic detection system to

make any refrigerator a smart refrigerator. ... 24

Figure 12. Camera location in the refrigerator and corresponding field of view. 30

Figure 13. Example image from the webcam used for data collection. 31

Figure 14. USDA Data [81]. ... 32

Figure 15. Example of bounding box annotations for an image. 33

xiii

Figure 16. Bounding box coordinate convention. ... 35

Figure 17. Images from the EgoHands Dataset [87]. .. 37

Figure 18. Flowchart for preparing data for the TensorFlow Object Detection API. 39

Figure 19. Example rows from the csv file used to convert the dataset to the format

required for the TensorFlow Object Detection API .. 40

Figure 20. Example label map to use for the TensorFlow Object Detection API. 41

Figure 21. Training the model using TensorFlow Object Detect API in Google Colab .. 43

Figure 22. Intersection over union (IoU) is an important metric for evaluating an object

detection model [99]. .. 46

Figure 23. Image showing visualization of TP, FP, FN, and IOU. Red boxes are what the

model predicts, yellow are ground-truth labels. .. 47

Figure 24. Direction is determined by looking at the sign of the delta between the y

centroid of the current frame versus that of the previous frame. W is the total width of the

image frame, and H is the total height. ... 53

Figure 25. GUI to create holding/not holding annotations. .. 56

Figure 26. Left: The input image and blue rectangle provided to the program to designate

the foreground. Right: The output of the algorithm. [111] ... 58

Figure 27. Background subtraction works by developing a background model from prior

frames, and then comparing that model to the current frame. The pixels that are different

from the background model, with respect to a specified threshold, are considered

foreground. The mask is created by setting all pixels above the threshold to white, and all

others to black. [113] .. 59

xiv

Figure 28. Left: Image before the Gaussian blur is applied. Right: After the image is

blurred. .. 61

Figure 29. Training images for the object classifier. The left image is an example in the

class for Empty and the right is an example from the Apple class. 65

Figure 30. A flowchart showing the process of collecting data to training the classifier

model... 66

Figure 31. Folder structure for image dataset within Google Drive. 67

Figure 32. Left: the original training image for class Apple. Right: Example random

augmentations using the ImageDataGenerator class. ... 69

Figure 33. VGG16 Model Structure [129]. ... 70

Figure 34. Flowchart for detection model applied to a video sequence. 72

Figure 35. “Loading zone” area within which the classifier will run to detect what a hand

is holding. .. 73

Figure 36. Precision and recall training metrics for EgoHands dataset with left and right

hand class. ... 80

Figure 37. Precision and recall training metrics for local dataset with left and right hand

class. .. 80

Figure 38. Prediction on a validation video for the left/right hand model. 81

Figure 39. The hand detector did not detect the hand on the edge of the frame. 82

Figure 40. An example image of an edge case where it is difficult to definitively

determine if the left hand is empty or not. .. 98

Figure 41. An example image where it is unclear whether the left hand opening the bin

should be considered empty or not. .. 99

xv

Figure 42. Precision and recall for the model trained on all categories. 100

Figure 43. Inconsistent annotation where the apple bounding box covers both single and

multiple apples. Each red box denotes the apple class. .. 101

Figure 44. A challenging image to determine if the apples are in the right hand or within

the bottom produce bin. .. 102

Figure 45. Original, thresholded, and k-means cluster for empty hand. 112

Figure 46. Original, thresholded, and k-means cluster for hand holding an orange. 112

Figure 47. Precision and recall data for image classifier. ... 113

Figure 48. Training loss and accuracy curve for image classifier. 113

Figure 49. An example where the hand is out of frame, but the arm can be seen. 117

Figure 50. Flowchart of hand analysis logic. .. 118

Figure 51. Thresholds for determining item location within the refrigerator. 120

Figure 52. Excel spreadsheet storing refrigerator inventory. .. 128

Figure 53. Logic for updating the Excel spreadsheet storing the inventory information.

... 128

Figure 54. Example mobile or web app for displaying inventory information to the

consumer. .. 138

Figure 55. Annotation naming conventions. ... 153

1

INTRODUCTION

Analyzing systems to prevent food spoilage could address a costly problem in the

homes of consumers. It is estimated that 21% of the food purchased by consumers in

2010 went to waste, resulting in a loss of $114.9 billion dollars in the US, or $371 per

person per year [1]. Food waste within retail has long been identified as an issue. To

reduce waste, retailers and restaurants use technology to track their food stores, utilize

their stock more efficiently, and help make more-informed decisions when ordering new

items. [2] This process, known as inventory management, has only recently been

extended within the home, and more specifically the refrigerator, to combat consumer

waste. Inventory management in the refrigerator is the process of maintaining an accurate

record of the contents inside. Important information for inventory management includes

what an item is, where it is located, how long it has been in the refrigerator, and how long

the item will stay fresh. Additional technology within the fridge itself can make an

automated inventory management system, which can lead to a more-informed consumer

without overburdening them with food-tracking tasks, and provide automated information

on the contents of the refrigerator to reduce food spoilage and waste.

Both Samsung and LG have provided solutions by offering refrigerators with

cameras. The cameras are located within the appliance and promise to give consumers a

constant view of their refrigerator’s contents. The benefits of these products include the

potential for that view to lead consumers to make more-informed decisions at the grocery

store and decisions that can reduce spoilage, as well as providing insight and valuable

data about how consumers use their refrigerator. However, the camera is only providing

data, meaning the technology needs to extract and analyze information from the data

2

stream to be truly useful to the consumer. Additional drawbacks of the approach are that

many cameras are needed to get a full view of all areas of the fridge, the consumer gets

no information on how long an item has been in the fridge, and the produce bins remain

invisible to the camera.

One topic of research to improve upon inventory management inside consumer

refrigerators is to use artificial intelligence to extract information from the camera data.

Artificial intelligence (AI) is an important topic in today’s world, with uses stretching

from driverless cars to computers making cancer predictions. A subset of AI, computer

vision, is a promising field for analyzing the refrigerator camera feed. Computer vision

uses cameras to allow a computer to interpret the world around it. Computer vision topics

include identifying, classifying, and locating objects within a scene. With computer

vision techniques, an inventory management system could identify and classify food

items, register when an item is placed inside, log how long an item has been inside, or

even identify spoiling food and alert the consumer. The system could provide users with

the best storage locations within the fridge for a particular food, provide recipe

suggestions based on the fridge’s contents, or help the user make smart eating decisions

based on what they have already eaten that day.

The Consumer Electronics Show (CES) is the annual preeminent showcase for

manufacturers to debut their latest, cutting-edge solutions for consumer appliances and

products [3]. Every company that makes appliances attends this convention to influence

the marketplace for decades to come. At CES 2020, Samsung and LG both announced

computer vision capabilities within some of their refrigerator units. Both companies

promised their AI could automatically detect items in the fridge and build a virtual food

3

inventory. Samsung describes the technology on their website as, “[…] the new Samsung

Family Hub with the ViewInside camera, where AI-powered image recognition is used to

first understand what’s inside the fridge. Then, the fridge recommends a curated feed of

recipes that incorporate the ingredients you already have with your preferences, desires

and situational needs.” [4] Neither company has released these new features to

consumers, so it is still unknown how accurate the AI is at detecting objects.

While having a constant inventory of items in the main refrigerator compartment

is useful, both Samsung and LG’s solutions neglect the location where the most food is

wasted: the produce bins. Studies have shown that vegetables and fruit are the top

category of wasted food. According to the Natural Resources Defense Council (NRDC),

Figure 1 represents the estimated total food loss per household in the United States in

2017 [5].

Figure 1. Household food waste by category.

4

Figure 1. shows that 39% of all food waste is fruits and vegetables. A large contributor to

the waste is due to produce becoming inedible or spoiled. ReFED, an American non-

profit that researches ways to reduce food waste, believes that fifty-nine thousand tons of

food could be saved each year by improving “[…] the ability of retail inventory

management systems to track an average product’s remaining shelf-life (time left to sell

an item) and inform efforts to reduce days on hand (how long an item has gone unsold)”

[6] Inventory management should not be limited to retail, and an automatic inventory

system for the produce bins would allow users to always be aware of every produce item

they have, how long it has been in the fridge, and how long it will stay fresh. Giving this

information to the consumer will help them make better grocery-shopping decisions, and

ultimately reduce produce waste at the consumer level.

Because the produce bins are deep and difficult to see inside, items can easily get

lost and forgotten under layers of other produce. Figure 2, below, shows the contents of a

typical consumer’s produce bin.

Figure 2. An image of a typical consumer’s produce bin.

5

As shown in Figure 2, the items on top are easily distinguishable, but the layers

underneath are invisible. Typically, one would need to remove the top layer to see

underneath, but doing so is cumbersome and inefficient.

What if the fridge could tell you what was underneath those layers without you

needing to do a thing? This research aims to explore that question by observing if the

hand can provide useful information. The thesis proposes that all items must go in or out

of the fridge by the main door, and by using a single camera to observe the hand-object

interactions, a more complete inventory list can be created.

6

BACKGROUND

The idea of inventory management in the refrigerator has been around almost as long

as the refrigerator itself. Knowing what is in the refrigerator is helpful for making grocery

lists, planning the dinner menu, and preventing food spoilage. Manually listing all fridge

items is impractical. A simple solution is to keep a grocery list on the fridge and add to it

when one uses the last of an item. This only works if all members of the household

remember to add to the list when they finish an item, and does not address spoilage. An

extension of this idea, utilizing the now ever-present virtual assistants such as Siri and

Alexa, is to keep a virtual list by telling them when you use the last of a food product.

Virtual assistants make tracking inventory somewhat easier and allow the list to be kept

always accessible on a cell phone, but still relies on consumer action to add items to the

list. Also, Siri and Alexa provide no information on the condition of the inventory and

whether an item is past its prime [7] [8]. Apps like Fridge Pal allow users to scan the

barcodes of food items to keep track of what is in the fridge or freezer [9]. Once again,

this requires consumer action to remember to add new items and does not address food

spoilage. The above solutions are a good start, but the products still rely heavily on input

from the consumer. A better solution would be to leverage research from the field of

computer vision and the rise of internet-connected appliances to implement a fully-

autonomous system to identify and track inventory. The system would automatically

share pertinent information to the user, and provide an up-to-date refrigerator inventory

list accessible anywhere through a web or mobile application.

 Trends in Computer Vision

7

 Brief History of Computer Vision

Computer vision (CV) is a subset of artificial intelligence which aims to replicate

the human vision system by using algorithms to gather meaningful information from

images and video. Early research studied how the vision systems worked in mammals.

The influential 1959 paper by Hubel and Wiesel, “Receptive fields of single neurons in

the cat’s striate cortex”, studied cats to try and understand visual perception. The research

found that individual neurons reacted to stimuli in different orientations and locations,

with layers of neurons working together to aid in perception. The neurons connected most

directly with the eyes first detected visual information like the orientation of edges which

then allowed neurons with subsequent connections to extract higher-level information

from those areas of interest [10]. The idea of using more general features like edges to

then develop more complex ones is the basic idea behind most computer vision

techniques used today. The computer vision field arguably began in the late 60s when a

team of researchers at the MIT Artificial Intelligence Group believed that, over their

summer break, they could create a vision system to recognize objects. Called the

“Summer Vision Project,” the research was unable to meet the goal of an autonomous

object recognition system, but paved the way for computer vision today [11].

Object recognition is a subset of CV that studies how to recognize objects in an image

or video. The ImageNet Large Scale Visual Recognition Challenge defines the major

tasks of object recognition as:

1. Image classification (2010-2014): Algorithms produce a list of object categories

present in the image.

8

2. Single-object localization (2011-2014): Algorithms produce a list of object

categories present in the image, along with an axis-aligned bounding box

indicating the position and scale of one instance of each object category.

3. Object detection (2013-2014): Algorithms produce a list of object categories

present in the image along with an axis-aligned bounding box indicating the

position and scale of every instance of each object category. [12]

The CV techniques of classification, localization, and detection are studied and

implemented in this work. Each of these techniques selects features from images and uses

algorithms to predict the object (or class) label and bounding box (if required for the

task). Learning or training are terms used in the field of CV, and indicate the parameter

optimization process used to create useful algorithms for a particular task [13]

Early object recognition research focused on hand-engineering the features used

for training. Techniques like Scale Invariant Feature Transform (SIFT), Speeded Up

Robust Features (SURF), and Histogram Oriented Gradients (HOG) could extract edges,

shapes, and other discriminating features [13]. The features could then be passed into an

algorithm like Support Vector Machine (SVM) or Random Forrest (RF) to learn to

identify the object. [13] These techniques required small datasets for training and could

easily be run on the available computer technology. By 2012, progress on object

recognition tasks had stalled. It was not until the resurgence of convolutional neural

networks (CNN) that object recognition research was able to reach levels close to human-

level accuracy [13]. Figure 3, below, shows how research plateaued, and then improved

dramatically with the resurgence of CNN.

9

Figure 3. Object detector performance on the popular PASCAL VOC dataset over time

[14].

Figure 3 shows that with the proper data, CNN models perform better on object detection

tasks than prior techniques.

CNN were first introduced by Fukushima in 1988, but was limited in its

usefulness because it required large datasets and powerful computers that were not

available at the time [15]. One benefit of CNN over other techniques is that CNN learns

the distinguishing features from the image dataset, whereas prior techniques used human-

defined features. By allowing features to be learned from the images, CNN can be used to

detect patterns and descriptors unique to the application. Another benefit of CNN over

older architectures like SIFT and HOG is that the CNN maintains the spatial integrity of

an image, whereas SIFT and HOG flattens the image into a 1D matrix. Spatial

information is essential when localizing an object in an image.

 Convolutional Neural Networks

10

Convolution is a mathematical process that takes two functions and calculates

how one function will affect the other [16]. Convolutions are used extensively in signal

processing, and can be used in image processing as a filter to blur, smooth, and otherwise

alter the input image [17]. Convolution works on an image by passing a kernel of N x N

size along each pixel of the image. At each pixel, the kernel is multiplied by the

underlying portion of the image. The sum of all the multiplications is the value for that

pixel location in the convolved output image. An example of the operation is shown

Figure 4.

11

Figure 4. An example of a convolution with a 3x3 kernel, no padding, and stride of 1

[18].

Figure 4 shows a convolution of an image with a 3x3 kernel. The number of pixels the

kernel moves per operation is called the stride. Figure 4 shows that the operation reduces

the dimensions of the original image. A high value in the final output means that the

feature for the kernel (such as a line or edge) was found in that location. A low value, or

zero, means that feature is not present in that location [19]. Padding is the process of

adding extra rows and columns around the border of the image to maintain the original

image dimensions. The example above has a stride of 1 and no padding [18]. Padding,

stride, kernel size, as well as number of kernels and resulting feature maps for each

convolutional layer, are parameters that can be changed to optimize the CNN model [17].

The final output, or feature map, of the kernel can then be fed into another convolutional

12

layer. By stacking convolutional layers, the model is able to learn kernels that first detect

edges and lines, then in the following layers learn kernels that combine those attributes to

learn more complex features. There are many kernels per layer, with each kernel learning

a different discriminating feature of the image. Because each kernel slides over each part

of the image, only a single horizontal line filter is needed to detect all horizontal lines in

the image. An example of how simple features can combine to detect more complex

features is represented by Figure 5.

Figure 5. An illustration of how the early convolution layers allow further layers to create

more complex features [20].

Figure 5 shows how edges and lines in the first convolutional layer can be combined in

the next layer to detect eyes, noses, and ears. The combination of these features can then

be learned by the model to represent a cat object [20].

Figure 6 shows which feature maps “activate” (or compute a large value when the

kernel is passed over the region) as an image progresses through the convolution layers.

13

Figure 6. Activated feature maps after different convolutional layers (left), and the

corresponding image patch the activated the feature map (right) [21] [22].

Figure 6 shows that early layers, or layers more directly connected to the input image,

detect edges and colors, while later layers can detect complex features like dog faces. Not

all feature maps will activate for a given image, and the unique combination of activated

feature maps defines which object is present in the image. After the convolutional layers,

the model becomes like a traditional neural network with one or more fully connected

(FC) layers feeding into a function to determine probabilities for each class. Loss is

calculated with respect to the ground-truth label versus the output class probabilities, and

the error is back-propagated to the weights in the fully connected layers and the kernels

in the convolution layers. [23] Essentially the training algorithm is used to reduce error in

the same way that a gradient decent optimization scheme works, with larger error values

leading to larger corrections in model weights.

The ability of an image classification model to learn discriminating features is

reliant on massive amounts of quality labeled data. At least 1,000 images per class are

14

needed to get accurate and generalizable performance from a CNN [17]. Small datasets

can impact not just the accuracy of the model, but can also cause overfitting. Overfitting

occurs when the model models the training data too well, and thus performs well on the

training set but is unable to generalize to new data [17]. Lack of data limited early CNN

development, but more recently, large, high-quality datasets have been created to fill that

gap. One of the earliest large scale image databases that was a benchmark for both

traditional and CNN models is the Modified National Institute of Standards and

Technology database (MNIST) handwritten digit database. Introduced in 1998, MNIST

features 600,000 train and 10,000 test labeled images [24]. More complex datasets like

PASCAL VOC (Currently 500,000 images, 20 classes, class and bounding box

annotations) [25], ImageNet (Currently over 14 million images, 20,000 classes, class and

bounding box annotations) [26], and Microsoft Common Objects in Context (COCO)

(Currently over 2 million images, 91 classes, class, bounding box, and pixel-level

annotations) [27] have become the benchmarks by which to measure new CV models. In

addition to providing more data, Chen, Goodfellow, and Shiens showed in 2015 that the

weights from a model trained on a large set of data can then be used as the starting

weights for a new model for a different task. These pre-trained models have already

learned many basic features from the other data that can then be used to better learn the

new data [28]. Called transfer learning, the technique reuses convolutional layer feature

maps from larger datasets. The early layers of less complex features are kept, while either

the later convolutional layers or the fully connected layers are retrained by back-

propagating the loss and only updating the desired kernels and weights. With transfer

learning, hundreds, not thousands, of images per class can be used to train an accurate

15

classifier or object detector. Transfer learning can also reduce training time, and help the

model generalize from the training data to real-world applications [13]. Transfer learning

is used extensively in this thesis for both the classification and detection tasks.

Another reason for the resurgence of CNN is the introduction of highly optimized

machine learning frameworks. TensorFlow, PyTorch, Keras, and Caffe are some popular

open source machine learning frameworks [13]. The frameworks are optimized for speed

and efficiency, and have ample documentation, tutorials, and large communities to make

the complicated algorithms more straight-forward to implement. Keras is a high-level

platform that runs on top of lower level libraries like TensorFlow. Keras plus TensorFlow

are used in this research for building image classifiers. Keras has built-in functions to run

popular model architectures and utilize pre-trained weights from ImageNet and other

datasets. The TensorFlow Object Detection API is used for the object detector. The API

is written in Python, and has libraries that implement state-of-the-art object detection

architectures like Single Shot Detector (SSD) and Faster R-CNN [29] [30]. In addition to

the frameworks, companies like Google and Microsoft now provide coding platforms that

come with the popular machine learning frameworks already installed [31] [32]. Beyond

reducing the learning curve that comes with setting up the frameworks, the platforms let

users train their models in the cloud using powerful GPU and TPUs. Google

Colaboratory (Colab) is used in this research to train all models.

a. CNN for Image Classification

Training a model utilizing transfer learning involves deciding which model

architecture to use for the task. There has been extensive research into optimizing the

structure of a convolutional neural network [13]. The research problem involves finding

16

the best combination of network layers and depth to give enough parameters for the

model to learn distinguishing features, while balancing the size and computational power

necessary to train all the parameters. LeNet, introduced in 1998, was one of the earliest

examples of a neural network using CNN layers [24]. The structure of LeNet is shown in

Figure 7:

Figure 7. Architecture of LeNet-5 [24].

Today’s networks have a similar structure to LeNet, with each convolutional layer

producing a number of feature maps (a feature map for each convolutional kernel).

Between the convolutions is a layer which reduces the dimensions the feature map, while

maintaining the spatial integrity of the image. Reducing the size of the feature maps is

important to reduce the number of computations required as the number of feature maps

increases. Each subsequent convolutional layer increases the number of feature maps

while decreasing the dimensions of the maps. In the final layers, the images are flattened

and passed to fully connected layers which use the activated features from the CNN

layers to determine the likely class [33]. Lastly, the output layer is assessed to classify the

image based on the number of classes for the specific task. For the handwritten digit task,

there are ten classes for the digits (0 to 9). LeNet had few layers compared to today’s

networks, but was able to perform better than any other model at that time on handwritten

digit recognition [24]. Current networks have many more layers, or depth, than LeNet

17

and often handle 3-channel RGB images instead of a single channel for black and white

images, but the basic structure of the network is still used. There was a lull in research

using CNN until 2010 when it was shown that powerful graphical processing units (GPU)

could be used to train the networks, allowing for much larger networks able to learn more

complex features [34]. Building on the idea of deep networks with many layers, AlexNet,

in 2012, was able to achieve the lowest ever error rate on the ImageNet dataset. AlexNet

error was 37.5%, compared to the previous best of 45.7% using SIFT [12]. AlexNet’s

success on the ImageNet dataset lead to the boom of CNN-based image classifiers seen

today [35] [36].

Keras offers applications to easily implement many of today’s popular

architectures [37]. The applications allow for training the models from scratch, or using

weights pre-trained on ImageNet. A list of models available in Keras is shown in Figure

8:

Figure 8. Models available in Keras [37].

18

The models in Figure 8 can be used to classify images containing any of ImageNets

20,000 classes, or as a starting point for training a model to detect new classes.

b. CNN for Object Detection

One of the first instances of CNNs used for object detection is the OverFeat

framework introduced by Sermanent et al in 2013 [38]. OverFeat uses multiscale sliding

windows to detect and identify objects. Later in 2014, Girshick et al introduced Regions

with CNN features (R-CNN) which improved upon the relative accuracy of the next best

architecture on PASCAL VOC 2012 by 30% [39]. R-CNN obtained a mean average

precision (mAP) of 31.4% on the ILSVRC2013 detection dataset, compared to 24.3%

mAP for OverFeat [39]. Mean average precision, the ability of the model to correctly

detect the desired object in an image, is a standard metric for measuring the accuracy of

an object detection model. mAP is discussed in more detail in the Methodology. R-CNN

uses the selective search algorithm to produce regions of interest (ROI) that are then

passed to CNN layers to extract features. Selective search utilizes natural boundaries in

an image, such as color and texture, to segment the image and use those segments as ROI

[40]. Finally, the extracted features from the CNN are passed to SVMs to make a

classification. The paper’s researchers continued to improve on their framework, first

with Fast R-CNN in 2015 [41], and finally with Faster R-CNN in later 2015 [30]. Faster

R-CNN improved speeds by using a single CNN to generate region proposals (called the

Region Proposal Network or RPN) and classify/detect the objects. A comparison of

speeds is shown in Figure 9.

19

Figure 9. Speed and mAP comparison for each generation of R-CNN [42]

The purpose of the RPN is to generate good features that can be used to find potential

object locations. Images are passed through a pre-trained CNN, up to an intermediate

convolutional layer to create a feature map [43]. The original paper used VGG16 trained

on ImageNet. Images are propagated up to the fifth convolutional layer to create a feature

map proportional to the original image but with greater depth [30]. Potential regions are

found by sliding anchor boxes of different sizes (0.5, 1, 1.5) and aspect ratios (1:1, 1:2,

2:1) over the output feature map [23]. The nine boxes at each point are used to both

classify and predict bounding boxes. One FC layer examines each anchor box and scores

it as either an object or not an object. A separate FC layer produces four offset values (x

center offset, y center offset, width offset, and height offset) to predict how the anchor

box needs to be offset to encompass the object [44]. Boxes with high object scores are

then passed through processing to reduce the boxes to a predetermined max value of

regions, and reshape each box to be a uniform size [45] [44]. The proposals are then

passed to more FC layers, which classify the regions into the specified class or a

background class to be discarded, and further improve the bounding box offsets. The

basic structure of the Faster R-CNN is shown in Figure 10.

20

Figure 10. The Faster R-CNN Network [23].

Figure 10 illustrates that, unlike the prior frameworks which needed to be trained in parts,

Faster R-CNN can be trained all at once. Faster R-CNN consists of four losses: RPN

classification and bounding box localization losses, and R-CNN classification and

bounding box localization loss [30]. Not only does end-to-end training speed up

computation time, it also improves accuracy [42]. Faster R-CNN is considered a two-

stage detector because there are two stages, the RPN and the fine-tuning stage, to the

network. Single stage detectors, like Single Shot Detector (SSD) and You Only Look

Once (YOLO), are faster than two-stage detectors, but are often less accurate [17]. More

information on object detection frameworks can be found in the SSD and YOLO papers

21

[29] [46]. Experiments have been done to determine which of the frameworks is best

suited to this research, and the results can be found in Section A of the Results.

The rise of CNN for object recognition tasks was driven by an increase in

computing power and the introduction of large datasets. Optimized machine learning

frameworks like TensorFlow and Keras allow state-of-the-art neural network research to

be applied to real-world problems like automatic inventory management.

 Internet-Connected Appliances and Inventory Management

The current proliferation of wireless, internet-connected appliances has opened up

new solutions to inventory management. Often given the moniker “smart,” the connected

devices give consumers unprecedented control over their products [47]. Smart appliances

allow users to control their units remotely, get instant software updates, and allows

appliance makers to add innovative new technology to their products. Internet-connected

refrigerators have allowed researchers to install barcode scanners, RFID readers, scales,

cameras. and other sensors into refrigerators to develop inventory management systems.

The sensor information was used to track inventory within the refrigerator, alert users of

items close to their expiration date, suggest recipes and provide nutritional information,

create grocery lists, or identify the refrigerator contents. [48] A limitation of barcode or

scale-based inventory systems is that they place the burden on the consumer to scan the

barcode or ensure the item is placed on the scale [49]. RFID systems do not need to be

manually scanned, but still require the consumer to add tags to items. Some food

manufacturers are adding RFID to their packaging; but many items, specifically produce,

would need to be manually tagged by the consumer in order to work in the systems

mentioned above [48] [50]. One study used a 360-camera within the produce bin to

22

automatically identify items. The research used multiple photos of the bin to extract the

food region and identify the object using histogram matching. The research achieved

96.5% accuracy on four produce items, but identification could only occur if a single item

was present in the bin. [51] Another study used a consumer’s mobile phone as the

inventory management system. Through a phone application, the user was able to scan

barcodes, identify items by taking a picture, and get nutritional information. [52]

Utilizing mobile phone technology has the potential to give smart refrigerator capabilities

to anyone with a phone, but the system is still dependent on the user actively operating

and updating the system every time the refrigerator inventory changes. The 2012 paper,

Negotiating Food Waste: Using a Practice Lens to Inform Design, explored the causes of

food waste in a consumer home by studying the behaviors of 14 households. The

researchers installed a camera inside each of the participant’s refrigerator that would take

pictures inside the unit every time the door was opened. The pictures would be uploaded

to a website, and could be accessed by the household at any time. The research showed

that while the participants found the camera images useful when they remembered to

look at them, most users simply forgot the images were available. The study indicates

that it is important for an inventory management system to proactively inform the user

instead of relying on the consumer to get the information from the system on their own.

[53] A more comprehensive list of refrigerator inventory management research can be

found in Appendix A.

Appliance companies are taking advantage of the new connectivity by installing

cameras in the refrigerator to allow users to see inside even when they are away from

home. Samsung’s Family Hub™ Side-by-Side refrigerator has internal cameras that

23

connect to an app to give users a constant video stream inside their fridge [54]. LG’s

ThinQ smart fridge offers a panoramic camera inside the fridge, as well as Amazon

Alexa integration [55]. Both products are high-end, costing at least double what a typical

refrigerator would cost. Aside from the cost, a limitation of these products is that even the

best organized fridge will have items hidden behind other items. Also, there are areas in

the fridge, like the fresh food bins, that are not visible unless opened.

A better solution would be an automatic inventory management system. The

system would identify and track all items within the refrigerator and how long they have

been there; automatically adding and removing items from the inventory. The technology

could alert the user when something is about to go bad, provide an up-to-date inventory

list on the go through a mobile application, and suggest recipes based on items that are

nearing their best-by-date. Research has shown promising results using machine learning

techniques to automatically identify items within the refrigerator. The introduction of

large produce databases like VegFru, with over 160,000 images of fruits and vegetables,

and Fruit-360, 90,483 images of fruits and vegetables, have enabled CNN models to be

applied to produce classification [56] [57]. A challenge specific to fruits and vegetable is

there is a lot of variability even within the same class of food item. Research has shown

that models trained on the large produce databases perform well on the training set, but

are much less accurate in applied settings due to the produce variability. A study found

that supplementing the data with application specific images improved accuracy. [58]

The studies have shown that CNNs are successful at accurately identifying produce

items, but much of the research remains academic and has not been applied to the

24

development of consumer products. A table of selected research for fruit and vegetable

identification can be found in Appendix A.

Both Samsung and LG announced at CES 2020 new capabilities using AI to

automatically identify objects in the fridge [59]. The company FridgeEye has developed a

standalone camera system that adds fridge-viewing capabilities to any refrigerator.

Figure 11. FridgeEye, the battery-operated camera and automatic detection system to

make any refrigerator a smart refrigerator.

Figure 11 shows the FridgeEye camera housing can suction to the wall of the refrigerator.

This system advertises that it provides users an up-to-date camera stream of their

refrigerator’s contents from a phone app. FridgeEye also claims it can automatically

detect and list objects in the fridge to provide users with a virtual inventory. The

FridgeEye product has not been released so it remains to be seen how well the automatic

detection works. [60] There are many downfalls to these products, especially because the

technology is so new. Companies lack the extensive application-specific product and

food data required to make successful AI systems that can detect and track all possible

food items. Additionally, AI models require significant on-board and cloud storage space,

and AI systems like those above still struggle with occluded items.

25

The biggest limitation with research into automatic inventory management using

computer vision is very few systems have been deployed in an actual consumer

refrigerator. Field studies of this nature are important. They can further highlight the

shortcomings of a technique, prove the potential of promising research, provide valuable

application specific data, and ask new questions to shape the next wave of research.

 Trends in CV Applied to Hand Analysis

Hand analysis for this research consists of detecting the hand within the frame,

tracking hands from frame to frame, and determining what the hand is holding. Computer

vision research has focused on hands since the 1990s. The research initially focused on

recognizing hand gestures, which could then be used for human-computer interaction,

sign language recognition, and hand-object interaction for virtual reality systems [61].

Less work has been done to use the hand as an anchor to detect objects, but Amazon is

researching this currently as a way to implement grocery stores that automatically know

what a user has purchased [62]. The recognition research, while not entirely applicable to

this study, can be used as a starting point for hand identification and tracking. Early hand

gesture recognition systems used either sensors to relay location information or skin-

based thresholding to detect and extract the hand and arm region [63]. The sensor-based

system is limited because the user must wear a glove with the sensors embedded within.

Skin-based thresholding uses the color of the skin to extract skin regions from an image.

Research has shown that transforming images to different color spaces can help extract

skin in images even under different illumination conditions, and increase the similarity

between different skin tones [64]. One study found that the optimum thresholds for skin

detection are [85, 85, 85] for the RGB color space, and [180, 50, 33] for HSV [65]. The

26

major drawback of using skin color for identification is that it is less accurate when the

background is similarly skin-colored. The introduction of large hand datasets like Oxford

and EgoHands have allowed CNN to be used for hand detection [66] [67]. The creators of

the EgoHands dataset were able to get over 80% accuracy using a CNN trained on

EgoHands. Unlike the color-based skin thresholding, CNN models are not dependent on

color differences within an image and can detect hands even when the background is

similarly skin-colored. Another technique for detection that is not limited to hands is

background subtraction. Background subtraction algorithmically creates a model of the

background (i.e., stationary) area. The background area is used as a mask to remove the

stationary information from a sequence of images and keep only what is moving [68]. In

the case of hands moving in and out of a refrigerator, the extracted foreground would

consist of the hand and the object it is holding. Research has shown that a Gaussian

mixture model performs well at modeling the static background scene [69]. Background

subtraction is also not limited by color similarity, but does become less precise in

dynamic environments when the background is constantly changing [70]. Research has

shown that background extraction is also useful for produce recognition [71].

Hand tracking, or more broadly, object tracking, is the process of detecting

objects in an image frame, assigning each object a unique ID, and tracking the objects in

subsequent frames while maintaining the associated IDs. Object tracking is important for

extracting context from sequences of movements. Object tracking is a common research

topic in the field of computer vision, and many of the state of the art tracker codes are

publicly available [72]. Hand tracking is an especially difficult subset of object tracking,

because hands often overlap and switch places in a scene. Sensor based hand detection

27

techniques can easily track hands by identifying the unique sensors, but purely vision

based techniques struggle with maintaining the correct object IDs [73]. One of the

simplest solutions for a CV based hand tracking system is to use the center of the

detected hands bounding box, or centroid, to correlate hands between frames based on the

distance between old and new centroids [74]. Tracking via centroids does not handle

maintaining the correct object IDs for multiple hands within a frame, but is fast and

simple to implement. One solution to distinguish between multiple hands and the

difficulty with skin-colored backgrounds is to use a camera that can detect the depth of

objects. A depth-based camera can easily differentiate between foreground and

background due to the extra depth information. Using the extracted foreground region

and hand segmentation would provide a clear representation of the object being held by

the hand. The major limitation of depth-based detection is the hardware (camera) cost is

more than double the cost of a traditional three-channel color camera. [75]

Much research has gone into hand recognition, but there remain few real-world

applications outside of gesture recognition. This thesis aims to explore hand-object

interaction methods to assist in an inventory management system for fresh food in

produce bins.

28

METHODOLOGY

Multiple experiments were designed to study whether it was possible to determine

what a user is holding as their hand moves in and out of the refrigerator, and if that

information can be used to automatically add and remove items from the refrigerator

inventory list.

The work conducted for this hand analysis study consisted of three main parts.

The first was to create a model that could identify hands within the refrigerator. The

model needed to be robust enough to detect different hand sizes, colors, orientations, and

partially-occluded hands. The accuracy of the model was determined by comparing

ground truth detections for 185 new images to the model versus the detections made by

the model.

The second was to track the hand and determine if it was moving in or out of the

refrigerator. The tracker needed to differentiate between the left and right hand, as well as

different users’ hands. The accuracy of the tracker was determined by visually inspecting

and comparing the ground-truth hand location with the output of the hand tracker. Visual

inspection involved viewing recorded video of hands within the refrigerator and noting

how well the tracking algorithm marked hands and tracked them within the appliance.

The third part was to analyze the detected hand to determine if it was holding

something or was empty. Multiple experiments were tried and validated through visual

inspection by noting how well an experiment accomplished the task. The accuracy of the

hand analysis using an image classifier was determined by observing its performance on

a validation video consisting of 161 frames with ground-truth labels.

29

Finally, the detector, tracker, and hand analysis components were combined to see

if the program could autonomously determine and log if an apple or orange was added or

removed from the refrigerator. The accuracy of the add and remove logic was determined

by comparing the programs performance to the ground truth labels of eleven add and

remove interactions in a validation video.

 Data Collection

Data collection is one of the most important aspects of training an effective

machine learning model [76]. A model is only able to learn from the data it sees, so

making sure the images the model is trained on are indicative of what the model will see

in the application is vital.

 Camera Setup and Specifications

The image capture setup was meant to replicate a production unit with a camera.

The setup consists of a single camera at the threshold of the refrigerator door, shown in

Figure 12.

30

Figure 12. Camera location in the refrigerator and corresponding field of view.

The camera in Figure 12 can view the produce bins when they are open, and the threshold

of the refrigerator.

The Logitech C920 webcam was used for the experiments [77]. The Logitech

webcam was selected because it has a USB connection, three-channel red-green-blue

(RGB) image sensor, and 1080p resolution up to 30 frames-per-second (FPS) [78]. The

mounting location of the webcam was chosen because the central location provided the

best view of the produce bins, and the entrance to the refrigerator. An example image

from the webcam is shown in Figure 13.

31

Figure 13. Example image from the webcam used for data collection.

Figure 13 shows that the camera gives a clear view of the opening of the refrigerator, and

hopefully the best view of a user’s hands entering and leaving the appliance. The

Logitech Webcam Software Application Version 2.51, an application provided by the

webcam manufacturer, was used to set the focus, frame rate, gain, contrast, brightness,

and exposure parameters before each camera use [79]. It was important to manually set

the parameters to ensure each frame is in focus and uniform from frame to frame. Frames

with varying contrast, exposure, or other parameters could decrease the accuracy of the

CV models. It may be possible to use OpenCV to manually set the camera parameters in

the code [80]. The only illumination for the camera is the lighting already included within

the unit. Additional lighting was not considered as the production setup was sufficient.

 Collecting Images to Develop the Dataset

Image collection was done on both a Raspberry Pi B+ and a Dell laptop. For both

the Pi and laptop, the webcam was connected via the USB port. The webcam video

stream was accessed using Python and OpenCV [80]. The images were collected by

saving video frames from the refrigerator video feed. Images were saved to a file at 30

32

frames per second, and an image size of 1920 by 1080. There was no difference in

images collected by the Pi or the laptop, and the computers were used interchangeably

depending on which was available at the time.

Initial image collection consisted of a single user unloading several typical

produce items. “Typical produce” was determined from the USDA top produce shown in

Figure 14.

Figure 14. USDA Data [81].

Figure 14 shows that apples and oranges are the top refrigerated produce items purchased

by US consumers. Apples and oranges were picked as the produce to be detected based

on the data in Figure 14. The single user, a right-handed white male in his late-20’s, was

used to simulate a consumer reaching in and out of the refrigerator. The user placed items

in the refrigerator as he would when he unloaded his grocery bags, usually one item at a

time. Once all items were in the unit, the user began taking items out of the produce bins

33

and putting them back in different locations in the refrigerator, such as the bottom shelf.

The moving of items ensured a diversity of hand images holding different items.

 Dataset Annotation

Annotation of the image dataset is the step that tells the computer vision model

what objects are important, and characterizes what the model will be able to learn [82].

Rectangular bounding boxes with labels were used most often because the goal was to

train a model for object detection. As much information as possible was included in the

annotations. For example, left and right hands were distinguished, as were empty and

non-empty hands. Produce items in bags were noted versus loose items. An example

annotated image is shown in Figure 15 (the annotation labels have been overlaid for ease

of reading).

Figure 15. Example of bounding box annotations for an image.

Figure 15 illustrates the many challenges posed by detecting object in the produce bins.

Items are hidden in the back of the bin and under other items. The same items can be

34

bagged, cut up in containers, or placed in the bin individually. For this reason, as much

information as possible was included in the annotations to ensure flexibility when

training models in the future [56]. For example:

mfruit_rgrapes_blueberries_cantaloupe_bc_qc_h stands for mixed fruit of red grapes,

blueberries, and cantaloupe, in a plastic container (bc), quantity is cut fruit (qc), and h for

held in a hand. The annotation is flexible enough that it could be used to create a mixed

fruit class, cut fruit, blueberries, or held items class. A complete list of items in the

annotated dataset and an explanation of the annotation conventions can be found in

Appendix B.

a. LabelImg

The image dataset was annotated using the open-source annotation software,

LabelImg [83]. LabelImg was selected because it was free, easy to use, and

recommended by multiple TensorFlow Object Detection API tutorials [84] [82].

LabelImg saves each image annotation in an XML file. Each file contains the image

filename and image path, width, height, and depth of the image, or number of color

channels, and the xmin, ymin, xmax, and ymax coordinates of the bounding box for each

object in the image. The bounding box coordinates specify the top left and bottom right

coordinates of the box, shown in Figure 16.

35

Figure 16. Bounding box coordinate convention.

The final LabelImg dataset consisted of 487 labeled images with 18 different item labels,

see Appendix B for more details. The images were from a single user unloading a bag of

groceries. Experiments were tried using all the object labels, just hands, just hands and

arms, hands, arms, and other objects combined into a single object class, left hand/right

hand classes, and empty hand/not empty hand. The results from selected training

experiments can be found in the Results.

b. Anno-Mage

More hand annotations were made using Anno-Mage, a semi-automatic image

annotation tool [85]. Anno-Mage uses the weights of a trained TensorFlow model to

automatically produce bounding boxes on new images for the training dataset. The

bounding boxes can then be manually adjusted to best fit the object. The Anno-Mage

code was adapted to use a TensorFlow model trained on the data from Section 3 above.

The code was further adapted to store all annotations in a csv file based on the format

required by the TensorFlow Object Detection API [84].

36

326 more images from the dataset were annotated for the hand class using Anno-

Mage. The final dataset, with both the Anno-Mage and LabelImg annotations, contained

a total of 1,294 hand annotations (this number will not match with the data in Appendix

B because during processing it was found some of the annotations were duplicates and

were removed). The model was trained with a 75/25 train/test split for a total of 937

hands in the train set, and 312 in the test set. One image can contain multiple annotations,

so care was taken to ensure all annotations for a single image were contained within

either the train or test set and not split between the two, thus the split may not be exactly

25% [86].

 EgoHands dataset

The EgoHands dataset is the largest publicly-available dataset of hand images at

the time of this writing [67]. EgoHands consists of 15,053 bounding-box labelled hand

annotations, compared to the prior Oxford hand dataset of 13,050 labeled hands [26]. The

EgoHands dataset was created in 2015 by researchers at the Indiana University Computer

Vision Lab. The dataset was collected from users wearing Google Glass smart glasses.

The glasses were used to record 48 videos of the users (either one or two users per video)

doing complex actions such as playing Jenga, chess, playing cards, or putting together a

puzzle. The dataset consists of both bounding box and pixel-level segmentation of the

hands, and are labeled as own or other hand and left or right hand. [67] Example

annotated images from the dataset are shown in Figure 17.

37

Figure 17. Images from the EgoHands Dataset [87].

The paper that introduced the EgoHands dataset used a novel sliding window approach

using the Caffe library to get an average precision of 0.807 for detecting hands in an

image. In 2017, Victor Dibia used the EgoHands dataset along with the TensorFlow

Object Detection API to get a 0.9686 average precision on hand images where the

detection overlaps the ground-truth label by at least 50% [87]. The author Dibia provided

code on his GitHub repository to convert the initial paper’s Matlab code into python

code; the python code was used in this research to convert the Matlab-encoded

annotations into csv files. [87] The EgoHands dataset was used to supplement the training

data for the hand detection model and improve accuracy through transfer learning [28].

 Hand detection

The first step of the research was to use the annotated dataset to build a model that

could accurately identify human hands within the refrigerator. A CNN was chosen for the

task over other techniques because CNN have consistently performed better on image

classification problems over other algorithms [14].

Initially, the research focused on creating a framework from scratch to classify

and detect the hands. Detection is important as it provides information about where

within the refrigerator the hand is, and presumably where an object is being placed. The

38

detection information can be used to track the hand, which is the second goal of this

thesis. Detection was to be done by sliding a window over the image and running each

cropped image section through the trained classifier [17]. Implementation of the sliding

window method was slow and inaccurate. It became clear that, to stay within the time

constraints of the thesis, making the detection framework from scratch was not a good

use of time.

 TensorFlow Object Detection API

The TensorFlow Object Detection API is a framework created by the open-source

machine-learning platform TensorFlow [88]. The framework provides tools to implement

many state-of-the-art object detectors like Faster R-CNN and Single-Shot Detector. A

flowchart showing all the steps to prepare the data for the API is shown in Figure 18.

39

Figure 18. Flowchart for preparing data for the TensorFlow Object Detection API.

As the flowchart illustrates, the first step is to collect and annotate the data (1) (2), as

discussed in Section A. The images and annotation data were then converted into

TFRecord files. The files are binary representations of the data which allow for quicker

processing without taking up valuable memory space. The LabelImg XML annotation

files were converted into a csv annotation file using a modified xml_to_csv.py (3) [89].

40

The code was modified to create a single csv file of all annotations, unlike the original

code which creates a file for each the train and test datasets. The format of the csv is

required to be “filename”, “image width”, “image height”, “class”, “xmin”, “ymin”,

“xmax”, “ymax”. Filename is the entire path to where the image is stored, and is needed

so the code can locate and open each image. A section of the csv file is shown in Figure

19.

Figure 19. Example rows from the csv file used to convert the dataset to the format

required for the TensorFlow Object Detection API

The figure above shows the csv file with the file location for each image, image size,

class information, and bounding box coordinates. The annotations from Anno-Mage were

pasted into the file with the LabelImg annotations. For early experiments,

generate_tfrecord.py, provided by TensorFlow, was used to convert the images and

annotations from the csv file into the TFRecords .record file (4) [82]. The Python code

scales each bounding box for an image by the image size so that all values are between

zero and one. Scaling the bounding boxes normalizes the values and allows the boxes to

be used at any scale or aspect ratio of the image [86]. The image pixels are sorted as an

array, along with all bounding box and class labels for that image. All information in

the .records file is numerical; a label map file must be provided to map the class string to

an integer (6). An example label map is shown in Figure 20.

41

Figure 20. Example label map to use for the TensorFlow Object Detection API.

The code uses the file above to map the class hand to be represented by 1, arm by 2, and

so on. The label map is created automatically when running the xml_to_csv.py file. The

code needs a separate csv file for the train and test images, and from them, two .record

files are created, one for the training set and one for the test set. For this research, a 25%

test split was used [17]. Later experiments used a modified build_lisa_records.py file

[86]. The code produces the same output .records files as generate_tfrecord.py, but uses a

single csv annotation file and splits the data into train and test sets within the code. The

build_lisa_records.py also displays a subset of images plus their bounding boxes and

class information to ensure the annotations are correct (4). All images and annotations

were visually verified before writing the information to the .records files. Duplicate

bounding boxes and mislabeled items were fixed or discarded. Visually validating the

dataset is essential to creating a robust object recognition model [86]. Lastly (6), a

42

configuration file was generated to tell the API which model to use, where the TFRecord

files are located in the file structure, how many classes, and other important training

parameters. Each pre-trained model provided by the API has different configuration files.

An example configuration file highlighted to show which lines need to be changed can be

found in Appendix C. The configuration file also allows for data augmentation to be

applied, although for this research no additional data augmentation was used. Because the

configuration files use model parameters that have already been optimized for top

performance, no parameters were changed except for those necessary for the API to

function. The model parameters in the configuration file (learning rate, loss function, etc.)

have also been optimized for top performance based on the various state-of-the-art

models, and thus were not be altered for this experiment. [90] Figure 21 shows an

example of the API code running in Google Colab.

43

Figure 21. Training the model using TensorFlow Object Detect API in Google Colab

Once all files are updated with the proper information, the command shown in Figure 21

can be run to train the model (7). The code for training was modified from code in

Chengwei Zhang’s GitHub Repository [91] [92].

Multiple experiments were done to find the best model for the hand detector. The

first task was to determine which of the model architectures from the TensorFlow model

zoo was best-suited for the task [92]. The most important metrics for selecting a model

were inference speed and mean average precision, or mAP. See Section 3 below for more

information on mAP. The size of the model (amount of bytes for the model weights) was

also a consideration, but less so than speed and mAP. The top three candidates are shown

in Table 1.

Table 1. TensorFlow detection model zoo metrics [92].

44

Model name Speed (ms) mAP on COCO dataset

ssd_mobilenet_v2_coco 31 22

faster_rcnn_inception_v2_coco 58 28

rfcn_resnet101_coco 92 30

The three models in Table 1 were selected because they were the most common models

used in the literature, and offer a good tradeoff between speed and accuracy [88].

 Python Environments

All code was written in the Python language. Python is ideal because it comes

with many libraries optimized for image processing and matrix multiplication and

manipulation [93]. Many of the machine learning frameworks are written for Python.

Google Colaboratory (Colab) is an open-source, web-based platform for writing

and executing Python. Colab environments come pre-installed with many machine

learning specific libraries like TensorFlow and Keras, making it ideal for quickly

building and testing various machine learning models. The greatest advantage of Colab is

that it allows the code to be run in the cloud on a graphical processing unit (GPU). [31]

GPUs can train models in hours versus days required if using a standard central

processing unit (CPU) [94]. All models in this paper were trained using a Colab

environment with a GPU hardware accelerator, running Python 3, TensorFlow 1.15.0,

and Numpy 1.17. [31]

The Scientific Python Development Environment (Spyder) for Windows 10 is

used for all other development, from testing the trained models to creating the algorithms

for hand analysis. Spyder version is 3.3.6, running Python 3.6.10, TensorFlow 1.15.0,

Numpy version 1.18.1. [95] The laptop is running Windows 10 Pro, 24 GB RAM, 64-bit

operating system.

45

OpenCV is an open source computer vision library that can be used to load,

display, and write image files, as well as contain functions to implement hundreds of

image processing and computer vision algorithms. OpenCV was used extensively in this

thesis to display, read, write, and manipulate images. Many of the algorithms in OpenCV

were tested and utilized in various parts of the research. OpenCV loads all images as

blue-green-red (BGR) as opposed to RGB, so all images and frames in the research were

converted to RGB before any further processing was done. OpenCV version 4.1.2 was

used. [96]

 Metrics for Evaluating the Models and Algorithms

Precision and recall are common metrics for measuring the quality of an image

classifier, and can be adapted to evaluate an object detector as well [97]. Precision is the

ability of the model to correctly detect the desired object in an image and is defined

mathematically as:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1)

where TP is true positive, which is a bounding box that correctly overlaps a ground-truth

bounding box of the same class, and FP is false positive, which is a bounding box that

incorrectly detects an object that is not there [97]. Recall is the ability of the model to

detect all of the desired objects in an image, and is defined as:

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2)

where FN is false negative, which is a desired object that is not detected by the model.

TN or true negative, not in either equation, is a portion of an image that is correctly not

46

identified as an object. [98] Recall and precision can be combined into a single metric

called the F1-Score, calculated using equation (3).

F1-Score = 2 ×
precision × recall

precision + recall
 (3)

With object detection, there is one more factor necessary to quantify the ability of the

model: how well the predicted bounding boxes match the ground-truth boxes.

Intersection over union (IoU) is used to determine how much a detection needs to overlap

the ground-truth box to be considered a true positive. Intersection is the area where the

predicted box and the ground-truth box overlap, and union is the entire area encompassed

by both boxes. [99] A visual example plus the IoU equation is shown in Figure 22.

Figure 22. Intersection over union (IoU) is an important metric for evaluating an object

detection model [99].

The IoU calculation is used to determine a true positive versus a false positive. IoU is

also used in training as part of the loss function for refining the bounding box. An IoU of

0.5 is commonly considered a good prediction [99]. A visualization of TP, FP, and FN

and IoU is shown in Figure 23.

47

Figure 23. Image showing visualization of TP, FP, FN, and IOU. Red boxes are what the

model predicts, yellow are ground-truth labels.

For the left hand in Figure 23, the model prediction overlaps the ground-truth by an IoU

greater than 50% making it a true positive prediction. The right hand prediction overlaps

the ground-truth by less than 50%, making the prediction a false positive. The ground-

truth for the right hand is a false negative because it is not properly detected. For the

predictions in Figure 23, TP = 1, FP = 1, and FN = 1. Precision would be 1 / 2 or 0.5, and

recall would be 1 / 2, also 0.5. The F1-score would be 0.5 as well.

The standard metrics used to evaluate an object detection model is average

precision, AP, (or mean average precision, mAP, when a model is detecting multiple

classes) which is the average precision and recall values varied over a confidence

interval. AP is the most common metric used by benchmark datasets like MS COCO and

Pascal VOC to evaluate object detection models [100] [101] [97]. To determine the

average precision, a precision-recall curve is created by varying the confidence threshold

of the model. Once the curve is created, the area under the curve is the average precision.

48

The TensorFlow Object Detection API calculates the mAP automatically from the

data in the test set. The API defaults to the COCO evaluation protocol, so that is what is

used in this research to evaluate the models during training steps. The COCO protocol

gives mAP at IoUs from 0.05 to 0.95, and precision and recall values for small, medium,

and large detections [100]. mAP@0.5IoU expresses how well the model predicts

bounding boxes that have an IOU of at least 50% with the ground-truth. The mAP

metrics for the data in this thesis are presented in the Results.

The overall accuracy of the hand detector, image classifier, and add and remove

logic was calculated using equation (4).

Accuracy =
total correct predictions per class

total number of ground − truths per class
× 100% (4)

Equation (4) gives the ratio of correct predictions to the ground-truth labels, and is used

to give information on the quality of each model and logic component applied to images

not in the training set [102].

 Model Training and Real-Time Metrics

TensorBoard is TensorFlow’s machine learning metric and visualization toolkit.

TensorBoard automatically calculates and provides real-time metrics like loss and mAP,

and displays images of ground-truth versus what the model is detecting at a certain

learning step. TensorBoard was used alongside the API’s mAP metrics to observe the

progress of model training. [103] Model training was stopped when the overall loss or

mAP values stagnated for consecutive model weight update steps, or epochs. An epoch is

complete once all training images of the dataset have passed through the model layers

49

and the losses have been propagated back to update the model weights. On average,

stagnation occurred around 10,000 steps [17].

 Hand Detector Experiments

Multiple experiments were done to develop the best hand detector for the task.

The first experiment was to compare the accuracy of a model only trained using the

dataset collected in Section A, versus one first trained on the EgoHands dataset and then

trained on the dataset from Section A. Both experiments started with pre-trained weights

from the COCO dataset. Next, the annotations were divided into different classes to see

what worked best. The experiments for the hand detector are shown in Table 2.

Table 2. Hand detector experiments and corresponding classes.

Model Task Classes

Detect all hands in an image Hand

Detect all hands and arms Hand, arm

Detect all hands and differentiate between left and right Left hand, right hand

Because of the way the annotations were structured, creating the classes in Table 2

involved simply searching through the annotation strings for keywords like lhand for left

hand, or hand if using a single hand class. The modified xml_to_csv.py code used the

desired class keywords to write to the csv file all bounding boxes corresponding to the

keywords, and ignore all other annotations and bounding boxes. The results of the hand

detector experiments can be found in the Results.

Finally, to verify the model in a production setting, a video was recorded of a user

adding and removing produce from the refrigerator. The user was a left-handed, mid-30’s

white female. The hand detection models were run on each frame, and through visual

inspection, TP, FP, and FN were tallied for the entire video. An IoU calculation was not

50

implemented for validation; the author used her best judgement to visually validate that a

predicted bounding box overlapped a hand by at least 50%. A confusion matrix of the

precision and recall values will be reported. Visually inspecting these values is beneficial

in seeing how and where the model is making mistakes. Also, for the tracking and

analysis sections, it is more important to reduce false negatives than false positives

because missing a hand means missing valuable data, whereas falsely identifying a hand

can usually be ignored in the code. AP calculations do not show that distinction. A

confusion matrix is not typically used for object detection metrics, but is mentioned as a

good additional metric for ensuring robust performance in production applications [104].

 Hand tracking

The second portion of the research involved developing an algorithm to track the

hand as it moved through the refrigerator.

 Centroid Tracking

The first tracking method used the center, or centroid, of the bounding boxes from

the hand detector. The centroid of the bounding boxes was calculated using:

cX = xmin+
xmax - xmin

2
 (5)

cY = ymin+
ymax - ymin

2
 (6)

where cX and cY are the respective x and y centroid coordinates, xmin and ymin are the

upper left coordinates of the bounding box, and xmax and ymax are the lower right

coordinates of the bounding box, see Figure 16. Bounding box coordinate convention.

The centroid for each frame is calculated and stored in an array. For each subsequent

51

frame, the Euclidean distance is calculated between the old and new centroids, using

equation (7).

dist((𝑐𝑋𝑝𝑟𝑒𝑣 , 𝑐𝑌𝑝𝑟𝑒𝑣), (𝑐𝑋𝑛𝑒𝑤 , 𝑐𝑌𝑛𝑒𝑤)) = √(cX𝑝𝑟𝑒𝑣 − cX𝑛𝑒𝑤)
2

+ (cY𝑝𝑟𝑒𝑣 − cY𝑛𝑒𝑤)
2
 (7)

If the distance is below some set minimum distance parameter, the new centroid is

assumed to belong to the same object as the old centroid. By calculating the differences

from frame to frame, the hand can be tracked throughout the refrigerator. If there are

multiple bounding boxes from frame to frame, the centroids with the smallest Euclidean

distances are assumed to be the same object. The code used for centroid tracking is

modified from Adrian Rosebrock’s blog, which is an online repository of computer

vision tutorials and open-source software. [105] Limitations to this approach are the

tracking is dependent on a good detection model to constantly feed in new bounding

boxes. Also, running the detector on every frame can be computationally expensive.

Another limitation is when more than one hand is in the frame. If the centroids of the

different hands are too close or cross, the algorithm is unable to differentiate between the

hands.

 dlib Correlation Tracker

To address the limitation posed by the computationally-expensive process of

running the hand detector on every frame, a tracking algorithm within the image

processing library dlib was tested [106]. The correlation tracking algorithm implemented

in dlib is based on the 2014 paper, Accurate Scale Estimation for Robust Visual

Tracking. The paper uses scale pyramids to estimate the scale and track an object as it

changes throughout a scene. The paper shows that the correlation tracker is much faster

than running a detector on every frame [107] The tracker within dlib is initiated by

52

passing in the initial bounding box of the hand. The tracker then tracks the hand

throughout subsequent frames, automatically producing new bounding boxes. The hand

detector runs periodically to validate the tracker and detect other objects that have moved

in or out of the frame. The dlib tracker was implemented using code modified from

Rosebrock’s online tutorial. [108]

 Determining Direction of Movement

Knowing if the hand is moving in or out of the appliance is important for knowing

if an object is being added or removed from the refrigerator inventory. Determining the

direction the hand was moving, whether in or out, was found using information from the

centroid array. Direction was determined from the sign of the delta between the old and

new centroid y-coordinate, with a positive delta signifying moving out and negative

moving in. The equation is shown in (8).

dY = cYnew − cYprev (8)

A visualization is shown in Figure 24.

53

Figure 24. Direction is determined by looking at the sign of the delta between the y

centroid of the current frame versus that of the previous frame. W is the total width of the

image frame, and H is the total height.

Figure 24 shows how direction is determined. The origin for the image is at the upper left

corner, so a negative dY means the hand is moving in to the refrigerator, while a positive

dY means the hand is moving out. The code for determining direction was based on

Rosebrock’s online tutorial [108]. The code was modified to use only the previous

centroid y value, whereas the original code used the average of all prior centroid y values.

The original code used the average y value to make the code more robust, but for the

refrigerator case where hands are changing direction quickly, looking at the last y

centroid gave better results than an average.

 Distinguishing Between Hands

Distinguishing between different hands is important for knowing what items are

added or removed from the refrigerator. One hand can add an item, while at the same

time the other hand removes one. Being able to correctly attribute the actions to the

54

corresponding hand is necessary for accuracy. However, distinguishing between different

hands in the refrigerator proved to be not a trivial problem. The centroid tracker used the

distance between centroids to distinguish between different hands, but failed if hands

crossed over one another or if both hands were close. Ideas for distinguishing between

hands include:

 Assume a left hand will most likely be on the left side of the screen, and right on

the right side, and use that information to hard code rules to distinguish hands

 Train a model to learn left versus right hands

The different techniques were implemented in the code, and then observed by

playing back a video to visually observe performance. No technique performed well,

therefore it was decided to limit the research to observing a single hand to ensure the

thesis could be completed within the given timeframe.

 Determining if a Hand is Inside the Refrigerator

Knowing if a hand is inside the refrigerator is important not only to get

information on where and what the hand is doing, but also to decide when an interaction,

or single add or remove event, has started and ended. Defined interactions drive the logic

to update the inventory list. Experiments to determine if the hand was in the refrigerator

include:

 Assume if there is no hand in the frame then a hand is not within the appliance

 Assume if there is no hand or arm in the frame then a hand is not within the

appliance

 Use centroid and direction info to set in and out boundaries. For example, if the

hand leaves the frame, but the last centroid coordinate was near the top of the

55

frame and moving in, assume the hand is still inside the refrigerator. Likewise, if

the last centroid crosses the coordinates of the bottom of the frame and is moving

out, assume that the interaction is over and the hand has left the refrigerator if the

next few frames do not show a hand

 Use the door open and close as the trigger for an interaction

 Use a motion sensor to detect if a hand is inside the appliance

The different techniques were implemented in the code, and then observed by

playing back a video to visually observe performance. Detecting multiple hands entering

and leaving the refrigerator increases complexity, and was decided to be outside of the

scope of this research. Only a single hand was used to develop the logic for determining

if a hand is inside the appliance.

 Hand-Object Interaction

The final objective of the thesis was to determine what the hand was holding,

specifically if it was empty or holding a produce item. Analyzing hand-object interactions

in the refrigerator is beneficial mostly if one is able to detect what the hand is holding. In

order to limit the scope of the thesis, detecting an empty hand versus holding an apple or

orange is studied as a proof of concept. Determining if a hand is not empty without

identifying what it is holding was also an area of research. The advantage of knowing a

hand is holding an unidentified object is unclear, but the information may be useful in

future projects. The ability to scale the solution to detect all possible objects was

considered, and is discussed in the Future Works section. The information from the hand-

object interaction will be used to determine what item was added or removed from the

refrigerator.

56

 Hand Holding Item or Not, using TensorFlow Model

The first experiment to automatically detect an empty or not empty hand involved

training the TensorFlow Object Detection API on images of hands holding things versus

empty. The experiment was quick to implement as the dataset was already collected and

annotated. The process was the same as the process of training the hand detection model,

but the data was modified to learn to distinguish empty and non-empty hands. The initial

annotations only noted if an object was being held, not if a hand was empty or not. A

GUI was developed using the Python GUI toolkit PyQT to quickly re-annotate the hand

bounding boxes [109]. Some of the GUI code was based on code from Chang Luo’s

website [110]. The GUI is shown in Figure 25.

Figure 25. GUI to create holding/not holding annotations.

Each image was displayed in the GUI, as seen in Figure 25, with the corresponding

bounding boxes. The status of each hand bounding box was initially set to holding an

item, but could be changed to not holding item by clicking on the corresponding button

57

above the image. In Figure 25, Hand 1 has been unchanged and is set to holding an item,

while the button for Hand 2 has been pressed to change to not holding an item. Pressing

the Next button saves the current image filename, bounding box coordinates, and updated

classes to a new csv file. Pressing Skip skips the image, and is used in the case of an

image with no hands present.

 Hand/Object Segmentation

The next experiment for hand-object interaction was to try and extract the

foreground, presumably the hand and object, from the background. The camera only

produces 2-dimensional images, so there is no way to visually determine the depth of the

objects in the frame. Extracting the foreground from the background would be useful

when dealing with instances where the hand is over a produce bin like the right hand in

Figure 25. In the figure it is difficult to tell if the hand is holding the item or if the item in

within the bin.

a. OpenCV’s GrabCut

GrabCut is an interactive foreground extraction algorithm included in OpenCV

[111]. GrabCut was designed by Carsten Rother, Vladimir Kolmogorov and Andrew

Blake from Microsoft Research Cambridge, UK. and is based on their paper, "GrabCut":

interactive foreground extraction using iterated graph cuts [112]. The GrabCut algorithm

takes a rectangle specifying the foreground object to extract, and considers everything

outside of the rectangle to be background. An example image and rectangle is shown in

Figure 26, plus the output of the algorithm.

58

Figure 26. Left: The input image and blue rectangle provided to the program to designate

the foreground. Right: The output of the algorithm. [111]

Figure 26 shows the input image and blue rectangle on the left, and corresponding output

image on the right. GrabCut uses a Gaussian Mixing Model to create color models for the

foreground and background pixels, and uses an optimized loss function to split the

foreground and background boundaries [112]. For this research, the bounding box from

the hand detector was passed to the algorithm to specify the foreground.

b. OpenCV’s Background Subtractor MOG2

Another approach to segment the hand and object from the background was to use

the OpenCV BackgroundSubtractorMOG2 class [113]. The algorithm works by building

up a buffer of images from a video stream. From these images, a model of the static

background is created. The model is created by using a Gaussian distribution to measure

how long a background pixel color stays in the frame. If the colors stay in the frame

longer, they are assumed to be background. Using a stream of images allows the model to

update with the slight variations in lighting and shadow which change constantly over

time. The model is then applied to further images, updating the background model as well

59

as displaying anything that is in the foreground. Parameters such as how many past

images the background model uses to create the model, and how strictly the background

model is applied to new images allow for fine-tuning the algorithms performance on the

specific use case. [114] An example input and output image is shown in Figure 27.

Figure 27. Background subtraction works by developing a background model from prior

frames, and then comparing that model to the current frame. The pixels that are different

from the background model, with respect to a specified threshold, are considered

foreground. The mask is created by setting all pixels above the threshold to white, and all

others to black. [113]

Figure 27 shows an example background model and current frame. The pixels that are

different enough from the background model are set to white in the foreground mask, and

all others are set to black. The mask can be applied to the current frame to extract the

foreground, which is the boat in the above example. Experiments were tried to find the

best value for how many prior images to use to create the background model, and what

was a good threshold value.

c. Color Thresholding for Skin Segmentation

60

Color thresholding was another technique tried to extract the foreground from the

background. Color thresholding involves creating color ranges, and then using those

ranges to determine which pixels to keep. A mask can be created, similar to the

foreground mask in Figure 27, where the white area could be the pixels that were within

the threshold. Applying the mask to the original image would extract all pixels within the

color range. [115]

d. Color Spaces

RGB is the most common color space, and is used for most digital images and

displays. RGB is an additive color model, where different amounts of red, green, and blue

can be added to create different colors. The problem with RGB for color thresholding is

that under different lighting, the RGB value will change even for the same color. Hue

(H), saturation (S), and value (V), or HSV, separates the illumination portion of a color’s

appearance to the value variable. Thus, different lighting conditions will impact the

value, but hue and saturation will remain the same for the same color. [116] The HSV

color space was used for the thresholding experiments. Converting to HSV is a

straightforward computation, and can be done in OpenCV using the function

cvtColor(image, cv2.COLOR_BGR2HSV) [117].

e. Thresholding Implementation

Thresholding experiments were done using a video stream of hands, both empty

and holding things, moving in and out of the refrigerator. Experiments were done both on

the entire image, and only on the portion of the image within the bounding box detected

by the hand detector. Before applying the threshold, the images were normalized so that

the 0 to 255 pixel values became between zero and one. Normalizing ensures a high pixel

61

value does not exert undue influence just because it is a large number. Normalizing was

done using OpenCV’s normalize() function. [96] Gaussian blur was applied to the image

to reduce noise in the final image. The Gaussian blur uses a kernel like those used in

convolutions. The kernel blurs the boundaries between pixels, which helps reduce the

influence of large variations in pixel values that would otherwise cause noise. [118]

Figure 28 shows an image before and after the Gaussian blur is applied.

Figure 28. Left: Image before the Gaussian blur is applied. Right: After the image is

blurred.

Figure 28 shows that before the blur is applied (left), the image appears crisper with

sharper edges around the hand due to the movement. The blurred image (right) is much

smoother around the edges, and produces a more uniform thresholded image. [119] The

image was then converted from the standard OpenCV color space, BGR, to HSV. A skin

mask was created by setting all pixels within the skin threshold range to white, and all

pixels outside of the range to black. An object mask was created using the same

technique above, just with a different threshold range. Each mask was combined with the

original cropped image to create a segmented image of the hand and the object.

62

 Hand Analysis from Segmented Images

Multiple techniques were tried to extract useful information from the segmented

images. One experiment used the K Nearest Neighbor (KNN) algorithm on the extracted

foreground regions to see if it could determine if a hand was empty or not, based on color

clusters. KNN was implemented using the Python machine learning library sckit-learn.

The function MiniBatchKMeans clusters similar pixels into K different clusters by color

[120]. The center coordinates of the clusters can be extracted, and used to distinguish

between different colors in an image. Possible ways to analyze the extracted foreground

images include:

 Use a single cluster (plus a background all black cluster) and assume a hand

would give one average color value, while a hand holding an object would give a

different value

 Train a classifier on the segmented images – using a dataset with segmented fruit

to easily scale up the classifier

 Create histogram templates to classify hands and objects

 Video for Testing

Most of the experiments, models, and logic were tested and validated on videos

recorded within the refrigerator. The video sequences were designed to mimic how a

typical user would interact with their refrigerator. To collect videos, a program was

developed in Spyder using OpenCV that accesses the webcam stream. The code was

based on a tutorial provided by OpenCV [121]. The program records video until the user

ends the program. The video is saved in .avi format to a folder on the author’s laptop. The

dimensions of the frames in the video were determined by the capabilities of the webcam,

63

and was usually 640 by 480 [77]. The final validation video consisted of 14 complete

hand in and out interactions, with 301 frames with hands and/or objects present.

Frames per second (fps) was found to be an important variable for the

performance of the entire system. The webcam defaults to 30 fps, and experiments were

done to determine the ideal frame rate for the application. The frame rate needed to be

fast enough to catch several frames of both the hand moving in and out of the

refrigerator, but also balance disk memory and the capacity of the camera. The fps code

was modified from the top response from a Stack Overflow post, and works by only

saving video frames at certain time intervals to produce the desired fps [122].

Determining the ideal frame rate was done by visually inspecting data at various frame

rates, and picking the rate that balanced having enough data for the add/remove

algorithm, with not so much data that it took up too much memory.

To reduce the complexity and variables so the research could be completed in the

given time frame, the following assumptions were made:

 Test videos will be of a single hand moving in and out of the refrigerator

 The hand will hold a single item

 One item can be added, and another can be removed during a single interaction.

 An interaction is defined as the entire period for a hand to move into the

refrigerator, add or remove an item, and exit the refrigerator

 Other than the few produce items added into the compartment, the refrigerator

will be empty

 Closing and opening the refrigerator door between interactions has no impact on

the experiment

64

During playback for code development, sections of video when the door is open

or closed are skipped over by skipping all frames where the average color of all pixels is

less than a set threshold. When the door is closed, all pixels in the frame are black or

close to black, so the threshold value is set to know when a majority of the pixels are

black. To speed up development, frames between interactions where no hand was present

were skipped. The frames were skipped by using a counter to count the number of

frames, then using an if statement to only run the detection code if the frame number was

within the range of frames with interactions.

 Image Classifier using CNN

Another technique that was used to understand the hand-object interaction was to

pass the cropped image from the hand detector to an object classifier. The model was

trained using the Keras VGG16 model architecture mentioned in Figure 8.

a. Dataset Collection

The dataset for training the image classifier is entirely separate from the dataset

for the object detector. The training images were gathered using the webcam in the

refrigerator and a program in Spyder. When the hand detector detected a hand in the

webcam frame, it cropped the hand image, added an offset of ten pixels to ensure the

entire hand was captured, and saved the file to a local folder. Using this method,

hundreds of images were gathered in a matter of minutes. Because the classifier only

needs a label with the image and not a bounding box, sorting the images into the different

classes was as straightforward as looking through the image folder and moving the empty

hand images into an empty folder, and the apple images into an apple folder. [17]

Example hand and apple training image are shown in Figure 29.

65

Figure 29. Training images for the object classifier. The left image is an example in the

class for Empty and the right is an example from the Apple class.

Figure 29 shows images used to train the image classifier. The image on the left is an

example from the empty class, and the right is an example from the apple class. Three

different users, one right-handed male in his early 20’s, one left-handed female in her

early 20’s, and one left-handed female in her early 30’s, with three different skin tones

were used to build the dataset. The hand detector was accurate at detecting all three skin

tones. Building the dataset with multiple users ensures the model will be robust at

identifying different users and ways of holding produce items. Because it was so quick

and straight-forward to add a new class, an orange class was added to test how well the

model could differentiate between produce items. The number of images in the final

dataset can be found in Appendix B.

b. Preprocessing the Dataset

All preprocessing and training was done in Google Colab, with the dataset stored

within Google Drive so that the images could be accessed within Google Colab. The code

for preprocessing and training was modified from Adrian Rosebrock’s book [17]. A

flowchart of the process from collecting data to training the model is shown in Figure 30.

66

Figure 30. A flowchart showing the process of collecting data to training the classifier

model.

Figure 30 shows that the first step, after collecting the images, was to read in the images

and their file paths (3a). The file structure of the dataset, shown in Figure 31, was done in

a way so that the class could be set by reading in the folder name (3b).

67

Figure 31. Folder structure for image dataset within Google Drive.

The code begins at the highest folder level (“Images”), and iterates through each

subfolder. Each image is resized to 224 x 224 with the aspect ratio maintained (3c), and

then converted to an array using the Keras img_to_array function [123]. Next, each

image array is appended to a data list that will eventually store all images in the dataset.

Similarly, the class, determined by the subfolder name (ex. “Apple”), is appended to a list

of labels. Once all images and labels are added to their respective lists, the images are

normalized by dividing each image pixel by 255 to ensure each pixel value is between

zero and one (4). Normalizing the pixel values ensures a pixel with a large value does not

have a greater contribution than a smaller pixel value. [17] Once all images had been read

in, the data was split into train and test (25% test split) sets using scikit-learn’s

train_test_split function (5). The train_test_split function randomly splits the data and

labels into the train and test subsets, but ensures the data stays matched with the

corresponding label. [124] The data labels were converted from strings to binary values

using scikit-learn’s LabelBinarizer function (6) [125]. For example, after the function, the

orange label was expressed as [0, 0, 1], empty is [0, 1, 0], and apple is [1, 0, 0]. The

68

classes in the dataset were slightly imbalanced, with both the Apple and Empty class

having over 100 more images than the orange class. A class imbalance could cause the

model to skew towards predicting one class more than the others just because the model

sees it more often in training. The imbalance was dealt with by dividing the total images

in the largest class (“Empty”) by the total images in each other class (7). [17] The

equation is shown in equation (9):

for each class:

 class weight =
max of largest class

class total for class in question

(9)

For example, based on the data in Table 3, the max of largest class is the Empty class

with 455 images in the training set. The total images in the Apple class are 361, so the

class weight for the Apple class would be 455/361 = 1.26. The final class weight

breakdown is shown below:

Table 3. Class weights for each class to ensure a balanced dataset.

Class

Total images

per class in

training set

Balanced

Class

Weight

Apple 361 1.26

Empty 455 1.00

Orange 236 1.93

Keras automatically weights each class according to the values provided by passing the

values in Table 3 to the class_weight parameter in the training function [126]. After the

data was preprocessed and split into train and test, it was passed to the Keras data

augmentation class, ImageDataGenerator (7) [127]. The data augmentation used was

rotation, shifting width and height, sheering, zooming, and horizontal flips. An example

of the augmented images is shown in Figure 32.

69

Figure 32. Left: the original training image for class Apple. Right: Example random

augmentations using the ImageDataGenerator class.

Figure 32 shows the original image on the left. On the right, random augmentations are

applied to rotate, shift, flip, sheer and zoom in on the original image. Data augmentation

is useful to prevent overfitting and ensure the model is able to generalize and perform

well on new images [128]. Data augmentation using the ImageDataGenerator class does

not create new images for the training set, the augmentation function augments the image

before passing it to the model to train, thus providing more variety in the training set but

not more data. The augmented images were then passed to the model to train (8). [127]

c. Training the Model

Stochastic gradient descent was used as the optimizer with a learning rate of

0.001. The Keras fit_generator function was used to train the model [126]. The model

was trained using the VGG16 within Keras. The model structure used for training is

shown in Figure 33.

70

Figure 33. VGG16 Model Structure [129].

For the first 25 training epochs, Figure 36 left, the images were passed through all layers

but weights were only updated for the fully connected layers. This technique allows the

model to “warm up” to the new data. Typically, fine tuning struggles on smaller datasets

because there is not enough data to make large changes in the weight values. Initially

training the fully connected layers allows for those weights to begin learning from the

data versus being randomly initialized. [17] After 25 epochs, the last convolutional layer

was unfrozen and the weights of that layer were allowed to be updated as well. Only the

final layer was unfrozen because the first few layers have learned simple features such as

71

edges and shapes that generalize well to most objects. The last few layers typically learn

the more complex features specific to a particular dataset, and are thus the best candidates

for training via fine tuning. The model was trained for 100 epochs. [17]

 Inventory Detection Pipeline

Once the object identification model had acceptable accuracy, it was added to the

overall detection pipeline. In order to verify the usefulness of exploring hand-object

interaction, a program was developed to try to track the addition and removal of apples

and oranges. To simplify the problem, single apples or oranges were used as opposed to a

bag of fruit. Initial algorithm development had the hand adding the fruit by moving

straight inside the refrigerator and placing the item on the lowest shelf above the produce

bins. The empty hand removing the fruit moved straight in, grabbed the item, and moved

straight out with the item. Only one item was added at a time, and only one hand was

inside the refrigerator at a time. It was important to limit the variables for the initial

program to prove feasibility. The items were not initially placed within the produce bins

as the opening and closing of the bins added more complexity. Once the algorithm was

accurate at detecting the fruits added the lower shelf, more complicated scenarios of

adding an item into an empty bin were added. The program was tested on videos of a

single user adding and removing the fruit, and closing the refrigerator door between each

interaction. A flowchart of the logic for running the hand detector is shown in Figure 34.

72

Figure 34. Flowchart for detection model applied to a video sequence.

The system begins by first loading the test video and both the detector and classifier

models. Once loaded, the program begins analyzing the video frame by frame. The

program checks if the refrigerator door is closed by comparing the average pixel values

with a threshold value. Frames with the door closed are skipped. When the program

detects the door open, it begins running the hand detector model. For development, the

code ran in real-time, but in the application, the program can take more time to analyze

the images. To reduce the issue of objects in the background interfering with the object

classifier, only hand detections within the designated “loading zone” are passed to the

classifier. An image of the loading zone is shown in Figure 35.

73

Figure 35. “Loading zone” area within which the classifier will run to detect what a hand

is holding.

The loading zone area was chosen as it encompasses the largest region that is not likely to

be full of food items. For example, the refrigerator doors are likely to be full of bottles

and jars that could cause misidentification if visible in the cropped box passed to the

classifier. When the drawers are open, the loading zone is smaller. The smaller loading

zone ensures the classifier does not run when the hand is over the drawer and could

predict false positives. The IoU calculations from Figure 22 are used to determine if the

hand is within the loading zone. Because the area of the loading zone is so much larger

than the hand bounding box, the area of union was much larger than the area of overlap.

The large denominator meant the overall IoU value was very small. Because of this, only

the numerator, or area of overlap was used to determine if a hand is within the loading

zone. An area of overlap greater than 5000 was considered within the loading zone.

When a hand is detected within the zone, it is cropped with an offset of 10 pixels and

74

passed to the classifier. The classifier makes a prediction on whether the hand is empty or

holding an apple or orange. Possible ways to determine if an item is added or removed

are:

 Use the hand tracking data to determine if the hand is moving in or out, and thus

if an item is being added or removed

 Run the classifier on the first and last frame of the interaction and use that

information to say what is added or removed (for example, Apple is first frame,

Empty is last, so can assume an apple was added)

 Create a list to store the classifications and update each frame where the hand

stays within the refrigerator. The identified object most common at the beginning

of the list was most likely added, and the object most common at the end of the

list is most likely removed

 Examine produce drawer images to see what has changed (added or removed) and

use that information to validate the information from the hand

The different techniques were implemented in the code, and then observed by playing

back a video to visually observe performance.

Knowing when an interaction was complete and when to update the inventory list

was another challenge. Ideas include:

 Update the inventory list every time the door is closed

 Update the list every time a hand leaves the refrigerator

 Update the list every time the status of a hand changes (e.g., Empty to Orange)

Each idea was tested in the code to find the best solution.

 Storing Inventory Information

75

An Excel spreadsheet was created to hold the inventory list. The current inventory

in the Excel sheet is read into a local array when the program begins running, and is

updated as the inventory changes. The inventory list is split into three storage locations:

shelf, left produce bin, and right produce bin. In a production application, all unique

storage areas of the refrigerator would be represented in the inventory list, but the areas

were reduced in this research for ease of implementation. The centroid information from

the hand tracking section is used to determine where each item was added or removed.

The Excel spreadsheet is updated every time the door is closed. For the production

solution, the inventory will be stored on a phone or web application. Development of the

phone app was not started in time to test for this research.

76

RESULTS

 Hand Detection

Experiments were done to train a TensorFlow Object Detection API model to

accurately detect hands moving in and out of the refrigerator camera feed.

 Determining the Best Model for Hand Detection

An initial experiment was done to compare the different models available in the

TensorFlow Object Detection API, see Table 1, and determine which model to use to

train the hand detection model. The test was done by training each model using the

EgoHands dataset, and then comparing the results to published results on the EgoHands

dataset [87]. The results of the initial experiment compared with published results is

shown Table 4, the mean average precision for an IoU of 50% or greater is reported.

Table 4. Performance results for various models, compared with published results.

 Model name
mAP @0.50IOU on

EgoHands

Experimental

results

ssd_mobilenet_v2_coco 0.961

faster_rcnn_inception_v2_coco 0.975

rfcn_resnet101_coco 0.976

Published

results

ssd_mobilenet_v1_coco [87] 0.969

Sliding window using CaffeNet [67] 0.807*

*original paper did not use TF API so only have a single mAP value [67].

The top three models in Table 4 are all trained on the EgoHands dataset for this research,

while the bottom two models are the results from published papers [87] [67]. Table 4

shows that the results are similar to published results, thus validating the training

pipeline. Additionally, the table shows that each of the models performs similarly well on

the data.

77

 Supplementing the Dataset with the EgoHands Dataset

The next experiment was to see if a model would perform better if it was first

trained on the large EgoHands dataset and then on the local dataset, or only trained on the

local dataset. The experiment was only tried using the faster_rcnn_inception_v2_coco in

the interest of time. The results are shown in Table 5.

Table 5. mAP results for each model on the local dataset.

Model name
mAP @0.50IOU

local dataset only

mAP @0.50IOU pre-trained

EgoHands to train local

dataset

faster_rcnn_inception_v2_coco 0.965 0.962

Table 5 shows that the models perform similarly on the test dataset when looking at an

mAP for 50% IOU.

Results for the two models on the validation video are shown in Table 6 and

Table 7.

Table 6. Precision and recall (left) and confusion matrix for EgoHands then local dataset

(faster_rcnn_inception_v2_coco).

Class Precision Recall
F1-

Score
Support

Hand 0.90 0.94 0.92 185

T
ru

e
C

la
ss

 Hand 173 12

No

Hand
19 -

 Hand
No

hand

 Predicted class

Table 7. Precision and recall (left) and confusion matrix for local dataset

(faster_rcnn_inception_v2_coco).

78

Class Precision Recall
F1-

Score
Support

Hand 0.98 0.85 0.91 185

T
ru

e
C

la
ss

 Hand 158 27

No

Hand
3 -

 Hand
No

hand

 Predicted class

Table 6 and Table 7 show that, despite similar training metrics, the model trained on the

EgoHands dataset first and then on the local dataset detects 15 more hands in the

validation video. The F1-scores are similar for both models, but recall is 0.94 for the

EgoHands then local compared to just 0.85 for the local trained model.

 Results for Each Model in the Real-World Application

Each model at training time had similar metrics, Table 4, but it was observed in

the application that some models performed better than others for the task of tracking a

hand in the refrigerator. The most important metric for the hand tracking was a high TP

rate. FP were not as important because they could be easily ignored in the code. Results

for ssd_mobilenet_v2_coco and rfcn_resnet101_coco on the validation video are shown

in Table 8, results for faster_rcnn_inception_v2_coco are shown above in Table 6.

Table 8. Precision and recall (left) and confusion matrix for models: (a)

ssd_mobilenet_v2_coco (b) rfcn_resnet101_coco.

Class Precision Recall
F1-

Score
Support

Hand 1.00 0.26 0.42 185

T
ru

e
C

la
ss

 Hand 49 136

No

Hand
0 -

 Hand
No

hand

 Predicted class

(a) rfcn_resnet101_coco

79

Class Precision Recall
F1-

Score
Support

Hand 0.99 0.87 0.93 185

T
ru

e
C

la
ss

 Hand 161 24

No

Hand
2 -

 Hand
No

hand

 Predicted class

(b) ssd_mobilenet_v2_coco

Table 8 shows that while ssd_mobilenet_v2_coco had a high mAP, in practice the model

only detected 49 of the total 185 hands. Model rfcn_resnet101_coco had the highest mAP

after training, but only detected 161 of the 185 hands. The best model was

faster_rcnn_inception_v2_coco, which detected 173 hands out of 185. The

faster_rcnn_inception_v2_coco model had many more FP than the other models.

The disk size of each model file is shown in Table 9.

Table 9. Disk size of each hand detection model.

Model Name Size (MB)

ssd_mobilenet_v2_coco 54.1

faster_rcnn_inception_v2_coco 148

rfcn_resnet101_coco 600

Table 9 shows that the ssd_mobilenet_v2_coco is the smallest model, at 54.1 MB.

Faster_rcnn_inception_v2_coco is roughly three times larger at 148 MB, and

rfcn_resnet101_coco is by far the largest at 600 MB.

In addition to the mAP, precision/recall, confusion matrix results, and size, it was

observed that the rfcn_resnet101_coco model took almost 11 seconds to infer a result

between frames. Both ssd_mobilenet_v2_coco and faster_rcnn_inception_v2_coco took

about two seconds to make a prediction. The time difference would not matter in the

application as there is no need to run the code in real-time. For development purposes, a

80

faster inference time was essential to quickly validate and test the logic for the next parts

of the research.

 Model Trained with Left and Right Hand Class

Faster_rcnn_inception_v2_coco was used to train a model to distinguish between

the left and right hand. The model was first trained on the EgoHands dataset with a left

and right hand class. The training results are shown in Figure 36.

Figure 36. Precision and recall training metrics for EgoHands dataset with left and right

hand class.

The training results in Figure 36 are promising, with 91.3% average precision at an IoU

of 50%.

The weights from the EgoHands model were then used to train the local dataset.

Results from the training are shown in Figure 37.

Figure 37. Precision and recall training metrics for local dataset with left and right hand

class.

81

The metrics for the trained model decrease slightly, with 83.6% average precision at an

IoU of 50%. The model performs poorly on the validation videos. Hands are labelled as

both left and right, left hand is marked right hand and vice versa, and non-hands are

labelled hands. An example image with the hand predictions is shown in Figure 38.

Figure 38. Prediction on a validation video for the left/right hand model.

The labels are difficult to see in the image, but each hand is labeled both lhand (left hand)

and rhand (right hand). The model was unable to learn enough discriminating features

from the data to reliably differentiate between the left and right hand.

 Hand Detector Limitations

Overall, the hand detector with a single hand class performed well on new data,

but the model struggled to detect hands at the edges of the frames. An example of a

missed hand is shown in Figure 39.

82

Figure 39. The hand detector did not detect the hand on the edge of the frame.

Figure 39 shows that the hand was not detected. The hand is blurry and holding an object,

which could be why the hand was missed.

Based on the above data and observations, the faster_rcnn_inception_v2_coco

model trained on the EgoHands dataset and then the local dataset and a single hand class

was determined to be the best choice to maximize accuracy, speed, and model size. The

model was 93% accurate on the limited validation data. The experiments in in the

following sections use the faster_rcnn_inception_v2_coco model.

 Hand Tracking

The second portion of the research focused on tracking the hand within the

camera frame. The detector detects the hand, and the tracker determines if the hand is the

same as in the previous frame, or a new hand. The tracker also needs to be able to track

the left and right hand separately without confusing the two hands.

 Centroid Tracking

83

Centroid tracking uses the center of the detected hand bounding box as an object

anchor. Centroids for objects in new frames are compared to centroids from prior frames.

If the distance between the centroids is less than the max distance threshold, the new and

old object can be considered the same object, otherwise the new object is considered a

new hand within the frame. Through visual inspection, the best max distance threshold

for the application was found to be 150 pixels. The 150-pixel threshold means that if the

distance between a centroid from frame-to-frame is less than 150 pixels, the two objects

are the same. A large distance was needed because tracking experiments were carried out

on video with a lower frame rate, thus the hand moved far between frames and

detections. If the previous and new centroid were both on the same half of the camera

frame, the distance threshold was increased to 300. The higher distance allowed for the

tracker to continue tracking the hand even after a missed detection, the hand traveling a

large distance between frames, or when the hand momentarily moves further into the

refrigerator and out of the frame. The sequence in Table 10 shows the hand tracker in

action. The left hand begins as ID 1, the right ID 0. The hands are very close in Frame

532, which causes the hand tracker to swap the hand IDs. Frame 535 and 536 shows that

the left hand is now ID 0, the right ID 1.

Table 10. Example hand tracking sequence where the tracker swaps the left and right

hand.

84

Frame 530

Frame 531

Frame 532

85

Frame 533

Frame 534

Frame 535

86

Frame 536

Fine-tuning the max distance parameter was important to ensure the left and right hand

are recognized as two different objects. Despite much tweaking of the distance parameter,

the centroid tracker was never able to accurately distinguish between the two hands when

the hands crossed over or were close together within a frame, like shown in Table 10. For

a single hand, the tracker was able to accurately track and determine the direction of the

hand.

 Correlation Tracker

The dlib correlation tracker was supposed to be an improvement over the

centroid. Unlike the centroid tracker method, the hand detector would not need to run

every frame, thus speeding up the entire process. The hand detector would run, pass the

detected bounding box to the tracker, and the tracker would use a faster algorithm to track

the hand in subsequent frames. Because the hands within the refrigerator move quickly

between frames, the correlation tracker would lose the hand almost immediately. Once

the hand was lost, nothing could be done to re-track the hand until the hand detector ran

again. The important value for the correlation tracker is how often to run the detector to

update the bounding box used by the tracker. Run the detector too few times and the hand

87

will never be detected during an interaction. Run the detector too often, and the speed

benefits of the correlation tracker are cancelled out. It was found, through visual

inspection, that running the hand detector every fourth frame worked the best to balance

detecting the hand early in an interaction, and still speeding up the detections. An

example video sequence using the correlation tracker and running the detector every

fourth frame is shown in Table 11.

Table 11. dlib correlation tracker applied to a video sequence, detector running every

fourth frame.

Frame 53

Frame 54

88

Frame 55

Frame 56

Frame 57

89

Frame 58

Frame 59

Frame 60

90

Frame 61

Frame 62

Frame 63

91

Frame 64

Frame 65

Table 11 shows that the detector does not run until four frames after the hand enters the

frame (frame 56). The bounding box does not resize for the smaller partial hand until the

detector runs again in frame 60. In frame 63, the tracker is unable to track the hand as it

moves outside the original area of detection. Frame 64 shows the detector running again,

but the hand is immediately lost in frame 65.

The correlation tracker was much faster than running the hand detector on each

frame. The correlation tracker updated on each new frames almost instantly, compared to

the two second lag each time the detector runs. To get the correlation tracker to track the

hand in every frame, the detector needed to run on every frame, negating the benefits of

the correlation tracker. While it may be possible that spending more time fine-tuning the

92

parameters could provide a good result with the correlation tracker, the time saved per

frame was not worth the effort in this case. For the application in this research, the

correlation tracker did not perform well.

 Direction of Movement

Determining the direction of the hand was as straight-forward as looking at the

sign on the distance calculation between the new and old frame. The program the

direction code was based on used an average of old distances to determine direction

[108]. Using an average is useful if the tracked objects are moving large distances in the

frame in one direction, but was not accurate for this research. The hands change direction

quickly between frame, and using an average of prior centroid locations caused errors.

Comparing the new centroid to only the prior centroid gave better results. The video

sequence in Table 12 shows the movement direction of a hand during one interaction.

The direction determined from comparing only the last Y centroid and the direction

determined from comparing to an average of prior centroids are listed in the first column

of the table. The red direction arrow in the frame is based on the last Y centroid

information.

Table 12. Movement direction, shown by the red arrow, for one interaction.

93

Frame 53

First detection

Frame 54

Last cYprev: “Moving in”

Average cYprev: “Moving in”

Frame 55

Last cYprev: “Moving in”

Average cYprev: “Moving in”

94

Frame 56

Last cYprev: “Moving in”

Average cYprev: “Moving in”

Frame 57

Last cYprev: “Moving in”

Average cYprev: “Moving in”

Frame 58

Last cYprev: “Moving in”

Average cYprev: “Moving in”

95

Frame 59

Last cYprev: “Moving in”

Average cYprev: “Moving in”

Frame 60

Last cYprev: “Moving out”

Average cYprev: “Moving in”

Frame 61

Last cYprev: “Moving out”

Average cYprev: “Moving in”

96

Frame 62

Last cYprev: “Moving out”

Average cYprev: “Moving in”

Frame 63

Last cYprev: “Moving out”

Average cYprev: “Moving in”

Frame 64

Last cYprev: “Moving out”

Average cYprev: “Moving out”

97

Frame 65

Last cYprev: “Moving out”

Average cYprev: “Moving out”

Table 12 shows that using only the last previous Y centroid value can detect a change in

direction four frames faster than observing the average of all previous Y centroids. Table

12 also shows that the centroid tracker plus direction is very accurate when tracking a

single hand. Because a hand in the refrigerator is constantly changing direction and

moving in and out (like to open a bin), knowing what direction the hand was moving was

not as useful as hypothesized. Using the direction to make decisions for the add/remove

logic presented unnecessary complexity, thus was not used for the add and remove logic.

 Distinguishing Between Hands

Distinguishing between the left and right hand was a very challenging problem.

The centroid tracker was not able to differentiate between hands when the two hands

crossed over or came close together, as shown in Table 10. Some cases could be dealt

with by hard coding rules, such as whichever hand centroid was closest to the right side

of the frame was assumed to belong to the right hand and vice versa, but there was no

way to use logic to solve all cases. Observing the arms and the hands could be a way to

distinguish the hands, but was not tried in this research.

98

An accurate way to distinguish between hands was not found during the many

experiments, thus the scope of the research was limited to focus on a single hand within

the refrigerator.

 Hand Analysis

The final part of the research was to analyze the detected hands to determine if

they were empty or holding an apple.

 Hand Empty or Not

Initially, all hand examples were used to train a model to detect if a hand was

empty or not. After several epochs with no change in training loss or accuracy, it was

clear that the data was insufficient at providing the model with enough information to

distinguish between the two classes. Looking into the data showed edge cases like the

image in Figure 40, below, where it is difficult for even a human to clearly determine if

the hand is empty or not.

Figure 40. An example image of an edge case where it is difficult to definitively

determine if the left hand is empty or not.

99

Figure 40 demonstrates the challenge of analyzing hand-object interaction, especially in

and around the bin. A simple solution for this problem was to remove all edge case

images and only provide the model with clearly empty and not empty hand data.

However, removing the difficult images did not solve the problem that in the real-world

application the model would see difficult images. The model trained on clear-cut empty

or not cases performed acceptably on those images, but predictably performed poorly on

less-obvious instances. For example, should the image in Figure 41, where the left hand

is opening the bin, label the hand as empty or not?

Figure 41. An example image where it is unclear whether the left hand opening the bin

should be considered empty or not.

Questions such as how to classify the hand in Figure 41, which are challenging even for a

human, become exceedingly difficult to train a computer to interpret. The experiment

showed that other methods were needed to extract useful information from the hand-

object interactions.

 TensorFlow Object Detection API for Produce Detection

100

The first experiment done to identify objects in the hand was to use the

TensorFlow Object Detection API to train a model to detect all annotated objects in the

dataset. If an object bounding box overlapped a hand bounding box, it could be assumed

that the hand was holding the detected object. An apple bounding box overlapping a hand

bounding box by at least 50% would be considered a hand holding an apple. Using

object/hand overlap would only work if there was not a bin full of produce underneath to

negate the overlap logic. The Faster R-CNN model trained on Inception V3 was used to

train the model. The results of the training are shown below:

Figure 42. Precision and recall for the model trained on all categories.

The data from Figure 42 is after about 13,000 training steps, and shows an mAP of 0.762.

Training was stopped because the loss began to increase consistently. Overall loss at this

point was 0.20. The results are less than 80% mAP for an IoU of 50%, which is not

enough to be robust in a production setting. Reasons for the low mAP could be due to not

enough data for each category and inconsistent bounding box annotations. An example of

a bad annotation is shown in Figure 43.

101

Figure 43. Inconsistent annotation where the apple bounding box covers both single and

multiple apples. Each red box denotes the apple class.

Each red box in Figure 43 denotes an instance of the apple class. The apple bounding

boxes in the upper left of the bin includes both single and multiple apples. At annotation

time, multiple apples were put into one apple bounding box to save time. A quantity label

was added to the annotation to distinguish between one or many apples. Training using

the quantity label would need to produce a different class for each quantity of apples, or a

class of a single apple and multiple apples. Even a class of multiple apples might not be

distinct enough for the model to learn enough features to accurately detect the class in a

general setting. Experiments on the validation video show that the trained model is

unable to reliably detect a single apple in a frame.

Performance could be improved by re-annotating individual produce like apples

and oranges, as could adding more images. Bounding box annotations are time

102

consuming, therefore other routes were researched to more easily solve the problem of

detecting produce in the hand.

The model trained on all objects is both less accurate than the hand model trained

using the EgoHands weights, as well as not accurate on the produce items.

 Image Background Removal

Experiments were done to try and remove the background and extract the

foreground. Because the refrigerator camera only provides a 2-dimensional view, it is

difficult, even for humans, to know the difference between an item in the produce bin

with an empty hand above it, versus a hand holding an apple over a full produce bin. An

example of this challenge is shown in Figure 44.

Figure 44. A challenging image to determine if the apples are in the right hand or within

the bottom produce bin.

Many of the bounding boxes of the produce items in Figure 44 would overlap the hand

bounding box, but not all of them are in the hand. One idea to solve this problem would

be to extract only the moving or foreground parts of the image (the hands) by removing

the static background.

103

a. MOG2 Background Subtractor in OpenCV

There are two variables in the createBackgroundSubtractorMOG2 class: history

and varThreshold. History is how far back in the history of video frames the background

subtractor will go to create the background model. The history variable defaults to 500.

The varThreshold value determines what threshold to use when comparing background

pixels to foreground pixels. If the distance between the background model and the current

frame is greater than the threshold, that pixel is considered foreground. The default

varThreshold value is 16. [130] Trials were done to try and optimize the history and

varThreshold values, but the difference between the performance using the default values

and trial-and-error values was not enough to warrant the effort to fine-tune the

parameters.

The output of the subtractor on a subset of images corresponding to the

interaction in Figure 44 is shown in Table 13.

Table 13. Video sequence showing the original frame and the extracted foreground using

MOG2.

Frame

Frame Extracted Foreground

1

104

2

3

4

5

6

7

105

Frame 5 in Table 13 is the same image shown in Figure 44. The extracted foreground

image shows clearly that two apples are in the user’s hand and not in the bin. An object

recognition system could run on this image, and would only see the items in the hand.

With the background removed, the detector would not be challenged by bin items.

The background subtractor does not produce crisp images of the extracted

foreground. Filters and other image processing techniques can be used to get a more clear

image, but those experiments are outside of the scope of this research [131].

b. GrabCut

The hand detection model was used to pass rectangles into the GrabCut function.

GrabCut in OpenCV has a single parameter that can be tweaked, iterCount, or the number

of iterations the algorithm runs [111]. For this experiment, it was determined through trial

and error that there was no discernable difference between the default iterCount of five

and other values. The results shown here use an iterCount of five.

The output of GrabCut on the same subset of images from Table 13 and

corresponding to the interaction in Figure 44 is shown in Table 14.

Table 14. Video sequence showing the original frame and the extracted foreground using

GrabCut

Frame

Frame Extracted Foreground

1

106

2

3

4

5

6

7

107

For the sequence in Table 14 only one of the two hand bounding boxes was passed into

the GrabCut function. Only the right hand was examined to make the code easier to

implement. As with the MOG2 function, GrabCut is able to show that two of the apples

in Figure 44 are in the hand and not in the bin. Frame 6 shows that some of the produce

in the bin was left in the frame. Bin items in the extracted foreground frame could cause

false positives by an object recognition system. GrabCut provides a much cleaner output

image, but only operates within the bounding boxes. This is unlike MOG2 which works

on any pixel in the image that is substantially different than the previous pixels.

c. Color Thresholding

Color thresholding to extract skin has been a popular avenue for hand detection

and produce classification. Experiments were done to see if thresholding could be used to

extract the foreground, as well as classify the fruit in the hand.

Through trial and error, the ideal skin thresholds were found to be:

Table 15. HSV color space values for skin thresholding.

Threshold Hue, Saturation, Value

Lower skin 0, 75, 100

Upper skin 30, 255, 255

Two trials were run: first, applying the threshold to the entire frame, second, thresholding

only the bounding box area found by the hand detector, and setting all other pixels to

black. For the hand detector trial, only the bounding box for the right hand was used.

Table 16 shows thresholding applied to the entire frame.

Table 16. Skin threshold applied to frames corresponding to Figure 44 interaction.

Frame

Frame Skin Threshold Applied to Frame

108

1

2

3

4

5

6

109

7

Table 16 shows that the skin threshold extracts not only the skin area, but also skin

colored objects like the apples and peaches. It is difficult to tell the location of the apples

in Frame 5 because the processing is color based and does not take background or

foreground into account. The threshold nicely segments all items of a color within the

range, and set all other items (like the refrigerator and bag of lettuce) to black.

Once again, the images are noisy. Filters and other image processing techniques

can be used to get a more clear image, but those experiments are outside of the scope of

this research [131].

Table 17 shows the threshold applied to the bounding box from the hand detector.

Table 17. Skin threshold applied to the detected hands corresponding to Figure 44

interaction.

Frame

Frame

Skin Threshold Applied to Hand

Detector ROI

1

110

2

3

4

5

6

7

111

Table 17 shows that when the skin thresholds are applied only within the detected hand

bounding box, much of the noise is removed. However, the output is limited to produce

items that are small enough to fit within the hand bounding box. Like the threshold on the

entire image, the thresholding applied to the box is color based and does not take

background or foreground into account. Frame 6 in Table 17 shows that the items within

the bin are still visible in the thresholded image.

d. Empty or Not using Extracted Foreground

Using the extracted foreground to identify produce was a challenge. Training a

classifier on the images could give good results, but annotating a sufficient amount of

segmented images was too time consuming for this research. Without training a classifier

to detect different produce, the best outcome was to determine if the hand was empty or

not. One idea was to use the color of the extracted foreground to determine if the hand

was empty or not. Using scikit-learn’s MiniBatchKMeans function, the extracted

foreground was converted to two colored clusters (n_clusters = 2, one for black

background and the other for the hand and object color) [132]. The pixel color of the

resulting non-black area was analyzed to see if it was unique for empty and non-empty

hands. The analysis was done by splitting each cluster into its three color components, H,

S, and V. It was hypothesized that an empty hand would give H or S values within a

standard range, and a non-empty hand would fall outside of that range. Observing the

color values could then tell if the hand was empty or not. Examples of an empty hand and

hand holding an orange are shown in Figure 45 and Figure 46.

112

Figure 45. Original, thresholded, and k-means cluster for empty hand.

Figure 46. Original, thresholded, and k-means cluster for hand holding an orange.

The clusters in Figure 45 and Figure 46 are slightly different color, possibly indicating

the difference between an empty and not empty hand. Trial and error was tried to find a

threshold between empty and not average pixel values of the clusters, but none of the

thresholds gave consistent accurate responses over multiple frames and test videos.

Because many produce items are a similar color to skin, monitoring the average

pixel value of the extracted foreground was not useful to differentiate between an empty

and not-empty.

 Image Classifier

113

The hand detector is used as an anchor to find regions of interest to send to the

image classifier. The classifier was trained on images of empty hands and hands holding

apples or oranges. The precision and recall data and training loss and accuracy curves are

shown in Figure 47 and Figure 48.

Figure 47. Precision and recall data for

image classifier.

Figure 48. Training loss and accuracy

curve for image classifier.

The plots above are after 25 epochs to warm up the fully connected layers, followed by

100 epochs to fine-tune the last convolution layer. Figure 47 shows that the overall F1-

score for the model is 98%. Figure 48 shows that the model is slightly overfitted to the

data, with the validation loss starting to increase after about 40 epochs.

The model was also tested on a video simulating the production application. The

precision and recall data for the classifier is shown in Table 18.

Table 18. Precision and recall data for image classifier in production application.

Class Precision Recall F1-Score Support

Apple 0.50 0.85 0.63 20

Empty 0.99 0.87 0.93 118

Orange 1.00 0.74 0.85 23

Overall 0.83 0.82 0.80 161

114

Table 18 shows that precision and recall decrease for all classes when applied to new

data. The apple class decreased the most from the training metrics, dropping from an F1-

score of 0.98 down to 0.63. The orange class dropped from 0.99 to 0.85, and the empty

class went from 0.97 to 0.93. The average F1-score across all classes dropped from 0.98

to 0.80. The confusion matrix for the classes is shown in Table 19.

Table 19. Confusion matrix for image classifier in production application.
T

ru
e

C
la

ss
 Apple 17 1 0 2

Empty 12 103 0 3

Orange 5 0 17 1

Unsure 0 2 0 1

 Apple Empty Orange Unsure

 Predicted Class

The “Unsure” class in Table 19 was added only for the confusion matrix calculations.

The class of some of the detected hands was difficult to determine even by a human, thus

the “Unsure” class was created to not penalize the model unnecessarily. In the code, the

“Unsure” class is set when none of the other class predictions are above 50%. The

“Apple” class was the most common false positive class. “Empty” was most frequently

mistaken for “Apple”, followed by “Orange”. “Orange” was incorrectly classified as

“Apple” 41% of the time. “Apple” had the least amount of false negatives.

The image classifier was only 80% accurate in the actual application, but is the

best performing of the experiments. The hand detector plus image classifier is used to

develop the logic for determining if an item is being added or removed.

 Object Add or Remove Logic

115

The add/remove logic was developed only for the case of a single hand adding or

removing one item (either apple, orange, or nothing) at a time.

 Frames Per Second

Experiments showed that ten to twenty fps was ideal. Ten to fifteen fps were used

to develop the add/remove logic because development on video playback was faster with

fewer frames, but twenty fps offered a good tradeoff between data and memory. The

number of frames per interaction (adding an item to the shelf) for various frame rates is

shown in Table 20.

Table 20. Number of frames per interaction (adding an item to the shelf) for different fps.

Frame per second (fps) Frames per interaction

10 20

20 35

Table 20 shows that, as expected, the number of frames per interaction almost doubles

when fps is doubled. The data above is for one of the quickest interactions, just adding or

removing an item from the shelf, and illustrates the importance of finding the proper

frame rate. Too few fps and the hand can be missed going in or out, too high and the

number of frames to process will become unnecessarily high and could cause errors.

 Hand within the Refrigerator

Many experiments were tried to get the program to accurately detect when a hand

is within the refrigerator, and when there is no hand within the refrigerator. Originally,

observing if a hand detection was made within the camera frame was tried. The problem

with that solution is that the camera frame only covers the entrance to the appliance. Any

item that is added or removed beyond the entrance will cause the hand to go out of frame,

although the hand should still be considered within the refrigerator. Next, rules were

116

hard-coded into the logic to try and deal with hands that go off frame as they move

further into the appliance. The rules included:

 If the hand bounding box was last seen at the top of the frame and the next frame

has no hand, assume the hand moved further within the unit and is still within the

refrigerator

 If the last hand bounding box was moving into the appliance but the next frame

has no hand, assume the hand moved further within the unit and is still within the

refrigerator

 If the hand was last seen at the bottom of the frame near the refrigerator entrance

and moving out, and next frame has no hand, assume hand left the appliance

The rules were able to correctly determine if a hand was within the refrigerator some of

the time, but hard-coding rules to cover every edge case became complicated and

unreliable.

Observations of video and images from within the refrigerator showed a simple

solution: if the hand moves further within the refrigerator and out of frame, the arm

almost always remains within the frame. Figure 49 shows an example where the hand has

moved further within the appliance and it out of frame. The arm is still in frame, and can

be used to determine that the user interaction with the refrigerator is still in progress.

117

Figure 49. An example where the hand is out of frame, but the arm can be seen.

Thus, a hand is said to be within the refrigerator if a hand or an arm, as in Figure 49, is

present in the frame. A TensorFlow Object Detection API model was trained on all

objects, including the hand and arm. The model was less accurate than the hand model

trained from the EgoHands dataset, but was accurate enough to prove that using the hand

and arm was the simplest and best way to determine if a hand is within the refrigerator.

 The Algorithm

Creating the machine learning models was only half the challenge of this

research. Once the hand detection, tracking, and object identification models were

reasonably accurate, the task shifted to combining the models in a way to allow the

computer to automatically extract useful information from the predictions and data. The

proposed algorithm logic is shown in the flowchart in Figure 50.

118

Figure 50. Flowchart of hand analysis logic.

Shown in Figure 49, the algorithm begins (1) by running the hand detector on each new

frame where the door is open. The hand_in_fridge variable is essential for telling the

program when an interaction is complete, and when decisions should be made to update

the inventory. If a hand or arm is not detected (2), the hand_in_fridge variable remains

false, and the next frame is processed. If a hand or arm is detected (5), the hand_in_fridge

variable becomes true. If the detected hand is not within the loading zone (6), the centroid

coordinates are recorded and the algorithm moves to the next frame. If the hand is within

the zone (7), the cropped bounding box image is passed to the image classifier. The

prediction from the classifier is added to the object buffer (8). The object buffer tracks the

object classifications for each frame. Each time the hand_in_fridge variable changes

119

states, the inventory is updated and object buffer is reset. The algorithm continues until

the hand_in_fridge variable changes to false (2). At this point, the algorithm makes

decisions on what and where the object was added and/or removed (3). The object buffer

is split in two, with the first half of the list representing the added objects, and the second

half representing the removed objects. The logic assumes that the identified objects at the

beginning of the object buffer specify what is being added as the hand moves into the

refrigerator, while the identified objects at the second half of the buffer specify what is

being removed as the hand moves out of the refrigerator. Experiments showed that the

algorithm was more accurate when only the first and last three items of the buffer were

used to determine the added or removed objects. For an object buffer with less than seven

items, the floor division (divided by two) is used to split the buffer. For example, a buffer

of length five divided by two would be 2.5 The floor of 2.5 is two so the first and last two

items of the buffer are used. Next, the most frequent item in each the add and remove

buffer was found using code modified from the GeeksforGeeks website [133]. The most

frequent item in each buffer was taken to be the item added or removed. At the same time

as the object buffer is being updated, the centroid of each hand detection is added to a

centroid buffer. After the interaction is complete, the centroid buffer is split similar to

how the object buffer is split. The location of the item is determine based on the

thresholds in Figure 51.

120

Figure 51. Thresholds for determining item location within the refrigerator.

The centroid buffer is split in half, with the first half representing what was added, and

the second what was removed. For both the added and removed centroid buffer section,

the maximum x and y coordinate, and the minimum x coordinate are sent to a function to

determine the maximum hand location. If both xmin and xmax are less than the middle

refrigerator threshold (line A), the item location is “left side”, otherwise the location is

“right side”. If ymax is below the shelf threshold (line B), the item location is “bin”,

otherwise the location is “shelf”. If the detected item is “Empty”, no location information

is provided. Finally, all object buffers are reset for the next interaction (4). An entire add

and remove interaction with the logic outputs per frame is shown in Table 21.

Table 21. Example interaction and add/remove logic

121

Frame 123

Hand_in_fridge = False

Hand within loading zone = False

Object buffer = []

Centroid buffer = []

Frame 124

Hand_in_fridge = True

Hand within loading zone = True

Object buffer = [‘Empty’]

Centroid buffer = [[334, 424]]

Frame 125

Hand_in_fridge = True

Hand within loading zone = True

Object buffer = ['Empty', 'Empty']

Centroid buffer = [[334, 424],

[371, 285]]

122

Frame 126

Hand_in_fridge = True

Hand within loading zone = True

Object buffer = ['Empty', 'Empty',

'Empty']

Centroid buffer = [[334, 424],

[371, 285], [381, 185]]

Frame 127

Hand_in_fridge = True

Hand within loading zone = True

Object buffer = ['Empty', 'Empty',

'Empty', 'Apple']

Centroid buffer = [[334, 424],

[371, 285], [381, 185], [372, 158]]

Frame 128

Hand_in_fridge = True

Hand within loading zone = True

Object buffer = ['Empty', 'Empty',

'Empty', 'Apple', 'Empty']

Centroid buffer = [[334, 424],

[371, 285], [381, 185], [372, 158],

[367, 133]]

123

Frame 129

Hand_in_fridge = True

Hand within loading zone = True

Object buffer = ['Empty', 'Empty',

'Empty', 'Apple', 'Empty'] –

bounding box area too small, no

change

Centroid buffer = [[334, 424],

[371, 285], [381, 185], [372, 158],

[367, 133], [361, 121]]

Frame 130

Hand_in_fridge = True

Hand within loading zone = True

Object buffer = ['Empty', 'Empty',

'Empty', 'Apple', 'Empty',

'Empty']

Centroid buffer = [[334, 424],

[371, 285], [381, 185], [372, 158],

[367, 133], [361, 121], [361, 113]]

Frame 131

Hand_in_fridge = True

Hand within loading zone = True

Object buffer = ['Empty', 'Empty',

'Empty', 'Apple', 'Empty', 'Empty',

'Empty']

Centroid buffer = [[334, 424],

[371, 285], [381, 185], [372, 158],

[367, 133], [361, 121], [361, 113],

[363, 119]]

124

Frame 132

Hand_in_fridge = True

Hand within loading zone = True

Object buffer = ['Empty', 'Empty',

'Empty', 'Apple', 'Empty', 'Empty',

'Empty', 'Apple']

Centroid buffer = [[334, 424],

[371, 285], [381, 185], [372, 158],

[367, 133], [361, 121], [361, 113],

[363, 119], [371, 163]]

Frame 133

Hand_in_fridge = True

Hand within loading zone = True

Object buffer = ['Empty', 'Empty',

'Empty', 'Apple', 'Empty', 'Empty',

'Empty', 'Apple', 'Apple']

Centroid buffer = [[334, 424],

[371, 285], [381, 185], [372, 158],

[367, 133], [361, 121], [361, 113],

[363, 119], [371, 163], [375, 233]

Frame 134

Hand_in_fridge = True

Hand within loading zone = True

Object buffer = ['Empty', 'Empty',

'Empty', 'Apple', 'Empty', 'Empty',

'Empty', 'Apple', 'Apple', 'Empty']

Centroid buffer = [[334, 424],

[371, 285], [381, 185], [372, 158],

[367, 133], [361, 121], [361, 113],

[363, 119], [371, 163], [375, 233],

[352, 370]]

125

Frame 135

Hand_in_fridge = False

Hand within loading zone = False

Object buffer = []

Centroid buffer = []

In_buffer = ['Empty', 'Empty',

'Empty']

Most_frequent(in_buffer) =

‘Empty’

Confidence factor = 100% (3 / 3)

In_loc = [[334, 424], [371, 285],

[381, 185], [372, 158], [367, 133]]

Empty so no location calculated

Prediction: Nothing added

Out_buffer = ['Apple', 'Apple', 'Empty']

Most_frequent(out_buffer) = ‘Apple’

Confidence factor = 67% (2 / 3)

Out_loc = [361, 113], [363, 119], [371,

163], [375, 233], [352, 370]]

Xmin = 352

Xmax = 375

Ymin = 113

Prediction: Apple removed from right

bin

Table 21 shows the logic along with an entire add/remove interaction. The remove

interaction, specifically frame 127 and 134, shows why it was important to use multiple

frames and average the predictions to determine what the hand is holding. The

predictions in both frames are incorrect, but because the algorithm is looking at the

average of the last three frames, the add/remove predictions are still correct. Frame 135

shows why it is important to have a hand detector that maximizes true positive

predictions. The model missed the hand, thus there is one less data point for the

algorithm. The interaction in Table 21 shows that the algorithm is able to detect objects

hidden from view within the bin. Only the first and last three items in the object buffer

are examined because, from visual inspection, that seems to be the average amount of

frames it took for a hand to move through the entire loading zone. More data and

126

experiments are needed to verify that looking at only the first and last three frames gives

the right amount of data. In the event of a tie in the buffer, the prediction is “Unsure”.

Using an odd number of values for the in and out buffer ensures a tie is unlikely. It was

found that the predictions at the top of frame are not as accurate because the hand is

usually out of frame so the predictions are not reliable. The confidence factor (CF) was

calculated using equation (10).

CF =
total number of the most frequent prediction

total number of predictions
 ×100% (10)

CF was initially used for development purposes only to quickly test different lengths of

the in and out buffers. However, the CF may be useful in production to give more

information on how confident the logic is in the prediction it makes.

The loading zone (the lime-green box) in Table 21 extends farther than the

original loading zone in Figure 35. It was found that because the in and out buffers only

see the first or last three or so predictions, the information near the top of the frame

would be ignored automatically, and there was no reason not to extend the zone to the

edge of the frame. The larger loading zone is used for all cases, with and without the

drawers open. The smaller loading zone for when the drawers are open was not used

because the object classifier is not robust enough to make an accurate prediction from a

single frame. Also, the hand detector was less accurate around the bottom of the frame. In

some instances within the area of the smaller loading zone, like frame 135 in Table 21,

the classifier did not get a chance to make a prediction because the detector did not detect

the hand. Using the smaller loading zone in that instance would mean no remove data for

the code, and would result in an error.

127

Despite the decreased accuracy for both the hand detector and image classifier in

a real-world application, Table 22 shows that the overall logic performed well on a video

simulating the production application.

Table 22. Predicted and ground-truth classes for 14 interactions. Incorrect predictions are

highlighted.

Interaction
Ground-Truth Predicted

Add Remove Add CF Remove CF

1 Orange Empty Orange 100% Empty 100%

2 [Empty] [Empty] [Empty] 67% [Empty] 100%

3 Empty Apple Empty 100% Apple 67%

4 [Empty] [Empty] [Empty] 100% [Empty] 67%

5 Empty Orange Empty 67% Orange 100%

6 Orange Empty Orange 67% Empty 100%

7 Apple Empty Apple 100% Empty 100%

8 Empty Orange Empty 100% Orange 67%

9 Orange Apple Orange 100% Apple 67%

10 Apple Empty Apple 67% Empty 100%

11 Empty Orange Empty 100% Orange 100%

12 Orange Empty Apple 67% Empty 100%

13 Empty Apple Empty 100% Apple 67%

14 Apple Empty Apple 67% Inconclusive 33%

Table 22 shows the predictions made by the program versus the ground-truth. Interaction

12 was incorrect, with an orange being wrongly classified as an apple. Interaction 14 was

inconclusive, with the object buffer showing ['Apple', 'Empty', 'Unsure'] so there was no

most frequent item to predict. Interaction two and four represent an empty hand opening

and closing the produce bin. The location predictions are not shown in the table, but the

program correctly predicted all item locations. The overall classification accuracy for the

video was 93%.

 Storing Inventory Information

128

For development, the inventory list was stored in an Excel spreadsheet, shown in

Figure 52.

Figure 52. Excel spreadsheet storing refrigerator inventory.

Figure 52 shows how each refrigerator compartment, bins and main compartment

(“Fridge”) takes up a different cell. The code reads in each cell and corresponds that

inventory list with the specific storage location. A flowchart of the logic is shown in

Figure 53.

Figure 53. Logic for updating the Excel spreadsheet storing the inventory information.

Each time the refrigerator door opens, the data from the spreadsheet is read into a

dictionary to store the information for each bin or refrigerator location. As the algorithm

runs, the dictionary is updated according to what is added or removed. When the door is

closed, the dictionary information is written back to the Excel file.

129

ANALYSIS

The beginnings of an inventory management system using the hands and an image

classifier has been described from concept to realization. The objective of this thesis was

to see if the hand can be used to identify objects being added and removed from the

refrigerator produce bins. The research was successful at the objective, and presented a

system that detects and tracks hands, identifies what a hand is holding, and automatically

updates the inventory list based on what and where an item was added or removed. The

research began by collecting images to use to train machine learning models. The images

were then annotated, some with bounding boxes and another group labelled a single class

per image. For the bounding box annotations, it was determined that by spending more

time upfront including more information in the annotations, more flexible models could

be trained down the line. Cutting corners during annotation by grouping together single

objects under one class proved to make it difficult for a model to ever learn the class in a

meaningful way. If both a group of apples and a single apple represent the class apple, the

model will not give good results for either. To avoid annotation flaws, annotating a small

subset of the data and then training and testing could be a good way to save development

time. Seeing how the small subset performs could validate the annotation strategy, or

illuminate issues. Bounding box annotations is a huge bottleneck in creating a CV

system, but it was shown that using a semi-automatic annotation tool, like Anno-Mage,

can speed up the process. One problem with Anno-Mage is that the bounding boxes are

not always precise and need to be adjusted. The adjustments can sometimes make the

predicted bounding boxes more time consuming to adjust than just drawing them from

scratch. The final detection dataset consisted of over 3500 annotations on about 900

130

images, with over 20 different classes. The bounding box annotations were flexible

enough that different classes could be developed just by filtering out different

information in the annotations. The final image classifier dataset contained over 1000

images with three different classes. Larger application-specific datasets (i.e., datasets

with thousands of images per class) would be needed to develop a more robust detector

and classifier for a production application, but the small datasets proved feasibility. More

image data from different users would help to develop machine learning models that

generalize well to all use cases.

The hand detection model was successful at detecting hands in almost every

frame in the validation videos. It was shown that, while the training metrics of different

models may be similar, each model will have strengths and weaknesses when applied to

new data. The best performing model, faster_rcnn_inception_v2_coco, detected 93% of

hands in the validation video, but struggled with partial hands at the edges of the frame.

The research showed that training the model first on a large dataset like EgoHands and

then on the local dataset could improve performance by increasing the true positive

detections. Research from later in the thesis showed that the arm was also important to

detect, because in some cases the hand may be out of frame. Training the hand detector to

distinguish between the left and right hand was not successful. One reason why could be

that because the EgoHands dataset has two sets of hands, the model was never able to

learn that the left hand would most likely be on the left side of the screen and vice versa.

More experiments should be done to train a model with a left/right hand class, as

differentiating between hands is important for getting accurate results from the

add/remove logic. Not enough testing was done to ensure the detector was robust to

131

different hand sizes and skin tones, but initial testing showed positive results in

identifying different types of hands.

Hand tracking was found to be challenging in the application because the hands

moved quickly and sporadically in and out of frame, often crossing over each other or

becoming hidden under food items or the produce bins. Due to the challenge, the tracking

was limited to a single hand. The centroid tracker performed the best at tracking the hand.

Comparing the outputs in Table 10 and Table 11 clearly show that the centroid tracker

was able to track the hand as it moved through the video frames better than the dlib

correlation tracker. As illustrated in Table 12, the distance information between old and

new centroid was accurate at determining direction. Later research in the thesis showed

that knowing when a hand was within the refrigerator, and recording the centroids at each

detection, was more important than tracking the hand frame-by-frame. This approach

(i.e., simple detection of hand vs. no hand and then tracking the centroid) led to the

development of the add and remove logic. In comparison, creating an algorithm based on

frame-by-frame hand-tracking and direction proved to be too complex to create an

accurate algorithm. The hand tracking research showed the importance of implementing

the simplest solution for the task. A simple solution means increased robustness of the

overall system, algorithms that are easier to debug, and less risk of unexpected behavior

from the algorithm.

Initial research focused on training a detection model to identify all annotated

objects, but it became clear that because the camera only gave a 2D view, detections over

the bins and other areas where food was present would interfere with detections. Multiple

methods were tried to extract the foreground from the background, hypothesizing that the

132

extracted foreground would show both the hand and object of interest. The background

subtractor method produced an output with a lot of noise, but was the best at extracting

only the foreground. Other methods produced good images, but background objects often

remained in the final output. Using the HSV color space to extract skin regions was

successful, but the skin threshold also extracted produce items that were similar to skin

color. No unique threshold was found to distinguish between the color of an empty hand,

and a hand holding an item. Combining the background subtractor to extract the

foreground, and using a color threshold to remove the hand and leave only the object of

interest could be a solution to the problem of background objects interfering with the

object detector or classifier. The segmented object would then be passed to an image

classifier to be recognized. Within the scope of this research, the problem was solved by

creating a loading zone within which the image classifier would run. The developed hand

detector and classifier were not accurate enough to identify objects within the smaller

open bin loading zone. Only empty bins were used for the development of the logic when

items were being added or removed from the bin area. The loading zone was useful to

filter out false positive hand detections at the edges of the refrigerator around the doors.

The developed classifier was accurate enough for proof of concept. The classifier showed

that an object could be detected even when held, and using the hand as an anchor to focus

the classifier worked well. The small dataset for the classifier meant that there were many

false positives, with the apple class often being predicted for the other two classes.

Weighting the class weights for the three items equally could also be a cause of the false

positives. In the application, the hand is much more common than the produce items, and

the training data should reflect that. Passing the hand bounding box to the classifier is

133

limited to only objects that are contained within the box. Larger items, or items held by

both hands at once, would not be correctly classified by this approach. Dynamic

bounding box areas able to adjust to larger items, or using the background subtractor to

extract a clean foreground image could solve the problem of larger items.

The add and remove logic, while limited to a single hand, performed well at

automatically recognizing when and where an item was added or removed. The logic was

able to use the centroid information to determine where within the unit the object was

stored. The buffer holding the object classifications was able to make accurate

predictions, despite the trained image classifier not being very robust. Averaging the

items in the buffer to find the most common object accounted for incorrect

classifications, and also provided information on how confident the algorithm was for the

prediction. Only using the first and last few predictions to make decisions lessened the

impact of the poor classifier performance at the top of the frame. The method illustrated

the importance of a hand detector that detected every hand in every frame as a lost hand

meant lost object information. If the hand is missed in any of the first or last few frames,

dividing the object buffer in half to determine what was added and removed becomes less

accurate. Setting an optimal fps rate is also important to ensure there are enough frames

to have at least three images of the hand moving both in and out. Updating the inventory

list every time a hand exits the refrigerator was the best way to ensure that each add and

remove interaction was captured. Detecting both the hand and the arm ensured that even

when the hand moved out of the frame and deeper into the refrigerator, there was still an

arm to let the system know the interaction was still in progress. A major limitation to the

logic is that it was only developed for a single hand. The problem stems largely from the

134

challenge of being able to differentiate between two hands within the refrigerator. Once

an accurate way to distinguish hands is discovered, updating the add and remove logic

would be straight-forward. Separate buffers per hand would track the objects in the hands

separately. The logic to determine when a hand left the refrigerator would need to be

updated to be two distinct variables, one to update the inventory when the left hand exited

the appliance, and one for the right. The timestamp information tied to each added object

could be used to alert the user when a food is about to go spoil. The timestamp plus the

centroid location information would allow the system to pinpoint where within a cluttered

bin the item is located. Figure 54 in the next section shows an example of how this

information could be displayed to the user.

135

CONCLUSIONS AND FUTURE WORK

The research contained in this thesis showed that a user’s hand is a useful tool in

identifying objects as they are added and removed from the refrigerator. Analyzing the

hand provides another layer of information for the complex overall automatic inventory

management system. Observing the hand-object interaction is especially useful to

identify objects that would otherwise be hidden within the bin, under other items, or

occluded from the camera view. Recording when and where the hands enter the

refrigerator provides a timestamp along with an inventory location information that can

be used to alert the user to items approaching their best-by-date.

The developed hand detector was 93% accurate on the small validation video,

detecting 173 of the 185 hands. The tracker, through visual inspection, was shown to be

able to accurately provide centroid information to detect where within the refrigerator the

item was added or removed. The image classifier correctly identified 17 of the 20 apples

in the validation video, 17 of the 23 oranges, and 103 of the 118 empty hands. The add

and remove logic correctly identified and updated the inventory information for 26 of the

28 add or remove cases in the validation video. The logic was 100% accurate on

determining the location from where the item was added or removed.

Future Work

The research above represents phase 1 of the hand analysis system. Phase 2 of the

research should focus on the following:

 Extend the add and remove logic to work for two or more hands

136

 Collect a larger and more diverse (e.g., different users of various ages, skin tones,

hand dominance, etc.) dataset of application specific images and videos to

improve the models and add more produce classes

 More testing to ensure the system is accurate for all users and is able to identify a

wide range of produce items

The goal of phase 2 should be to develop robust models and algorithms based on

application specific images.

One of the biggest limitations of this research is that the add and remove logic is

limited to a single hand. Future work on the problem could include researching how to

distinguish between hands as they move within the refrigerator. The creators of the

EgoHands dataset were able to train a machine learning model to distinguish between the

left and right hand within the dataset they developed [67]. Their success suggests that a

large dataset can provide a CNN with enough information to learn to distinguish between

the two hands. Adding more application specific hand data within the refrigerator could

increase the results of the left and right hand detector.

Furthermore, future work would include researching if there are better ways to

solve the problem of tracking hands within the refrigerator. Newer CNN models are 3-

dimensional, having a third dimension that uses time. The models are trained on

sequences of images, with each sequence labelled as a single class. A 3D CNN could

learn entire behaviors, like adding and removing items, or opening a drawer. These

models would be more robust than hand-designed logic as their distinguishing features

would be learned from the data.

137

Future work could include improving the background subtraction method and skin

thresholding. Being able to extract only the things that are changing within the

refrigerator would be useful not just for the hand analysis portion of the inventory

management system, but also detecting objects within the bins and other refrigerator

locations.

More image data in general is needed to improve the system. All computer vision

applications have unique challenges, but based on current successes/advancements, a

realistic goal for inventory management would need at least 1,000 annotated images per

class to detect between classes with enough accuracy to deploy in a consumer application

[17]. Datasets like VegFru and Fruit-360 could be used to supplement a produce dataset.

A larger and more diverse (e.g., different users of various ages, skin tones, hand

dominance, etc.) dataset of application specific images and videos would not only

improve the models, but would also give more insight on how consumers use their

refrigerators. Many of the assumptions and decisions in this research were based on

limited user examples, and may not fully reflect the majority of users’ behaviors.

More work needs to be done to make the system production ready. An automatic

inventory system needs to be highly accurate to be adopted by consumers. Collecting

more data will improve the recognition models. Hardware needs to be selected to balance

processing power with cost. More research should be done to explore other camera

options like a depth-based camera. Camera specs must be finalized and analyzed to

observe any impact the camera choice has on the detection algorithm. Fps or low quality

images or low-light conditions may impact the overall inventory management system –

issues that cannot be studied fully, in detail, until hardware is selected/finalized. As

138

discussed in the Background, on-board or cloud storage issues will have to be addressed

to make a viable smart refrigerator system. Future work can begin to face these issues by

exploring techniques to reduce model size so the entire system can exist locally on-board

the unit. A local system would help with reducing privacy concerns. A system on the

cloud could be more powerful because of more processing power, and the models could

constantly be improved. Cloud-based systems are more expensive and require stricter

security measures, but could provide new revenue streams, like subscription services or

premium updates, for appliance makers. A website or phone application needs to be

developed to give consumers an easy way to access the inventory information. The

application could give the user notifications if an item is about to go bad, suggest recipe

ideas based on items that need to be used up, or suggest a grocery list based on items that

have been used throughout the week. An example of how the information could be

displayed to a user is shown in Figure 54.

Figure 54. Example mobile or web app for displaying inventory information to the

consumer.

The image on the left in Figure 54 is the initial application view, with the colored circles

in the top left corner of each bin representing the overall freshness of the items inside.

Clicking on a bin would show the middle image, and highlight the location of the item(s)

that has been in the bin for an extended period of time. The application could also

139

proactively notify the user of an item that has been inside the refrigerator for a long time,

and show the user a picture of the item when it was put into inventory. A screen on the

refrigerator, or voice-control system could also be used to receive and provide

information to the consumer. Continuing to explore these areas on how to create

advanced inventory management within a refrigerator will make for a more accurate

system from a cutting-edge engineering perspective, and a more attractive product for

consumers. Automatic inventory management has the capability to transform the user

experience by giving the user proactive data to better guide their food consumption

decisions. The benefits of the technology could include happier and healthier consumers,

new revenue streams for appliances makers, and less food waste overall.

140

REFERENCES

[1] J. Hyman, H. F. Wells and J. C. Buzby, "The Estimated Amount, Value, and

Calories of Postharvest Food Losses at the Retail and Consumer Levels in the

United States," Economic Information Bulletin, vol. 121, February 2014.

[2] C.-C. Liang, "Smart Inventory Management System of Food-Processing-and-

Distribution Industry," Procedia Computer Science, vol. 17, pp. 373-378, 2013.

[3] Consumer Technology Association (CTA), "About CES," 2020. [Online].

Available: https://www.ces.tech/About-CES.aspx. [Accessed 6 April 2020].

[4] Samsung Newsroom U.S., "New Food AI Looks Inside Your Fridge To Help

You Find The Perfect Things To Cook With What You ALREADY Have,"

Samsung, 7 January 2020. [Online]. Available:

https://news.samsung.com/us/new-food-ai-looks-inside-fridge-help-find-perfect-

things-cook-already/. [Accessed 5 December 2019].

[5] J. Berkenkamp, D. Hoover and Y. Mugica, "NRDC," The Rockefeller

Foundation, October 2017. [Online]. Available:

https://www.nrdc.org/sites/default/files/food-matters-ib.pdf. [Accessed 23

January 2020].

[6] ReFED, "Improved Inventory Management," ReFED, 2020. [Online]. Available:

https://www.refed.com/solutions/improved-inventory-management/. [Accessed 8

February 2020].

[7] "Siri - Apple," Apple Inc., 2020. [Online]. Available:

https://www.apple.com/siri/.

[8] "Amazon Alexa Offical Site: What is Alexa?," Amazon, 2020. [Online].

Available: https://developer.amazon.com/en-US/alexa. [Accessed 2020].

[9] "Fridge Pal," Apple iTunes Store, 2014. [Online]. Available:

https://apps.apple.com/us/app/fridge-pal-shopping-lists/id496451091. [Accessed

2020].

[10] D. H. Hubel and T. N. Wiesel, "Receptive fields of single neurones in the cat's

striate cortex," The Journal of Physiology, vol. 148, no. 3, pp. 574-591, 1959.

[11] S. Papert, "The Summer Vision Project," 1 July 1966.

[12] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with

Deep Convolutional Neural Networks," Advances in neural information

processing systems, pp. 1097-1105, 2012.

[13] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, B.

C. V. Esesn, A. A. S. Awwal and V. K. Asari, "The History Began from

AlexNet: A Comprehensive Survey on Deep Learning Approaches," arXiv

preprint, 12 September 2018.

[14] R. Girshick, "rgb's home page: Fast R-CNN - Slides," 2015. [Online]. Available:

https://www.rossgirshick.info/. [Accessed 2020].

141

[15] K. Fukushima, "capable of visual pattern recognition capable of visual pattern

recognition," Neural networks, vol. 1.2, pp. 119-130, 1988.

[16] P. D. Steven W. Smith, "The Scientist and Engineer's Guide to Digital Signal

Processing," San Diego, California Technical Publishing, 1997, p. 107.

[17] D. A. Rosebrock, "Deep Learning for Computer Vision with Python Volume 1,"

PyImageSearch, 2019, p. Chapter 11. Convolutional Neural Networks.

[18] R. Yamashita, M. Nishio, R. K. G. Do and K. Togashi, "Convolutional neural

networks: an overview and application in radiology," Insights into Imaging, vol.

9, pp. 611-629, 2018.

[19] A. Deshpande, "A Beginner's Guide To Understanding Convolutional Neural

Networks," Github, 20 July 2016. [Online]. Available:

https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-

Convolutional-Neural-Networks/. [Accessed 2020].

[20] F. Chollet, Deep Learning with Python, Manning Publications Co., 2018.

[21] P. Zach Monge, "Does Deep Learning Really Require “Big Data”? — No!,"

Medium, 19 April 2018. [Online]. Available:

https://towardsdatascience.com/does-deep-learning-really-require-big-data-no-

13890b014ded. [Accessed April 2020].

[22] M. D. Zeiler and R. Fergus, "Visualizing and Understanding Convolutional

Networks," arXiv, 2013.

[23] saagie, "Object Detection (Part 2)," Saagie, 8 December 2017. [Online].

Available: https://www.saagie.com/blog/object-detection-part2/. [Accessed

2020].

[24] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-Based Learning

Applied to Document Recognition," Proceedings of the IEEE, vol. 86, no. 11, pp.

2278-2324, 1998.

[25] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn and A. Zisserman, "The

PASCAL Visual Object Classes (VOC) Challenge," International Journal of

Computer Vision, vol. 88, no. 2, pp. 303-338, 2010.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, "ImageNet: a Large-

Scale Hierarchical Image Database," in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, Miami, 2009.

[27] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D.

Ramanan, C. L. Zitnick and P. Dollar, "Microsoft COCO: Common Objects in

Context," in Computer Vision–ECCV 2014., Springer International Publishing,,

2014, pp. 740-755.

[28] T. Chen, I. Goodfellow and J. Shlens, "Net2Net: Accelerating Learning via

Knowledge Transfer," arXiv, 2015.

[29] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg,

"SSD: Single Shot MultiBox Detector," ECCV 2016.

[30] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks," Advances in Neural

Information Processing Systems, pp. 770-778, 2016.

142

[31] Google, "What is Colaboratory?," [Online]. Available:

https://colab.research.google.com/notebooks/intro.ipynb. [Accessed 10 July

2019].

[32] Microsoft, "Cloud Computing Services | Microsoft Azure," [Online]. Available:

https://azure.microsoft.com/en-us/. [Accessed 2020].

[33] "Fully Connected Layers in Convolutional Neural Networks: The Complete

Guide," missinglink.ai, [Online]. Available:

https://missinglink.ai/guides/convolutional-neural-networks/fully-connected-

layers-convolutional-neural-networks-complete-guide/. [Accessed 2020].

[34] D. C. Ciresan, U. Meier, L. M. Gambardella and J. Schmidhuber, "Deep Big

Simple Neural Nets Excel on Handwritten Digit Recognition," Neural

Computation, vol. 22, no. 12, 2010.

[35] E. Culurciello, "A BRIEF HISTORY OF NEURAL NETWORK

ARCHITECTURES," TopBots, 9 June 2017. [Online]. Available:

https://www.topbots.com/a-brief-history-of-neural-network-architectures/.

[Accessed 2020].

[36] A. Canziani, A. Paszke and E. Culurciello, "An Analysis of Deep Neural

Network Models for Practical Applications," 14 April 2017. [Online]. Available:

https://arxiv.org/abs/1605.07678. [Accessed 2020].

[37] "Applications," Keras Documentation, [Online]. Available:

https://keras.io/applications/.

[38] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus and Y. LeCun,

"OverFeat: Integrated Recognition, Localization and Detection using

Convolutional Networks," arXiv, 2013.

[39] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich feature hierarchies for

accurate object detection and semantic segmentation," arXiv, 22 Octiber 2014.

[Online]. Available: https://arxiv.org/pdf/1311.2524.pdf. [Accessed 2019].

[40] J. R. R. Uijlings, K. E. A. v. d. Sande, T. Gevers and A. W. M. Smeulders,

"Selective Search for Object Recognition," International Journal of Computer

Vision, 2013.

[41] R. Girshick, "Fast R-CNN," arXiv, 27 September 2015.

[42] F. F. Li, A. Karpathy and J. Johnson, "CS231n Winter 2016 Lecture 8 Slides,

Slide 84," Stanford, 1 February 2016. [Online]. Available:

http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf. [Accessed

2019].

[43] H. P. Kim, "Tutorial on Object Detection (Faster R-CNN)," SlideShare, 2018.

[Online]. Available: https://www.slideshare.net/hpkim0512/tutorial-of-faster-

rcnn. [Accessed 2020].

[44] J. Rey, "Faster R-CNN: Down the rabbit hole of modern object detection,"

tryolabs, [Online]. Available: https://tryolabs.com/blog/2018/01/18/faster-r-cnn-

down-the-rabbit-hole-of-modern-object-detection/. [Accessed 2020].

143

[45] Alegion, "Faster R-CNN," Using Region Proposal Network for Object Detection,

2019. [Online]. Available: https://www.alegion.com/faster-r-cnn. [Accessed

2020].

[46] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once:

Unified, Real-Time Object Detection," arXiv, 2015.

[47] M. Rouse, "internet of things (IoT)," TechTarget, 2017. [Online]. Available:

https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT.

[Accessed 2020].

[48] S. Miniaoui, S. Atalla and K. F. B. Hashim, "Introducing Innovative Item

Management Process Towards Providing Smart Fridges," in 2nd International

Conference on Communication Engineering and Technology, Nagoya, Japan,

2019.

[49] S. Luo, H. Xia, Y. Gao, J. S. Jin and R. Athauda, "Smart Fridges with

Multimedia Capability for Better Nutrition and Health," in International

Symposium on Ubiquitous Multimedia Computing, Hobart, ACT, Australia,

2008.

[50] B. Son, C.-S. Han, Y.-T. Jeon and D.-H. Lee, "A RFID/NFC Fusion based Smart

Refrigerator for Wellness Service," in Sensors, 2014.

[51] S. A.S, "Intelligent Refrigerator Using Artificial Intelligence," in 11th

International Conference on Intelligent Systems and Control, Coimbatore, India,

2017.

[52] J. Rouillard, "The Pervasive Fridge: A Smart Computer System Against Uneaten

Food Loss," in The Seventh International Conference on Systems, 2012.

[53] E. Ganglbauer, G. Fitzpatrick and R. Comber, "Negotiating Food Waste: Using a

Practice Lens to Inform Design," ACM Transactions on Computer-Human

Interaction, vol. 20, no. 2, 2013.

[54] "Side-by-Side Refrigerator with Family Hub," Samsung, 2020. [Online].

Available: https://www.samsung.com/us/home-appliances/refrigerators/side-by-

side/26-7-cu-ft--large-capacity-side-by-side-refrigerator-with-touch-screen-

family-hub--in-black-stainless-steel-rs27t5561sg-aa/. [Accessed 2020].

[55] C. Gartenberg, "LG’s new ThinQ smart fridge has a transparent 29-inch

touchscreen and runs webOS," The Verge, 7 January 2017. [Online]. Available:

https://www.theverge.com/circuitbreaker/2018/1/7/16860260/lg-instaview-thinq-

smart-refrigerator-webos-alexa-home-ces-2018. [Accessed 2019].

[56] S. Hou, Y. Feng and Z. Wang, "VegFru: A Domain-Specific Dataset for Fine-

Grained Visual Categorization," in IEEE International Conference on Computer

Vision, Venice, 2017.

[57] H. Muresan and M. Oltean, "Fruit recognition from images using deep learning,"

Acta Univ. Sapientiae, Informatica, vol. 10, no. 1, pp. 26-42, 2018.

[58] C. Liu, X. Wang, J. Ni, Y. Cao and B. Liu, "An Edge Computing Visual System

for Vegetable Categorization," in 18th IEEE International Conference On

Machine Learning And Applications, Boca Raton, FL, USA, 2019.

144

[59] D. Lee, "Samsung and LG go head to head with AI-powered fridges that

recognize food," The Verge, 2 January 2020. [Online]. Available:

https://www.theverge.com/2020/1/2/21046822/samsung-lg-smart-fridge-family-

hub-instaview-thinq-ai-ces-2020. [Accessed 2019].

[60] "Turn Any Fridge Into a Smart Fridge," FridgeEye, 2020. [Online]. Available:

https://fridgeeye.com/. [Accessed 2020].

[61] J. D. a. M. Shah, "Recognizing Hand Gestures," in ECCV-94, Stockholm,

Sweden, 1994.

[62] N. Wingfield, "Amazon Moves to Cut Checkout Line, Promoting a Grab-and-Go

Experience," The New York Times, 5 December 2016.

[63] G. Dong, Y. Yan and M. Xie, "Vision-Based Hand Gesture Recognition for

Human-Vehicle Interaction," in the Proceedings of the International conference

on Control, Automation and Computer Vision, 1998.

[64] M. C. Shin, K. I. Chang and L. V. Tsap, "Does Colorspace Transformation Make

Any Difference on Skin Detection?," in Sixth IEEE Workshop on Applications of

Computer Vision, Orlando, 2002.

[65] A. Albiol, L. Torres and E. J. Delp, "Optimum color spaces for skin detection,"

in Proceedings 2001 International Conference on Image Processing,

Thessaloniki, Greece, 2001.

[66] A. Mittal, A. Zisserman and P. Torr, "Hand detection using multiple proposals,"

Procedings of the British Machine Vision Conference 2011, 2011.

[67] S. Bambach, S. Lee, D. J. Crandall and C. Yu, "Lending A Hand: Detecting

Hands and Recognizing Activities in Complex Egocentric Interactions," 2015

IEEE International Conference on Computer Vision (ICCV), 2015.

[68] S. Usmankhujaev, S. Baydadaev and K. J. Woo, "Real-Time, Deep Learning

Based Wrong Direction Detection," Applied Science, vol. 10, no. 7, p. 2453,

2020.

[69] Z. Zivkovic, "Improved adaptive Gaussian mixture model for background

subtraction," in In Proceedings of the 17th International Conference on Pattern

Recognition 2004, Cambridge, 2004.

[70] D. Das and D. S. Saharia, "Implementation And Performance Evaluation Of

Background Subtraction Algorithms," International Journal on Computational

Sciences & Applications (IJCSA), vol. 4, no. 2, April 2014.

[71] R. M. Bolle, J. H. Connell, N. Haas, R. Mohan and G. Taubin, "Veggievision: a

produce recognition system," in Proceedings of the 3rd IEEE Workshop on

Applications of Computer Vision, Sarasota, USA, 1996.

[72] Y. Wu, J. Lim and M.-H. Yang, "Online object tracking: A benchmark," CVPR,

2013.

[73] L. Jiang, H. Xia and C. Guo, "A Model-Based System for Real-Time Articulated

Hand Tracking Using a Simple Data Glove and a Depth Camera," Sensors, vol.

19, no. 21, 2019.

[74] S. S. Kakkoth and S. Gharge, "Real Time Hand Gesture Recognition & Its

Applications In Assistive Technologies For Disabled," in Fourth International

145

Conference on Computing Communication Control and Automation (ICCUBEA),

Pune, India, 2018.

[75] B. Kang, K.-H. Tan, N. Jiang, H.-S. Tai, D. Tretter and T. Q. Nguyen, "Hand

Segmentation for Hand-Object Interaction from Depth map," arXiv, 2016.

[76] J. Hui, "Build a Deep Learning dataset (Part 2)," Medium, 1 March 2018.

[Online]. Available: https://medium.com/@jonathan_hui/build-a-deep-learning-

dataset-part-2-a6837ffa2d9e. [Accessed 2020].

[77] logitech, "C920 HD PRO WEBCAM," 2020. [Online]. Available:

https://www.logitech.com/en-us/product/hd-pro-webcam-c920.

[78] W. TREINEN, "GE APPLIANCES SHOWCASES ITS LEADERSHIP IN

COOKING AT KBIS 2020," GE Appliances, 21 January 2020. [Online].

Available: https://pressroom.geappliances.com/news/ge-appliances-showcases-

its-leadership-in-cooking-at-kbis-2020. [Accessed 2020].

[79] "Logitech Webcam Software for Windows 10," CNET, 31 July 2017. [Online].

Available: https://download.cnet.com/Logitech-Webcam-Software-for-Windows-

10/3000-2348_4-77592932.html. [Accessed 2019].

[80] OpenCV, "Reading and Writing Images and Video¶," 31 December 2019.

[Online]. Available:

https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_a

nd_video.html#videocapture-get. [Accessed 2019].

[81] USDA. [Online]. Available: http://www.ers.usda.gov/media/184291/ap032.pdf.

[82] Python Programming, "Introduction and Use - Tensorflow Object Detection API

Tutorial," 2018. [Online]. Available:

https://pythonprogramming.net/introduction-use-tensorflow-object-detection-api-

tutorial/. [Accessed 4 April 2020].

[83] Tzutalin, "LabelImg," Git Code, 2015. [Online]. Available:

https://github.com/tzutalin/labelImg. [Accessed 3 August 2019].

[84] L. Vladimirov, "TensorFlow Object Detection API tutorial," Read the Docs!,

2018. [Online]. Available: https://tensorflow-object-detection-api-

tutorial.readthedocs.io/en/latest/. [Accessed 4 April 2020].

[85] V. Mavani, "Anno-Mage: A Semi Automatic Image Annotation Tool," Github

Repository, 13 May 2018. [Online]. Available:

https://github.com/virajmavani/semi-auto-image-annotation-tool. [Accessed

2019].

[86] D. A. Rosebrock, "Chapter 15: Training a Faster R-CNN From Scratch," in Deep

Learning for Computer Vision with Python ImageNet Bundle, 3rd Edition,

PyImageSearch, 2019, pp. 261-290.

[87] V. Dibia, "HandTrack: A Library For Prototyping Real-time Hand

TrackingInterfaces using Convolutional Neural Networks," GitHub repository,

2017.

[88] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z.

Wojna, Y. Song, S. Guadarrama and K. Murphy, "Speed/accuracy trade-offs for

146

modern convolutional object detectors," in 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017.

[89] D. Tran, "Raccoon Detector Dataset," GitHub Repository, 2017. [Online].

Available: https://github.com/datitran/raccoon_dataset. [Accessed 2019].

[90] S. Bianco, R. Cadene, L. Celona and P. Napoletano, "Benchmark Analysis of

Representative Deep Neural Network Architectures," arXiv, 2018.

[91] C. Zhang, "How to train an object detection model easy for free," GitHub

Repository, 2019. [Online]. Available:

https://github.com/Tony607/object_detection_demo.

[92] Tensorflow, "Tensorflow detection model zoo," Tensorflow, [Online]. Available:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3d

oc/detection_model_zoo.md. [Accessed 4 April 2020].

[93] "python," Python Software Foundation, 2001. [Online]. Available:

https://www.python.org/. [Accessed 2020].

[94] Y. E. Wang, G.-Y. Wei and D. Brooks, "Benchmarking TPU, GPU, and CPU

Platforms for Deep Learning," arXiv, 22 October 2019.

[95] The Spyder Website Contributors, "Spyder," 2018. [Online]. Available:

https://www.spyder-ide.org/. [Accessed 1 July 2019].

[96] "Introduction," OpenCV, [Online]. Available:

https://docs.opencv.org/3.4/d1/dfb/intro.html. [Accessed 2020].

[97] TensorFlow, "Supported object detection evaluation protocols," Github

repository, 15 July 2019. [Online]. Available:

https://github.com/tensorflow/models/blob/master/research/object_detection/g3d

oc/evaluation_protocols.md. [Accessed 6 April 2020].

[98] W. Koehrsen, "Beyond Accuracy: Precision and Recall," Medium, 3 March

2018. [Online]. Available: https://towardsdatascience.com/beyond-accuracy-

precision-and-recall-3da06bea9f6c. [Accessed 2020].

[99] A. Rosebrock, "Intersection over Union (IoU) for object detection,"

PyImageSearch, 7 November 2016. [Online]. Available:

https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-

object-detection/. [Accessed 11 October 2019].

[100] "Detection Evaluation," COCO Common Objects in Context, [Online].

Available: http://cocodataset.org/#detection-eval. [Accessed 6 April 2020].

[101] M. Everingham and J. Winn, "The PASCAL Visual Object Classes Challenge

2010 (VOC2010) Development Kit," 8 May 2010. [Online]. Available:

http://host.robots.ox.ac.uk/pascal/VOC/voc2010/devkit_doc_08-May-2010.pdf.

[Accessed 6 April 2020].

[102] "Accuracy Metrics," Humboldt State University, 2019. [Online]. Available:

http://gis.humboldt.edu/OLM/Courses/GSP_216_Online/lesson6-2/metrics.html.

[103] TensorFlow, "TensorBoard: TensorFlow's visualization toolkit," [Online].

Available: https://www.tensorflow.org/tensorboard. [Accessed 7 April 2020].

[104] C. U. P. Malla, "How to Improve Object Detection Evaluation," Medium, 3 April

2019. [Online]. Available: https://medium.com/moonvision/smart-object-

147

detection-evaluation-with-confusion-matrices-6f2a7c09d4d7. [Accessed 6 April

2020].

[105] A. Rosebrock, "Simple object tracking with OpenCV," pyimagesearch, 23 July

2018. [Online]. Available: https://www.pyimagesearch.com/2018/07/23/simple-

object-tracking-with-opencv/. [Accessed 2019].

[106] D. E. King, "Classes - dlib documentation," dlib, 2013. [Online]. Available:

http://dlib.net/python/index.html#dlib.correlation_tracker. [Accessed 2020].

[107] M. Danelljan, G. Häger, F. S. Khan and M. Felsberg, "Accurate Scale Estimation

for Robust Visual Tracking," Proceedings of the British Machine Vision

Conference, September 2014.

[108] A. Rosebrock, "OpenCV People Counter," pyimagesearch, 13 August 2018.

[Online]. Available: https://www.pyimagesearch.com/2018/08/13/opencv-

people-counter/. [Accessed 2019].

[109] "What is PyQt?," Riverbank Computing Limited, 2018. [Online]. Available:

https://riverbankcomputing.com/software/pyqt/intro. [Accessed 2020].

[110] C. Luo, "PyQt5," 10 May 2019. [Online]. Available:

https://www.luochang.ink/posts/pyqt5_layout_sidebar/. [Accessed 13 December

2019].

[111] "Interactive Foreground Extraction using GrabCut Algorithm," OpenCV,

[Online]. Available:

https://docs.opencv.org/3.4/d8/d83/tutorial_py_grabcut.html. [Accessed 2020].

[112] C. Rother, V. Kolmogorov and A. Blake, "GrabCut: Interactive foreground

extraction using iterated graph cuts," ACM Transactions on Graphics, vol. 23,

pp. 309-314, 2004.

[113] "How to Use Background Subtraction Methods," OpenCV, [Online]. Available:

https://docs.opencv.org/3.4/d1/dc5/tutorial_background_subtraction.html.

[Accessed 2019].

[114] L. A. Marcomini and A. L. Cunha, "A Comparison between Background

Modelling Methods for Vehicle Segmentation in Highway Traffic Videos,"

arXiv, 5 October 2018.

[115] Harrison, "OpenCV with Python Intro and loading Images tutorial,"

PythonProgramming.net, 2019. [Online]. Available:

https://pythonprogramming.net/loading-images-python-opencv-tutorial/.

[Accessed 2019].

[116] A. Elgammal, C. Muang and D. Hu, "Skin Detection - a Short Tutorial," 2009.

[117] "Color Space Conversions," OpenCV, [Online]. Available:

https://docs.opencv.org/trunk/d8/d01/group__imgproc__color__conversions.html

#ga397ae87e1288a81d2363b61574eb8cab. [Accessed 2019].

[118] "Smoothing Images," OpenCV, 2020. [Online]. Available:

https://docs.opencv.org/master/d4/d13/tutorial_py_filtering.html. [Accessed

2019].

148

[119] Harrison, "Blurring and Smoothing OpenCV Python Tutorial," Python

Programming, [Online]. Available: https://pythonprogramming.net/blurring-

smoothing-python-opencv-tutorial/. [Accessed 2019].

[120] "sklearn.cluster.MiniBatchKMeans," scikit-learn, 2019. [Online]. Available:

https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html.

[Accessed 2019].

[121] "Getting Started with Videos," OpenCV, [Online]. Available:

https://docs.opencv.org/master/dd/d43/tutorial_py_video_display.html.

[Accessed 2019].

[122] J. Mr. C, "change frame rate in opencv 3.4.2," Stack Overflow, 29 August 2018.

[Online]. Available: https://stackoverflow.com/questions/52068277/change-

frame-rate-in-opencv-3-4-2. [Accessed January 2020].

[123] "tf.keras.preprocessing.image.img_to_array," TensorFlow, 31 March 2020.

[Online]. Available:

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/img_t

o_array. [Accessed 2019].

[124] scikit-learn, "sklearn.model_selection.train_test_split," 2019. [Online].

Available: https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html.

[Accessed 2019].

[125] scikit-learn, "sklearn.preprocessing.LabelBinarizer," 2019. [Online]. Available:

https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html?hi

ghlight=labelbinarizer#sklearn.preprocessing.LabelBinarizer. [Accessed 2019].

[126] MkDocs, "The Sequential model API," Keras Documentation, 2019. [Online].

Available: https://keras.io/models/sequential/. [Accessed 2019].

[127] MkDocs, "https://keras.io/preprocessing/image/," Keras Documentation,

[Online]. Available: https://keras.io/preprocessing/image/. [Accessed 2019].

[128] Y.-D. Zhang, Z. Dong, X. Chen, W. Jia, S. Du, K. Muhammad and S.-H. Wang,

"Image based fruit category classification by 13-layer deep convolutional neural

network and data augmentation," Multimedia Tools and Applications, vol. 78, pp.

3613-3632, 2019.

[129] A. Rosebrock, "Fine-tuning with Keras and Deep Learning," pyimagesearch, 3

June 2019. [Online]. Available:

https://www.pyimagesearch.com/2019/06/03/fine-tuning-with-keras-and-deep-

learning/. [Accessed 2019].

[130] "OpenCV: Motion Analysis," OpenCV, [Online]. Available:

https://docs.opencv.org/master/de/de1/group__video__motion.html#ga2beb2dee

7a073809ccec60f145b6b29c. [Accessed 2020].

[131] I. Setitra and S. Larabi, "Background Subtraction Algorithms with Post-

processing: A Review," Proceedings - International Conference on Pattern

Recognition, pp. 436-2441, 2014.

149

[132] "sklearn.cluster.MiniBatchKMeans," scikit-learn developers, 2019. [Online].

Available: https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html.

[Accessed 2020].

[133] GeeksforGeeks, "Python | Find most frequent element in a list," [Online].

Available: https://www.geeksforgeeks.org/python-find-most-frequent-element-

in-a-list/. [Accessed 2020].

[134] "PyTorch," [Online]. Available: https://pytorch.org/.

[135] "TensorFlow," [Online]. Available: https://www.tensorflow.org/.

[136] G. Appliances, "GE Café™ Series ENERGY STAR® 27.8 Cu. Ft. French-Door

Refrigerator with Keurig® K-Cup® Brewing System," 2020. [Online].

Available: https://products.geappliances.com/appliance/gea-

specs/CFE28USHSS. [Accessed 2020].

[137] "CIELAB color space," Wikipedia, 19 April 2020. [Online]. Available:

https://en.wikipedia.org/wiki/CIELAB_color_space. [Accessed 2020].

[138] K. Kim, S. Hong, S. Kwon, I. Lee, M. Lee and J. Kim, "REFRIGERATOR

WITH CAMERA AND CONTROL METHOD FOR THE SAME, Patent #US

10 , 036 , 587 B2," United States Patent, 31 July 2018. [Online]. Available:

https://patentimages.storage.googleapis.com/46/d9/96/c18463ad950b61/US1003

6587.pdf. [Accessed 2019].

[139] J. G. Abdoo, M. P. Ebrom, N. Giacomini, D. J. GILMORE, B. N. Radford, A. E.

Showers and C. A. Stipe, "Interaction recognition and analysis system,"

Whirlpool Corp, 21 March 2019. [Online]. Available:

https://patents.google.com/patent/US20190087966A1/en?oq=US20190087966A

1. [Accessed 2020].

[140] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.

Karpathy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei, "ImageNet Large

Scale Visual Recognition Challenge," International Journal of Computer Vision,

p. 211–252, 11 April 2015.

[141] T. MA, M. Tanabian, L. Chunkwok and S. ADHIKARI, "Object Recognition for

a Storage Structure, Patent #US 2016/0217417 A1," United States Patent

Application Publication, 28 July 2016. [Online]. Available:

https://patentimages.storage.googleapis.com/08/82/c7/f7297fa65062f6/US20160

217417A1.pdf. [Accessed 2020].

150

APPENDIX A

Table 23. Selected papers on research into inventory management systems in the

refrigerator.

Title Task Sensors

IoT Based Smart Kitchen

Inventory Management

System for Kitchen

(Rezwan et al, 2018)

Track inventory, order

groceries on a web/mobile

app, and create a monthly

grocery list

Scales and photoresistors

within 9 “smart

compartments”

Smart Fridges with

Multimedia Capability

for Better Nutrition and

Health (Luo et al, 2008)

Track inventory, provide

nutritional information,

alert when a food item is

about to go bad, create a

shopping list

Barcode scanner

The Pervasive Fridge: A

Smart Computer System

Against Uneaten Food

Loss (Rouillard, 2012)

Track inventory, provide

recipes, alert the user if an

item is about to go bad

Utilize an external food

information database and

the users phone camera to

collect photos, do speech

recognition, and scan

barcodes

A RFID/NFC Fusion

based Smart Refrigerator

for Wellness Service (Son

et al, 2014)

Track inventory and

provide customized food

suggestions based on

nutritional needs

RFID and NFC

Smart Refrigerator Using

the Internet of Things

(Prapulla SB et al, 2015)

Track inventory and send

a text/email to user if an

item is running low

Pressure sensor,

photoresistor, and barcode

Introducing Innovative

Item Management

Process Towards

Providing Smart Fridges

(Miniaoui et al, 2019)

Track inventory, browse

and search refrigerator

inventory using a web

app, automatically order

inventory items that are

running low

RFID

An AI driven approach

for Smart refrigerator to

enhance family diet and

sustainability (Kumar et

al, 2019)

Cloud database with

machine learning

algorithm tracks inventory

and learns user behaviors

to suggest recipes, create

grocery lists

Barcode, camera, and scale

Intelligent Refrigerator

Using Artificial

Intelligence (Shweta A.S,

2017)

Track inventory within the

produce bins and tell user

what vegetables they have,

360-degree camera uses

histogram matching to

identify bin contents for a

151

and alert them when they

will go bad

bin filled with a single type

of produce

SMART HOME

APPLIANCES: CHAT

WITH YOUR FRIDGE

(Gudovskiy, et al, 2019)

Allow users to “text” their

refrigerator and ask

questions like “are there

any pears?” and “is any of

my food about to spoil?”

CNN and natural language

processing technique visual

question answering

Table 24. Selected papers on research into produce classification.

Title Task Identification Technique

Recognition of Edible

Vegetables and Fruits for

Smart Home Appliances
(Buzzelli et al 2018)

Classification

Use VegFru dataset to

train a model to identify

fruit and veg that are

very similar (like

different types of apples)

Used a CNN image

classifier, NasNet. First

fine-tuned on super-classes,

then sub-classes. Used data

augmentation to improve

accuracy

VegFru: A Domain-

Specific Dataset for Fine-

grained Visual

Categorization (Hou et al

2017)

Classification

Developed a food dataset

specific for cooking.

Specified the principles

they used to building the

dataset

Used a CNN image

classifier – HybridNet

An Edge Computing

Visual System for

Vegetable Categorization

(Liu et al, 2019)

Classification

Trained then did work to

reduce model size and

deploy on mobile

Train a model on vegfru,

used mobilenet

Classification of

Vegetables using

TensorFlow (Patil et al,

2018)

Veg classification TensorFlow, CNN inception

and transfer learning

DeepFruits: A Fruit

Detection System Using

Deep Neural Networks (Sa

et al, 2016)

Classification and

detection to detect fruits

on the vine

Faster R-CNN

Fruit recognition from

images using deep learning

(Muresan et al, 2019)

New fruit database,

trained using multiple

color spaces

CNN using different color

spaces

A Vision-Based Method

Utilizing Deep

Convolutional Neural

Networks for Fruit Variety

Classification in

Uncertainty Conditions of

Use two phased

classification with

certainty factor taking in

the two predictions

CNN – Yolo, run classifier

over entire image, use yolo

to detect, then pass those to

antoehr classifier

152

Retail Sales (Katarzyna et

al, 2019)

153

APPENDIX B

For rhand, rarm, the r_ specifies right. For lhand, larm, the l_ specifies left.

Figure 55. Annotation naming conventions.

Table 25. Annotation count by item for LabelImg annotations.

Item name Annotation count

lhand 301

larm 215

rhand 250

rarm 208

lbin 53

rbin 114

rapple 237

orange 177

watermelon 20

pear 122

blueberries 107

carrot 277

tomato 77

broccoli 69

grapes 236

eggs 96

mfruit 143

cantaloupe 104

154

hand 196

Total annotations 3002

Total images 487

Table 26. Annotation count by item for Semi-Automatic Image Annotation tool, Anno-

Mage.

Item name Annotation count

hand 547

Total images 326

Table 27. Class breakdown for object classifier dataset.

 Class name Image count

Training set

Apple 361

Empty 455

Orange 236

Test set

Apple 127

Empty 145

Orange 79

 Total images 1403

155

APPENDIX C

Sample configuration file for TensorFlow Object Detection API, highlighted portions

must be updated for each training session.

model {
 ssd {
 num_classes: 22
 image_resizer {
 fixed_shape_resizer {
 height: 300
 width: 300
 }
 }
 feature_extractor {
 type: "ssd_mobilenet_v2"
 depth_multiplier: 1.0
 min_depth: 16
 conv_hyperparams {
 regularizer {
 l2_regularizer {
 weight: 3.9999999e-05
 }
 }
 initializer {
 truncated_normal_initializer {
 mean: 0.0
 stddev: 0.029999999
 }
 }
 activation: RELU_6
 batch_norm {
 decay: 0.99970001
 center: true
 scale: true
 epsilon: 0.001
 train: true
 }
 }
 }
 box_coder {
 faster_rcnn_box_coder {
 y_scale: 10.0
 x_scale: 10.0
 height_scale: 5.0
 width_scale: 5.0
 }
 }
 matcher {
 argmax_matcher {
 matched_threshold: 0.5
 unmatched_threshold: 0.5
 ignore_thresholds: false
 negatives_lower_than_unmatched: true
 force_match_for_each_row: true
 }

156

 }
 similarity_calculator {
 iou_similarity {
 }
 }
 box_predictor {
 convolutional_box_predictor {
 conv_hyperparams {
 regularizer {
 l2_regularizer {
 weight: 3.9999999e-05
 }
 }
 initializer {
 truncated_normal_initializer {
 mean: 0.0
 stddev: 0.029999999
 }
 }
 activation: RELU_6
 batch_norm {
 decay: 0.99970001
 center: true
 scale: true
 epsilon: 0.001
 train: true
 }
 }
 min_depth: 0
 max_depth: 0
 num_layers_before_predictor: 0
 use_dropout: false
 dropout_keep_probability: 0.80000001
 kernel_size: 1
 box_code_size: 4
 apply_sigmoid_to_scores: false
 }
 }
 anchor_generator {
 ssd_anchor_generator {
 num_layers: 6
 min_scale: 0.2
 max_scale: 0.94999999
 aspect_ratios: 1.0
 aspect_ratios: 2.0
 aspect_ratios: 0.5
 aspect_ratios: 3.0
 aspect_ratios: 0.33329999
 }
 }
 post_processing {
 batch_non_max_suppression {
 score_threshold: 9.9999999e-09
 iou_threshold: 0.60000002
 max_detections_per_class: 100
 max_total_detections: 100
 }
 score_converter: SIGMOID

157

 }
 normalize_loss_by_num_matches: true
 loss {
 localization_loss {
 weighted_smooth_l1 {
 }
 }
 classification_loss {
 weighted_sigmoid {
 }
 }
 hard_example_miner {
 num_hard_examples: 3000
 iou_threshold: 0.99000001
 loss_type: CLASSIFICATION
 max_negatives_per_positive: 3
 min_negatives_per_image: 3
 }
 classification_weight: 1.0
 localization_weight: 1.0
 }
 }
}
train_config {
 batch_size: 12
 data_augmentation_options {
 random_horizontal_flip {
 }
 }
 data_augmentation_options {
 ssd_random_crop {
 }
 }
 optimizer {
 rms_prop_optimizer {
 learning_rate {
 exponential_decay_learning_rate {
 initial_learning_rate: 0.0040000002
 decay_steps: 800720
 decay_factor: 0.94999999
 }
 }
 momentum_optimizer_value: 0.89999998
 decay: 0.89999998
 epsilon: 1.0
 }
 }
 fine_tune_checkpoint: "/content/models/research/pretrained_model/model.ckpt"
 num_steps: 200000
 fine_tune_checkpoint_type: "detection"
}
train_input_reader {
 label_map_path: "/content/drive/My Drive/thesis/Object-Detection/data/object-
detection.pbtxt"
 tf_record_input_reader {
 input_path: "/content/drive/My Drive/thesis/Object-
Detection/data/train.record"
 }

158

}
eval_config {
 num_examples: 8000
 max_evals: 10
 use_moving_averages: false
}
eval_input_reader {
 label_map_path: "/content/drive/My Drive/thesis/Object-Detection/data/object-
detection.pbtxt"
 shuffle: false
 num_readers: 1
 tf_record_input_reader {
 input_path: "/content/drive/My Drive/thesis/Object-Detection/data/test.record"
 }
}

159

CURRICULUM VITA

NAME: Sarah Virginia Morris

ADDRESS: 1314 Everett Avenue

Louisville, KY 40204

DOB: Louisville, Kentucky – September 7, 1985

EDUCATION

& TRAINING: B.S., Electrical Engineering

University of Louisville

2012-2017

B.S., Mechanical Engineering

University of Louisville

2012-2017

	Inventory management of the refrigerator's produce bins using classification algorithms and hand analysis.
	Recommended Citation

	tmp.1596657947.pdf.dREOJ

