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ABSTRACT

MARGINAL METHODS AND SOFTWARE FOR CLUSTERED DATA WITH
CLUSTER- AND GROUP-SIZE INFORMATIVENESS

Mary Elizabeth Gregg

July 14, 2020

Clustered data result when observations have some natural organizational association.

In such data, cluster size is defined as the number of observations belonging to a clus-

ter. A phenomenon termed informative cluster size (ICS) occurs when observation

outcomes vary in a systematic way related to the cluster size. An additional form of

informativeness, termed informative within-cluster group size (IWCGS), arises when

the distribution of group-defining categorical covariates within clusters similarly car-

ries information related to outcomes. Standard methods for the marginal analysis of

clustered data can produce biased estimates and inference when data have informa-

tiveness. A reweighting methodology has been developed that is resistant to ICS and

IWCGS bias, and this method has been used to establish clustered data analogs of

classical hypothesis tests related to ranks and correlation. In this work, we extend

the reweighting methodology to develop a versatile collection of marginal hypothesis

tests related to proportions, means, and variances in clustered data that are analo-

gous to classical forms. We evaluate the performance of these tests compared to other

cluster-appropriate methods through simulation and show that only reweighted tests

maintain appropriate size when data have informativeness. We construct reweighted

tests of clustered categorical data using several variance estimators, and demonstrate

that the method of variance estimation can have substantial effect on these tests.

Additionally, we show that when testing simple hypotheses in data lacking informa-
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tiveness, reweighted tests can outperform other standard cluster-appropriate methods

both in terms of size and power. Combining our novel tests with the existing tests

of ranks and correlations, we compile a comprehensive R software package that exe-

cutes this collection of ICS/IWCGS-appropriate methods through a thoughtful and

user-friendly design.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Clustered data are prevalent throughout biomedical research. Some common exam-

ples include dental studies and repeated longitudinal measurements on individuals.

In such cases, individuals form the clusters and the repeated measurements or dis-

tinct teeth represent the observations. Clusters are not only formed through shared

or repeated observations within individuals, but also arise through hierarchical struc-

tures such as members within family units or patients in hospitals. Here, family

units and hospitals represent the clusters and individuals are the observations. Re-

gardless of the clustering structure, intra-cluster observations are more likely to have

homogeneous features compared to inter-cluster observations, due to shared genetic

or environmental components. This potential correlation between cluster members

clearly invalidates standard statistical methods for independent observations.

There are a variety of statistical methods available for the analysis of clustered

data, depending on the structure of the data and the research question of interest.

Models for clustered data can be grouped broadly into three categories: marginal,

cluster-specific, and conditional. The interpretation of these models are generally dis-

tinct, though some overlap is possible, and Aerts et al. [1] provide a concise reference

to these model families and relevant members. In brief, marginal model parameters

are interpreted as a population average, while cluster-specific models include fixed or

random effects parameters particular to each cluster and thus have a cluster-specific
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interpretation. In conditional models, observations are modeled dependent on other

inter- and intra-cluster observations. Marginal analysis of clustered data is perhaps

the most prevalent and generalizable, and we restrict our attention to such methods

in this document.

Generalized estimating equations (GEE) are among the most widely used methods

for the marginal analysis of clustered data. GEE models account for the dependence

of observations within clusters through specification of a working correlation matrix

and use of a sandwich variance estimate. This method is robust, providing consis-

tent estimates of marginal parameters even under misspecification of the correlation

structure. GEEs uses a quasi-likelihood approach and avoid specification of the joint

distribution between observations, instead only requiring the univariate distribution

for each response. Implementation of GEE models for the marginal analysis of clus-

tered data has become pervasive due to their ease of use and ability to model both

discrete and continuous outcomes.

1.2 Informative cluster size

Marginal models such as GEEs provide inference on population-averaged effects, but

in clustered data the population can be defined as either the observations within clus-

ters or the clusters themselves. As discerned by Williamson et al. [53], observation-

based inference considers associations for the typical member from the population of

observations, whereas cluster-based inference considers the associations for a typical

observation from a typical cluster. Pavlou [47] provides an excellent illustration of

this distinction with an example contrasting two analyses of clinic consultations. In

both cases, patients are the clusters and visits are the observations. If the interest

lies in estimating the resource use of the clinic, an observation-based marginal anal-

ysis (such as estimating costs associated with a typical visit across all clinic visits)

might be preferred. If the interest instead lies in the marginal association of patient
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health, a cluster-based analysis (typical outcome for a typical patient) would be more

pertinent. In the case that the number of observations in a cluster, defined as the

cluster size, is fixed or unrelated to the outcome being measured, interpretations for

these two models are generally in correspondence. However, when this assumption

does not hold, the equivalency between the observation- and cluster-based marginal

models is not retained.

Informative cluster size (ICS), also referred to as nonignorable cluster size, is a

phenomenon that occurs when the cluster size is a random variable that varies in a

systematic way carrying information relating to the response measurement. It can be

formally defined to occur when the distribution of the response variable conditioned

on the cluster size differs from that of the unconditional distribution. The potential

for ICS has been acknowledged in a variety of biostatistical settings, with examples

relating to dental diseases, reproductive toxicology, pregnancy studies, and longitu-

dinal treatments all being commonly referenced in the literature. Nevalainen et al.

[43] differentiate three methods through which ICS can occur:

1. Cluster size influences the outcome response.

Nevalinen et al. [43] illustrate this scenario with an example from Dunson et

al. [13], which measures birth weight in mice pups. The reduced resources and

decreased space in larger litters could result in lower birth weights, causing a

negative association between outcome and cluster size.

2. The outcome influences the cluster size.

This method of informativeness can be seen in the longitudinal rehabilitation

data analyzed by Lorenz et al. [39]. In this study, functional ability was mea-

sured in patients with spinal cord injuries enrolled in a rehabilitation program

over a series of sessions. Individuals with lower functional ability tend to require

a larger number of rehabilitation sessions before disenrollment.
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3. A latent variable influences both cluster size and outcome.

The dental studies from Hoffman et al. [30] and Williamson et al. [53], among

others, illustrate this third type of informativeness. Here, factors such as oral

hygiene affect both the number of teeth an individual possesses and the disease

status of the teeth.

1.3 Marginal analysis of clustered data with ICS

Regardless of the underlying mechanism of informativeness, GEE models can be bi-

ased in the presence of ICS. A GEE model using an independence working correlation

provides observation-based inference and gives equal weight to each observation. If

clusters are the unit of interest, marginal parameters from this GEE model may be

biased in favor of larger clusters. For illustration, consider the dental study presented

in Williamson et al. [53], in which periodontal disease status is measured in each

tooth from a sample of individuals. The interest is in estimating the relationship

between explanatory variables and disease status of a tooth, but factors related to

disease status also affect the number of teeth present in an individual. Individuals

with poor oral hygiene are likely to have fewer teeth and worse periodontal health

compared to individuals with a higher standard of oral care, thus cluster size is in-

formative. A standard GEE model will accurately estimate the associations between

the variables and periodontal disease for the average tooth from the population of all

teeth, but will underestimate those associations for the typical tooth for the average

person, as individuals with healthier teeth tend to contribute more observations.

1.3.1 Within-cluster resampling

Hoffman et al. [30] addressed the issue of ICS by introducing within-cluster resam-

pling (WCR), a Monte Carlo method that yields unbiased cluster-based marginal

estimators under ICS. The WCR process involves forming a pseudo data set by sam-
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pling a single observation at random from each cluster. Regular statistical methods

can be applied to this data set, as it is a collection of independent observations. An

estimator of a marginal parameter calculated from this pseudo data set is consistent

for the true marginal parameter, but is unduly random and only uses a fraction of

the available data. Therefore, the process is repeated many times and the WCR

estimator is defined as the average of the resampled estimators. The WCR method

accounts for any informativeness of cluster size by giving equal weight to each clus-

ter through selection of a single observation, preventing over-representation of larger

clusters. Hoffman et al. show that WCR estimators are asymptotically normal under

mild conditions and give an expression for a consistent variance estimator, allowing

inference in the usual manner. While WCR was introduced in the context of general-

ized linear models, the process can similarly be applied to other methods of parameter

estimation.

1.3.2 Reweighted estimating equations

Within-cluster resampling provides an intuitive method for the estimation of marginal

parameters, lending natural connotation to the cluster-based interpretation of a “typ-

ical observation from a typical cluster”. However, WCR is computationally intensive

and the estimates it produces are dependent on the resampling realizations. As

an alternative to WCR, Williamson et al. [53] introduced cluster-weighted gener-

alized estimating equations (CWGEE), in which standard estimating equations are

reweighted by the inverse of the cluster size. Williamson et al. noted that the WCR

estimate is an average of a large number of resampled estimates, and will converge to

its expected value with respect to the sampling distribution, conditioned on the entire

observed data. Rather than estimating this quantity by averaging a large number of

replicates, the analytic average can be directly calculated by applying an expectation

calculation to a single resampled estimator conditioned on the original data. The
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uniform resampling process of WCR leads to an inverse cluster size weight being

applied to the estimating equations. Williamson et al. [53] showed the asymptotic

equivalence of CWGEE and WCR estimators, and suggested the use of a sandwich

estimator for the variance-covariance matrix.

The reweighting approach provides a closed-form estimator of model parameters,

removing the inherent randomness of WCR as well as the associated computational

expense. Additionally, it was shown through simulation studies that CWGEE meth-

ods have less bias than WCR for small samples. This cluster-weighting method has

subsequently been applied in the marginal analysis of correlated failure times [8],

clustered longitudinal data [52], survival data [54], and ordinal longitudinal data [41].

1.4 Informative within-cluster group size

An additional type of informativeness can occur when the distribution of covariates

in a cluster is related to the outcome of interest. In the case of categorical covariates

that define groups of observations distinct from the clusters, this is termed infor-

mative within-cluster group size (IWCGS). For illustration, consider again a dental

study in which the interest is in comparing periodontal disease status of molars and

non-molars. IWCGS could occur if factors associated with disease status dispropor-

tionately affect the two groups of teeth. In this hypothetical example, poor oral

hygiene could affect periodontal disease status in addition to causing attachment loss

at a higher proportion in molars compared to non-molars. This would result in indi-

viduals with poor oral care tending towards a higher severity of periodontal diseases

and having fewer molars compared to individuals with a higher standard of oral care.

This secondary type of informativeness can occur independently or alongside ICS,

and methods that correct for ICS are susceptible to bias from IWCGS [16, 31, 24].

In the resampling scheme that forms the foundation of the reweighting principal, one

observation is selected at random from each cluster. In the hypothetical scenario
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above, clusters with fewer molars tend to have worse outcomes than clusters with a

higher proportion of molars. The WCR process would select one observation from

each cluster, not accounting for the discrepancy in selection probability between the

two groups that is also associated with the outcome. This results in molars being

disproportionately selected from healthier clusters, leading to a potentially biased es-

timate of the marginal effect of periodontal disease between molars and non-molars.

This bias would likewise be reflected in the estimates obtained from a CWGEE model.

Addressing this issue, Huang and Leroux [31] extended the concept of CWGEE

to include cluster-level groups and/or covariates, developing what they term doubly-

weighted GEE (DWGEE) that produce estimators invariant to IWCGS. Like cluster

reweighting, this method is grounded in a WCR process. The resampling that leads

to this secondary reweighting is a two-step process – for each cluster, a group is first

selected with equal probability, then an observation from the cluster belonging to

the selected group is randomly chosen. As before, regular statistical methods can be

applied to this data set. Rather than repeatedly resample and average the estimators,

an analytic average can be calculated from a single resampling. The modification in

the resampling process leads to estimating equations weighted by the inverse of the

intra-cluster group size rather than cluster size.

1.5 Reweighted analogs of classical tests

WCR and the subsequent CWGEE and DWGEE methods initially addressed the

issue of informativeness through a model-based approach, and many authors have

continued in this vein [8, 33, 41, 52, 54]. However, the reweighting methodology

has also been used to derive clustered data analogs of well-known classical statisti-

cal tests. Datta and Satten proposed signed-rank [10] and rank-sum [11] tests for

clustered data under ICS, and Dutta and Datta extended the rank-sum approach

to account for IWCGS [16]. Parametric and non-parametric correlation estimators
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for both paired and unpaired data have been proposed, providing clustered versions

of the Pearson, Spearman, Kendall, and Phi coefficients [39, 40]. More recently, a

clustered log rank test adjusting for informative cluster and group size has also been

introduced [24]. Nevalainen et al. [43] have formalized the construction of such test

statistics through consideration of statistical functionals and conditional expectation

calculation of resampled statistics.

While the estimators and tests above could conceivably be obtained from model-

based approaches such as CWGEE, the simplicity offered by non-model-based infer-

ential methods can be advantageous. CWGEE and DWGEE avoid the Monte Carlo

resampling of WCR but still require multi-stage computation updating of model pa-

rameters until convergence, which can be problematic in certain circumstances [41].

Parametric modeling such as that discussed by Nevalainen [43] and implemented by

Neuhaus and McCulloch [42] and Zhang et al. [57] depend on specification of the clus-

ter size distribution and the method of informativeness, and can be computationally

burdensome. They are subject to bias from model misspecification [7], and moreover

do not necessarily retain a marginal interpretation. In many situations these matters

might be of minor concern or necessary for the desired analysis. However, if the

research question is simple in nature, as in many preliminary or exploratory analysis,

these modeling methods are disproportionately complex and a more straightforward

method might be desired. As extensive analyses often evolve from simple hypotheses,

the addition of these fundamental marginal tests to the cluster-weighted repertoire is

advantageous. These cluster-weighted analogs of classical tests make ideal compan-

ions to intricate models, avoiding restrictive assumptions and producing interpretable

results that can steer the direction for more extensive methods.
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1.6 Objective and structure of the dissertation

The objective of this dissertation is the development of a comprehensive collection

of reweighted hypothesis tests for clustered data with potential ICS or IWCGS. This

collection integrates and expands upon the limited existing reweighted tests published

by other authors. Complimentary to the existing reweighted tests, the novel tests

proposed in this work parallel frequently-implemented standard statistical tests. We

develop an R software package that executes this collection of tests, modeling the

look and feel of the incoporated functions after those functions native to R that

perform the analogous classical tests. This single platform of standardized functions

administers access to these tests through a user-friendly environment. These methods

and software provide researchers the means to perform practical hypothesis tests on

clustered data while accounting for informativeness.

This work is organized as follows. Chapter 2 reviews the reweighting methodology

and its origin in resampling. In this chapter, we introduce notation that will be used

and expanded upon through this document, and discuss how reweighting is related

to the structure of the observed data. In Chapter 3, we develop estimators and tests

for common categorical data scenarios reweighted to correct for ICS. We focus much

of our attention on the performance of these tests under various variance estimation

methods. The work in this chapter has been published in manuscript form and is

included here with minor edits made for the continuity of this document. Chapter 4

contains reweighted tests for quantitative data. We develop novel tests for hypotheses

related to group means and variances, reweighted to correct for IWCGS. Additionally,

this chapter summarizes some previously published reweighted tests by other authors,

which are included in the comprehensive R package. We discuss the R package in

Chapter 5, detailing the intentional resemblance between the functions implimenting

the reweighted tests and the endemic R functions that perform their classical analogs.

We illustrate the application of each function through examples using a simulated

9



data set. In Chapter 6, we summarize the work of this document, examine explicit

and general limitations of the reweighting methodology, and discuss areas related to

informativeness open to future research.
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CHAPTER 2

BACKGROUND

2.1 Introduction

The reweighting methods discussed in Chapter 1 were developed to estimate marginal

parameters for data with cluster- or group-size informativeness, and this reweight-

ing forms the foundation for the collection of marginal tests in this document. In

this chapter, we provide details on the reweighting methodology and its origins in

resampling. We begin by establishing some general notation that will be expanded

upon throughout subsequent chapters. For simplicity, this notation is presented in

the context of quantitative data, though the methods remain generally unchanged

for categorical data. We establish reweighting in the context of a marginal parameter

correcting for ICS, then detail how the method is adapted to correct for IWCGS.

The link between resampling and reweighting is illustrated through the derivation of

reweighted marginal means in both the cluster and group informativeness scenarios.

2.2 Notation

Let Xij denote observation j from cluster i. Cluster i contains ni observations, de-

fined as the cluster size, where ni > 0. The data from cluster i is the set Vi =

{ni, Xij}, i = 1, . . . ,M ; j = 1, . . . , ni, and the collection of all observed data is

V = {V1, . . . ,VM}. Clusters are assumed to be independent, while observations

within cluster are potentially dependent. Cluster size is defined as non-informative
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if P (Xij ≤ x|ni = n) = P (Xij ≤ x), n = 1, 2, . . . ; j = 1, . . . , n; otherwise, it is infor-

mative [43].

When observations within clusters belong to one of K distinct groups, let Gij = k

represent that observation j from cluster i belongs to the kth group, k = 1, . . . , K.

Cluster i has n
(k)
i observations in group k, and ni =

∑K

k=1 n
(k)
i . The data from

cluster i is now the set Vi = {ni, (Xij , Gij)}, with observations belonging to group

k denoted as the set {X(k)
i1 , . . . , X

(k)

in
(k)
i

}. For simplicity, at times we use j to index

observations belonging to group k within cluster i, i.e. j = 1, . . . , n
(k)
i , in addition

to the previous indexing of all observations within a cluster (j = 1, . . . , ni). In most

cases, the indexing of j should be circumstantially evident, such as through the upper

bound of a summation. In the event distinction is necessary, we defer to j
′

to index

observations in groups.

When the distribution of X is associated with the probability of group member-

ship, we refer to such data as having informative within-cluster group size. Other

authors have referred to this as informative covariate structure [47], sub-cluster co-

variate informativeness [40], and informative intra-cluster group size [16]. Formally,

group size is non-informative when P (Xij ≤ x|Gij = k) = P (Xij ≤ x), and otherwise

informative.

When n
(k)
i > 0 for all i, k, we refer to such data as having complete group

structure; i.e., all values of G are observed in all clusters. In practice, data may be

collected where not all K groups are observed across all the M clusters. That is,

n
(k)
i = 0 for at least one i, k. We term clusters where n

(k)
i = 0 for at least one k to

be “incomplete clusters”, and refer to data containing incomplete clusters as having

incomplete group structure. Let Kc
i =

∑K

k=1 I[n
(k)
i > 0] denote the number of distinct

groups that contain observations in cluster i.

Let θ represent a marginal parameter for the population of clusters. We are inter-

ested in estimating θ and testing hypotheses of the form H0 : θ = θ0, or alternatively
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H0 : h(θ) = h(θ0).

2.3 Within-cluster resampling

The within-cluster resampling algorithm of Hoffman et al. [30] accounts for potential

informativeness of cluster size by forming pseudo data sets through resampling of the

clusters. This process is in accordance with the marginal analysis of interest, that

of a “typical observation from a typical cluster”, and is performed as follows. Let

X∗
i denote an observation selected at random from cluster i. Resampling across all

clusters produces the data set of independent observations X∗ = (X∗
1 , . . . , X

∗
M ). The

parameter of interest is then estimated from this resampled data set in the usual

manner, θ̂∗ = g(X∗). The WCR process is repeated Q times, where Q is a large

number, and the overall WCR estimate is defined as the average of the resampled

estimates,

θ̂WCR =
1

Q

Q∑

q=1

θ̂∗q ,

with variance estimated by

v̂ar
(
θ̂WCR

)
=

1

Q

Q∑

q=1

v̂ar(θ̂∗q)−
1

Q

Q∑

q=1

(
θ̂∗q − θ̂WCR

)2

Hoffman et al. established the asymptotic normality and consistency of the WCR

estimate, and Wald-type tests of H0 can be constructed with θ̂WCR and v̂ar
(
θ̂WCR

)

in the usual manner.

2.4 Cluster-weighting

AsM,Q→ ∞, Williamson et al. [53] note that θ̂WCR converges to θ̂ = E
[
θ̂∗q |V

]
with

respect to the sampling distribution. This marginalization is equivalent to averaging

the resampled estimator across all realizations of the resampled data. As sampling

is uniform across clusters, this expectation can easily be calculated and results in
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weighting observations by the inverse of the cluster size. The asymptotic normality

of such reweighted estimators has been established under mild regularity conditions

by various authors [10, 11, 54].

The connection between resampling and reweighting can be illustrated in the con-

text of a marginal mean. The estimator of interest calculated from a single resampled

data set is θ̂∗q =
1
M

∑M

i=1X
∗
i . Applying the marginalization calculation results in

θ̂ = E
[
θ̂∗q |V

]

=
1

M

M∑

i=1

E [X∗
i |V ]

=
1

M

M∑

i=1

1

ni

ni∑

j=1

Xij =
1

M

M∑

i=1

X̄i (2.1)

The independence of clusters allows the expectation of the resampled estimate to be

expressed as the average of the expectations. Conditioned on the observed data, the

expectation of a resampled observation from a particular cluster is the cluster average,

as the WCR process resamples observations from that cluster with equal probability.

This expectation calculation is easily verified empirically and has previously been

demonstrated by Lorenz et al. [39] and Nevalainen et al. [43].

We note that an estimate derived in the manner of (2.1) corresponds to an estimate

from the marginal distribution

F (x) = EV

{
M∑

i=1

1

ni

ni∑

j=1

I (Xij ≤ x)

}

where EV represents the expectation taken with respect to the distribution of V .

2.5 Group-weighting

When observations within clusters belong to distinct groups, alternative weighting to

correct for group informativeness may be desired. The link between the reweighting

methodology and resampling results in group weights being contingent on the group
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structure of the observed data. We illustrate this dependence by first discussing

reweighting when data have complete group structure (members belonging to all

groups are observed in all clusters), and then detail the subsequent weight adjustments

that result when clusters have incomplete group structure.

2.5.1 Weighting under complete group structure

Huang and Leroux [31] first extended WCR methods to correct for IWCGS. They

proposed modifying the resampling process at the foundation of reweighting into a

two-step procedure that marginalizes the group distributions. In two-step resam-

pling, G∗
i is first selected with uniform probability from the levels of G. Then, condi-

tioned on G∗
i = k, X∗

i is sampled from the set {X(k)
i1 , . . . , X

(k)

in
(k)
i

}. As in the original

WCR scheme, this process is repeated for all clusters, resulting in the resampled data

(X∗,G∗) = {(X∗
1 , G

∗
1), . . . , (X

∗
M , G

∗
M)}, and the parameter of interest calculated from

this resampled data. Applying the marginalization principal to data resampled in this

manner results in observations weighted by the inverse of the within-cluster group

size.

For illustration, consider estimating the mean of observations belonging to one

of two distinct groups from data with complete group structure. Let θ(1) represent

the marginal mean from the population of observations that belong to group 1. The

estimate of θ(1) calculated on the resampled data is θ̂(1)∗ = 1
n(1)∗

∑M

i=1X
∗
i I[G

∗
i = 1],

where n(1)∗ =
∑M

i=1 I[G
∗
i = 1] represents the number times group 1 is randomly

selected in the realized resampling. Marginalizing θ̂(1)∗ across all possible resamplings

of (X∗,G∗) is the calculation

θ̂(1) = E

[
1

n(1)∗

M∑

i=1

X∗
i I[G

∗
i = 1]

∣∣∣∣V
]
=

M∑

i=1

E

[
1

n(1)∗
X∗
i I[G

∗
i = 1]

∣∣∣∣V
]

(2.2)

The randomly-selected group, G∗
i , is an artificial random variable determined by the

resampling process. It is thus independent of the observed data values, allowing the
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interior expectation to be calculated

E

[
1

n(1)∗
X∗
i I[G

∗
i = 1] | V

]
= E

[
1

n(1)∗

]
E [X∗

i I[G
∗
i = 1]|V ]

= E

[
1

n(1)∗

]
E[X∗

i |V ]P [G∗
i = 1]

= E

[
1

n(1)∗

]
1

2n
(1)
i

n
(1)
i∑

j=1

X
(1)
i = E

[
1

n(1)∗

]
1

2
X̄

(1)
i

The expectation of 1
n(1)∗ is a non-trivial calculation. However, we have seen through

simulation it is well-approximated by 1

E[
∑M

i=1 I[G
∗

i=1]]
=

(
M
2

)−1
as M increases. This

results in

θ̂(1) =
1

M

M∑

i=1

X̄
(1)
i

Heuristically, it is easy to see that the estimate of the group 1 mean marginalized

across all possible resamplings is simply the within-cluster group 1 averages aver-

aged across all clusters. As before, independence of clusters justifies the average of

the expected contribution from each cluster. In the resampling process, group 1 is

selected from a cluster with probability 1
2
and X∗

i is selected uniformly from the

set {X(1)
i1 , . . . , X

(1)

in
(1)
i

}. In the marginalization process, observations initially receive a

1
2
weight corresponding to the group selection probability; however, this additional

weight cancels out since all clusters contribute equally and the expected number of

resampled group 1 observations is M
2
.

Formally, marginal estimates calculated from data with complete group structure

can be defined as functionals of the distribution

F (x|k) = EV

{
M∑

i=1

1

n
(k)
i

ni∑

j=1

I (Xij ≤ x,Gij = k)

}
(2.3)

2.5.2 Weighting under incomplete group structure

When data have incomplete group structure, the weighting of (2.3) needs to be mod-

ified to account for incomplete clusters. In the two-step resampling process, a group
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is selected uniformly from the number of groups available in the given cluster. If a

particular group is not observed within a cluster, that group has a selection probabil-

ity of 0. Similarly, if a cluster only contains observations belonging to a single group,

that group is selected with probability 1. This results in observations from clusters

being weighted not just by their respective group size, but additionally weighted by

the inverse of the number of available groups within the cluster. In contrast to data

with complete group structure, these “group selection“ probability weights are not

equal across clusters and no longer cancel out in the marginalization process.

For illustration, consider the derivation of θ̂(1) in the scenario of incomplete clus-

ters.

θ̂(1) = E
[
θ̂(1)∗|V

]
= E

[
1

n(1)∗

M∑

i=1

X∗
i I[G

∗
i = 1] | V

]

= E

[
1

n(1)∗

] M∑

i=1

E[X∗
i |V ]P [G∗

i = 1]

=
1

1
2
M (c) +M (1)

M∑

i=1

{
1

2
X̄

(1)
i I[n

(1)
i > 0, n

(2)
i > 0] + X̄

(1)
i I[n

(1)
i > 0, n

(2)
i = 0]

}

(2.4)

where M (c) =
∑M

i=1 I[n
(1)
i > 0, n

(2)
i > 0] and M (1) =

∑M

i=1 I[n
(1)
i > 0, n

(2)
i = 0]. Here,

M (c) represents the number of complete clusters, and M (1) denotes the number of

incomplete clusters that only contain observations belonging to group 1. Note that a

correponding quantity M (2) exists, and M =M (c) +M (1) +M (2).

In equation (2.4), the form of θ̂(1)∗ remains the same as in (2.2), but the result

of the conditional expectation of this quantity is modified based on the adjusted

group selection probabilities. That is, P [G∗
i = 1] = 1

2
for complete clusters, but

this probability is 1 for incomplete clusters containing only members that belong

to group 1, and similarly is 0 for incomplete clusters comprised of only group 2

observations. In the expectation calculation that corresponds to averaging over all

possible resamplings, the group 1 averages within clusters are no longer averaged
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equally across the M clusters, because the clusters do not contribute equally to the

estimate in the resampling process. Instead, the expected group 1 values are averaged

over the expected number of clusters that would contribute a group 1 observation.

We note that for data with complete group structure, (i.e., M (1) = M (2) = 0), (2.4)

simplifies to (2.2).

Recall that Kc
i denotes the number of observed groups within cluster i. For data

with incomplete group structure, the marginal parameter θ can then be expressed as

a functional of the distribution

F (x|k) = EV

{
M∑

i=1

wij

ni∑

j=1

I (Xij ≤ x,Gij = k)

}
(2.5)

where the weight wij is defined

wij =





(
Kc
i n

(k)
i

)−1

, if n
(k)
i > 0

0, otherwise.

(2.6)

While the assignment of a weight corresponding to the group selection probability

to observations might be intuitive, we stress that the overall marginalization of the

distribution must also consider this weight. In the calculation of θ̂(1) above, this

was evident in the distinction of M (c) and M (1). Even when all clusters are able to

contribute to a group estimate, the overall divisor of the estimate is notM , but instead

a function of the number of contributing clusters and their contribution probabilities.

2.5.3 A note on incomplete clusters

When observed data have incomplete group structure, care must be taken to accu-

rately define and estimate marginal parameters. Incomplete clusters can arise when

observations exist across all groups in the population of all clusters, but some groups

were merely not observed for some of the collected clusters. Alternatively, incom-

plete clusters can also belong to a population in which some of the K groups do not

exist. As noted by Seaman et al. [49], marginal parameters for these two population
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may not coincide. This paper offers an excellent discussion on the nuances among

these two populations and provides a discussion on appropriate reweighting for dif-

fering marginal inferences in the context of model-based estimators. For example,

Seaman et al. point out the DWGEE2 model of Huang and Leroux [31] applies an

expected weight to incomplete clusters. This becomes philosophically and mathe-

matically problematic, as it results in the modeling of values which do not exist (e.g.,

cognitive function in dead people [49]). We note that parameters estimated by (2.5)

are based on observed and not expected weights, and thus are appropriate for obser-

vations from either population. However, the importance of thoroughly considering

the marginal inference of interest and suitability of methods to achieve that inference

cannot be overstated.
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CHAPTER 3

ESTIMATION AND TESTING FOR CATEGORICAL
DATA1

3.1 Introduction

The reweighting methodology detailed in the previous chapter has been used to de-

velop clustered data analogues of the well-known rank sum [10], signed rank [11],

correlation [39, 40], and log rank tests [24]. This collection of tests notably excludes

tests of categorical responses, analogous to well-known chi-square tests of propor-

tions. Further, while the aforementioned tests for clustered data under ICS were

developed using a common motivating principal, there are substantial differences in

the variance estimation techniques implemented in these tests. These variance esti-

mation techniques include those based on Hajek projections and empirical, sandwich,

and jackknife forms. The performance of reweighted tests under different variance

estimation methods has not been explored previously. This is of particular interest

in tests of categorical data, as it is well-known that the performance of tests and

confidence intervals can depend greatly on the method of construction [6, 22, 45].

Motivated by the absence of tests of clustered categorical data with ICS and evalu-

ations of test performance under different variance estimation methods, we address

both topics in this chapter.

1Reproduced in part with permission from Gregg, M., Datta, S. and Lorenz, D. (2020) “Variance
estimation in tests of clustered categorical data with informative cluster size”, Statistical Methods
in Medical Research. doi: 10.1177/0962280220928572.
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Using the marginalization principle described in Chapter 2, we develop test statis-

tics for common categorical data scenarios appropriate for clustered data under po-

tential ICS. We construct tests for marginal proportion, categorical proportions, in-

dependence of bivariate categorical variables, and marginal homogeneity. These tests

mimic the classical one-sample proportion, chi square goodness of fit, chi square in-

dependence, and McNemar tests, and their construction is detailed in Section 3.2.

Each of these tests are composed using a number of different variance estimation

methods, and the performance of each are compared through a simulation study in

Section 3.3. In Section 3.4, we apply the proposed methods to a data set of functional

rehabilitation measurements from patients with spinal cord injuries, and Section 3.5

includes our concluding remarks.

3.2 Reweighted tests for categorical data

3.2.1 Binary univariate data – one-sample proportion tests

Retaining the notation established in Chapter 2, we observe ni binary outcomesXij =

{0, 1} in cluster i, whereXij takes value 1 if the observation is classified as a “success”.

We are interested in estimating the marginal probability of success, p = P (X = 1),

and in testing the null hypothesis H0 : p = p0 for some null proportion p0. As

discussed previously, this marginal parameter p can be defined as the probability of

success for a typical observation from all observations, or a typical observation from a

typical cluster. When cluster size is non-informative these two marginal probabilities

are equivalent, but this equality does not hold under ICS [49, 53]. When clusters

are the primary unit of interest and cluster size is informative, the latter is a more

appropriate marginal analysis, and we develop estimators and tests accordingly.

The usual proportion estimate applied to a resampled data set is p̂∗ = 1
M

∑M

i=1X
∗
i .

Applying the marginalization principle of Section 2.5 to this estimate results in the
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statistic

p̂ = E [p̂∗| {V1, . . . ,Vn}]

= E

[
1

M

M∑

i=1

I[X∗
i = 1]| {V1, . . . ,Vn}

]

=
1

M

M∑

i=1

1

ni

ni∑

j=1

Xij =
1

M

M∑

i=1

p̂i

where p̂i represents the proportion of successes in cluster i. As this reweighted es-

timator is asymptotically normally distributed, we can test H0 using a Wald-type

test by comparing the standardized form z = (p̂− p0) /
√

(v̂/M) to appropriate per-

centiles of the standard normal distribution, where v̂ is some estimate of the variance

of p̂. While a number of tests of marginal parameters for clustered data with ICS

have been established using the asymptotic normality of cluster-weighted estimators

[10, 11, 24, 39, 40], none have been evaluated under competing variance estimation

techniques. To this end, we propose four methods of estimation for v̂ including two

novel methods that have not previously been considered in the cluster-weighted con-

text.

Variance Estimation

One choice for v̂ is the empirical variance of the within-cluster proportions, v̂emp =

1
M−1

∑M

i=1 (p̂i − p0)
2. Previous authors have estimated the variances of clustered-

weighted estimators using the empirical variances of certain within-cluster averages

in conjunction with appropriate delta method calculations [39].

Williamson et al. [53] suggested a sandwich variance estimator for their clustered

data estimator, of the form

v̂ = l̂(p)−1V̂ (p)l̂(p)−1, (3.1)

where

l̂ (p) =
1

M

M∑

i=1

1

ni

ni∑

j=1

δUij(p)

δp
, (3.2)
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V̂ (p) =
1

M

M∑

i=1

{
1

ni

ni∑

j=1

Uij(p)

}{
1

ni

ni∑

j=1

Uij(p)

}T

, (3.3)

and Uij is the estimating function for the parameter(s) of interest. This method

has additionally been used for other cluster-weighted estimators [39]. A sandwich

estimator can be implemented for the test of a marginal proportion using the scores

Uij =
Xij

p
− 1−Xij

1−p
. Let v̂p̂ denote the sandwich variance estimator when the quantities

l̂(p) and V̂ (p) are evaluated at the estimated value of p.

Wald intervals and tests are known to perform poorly in estimating and testing

proportions, providing poor interval coverage and failing to maintain test size near the

boundaries of the parameter space, even for reasonably large sample sizes [6, 22, 36].

Agresti [2] has suggested that methods that construct variance estimates under a

null hypothesis are closely related to score tests, and score tests are known to be

resistant to some of the issues suffered by Wald tests of nominal data. In light of this

relationship and in the context of testing H0, an alternative approach can presume

the null hypothesis by evaluating l̂(p) and V̂ (p) at p0. Let v̂p0 represent the sandwich

variance estimator evaluated at p0. To our knowledge, this technique has never been

considered in the cluster-weighted setting.

An additional variance estimator incorporates a method of moments calculation

conducted presuming the null hypothesis. This form has previously been employed

in tests of paired clustered binary data [14], but has not been used in the devel-

opment of tests applying the reweighting methodology. In the present context,

testing H0 is equivalent to testing p − p0 = 0, suggesting the variance estimate

var(p̂− p0) =
1
M

∑M

i=1 [(p̂i − p0)− (p̂− p0)]
2. Under the null hypothesis, this simpli-

fies to var(p̂− p0) =
1
M

∑M

i=1 [p̂i − p0]
2. Let v̂MM represent this method of moments

estimator evaluated under the null hypothesis.

In the next section, we present the results of simulation studies evaluating tests

of H0 : p = p0 by constructing the test statistic z with the aforementioned four

23



variance estimators. We compare the performance of these tests to a modification of

the Agresti-Coull interval for clustered survey data [12], a GEE intercept-only model

with exchangeable correlation structure, and the naive proportion test assuming in-

dependent observations.

3.2.2 Categorical univariate data – goodness of fit

We now progress to nominal random variables with more than two categories. We

modify our notation so that each observation is a K-dimensional vector, xij =
(
x
(1)
ij , . . . , x

(K)
ij

)T
, where x

(k)
ij is an indicator variable that observation j from clus-

ter i belongs to category k, for k = 1, . . . , K. The data from cluster i are Vi =

{ni, xi1, . . . , xini
}, the observed within-cluster proportions are p̂i = 1

ni

∑ni

j=1 xij =
(
p̂
(1)
i , . . . , p̂

(K)
i

)T
, and p̂

(k)
i = 1

ni

∑ni

j=1 x
(k)
ij . A hypothesis of interest may be that the

marginal proportions, after accounting for individual cluster differences and ICS, are

equal to some pre-specified values, corresponding to the chi square goodness of fit test.

Specifically, we will test H0 : p = p0, where p =
(
p(1), . . . , p(K)

)T
are the marginal

group proportions and p0 =
(
p
(1)
0 , . . . , p

(K)
0

)T
are the hypothesized values. Following

the conditional expectation calculations detailed in Section 2.4, it is not difficult to see

that the cluster-weighted estimate of the vector of marginal group proportions is p̂ =
(
p̂(1), . . . , p̂(K)

)T
= 1

M

∑M

i=1

(
p̂
(1)
i , . . . , p̂

(K)
i

)T
= 1

M

∑M

i=1
1
nij

∑ni

j=1

(
x
(1)
ij , . . . , x

(K)
ij

)T
.

That is, the marginal estimator is simply the vector of within-cluster group propor-

tions averaged across all clusters. This estimator is asymptotically normal, and we

can calculate the Wald-type quadratic form:

X2 =M (p̂− p0)
T Σ̂−1 (p̂− p0) (3.4)

where Σ̂ is an estimate of the variance matrix for p̂. Under mild conditions and H0,

this statistic asymptotically follows a chi square distribution with K − 1 degrees of

freedom.

24



The empirical, sandwich, and method of moments variance estimates derived

above can all be employed to estimate Σ̂. Let Σ̂emp be the empirical variance covari-

ance matrix of p̂, Σ̂emp =
1

M−1

∑M

i=1 (p̂i − p̂) (p̂i − p̂)T . The sandwich form can be ob-

tained from Equations (3.1)-(3.3), using multinomial scores Uij (p) =

(
x
(1)
ij

p(1)
, . . . ,

x
(K)
ij

p(K)

)T

,

and replacing p with the vector p. We evaluate this sandwich form at both the

cluster-weighted estimates p̂ and the hypothesized category proportions p0. De-

note these estimates as Σ̂p̂ and Σ̂p0 , respectively, for which we omit the details

as they are straightforward. The method of moments estimator of Σ̂ is var(p̂ −

p0) =
1
M

∑M

i=1 [(p̂i − p0)− (p̂− p0)] [(p̂i − p0)− (p̂− p0)]
T . Under the null hypoth-

esis, p̂− p0 = 0 and the method of moments variance estimate simplifies to Σ̂MM =

1
M

∑M

i=1 [p̂i − p0] [p̂i − p0]
T . We compare the performance of statistic (3.4) under the

variance estimates Σ̂emp, Σ̂p̂, Σ̂p0 , and Σ̂MM in the simulation study in Section 3.3.

3.2.3 Bivariate categorical data – test of independence

We now extend to the case of two categorical variables, where the hypothesis of

interest is their independence. Denote the two random variables X and Y , where X

takes values from 1 to K and Y takes values from 1 to G. Observation j from cluster

i is the bivariate pair (Xij , Yij), where j = 1, . . . , ni and i = 1, . . . ,M . Let p(k,g) =

P (X = k, Y = g), corresponding to the cell probability for row k and column g of a

two-way contingency table. Let p(k,+) = P (X = k) and p(+,g) = P (Y = g), defining

the marginal row and column probabilities. In cluster i, the observed cell frequency in

row k and column g is n
(k,g)
i =

∑ni

j=1 I [Xij = k, Yij = g], and the associated marginal

row and column frequencies are n
(k,+)
i =

∑G

g=1 n
(k,g)
i and n

(+,g)
i =

∑K

k=1 n
(k,g)
i . The

corresponding observed proportion for the cell in row k and column g in cluster i

is p̂
(k,g)
i =

n
(k,g)
i

ni
, and we collect the observed cell proportions for cluster i in the

vector p̂i =
(
p̂
(1,1)
i , . . . , p̂

(1,G)
i , p̂

(2,1)
i , . . . , p̂

(K,G)
i

)T
. The observed marginal proportions

in cluster i are p̂
(k,+)
i =

n
(k,+)
i

ni
and p̂

(+,g)
i =

n
(+,g)
i

ni
for row k and column g, respectively.
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The null hypothesis asserts that X and Y are independent, explicitly stated as

H0 : p(k,g) = p(k,+)p(+,g) for all k and g. Let p denote the vector of probabilities

p(k,g) for all KG cells and let e denote the vector of all possible marginal proportion

products, e =
(
p(k,+)p(+,g)

)T
for k = 1, . . . , K, g = 1, . . . , G. Note that this vector

defines the cell proportions of the two-way table under the null hypothesis. By the

same conditional expectation calculations as above, the clustered-weighted estimates

of the cell and marginal proportions are p̂(k,g) = 1
M

∑M

i=1 p̂
(k,g)
i , p̂(k,+) = 1

M

∑M

i=1 p̂
(k,+)
i ,

and p̂(+,g) = 1
M

∑M

i=1 p̂
(+,g)
i . We can then define the vectors p̂ and ê as estimates of

the vectors p and e. A reasonable statistic for measuring departures from the null

hypothesis is then d̂ = p̂− ê, The vector d̂ can be shown to be asymptotically normal

and under the null hypothesis, d = 0. Thus, we can test the null hypothesis using

the statistic Xd = M d̂T (Σ̂d)−1d̂, where Σ̂d is some estimate of the variance of d̂.

Under the null, this statistic asymptotically follows a chi square distribution with

(K − 1)(G− 1) degrees of freedom.

As in the univariate case, Σ̂d can be estimated using an empirical, sandwich, or

method of moments estimator. Let Σ̂d
emp be the empirical variance-covariance matrix

of d̂, Σ̂d
emp =

1
M−1

∑M

i=1(d̂i − d̂)(d̂i − d̂)T . The sandwich form can be derived in the

same manner as the goodness of fit sandwich estimator, and likewise can be evaluated

at the cluster-weighted estimate p̂ or be evaluated at the vector of null hypothesis

cell proportions ê. Let Σ̂d
p̂ and Σ̂d

ê denote these variance estimates, respectively. The

method of moments estimator is

Σ̂d
MM =

1

M

M∑

i=1

[(p̂i − êi)− (p̂− ê)] [(p̂i − êi)− (p̂− ê)]T

which reduces to Σ̂d
MM = 1

M

∑M

i=1 [p̂i − êi] [p̂i − êi]
T under the null. The perfor-

mances of the chi square statistic derived with each of these variance estimators are

compared to a Cochran-Mantel-Haenszel test stratified by cluster in the Section 3.3.
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3.2.4 Paired binary data – test of marginal homogeneity

For paired bivariate data, observation j from cluster i is (Xij, Yij), where X and

Y are binary variables with a value of 1 indicating success for the first and second

measurement of the observation, respectively. As before, there are ni observations

from cluster i and M total clusters. Observations from cluster i can be summarized

in a 2 × 2 table where the diagonal elements n
(1,1)
i =

∑ni

j=1 I [Xij = 1, Yij = 1] and

n
(0,0)
i =

∑ni

j=1 I [Xij = 0, Yij = 0] are the frequencies of concordant successes and fail-

ures, respectively. The off-diagonal elements are n
(1,0)
i =

∑ni

j=1 I [Xij = 1, Yij = 0]

and n
(0,1)
i =

∑ni

j=1 I [Xij = 0, Yij = 1]. Define p(1,1) = P [X = 1, Y = 1] as the joint

probability of success for X and Y across the population of clusters, and define p(1,0),

p(1,0), and p(0,0) in a similar fashion.

We will test the hypothesis of marginal homogeneity, H0 : p(1,+) = p(+,1), where

p(1,+) and p(+,1) are the marginal probability of success for the first and second mea-

surements of the random variable. Since p(1,+)=p(1,1)+p(1,0) and p(+,1) = p(1,1)+p(0,1),

the null hypothesis can be equivalently stated as H0 : p(1,0) = p(0,1). Again, the re-

sampling and subsequent conditional expectation calculation can be applied to obtain

the cluster-weighted estimates of p(1,0) and p(0,1):

p̂(1,0) =
1

M

M∑

i=1

p̂
(1,0)
i , (3.5)

p̂(0,1) =
1

M

M∑

i=1

p̂
(0,1)
i .

We can test H0 using the statistic

X2 =

(
p̂(1,0) − p̂(0,1)

)2

var (p̂(1,0) − p̂(0,1))
(3.6)

Durkalski et al. [14], by adopting sampling techniques proposed by Obuchowski

[46], arrived at the same estimates of p(1,0) and p(0,1) presented in (3.5). Using the

form of statistic (3.6), Durkalski et al. proposed testing the hypothesis of marginal
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homogeneity by estimating the variance using the method of moments estimator

evaluated under the null hypothesis: v̂ar
(
p̂(1,0) − p̂(0,1)

)
= 1

M2

∑M

i=1

[
p̂
(1,0)
i − p̂

(0,1)
i

]2
.

Alternatively, we can also employ an empirical variance estimate in the construction

of test statistic (3.6) by

v̂ar
(
p̂(1,0) − p̂(0,1)

)
=

1

M

[
v̂ar

(
p̂(1,0)

)
+ v̂ar

(
p̂(0,1)

)
− 2 ˆcov

(
p̂(1,0), p̂(0,1)

)]

where

v̂ar
(
p̂(k,g)

)
=

1

M − 1

M∑

i=1

(
p̂
(k,g)
i − p̂(k,g)

)2

and

ˆcov
(
p̂(k,g), p̂(k

′,g′)
)
=

1

M − 1

M∑

i=1

(
p̂
(k,g)
i − p̂(k,g)

)(
p̂
(k′,g′)
i − p̂(k

′,g′)
)
.

Additional tests of marginal homogeneity for clustered data have been proposed

by Eliasziw and Donner [18], Obuchowski [46], and Yang et al. [56]. We compare

the performance of the cluster-weighted test constructed with both the method of

moments and empirical variance estimator to these additional methods through sim-

ulations in the following section.

3.3 Simulation Study

We evaluated the performance of our cluster-weighted tests under the several proposed

variance estimators via simulation studies. To summarize, the reweighted proportion,

goodness of fit, and test of independence analogs were constructed using the following

variance estimation methods: 1. Empirical (CW-Emp.), 2. Sandwich form evaluated

at the estimate(s) (CW-SWp̂). 3. Sandwich form evaluated under the null hypothesis

(CW-SW0). 4. Method of moments evaluated under the null hypothesis (CW-MM).

The reweighted test of marginal homogeneity was constructed using variance estima-

tion methods 1 and 4. For each of the testing scenarios, we compared the empirical

size of our tests to their analogues for independent data, in addition to any well-

known alternatives for clustered data appropriate to the respective test. Specifically,
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we compared our cluster-weighted proportion test to a binomial GEE model and the

Dean-Pagano [12] modification of the Agresti-Coull [3] method, our cluster-weighted

test of independence to the Cochran-Maentel-Haenzel test stratified by cluster, and

our cluster-weighted test of marginal homogeneity to the methods of Eliasziw and

Donner [18], Obuchowski [46], and Yang et al. [56]. We calculate the empirical size

of each test as the proportion of rejections of the null hypothesis over 10 000 Monte

Carlo iterations at a nominal level of .05. To evaluate the effect of sample size, all

simulations were run for 50, 100, and 200 clusters.

We simulated clustered binary data featuring ICS by first generating a random

effect for each cluster, ui, from the standard normal distribution. We then simulated

cluster sizes ni from Poisson(10 + 10 ∗ I[ui > 0])+1 distribution, so that cluster sizes

and random effects were positively associated. We then simulated ni standard nor-

mal random variables eij within each cluster independent of the per-cluster random

effects. Under these conditions, the random variable ui + eij + δ follows the N (δ, 2)

distribution. We dichotomized this random variable as Xij = I[ui + eij > c], and

selected c to satisfy P (X = 1) = p0 for p0 = 0.1, 0.25, and 0.5. The null model

corresponds to δ = 0, while power estimates were produced by setting δ > 0. Under

this design, larger clusters were more likely to exhibit observations with X = 1, as

the random effects tended to be larger.

We simulated clustered categorical data with more than two levels in an identical

way. We categorized the N (δ, 2) random variable ui + eij + δ into 3- and 5-level

categorical variables under both balanced and unbalanced scenarios. Specifically,

under the null model (δ = 0), (1) the levels were marginally uniformly distributed

for the balanced scenario and (2) the levels were marginally distributed as (0.25,

0.25, 0.50) in the 3-level cases and (0.10, 0.15, 0.20, 0.25, 0.30) in the 5-level case for

the unbalanced scenario. Under this design, clusters of larger size had larger latent

random effects, and have observations more likely to land in the last of the categories.
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Table 1. Univariate proportion tests; empirical size and power.

Estimate Size
M CW GEE DP/AC UW CW-Emp. CW-SWp̂ CW-SW0 CW-MM GEE DP/AC UW

50 0.100 0.105 0.108 0.128 0.078 0.079 0.054 0.071 0.065 0.061 0.594
p = .1 100 0.100 0.105 0.104 0.128 0.064 0.065 0.050 0.061 0.059 0.056 0.744

200 0.100 0.105 0.102 0.128 0.052 0.053 0.050 0.051 0.067 0.050 0.905

50 0.250 0.259 0.257 0.308 0.060 0.063 0.048 0.054 0.060 0.052 0.761
p = .25 100 0.250 0.259 0.253 0.308 0.056 0.057 0.049 0.053 0.069 0.051 0.909

200 0.251 0.259 0.252 0.309 0.054 0.055 0.051 0.053 0.082 0.053 0.986

50 0.501 0.512 0.501 0.578 0.056 0.057 0.049 0.049 0.071 0.052 0.844
p = .5 100 0.500 0.511 0.500 0.578 0.050 0.051 0.047 0.047 0.073 0.049 0.959

200 0.500 0.511 0.500 0.578 0.056 0.056 0.054 0.054 0.091 0.054 0.997

CW, cluster weighted estimate; CW-Emp., CW-SWp̂, CW-SW0, CW-MM are cluster-weighted tests evaluated with em-
pirical, sandwich at p̂, sandwich at p0, and method of moments variance estimates; GEE, GEE model; DP/AC, the Dean
and Pagano adaptation of Agresti-Coull method [12]; UW, unweighted.
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Figure 1. Power curves for reweighted proportion tests; p = 0.25.

Table 1 contains the results for the test of a marginal proportion. We begin by

noting that our marginal estimator was approximately unbiased under all scenarios,

while other methods exhibited varying degrees of bias. Cluster-weighted tests based

on v̂emp, v̂p̂, and v̂MM performed reasonably well at higher sample sizes and null

proportions away from 0 and 1, but were slightly biased otherwise. The cluster-

weighted test based on v̂p0 maintained appropriate size under all scenarios, even with

small samples at p away from .5. We note that when p = 0.5, it can be shown that

v̂MM and v̂p0 are equivalent. The Dean-Pagano [12] test was slightly biased at p = 0.1

and M = 50 clusters, but performed well for larger M for all p. The GEE model

was biased for all scenarios, and as expected, the naive proportion test exhibited

substantially inflated size. Figure 1 displays power curves for five of the tests at null

p = 0.25. The cluster-weighted test using v̂p0 exhibited consistently higher power

across all values of M , while the other cluster-weighted tests had comparable power.

Similar behavior occurred for tests at null p = 0.1, while for null p = 0.5 there was

negligible difference in power between the tests (results provided in supplemental
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Table 2. Goodness of fit and independence tests; empirical size and power.

Test Scenario M CW-Emp. CW-SWp̂ CW-SW0 CW-MM UW MH

GOF

K = 3
Balanced

50 0.068 0.072 0.061 0.053 0.860 -
100 0.055 0.056 0.052 0.048 0.961 -
200 0.057 0.058 0.055 0.054 0.998 -

K = 3
Unbalanced

50 0.071 0.074 0.062 0.055 0.850 -
100 0.054 0.055 0.049 0.046 0.961 -
200 0.056 0.057 0.055 0.052 0.998 -

K = 5
Balanced

50 0.096 0.100 0.082 0.055 0.855 -
100 0.076 0.078 0.067 0.057 0.960 -
200 0.065 0.065 0.063 0.055 0.998 -

K = 5
Unbalanced

50 0.104 0.110 0.082 0.064 0.851 -
100 0.080 0.083 0.065 0.061 0.958 -
200 0.067 0.068 0.061 0.058 0.998 -

Indep.

2x2
50 0.057 0.072 0.072 0.051 0.300 0.316
100 0.053 0.060 0.060 0.051 0.310 0.327
200 0.050 0.054 0.054 0.049 0.311 0.329

2x3
50 0.059 0.060 0.059 0.044 0.380 0.387
100 0.058 0.051 0.050 0.050 0.392 0.404
200 0.053 0.041 0.040 0.049 0.392 0.399

3x4
50 0.111 0.213 0.200 0.040 0.582 0.592
100 0.075 0.125 0.123 0.044 0.572 0.578
200 0.064 0.091 0.089 0.050 0.577 0.589

GOF, goodness of fit test for univariate data with K categories; Balanced (Unbalanced),
equal (unequal) marginal category probabilities; Indep., test of independence for bivariate
data; MH, Cochran-Maentel-Haenzel test; all other acronyms are as defined in Table 1.

tables in Section 3.6).

Additional simulations exploring the impact of absolute cluster size and the degree

of informativeness are presented in Section 3.6. For a large number of clusters (M =

100), our test and the Dean-Pagano test performed consistently well across a range

of absolute cluster sizes and degrees of informativeness, including when cluster size

was not informative. The bias of the GEE approach tended to increase with the

degree of informativeness, although this effect was mitigated when absolute cluster

size increased.

The top portion of Table 2 provides the results from the marginal goodness of fit

tests. The standard goodness of fit test was heavily biased for all scenarios. For the

three-group simulation, the cluster-weighted test using Σ̂MM maintained appropriate

size under both balanced and unbalanced designs for all values of M . The sandwich

forms and empirical variance estimator exhibited slightly inflated size when M = 50,

32



but performed reasonably well for balanced and unbalanced proportions at 100 and

200 clusters. For five groups with balanced proportions, Σ̂MM remained approximated

unbiased, while the empirical and sandwich estimators were moderately biased. All

forms of the cluster-weighted test exhibited some inflation of size under a five-group

unbalanced simulation, with the test based on Σ̂MM exhibiting the least bias. A

comparison of power for the cluster-weighted tests (Section 3.6) shows that the cost

of maintaining size for the method of moments variance is a slight reduction of power

at low sample size.

To simulate bivariate categorical data, we generated multivariate random ef-

fects (ui1, . . . , uiG) from a multivariate normal distribution NG (0, IG), where IG

is the GxG identity matrix. Within-cluster group sizes were generated as nig ∼

POI (10 + 5 ∗ I [uig > 0])+1, and ni =
∑G

g=1 nig. We defined the random variable Yij

to be a categorical, taking values {1, 2, . . . , G}, so that nig observations were in group

g. We created the second categorical variableX by discretizing uiYij+eij+δ∗I[Yij = 1]

into K categories, where eij were generated i.i.d. from a standard normal distribution

and δ = 0 corresponds to the null hypothesis. The vector of cut points defining X

were quantile values from a N(0, 2) distribution, which we selected to produce desired

category probabilities. Data from each cluster can be organized into a KxG contin-

gency table, with values of X and Y as row and column variables, respectively. We

ran simulations for 2× 2, 3× 2, and 4× 3 tables. For K = 2, we selected a cut point

for X such that the marginal proportion of observations in the first category was 0.6,

and for K > 2 we selected cut points for equal probabilities among the categories of

X.

The bottom portion of Table 2 contains results for the marginal tests of inde-

pendence. The Cochran-Maentel-Haenzel test stratified by cluster and the naive

chi-square test of independence were substantially biased. The cluster-weighted test

using Σ̂d
MM maintained size for the 2× 2 and 3× 2 tables, even under small sample
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sizes, and performed well for 4× 3 tables under larger samples. The cluster-weighted

tests using Σ̂d
emp, Σ̂

d
p̂, and Σ̂d

ê required a large sample size to exhibit appropriate size

for a 2× 2 table, and were biased for tables of larger size. Power comparisons for the

cluster-weighted tests are included in the supplementary tables in Section 3.6. Similar

to the results from the goodness of fit scenario, the method of moments-based test

maintains appropriate size at the cost of a minor loss in power.

To test marginal homogeneity of matched pairs, we simulated data from the fol-

lowing multivariate random effects model


Xij

Yij


 =



ui

vi


+



eij

fij






ui

vi


 ∼ N






0

0


 ,



1 γ

γ 1





 ,



eij

fij


 ∼ N






0

0


 ,



1 ρ

ρ 1





 .

Here, (ui, vi) represents the random effects for the paired observations in cluster

i, and (eij, fij) are the random errors for paired observation j in cluster i. We

set γ = ρ = 0.8, simulating positive correlation between both random effects and

model errors. X and Y were dichotomized according to cut points corresponding

to P (X = 1) = P (Y = 1) = 0.1 and 0.5. We simulated cluster size as the follow-

ing function ni ∼ POI (10 + 10 ∗ I[ui ∗ vi > 0]). Under this simulation, clusters with

concordant random effects tended to be larger than clusters with discordant random

effects.

Table 3 shows results for the tests of marginal homogeneity. Both forms of the

cluster-weighted test remained unbiased across all scenarios. The clustered tests of

Eliasziw and Donner [18], Obuchowski [46], and Yang et al. [56] exhibited inflated

size, illustrating the biasing effects of ICS. Unsurprisingly, the naive McNemar test

performed poorly. Under the simulated scenario, cluster size was favorably associated

with concordant random effects, resulting in larger clusters tending to have fewer

discordant observations. Should cluster size be positively associated with discordant
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Table 3. Empirical size for tests of marginal homogeneity

M CW-Emp. CW-MM χ2
ED χ2

O χ2
Y UW

50 0.056 0.048 0.054 0.048 0.058 0.293
p = .1 100 0.052 0.048 0.058 0.055 0.059 0.314

200 0.048 0.046 0.066 0.067 0.069 0.336

50 0.058 0.050 0.090 0.070 0.081 0.375
p = .5 100 0.049 0.046 0.134 0.112 0.120 0.459

200 0.050 0.049 0.214 0.191 0.198 0.578

CW-Emp., cluster weighted test with empirical variance; CW-MM,
cluster weighted test with method of moments variance estimator
evaluated under null hypothesis [14]; χ2

ED, test by Eliasziw and
Donner [18]; χ2

O, test by Obuchowski [46]; χ2
Y , test by Yang et al.

[56]; UW, unweighted McNemar.

random effects, we would expect the bias shown by the McNemar test to further

increase.

3.4 Application

We applied our cluster-weighted methods to a data set of repeated functional evalua-

tions on 175 individuals with spinal cord injuries (SCI). The data were from patients

enrolled in the Christopher and Dana Reeve Foundation’s NeuroRecovery Network

(NRN), an organization of treatment centers across the USA that provide a stan-

dardized, activity-based rehabilitation program to individuals with SCI [26]. While

enrolled in the program, patients are periodically evaluated on their functional capa-

bility approximately every 20 rehabilitation sessions. One of these assessment instru-

ments is the Neuromuscular Recovery Scale (NRS), which consists of 13 functional

tasks developed by NRN researchers designed to measure functional ability of SCI

patients in relation to pre-injury capability [4, 27]. For each functional task, patients

are given an ordinal rating called the patient’s phase, which ranges from 1 to 4 with

the highest rating of phase 4 representing return to pre-injury ability. We considered

responses on 9 of the NRS items; three items were added to the NRS during data

collection and one item that does not incorporate a phase 1 rating were excluded.
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There were very few observations of phase 4 across individuals and tasks, so for the

purpose of this analysis phases 3 and 4 were combined.

The data set contained 892 evaluations from 175 patients. Cluster size, i.e. the

number of evaluations on a patient, ranged from 2 to 24 with a median of 4. From

an empirical standpoint, there are two suspected mechanisms of informativeness in a

marginal analysis of these data: (1) lower functioning patients tend to occupy lower

phases of recovery and also tend to remain enrolled in the NRN longer, (2) enrolled

patients are actively receiving rehabilitation, presumably improving functional ca-

pacity and increasing their phases of recovery. The former mechanism corresponds

to ”negative” informativeness, wherein patients with lower phases tend to contribute

more observations. The latter indicates “positive” informativeness, wherein patients

enrolled longer have more room time over which to improve their phase, thus con-

tributing observations with higher phase with greater frequency. Figure 2 provides a

bar chart of the proportion of individuals in each phase category (1, 2, 3/4) for each

NRS item by the quartiles of the number of evaluations contributed by each patient

– 2, 3, 4-5, and 6+ evaluations. The latter, positive mechanism of informativeness

appears to have been more prominent for the treadmill-based items of the NRS (the

top row of plots in Figure 2), as the proportion of phase 1 observations decreased

over the quartiles for the number of observations. This was also somewhat apparent

in other NRS items, but to an extent less clear and direct than for the three treadmill

items. To formally evaluate informativeness, we implemented a balanced bootstrap

test of ICS proposed by Nevalainen et al. [44] for all 9 NRS items, which suggested

that cluster size was informative for these data (Table 4).

A phase 1 rating represents the greatest impairment relative to normal movement

patterns, indicating that substantial rehabilitation is required for the given functional

task. Given the resource intensiveness of many SCI rehabilitation programs, it can

be of value to estimate the load of phase 1 patients enrolled in the rehabilitation
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Figure 2. Proportion of phase category by quartile of the number of evaluations
contributed by patients for each individual NRS item.

program, i.e. the proportion of patients in phase 1 for NRS tasks at a typical point

in time for the program. While longitudinal analyses of patient progress are often

of interest for data such as these, the question posed in the previous sentence is

marginal in scope for which our proposed method is ideally suited. To this end, we

estimated the cluster-weighted proportion of phase 1 patients for each NRS item.

Table 4 includes estimates and 95% confidence intervals for this proportion calcu-

lated from the cluster-weighted test using a null sandwich variance with p0 = 0.5.

We also compared estimates and intervals from the Dean-Pagano adaptation of the

Agresti-Coull method, a GEE intercept model, and the unweighted estimate. All

tests that account for clustering provided similar estimates and intervals, while the

unweighted estimate was consistently lower than the cluster-weighted estimate, as

would be expected when cluster size is positively associated with functional capabil-
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ity. Moreover, the unweighted interval failed to include the cluster-weighted estimate

in every instance.

We can extend the estimation of the proportion of patients in phase 1 for each

functional task to estimating proportions in the three phases, as well as test against

a null distribution for the three proportions. The estimated cluster-weighted cate-

gory proportions are presented in Table 5, along with test statistics against the null

values p0 = (0.5, 0.4, 0.1) for the cluster-weighted chi-square test using a method of

moments variance and the unweighted chi-square test. Compared against the critical

value χ2
2(.95) = 5.99, both weighted and unweighted tests rejected the hypotheses

that the true phase 1, phase 2, and phase 3/4 proportions are 0.5, 0.4, and 0.1,

respectively. The unweighted test statistics were noticeably larger, due to their inap-

propriate handling of clustering, and were inconsistently rank-ordered relative to the

cluster-weighted test.

Trunk extension in sitting is an NRS item that measures a patient’s ability to

return to a seated position from a forward extension. It is generally recognized that

abdominal control is necessary for normal function of the upper and lower limbs, and

trunk control has been shown to be related to functional recovery of limb movement

in stroke patients [20, 21, 27]. However, for SCI patients the importance of seated

balance in relation to other functional capabilities has not been established [20, 39].

We used the chi square test of independence to test the association between patients’

trunk control, as measured by the trunk extension task, and functionality in other

NRS tasks. Table 5 contains the cluster-weighted with method of moments variance,

Mantel-Haenszel, and unweighted test statistics. All tests rejected the hypothesis of

independence (critical value = χ2
4(.95) = 9.49), in part due to association that is

induced by the escalating difficulty of NRS tasks, e.g. patients rated as phase 1 for

Sit upright will tend to also be phase 1 for Sit to stand. The Mantel-Haenszel and

unweighted test statistics were considerably larger than the cluster-weighted statistics
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Table 4. Application of proportion tests to SCI data

Proportion in Phase 1
Task CW DP-AC GEE UW TF
Stand adaptability 0.41 (0.35, 0.46) 0.41 (0.35, 0.46) 0.39 (0.34, 0.45) 0.34 (0.31, 0.37) 0.001
Step adaptability 0.79 (0.75, 0.83) 0.79 (0.74, 0.83) 0.78 (0.73, 0.82) 0.72 (0.69, 0.75) 0.002
Step retraining 0.30 (0.24, 0.35) 0.30 (0.25, 0.35) 0.27 (0.22, 0.32) 0.22 (0.19, 0.25) 0
Reverse sit up 0.18 (0.14, 0.23) 0.19 (0.14, 0.24) 0.17 (0.13, 0.22) 0.15 (0.12, 0.17) 0.007
Trunk extension 0.67 (0.61, 0.73) 0.67 (0.61, 0.73) 0.67 (0.60, 0.72) 0.62 (0.59, 0.65) 0.012
Sit upright 0.68 (0.62, 0.74) 0.68 (0.62, 0.73) 0.68 (0.61, 0.73) 0.63 (0.60, 0.66) 0.030
Sit up 0.36 (0.31, 0.42) 0.37 (0.31, 0.42) 0.36 (0.30, 0.42) 0.31 (0.28, 0.35) 0.005
Sit to stand 0.74 (0.68, 0.80) 0.74 (0.68, 0.79) 0.74 (0.68, 0.79) 0.70 (0.67, 0.73) 0.045
Stand upright 0.72 (0.66, 0.77) 0.71 (0.66, 0.77) 0.71 (0.66, 0.76) 0.65 (0.62, 0.69) 0.002

Estimated proportion and 95% confidence interval of individuals with SCI in Phase 1 using the cluster-weighted
method with v̂p0

(CW), the Dean/Pagano adaptation of Agresti/Coull method (DP-AC), GEE model (GEE), and
unweighted (UW). TF , p-value from test statistic using the balanced bootstrap scheme of Nevalainen et al. [44]
to test for cluster size informativeness in the NRS task.
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Table 5. Application of goodness of fit and independence tests to SCI data

Estimated Phase Proportions Goodness of Fit Independence
Task Phase 1 Phase 2 Phase 3/4 X2

CW X2
UW X2

CW X2
MH X2

UW

Stand adaptability 0.41 0.54 0.05 31.1 129.4 15.6 58.6 268.2
Step adaptability 0.79 0.20 0.01 121.0 181.9 22.3 48.9 218.0
Step retraining 0.30 0.56 0.14 43.2 301.6 36.7 95.3 203.0
Reverse sit up 0.18 0.74 0.08 90.7 486.3 16.7 58.6 256.1
Trunk extension 0.67 0.22 0.11 44.5 133.5 - - -
Sit upright 0.68 0.25 0.07 30.7 78.1 28.1 97.4 441.1
Sit up 0.36 0.58 0.06 33.9 168.1 10.9 27.0 144.9
Sit to stand 0.74 0.23 0.03 59.0 147.9 18.0 61.2 449.4
Stand upright 0.72 0.25 0.03 57.9 91.9 18.5 65.2 360.3

Goodness of Fit: Estimated cluster-weighted proportions of individuals with SCI in each phase of recovery,
and cluster-weighted using variance Σ̂MM (X2

CW ) and unweighted (X2

UW ) chi-square goodness of fit statistics

testing null phase proportions of 0.5, 0.4, and 0.1. Independence: cluster-weighted using variance Σ̂
d
MM

(X2

CW ), Mantel-Haenazel (X2

MH), and unweighted (X2

UW ) chi-square statistics from tests of independence
with the Trunk Extension task.
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for each task, indirectly indicating that cluster size may have been informative. The

rank-ordering of statistics for the cluster-weighted and Mantel-Haenszel tests were in

general correspondence, with Step adaptability being a notable exception. Using the

magnitude of the chi square statistic as a measure of association, performance on the

Trunk extension task appeared to be most strongly related to Step retraining, a task

completed on the treadmill as part of a patient’s rehabilitation. Among non-treadmill

items, Trunk extension was most strongly related to Sit upright, a physiologically

sensible finding as sitting upright requires good postural and trunk control.

3.5 Discussion

In the analysis of clustered data, methods that account for potential dependence

among observations should be implemented. There are many available methods that

properly account for dependence often found in clustered data. However, these meth-

ods may be biased if there is a relationship between the outcome and the size of the

cluster. In this chapter, we proposed hypotheses tests for marginal parameters of

clustered categorical data that adjust for potential informative cluster size. Further,

we constructed these tests using competing variance estimation techniques and evalu-

ated their performance through simulations. We then applied these cluster-weighted

methods to estimate marginal functional capability proportions and to test marginal

association between functional tasks in a longitudinal data set in which SCI patients

with higher functional ability contributed more observations due to longer program

enrollment. Another potential application of these methods is the analysis tooth-level

dental data, for which much of the development of cluster-weighted methodologies

has been applied [16, 40, 53].

In our establishment of clustered data analogues of proportion, chi square good-

ness of fit, and independence tests, we provided an evaluation of different variance

estimators for Wald-type procedures of cluster-weighted test statistics. It is well
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documented that Wald-based methods can perform poorly in estimating and test-

ing categorical variables when sample sizes are small and when parameters approach

their boundaries, i.e. (0, 1) for proportions. Conventional clustered data methods as

well as ICS-adjusting methods can utilize sandwich variance estimates, which have

been shown to be resistant to model misspecifications, but potentially biased when

the number of clusters is small [35, 38]. These issues were apparent in our simulation

study, as tests constructed from the sandwich variance estimator evaluated at the es-

timated parameter showed inflated size. Score tests often have superior performance

to Wald tests in categorical data analyses. While a true score test in the context of

this paper would require significant assumptions regarding the complex relationship

between the variables and cluster size, it has been suggested that tests with variance

estimates constructed under a null hypothesis are related to score tests. As such, for

each of the three data scenarios we evaluated two tests with variance estimates eval-

uated under the null hypothesis. Our simulation results showed these score-related

tests exhibited sizes closer to nominal compared to tests constructed with empirical

variances or sandwich variances evaluated at the parameter estimate. When testing a

single marginal proportion, the cluster-weighted test using the null sandwich variance

estimator not only maintained appropriate size under all simulation parameters, but

also exhibited the highest power of all comparison tests for p away from 0.5. Tests

using a method of moments variance estimate constructed under the null hypothesis

outperformed tests based on the null sandwich estimator in the goodness of fit and

independence scenarios, perhaps due to the increased number of parameters being

estimated. While these method of moments tests were not the most efficient, they

exhibited superior size to the additional cluster-weighted forms and the loss in power

was minimal.

Regardless of variance estimation method, the tests presented in this chapter

perform consistently across a range of absolute cluster sizes and varying degree of
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informativeness. Additionally, they maintain appropriate size when cluster size is

non-informative (additional simulations provided in online supplementary material).

However, the methods proposed here are asymptotic in nature, and we recommend

their use only when the number of clusters is sufficiently large, approximately 30 or

more.

In working with clustered data, careful attention must be given to defining the

marginal analysis of interest. As previously mentioned, the application of our methods

corresponds to an analysis of a typical member from a typical cluster, in which the

cluster is the primary unit of interest. There are several possible marginal analyses of

clustered data which do not always correspond, particularly in the presence of ICS.

Seaman et al. [49] detail the distinction of interpretations between certain marginal

models, and Lorenz et al. [40] provide a comprehensive review of reweighting methods

corresponding to different marginal analyses. Careful attention to these distinctions

should be considered. In particular, we note for bivariate categorical data, group

membership as well as cluster size can be informative. Under such within-cluster

group size informativeness, the tests proposed in this chapter could be inappropriate

and a weighting method incorporating group membership in the manner presented

in Section 2.5 might be considered.

The cluster reweighting methodology provides a closed-form, computationally un-

burdened method of marginal parameter estimation in clustered data that mitigates

bias from informative cluster size. Its computational ease and applicability have

resulted in developments of rank-based tests, correlation estimation, and survival

methods for clustered data. To our knowledge, this is the first extension of the

marginalization principle to hypotheses tests for categorical data analogous to well-

known methods for independent data. Additionally, this is the first evaluation of

these cluster weighted tests under several methods of variance estimation. Our sim-

ulations show that in the context of clustered categorical data, the choice of variance
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estimation technique can have profound impact on the performance of these tests.

3.6 Supplemental results

Tables 6-9 contain additional simulation results from the binary univariate (propor-

tion), multi-category univariate (goodness of fit), and bivariate (chi square indepen-

dence) categorical data scenarios. Tables 6-8 contain size and power for the reweighted

proportion, goodness of fit, and chi square independence analogs. For the goodness

of fit scenario, size and power are shown for K = 3 for both balanced and unbalanced

category proportions. Results from the chi square independence simulations are for

a 2x2 table. Table 9 contains size estimates for tests of marginal proportion from

data simulated with varying degrees of informativeness and average cluster size. For

these simulations, cluster size ni are simulated from Poisson(b + c ∗ I[ui > 0]) + 1.

The value of c indicates the degree of informativeness; when c = 0, cluster size is

non-informative.

For each data scenario, CW-Emp. is the cluster-weighted test constructed with

empirical variance, CW-SWp̂ is the cluster-weighted test constructed with the sand-

wich variance evaluated at the estimate(s), CW-SW0 is the cluster-weighted test con-

structed with sandwich variance evaluated under the null hypothesis, and CW-MM

is the cluster-weighted test constructed with method of moments variance evaluated

under the null hypothesis. Size and power estimates are calculated as the proportion

of rejections over 10 000 Monte Carlo iterations at nominal size of 0.05.
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Table 6. Empirical size and power for reweighted proportion tests; p = .1, .5

M Test
p = .1 p = .5

Size Power Size Power
δ = 0 δ = .1 δ = .2 δ = .3 δ = 0 δ = .1 δ = .2 δ = .3

50

CW-Emp. 0.078 0.061 0.131 0.298 0.056 0.110 0.259 0.502
CW-SWp̂ 0.079 0.063 0.135 0.308 0.057 0.115 0.265 0.509
CW-SW0 0.054 0.133 0.297 0.525 0.049 0.099 0.244 0.483
CW-MM 0.071 0.053 0.116 0.274 0.049 0.099 0.244 0.483
DP/AC 0.061 0.091 0.216 0.421 0.052 0.106 0.252 0.493

100

CW-Emp. 0.064 0.089 0.275 0.590 0.050 0.157 0.452 0.774
CW-SWp̂ 0.065 0.090 0.279 0.594 0.051 0.160 0.456 0.778
CW-SW0 0.050 0.173 0.447 0.753 0.047 0.151 0.441 0.766
CW-MM 0.061 0.084 0.264 0.576 0.047 0.151 0.441 0.766
DP/AC 0.056 0.130 0.366 0.686 0.049 0.153 0.446 0.770

200

CW-Emp. 0.052 0.157 0.550 0.896 0.056 0.254 0.727 0.965
CW-SWp̂ 0.053 0.158 0.552 0.897 0.056 0.256 0.728 0.965
CW-SW0 0.050 0.254 0.679 0.947 0.054 0.250 0.723 0.964
CW-MM 0.051 0.153 0.544 0.892 0.054 0.250 0.723 0.964
DP/AC 0.050 0.207 0.621 0.928 0.054 0.252 0.726 0.965

DP/AC, Dean and Pagano’s adaptation of Agresti-Coull method.
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Table 7. Empirical size and power for reweighted goodness of fit tests; K = 3

M Proportions Test
Size Power

δ = 0 δ = .1 δ = .2 δ = .3

50

Balanced

CW-Emp. 0.068 0.111 0.240 0.445
CW-SWp̂ 0.072 0.115 0.248 0.455
CW-SW0 0.061 0.102 0.228 0.430
CW-MM 0.053 0.086 0.206 0.394

Unbalanced

CW-Emp. 0.071 0.128 0.270 0.468
CW-SWp̂ 0.074 0.133 0.277 0.476
CW-SW0 0.062 0.082 0.182 0.358
CW-MM 0.055 0.103 0.229 0.423

100

Balanced

CW-Emp. 0.055 0.140 0.376 0.715
CW-SWp̂ 0.056 0.144 0.382 0.719
CW-SW0 0.052 0.136 0.373 0.715
CW-MM 0.048 0.124 0.356 0.696

Unbalanced

CW-Emp. 0.054 0.153 0.395 0.722
CW-SWp̂ 0.055 0.155 0.400 0.726
CW-SW0 0.049 0.111 0.314 0.648
CW-MM 0.046 0.139 0.368 0.701

200

Balanced

CW-Emp. 0.057 0.208 0.652 0.955
CW-SWp̂ 0.058 0.210 0.655 0.955
CW-SW0 0.055 0.206 0.656 0.956
CW-MM 0.054 0.198 0.642 0.952

Unbalanced

CW-Emp. 0.056 0.216 0.654 0.950
CW-SWp̂ 0.057 0.218 0.656 0.951
CW-SW0 0.055 0.178 0.602 0.935
CW-MM 0.052 0.207 0.642 0.947
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Table 8. Empirical size and power for reweighted independence tests; 2x2 table

M Test
Size Power

δ = 0 δ = .1 δ = .2 δ = .3

50

CW-Emp. 0.057 0.084 0.176 0.316
CW-SWp̂ 0.072 0.104 0.212 0.374
CW-SW0 0.072 0.104 0.208 0.364
CW-MM 0.051 0.076 0.162 0.299

100

CW-Emp. 0.053 0.109 0.293 0.544
CW-SWp̂ 0.060 0.118 0.316 0.580
CW-SW0 0.060 0.117 0.312 0.572
CW-MM 0.051 0.104 0.284 0.533

200

CW-Emp. 0.050 0.169 0.517 0.844
CW-SWp̂ 0.054 0.179 0.537 0.859
CW-SW0 0.054 0.177 0.534 0.856
CW-MM 0.049 0.166 0.511 0.842

Table 9. Effect of absolute cluster size and degree of informativeness on tests of
marginal proportion

c CW-Emp. CW-SWp̂ CW-SW0 CW-MM GEE DP/AC UW

b = 5

0 0.055 0.056 0.051 0.051 0.051 0.051 0.225
5 0.059 0.060 0.051 0.055 0.089 0.054 0.789
10 0.055 0.056 0.048 0.052 0.134 0.049 0.975
20 0.053 0.055 0.047 0.050 0.204 0.050 0.999

b = 10

0 0.056 0.057 0.052 0.052 0.054 0.053 0.328
5 0.058 0.059 0.051 0.055 0.059 0.053 0.672
10 0.053 0.055 0.046 0.050 0.066 0.049 0.906
20 0.059 0.060 0.054 0.056 0.085 0.056 0.993

b = 20

0 0.057 0.057 0.049 0.053 0.053 0.052 0.468
5 0.052 0.054 0.048 0.048 0.050 0.048 0.607
10 0.056 0.058 0.048 0.053 0.052 0.053 0.778
20 0.058 0.059 0.050 0.054 0.056 0.054 0.950

Estimated size for tests of marginal proportion across varying average cluster size and
degree of informativeness. Data simulated from M = 100, p = .25, ni from Poisson(b+
c ∗ I[ui > 0]) + 1.
GEE, GEE model; DP/AC, Dean and Pagano’s adaptation of Agresti-Coull method;
UW, unweighted.
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CHAPTER 4

ESTIMATION AND TESTING FOR QUANTITATIVE
DATA

4.1 Introduction

In this chapter, we present a collection of reweighted tests for clustered quantitative

data. We begin this chapter by discussing how incomplete group structure in clus-

tered quantitative values restricts variance estimation methods for reweighted tests,

and describe an alternative technique that accounts for this issue. We then apply the

reweighting principal to derive novel tests of marginal means and variances that par-

allel classical forms, with particular attention on the different approaches to assessing

the equality of variance across intra-cluster groups. The performance of these novel

tests are explored through a simulation study. This chapter additionally includes

summaries of the reweighted rank-based tests and tests of correlation that have been

developed by other authors. These existing tests are included here for cohesion of the

comprehensive R package discussed in the following chapter, and are integrated with

the newly developed tests in a logical progression of methods.

4.2 Variance estimation in tests for quantitative data

In the tests of clustered categorical data in the previous chapter, we compared the

performance of our tests under a number of variance estimation methods. While all

of these methods remain valid for estimators from quantitative data, we encounter
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complications related to group structure that were previously precluded by the cate-

gorical nature of the data. The variance forms discussed in Section 3.2.1 are functions

of group estimates within clusters. If a group estimate does not exist, these func-

tions can not be calculated. Thus, the variance forms are not defined when data

have incomplete group structure. However, the reweighted tests of categorical data

in Chapter 3 were based on proportions. Group proportions within clusters are de-

fined
n
(k)
i

ni
, so even when n

(k)
i = 0 these proportions have a defined values. As such,

incomplete clusters thus retain a form of “completeness” that allow us the range in

variance estimation techniques without assuming complete group structure.

This quality of “completeness” is not retained for statistics of reweighted quanti-

tative data. In order to use the variance estimation methods of the previous chapter

in the quantitative tests derived here, we would have to assume complete group struc-

ture. This is an unrealistic assumption that would lessen the utility of the proposed

tests. Additionally, it might encourage analysts to throw out incomplete clusters in

order to implement the tests. This would not only waste valuable data but also raise

questions on the data missingness structure. Therefore, we avoid these issues by esti-

mating variance in the novel tests using an alternative variance estimation technique

which we describe below.

The delete-one jackknife is a nonparametric method that estimates the variance

of a statistic by repeatedly calculating the statistic after systematically removing one

observation. It is known to be consistent in large samples for a wide class of estima-

tors, and has been extensively studied [17, 29, 50]. As clusters are the unit of interest

for the marginal analysis in question, this process corresponds to systematically re-

moving each cluster. Such a “delete-one-cluster” jackknife method has previously

been used to estimate the variance of a statistic for reweighted quantities [16]. As

this method is applicable regardless of the observed group structure, we implement

this technique in estimating the variance of the reweighted statistics in this chapter.
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We briefly summarize the process here.

Let T be the statistic of interest calculated from the full data, and T(i) be the

statistic computed when the ith cluster is removed. Define pseudovalues as pi =MT−

(M −1)T(i). The jackknifed estimate of the variance of T is V̂JK = 1
M(M−1)

∑M

i=1(pi−

p̄)2, where p̄ = 1
M

∑M

i=1 pi. Defining T̄ = 1
M

∑M

i=1 Ti, this can be simplified to

V̂JK =
M − 1

M

M∑

i=1

(
T(i) − T̄

)2
. (4.1)

The above form denotes the jackknife variance form when T is a scalar. This

is easily extended to a covariance matrix when T is a vector, expressed as Σ̂JK =

M−1
M

∑M

i=1

(
T(i) − T̄

) (
T(i) − T̄

)T
. Hinkley [28] showed that the jackknife variance

does not account for the unbalanced nature of multiparameter data, and in the con-

text of linear modeling proposed a modification using reweighted pseudovalues. This

reweighting is a function of the projection matrix, making it untenable for our pur-

poses. However, it has been demonstrated that this reweighting is closely approxi-

mated by the correction factor N
N−P

in the bootstrap variance, where N is the sample

size and P is the number of model parameters [55]. Therefore, we implement this

correction and use the variance estimate M
M−K

Σ̂JK for tests in which T is a vector of

length K.

4.3 Tests of means

The objective of this dissertation is the development of a collection of hypothesis tests

analogous to frequently implemented standard statistical methods. Tests of means

are perhaps the most obvious candidates for cluster-weighted adaptation due to their

prominence in classical statistics. Therefore, it is natural that we begin this chapter

on tests of quantitative data with analogs of the classical t-test and ANOVA tests.
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4.3.1 One sample - t-test analog

Previous authors have begun the development of a cluster-weighted t-test analog.

Datta et al. [9] use a modified cluster-weighted t-test as a benchmark for their

signed-rank tests in simulation studies, while Nevalainen et al. [43] provide a formal

derivation of this statistic. The construction of this test is straightforward. For

θ = E[Xij ], the hypothesis of interest is H0 : θ = θ0. We have previously derived the

statistic θ̂ = 1
M

∑M

i=1 X̄i for this hypothesis in equation (xx) using the marginalization

principle, and note its equivalence to the statistic derived by Nevalainen et al. using

functionals. H0 can then be tested by comparing

Z =
θ̂ − θ0√

σ̂2

M

to the quantiles of the standard normal distribution. Group notation is not required

for this test, allowing σ̂2 to be estimated using any of the methods discussed in the

previous chapter. We note that a method of moments variance constructed under

H0 is consistent with the second moment variance estimate of Nevalainen et al., and

suggest σ̂2 = 1
M

∑M

i=1
1
n2
i

(∑ni

j=1Xij − θ0

)2

. The extension of this test to paired data

follows in the usual manner.

4.3.2 Two sample - t-test analog

While a reweighted one-sample t-test analog is straightforward and has been previ-

ously discussed, an extension to the two-sample test requires additional considerations

and, to our knowledge, has not previously been explored.

In an analogue of the two-sample t-test, we wish to test H0 : θ(1) = θ(2), where

θ(k) = E[X
(k)
ij ]. In the construction of such a test, two potential issues arise that

were irrelevant in the one-sample analog. First, group size as well as cluster size

could be informative. If there exists an association between number of observations

within a group and the measured values in that cluster (e.g., clusters with more
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group 1 observations tend to have larger values), a test that corrects for ICS could

still be biased. Second, it’s possible that data will be collected in which not all

clusters contain observations belonging to both groups. The effect of incomplete

group structure on the parameter estimates and variance estimation methods should

be considered. We can address both of these issues by applying the reweighting

method from Section 2.5.2, which corrects for IWCGS and allows for incomplete

clusters. Recall that M (c) is the number of complete clusters, M (k) is the number of

incomplete clusters that contains observations belonging only to group k, and X̄
(k)
i

is the group k average from cluster i. We estimate the marginal group 1 mean as in

formula (2.4)

θ̂(1) =
1

1
2
M (c) +M (1)

M∑

i=1

{
1

2
X̄

(1)
i I[n

(1)
i > 0, n

(2)
i > 0] + X̄

(1)
i I[n

(1)
i > 0, n

(2)
i = 0]

}

and similarly estimate the marginal group 2 mean as

θ̂(2) =
1

1
2
M (c) +M (2)

M∑

i=1

{
1

2
X̄

(1)
i I[n

(1)
i > 0, n

(2)
i > 0] + X̄

(2)
i I[n

(1)
i = 0, n

(2)
i > 0]

}
.

Define T = θ̂(1) − θ̂(2). With an estimate of the variance of T , V̂ (T ), we can test H0

using the standardized statistic T−E[T ]√
V̂ (T )

, which asymptotically follows the standard

normal distribution. Under H0, E[T ] = 0. We can obtain an estimate of V̂ (T ) using

the jackknife approach.

We note that this test is easily extended to testing hypotheses of the form H0 :

θ(1) = θ(2) + c by replacing E[T ] in the standardized statistic with c.

4.3.3 K-group - ANOVA analog

A natural extension of 4.3.2 is the testing of equality of K group means. Therefore,

we propose an omnibus reweighted test analogous to the standard one-way analysis

of variance (ANOVA) test for independent observations. While the classical ANOVA

method performs a test of equality of group means by comparing the ratio of intra-

group to inter-group variability using an F distribution, the analog test for clustered
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data is most easily approached using the asymptotic normality of the cluster-weighted

group means.

Recall that Kc
i denotes the number of groups observed in cluster i, Kc

i = 1, . . . , K,

and X̄
(k)
i = 1

n
(k)
i

∑n
(k)
i

j
′=1

X
(k)

ij
′ denotes the kth group average in cluster i. Define

K
(k)
i =





Kc
i , if n

(k)
i > 0

0, otherwise.

By extending (2.4) to the K-group case, the kth group mean is defined

θ̂(k) =
1

M̃ (k)

K∑

Kc
i=1

M∑

i=1

[
1

Kc
i

X̄
(k)
i I[K

(k)
i = Kc

i ]

]
, (4.2)

where M̃ (k) =
∑K

Kc
i =1

1
Kc

i

∑M

i=1 I[K
(k)
i = Kc

i ]. The notation of estimate (4.2) belies

its true simplicity. For data with complete group structure, θ̂(k) is simply the overall

average of the intra-cluster group k averages. The introduction of Kc
i and K

(k)
i in

this notation is to account for weighting and marginalization resulting from varying

selection probabilities from incomplete clusters.

The vector of group-weighted means for allK groups is θ̂ =
(
θ̂(1), . . . , θ̂(K)

)T
. The

hypothesis of interest is H0 : θ(1) = θ(2) = . . . = θ(K), equivalently stated with the

K − 1 composite hypotheses H0 : θ
(1)− θ(2) = 0, θ(2)− θ(3) = 0, . . . , θ(K−1)− θ(K) = 0.

By applying the (K − 1)×K contrast matrix

C =




1 −1 0 0 . . . 0

0 1 −1 0 . . . 0

...
...

...
...

. . .
...

0 0 0 . . . 1 −1




the hypothesis of interest can be expressed H0 : Cθ = 0. This can be tested using

the statistic

X2 =M
(
Cθ̂

)T (
CΣ̂C

)−1 (
Cθ̂

)
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where Σ̂ is a variance estimate of θ̂. We estimate Σ̂ using the jackknife technique,

applying the correction factor M
M−K

. X2 follows a chi square distribution with K − 1

degrees of freedom.

4.4 Rank-based tests

The reweighted rank-based hypothesis tests that have previously been established

include a rank sum test [10], signed rank test [11], and an extension of the rank sum

test correcting for IWCGS [16]. These tests use the general form

Z =
S − E [S]√

V̂ (S)
(4.3)

where S is a statistic, E[S] is the statistic’s expected value under the null hypothesis,

and V̂ (S) is an estimate of the variance of S. The standardized statistic, Z, is

asymptotically normal under mild regularity conditions.

While the expression of S varies across these tests, the derivation follows that

described in Section 2.4. LetW ∗ represent the traditional form of the desired statistic

applied to a data set formed by one iteration of the WCR process. The cluster-

weighted statistic is derived by applying a marginal expectation calculation to W ∗

with respect to the resampling process, conditioned on the entire collection of original

data V. This can be generalized as

S = E [W ∗|V] . (4.4)

4.4.1 Rank sum test for ICS

For the jth observation from cluster i, we observe (Xij , Gij) , 1 ≤ i ≤ M, 1 ≤ j ≤ ni,

whereGij denotes the group membership (0 or 1) for outcomeXij. Let ni1 =
∑ni

j=1Gij

denote the number of group 1 observations in cluster i. The null hypothesis is that the

two groups follow the same distribution, formalized as P (Xij ≤ x|Gij = 0, ni, ni1) =

P (Xij ≤ x|Gij = 1, ni, ni1) = F (x). A single WCR iteration produces the data set
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(X∗
i , G

∗
i ), i = 1, . . . ,M . Applied to this data set, the Wilcoxon rank sum statistic is

W ∗ = 1
M+1

∑M

i=G
∗
iR

∗
i , where R

∗
i = 1 + 1

2

[∑
i
′
6=i I

[
X∗
i
′ ≤ X∗

i

]
+
∑

i
′
6=i I

[
X∗
i
′ < X∗

i

]]
.

The cluster-weighted rank sum statistic proposed by Datta and Satten [10] is derived

by performing the expectation calculation of (4.4) on W ∗, and results in the equation

S =
1

M + 1

M∑

i=1

ni∑

j=1

Gij

ni


1 + 1

2

∑

i
′
6=i

[Fi′ (Xij) + Fi′ (Xij−)]


 ,

where Fi (x) = 1
ni

∑ni

j=1 I [Xij ≤ x]. To test the null hypothesis using the stan-

dardized statistic (4.3), Datta and Satten show that E [S] = 1
2

∑M

i=1
ni1

ni
, and use

a Hájek projection of S to estimate the variance of S. This variance estimate is

V̂ (S) =
∑M

i=1

[
Ŵi − E[Wi]

]
, where

Ŵi =
1

2ni (M + 1)

ni∑

j=1


(M − 1)Gij −

∑

i
′
6=i

ni′1
ni′



[
F̂ (Xij) + F̂ (Xij−)

]
,

F̂ =

∑M

i=1 niFi
n

,

and

E [Wi] =
M

2 (M + 1)


ni1
ni

− 1

M

M∑

i
′
=1

ni′1
ni′


 .

4.4.2 Rank sum test for IWCGS

Dutta and Datta [16] demonstrate that the cluster-weighted rank sum test [10] can be

biased in the presence of IWCGS, and propose a modified test weighted by the intra-

cluster group size. This group-weighted statistic is derived in a similar fashion to

that in 4.4.1. The Wilcoxon rank sum statisticW ∗, defined as in 4.4.1, is applied to a

resampled data set. The only difference is the pseudo data set (X∗
i , G

∗
i ), i = 1, . . . ,M ,

is based in a two-step resampling method, previously described in Section 2.5. The

expectation calculation of (4.4) is then applied to W ∗, with respect to the modified

resampling. The result is defined below.
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Let X
(1)
i =

{
X

(1)
i1 , . . . , X

(1)
ini1

}
be the set of observations belonging to group 1 in

cluster i, X
(0)
i be similarly defined for the set of observations belonging to group 0,

and let ni0 = ni − ni1 denote the number of group 0 observations in cluster i. In the

case of complete clusters, the group-weighted rank sum statistic can be expressed as

S =
1

M + 1

M∑

i=1




ni∑

j=1

1

2ni1


1 + 1

2

∑

i
′ 6=i

[
Fi′

(
X

(1)
ij

)
+ Fi′

(
X

(1)
ij −

)]



 ,

where

Fi (x) =
1

2ni1

ni1∑

k=1

I
[
X

(1)
ij ≤ x

]
+

1

2ni0

ni0∑

k
′
=1

ni0∑

k
′
=1

I
[
X

(0)

ik
′ ≤ x

]
.

The expected value of S under the null hypothesis is E [S] = M
4
, and the variance

can be estimated using a delete-one-cluster jackknife technique. The standardized

form of the statistic can then be calculated using (4.3). In the case of data with

incomplete clusters, Dutta and Datta [16] provide a modification of the statistic

which is omitted here for brevity.

4.4.3 Signed-rank test

The reweighted signed-rank test [11] is used to test for marginal symmetry of paired

clustered observations with ICS. Let Xij be the pair-specific difference in the out-

come of interest and F (x) = E
[

1
ni

∑ni

j=1 I [Xij ≤ x]
]
. The null hypothesis is H0 : F

is symmetric around 0 against the alternative that F is not symmetric. As in 4.4.1

and 4.4.2, the cluster-weighted signed-rank statistic is derived by first considering

a resampled data set X∗
i , i = 1, . . . ,M , from a single WCR iteration. The tradi-

tional signed-rank statistic, W ∗ =
∑M

i=1R
∗+
i sign (X∗

i ), is then calculated from this

resampled data, where R∗+
i = 1

2

[∑M

i
′
=1 I

[
|X∗

i
′ | ≤ |X∗

i |
]
+
∑M

i
′
=1 I

[
|X∗

i
′ < |X∗

i
′ |
]]

and

sign (x) = I [x > 0] − I [x < 0]. The conditional expectation calculation of (4.4) ap-

plied to W ∗ leads to:

S =
M∑

i=1

(
n+
i − n−

i

ni

)
+

M∑

i=1

1

ni

ni∑

j=1

sign (Xij) D̂i (|Xij|) ,
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where

D̂i (x) =
∑

i
′
6=i

Ĥi
′ (x) ,

Ĥi (x) =
1

2ni

[
ni∑

j=1

I [|Xij| ≤ x] +

ni∑

j=1

I [|Xij| < x]

]
,

n∗+
i =

ni∑

j=1

I [Xij > 0] ,

n∗−
i =

ni∑

j=1

I [Xij < 0] .

The variance of S is estimated by the summands of the Hajek projection of S,

V̂ (S) =
∑M

i=1 σ̂
2
i , where

σ̂i =
n+
i − n−

i

ni
+

(
M − 1

ni

) ni∑

j=1

sign (Xij) Ĥ (|Xij|) ,

Ĥ (x) =
M∑

i=1

niĤi(x)

n
.

As E [S] = 0 under the null hypothesis, the standardized test statistic of (4.3) sim-

plifies to Z = S√
V̂ (S)

.

4.5 Tests of variance homogeneity

In Sections 4.3 and 4.4, we presented hypothesis tests related to central tendency.

Other analyses might be concerned with dispersion of groups defined within clusters.

In the i.i.d. setting, tests of central tendency can be contingent on relative variability

among groups. In the clustered data setting, assessing equality of variance is an

important element in genetic modeling of twin data [32]. In this section, we apply

the reweighting methodology to tests of variance of intra-cluster groups. We first

focus on tests of equality of variances for two groups, resulting in analogs of the

classical F and Levene’s tests. We then extend the method to K groups, deriving a

reweighted analog of Bartlett’s test.
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4.5.1 Test for 2 groups using moments - F test analog

In the i.i.d. setting, letting σ2
k denote the variance of population k, the classical F

test assesses the hypothesis H0 : σ2
1 = σ2

2 by leveraging standardization of normally

distributed random variables and the relationship between the chi square and F

distributions. The distributional foundations of this test make deriving a reweighted

analog though conditional expectation calculations difficult. Instead, a reweighted

test of variance equality between two groups is more easily approached through the

estimation of moments, as in Lorenz et al. [40].

In the clustered setting, the marginal moment for group k is defined m
(k)
a =

E
[
(X(k))a

]
and is estimated by

m̂(k)
a =

1

M̃ (k)

M∑

i=1

wij

n
(k)
i∑

j=1

(
X

(k)
ij

)a

where wij is the weight defined by (2.5) and M̃ (k) is defined as in (4.2). The marginal

variance of group k can be expressed σ2
k = E

[
(X(k))2

]
−

(
E
[
X(k)

])2
. Let m̂ =

(
m̂

(1)
1 , m̂

(2)
1 , m̂

(1)
2 , m̂

(2)
2

)
. We seek to test H0 : σ2

1 = σ2
2. Letting the vector s =

(s1, s2, s3, s4) represent the four moments, define

Fr = gr (s) =
s3 − s21
s4 − s22

(4.5)

We can estimate Fr by applying formula (4.5) to the first and second raw sample

moments of groups 1 and 2: F̂r = gr (m̂). Under the null hypothesis of equality of

group variances, E[Fr] = 1 and we can test H0 by comparing F̂r−1

V̂ (F̂r)
to the quantiles

from the standard normal distribution. V̂
(
F̂r

)
, an estimate of the variance of F̂r, is

obtained using the jackknife method.

Note that in contrast to the other statistics presented thus far, F̂r is not the

result of a conditional expectation calculation performed on the traditional F statistic

calculated from a single resampling. Instead, the m̂
(k)
a estimates are the result of the

conditional expectation detailed in Section 2.5.2 applied to the first and second sample
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moments calculated from a resampled data set, and F̂r is a smooth function of these

estimators.

F̂r is the natural functional form for the reweighted F statistic as it mimics the

ratio form of the classical test. An alternative statistic can be defined based on

differences in variations rather than ratios,

Fd = gd (s) =
(
s3 − s21

)
−
(
s4 − s22

)

Under H0, E[Fd] = 0. We can test H0 by applying this form to the vector of

reweighted moments, F̂d = gd (m̂), once again using the standardized form F̂d√
V̂ (Fd)

and calculating V̂ (Fd) using the jackknife method.

While testing H0 : Fr = 1 is tantamount to testing H0 : Fd = 0, the convergence

in distribution of F̂r and F̂d may not occur at the same rate. Therefore, we compare

the performance of the respective tests of F̂r and F̂d through simulations in Section

4.7.4.

4.5.2 Test for 2 groups using transformations - Levene test analog

The traditional F test is well-known to be heavily reliant on the assumption that

observations are normally distributed, and performs poorly when this assumption is

violated. A robust alternative is the test by Levene [37], which implements a one-way

ANOVA on the centered absolute values of observations. That is, for independent

observations X
(k)
i , Levene’s test transforms the data to Z

(k)
i = |X(k)

i − X̄(k)| where

X̄(k) is a measure of central tendency for group k. An ANOVA-based F test is then

performed on these transformed values. Levene originally proposed centering based

on group means, but it has been demonstrated that centering around trimmed means

or medians can offer improved performance when data are not normally distributed.

The ability to assess equality of variances when data is non-normally distributed has

made Levene’s test a standard addition to statistical practice.
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Iachine et al. [32] extended Levene’s test to clustered data by noting the cor-

respondence between ANOVA and linear regression. For independent observations,

rather than applying ANOVA to the transformed values, a test for variance equality

could instead be performed by modeling

E[Z(k)] = β0 + β1I[k = 2], k = 1, 2 (4.6)

and testing H0 : β1 = 0 using a Wald test. Iachine et al. leverage the regres-

sion form and test variance equality in clustered data by performing the regression

(4.6) through a cluster-appropriate modeling method, e.g., GEE. They demonstrate

through simulations that, with appropriate sample size, this clustered version of Lev-

ene’s test closely maintains nominal size for clustered data under both normality and

non-normality, with the transformation based on trimmed mean exhibiting the best

performance.

As has been previously discussed, GEE models can produce biased estimates when

data have cluster- or group-size informativeness. This makes the clustered variant

of Levene’s test a potentially poor choice for data with plausible ICS/IWCGS. We

introduce a Levene’s test analog that accounts for informativeness by observing that a

Wald test of the group indicator coefficient from regression model (4.6) is equivalent

to performing a test of mean equality of the Z-transformed data between the two

groups. We previously constructed a reweighted test of mean equality in Section

4.3.2. By similarly transforming our data as is done in the classical and clustered

Levene’s tests, we can test H0 : σ2
(1) = σ2

(2) by applying the reweighted two-sample

t-test analog to the transformed data.

This method is conducted as follows. As in the classical and clustered Levene’s

tests, define a new variable Z
(k)
ij = |X(k)

ij − θ̃(k)|, where θ̃(k) is a measure of central

tendency for group k. Let µ(k) = E[Z
(k)
ij ], and µ̂(k) represent the reweighted mean

of the transformed Z
(k)
ij values using the reweighting method of Sections 2.5.2. That

is, for complete clusters, µ̂(k) = 1
M

∑M

i=1
1

n
(k)
i

∑n
(k)
i

j
′
=1
Z

(k)

ij
′ . This form can be similarly
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modified under incomplete clusters in the manner previously described. We then test

equality of marginal variances by standardizing T = µ̂(1)−µ̂(2), T

V̂ (T )
, estimating V̂ (T )

using the jackknife method. Under the null hypothesis, T

V̂ (T )
asymptotically follows

the standard normal distribution.

In correspondence with the original Levene’s test and the methods of Iachine

et al. [32], we compare the performance of this method using three forms of θ̃(k)

corresponding to a mean, trimmed mean, and median. The weighted group means

θ̃(k) = θ̂(k) have previously been defined in (4.2). We estimated trimmed mean and

median as functionals from the reweighted emperical CDF (2.5) in the manner of

Nevalainen et al. [43]. This is conducted by calculating the empirical CDF and

identifying the weighted quantiles (median, α100% tails), with the α-trimmed mean

defined as the weighted mean after removing the α100% upper and lower tails.

4.5.3 Extension to K groups

Testing equality of variance among K groups in the classical setting is done through

extensions of the F -test (Bartlett’s test) or Levene’s test. While the clustered Levene

test by Iachine et al. [32] was presented in the context of assessing variance equality for

2 groups, it can be used to compare variances acrossK groups by fitting a GEE model

to the group factor and testing significance of that factor. Similarly, we can extend

the reweighted method in the previous section to the K group setting. Recognizing

the relationship between the reweighted 2-group and K-group tests of means, this

is a straightforward process. By the same principal that motivates a 2-sample test

of means on the transformed Z values in the two group case, we can test equality

of K variances by implementing the test of K mean equality from Section 4.3.3 on

the transformed values. Let µ̂ = (µ̂(1), . . . , µ̂(K))T , where µ̂(k) represents the weighted

group means of the transformed Z-values as defined in the section above. To test
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H0 : σ
2
1 = σ2

2 = . . . = σ2
K , we use the statistic

X2 =M (Cµ̂)T
(
CΣ̂C

)−1

(Cµ̂)

where C is the contrast matrix defined in Section 4.3.3 and Σ̂ is the jackknifed variance

estimate of µ̂.

4.6 Tests of correlation

A number of marginal correlation estimators for clustered data with potential ICS

have been developed. For paired clustered data, Lorenz et al. [39] proposed analogs

of the Pearson and Kendall correlation coefficients. An additional paper expanded

upon that work [40], generalizing the reweighting of paired correlation estimators and

extending the method to develop marginal correlation estimators for data unpaired

at the cluster level, including the development of Spearman coefficient analog. We

restrict our attention to correlation estimators for paired clustered data as they are

the most natural and interpretable. As such, we will adapt the Spearman coefficient

proposed in the unpaired case to the paired case. Hypothesis tests based on these

estimators and their variance estimates can be applied in the usual manner using the

standardized test statistic (4.3).

Let (Xij, Yij) be the jth bivariate observation from cluster i, and let M and ni

be defined as above. The reweighted Pearson and Kendall coefficients for paired

clustered data [39] are based on Equation (4.4) applied to a resampled data set in

which one paired observation has been selected at random from each cluster.

The marginal Pearson correlation analog for paired data is expressed using the

standard product moment formula

ρ = g(w) =
w3 − w1w2√

(w4 − w2
1)(w5 − w2

2)
(4.7)

The cluster-weighted estimator of ρ is ρ̂p = g(ŵ), where ŵ = (ŵ10, ŵ01, ŵ11, ŵ20, ŵ02)

and ŵkl = 1
M

∑M

i=1
1
ni

∑ni

j=1X
k
ijY

l
ij. Like F̂r and F̂d from Section 4.5.1, ρ̂p is not
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obtained directly from a conditional expectation calculation, but instead is a smooth

function of reweighted estimates of the first and second sample moments. Defining

ŵkli =
1
ni

∑ni

j=1X
k
ijY

l
ij and ŵi = (ŵ10i, ŵ01i, ŵ12i, ŵ20i, ŵ02i), the variance of ρ̂p can be

estimated using the empirical variance-covariance matrix of ŵi in conjunction with

the delta method.

In addition to the cluster-weighted Pearson-type estimator, Lorenz et al. [39] de-

velop a non-parametric marginal correlation estimator for paired clustered data anal-

ogous to the standard Kendall correlation estimator. The cluster-weighted Kendall

estimator is derived through the U-statistic formulation of the Kendall coefficient,

and is expressed as

τ̂ = 2

(
M

2

)−1 M−1∑

i=1

M∑

i
′
6=i

1

nini′
I
[
(Yi′n′ − Yij)

(
Xi

′
j
′ −Xij

)
> 0

]
− 1 (4.8)

The asymptotic variance of 4.8 can be estimated using the Hajek projection of τ̂ , and

takes the form σ̂2
τ =

M
M−1

∑ni

j=1

(
Ŝi − S̄

)2

, where

Ŝi =
4

Mni

ni∑

j=1

(
F̂ l (Xij , Yij) + F̂ r (Xij , Yij)

)
,

F̂ l (x, y) =
1

M

M∑

i=1

1

ni

ni∑

j=1

I [Xij < x, Yij < y] ,

F̂ r (x, y) =
1

M

M∑

i=1

1

ni

ni∑

j=1

I [Xij > x, Yij > y] ,

and

S̄ =
1

M

M∑

i=1

Ŝi.

The Spearman coefficient can be expressed using the product moment formula

(4.7), where the expression is evaluated at the rank moments. While Lorenz et

al. [40] only explicitly state a Spearman coefficient analog for the case of unpaired

clustered data, their methodology is easily modified to accommodate paired data. The

weighted rank functions previously used in the rank sum and signed rank tests from
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Sections 4.4.1 and 4.4.3 are used to define the rank of Xij among all X observations

as RXij
= 1

2

[
F̂X (Xij) + F̂X (Xij−)

]
, where F̂X (x) = 1

M

∑M

i=1 FXi
(x) and FXi

(x) =
∑ni

j=1 I [Xij ≤ x]. Functions for RYij , F̂Y (y), and FYi (y) are similarly defined. The

paired rank moments are expressed as r̂kl =
∑M

i=1

∑ni

j=1
1
ni
Rk
Xij
Rl
Yij

, and the paired

marginal Spearman correlation analog is then ρ̂s = g (r̂10, r̂01, r̂11, r̂20, r̂02). A variance

estimate for ρ̂s can be obtained using a delta method calculation.

4.7 Simulations

We evaluated the performance of the novel tests of means from Section 4.3 and the

tests of variance from Section 4.5 through a simulation study. We compared size

and power of these tests to their classical counterparts for independent observations

and a cluster-appropriate alternative. Empirical size and power for each method was

calculated as the number of rejections of the null hypothesis for each test at a nominal

level of .05 over 10,000 Monte Carlo iterations. To evaluate the effect of sample size

on the proposed tests, we performed each simulation scenario for M = 30, 50, and

100 clusters.

4.7.1 Simulation design for tests of means

To simulate quantitative data with an informativeness structure related to group

means, we generated multivariate random effects (u
(1)
i , . . . , u

(K)
i ) from a multivariate

normal distribution NK(0,ΣK), where ΣK is a KxK symmetric matrix with 1 on

the diagonal and .2 on the off-diagonal. Within-cluster group sizes were generated as

n
(k)
i ∼ Poisson(5 + 5 ∗ u(k)i ), with cluster size defined as ni =

∑K

k=1 n
(k)
i . In the event

ni = 0, group sizes were re-simulated from n
(k)
i ∼ Poisson(5+5∗u(k)i )+1. We defined a

categorical random variable Gij, taking values {1, 2, . . . , K}, so that n
(k)
i observations

belonged to group k. Let xij = (x
(1)
ij , . . . , x

(K−1)
ij )T , where x

(k)
ij = I[Gij = k]. We

defined the quantitative variable tij = u
(Gij)
i + eij +

∑K−1
k=1 δ

(k)I[Gij = k], where eij
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were simulated from N(0, 1) independently of ui and n
(k)
i , and δ(k), k = 1, . . . , (K−1)

are parameters used to induce differences in group means for the purpose of assessing

power. Simulations for the 2-sample t-test analog from Section 4.3.2 correspond to

K = 2, while simulations for the ANOVA analog test of 4.3.3 were run for K = 3

and K = 5. We performed simulations for size, corresponding to δ(k) = 0 for all

k, and three forms of power. To evaluate power when K = 2, we set (δ1, δ2, δ3) =

(.25, .5, .75). For K = 3, δ1 = (δ
(1)
1 , δ

(2)
1 ) = (.14,−.14), δ2 = (.28,−.28), and δ3 =

(.42,−.42). For K = 5, δ1 = (.10, .15,−.10,−.15), δ2 = (.20, .30,−.20,−.30), and

δ3 = (.30, .45,−.30,−.45). Under this design, the data are normally distributed

with variance of 2 and equal means when δ is 0, and different means when δ 6= 0.

Informativeness is induced through the relationship between the random effects and

group sizes. Within each cluster, groups with large positive (negative) random effects

tend to have more (fewer) observations, and those observations tend to have larger

(smaller) values.

4.7.2 Simulation results for tests of means

Table 10 contains the results for the reweighted 2-group t-test analog from 4.3.2, and

Table 11 contains results for the test of K-group equality from Section 4.3.3. In

both tables, we compare the reweighted tests (RW) with their classical analog (UW)

and a GEE model using exchangeable correlation structure (GEE). The heading δ0

indicates size, while δd, d = 1, 2, 3 denotes the three power simulations. As would

be expected, the traditional two-sample t-test and ANOVA tests that ignore cluster

membership are heavily biased. The GEE models exhibited mild to moderate bias,

with bias increasing with the number of groups and decreasing with sample size. The

reweighted tests maintained appropriate size when K = 2 and 3 for all M . When

K = 5, the reweighted ANOVA-analog test was mildly biased under the smallest

sample, but exhibited appropriate size as the number of clusters increased.
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Table 10. 2-sample test of means; empirical size and power.

M Test δ0 δ1 δ2 δ3

30
RW 0.0535 0.1588 0.4589 0.7897
GEE 0.0850 0.2008 0.4938 0.7902
UW 0.3602 0.5001 0.7763 0.9406

50
RW 0.0495 0.2257 0.6656 0.9463
GEE 0.0730 0.2437 0.6529 0.9287
UW 0.3539 0.5822 0.8888 0.9865

100
RW 0.0486 0.4005 0.9247 0.9985
GEE 0.0602 0.3924 0.8985 0.9971
UW 0.3563 0.7330 0.9801 0.9997

RW, reweighted test; GEE, GEE model; UW, un-
weighted classical t-test.

Table 11. K-sample test of means; empirical size and power.

M Test
K = 3 K = 5

δ0 δ1 δ2 δ3 δ0 δ1 δ2 δ3

30
RW 0.0519 0.1370 0.4202 0.7640 0.0605 0.1663 0.5339 0.8713
GEE 0.1167 0.2160 0.5121 0.8116 0.1903 0.3353 0.6918 0.9296
UW 0.5189 0.6543 0.8622 0.9729 0.7250 0.8342 0.9663 0.9978

50
RW 0.0515 0.2020 0.6447 0.9430 0.0576 0.2419 0.7639 0.9837
GEE 0.0871 0.2607 0.6734 0.9432 0.1290 0.3498 0.8134 0.9874
UW 0.5284 0.7117 0.9424 0.9958 0.7309 0.8825 0.9912 0.9999

100
RW 0.0547 0.3709 0.9236 0.9987 0.0527 0.4649 0.9796 1.0
GEE 0.0711 0.3889 0.9159 0.9991 0.0848 0.4870 0.9773 1.0
UW 0.5308 0.8284 0.9944 1.0 0.7241 0.9497 0.9998 1.0

RW, reweighted test; GEE, GEE model; UW, unweighted classical ANOVA test.

4.7.3 Simulation design for tests of variance

We compared performance of the variance tests using a random effects design modified

from the previous simulation. Group random effects (u
(1)
i , . . . , u

(K)
i ) were simulated

from a multivariate normal distribution NK(0,ΣK), where ΣK = σ2 ∗ Ik, σ2 was set

to 4, and Ik denotes the K × K identity matrix. We ran simulations for K = 2, 3,

and 5 groups. Group sizes were generated from

n
(k)
i ∼ Poisson(8 + ckI[|u(k)i | > σ])
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where

ck =





4, if k odd

−4, otherwise.

Cluster size was defined as ni =
∑K

k=1 n
(k)
i . In the event any ni = 0, group sizes for

the empty clusters were re-simulated. When K = 2, group sizes were re-simulated as

n
(k)
i ∼ Poisson(8 + ckI

[
|u(k)i | > σ

]
) + 1. For the K = 3, 5 scenarios, empty clusters

had a random group selected uniformly from 1 : K, and n
(k)
i was simulated from

Poisson(8) + 1.

A categorical group variable Gij taking values 1, 2, . . . , K was defined so that

in cluster i, n
(k)
i observations belonged to group k. We defined Wij = u

(Gij)
i + eij,

where eij ∼ N(0, 1). As u
(k)
i and eij were simulated independently, Wij ∼ N(σ2 +

1). Following the simulation design of Iachine et al. [32], we applied a non-linear

transformation defined by

Xij = a(Gij)g(Wij). (4.9)

Here, a(k) is a scalar that generates differences in group variances. When the ratio
(
a(k)

)2
:
(
a(k

′)
)2

= 1 for all k, k
′

, simulations were under the null hypothesis of equal

group variances. Power was assessed by varying the a(k) values across the K groups.

When K = 2, power simulations were evaluated for ratios 1.5, 2.0, and 2.5. To

evaluate power when K = 3 and 5, the values a2 =
(
(a(1))2, . . . , (a(K))2

)
were the

columns of the matrices



1.2 1.4 1.6
1.1 1.2 1.3
1.0 1.0 1.0


 ,

and 


1.3 1.6 1.9
1.2 1.4 1.6
1.1 1.2 1.3
1.0 1.0 1.0
1.0 1.0 1.0



.
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In the classical setting, Levene’s test is preferential to the F test due to its robust-

ness against non-normality. To evaluate the performance of the reweighted tests of

variance under varied distributions, we ran simulations for three marginal distribu-

tions. The data Xij, as defined in (4.9), was generated though a transformation g(x),

which induced the distinct distributions. The transformation g(x) was defined

g(x) =





x, if Xij ∼ N(0, σ2 + 1)

F−1
t4

(Φσ2+1(x)), if Xij ∼ t4

F−1
χ2
4
(Φσ2+1(x)), if Xij ∼ χ2

4

where Φσ2+1(x), Ft4 , and Fχ2
4
are the cumulative distribution functions for theN(0, σ2+

1), Student’s t4, and χ2
4 distributions, respectively. These distributions allow us to

evaluate the relative performance of tests when data are normal, symmetric with fat

tails, and skewed, respectively.

Informativeness is induced in this simulation design through the relationship be-

tween the random effects and group sizes. Unlike previous designs, the influence of

the random effect on group size differs across groups. In the 2-group simulations,

clusters with large absolute u
(1)
i values, e.g., values of |u(1)i | > 2, have group 1 sizes

simulated from Poisson(12) compared to Poisson(8) for clusters with less extreme u
(1)
i

values. In contrast, large absolute random effects have a diminishing effect on group

size for group 2 observations, resulting in group sizes from Poisson(4) compared to

Poisson(8). This differing response produces a disproportionate number of group 1

observations from the extremes of the distribution, while the majority of group 2 ob-

servations have more moderate values. Similar variation in the random effect-group

size relationship was generated in the K = 3 and K = 5 scenarios. This falsely

inflates an appearance of unequal spread across the different groups.
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4.7.4 Simulation results for tests of variance

Table 12 contains simulation results for the 2-group tests of variance equality. This ta-

ble is organized into three sections corresponding to the three marginal distributions.

The first column denotes the number of clusters for the simulation, and the second col-

umn denotes the size or power setting. The following four columns contain results for

the classical F (F ) and Levene’s tests, where the Levene’s test has been constructed

under the unweighted group mean (W0), trimmed mean (W10), and median (W50).

The next three columns contain results for the clustered version of Levene’s test im-

plemented by GEE [32], which we denote GEE0, GEE10, and GEE50 corresponding

to the three unweighted measures of central tendency. The final five columns contain

the reweighted tests: both forms of the F test analog, ratio (CFr) and difference

(CFd); and the three forms of the Levene analog: CW0, CW10, and CW50, with sub-

scripts denoting the respective reweighted measure of centers. For clarity, we have

differentiated these three categories of tests by the headings “classical”, for the stan-

dard tests; “clustered”, denoting the cluster-appropriate variants; and “reweighted”

for the reweighted tests that correct for informativeness. All trimmed means were

calculated with a 10% trim from each end.

As would be expected, the conventional tests ignoring clustering exhibited extreme

bias. Power for these tests have been suppressed for clarity, as they are of little

interest. All forms of the clustered Levene’s test were consistently biased across

distributions. These tests displayed a two to three fold increase in Type I error rate

under the smallest sample, and still higher rates of error for larger samples. This

contradictory behavior highlights the unsuitability of these methods for data under

informativeness.

The reweighted tests performed comparably under the Gaussian distribution,

maintaining close to nominal size except for CFr, which was mildly biased at smaller

sample sizes. The ratio form of the reweighted F -test analog retained this bias across
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distributions and exhibited poor power compared the alternative reweighted forms.

In contrast, the reweighted F -test analog based on a difference, CFd, not only had

the highest power of the reweighted tests under the Gaussian distribution, but was

also maintained size under the skewed χ2
4 distribution. This form was conservative

under the t4 simulations, which is likely related to overestimation of the standard

errors due to the heavy-tailed nature of this distribution [48]. The forms of the

reweighed Levene’s test based on mean and 10% trimmed mean maintained size and

performed similarly across power under the t4 distribution, but both exhibited nom-

inal sizes higher than 5% under the skewed transformation, with the test based on

the trimmed mean having the lesser bias. The reweighted Levene test based on the

median maintained size with a slight power disadvantage under the symmetric distri-

butions, but offered the best overall performance under the χ2
4 distribution, closely

maintaining size and having higher power than CFd.

Tables 13 and 14 contain results for the K-group test of variance homogeneity,

where K = 3 and 5, respectively. These tables are similarly formatted as Table 12,

with the column headed by a denoting the size (a0) and three power scenarios. We

compare the classical Bartlett test to the clustered GEE-based Levene tests, and

the reweighted tests. As before, the GEE-based tests are denoted by “GEE” and

the reweighted tests by “CW”. The subscripts indicate the measure of center for the

respective data transformation, with 0 being the mean, 10 denoting the mean with

10% trim from each end, and 50 the median. We forgo the classification headings

from Table 12 as there are fewer tests to be compared, but continue to suppress

empirical power from the conventional Bartlett test.

Results from the tests of variance homogeneity for K groups are similar to those

from the 2 groups simulation. The standard Bartlett test is biased for all scenar-

ios, due both to the clustered nature of the data and the informativeness. The

cluster-appropriate methods fail to maintain size under informativeness, exhibiting a
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minimum four fold increase of Type I error rate, with this bias increasing with sample

size and K. When assessing variance equality of three groups under the Gaussian

and t4 distributions, all forms of the reweighted test are appropriate and have com-

parable size for a large number of clusters. CW0 and CW10 are mildly biased under

smaller samples for these distributions, while CW50 performs reasonably well even

when M = 30. For the χ2
4 distribution, all forms of the reweighted test are biased,

with the form using the median as central tendency showing the least bias. Results

for K = 5 closely mirror those of K = 3, with the additional groups exasperating the

biasing effect of distribution and small sample size on the reweighted tests.

4.7.5 Supplemental simulations

We ran additional simulations to compare the performance of the reweighted tests

to GEE models when data have uninformative cluster or group size. We contrasted

the reweighted two-sample test of means and two-sample test of variance to their

GEE counterparts. Non-informative designs for both tests were consistent with their

respective informative designs previously described, with the exception that group

sizes were simulated independently from random effects. For the test of means, n
(k)
i

was simulated from Poisson(7) for k = 1, 2. For the tests of variance, data were

simulated from the Gaussian distribution, and group sizes n
(1)
i , n

(2)
i were simulated

from Poisson(10) and Poisson(6), respectively.

Table 15 contains the non-informative simulation results. The reweighted and

GEE tests of means are presented in the top part of the table, while tests of variance

are compared in the lower portion of the table. Values under the heading δ0 cor-

respond to empirical size, while those under the alternative headings correspond to

the three power settings from the respective simulation design. The reweighted tests

outperformed GEE-based methods in maintaining nominal size when testing both

equality of group means and variances. All reweighted tests were approximately un-
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biased for all sample sizes, while GEE-based tests under both simulations were mildly

biased for 30 and 50 clusters. Additionally, even when GEE methods controlled the

Type I error rate, they offered no advantage in power compared to the corresponding

reweighted test(s).

4.8 Discussion

In this chapter, we developed clustered data analogs of well-known and frequently per-

formed tests for independent quantitative observations. These clustered tests mirror

the 2-sample t-, one-way ANOVA, F -, and Levene’s tests found in the classical sta-

tistical literature. The tests developed in this chapter are reweighted to correct for

group-size informativeness and avoid assumptions on completeness of group structure

by estimating variance through a delete-one-cluster jackknife technique. We demon-

strate through simulation that these reweighted tests maintain appropriate size, while

other cluster-appropriate methods are biased when data have informativeness.

The multiple forms for 2-group tests of variance in the classical setting result from

distributional assumptions. The standard F test requires observations be normally

distributed, whereas Levene’s test is robust against non-normality but selection of

measure of center (i.e., mean, trimmed mean, median) is distributionally dependent.

In contrast, the marginalization principle that results in the reweighted analog tests

is nonparametric. That is, none of the reweighted tests of variance make any as-

sumptions about the underlying distribution structure of the clustered data. In some

cases, this leads to the reweighted tests performing in contrast to what would be

expected of their classical forms in an unclustered setting. For example, the robust

performance of CFd to skewed data under the χ2
4 distribution (Table 12). Despite

their nonparametric nature, we see from Table 12 that the reweighted tests are still

somewhat distributionally dependent. This is not surprising, as the rate at which

reweighted estimators converge to normality would be expected to be related to the
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underlying distribution. An additional layer of convergence needs to be considered

when tests are executed through functionals of reweighted estimators. This is most

evident in the comparison of CFr and CFd in Table 12. Both of these tests are reliant

on the same vector of reweighted estimators, but test the hypothesis of interest by

applying contrasting functions to those estimators. The differing rate of convergence

of those functions to their expected values is evident through the consistently superior

performance of CFd to CFr.

The asymptotic nature of the reweighted tests is highlighted through their im-

proved performance with sample size, with sample size dependance being additionally

increased with the number of parameters being tested. This was particularly apparent

in the tests of variance. Due to this, these methods can only be recommended when

collected data contain at least 30 clusters, but the number of groups being tested

should additionally be considered when determining appropriate sample sizes. We

note that use of a second order expansion to the jackknife variance [29] offers minor

improvement to the bias observed when testing a higher number of parameters (e.g,

K = 5) under a reduced sample size (e.g., M = 30).

Through simulations, we demonstrated that reweighted tests of group means and

variance are clearly the optimal method when data have informativeness. Addition-

ally, reweighted tests perform competitively for clustered data when group/cluster

size is uninformative, maintaining appropriate Type I error rates and offering compa-

rable or superior power to other cluster-appropriate methods. In contrast, GEE-based

tests displayed unacceptability high levels of empirical size in simulations under in-

formativness. In particular, we note that this bias increased with sample size for the

tests assessing equality of variance, suggesting the unsuitability of GEE models for

data with ICS/IWCGS is not solely related to sample size deficiencies. In summary,

when clustered data have variable group or cluster size, reweighting methods that

correct for informativeness should be considered.
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In Sections 4.4 and 4.6 we summarized the reweighted rank-based tests and tests

of correlation developed by other authors. Like the novel tests derived in this disserta-

tion, these previously developed tests are analogous to well-known classical forms for

independent observations. Combined with these summarized tests and the categori-

cal tests of Chapter 3, the reweighted tests of group means and variances proposed

in this chapter comprise a versatile collection of methods for marginal analysis of

clustered data accounting for potential informativeness. As this collection may be of

use in applied data analysis, we make these tests available through a comprehensive

R software package detailed in the next chapter.
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Table 12. 2-group tests of variance homogeneity; empirical size and power.

Classical Cluster Reweighted
M σ2

1 : σ2
2 F W0 W10 W50 GEE0 GEE10 GEE50 CFr CFd CW0 CW10 CW50

Gaussian

30 1.0 : 1 0.6723 0.7120 0.7102 0.7059 0.1649 0.1615 0.1496 0.0675 0.0496 0.0519 0.0508 0.0471
30 1.5 : 1 0.5813 0.5748 0.5570 0.0936 0.2602 0.2517 0.2500 0.2383
30 2.0 : 1 0.8535 0.8489 0.8387 0.2575 0.5831 0.5639 0.5613 0.5460
30 2.5 : 1 0.9558 0.9538 0.9488 0.4519 0.8153 0.7996 0.7956 0.7868
50 1.0 : 1 0.7971 0.8411 0.8399 0.8386 0.2336 0.2310 0.2208 0.0612 0.0527 0.0545 0.0530 0.0512
50 1.5 : 1 0.7891 0.7848 0.7768 0.1917 0.3944 0.3755 0.3734 0.3665
50 2.0 : 1 0.9701 0.9693 0.9674 0.5634 0.8127 0.7864 0.7853 0.7804
50 2.5 : 1 0.9972 0.9970 0.9962 0.8314 0.9688 0.9566 0.9561 0.9537
100 1.0 : 1 0.9362 0.9594 0.9594 0.9589 0.3929 0.3911 0.3845 0.0544 0.0518 0.0511 0.0509 0.0492
100 1.5 : 1 0.9751 0.9747 0.9741 0.5099 0.6754 0.6465 0.6437 0.6415
100 2.0 : 1 0.9999 0.9999 0.9998 0.9441 0.9826 0.9782 0.9779 0.9776
100 1.5 : 1 1 1 1 0.9976 0.9997 0.9994 0.9994 0.9993

Student’s t4
30 1.0 : 1 0.7404 0.7022 0.6958 0.6929 0.1589 0.1461 0.1362 0.0810 0.0379 0.0544 0.0493 0.0468
30 1.5 : 1 0.4808 0.4606 0.4467 0.0505 0.1401 0.1861 0.1793 0.1721
30 2.0 : 1 0.7208 0.7049 0.6913 0.0847 0.2973 0.4019 0.3926 0.3806
30 2.5 : 1 0.8625 0.8515 0.8410 0.1498 0.4573 0.5966 0.5865 0.5766
50 1.0 : 1 0.8165 0.8123 0.8094 0.8081 0.2144 0.2045 0.1964 0.0740 0.0402 0.0541 0.0503 0.0479
50 1.5 : 1 0.6557 0.6426 0.6325 0.0642 0.1876 0.2535 0.2480 0.2418
50 2.0 : 1 0.8829 0.8778 0.8744 0.1689 0.4264 0.5825 0.5752 0.5717
50 2.5 : 1 0.9682 0.9659 0.9654 0.2936 0.6245 0.8070 0.8016 0.7984
100 1.0 : 1 0.9035 0.9376 0.9385 0.9383 0.3423 0.3349 0.3301 0.0626 0.0421 0.0508 0.0489 0.0486
100 1.5 : 1 0.9011 0.8984 0.8953 0.1524 0.3110 0.4429 0.4410 0.4381
100 2.0 : 1 0.9910 0.9906 0.9905 0.3905 0.6467 0.8461 0.8455 0.8436
100 2.5 : 1 0.9989 0.9990 0.9989 0.5796 0.8298 0.9725 0.9721 0.9721

χ2

4

30 1.0 : 1 0.7035 0.6986 0.6707 0.6453 0.2295 0.1684 0.1204 0.0863 0.0565 0.1101 0.0784 0.0543
30 1.5 : 1 0.5557 0.4770 0.3956 0.0654 0.1709 0.2737 0.2335 0.1768
30 2.0 : 1 0.7684 0.7017 0.6364 0.1193 0.3503 0.5036 0.4562 0.3764
30 2.5 : 1 0.8945 0.8539 0.8068 0.1910 0.5195 0.6933 0.6502 0.5784
50 1.0 : 1 0.7777 0.7936 0.7713 0.7503 0.2893 0.2200 0.1613 0.0777 0.0565 0.1158 0.0811 0.0526
50 1.5 : 1 0.7217 0.6506 0.5789 0.0859 0.2310 0.3571 0.3182 0.2524
50 2.0 : 1 0.9106 0.8797 0.8458 0.2212 0.5025 0.6803 0.6470 0.5755
50 2.5 : 1 0.9792 0.9672 0.9534 0.3569 0.7215 0.8708 0.8518 0.8049
100 1.0 : 1 0.8807 0.9163 0.9073 0.8961 0.4171 0.3323 0.2671 0.0661 0.0516 0.1083 0.0743 0.0512
100 1.5 : 1 0.9276 0.8964 0.8613 0.1929 0.3772 0.5550 0.5213 0.4453
100 2.0 : 1 0.9952 0.9926 0.9877 0.5039 0.7667 0.9048 0.8937 0.8541
100 2.5 : 1 0.9998 0.9994 0.9991 0.7266 0.9357 0.9868 0.9845 0.9772

F, F test; Wm, Levene test; GEEm, GEE Levene test analog; CFr, reweighted F test analog, ratio form; CFd, reweighted F test analog,
difference form; CWm, reweighted Levene test analog. Subscript m denotes measure of center: 0, mean; 10, 10% trimmed mean; 50,
median.
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Table 13. K-group tests of variance homogeneity; empirical size and power, K = 3.

M a Bartlett GEE0 GEE10 GEE50 CW0 CW10 CW50

Gaussian

30 a0 0.8320 0.2462 0.2398 0.2234 0.0635 0.0614 0.0562
30 a1 0.2740 0.2687 0.2491 0.0909 0.0882 0.0800
30 a2 0.3265 0.3177 0.2977 0.1522 0.1512 0.1369
30 a3 0.3953 0.3872 0.3681 0.2427 0.2412 0.2252
50 a0 0.9049 0.3285 0.3232 0.3103 0.0578 0.0568 0.0529
50 a1 0.3713 0.3648 0.3532 0.0990 0.0969 0.0928
50 a2 0.4556 0.4497 0.4372 0.2114 0.2090 0.2013
50 a3 0.5675 0.5596 0.5464 0.3803 0.3768 0.3657
100 a0 0.9780 0.5685 0.5652 0.5578 0.0582 0.0572 0.0561
100 a1 0.6311 0.6284 0.6234 0.1458 0.1453 0.1432
100 a2 0.7336 0.7304 0.7247 0.3966 0.3954 0.3892
100 a3 0.8529 0.8510 0.8474 0.6691 0.6671 0.6620

Student’s t4
30 a0 0.9090 0.2407 0.2245 0.2104 0.0686 0.0639 0.0591
30 a1 0.2583 0.2422 0.2280 0.0877 0.0810 0.0765
30 a2 0.2908 0.2694 0.2540 0.1273 0.1211 0.1135
30 a3 0.3334 0.3135 0.2984 0.1817 0.1710 0.1659
50 a0 0.9368 0.3110 0.2942 0.2842 0.0642 0.0603 0.0568
50 a1 0.3333 0.3175 0.3058 0.0908 0.0850 0.0827
50 a2 0.3771 0.3641 0.3543 0.1541 0.1478 0.1440
50 a3 0.4512 0.4368 0.4264 0.2523 0.2424 0.2360
100 a0 0.9721 0.4987 0.4874 0.4824 0.0578 0.0552 0.0547
100 a1 0.5490 0.5411 0.5353 0.1096 0.1057 0.1041
100 a2 0.6126 0.6035 0.5986 0.2530 0.2488 0.2458
100 a3 0.7161 0.7093 0.7042 0.4370 0.4336 0.4304

χ
2

4

30 a0 0.8794 0.3647 0.2774 0.1961 0.1566 0.1145 0.0713
30 a1 0.3746 0.2825 0.2051 0.1806 0.1345 0.0855
30 a2 0.4195 0.3218 0.2369 0.2320 0.1793 0.1220
30 a3 0.4609 0.3658 0.2747 0.3067 0.2493 0.1800
50 a0 0.9171 0.4208 0.3172 0.2345 0.1439 0.1013 0.0613
50 a1 0.4523 0.3473 0.2645 0.1835 0.1348 0.0870
50 a2 0.4974 0.3957 0.3079 0.2723 0.2144 0.1559
50 a3 0.5727 0.4720 0.3763 0.3975 0.3251 0.2461
100 a0 0.9661 0.5972 0.4893 0.3921 0.1425 0.0996 0.0617
100 a1 0.6383 0.5309 0.4371 0.2168 0.1639 0.1098
100 a2 0.7098 0.6082 0.5187 0.4078 0.3359 0.2601
100 a3 0.7956 0.7122 0.6250 0.5965 0.5294 0.4420

Bartlett, classical Bartlett test; GEEm, Levene test analog based on GEE;
CWm, reweighted Levene test analog. Subscriptm denotes measure of center:
0, mean; 10, 10% trimmed mean; 50, median.
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Table 14. K-group tests of variance homogeneity; empirical size and power, K = 5.

M a Bartlett GEE0 GEE10 GEE50 CW0 CW10 CW50

Gaussian

30 a0 0.9541 0.4258 0.4171 0.3884 0.0760 0.0748 0.0673
30 a1 0.5351 0.5278 0.4977 0.1383 0.1342 0.1226
30 a2 0.6845 0.6719 0.6459 0.2762 0.2712 0.2554
30 a3 0.8118 0.8029 0.7832 0.4646 0.4568 0.4348
50 a0 0.9856 0.5589 0.5509 0.5360 0.0693 0.0673 0.0645
50 a1 0.6934 0.6863 0.6717 0.1623 0.1591 0.1531
50 a2 0.8533 0.8495 0.8388 0.4300 0.4249 0.4118
50 a3 0.9525 0.9507 0.9456 0.7241 0.7202 0.7068
100 a0 0.9990 0.8361 0.8344 0.8283 0.0581 0.0566 0.0554
100 a1 0.9407 0.9388 0.9357 0.2853 0.2849 0.2792
100 a2 0.9923 0.9921 0.9916 0.7604 0.7589 0.7529
100 a3 0.9994 0.9994 0.9994 0.9669 0.9668 0.9653

Student’s t4
30 a0 0.9852 0.4259 0.4009 0.3773 0.0912 0.0818 0.0744
30 a1 0.5028 0.4778 0.4555 0.1330 0.1227 0.1153
30 a2 0.6011 0.5786 0.5569 0.2224 0.2082 0.1986
30 a3 0.7073 0.6832 0.6640 0.3441 0.3288 0.3150
50 a0 0.9945 0.5324 0.5152 0.5029 0.0819 0.0765 0.0734
50 a1 0.6222 0.6038 0.5918 0.1354 0.1281 0.1235
50 a2 0.7539 0.7396 0.7296 0.3022 0.2925 0.2841
50 a3 0.8641 0.8559 0.8466 0.5092 0.4979 0.4906
100 a0 0.9979 0.7770 0.7707 0.7662 0.0678 0.0648 0.0615
100 a1 0.8712 0.8643 0.8591 0.1952 0.1896 0.1870
100 a2 0.9544 0.9533 0.9508 0.5130 0.5069 0.5032
100 a3 0.9859 0.9847 0.9844 0.8033 0.8001 0.7965

χ
2

4

30 a0 0.9801 0.5659 0.4457 0.3353 0.2218 0.1557 0.1011
30 a1 0.6338 0.5226 0.4063 0.2808 0.2026 0.1349
30 a2 0.7214 0.6216 0.5119 0.3914 0.3070 0.2229
30 a3 0.8089 0.7199 0.6193 0.5276 0.4386 0.3365
50 a0 0.9885 0.6491 0.5243 0.4102 0.2090 0.1396 0.0837
50 a1 0.7330 0.6207 0.5038 0.2968 0.2149 0.1410
50 a2 0.8431 0.7585 0.6697 0.4851 0.3929 0.2927
50 a3 0.9167 0.8665 0.7971 0.6921 0.6083 0.4947
100 a0 0.9986 0.8420 0.7454 0.6442 0.1908 0.1178 0.0695
100 a1 0.9121 0.8481 0.7787 0.3830 0.2832 0.1918
100 a2 0.9757 0.9482 0.9133 0.7071 0.6181 0.5124
100 a3 0.9930 0.9847 0.9741 0.9081 0.8672 0.7999

Bartlett, classical Bartlett test; GEEm, Levene test analog based on GEE;
CWm, reweighted Levene test analog. Subscriptm denotes measure of center:
0, mean; 10, 10% trimmed mean; 50, median.
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Table 15. Empirical size and power of reweighted tests under no informativeness.

M Test δ0 δ1 δ2 δ3
Test of means

30
RW 0.0492 0.1676 0.4829 0.8146
GEE 0.0625 0.1924 0.5135 0.8257

50
RW 0.0490 0.2462 0.7045 0.9631
GEE 0.0590 0.2590 0.7073 0.9604

100
RW 0.0519 0.4254 0.9421 0.9999
GEE 0.0544 0.4173 0.9348 0.9999

Test of variance

30

CFd 0.0521 0.2548 0.5682 0.8112
CW0 0.0545 0.2463 0.5590 0.7965
CW10 0.0538 0.2426 0.5502 0.7920
CW50 0.0501 0.2291 0.5338 0.7806
GEE0 0.0716 0.2745 0.5776 0.8089
GEE10 0.0700 0.2685 0.5728 0.8044
GEE50 0.0650 0.2570 0.5602 0.7965

50

CFd 0.0511 0.3922 0.8091 0.9649
CW0 0.0545 0.3710 0.7813 0.9572
CW10 0.0529 0.3694 0.7779 0.9556
CW50 0.0504 0.3588 0.7711 0.9535
GEE0 0.0657 0.3777 0.7798 0.9508
GEE10 0.0634 0.3760 0.7769 0.9503
GEE50 0.0598 0.3695 0.7698 0.9493

100

CFd 0.0501 0.6673 0.9829 1
CW0 0.0538 0.6344 0.9755 0.9996
CW10 0.0538 0.6324 0.9745 0.9995
CW50 0.0521 0.6290 0.9745 0.9996
GEE0 0.0592 0.6251 0.9699 0.9990
GEE10 0.0586 0.6222 0.9695 0.9990
GEE50 0.0572 0.6187 0.9690 0.9990

Top: RW, reweighted test of means; GEE, GEE
model. Bottom: CFd, reweighted F test ana-
log, difference form; CWm, reweighted Levene
test analog; GEEm, Levene test analog based on
GEE. Subscript m denotes measure of center: 0,
mean; 10, 10% trimmed mean; 50, median.
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CHAPTER 5

htestClust: AN R PACKAGE

5.1 Introduction

R is an open-source programing language and software environment that is a com-

monly used tool for statistical analysis. The native R environment includes core

packages that implement general computing, graphing, and statistical methods. One

such core package is stats, which provides functions for many classical hypothesis

tests, including most of the classical analogs to the reweighted tests developed and

discussed in this work. The facilities of R can be extended to more complex or spe-

cialized methods through secondary packages developed by users and accessible from

repositories such as Comprehensive R Archive Network (CRAN). Developing an R

package to accompany new methodological work is beneficial as it provides convenient

means for analysts to implement the methods on real data.

A number of R packages related to clustered data have been developed. The pop-

ular package geepack [25] provides a flexible approach to modeling clustered data

using generalized estimating equations, with an interface designed to resemble that

for generalized linear modeling in the core R environment. Other clustered data pack-

ages are designed for more particular analyses. The package clusrank [34] contains

a collection of Wilcoxon rank-sum and sign-rank tests for clustered data, including

the tests of Section 4.4 that correct for potential informativeness (also found in the

package ClusterRankTest [15]). Various methods for analyzing marginal homo-

geneity of binary matched pairs in clustered data are available through the package
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clust.bin.pair [23], including the test [14] discussed in Chapter 3 that coincides with

a reweighted test correcting for informativeness. As individual packages have mostly

autonomous authors, there can be significant variation in function usage, syntax, and

accepted data structure across packages.

In this chapter, we introduce an R package htestClust which contains functions

that execute the marginal hypothesis tests from Chapters 3 and 4. As noted above,

some of the previously-developed reweighted tests discussed in preceding chapters are

available in R through various packages. However, there does not exist a comprehen-

sive package containing ICS/IWCGS-appropriate methods. By including functions

for the previously-developed tests, htestClust unifies the collection of reweighted

tests to a single package, allowing consistency across arguments and data structure.

As these reweighted tests mimic classical forms, we have intentionally modeled the

syntax and output of htestClust functions after their classical analog functions.

This makes the usage of htestClust functions intuitive to users familiar with the R

environment.

In addition to the reweighted tests of Chapters 3 and 4, htestClust also includes

a function that performs a recently-developed test of informative cluster size [44].

Marginal tests based on the reweighting methodology remain valid when data lack

informative cluster size. However, standard methods that account for clustering may

offer a power advantage for some analyses when informativeness is not a concern.

The test for ICS provides researchers a method of discriminating appropriate analy-

sis methods when data have variable cluster size. Combined, htestClust is a suite of

functions providing analysts the means to perform various marginal analyses of clus-

tered data with potential informativeness through the convenience and consistency

of a single package.

The rest of this chapter is organized as follows. In Section 5.2 we summarize

the balanced bootstrap method of Nevalainen et al. [44] that tests for informative
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cluster size. In Section 5, we introduce a simulated data set that contains variables

appropriate for illustrating the performance of the functions. Section 5.4 contains

examples of the application of the functions contained in htestClust, and the chapter

concludes with a brief discussion.

5.2 Test of informativeness

Nevalainen et al. [44] recently proposed a test for ICS using a novel balanced boot-

strap scheme. As it might be desirable to implement this test prior to the application

of the marginal methods mentioned thus far, we include this test for ICS in the

htestClust package and briefly summarize it below.

Let V = (V1, . . . , VM) be a collection of independent clustered observations, where

Vi = (ni;Yi1, . . . , Yini
) is the data from cluster i. Assuming exchangeability of obser-

vations within clusters, the hypothesis of interest is H0 : P (Yij ≤ y|ni = k) = F (y) =

, k = 1, 2, . . . ; j = 1, . . . , k, for some unknown distribution F . Nevalainen et al. [44]

propose two test statistics for testing H0; a Kolmogorov-Smirnov type statistic takes

the form

TF = supy|F̂ (y)− F̃ (y)|

where F̂ (y) = 1
n

∑M

i=1

∑ni

j=1 I [Yij ≤ y] and F̃ (y) = 1
M

∑M

i=1
1
ni

∑ni

j=1 I [Yij ≤ y]. A

potentially more powerful alternative to TF is a Cramer-von Mises type statstic:

TCM =
∑

kǫψ

[
kMk

∫ (
F̂k (y)− F̂ (y)

)2

dy

]
,

where ψ represents the set of unique cluster sizes, Mk represents the number of

clusters of size k, and F̂k(y) = 1
kMk

∑M

i=1

∑ni

j=1 I [ni = k, Yij ≤ y]. For data with a

small number of distinct cluster sizes TCM is the suggested statistic as it offers a

power advantage over TF . However, TCM is liberal when there are a large number

of distinct cluster sizes and the number of observed clusters of each size is small, in

which case TF is the preferred statistic.
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Once either TF or TCM has been selected as the desired test statistic, the following

bootstrap scheme is implemented: For bootstrap iteration b, b = 1, . . . , B,

1. Permute observations within each cluster.

2. Resample clusters from the permuted data by performing the following for i =

1, . . . ,M :

a) Randomly select a cluster i∗, i∗ = 1, . . . ,M .

b) If ni∗ ≥ ni, form the ith bootstrapped cluster from the first ni observation

from cluster i∗; e.g., V ∗
bi = (ni;Yi∗1, . . . , Yi∗ni

).

c) If n∗
i < ni, form the ith bootstrapped cluster by merging observations from

the resampled cluster i∗ and observations from the closest ‘matching’ clus-

ter to cluster i∗; e.g., V ∗
bi =

(
ni;Yi∗1, . . . , Yi∗n∗

i
, Yk(n∗

i+1), . . . , Ykni

)
, where

k = argmink{D(Vi∗ , Vk) : nk ≥ ni}.

3. Calculate the test statistic from the collection of bootstrapped clusters, T ∗
b =

T (V ∗
b ), V

∗
b = (V ∗

b1, . . . , V
∗
bM).

The approximate p-value is then obtained from the sample of bootstrapped test

statistics by 1
B

∑B

b=1 I [T
∗
b ≥ T ], where T is the desired test statistic calculated from

the original data. In part c of step 2, the closest matching cluster is determined by

minimum distance calculated by D (Vi, Vj) = (min{ni, nj})−1 ∑min{ni,nj}
k=1 (Yik − Yjk)

2.

5.3 An example data set

To illustrate the reweighted tests in htestClust, we simulated a hypothetical data set

of clustered observations with informativeness, with variables suited to a number of

marginal analyses. This data set is provided in htestClust and allows us to illustrate

the usage of the various functions in a consistent manner. Details on the simulation

of these data are provided in Appendix B.
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Figure 3. Average scores by cluster size in screen8 data.

Consider the following hypothetical scenario. Through a voluntary comprehen-

sive exit survey, an urban school district has collected demographic, biometric, and

academic performance data from graduating 8th grade students. These data are

clustered, with schools forming the clusters and students comprising the observations

within clusters. The school district has implemented an incentive program in which

schools with higher participation rates are prioritized for classroom and technology

upgrades. Cluster size could be informative in these data, as resource-poor schools

might have higher participation rates (larger cluster size), but also tend to have worse

health metrics and lower standardized test scores.

> head(screen8)

sch.id stud.id age gender height weight math read phq2 qfit qfit.s activity

1 1 1 15 M 65 136 69 75 3 Q2 Q2 other

2 1 2 14 M 66 135 80 57 2 Q4 Q3 other

3 1 3 15 M 65 146 60 85 0 Q2 Q3 sports

4 1 4 15 M 68 156 70 83 1 Q3 Q2 other

5 1 5 15 M 68 170 66 60 1 Q2 Q2 sports

6 1 6 14 M 63 109 84 62 0 Q1 Q1 academic

The (hypothetical) data set screen8 contains data from 2224 students from 73

schools in this district. This data set contains an identification variable for the school,
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sch.id, and an identification variable for the individual students from each school,

stud.id. These correspond to the clusters and observations within clusters, respec-

tively. Demographic variables from each student include age in years (age), height

in inches (height), weight in lbs (weight), and binary gender (gender). The data

include each student’s standardized test scores in math (math) and reading (read),

which are numeric values ranging from 0 to 100. The variable phq2 is an ordinal (0-

6) score from a mental health screening, in which higher scores correspond to higher

levels of depression. Each student has two records from a physical health assessment:

qfit is the student’s (age-adjusted) fitness quartile from the assessment at the time

of the exit survey, and qfit.s is the student’s fitness quartile from the assessment

taken at the beginning of the school year. Students may elect to participate in a va-

riety of extracurricular activities, including academic clubs and sports teams. These

activities have been broadly categorized into academic, sports, and other (includ-

ing students with no extracurricular participation), and are recorded in the variable

activity.

In this data set, cluster size is the number of participants from each school. The

number of students participating from each school ranged from 17 to 50, with a me-

dian of 30. To examine if cluster size might be informative for academic performance,

in Figure 3 we plot the average math and reading scores from each school by their

number of participants. From these plots, we see a negative association between clus-

ter size and test scores in both math and reading. Schools that collected data from

more students tend to have lower standardized test scores compared to schools that

evaluated a smaller number of students.

Cluster size may additionally be related to categorical variables or groups defined

within clusters in these data. Figure 4 examines the relationship between gender

and student extracurricular activity selections with screening participation rate. The

right panel of Figure 4 shows a bar chart of the proportion of students engaged in the
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Figure 4. Plots of categorical variables by cluster size in screen8 data.

three types of extracurricular activities by quartile of cluster size. The proportion of

students engaging in sports-related extracurricular activities increased with the num-

ber of participants. That is, schools that contributed a larger number of students

tended to have more students involved in extracurricular sports activities, whereas

schools that contributed fewer observations had higher participation rates in academic

activities. The left panel of this figure plots the proportion of male students in each

school’s sample by the number of participants from that school. Here, we observe a

positive association between cluster size and proportion of male students in the sam-

ple. If this is feature of the data and not representative of each school’s gender ratio,

IWCGS weighting should be considered in analyses comparing outcomes between the

genders. Cluster-weighted analyses will correct for the relationship between larger

cluster sizes and outcomes (such as lower test scores), but will fail to account for the

overrepresentation of male students in the larger samples.

5.4 R implementation

The syntax of the functions in htestClust largely follows that of common, recogniz-

able hypothesis testing functions in the stats package, which is supplied through the

fundamental R environment. As the reweighted tests are analogs of classical forms
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for non-clustered data, their execution has been designed to mimic that of their con-

ventional counterparts. A summary of the functions that comprise htestClust is

given in Table 16, along with the reweighted test(s) each function performs and the

established R function that executes the analogous test for independent observations.

In the sections below, we outline the usage of the functions available htestClust

package. Echoing the interface of conventional R functions, most htestClust func-

tions accept vector input that designate the response and clustering variables for

individual observation. For convenience, many functions are designed with a sec-

ondary interface accepting tables or formulas. Minimum function output include the

test statistic, p-value, number of clusters, data name, and name of the test, and

most functions return additional values such as estimates and confidence intervals.

Functions that return confidence intervals produce them in the usual way based on

test asymptotics. In the interest of brevity and clarity, rather than detailing every

input argument and output value, we instead provide an overview of each function’s

usage and illustrate its application through examples related to the screen8 data.

Complete information on function arguments and values are provided in their docu-

mentation in the R environment.

5.4.1 Test for informative cluster size

The test of ICS from Section 5.2 is implemented in htestClust through the function

icstestClust(), which has the following usage:

icstestClust(x, id, test.method = c("TF", "TCM"), B = 1000, print.it = TRUE)

The main arguments of this function are x, a vector of numeric outcomes potentially

related to sample size, and id, a vector or factor object which identifies the clusters.

The argument test.method allows the user to select the desired test statistic, and B

defines the number of bootstrap iterations to be performed. This test is computation-

ally intensive and can take significant time to perform. By default, the progression
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Table 16. List of functions available in the htestClust package

htestClust function Reweighted test(s) Classical analog function

chisqtestClust() Chi squared goodness of fit, independence chisq.test()

cortestClust() Correlation cor.test()

icstestClust() Test of ICS NA

levenetestClust() K-group test of variance leveneTest()

mcnemartestClust() Homogeneity mcnemar.test()

onewaytestClust() K-group mean equality oneway.test()

proptestClust() Proportion prop.test()

ttestClust() Test of means (one/two group, paired) t.test()

vartestClust() 2-group test of variance var.test()

wilcoxtestClust() Rank sum, signed rank wilcox.test()

Each row gives the name of a htestClust function, the reweighted test the function performs,
and the R function that executes the corresponding classical analog test. All classical analog
functions are available in R through the stats package, except for leveneTest(), which is
included in the car package.

of bootstrap iterations is printed to assist the user in estimating the execution time,

though this can be suppressed by setting print.it = FALSE.

In the screen8 data, there appeared to be a negative association between average

test scores and the number of screening participants from each school, as illustrated

in Figure 3. We can test whether cluster size is informative for math scores by

performing the test of ICS with the icstestClust() function.

> set.seed(100)

> test.ics <- icstestClust(screen8$math, screen8$sch.id, B = 1000, print.it=FALSE)

> test.ics

Test of informative cluster size (TF)

data: screen8$math

TF = 0.029686, p-value < 2.2e-16

This function returns the data name, the value of the test statistic, and the approx-

imate p-value. Based on 1000 iterations, there is evidence to suggest that there is a

significant association between the number of participants from each school and math

scores in the screen8 data.
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5.4.2 Categorical tests

Proportion test

The function proptestClust() performs the reweighted test of marginal proportion

from Section 3.2.1. This function has the usage

proptestClust(x, id, p = NULL, alternative = c("two.sided", "less", "greater"),

variance = c("sand.null", "sand.est", "emp", "MoM"), conf.level = 0.95)

The argument x can be a binary vector of indicators denoting the success or failure of

each observation, or a two-dimensional table with two columns giving the aggregate

counts of failures and successes (respectively) across clusters. If x is a vector, a

vector of numeric or factor objects denoting the respective cluster membership of the

observations must be provided for the argument id. If x is a table, the rows of the

table define the clusters and the id argument is ignored. The argument variance

allows the user to specify the method of variance estimation for the statistic, selecting

from the sandwich estimate evaluated at the null hypothesized value (sand.null),

the sandwich estimate evaluated at the cluster-weighed proportion (sand.est), the

empirical estimate (emp), or the method of moments estimate (MoM). If not specified,

the function defaults to sand.null, as a test constructed with this estimator exhibited

the most desirable properties in simulation studies. The argument p specifies the null

marginal proportion to be tested; if not given, the function defaults to testing a null

value of 0.5. The arguments alternative and conf.level allow the user to specify

the alternative hypothesis and confidence level of the returned confidence interval.

In the hypothetical school district that collected the screen8 data, suppose math

proficiency is defined by standardized score of 65 or higher. The district wishes to

test whether the marginal proportion of proficient students is higher than 75%. To

apply the proptestClust() function, we must first define a binary variable denoting

whether students have a standardized math score of at least 65. We then submit to

the function this binary vector that contains the success/failure status of each student,
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along with the sch.id vector that defines cluster membership. The appropriate null

proportion and alternative hypothesis must also be specified. Based on this analysis,

there was insufficient evidence to conclude that the marginal math proficiency in the

district was higher than 75%.

> screen8$math.p <- 1*(screen8$math>=65)

> proptestClust(x = screen8$math.p, id = screen8$sch.id, p = .75,

+ alternative = "greater")

Cluster-weighted proportion test with variance est: sand.null

data: screen8$math.p, M = 73

z = 0.70159, p-value = 0.2415

alternative hypothesis: true p is greater than 0.75

95 percent confidence interval:

0.7311459 1.0000000

sample estimates:

Cluster-weighted proportion

0.7640235

Alternatively, this test can be performed by defining a table of counts of the non-

proficient/proficient students from each school, and submitting the table to the

proptestClust() function in the following manner. Note that the table must be

defined so the counts of failures and successes are in the first and second columns,

respectively, which occurs naturally when tabulating an appropriately defined binary

variable.

> mathp.tab <- table(screen8$sch.id, screen8$math.p)

> head(mathp.tab)

0 1

1 12 23

2 3 29

3 5 21

4 13 20

5 3 20

6 8 17

> test.tab <- proptestClust(mathp.tab, p = .75, alternative = "greater")

> test.tab

Cluster-weighted proportion test with variance est: sand.null

data: mathp.tab, M = 73

z = 0.70159, p-value = 0.2415

alternative hypothesis: true p is greater than 0.75
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95 percent confidence interval:

0.7311459 1.0000000

sample estimates:

Cluster-weighted proportion

0.7640235

Regardless of the input method, the proptestClust() function returns a list of class

htest containing a number of components. This list includes statistic, the test

statistic appropriately named with its limiting distribution; p.value, the p-value of

the test; estimate, the estimate of the marginal proportion; null.value, the null

hypothesized marginal proportion; conf.int, the asymptotic confidence interval for

the true marginal proportion; and alternative, a character string specifying the

alternative hypothesis. The name of the test and the method for variance estimation

is given by method. For summary purposes, the name of the data is paired with the

number of clusters in the value data.name, which is returned automatically in the

function output. The number of clusters can independently be returned through the

value M.

> str(test.tab)

List of 9

$ statistic : Named num 0.702

..- attr(*, "names")= chr "z"

$ p.value : num 0.241

$ estimate : Named num 0.764

..- attr(*, "names")= chr "Cluster-weighted proportion"

$ null.value : Named num 0.75

..- attr(*, "names")= chr "p"

$ conf.int : num [1:2] 0.731 1

..- attr(*, "conf.level")= num 0.95

$ alternative: chr "greater"

$ method : chr "Cluster-weighted proportion test with variance est: sand.null"

$ data.name : chr "mathp.tab, M = 73"

$ M : Named int 73

..- attr(*, "names")= chr "M"

- attr(*, "class")= chr "htest"

Output from all of the htestClust functions have similar values to those listed here,

appropriately modified to the respective hypothesis of interest.

For illustrative purposes, compare the output of the proptestClust() function

to that of the native R function performing the classical one-sample proportion test,
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prop.test(). Among other input methods, this function can accept a table of counts

of the total number of successes and failures in a sample, respectively. Note that this

order is opposite of the natural R tabulation of a standard binary variable.

> mathp.tab2 <- rev(table(screen8$math.p))

> mathp.tab2

1 0

1648 576

> prop.test(mathp.tab2, p = .75, alternative = "greater")

1-sample proportions test with continuity correction

data: mathp.tab2, null probability 0.75

X-squared = 0.91187, df = 1, p-value = 0.8302

alternative hypothesis: true p is greater than 0.75

95 percent confidence interval:

0.7252123 1.0000000

sample estimates:

p

0.7410072

The classical proportion test performed by prop.test() is an inappropriate analysis

of the screen8 as it ignores clustering. However, the application here highlights the

intentional symmetry designed in proptestClust() to the prop.test() function.

This affinity in application and output to that of their classical analog function is

similarly reflected in all the htestClust functions.

Goodness of Fit test

The reweighted goodness of fit test from Section 3.2.2 is executed through the function

chisqtestClust(), which has the usage

chisqtestClust(x, y = NULL, id, p = NULL,

variance = c("MoM", "sand.null", "sand.est", "emp"))

Similar to proptestClust(), this function allows for both vector and table input. If

x is a vector denoting group membership for individual observations, a corresponding

vector for id needs to be provided that gives the cluster identification for each obser-

vation. Alternatively, x can be a table where clusters are defined by rows and columns
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contain counts across the categorical outcome levels. The optional argument p allows

the user to specify the null category proportions to be tested. If p is not given, a test

of equality of marginal proportions is performed. The argument variance allows the

user to specify the variance estimation method, with the argument options defined

as in proptestClust().

From the screen8 data, district administrators wish to test if marginal partici-

pation levels are equal across the categories of academic, sports, and other extracur-

ricular activities. This can be performed by specifying the activity selection and

school for each student through vector input, or by tabulating the counts of students

engaged in the three activity types across schools.

> chisqtestClust(x=screen8$activity, id=screen8$sch.id)

Cluster-weighted chi-squared test for given probabilities with variance est: MoM

data: screen8$activity, M = 73

X-squared = 13.101, df = 2, p-value = 0.001429

> head(act.table)

academic other sports

1 10 13 12

2 8 16 8

3 10 7 9

4 10 7 16

5 10 8 5

6 14 6 5

> chisqtestClust(act.table)

Cluster-weighted chi-squared test for given probabilities with variance est: MoM

data: act.table, M = 73

X-squared = 13.101, df = 2, p-value = 0.001429

The weighted marginal category proportions can be obtained by calling observed

from the function output. From this analysis, we conclude that the marginal propor-

tion of extracurricular activity participation is not equal across the three selections.

Marginal across schools, students in this district participate in academically-oriented

extracurricular activities at a higher rate than other forms of activities. This func-
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tion has an additional value expected, which for the reweighted goodness of fit test

returns the category proportions under the null hypothesis.

> act.test <- chisqtestClust(act.table)

> act.test$observed

academic other sports

0.3867422 0.3070048 0.3062530

> act.test$expected

academic other sports

0.3333333 0.3333333 0.3333333

Test of independence

The function chisqtestClust() also performs the reweighted chi squared test of

independence (Section 3.2.3). This test is executed with vectors, where the argu-

ments x and y contain the categorical membership of observations for the variables

whose independence is to be assessed. Cluster membership is supplied through the

id argument. The method of variance estimation can be selected with the variance

argument.

We perform the reweighted test of independence to test if extracurricular activity

selection is independent of gender in the screen8 data. Based on this analysis, we

conclude that marginal participation in extracurricular activities is independent of

gender.

> marg.indep <- chisqtestClust(x=screen8$activity, y=screen8$gender,

+ id=screen8$sch.id)

> marg.indep

Cluster-weighted Chi-squared test of independence with variance est: MoM

data: screen8$activity and screen8$gender, M = 73

X-squared = 1.6131, df = 2, p-value = 0.4464

The observed joint reweighted proportions can be obtained by calling the observed

value, while the expected joint proportions under independence are called with expected.
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> marg.indep$observed

F M

academic 0.2225577 0.1641845

other 0.1599899 0.1470149

sports 0.1562627 0.1499902

> marg.indep$expected

F M

academic 0.2193678 0.1673744

other 0.1662734 0.1407314

sports 0.1531691 0.1530838

Test of marginal homogeneity

The test of marginal homogeneity of matched pairs in clustered data from Section

3.2.4 is performed through the function mcnemartestClust().

mcnemartestClust(x, y, id, variance = c("MoM", "emp"))

The arguments x and y take vectors with two levels, denoting the success/failure

of the first and second measurement from observations. Cluster membership is

given through the id argument, and variance estimation method selected through

variance.

Using the screen8 data, we test whether the marginal proportion of students

in the lowest fitness quartile at the end of the school year was the same as at the

beginning of the school. Based on this analysis, there was no change in marginal

proportion of students evaluated at the lowest quartile of fitness between the start

and end of the school year.

> screen8$low.start <- 1*(screen8$qfit.s==’Q1’)

> screen8$low.end <- 1*(screen8$qfit==’Q1’)

> mcnemartestClust(screen8$low.start, screen8$low.end, screen8$sch.id)

Cluster-weighted test of marginal homogeneity with variance est: MoM

data: screen8$low.start and screen8$low.end, M = 73

chi-square = 0.013417, df = 1, p-value = 0.9078
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5.4.3 Quantitative tests

Tests of means

The function ttestClust() performs the reweighted one-sample, paired, and two-

sample test of means from Section 4.3.

ttestClust(x, y = NULL, idx, idy = NULL, alternative = c("two.sided", "less",

"greater"), mu = 0, paired = FALSE, conf.level = 0.95)

To execute the reweighted one-sample test, a numeric vector of outcomes must be provided for x and

a vector of cluster identifiers must be provided for idx. The argument mu specifies the hypothesized

value of the true marginal mean (or difference in marginal means, if performing a paired or two-

sample test). A one or two-sided test can be specified through the alternative argument, and a

confidence interval with level conf.level appropriate to the performed test is returned.

Suppose the national average on the standardized math exam taken by students in the screen8

data set is 65. Administrators wish to test if the marginal average in this district is equal to

the national average. We can perform this test by supplying the math exam scores and school

(cluster) identifying variable for each student, and specifying the null hypothesized average score.

We conclude that students in this school district have a marginal average math score higher than

the national average.

> ttestClust(x = screen8$math, idx = screen8$sch.id, mu = 65)

One sample cluster-weighted test of means

data: screen8$math, M = 73

z = 6.7164, p-value = 1.863e-11

alternative hypothesis: true mean is not equal to 65

95 percent confidence interval:

68.91966 72.14999

sample estimates:

cluster-weighted mean of x

70.53482

For comparison, consider the classical t-test applied to these data using the native R

function t.test(). While the unweighted estimate is not conspicuously different than

the weighted estimate, this test is clearly inappropriate for analysis of the screen8

data. First, the classical t-test treats the observations as independent, failing to
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account for the clustered nature of these data. Second, as evidenced by the degrees

of freedom displayed in the function output, this analysis treats students as the unit

of interest. When the interest is in the outcome from a typical student from a typical

school, the correct marginal analysis is indexed by the clusters (e.g., schools) and not

the observations within clusters. One final highlighting of the erroneous nature of

this analysis can be seen in the failure of the classical confidence interval to include

the reweighted estimate.

> t.test(x = screen8$math, mu = 65)

One Sample t-test

data: screen8$math

t = 26, df = 2223, p-value <2e-16

alternative hypothesis: true mean is not equal to 65

95 percent confidence interval:

69.5 70.3

sample estimates:

mean of x

69.9

One cluster-appropriate method to estimate the marginal math score of students in

this district would be to fit a GEE model. This is easily performed using the geeglm()

function in the package geepack.

> library(geepack)

> gee.mod <- geeglm(math ~ 1, id = sch.id, data = screen8, corstr = "exchangeable")

> summary(gee.mod)

Call:

geeglm(formula = math ~ 1, data = screen8, id = sch.id, corstr = "exchangeable")

Coefficients:

Estimate Std.err Wald Pr(>|W|)

(Intercept) 70.465 0.509 19143 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation structure = exchangeable

Estimated Scale Parameters:

Estimate Std.err

(Intercept) 80.2 3.89

Link = identity
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Estimated Correlation Parameters:

Estimate Std.err

alpha 0.225 0.0389

Number of clusters: 73 Maximum cluster size: 50

The output from this function includes the estimate of the marginal average math

score, along with the standard error for this estimate and the p-value from a two-sided

hypothesis test against a null value of 0. However, implementing a hypothesis test

against a non-zero null value or obtaining a confidence interval requires additional

manual construction by the analyst. Additionally, this GEE model does not account

for possible informativeness in the data. In contrast, the ttestClust() function

executes simple hypothesis tests through a format easily modified by the user, while

accounting for clustering and potential informativeness.

A paired test of means can be performed using the one-sample execution method

in ttestClust() by supplying a vector of paired differences for x, accompanied with

an appropriate cluster identifier for idx. Alternatively, the paired numeric values can

be individually input for x and y along with a cluster identifier vector for idx, and

specifying paired = TRUE.

Suppose at the national level, the average student scores 10 points higher on the

math exam compared to the reading exam on the standardized tests taken by the

students in the screen8 data set. To test whether students in the district score

higher on math than reading in a manner consistent with the national average, we

can implement the reweighted paired test. We conclude that the students in this

school district have an average difference in math and reading scores equivalent to

the national average.

> ttestClust(x = screen8$math, y = screen8$read, idx = screen8$sch.id,

+ paired = TRUE, mu = 10)

Paired cluster-weighted test of means

data: screen8$math and screen8$read, M = 73
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z = 0.91303, p-value = 0.3612

alternative hypothesis: true difference in means is not equal to 10

95 percent confidence interval:

9.611553 11.065973

sample estimates:

cluster-weighted mean of the differences

10.33876

The reweighted two-sample test can be performed by specifying the vectors x, y,

idx, idy, where x and y are the numeric outcomes from the two groups and idx,

idy are their corresponding cluster identification vectors. Alternatively, this test can

be implemented using a formula dispatch.

ttestClust(formula, id, data, subset, na.action, ...)

To implement the formula method, the argument formula should be of the form lhs

∼ rhs, where lhs is a numeric variable giving the data values and rhs is a factor

with two levels giving the corresponding groups. A cluster-identifying vector id must

additionally be specified. The argument data is an optional matrix or data frame

containing the variables in the formula formula and id.

Administrators from the screen8 district wish to test if there’s a difference in

average math scores between males and females. We perform this test using the for-

mula interface, and conclude that the marginal average math score is not significantly

different between male and female students in this district.

> ttestClust(math ~ gender, id = sch.id, data = screen8)

Two sample group-weighted test of means

data: math by gender, M = 73

z = 1.3495, p-value = 0.1772

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.2234259 1.2111344

sample estimates:

weighted mean in group F weighted mean in group M

70.75124 70.25739
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The function onewaytestClust() performs the test of equality for K-group means

discussed in Section 4.3.3. This function operates alternatively on a single input of

a table containing the intra-cluster group means, or through vectors supplied via the

formula interface. The formula method has the following usage, with inputs structure

consistent to that of ttestClust().

onewaytestClust(formula, id, data, subset, ...)

If applying onewaytestClust() to a table, a single argument x is submitted, where x

is a two-dimensional matrix or data frame containing the within-cluster group means,

where rows are the clusters and columns are the group means. Note that incomplete

clusters, i.e., clusters in which not all groups were observed, should have NA in the

corresponding empty group column(s).

To illustrate this usage, we use the screen8 data to test whether students engaged

in the three categories of extracurricular activities have the same average reading

score. To use the table interface, we first tabulate average reading scores by extracur-

ricular activity for each cluster. This is easily performed, correctly accounting for

incomplete clusters, through the tapply command.

> read.tab <- tapply(screen8$read, list(screen8$sch.id, screen8$activity), mean)

> head(read.tab, n = 8)

academic other sports

1 63.70000 62.00000 61.25000

2 62.00000 60.37500 59.37500

3 58.00000 63.28571 57.00000

4 59.00000 61.42857 62.56250

5 60.60000 55.00000 61.80000

6 56.28571 57.33333 60.60000

7 57.81818 62.55556 59.71429

8 58.20000 58.16667 NA

> onewaytestClust(read.tab)

Reweighted one-way analysis of means for clustered data

data: read.tab, M = 73

X-squared = 1.3191, df = 2, p-value = 0.5171

sample estimates:

academic other sports

60.11498 60.40785 59.69659
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The same test using the formula interface is performed with the following code.

> onewaytestClust(read ~ activity, id = sch.id, data=screen8)

Reweighted one-way analysis of means for clustered data

data: read and activity, M = 73

X-squared = 1.3191, df = 2, p-value = 0.5171

sample estimates:

academic other sports

60.11498 60.40785 59.69659

Based on this analysis, we conclude that students engaged in the various types of

extracurricular activities have equal performance on the standardized reading test.

Tests of variance

The various methods of assessing variance equality of intra-cluster groups discussed

in Section 4.5 can be performed through two functions in htestClust. The function

vartestClust() tests equality of variance between two groups using the reweighted

F test analog based on differences in group variances (F̂d) from Section 4.5.1, and the

function levenetestClust() performs the reweighted Levene test analogs in Sections

4.5.2 and 4.5.3.

vartestClust() has the usage:

vartestClust(x, y, idx, idy, difference = 0,

alternative = c("two.sided", "less", "greater"),

conf.level = 0.95, ...)

The arguments x and y take numeric vectors of outcomes from the two intra-cluster

groups, and idx and idy the respective cluster-identifiers. The function tests the

null hypothesis that the marginal difference in variance between x and y is equal to

difference against the one or two-sided alternative hypothesis specified by argument

alternative. The function also has a formula interface:

vartestClust(formula, id, data, subset, na.action, ...)
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The usage of the formula method remains consistent with previous functions, with

formula taking the form lhs ∼ rhs, where lhs is the numeric outcome variable

and rhs is a grouping variable with exactly two levels. Note that the order of the

difference in variance for the null hypothesis will be determined by the order of the

levels in the grouping variable rhs.

We illustrate these methods using the screen8 data set and assess whether the

variation in math scores is equivalent between male and female students. Note that

the signs of the estimate and confidence interval have been reversed when using the

formula method compared to the vector input, as the levels of the gender variable

are "F" "M".

> boys <- subset(screen8, gender==’M’)

> girls <- subset(screen8, gender==’F’)

> vartestClust(x = boys$math, y = girls$math, idx = boys$sch.id,

+ idy = girls$sch.id)

Reweighted test to compare two intra-cluster group variances

data: boys$math and girls$math, M = 73

z = 0.18089, p-value = 0.8565

alternative hypothesis: true difference of variances is not equal to 0

95 percent confidence interval:

-8.761322 10.542997

sample estimates:

difference of variances

0.8908372

>

> vartestClust(math ~ gender, id = sch.id, data = screen8)

Reweighted test to compare two intra-cluster group variances

data: math by gender, M = 73

z = -0.18089, p-value = 0.8565

alternative hypothesis: true difference of variances is not equal to 0

95 percent confidence interval:

-10.542997 8.761322

sample estimates:

difference of variances

-0.8908372

Based on this analysis, we conclude there is no difference in the marginal variability

of math scores between boys and girls in this school district.
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Testing variance equality using the reweighted Levene test analog can be per-

formed through the levenetestClust() function. This function has the following

default and formula methods:

levenetestClust(y, group, id, center = c("median", "mean"), trim = NA, ...)

levenetestClust(formula, id, data, subset, na.action, ...)

Using the default method, y is the vector of numeric responses, group is a vector

defining groups, and id is a cluster identification vector. The method of center-

ing is specified with the argument center. The optional numeric argument trim

takes a value between [0, 0.5] specifying the percentage trimmed mean, and is only

applicable when center = ‘‘mean’’. The application of the formula method for

levenetestClust() remains consistent with that of previous formula methods, where

rhs of formula is a grouping variable with at least two levels. Either vartestClust()

or levenetestClust() can be used to assess variance equality between two groups,

while only levenetestClust() assesses equality of variance forK intra-cluster groups.

To illustrate, we once again test variance equality in math scores between genders

from our example data set. The results of the reweighted Levene test analogue are in

concordance with those from the reweighted F test: the marginal variation in math

scores between girls and boys in this school district is not significantly different.

> levenetestClust(y = screen8$math, group = screen8$gender, id = screen8$sch.id)

Reweighted Levene’s Test for Homogeneity of Variance in Clustered Data

(center = median)

data: screen8$math by screen8$gender, M = 73

X-squared = 0.40921, df = 1, p-value = 0.5224

Illustrating the formula method, we test variance equality of math scores between

students engaged in the three types of extracurricular activities using a 10% trimmed

mean.
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> levenetestClust(math ~ activity, id = sch.id, data = screen8, center = "mean",

+ trim = .1)

Reweighted Levene’s Test for Homogeneity of Variance in Clustered Data

(center = mean: 0.1)

data: math by activity, M = 73

X-squared = 0.24726, df = 2, p-value = 0.8837

Based on this analysis, we conclude there is no significant difference in marginal vari-

ation of math scores between students engaged in the three types of extracurricular

activities.

Tests of correlation

The reweighted tests of correlation [39] from Section 4.6 are executed through the

function cortestClust(), which has both vector and formula methods.

cortestClust(x, y, id, method = c("pearson", "kendall", "spearman"),

alternative = c("two.sided", "less", "greater"),

conf.level = 0.95, ...)

cortestClust(formula, id, data, subset, na.action, ...)

In the default method, x and y are numeric vectors of outcomes and id is a vector

denoting cluster membership. The argument method allows the user to specify the

desired reweighted correlation coefficient. In the formula method, formula should be

of the form ∼ u + v, where each of u and v are numeric variables giving the data

values, and id is the cluster-denoting vector. The function performs the hypothesis

test that the marginal correlation coefficient is equal to 0 against the alternative

specified by alternative, and returns a confidence interval with confidence level

conf.level.

To illustrate, we estimate the marginal correlation between math and reading

scores in the screen8 data. There is significant positive marginal correlation between

math and reading scores for students in this district.
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> cortestClust(x = screen8$math, y = screen8$read, id = screen8$sch.id)

Cluster-weighted Pearson’s product-moment correlation

data: screen8$math and screen8$read, M = 73

z = 3.7442, p-value = 0.000181

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.04614837 0.14753645

sample estimates:

cluster-weighted cor

0.09684241

> cortestClust(~ math + read, id = sch.id, data = screen8, method = "spearman")

Cluster-weighted Spearman’s rank correlation rho

data: math and read, M = 73

z = 4.1313, p-value = 3.607e-05

alternative hypothesis: true is not equal to 0

95 percent confidence interval:

0.05112969 0.14343427

sample estimates:

cluster-weighted rho

0.09728198

5.4.4 Rank-based tests

The reweighted rank sum [10, 16] and signed rank tests [11] described in Section 4.4

are implemented through the wilcoxtestClust() function.

wilcoxtestClust(x, y = NULL, idx, idy = NULL,

alternative = c("two.sided", "less", "greater"),

mu = 0, paired = FALSE,

method = c("cluster", "group"), ...)

The arguments x and y are numeric vectors of responses, and idx and idy are cor-

responding cluster-identifier vectors. If only x and idx are given, a cluster-weighted

signed rank test of the null that the distribution of x is symmetric about mu is per-

formed. If x and y are both given and paired = TRUE, only idx is necessary to

identify clusters (idy is ignored). In this case, a cluster-weighted signed-rank test of

the null that the distribution of x - y is symmetric about mu is performed.
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The cluster-weighted rank sum test is performed when method = cluster, and

the group-weighted rank-sum test is performed when method = group. When exe-

cuting the rank sum tests, the null is that the two groups follow the same marginal

distribution and the argument mu is ignored.

The reweighted rank sum tests can additionally be executed using a formula

method, with the following usage.

wilcoxtestClust(formula, id, data, subset, na.action, ...)

The argument formula is of the form lhs ∼ rhs, where lhs is a numeric vector

of data values, rhs is a factor with two levels giving the groups, and id is a vector

denoting cluster membership.

Suppose in the screen8 data we wish to test whether marginal reading scores are

symmetric around 60. We implement the reweighted signed rank test, and conclude

that the center of the distribution of marginal reading scores is not significantly

different than 60.

> wilcoxtestClust(x = screen8$read, idx = screen8$sch.id, mu = 60)

One sample cluster-weighted signed rank test

data: screen8$read, M = 73

z = 0.5741, p-value = 0.5659

alternative hypothesis: true location is not equal to 60

To illustrate the paired test, we test whether the distribution of the difference in

math and reading scores is symmetric around 10. We conclude that the marginal

difference between students’ math and reading scores has a symmetric distribution

centered around 10.

> wilcoxtestClust(x = screen8$math, y = screen8$read,

+ idx = screen8$sch.id, mu = 10, paired = TRUE)

Paired cluster-weighted signed rank test

data: screen8$math and screen8$read, M = 73
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z = 0.76137, p-value = 0.4464

alternative hypothesis: true location shift is not equal to 10

Now suppose we’re interested in determining whether males and females have the

same distribution for mental health evaluation scores. We use the formula method to

execute the reweighted rank-sum test using group weighting. Based on this analysis

we conclude there is no significant difference in the distribution of mental health

scores between boys and girls.

> wilcoxtestClust(phq2 ~ gender, id = sch.id, data = screen8, method = "group")

Group-weighted rank sum test

data: phq2 by gender, M = 73

z = 0.14143, p-value = 0.8875

alternative hypothesis: true location shift is not equal to 0

5.5 Discussion

htestClust is available from CRAN. The package can be installed by running the

following command within the R environment:

install.packages("htestClust")

Once installed, the htestClust package can be loaded in new R sessions using the

command library(htestClust).

R’s flexible and extensible nature comes at the cost of efficiency. The design of the

R-language and processing environment places constraints on performance, resulting

in slower execution of complex calculations. Some of the reweighted tests performed

by functions in htestClust require calculation of computationally expensive empirical

CDFs and jackknife variance estimates. As a result, some htestClust functions

can have lengthy computation times when applied to large data sets. A possible

performance-boosting revision to the package would be the integration of portions of

computationally expensive functions to a more efficient coding language, such as C++.
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The htestClust package was developed as a tool to aid in the analysis of clus-

tered data with potential ICS/IWCGS, and is comprised of functions that implement

the broad collection of reweighted hypothesis tests described in previous chapters.

While there exist a number of packages designed for the analysis of clustered data,

htestClust is the first that is designed with the purpose of addressing informative-

ness in a comprehensive manner. This novel package implements marginal reweighted

tests that are clustered data analogs to well-known classical statistical tests, and the

interface of the package has been designed to reflect this relationship. Function inter-

face has been purposefully structured to resemble that of functions available in base

R that perform the analogous classical tests, making usage intuitive. Its thoughtful

design and expansive collection of methods makes this package an effective tool for

researchers to analyze clustered data with varying cluster or group sizes.
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CHAPTER 6

DISCUSSION

6.1 Introduction

When analyzing clustered data with varying cluster or group sizes, methods that

account for potential informativeness should be considered. GEE and other model-

based methods are the standard approach for the marginal analysis of clustered data,

but such methods implicitly assume variation in cluster size is ignorable. Failing to

account for dependency between response measurements and the number of obser-

vations within clusters or intra-cluster groups can lead to over-weighting of larger

clusters (or groups), and potentially biased inference. Grounded in resampling pro-

cedures, the marginalization principle of Williamson et al. [53] avoids biasing effects

of informativeness by reweighting observations by their inverse cluster or group size.

Estimators derived through this methodology have been shown to be asymptotically

normally distributed, allowing inference to be conducted through Wald-type tests.

The work in this dissertation applied the marginalization principle to estimate

marginal parameters related to proportions, means, and variances, and developed

clustered data analogs of classic hypothesis tests. We demonstrated the need for

these methods by comparing the performance of the reweighted tests to that of oth-

erwise cluster-appropriate methods through simulation, and showed that only the

reweighted tests consistently maintain appropriate size for data under informative-

ness. These tests augmented a small selection of similarly-reweighted established

methods related to ranks and correlations in clustered data. Combined, these tests
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formed a collection addressing a broad spectrum of general hypotheses. We made

this entire collection accessible to analysts through a comprehensive and flexible R

software package. Together, the methods and software advanced by this dissertation

expand the means for analysis of clustered data with potential cluster- or group-size

informativeness.

In this chapter, we summarize the previous chapters of this document, and add

to their individual discussions with some specific comments. We then provide a gen-

eral discussion on the reweighting methodology, its limitations, and areas for further

research.

6.2 Summary and additional comments related to previous chapters

In Chapter 2, we detailed the resampling origins of the reweighting methodology,

and illustrated how the marginalization principle leads to inverse cluster- and group-

weighted estimators. While resampling plays no active roll in the resulting tests,

it’s important to consider how this process would be performed to ensure accurate

weighting. This is of primary concern when applying inverse group-weighting, which

is grounded in a two-step resampling process. When data have incomplete group

structure, the (theoretical) resampling process needs to reflect this condition, with

subsequent weights from the marginalization process being modified accordingly. Fail-

ing to recognize how selection probabilities vary across incomplete clusters can result

in estimators that are philosophically and mathematically problematic [49].

In Chapter 3, we developed tests of clustered categorical data reweighted to cor-

rect for ICS. This work not only advanced reweighted tests to a previously overlooked

area, but additionally explored the effects of variance estimation on the performance

of such tests. Prior tests of reweighted estimators were constructed using diverse

variance estimates, but no comparison of methods had previously been performed.

In the context of categorical responses, we demonstrated that the method of variance
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estimation significantly affects the performance of reweighted tests. In particular,

tests with variance estimates constructed under a null hypothesis consistently out-

performed tests using alternative variance estimation methods.

As noted in Section 4.2, the breadth of technique for variance estimation in the

tests of Chapter 3 is due to the lack of complications related to incomplete clus-

ters. This convenience results both from the nature of categorical data and from the

weighting method chosen for these tests. Observations are counts, so any unobserved

categories within clusters have a value of 0. The reweighting applied to these tests

corrects for ICS, resulting in observations being weighted by the inverse of the clus-

ter size, which is always a value > 0. Should it be desired to derive a reweighted

categorical test that corrects for IWCGS, the methods discussed in Section 2.5 could

be applied. However, this weighting applies the inverse group size to observations,

so certain intra-cluster parameter estimates would no longer be defined for data with

incomplete group structure. As the variance estimates discussed in Chapter 3 are

functions of intra-cluster parameter estimates, an alternative method for variance

estimation, such as the jackknife form from Section 4.2, must be considered.

We note that IWCGS is of minor concern for the hypotheses addressed by the

tests of Chapter 3. The tests of proportion, goodness of fit, and homogeneity are

designed for univariate categorical data. Unless an additional variable ancillary to

the primary outcome was considered, there are no groups whose distribution could be

informative. Moreover, adjusting for informativeness of a secondary variable that is

not of direct interest to the hypothesis is incongruous with the essence of this work.

Contrary to the other three tests, the reweighted test of independence is performed on

bivariate data. However, this test assesses the relationship between the two variables

in a cumulative manner; it does not directly compare outcomes between groups.

Even in circumstances when variables lend themselves to be defined as “groups” and

“outcomes”, the test is blind to this distinction. Therefore, the inverse cluster weight
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applied in this test should simultaneously address informativeness in either (or both)

variables.

In Chapter 4, we developed tests of intra-cluster group means and variances. As

these tests compare group parameters, we applied the reweighting method correcting

for IWCGS. Prior studies have shown that inverse-group weighting additionally cor-

rects for ICS [16, 24], making these tests appropriate for data with informativeness

of either (or both) cluster or group size. Moreover, under non-informative simu-

lations, these reweighted tests exhibited superior nominal size control compared to

GEE methods, while maintaining comparable or higher power. This chapter addition-

ally included summaries of the reweighted rank-based tests and tests of correlation

that naturally compliment the novel tests in this work. For the consistency of this

document, we have altered some of the notation of these tests from their original

publication form; however, their nature remains unchanged.

Motivated by distributional assumptions, there are several common tests of vari-

ance homogeneity in the classical setting. We paralleled these forms in our reweighted

tests, constructing a number of methods for assessing variance homogeneity in clus-

tered data. While the reweighted tests in this work are not subject to the same dis-

tributional constraints as their independent-observation analogs, we showed through

simulation that their performance is not invariant to the distribution of the data.

Much like the classical setting, considering the possible distributions of given data

can be helpful in selecting the most appropriate method to assess variance equality

of intra-cluster groups.

In Chapter 5, we presented the R package htestClust, which was developed to

implement the collection of reweighted tests from Chapters 3 and 4. The htest-

Clust package is intended to facilitate the analysis of clustered data with potential

informativeness, and significant effort was devoted to its functionality. Syntax and

nomenclature of functions were designed to be intuitive, mimicking that of recogniz-
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able hypothesis testing functions in the native R environment. Most functions have

a flexible interface, allowing data to be input either through vectors or, alternatively,

formulas or tables.

Included in the htestClust package is a function that performs a hypothesis

test for the presence of ICS. This test provides analysts a tool for assessing whether

there is a relationship in their data between fluctuating cluster sizes and outcome

measurements. As methods that fail to account for ICS can produce biased estimates,

it would be a natural progression to apply this test prior to selecting the method of

analysis when analyzing clustered data. To our knowledge, there is no analog test to

assess the presence of IWCGS. As informativeness of group distribution is a separate

issue that can occur independently of ICS, future research devoted to the development

of such a test would be worthwhile.

6.3 General discussion

The effects of informativeness on otherwise cluster-appropriate methods are seen

through the bias of GEE-based methods in the simulation results of Chapters 3 and

4. This bias ranged from mild to severe, depending on circumstance, and it is evident

that sample size, number of parameters being tested, and degree of informativeness all

play a complex role. In our simulations, GEE methods generally demonstrated heav-

ier bias under smaller samples and when the number of parameters increased. In some

cases, the bias increased with the number of clusters, suggesting this vulnerability to

informativeness is not simply a matter of adequate sample size. As demonstrated in

Table 9, the bias caused by informativeness is related to the degree of informativeness

in the data. Informativeness was induced in our simulations through random effect

parameters, ui. Cluster and group sizes were generated through indirect functions

of the form b + c ∗ f(ui), where c serves as the “size modification” parameter. Ob-

viously, as the value of c increases, the greater the degree of informativeness in the

112



data, which is likewise reflected in GEE performance. In some simulations, informa-

tiveness was also partially dependent on a “threshold” parameter t as part of f(ui),

e.g., f(ui) = I[ui > t]. It is clear that the value of t also plays a role in the amount

of informativeness in data, as it determines the frequency of the size variation. The

combined effect of these two parameters on otherwise cluster-appropriate methods

was not studied, and they represent only a few such parameters that could be related

to informativeness. Therefore, while GEE methods resulted in empirical size only

slightly higher than the nominal level in Tables 1 and 10, we caution readers to not

take this as an indication of GEE robustness to varying cluster or group size when

testing simple designs with a large number of clusters.

The methodology behind these reweighted tests rests primarily on the asymptotic

normality of reweighted parameters. As previously noted, these methods are appro-

priate when the clusters are the unit of interest; as such, the asymptotic normality

is indexed by the number of clusters. This dependence on sample size is evident

throughout our simulation results. Tests of a single parameter performed well under

small sample sizes, as shown in Tables 1 and 10. However, consistent across categor-

ical and quantitative data, the reweighted tests required larger samples to maintain

appropriate size as the dimension of the parameter vector increased. Classical asymp-

totic theory advises a threshold of 30 observations to establish normality. But, as

the number of parameters increases, or as parameter values approach the boundary

space, a larger sample size will be required to ensure the accuracy of these methods.

In practice, obtaining a sufficient number of clusters to permit the use of these tests

might be of issue. While there has been some development of small-sample inferential

methods based on resampling and permutation techniques [19], the advancement of

“exact” tests for clustered data under potential informativeness remains an area open

to exploration.

The issue of incomplete clusters has played a peripheral theme throughout this
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work. We have previously discussed how incomplete group structure changes the

weighting assignment in the marginalization process, and how it can restrict variance

estimation techniques. Other authors [47, 49] provide a thorough examination into

the various distinct populations that produce data with incomplete group structure,

and how informativeness in general relates to missing data. Less studied, however,

is the effect of incomplete group structure on parameter estimation and testing. In

the categorical tests of Chapter 3, incomplete clusters result in observed group pro-

portions of 0, or, at times, 1. As the overall reweighted estimators are the average of

within-cluster proportions, it is reasonable to question the biasing effect incomplete

clusters have on the overall estimators and tests constructed from such estimators.

While this issue is most salient to categorical estimates, it is likewise germane to

reweighted quantitative values. To accommodate incomplete clusters, the jackknife

method is implemented in estimating the variance of the statistic, and this form can

be heavily influenced by outlying observations [51]. The inherent nature of infor-

mativeness could make clusters with incomplete group structure more likely to be

outliers. As incomplete clusters are of practical concern, more research is needed in

this area.

An additional understudied area is the effect of the underlying distribution on the

performance of these methods. The tests in this collection have the amenity of being

nonparametric and free from assumptions related to the clustering or informative-

ness structure. This avoids issues of misspecification that would be of concern with

model-based methods and results in these tests being broadly applicable. Despite

this, these tests depend on the asymptotic normality of the reweighted estimators,

which is partially provisory on the marginal distribution of the data. This is evident

in the simulations results in Tables 12, 13, and 14, in which the performance of the

reweighted tests varied based on the distributional transformation applied to the data.

Asymptotic normality is a well-studied area in classical statistics, but the extent to
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which that knowledge is directly applicable to clustered data under informativeness

remains unknown. Clustered data can have complex dependencies, and these rela-

tionships can be further complicated through mechanisms of informativeness. The

Wald-type tests of reweighted estimators, both in this work and by other authors,

have primarily been evaluated through simulations of symmetric/normal distribu-

tions where informativeness is induced by straightforward means. While we would

expect this collection of tests to be robust in many settings, the relationship between

complex data structure and asymptotic convergence of reweighted estimators has yet

to be formally evaluated.

The array of tests in this collection constitute methods for cross-sectional analysis.

That is, they provide researchers methods for analyzing data that correspond to

a “snapshot in time”. This conforms with the original reweighting application in

CWGEEmodels and there are many settings of clustered data where such analysis will

be of interest. Alternatively, some clustered data have a natural temporal aspect, the

effect of which might be of primary interest. The methods in this collection are clearly

incompatible for analyses concerned with changes across time. However, a number of

modeling methods that extend the reweighting methodology to longitudinal settings

have recently been developed [5, 41, 52].

In this work, we have applied reweighting methods that correct for cluster- and

group-size informativeness to develop a comprehensive collection of marginal hypothe-

sis tests for clustered data, and made implementation of these tests accessible through

the creation of a software package. Not only do the tests in this collection correct for

potential informativeness in clustered data, they provide the means for addressing

a number of universal hypotheses without the complexity of model-based methods.

These tests maintain nominal size when data have informativeness, where otherwise

cluster-appropriate methods can be biased, and have comparable or even higher power

to competitor tests when fluctuations of cluster or group size is non-informative. Their
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broad applicability and convenience makes these tests the method of choice when in-

formativeness is of a concern, and a legitimate alternative to established methods

when performing simple hypotheses of marginal parameters in clustered data when

variation of cluster or group size can be discounted.
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APPENDIX A: Commonly Used Acronyms

CWGEE - cluster-weighted generalized estimating equation

DWGEE - doubly-weighted generalized estimating equation

GEE - generalized estimating equation

ICS - informative cluster size

IWCGS - informative within-cluster group size

WCR - within-cluster resampling
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APPENDIX B: Simulation Code for Screen8 Data

library(MASS)

set.seed(15000)

M <- 73

u <- rnorm(M, m=0, sd=1)

ni <- rpois(M, 30+5*u)

### IDENTIFIERS

sch.id <- rep(1:M, ni)

stud.id <- as.numeric(unlist(tapply(sch.id, sch.id, function(x) 1:length(x))))

### STANDARDIZED TEST SCORES - CLUSTER SIZE NEGATIVELY INFORMATIVE

tmp.math <- rnorm(sum(ni), m=70-rep(4*u, ni), sd=8)

math <- round(pmin(tmp.math,100))

tmp.read <- rnorm(sum(ni), m=60-rep(2*u, ni), sd=10)

read <- round(pmin(tmp.read,100))

### DEMOGRAPHICS AND BIOMETRICS

### PROPORTION OF MALES AT SCHOOL INCREASES WITH CLUSTER SIZE

p.male <- .25+.5*(ni-min(ni))/(max(ni)-min(ni))

n.male <- rbinom(M, size=ni, prob=p.male)

gender <- factor(unlist(apply(cbind(n.male,ni-n.male), 1,

function(x) rep(c("M","F"), x))))

### AGE IS UNRELATED TO LATENT FACTOR

age <- sample(13:15, size=sum(ni), replace=T)

### HEIGHT AND WEIGHT ATTEMPTED TO FOLLOW 14 YO AVERAGES,

### HAVE SENSIBLE BMI (703*w/h^2)

height <- weight <- rep(NA, sum(ni))

tmp <- mvrnorm(sum(gender=="M"), mu=c(65,140),

Sigma=cbind(c(8,.7*sqrt(8)*16),c(.7*sqrt(8)*16,256)))

height[gender=="M"] <- round(tmp[,1])

weight[gender=="M"] <- round(tmp[,2])

tmp <- mvrnorm(sum(gender=="F"), mu=c(64,122),

Sigma=cbind(c(7,.6*sqrt(7)*15),c(.6*sqrt(7)*15,225)))

height[gender=="F"] <- round(tmp[,1])

weight[gender=="F"] <- round(tmp[,2])

### STUDENT-LEVEL CATEGORICAL VARIABLE

### EXTRACURRICULAR ACTIVITY

### proportion of students who participates in sports increases

### with cluster size (opposite for academics)

tmp <- cbind(0.1 + .5*(ni-min(ni))/(max(ni)-min(ni)), 0.1 +

.5*(1-(ni-min(ni))/(max(ni)-min(ni))))

tmp <- cbind(tmp, 1-rowSums(tmp))
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tmp.fun <- function(cl) {

t(rmultinom(1, ni[cl], prob=tmp[cl,]))

}

aa.ni <- matrix(unlist(lapply(1:length(ni), tmp.fun)), ncol=3, byrow=T)

activity <- factor(unlist(apply(aa.ni, 1,

function(x) sample(rep(c("sports","academic", "other"), x)))))

### MENTAL HEALTH VARIABLE - INFORMATIVE; LARGER SCHOOLS, HIGHER SCORES

phq2 <- rbinom(sum(ni), size=6, prob=.5*(ni-min(ni))/(max(ni)-min(ni)))

### FITNESS QUARTILE - NONINFORMATIVE, RELATED TO BMI

bmi <- 703*weight/height^2

zbmi <- (bmi-mean(bmi))/sd(bmi)

tmp <- rbinom(sum(ni), size=3, prob=2*pnorm(-abs(zbmi)))+1

qfit <- factor(tmp, labels=c("Q1","Q2","Q3","Q4"))

### SECOND FITNESS QUARTILE - FROM BEGINNING OF SCHOOL YEAR ()

bmi2 <- bmi + rnorm(sum(ni), mean=-0.5, sd=1)

zbmi2 <- (bmi2-mean(bmi2))/sd(bmi2)

tmp2 <- rbinom(sum(ni), size=3, prob=2*pnorm(-abs(zbmi2)))+1

qfit.s <- factor(tmp2, labels=c("Q1","Q2","Q3","Q4"))

### DATA FRAME

screen8 <- data.frame(sch.id, stud.id, age, gender, height,

weight, math, read, phq2, qfit, qfit.s, activity)
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