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“Observe constantly that all things take place by change, and accustom thyself to 

consider that the nature of the universe loves nothing so much as to change the things 

which are, and to make new things like them.” 

Marcus Antoninus Aurelius 

This dissertation is dedicated to my wife and our baby boy. 
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ABSTRACT 

ELECTROCHEMICAL REDUCTION OF CARBON DIOXIDE AND CARBON 

MONOXIDE FOR THE PRODUCTION OF GREEN FUELS AND CHEMICALS 

Jacob M. Strain 

April 21, 2020 

It has become apparent that closing the carbon cycle on this planet in order to 

mitigate disastrous consequences of runaway global warming has become one of the most 

pressing issues of our civilization.  One of the ways we need to accomplish this goal is by 

finding news methods to generate fuels that will be carbon neutral.  Renewable fuels and 

green chemicals will be a major component of closing the carbon cycle and restoring our 

planet’s ecosystem into a sense of balance.  A method that can help achieve this goal is the 

reduction of CO2.  If CO2 can be a desirable reactant on a large enough scale to produce 

fuels and chemicals, many industries will greatly benefit from the implementation of CO2 

reduction technologies.  This would in turn make removing CO2 from the atmosphere a 

worthy and realistic endeavor while reducing the concentration of CO2 in the atmosphere.  

Reducing CO2 concentrations in the atmosphere will help mitigate global warming.  

In the following dissertation, several methods are discussed that aid in the 

development of CO2 electroreduction.  The goal of which is to improve the overall 

efficiency of current CO2 electroreduction technology.  The first major effort assesses the 

contaminants emanating from the membrane component of the CO2 electroreduction 
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device, alleviating the issue of spurious product detection.  The second effort involves the 

tuning of product selectivity on oxide-derived copper catalyst by pulsing the bias.  The 

third effort details the pursuit of a stand-alone “artificial leaf” technology for the reduction 

of carbon monoxide.  The electrochemical investigations undertaken in this dissertation 

discuss in detail the metrics and principles used to accomplish these works. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 Introduction 

Greenhouse gas emission from anthropogenic sources has steadily increased the 

concentration of CO2 in the atmosphere and is predicted to continue rising unless large 

scale mitigation of CO2 emissions takes place.1-4  Increased concentrations of CO2 in the 

atmosphere also disturbs the normal carbon cycle, and allowing it to continue rising is a 

large-scale test of our understanding of the global ecosystem.5-7  Biological plants use CO2 

as a fuel source in the process of photosynthesis providing oxygen as a by-product.  This 

natural process is greatly affected by wanton use of fossil fuels and excessive removal of 

the natural habitats that make up our planet’s lungs.8-10  Most of the world has agreed that 

this issue is of existential importance and the goals to mitigate this global warming crisis 

have been detailed in what is known at the Paris agreement.11-13  Many countries and 

organizations have taken up the responsibility to achieve the goals outlined in the Paris 

agreement in efforts to mitigate all climate change issues.14-20 

There have been several research efforts focused on capturing or sequestering 

CO2.
21-23  CO2 conversion and utilization has been massively explored in this past 

decade.24-35  This involves many different strategies including biochemical,36-42 

radiolysis,43-45 thermocatalysis,46-50 photocatalysis,51-56 electrocatalysis,57-63  and 

photoelectrochemical (PEC).64-67 One of the most promising strategies may be the PEC 
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strategy due to the possible benefits from the standpoint of overall efficiency.68-76 PEC 

strategies mimic natural photosynthesis (ie. artificial photosynthesis).77-82 

1.2 The Electrochemical Reaction 

CO2 is very thermodynamically stable due to its linearity and poor electron 

affinity.83  CO2 is the most oxidized form of carbon and this makes CO2 notoriously hard 

to reduce.  The C=O bond has a dissociation energy of 750 kJ/mol.84  Because of this high 

bond strength, catalyst methods are required to reduce CO2.  Many chemical reactions with 

CO2 can reduce the molecule but are relatively energetically inefficient in comparison to 

the room temperature electroreduction with a catalyst.  Figure 1.1 contains a free energy 

diagram of an example of the reduction of CO2 to methane where Cu(211) serves as the 

catalyst.  The energy path represented in black is representative of the steps that are 

required to be taken when there is no applied bias (0 V vs. RHE).  The red energy path 

Figure 1.1  Free energy diagram for the reduction of CO2 to CH4 on Cu(211) at 0 V and  -0.5 V versus 

RHE.85 
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represents the steps it takes for the reaction to be completed once applied bias is used (-0.5 

V vs RHE).  Eight steps are required to get from CO2 to methane.  All eight of these proton-

coupled electron transfer (PCET) steps each have their own optimal conditions that 

stabilize each step and its respective intermediate.  Because of these specific conditions 

each step has its own value of Gibb’s free energy, causing several reaction steps to be uphill 

in energy. This concept is known as scaling relations.85   The scaling relations of a reaction 

causes multistep reactions to inherently become more difficult to accomplish in comparison 

to reactions that only take a couple of steps, like that of CO2 to CO taking only two PCET 

steps versus twelve step to get from CO2 to ethanol.  Without any applied bias the reaction 

will not proceed forward if enough reaction steps are uphill in energy.  With an applied 

bias, each of these reaction steps undergoes a drop in the required Gibb’s free energy which 

results in these steps becoming downhill in energy, which then allows the reaction to 

proceed more efficiently.  This is known as an electrochemical reaction instead of a purely 

chemical reaction.  The ability to break the scaling relations to allow these electrochemical 

reactions to proceed is the main concern for the current research in the field of CO2 

reduction to value-added products.  Tuning the reaction system to make each step optimal 

will allow the electrochemical reduction of CO2 to higher order carbon chain products and 

maybe one day even fuels such as gasoline. 

1.3 Catalysts that Electroreduce CO2 

Many different catalysts allow for the electroreduction of CO2.  There are three 

main categories of metal catalysts that can achieve efficient CO2 electroreduction.  The 

first category of catalysts achieves the production of carbon monoxide (CO) which follows 

this half-reaction equation: 
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CO2 + 2(H+ + e-) → CO + H2O 

The main metal catalysts that are known to complete this reaction are Au86 and 

Ag.87, 88  The second category of catalyst achieves the production of formic acid (FA) which 

follows this half-reaction equation: 

CO2 + 2(H+ + e-) → HCOOH 

The catalysts known to complete this electrochemical reaction are Sn, Bi, Pb, In.89  

The third category belongs to a single metal, Cu.  Many different hydrocarbon products are 

available due to the excellent activity of Cu.  These reactions proceed through the general 

half-reaction: 

mCO2 + n(H+ + e-) → CxHyOz + oH2O 

Because Cu can reduce CO2 to many different products (Figure 1.2) many more 

intermediates and therefore more electrochemical steps are required.90,91  This presents a 

challenge for selectivity in the Cu catalyst systems.  Other catalysts that are worth noting 

Figure 1.2  Proposed reaction pathway for C2 and C3 products.91 
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are Ni2P
92 and MoS2

93, which have been shown to produce 2,3-furandiol and t-butanol 

respectively. 

1.4 The Electroreduction of Carbon Monoxide 

There has been a lot of progress on the electroreduction of CO2 to CO.86, 88  One 

remarkable study achieved near 100% selectivity for CO with the use of ionic liquids.87  

With this progress in the field of CO2 electroreduction, some research focus has shifted to 

the intermediate product CO and its electroreduction.94  In 2014 Li et al. was able to achieve 

a high selectivity of over 40% for ethanol in the CO reduction reaction (CORR) on oxide-

derived copper (OD-Cu).95  This high selectivity for C2+ products is possible due to the 

high density of grain boundaries inherent in the highly nanostructured catalyst such as OD-

Cu.96  This revelation inspired many other research groups that high selectivity for value-

added products from CO as the main reactant would be a high possibility.  Recent work in 

the Sargent research group has fine-tuned the catalyst to greatly increase the selectivity for 

C3 products from CORR such as n-propanol.97-99  In the Jaramillo group other major 

accomplishments have been achieved such as understanding the effect pH has on 

selectivity for CORR on Cu,94 nearly eliminating the competitive hydrogen evolution 

reaction (HER) with a nanoflower nanostructured Cu catalyst,100 and using that same 

nanostructure method with bimetallic CuAg  to achieve near 100% selectivity at very low 

overpotential for one product: acetaldehyde.101 
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1.5 The Electrochemical Cell 

The fundamental piece of equipment that makes CO2 electroreduction possible is 

the electrolyzer.  The electrolyzer is basically an upgraded electrochemical cell that is 

specifically engineered to overcome fundamental limits a typical electrochemical cell 

possesses.  In this section the electrochemical cell will be described as well as the limits 

that the electrochemical cell possesses and the metrics that determine the performance of 

the cell. 

In the typical electrochemical cell, there are at least two electrodes.  Between these 

two electrodes an overall chemical reaction takes place in the cell.  This overall chemical 

reaction is made of two individual half-reactions.  Each of these half-reactions involve a 

reduction or oxidation event where the electrons are supplied or taken away by the 

Figure 1.3  Experimental setup of the sealed standard three-electrode cell for reference electrode 

calibration.  Pt foil was used as both the working and counter electrodes, and the electrolyte was 

saturated with high-purity hydrogen.103 
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electrode.  The half-reaction one studies occurs at the working electrode (WE).  The second 

electrode is the counter electrode (CE), which in a two-electrode setup functions also as 

the reference electrode (RE).  These two electrodes are connected by a supporting 

electrolyte which allows the travel of ions between the two electrodes.  In a three-electrode 

setup, a purpose-built RE is used as the third electrode, which can be seen in Figure 1.3.  

The RE consists of phases having essentially a constant composition that is unperturbed by 

the overall chemical reaction taking place between the other two electrodes.  Since the half-

reaction is “standard” at the RE, the behavior of the WE is then always in respect to the 

RE.  This way the behavior of the half-reaction on the WE can be easily compared to other 

systems. In most of the systems presented in this dissertation, a three-electrode system is 

used.  In this three-electrode system, the CE’s potential is driven by the potentiostat to 

maintain the desired voltage between the WE and RE.  The CE typically consists of an 

electrochemically inert material to act as the opposing cathode or anode of the 

electrochemical cell.  Often, a Pt electrode is used as the CE.  This setup allows the 

measurement of the dependent variable of current during a potentiostatic electrochemical 

experiment.  The reason for this three-electrode setup is to have the ability to report the 

currents and potentials to an internationally recognized standard via the RE.  The RE is 

designed a certain way to not drive potential in one direction or another and any exchange 

of charge by the RE is negligible.  The CE responds to the signal from the RE in order to 

maintain constant voltage conditions at the WE.  This way, more information can be 

extracted about the half-reaction of interest occurring at the WE.   

The cell potential is the metric in which the behavior of an electrochemical reaction 

is judged.  The potential describes how much electromotive force it takes to drive current.  
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Cell potential, E, is measured in volts (V), where 1 V = 1 Joule/Coulomb (J/C).  This is the 

measure of how much energy is required to allow the electrochemical reaction to proceed 

forward.  This cell potential produces a current.  Current is the measure of the flow of ions 

in the electrochemical cell.  Current is expressed as i and measured in amperes (A).  It is 

also typically expressed in respect to the geometric area of the electrode in which the 

electrons flow, which is denoted as current density, J.  When an electrochemical cell is 

driven to more negative potential, it is said that reductive conditions are produced at the 

WE.  Vice-versa, when a cell is driven to more positive potential, it is said that oxidative 

conditions are produced.  The production of i-E or J-E curves elucidate the behavior of the 

half-reactions taking place in the electrochemical cell.  These current-potential curves are 

what is used in most electrochemical investigations, which are used to understand the 

behavior of an electrochemical system.  The measurements of current and potential form 

the basis for the investigations presented in this dissertation.  Knowing where and why 

electrons go where they go and at how much potential gives us a lot of information on the 

behavior of an electrochemical system.  

The internationally recognized primary reference is the standard hydrogen 

electrode (SHE), sometimes also called the normal hydrogen electrode (NHE) (technically 

there is a small difference).  SHE/NHE represents referenced potentials independent of the 

pH of the electrolyte solution.  The real hydrogen electrode (RHE) represents referenced 

potentials with respect to the pH of the electrolyte solution.   

In the course of common electrochemical investigations, three RE’s are typically 

utilized.102 The saturated calomel electrode (SCE) consists of Hg/Hg2Cl2, which is suited 

for acidic solutions.  The Hg/HgO RE is typically used for alkaline solutions.   The silver-
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silver chloride (Ag/AgCl) RE is the most commonly used RE works best in neutral 

solutions and is the primary RE used throughout the work presented in this dissertation.  

The Ag/AgCl RE consists of a glass tube with a porous glass frit on the end.  The tube 

typically contains a KCl solution which is in a constant state of equilibrium with a Ag wire.  

When this Ag/AgCl RE can maintain its constant phases, the potential of the cell can be 

adequately referenced.  The potential in respect to RHE for these three RE’s are calculated 

according to the Nernst equations in the following fashion: 

𝑉𝑅𝐻𝐸 = 𝑉𝐴𝑔/𝐴𝑔𝐶𝑙 + 0.210 𝑉 + 0.059 ∗ 𝑝𝐻 𝑓𝑜𝑟 3.0 𝑀 𝐾𝐶𝑙 

𝑉𝑅𝐻𝐸 = 𝑉𝑆𝐶𝐸 + 0.241 𝑉 + 0.059 ∗ 𝑝𝐻 𝑓𝑜𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝐾𝐶𝑙 

𝑉𝑅𝐻𝐸 = 𝑉𝐻𝑔/𝐻𝑔𝑂 + 0.165 𝑉 + 0.059 ∗ 𝑝𝐻 𝑓𝑜𝑟 0.1 𝑀 𝑁𝑎𝑂𝐻 

where VAg/AgCl is the voltage measured in the experimental cell, pH is the pH of the 

electrolyte solution that the RE is in physical contact with.  The value of 0.210/0.241/0.165 

V comes from the referenced potential versus a H2 saturated Pt electrode, which in practice 

can be easily set-up in lab according to Figure 1.3.102  This value is sometimes 0.210 V 

when a solution of 3 M KCl is used.  The value 0.059 comes from a component of the 

Nernst equation which is simplified from: 

0.059 =
2.303𝑅𝑇

𝐹

where R is the molar gas constant 8.31447 J mol-1 K-1, T (°C) is the temperature which is 

commonly 25 °C, and F is Faraday’s constant 96,485 C.  

Since we have this system to report the potential of an electrochemical reaction in 

a reproducible manner, researchers across the world can collaborate on the study of the 

same electrochemical system.  
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Accurately reporting the potential of a reaction becomes important when referring 

to the overpotential (η) of a reaction.  For example, this following half-reaction: 

2CO2 + 9H2O + 12e- → C2H5OH + 12OH-; Eo = +0.09 V vs. RHE 

contains a standard thermodynamic potential (E°) of +0.09 V vs. RHE.  This term, E°, 

refers to the thermodynamic requirements to produce ethanol from CO2.  The extra 

potential beyond E° required to reduce CO2 to ethanol experimentally is referred to as the 

overpotential. The difference of the operating potential of the electrochemical cell and the 

standard thermodynamic potential defines the overpotential.  Three main processes 

contribute to this overpotential.  These processes are the rates of mass transfer, charge 

transfer, and the chemical reaction.  If an experimental electrochemical reaction takes place 

at -1.0 V vs. RHE and produces ethanol from CO2, then 1.09 V of overpotential was said 

to take place. Many common strategies to improve electroreduction of CO2 consist of 

mitigating large overpotentials. One of the main obstacles in the field of CO2 reduction that 

causes increased overpotential is mass transfer. Once the half-reaction occurs, the reactants 

at the electrode are depleted and less current is observed. A concentration gradient develops 

between the region of the electrode surface and the bulk electrolyte.  For more current 

activity to occur, the reactants must travel from the bulk electrolyte to the electrode surface.  

The rate of this process is defined as the mass transfer overpotential (ηmt).  For CO2, the 

solubility in aqueous solutions is 34 mM and for CO it is approximately 1 mM. These 

solubility limits increase the negative effect of mass transfer which ultimately increases the 

overpotential.  One main strategy of note to overcome this obstacle is optimizing the 

electrochemical cell through improved engineering of the cell to mitigate this issue.  Many 

different electrolyzer concepts are designed to specifically accomplish this goal.103  One of 
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the most recent breakthroughs was accomplished by Sargent et al.  which accomplished 

current densities greater than 1 A/cm-2 for the production of ethylene from CO2.
104   

The current density (J) reported in an electrochemical system refers to how much 

current was generated at a given potential.  This flow of electrons becomes important to 

track because we want to know where the electrons go when a potential is applied.  In most 

water splitting electrochemical reactions, all the electrons at the cathode find their way into 

H2 via the following half-reaction: 

2H+ + 2e- → H2

If there are no other side reactions, it is safe to assume any measured reductive 

current corresponds to each electron that found its way into each H2 molecule produced.  

One would say that the reaction current efficiency or faradaic efficiency (FE) is 100% 

representing a “perfect” selectivity in the case of the production of hydrogen in water 

splitting.   Now in the case of CO2 reduction, many different products can be produced.  

The hydrogen evolution reaction (HER) is in constant competition for electrons when there 

is another reactant that can be reduced.  Multiple reductive products are formed, and one 

cannot assume each produced ampere of current can be implicitly placed.  This requires 

the quantification of the products in an accurate manner via additional methods.  The bulk 

of this dissertation deals with this issue.  The combination of different product 

quantification methods such as gas chromatography (GC) and nuclear magnetic resonance 

spectroscopy (NMR) allows the quantification of the possible reductive products and 

allows the tracking of FE in different electrochemical conditions.  If a reaction contains a 

high FE for a certain product, one can say that the selectivity for that type of product is 
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high.  One important issue in the field of CO2 reduction is finding ways to mitigate this 

issue concerning the selectivity of the electrochemical reaction.  

The three metrics overpotential, current density, and Faradaic efficiency are the 

primary measurables that describe the performance of an electrochemical system.  These 

metrics are consistently described throughout the entire dissertation. 

1.6 Summary of Accomplishments 

The following sections describes the summary of accomplishments this dissertation 

details.  In chapter two, several works are described where the author contributed a 

necessary but small component in a collaborative effort to study the following types of 

systems: heterogenous HER, homogenous HER, photoelectrochemical HER, 

photoelectrochemical OER, electrochemical CO2 and CO reduction, photocatalytic CO2 

reduction, and non-aqueous CO2 reduction.  Each of these co-authored works describes an 

important concept related to the context described in the previous section.  In chapter three 

the work titled “Assessing Contaminants from Ion-Exchange Membranes in the Evaluation 

of Aqueous Electrochemical Dioxide Reduction” is presented where the author describes 

the importance of correctly identifying the reduction products of a CO reduction system.  

The author identified a potential source of contaminant species emanating from a 

component of the typical electrolyzer used in this field and was able to correctly identify 

the contaminate despite the challenging levels of concentrations of products and the 

contaminant in the CO reduction system.  The work highlights the importance of accurate 

product identification methods.  In chapter four the work titled “Pulsed Electrochemical 

Carbon Monoxide Reduction on Oxide-Derived Catalyst” is presented where the author 
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describes a previously unstudied reaction for the reduction of CO.  The electrochemical 

cell is pulsed at different frequencies, which has been done in several works before but 

only for CO2 reduction.  The author was able to discover that when the electrochemical 

cell is pulsed under CO reduction conditions that selectivity for the products can be 

controlled via shorter pulses of cathodic potential.  This work represents a newly 

discovered control method over the selectivity of an electrochemical reaction.  In chapter 

five the currently ongoing project which is titled, “Unassisted Photoelectrochemical 

Reduction of Carbon Monoxide with a Tandem Oxide-Derived Copper Dark Cathode and 

Titanium Dioxide n+p-Si Photoanode” is described.  This project is currently stalled due to 

the COVID-19 pandemic and to the extent to which the project has been pursued will be 

described.  This project takes advantage of the low overpotential achieved for CO reduction 

to C2 products on oxide-derived copper catalyst and the tandem photoanode structures 

made in our lab which have high photovoltage capabilities to create a device possible of 

achieving unassisted photoreduction of CO to C2 products.  In chapter six the ongoing side 

projects the author has worked on will be described and future goals of those projects will 

be explained.  
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CHAPTER 2 

VARIOUS ELECTROCHEMICAL INVESTIGATIONS 

The following sections contain examples of key methods from assisted projects 

which bore co-authored publications in collaborative efforts.  Each section contains a brief 

motivation for the work, relevant details, the results acquired by the author, and relevant 

details that made the results possible.  These sections are organized by examples of 

different types of electrochemical investigations:  Heterogenous Catalysis for HER, 

Homogenous Catalysis for HER, Photocatalysis for HER, Photocatalysis for OER, 

Electrochemical Reduction of CO2 and CO, Photocatalysis of CO2, and Isotopic Labelling 

for CO2 Reduction. 

2.1 Heterogenous Catalysis for HER 

There is consensus that most homogeneous molecular electrocatalysts generate 

reactive metal hydride intermediates during HER.105-109  Several of these electrocatalysts 

display low overpotential, high turnover frequencies, and faradaic efficiencies in excess of 

90%.106, 110  Noncovalent modification of electrode surfaces with catalysts has been studied 

for various applications.111-114  There is an emerging interest in the modification of 

electrode surfaces with small-molecule HER catalysts.115-121  Most notably, Fontecave and 

co-workers developed multiwalled carbon nanotube [Ni(PPh
2N

Ph
2)2] modified electrodes 

that display high catalytic activity at low overpotential.122  It has been reported that the 

translation of activity and mechanism of a rhenium thiolate HER catalyst from solution to 
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modified electrodes.123  Other examples of heterogeneous molecular catalysts for HER 

include Co complexes of (dmgBF2)2 with carbon black on Nafion-coated glassy carbon120 

and cobaloxime-modified electrodes115, 120 as well as cobalt porphyrin,117, 118, 124 metal 

phthalocyanine,125-128 and an organometallic complex incorporated in a Nafion film.129 

However, these complexes either require high overpotentials and/or are unstable over 

prolonged electrolysis, reducing their practical use as HER catalysts. 

A 4 mg sample of a given complex (1,2, or 3, Scheme 2.1) was dispersed in 1 mL 

of acetonitrile (VWR, ACS grade, dried using an MB-SPS from MBRAUN) using a vortex 

mixer (Vortex Genie 2, Scientific Industries). A 12.5 μL aliquot of a 10% aqueous Nafion 

solution was added to the resulting ink. The dispersion was further homogenized via 

ultrasonication (Cole-Parmer ultrasonic bath) for 2 h. After sonication, 10 μL of the 

resulting dispersion was dropped onto a GCE (E4TQ ChangeDisk, Pine Research), rotating 

at 50 rpm, affixed to a rotator (MSR Rotator, Pine Research). The rotation speed was 

subsequently increased to 300 rpm, and this speed was maintained until the film was dried.  

Evaluation of the materials’ activities for HER was carried out in a three-electrode glass 

Scheme 2.1  Synthesis and Labeling Scheme of Complexes 1-3 
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electrochemical cell (RDE/RRDE Cell Without Water Jacket, Pine Research) with 0.5 M 

H2SO4 (VWR, ACS grade) in twice-deionized Millipore water (18.2 Ω cm). A graphite rod 

(Pine Research), in a protective fritted glass tube (Pine Research), was used as the counter 

electrode. Ag/AgCl (1 M KCl, CH Instruments) was used as the reference electrode. 

Measured potentials were calibrated versus RHE after experiments were conducted (to 

prevent platinum contamination) by measuring the potential difference between a pristine 

platinum electrode (Standard Platinum Counter Electrode, Pine Research) and the 

reference electrode in H2-saturated H2SO4.  High-purity H2 and N2 gases used throughout 

these experiments were provided by Welders Supply, Louisville, KY.  For determination 

of the faradaic efficiencies, produced H2 gas was measured by gas chromatography (GC; 

SRI 6810) via online automatic injection (1 mL sample) and a thermal conductivity 

detector. Nitrogen (99.99%, Specialty Gases) was used as the carrier gas to enable accurate 

H2 quantification. The gas was injected every 15 min, and each measured value for the 

faradaic efficiency was representative of the past 15 min of electrolysis. In the bulk 

electrolysis cell itself, nitrogen was diffused into the electrolyte at 10 standard cubic 

centimeters per minute (sccm) regulated by a mass flow controller (MKS Instruments, 

Inc.). 

The calculation for the faradaic efficiency of hydrogen gas is accomplished via the 

following equations. 

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑔𝑎𝑠 = (1 𝑎𝑡𝑚 ∗ (
100 ∗ 𝑝𝑝𝑚

1000000
) ∗ 0.001 𝐿)/(0.08205

𝐾 ∗ 𝑎𝑡𝑚

𝑚𝑜𝑙 ∗ 𝐾
∗ 298.15 𝐾) 
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Where ppm represents the amount of molecules of gas per volume according to the ideal 

gas law.  This concentration is measured against a calibration curve (Fig 2.1) made with a 

standard mixture of 1% hydrogen gas (Restek).  The following calibration curve represents 

a thorough standardization of hydrogen by mixing the calibration gas with nitrogen at 

varying flow rates to attain different peak areas representing specific concentrations of 

hydrogen.  Typically, only one concentration is needed to adequately calibrate for the gas 

to be analyzed and the TCD response only drifts by less than a percent per month of steady 

GC use. 

𝐹𝑎𝑟𝑎𝑑𝑎𝑖𝑐 𝐸𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑐𝑦 =
100 ∗ (

2 𝑚𝑜𝑙𝑒𝑠 𝑒
𝑀𝑜𝑙𝑒𝑠 𝑔𝑎𝑠

) ∗ 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑔𝑎𝑠

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴 ∗
96485 𝐶
𝑚𝑜𝑙𝑒𝑠 𝑒

∗ 1 𝑐𝑚3(
60 𝑠𝑒𝑐

10 𝑠𝑐𝑐𝑚)
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Figure 2.1  Calibration curve for H2 gas constructed with standard gas mixtures. 
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faradaic efficiency is then calculated from the mole of gas product, the number of electrons 

used to make the product, the flow rate, the current applied to the electrochemical cell and 

Faraday’s constant.   

 

The potentiostat was operated in galvanostatic mode at a constant current density 

of 10 mA cm−2 during faradaic efficiency measurements.  In order to maintain an airtight 

seal, the GCE was not rotated. Instead, a magnetic stirrer was rotated at 360 rpm underneath 

the GCE to remove H2 bubbles from the electrode surface. Theoretical H2 was determined 

Figure 2.2  Plot of theoretical hydrogen, measured hydrogen, and Faradaic efficiencies for GC 1 – 3 

after cycling to peak activity. 
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by counting the coulombs of charge that passed, and measured H2 was determined via GC. 

The faradaic efficiencies were determined by comparing these values. 

Theoretical H2 is calculated from the coulombs of charge passed during the 

experiment. Measured H2 was detected via gas chromatography. The faradaic efficiency 

was calculated by comparing these two values. GC 1 – 3 were evaluated after 300, 200, 

and 300 cycles respectively. 

The results expressed in Fig 2.2 indicate that all three complexes studied exhibited 

a steady HER performance of near 100% FE over the course of a ninety-minute period.  

The implications of these results indicate that the deposition method described earlier can 

provide a high performing heterogenous catalyst system. 

2.2 Homogenous Catalysis for HER  

Recently, Grapperhaus et al.130-132 and others105, 133, 134 explored the use of 

bis(thiosemicarbazone) (BTSC) ligands, such as diacetyl-bis(N4-methyl-3-

thiosemicarbazone) (H2ATSM),135 in the design of HER electrocatalysts. The BTSC 

ligands are non-innocent and can participate as a site of protonation and/or reduction 

leading to ligand-assisted metal-centered, ligand-centered, and metal-assisted ligand-

centered HER pathways.130  The specific mechanism depends on the identity of the metal. 

Straistari et al. reported HER activity with a NiBTSC complex containing p-anisidine 

groups that was proposed, based on quantum chemical calculations, to involve ligand-

based reduction and protonation followed by formation of a NiIII-hydride.105 Recently, 

Grapperhaus et al. reported similar HER activity for the NiATSM compound and further 

evaluated the proposed mechanism including location of a transition state confirming the 

participation of the putative Ni-hydride in the hydrogen evolving step.132 Ni-hydrides are 
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well known to participate in HER in natural occurring hydrogenases136-140 and synthetic 

small molecule catalysts.141-144 Of the latter, the most well-known is the family of 

bisdiphosphane complexes pioneered by DuBois and Bullock.145  The incorporation of 

pendant amines in these complexes provides a second coordination sphere that facilitates 

proton transfer and enhances HER activity.146 Likewise, the “Hangman” metalloporphyrin 

catalysts developed by the Nocera group employ a flyover carboxylate to position a proton 

source proximal to the metal-hydride.147 An alternate second coordination sphere strategy 

explored by the Yang group introduces charge sites through encapsulation of non-redox 

active cations (i.e. Na+, K+, Ca2+) to lower the reduction potential of the catalyst without 

decreasing its basicity.148 

In this work, the above-mentioned concepts to NiATSM derivatives were applied 

by incorporating pendant diamines on the BTSC framework (Scheme 2.2). The diamine 

moiety introduces a second-coordination sphere that could participate as a proton relay 

during HER. Since the pendant amine may be protonated under acid saturating conditions 

during catalysis, they could also introduce charge sites that may affect the overpotential.  

To decouple the proton relay and charge effects, we have prepared the methylated 

derivatives to introduce a fix charge at a non-basic site for comparison. 

The CPC data were collected using a two-chambered glass electrolysis cell. The 

working compartment was fitted with a glassy carbon working electrode and Ag/Ag+ 

reference electrode. The auxiliary compartment was fitted with a platinum wire counter 

electrode.  The cell was washed and dried in an oven overnight before conducting the 

experiments. In a typical experiment, the working compartment was loaded with 0.3 mM 

catalyst, CH3COOH at saturation conditions, and 0.1 M Bu4NPF6 in MeCN solution. The 
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auxiliary compartment was filled with a 0.1 M Bu4NPF6/MeCN solution. Before 

electrolysis, both compartments were sparged with nitrogen for 15 minutes and then stirred 

throughout bulk electrolysis experiment. Data were collected at a constant applied potential 

equal to the potential required for icat/2 in the CV studies. A control (blank) CPC study was 

conducted and subtracted from experimental results. Hydrogen gas was measured by gas 

chromatography (GC, SRI 6810) via online automatic injection (1 mL sample) and a 

thermal conductivity detector (TCD). Nitrogen (99.99 %, Specialty Gases) was used as the 

carrier gas to enable accurate hydrogen quantification. The gas was injected every 15 

minutes and each measured value for faradaic efficiency is representative of the past 15 

minutes of electrolysis. In the bulk electrolysis cell itself nitrogen was diffused into the 

electrolyte at 10 sccm regulated by a mass flow controller (MKS Instruments, Inc.). The 

electrochemical cell was set up identically as described for all other homogeneous 

electrochemical experiments except joints were sealed with vacuum grease and a nitrogen 

outlet line was run from the cell to the GC apparatus. In order to maintain an air-tight seal, 

the GCE was not rotated. Instead, a magnetic stir was rotated at 360 RPM underneath the 

GCE to remove hydrogen bubbles from the electrode surface. Theoretical H2 was 

Scheme 2.2.  Synthesis of the methylated complexes 2 and 4 from corresponding free 

base complexes 1 and 3. 
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determined by counting the coulombs of charge passed, and measured H2 was determined 

via GC. The faradaic efficiencies were determined by comparing these values.  Each of 

these complexes exhibited faradaic efficiencies of approximately 100%.  The charged 

complexes (2 and 4) declined in HER activity after approximately 13 hours of electrolysis 

but maintained near 100% FE. 

 

2.3 Photocatalysis for HER  

 
 

There have been a number of studies to leverage molecular HER catalysts for solar 

H2 generation by incorporating these structures onto the surface of semiconductor 

Figure 2.3. Faradaic efficiency of the hydrogen produced during the bulk electrolysis of 1 (a), 2 (b), 3 (c), 

and 4 (d) detected by gas chromatography. The potential was held at -1.4 V vs Ag/Ag+. 
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photocathodes.149-151 In many cases, the catalyst was immobilized on the semiconductor 

surface via covalent linking strategies for direct charge transfer between the electrode and 

catalyst.151-153 Covalent attachment is often necessary to prevent catalyst delamination or 

dissolution in aqueous media but adds processing complexity as well as charge-transfer 

resistance at the interface. Ideally then, a molecular catalyst could be durably coupled to a 

photoelectrode with low overpotential in aqueous solution at low or high pH where 

electrolysis efficiency is maximized. NiATSM co-catalyst with CdS nanorods was recently 

reported for light-driven hydrogen evolution using monochromatic illumination with a 

sacrificial species at moderate pH values.154  Herein we report the characterization of the 

NiATSM catalyst under conditions for practical solar hydrogen generation. Simple catalyst 

attachment methods were used with p-Si photocathodes in pH 0 aqueous electrolyte to 

yield robust photoelectrochemical energy-conversion behavior that clearly outperforms an 

equivalent loading of Ni metal catalyst.  Two different types of Si substrate were used in 

this work. 

Degenerately doped n+-Si(100) (doped with As to a resistivity of 0.001 – 0.005 Ω 

cm, University Wafer) substrates were used to measure the dark electrocatalytic behavior 

of the Si semiconductor surface as well as the Si-supported NiATSM electrocatalyst 

behavior. Photoactive substrates for illuminated hydrogen evolution consisted of p-Si(100) 

(doped with B to 1 –10 Ω cm, University Wafer). Before attaching the NiATSM cocatalyst, 

the Si native oxide layer was removed with a > 10 s dip in 10% HF. To load the catalyst 

on the electrodes, a 2.0 mM solution of NiATSM in acetonitrile was dropcast on the Si 

surface to a consistent loading of ~60 nmol cm-2, followed by 1 min in a vacuum oven at 

70 °C. For Nafion-bound NiATSM, each 20 mL of 2 mM solution also contained 25 μL of 
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5% aqueous Nafion solution (Beantown Chemical) and was further heated in air at 60 °C 

for 1 min. Hydrogen quantification and faradaic efficiency determination were measured 

under potentiostatic conditions at -0.2 V vs. RHE using gas chromatography (GC, SRI 

8610). For this measurement, H2 was not bubbled but instead nitrogen (99.99%, Specialty 

Gases) was used as the carrier gas to enable accurate hydrogen quantification. The gas 

outlet from the catholyte was connected to the GC, which used an automatic valve injection 

(1 mL sample) and a thermal conductivity detector (TCD). faradaic efficiency was 

calculated by determining the charge required to produce the measured H2 concentration 

and dividing by the total charge passed in the electrolysis during the gas collection period.  

However, by casting the NiATSM layer in a dilute Nafion solution as a cation-exchanging 

binder, the extended current density vs. time performance became steady at ~22 mA cm-2 

at -0.2 V vs. RHE over the measured period H2 faradaic efficiency by gas chromatography 

displayed almost total direction of the charge to HER. 

Figure 2.4  Faradaic Efficiency for PEC HER of NiATSM. 
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2.4 Photocatalysis for OER 

Photoelectrolysis of water to oxygen and hydrogen fuel is a promising large-scale 

solution to store intermittent solar energy in a dense and portable form.155 

Photoelectrochemical (PEC) water-splitting, or artificial photosynthesis, research strives 

to develop a semiconductor photoelectrode with both high efficiency and long-term 

stability. For high efficiency, room-temperature water-splitting requires ~1.6 V or more 

(1.23 V plus anodic and cathodic activation overpotentials) of photovoltage at the highest 

possible photocurrent, which has led to most designs featuring a two-semiconductor 

tandem approach.156, 157 For the wider bandgap top subcell material, III–V semiconductors 

have been produced with exceptional light absorption and charge-transport properties and 

are among the few types of materials that can meet the photovoltage and photocurrent 

requirements. The highest efficiency PEC systems to date have thus leveraged III–V 

photoactive materials.156, 158, 159 Gallium phosphide is one such material that has been 

successfully made into efficient photoanodes,160-164 although its indirect bandgap of 2.26 

eV is slightly higher than the ideal top cell for a two-cell tandem combination.157 Ternary 

alloys, however, can tune the bandgap by varying the composition, with materials such as 

GaSbxP1-x recently showing promise as a photoanode material.165, 166 Unfortunately, III–V 

semiconductors including GaP are not stable in aqueous electrolyte at the anodic potentials 

necessary for water oxidation. Instead, the redox potential for the thermodynamically 

favored semiconductor anodic oxidation reaction (i.e., the self-oxidation potential) is 

negative of the oxygen evolution reaction potential, and thus these materials anodically 

photocorrode or photopassivate.167, 168   In recent years, researchers have successfully 

employed thin protective layers to stabilize corrosion-prone semiconductors, with a 
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method like atomic layer deposition (ALD) enabling uniform conformal coverage of a 

surface with a chemically robust material at thicknesses that still permit efficient interfacial 

charge-transfer.169-174 ALD TiO2 on n-GaP significantly improved the stability for water 

oxidation in alkaline media for many hours.161, 162 However, even a single pinhole can lead 

to corrosion, undercutting of the protective layer, and eventual device failure. Thus, there 

remains a significant need in the solar fuels field to investigate semiconductor degradation 

and mitigation strategies. 

The following study on GaP photocorrosion includes an important story about 

investigating the direction of charge (calculation of FE).  The mechanism for GaP 

photocorrosion is not 100% confirmed and this investigation sheds light on the probable 

chemical equation that describes GaP’s photocorrosion reaction. 

With data for the dissolved Ga concentration vs. time and corresponding 

cumulative charge passed, the faradaic efficiency for the GaP oxidation reaction can be 

calculated. However, the calculation assumes a known and constant number of electrons 

transferred, n, to fully decompose one molecule of GaP. Several studies for GaP in acid 

have assumed a value of 6 charge carriers required to oxidize one GaP unit.175, 176  This 

value appears to have been derived from a colorimetric measurement which assumed no 

side reactions, in a batch-method approach which would not capture transient behavior.177 

The proposed anodic half-reaction is: 

GaP + 3H2O → Ga3+ + H3PO3 + 3H+ + 6e- 

However, the same study reported that only 3 charge-carriers were required to oxidize GaP 

in alkaline conditions.177 Similarly, a more recent computational study proposed that the 
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most energetically favorable route to GaP oxidation in acid would require 3 charge-carriers 

per GaP unit, in which the anodic half-reaction would be:168     

2GaP + 3H2O → Ga2O3 + 2P + 6H+ + 6e- 

For GaP in the zinc blende lattice, the dissolution mechanism is understood to occur 

through step edges at the surface where both Ga and P atoms are in contact with solution.177 

In acid, H3O
+ is proposed to bridge to the unpaired electron of the surface P atom. In this 

case, three bonds have to be split for the dissolution of one GaP molecule. If both atoms 

are electrochemically dissolved, then six charges are required, following reaction (Eq. 

2.4.1). Alternatively, if three charges per GaP molecule are passed electrochemically, one 

electron of each bond remains at the P atom, leaving neutral phosphorous which 

subsequently dissolves by a non-electrochemical step.  Thus, the calculated GaP oxidation 

faradaic efficiency is plotted in Fig. 2.5 using either n = 3 or n = 6, and assuming the Ga2O3 

fully dissolves.  These results were performed via in-situ UV-Vis spectroscopy. 

A value of n = 6 for the corrosion reaction resulted in faradaic efficiencies greater 

than 100% at shorter times, and therefore this cannot be the dominant reaction pathway for 

the initial stage of etching on illuminated n-GaP. Instead, we attribute the initial behavior 

to the n = 3 route being dominant in the early stages of etching, though a combination of 

reaction mechanisms is possible. At longer times, the n-GaP oxidation faradaic efficiency 

approached a value of ~40% for n = 3, ~80% for n = 6. Measuring O2 in the gaseous 

headspace by GC for illuminated n-GaP resulted in faradaic efficiency values for OER of 

5–20%, averaged over 2 h (Fig. 2.6b). If the n = 6 corrosion route is dominant at longer 

times, this value for OER represents most of the balance of charge. Some portion of the 
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charge may also be assigned to undissolved or incomplete oxidation of the semiconductor 

surface. 

Oxygen concentration calibration was performed with a three–electrode setup using 

a Pt mesh working electrode, a Pt mesh counter electrode and a Ag/AgCl reference 

electrode in a four-neck flask containing 1 M H2SO4. The counter electrode was separated 

from the rest of the cell with a glass frit to avoid hydrogen gas from mixing into the exhaust 

of the dynamic sampling loop of the gas chromatograph, and to prevent oxygen reduction 

at the cathode. N2 carrier gas was bubbled through the electrolyte at 10 sccm, and the gas 

outlet stream was sampled in a 1 mL sampling loop. The GC was an SRI 6810C Gas Mix 

#3 configuration. Oxygen was detected by a thermal conductivity detector (TCD). The 

calibration was performed using chronopotentiometry at 0, 1, 2, 3, 4, 5, 6, and 7 mA with 

at least 6 measurements for each current level (Fig. 2.6a).  OER on n-GaP was performed 

in a similar fashion with the n-GaP as the working electrode and the position calibrated for 

2 suns intensity. OER faradaic efficiency was determined at a no bias (no sun) condition 

as well as 0.7, 1.2, 1.7, and 2.2 V vs. RHE (Fig. 2.6b).  No oxygen beyond the baseline 

Figure 2.5  The behavior of n-GaP at 2 Suns AM 1.5 illumination (a) at various applied potentials vs. 

time, and (b) at 30 min vs. applied potential. 
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value was detected at the no bias condition. Each faradaic efficiency value measured 

consisted of an average of 6 oxygen measurements conducted sequentially over ~ 2 h. 

Figure 2.6  Characterization of gaseous oxygen in the reactor headspace. (a) O2 calibration curve produced 

with a Pt anode for water-splitting. (b) Calculated faradaic efficiency for OER (grey, left scale) vs. potential 

based on measured O2 concentration and the charge passed, and corresponding n-GaP current density (red, 

right scale) vs. potential. Bare n-GaP was measured in 1 M H2SO4 under 2 Suns AM1.5 illumination. 

2.5 Electrochemical Reduction of CO2 and CO 

Unlike the hydrogen evolution reaction (HER), many different products are 

possible in the carbon dioxide reduction reaction (CO2RR) coupled with the oxidation of 

water.178-180 Most metallic electrocatalysts only yield C1 products,179, 181, 182 but copper 

surfaces are capable of directing significant faradaic current to C-C bond forming reactions 

and producing C2 and C3 products.91, 183-186  While there has been success at achieving high 

yields of CO187-190 and formate191-197 in a single-step CO2 reduction process, more energy-

dense fuel products such as ethanol have been difficult to produce with high faradaic 

efficiency and reproducibility.91, 183, 185 Several efforts to develop electrocatalysts for a 

direct conversion of CO2 to C2H5OH have shown reasonable faradaic efficiencies but 

generally required high overpotentials.198-204 The CO2RR activity of single crystal planes 
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of Cu have been reported with distinctly different activity to polycrystalline Cu, with a 

faradaic efficiency for C2H5OH as high as 29.9% for Cu(310), albeit with a high 

overpotential of >1 V.200 Cu surface orientations have also been observed to restructure 

under electrolysis conditions,205 adding uncertainty to the stability of a Cu single crystal 

catalyst.  Additionally, oxide-derived Cu electrodes with varied oxide layer thicknesses led 

to C2H5OH faradaic efficiencies up to 16.4%, but again with an overpotential of ~1 V.203 

A recent report even claims C2H5OH faradaic efficiency up to 63% on Cu nanoparticles on 

graphene, but in a narrow potential range with cathodic overpotential upwards of 1.3 V.204  

The myriad of possible reaction pathways on the way to C2 and C3 compounds underscores 

the difficulty of achieving high product selectivity in a single reaction step.91 Theory and 

DFT calculations which have provided CO2RR mechanistic insight suggest that the optimal 

catalytic surface for driving a specific reaction pathway is one in which the free energy 

change of the reaction is achieved in thermochemically equivalent elementary steps.186 

However, changing the surface binding energy to tune the free energy of one elementary 

step has a concomitant effect on the free energy of the other elementary steps. Breaking 

this scaling relation is thus a major challenge to optimize electrocatalysis for CO2RR 

products such as C2H5OH and may be exceptionally difficult for one electrocatalyst in a 

single-step electrolysis.206 Therefore, the field of electrolytic CO2 reduction would benefit 

greatly from the development of approaches and systems to optimize the selectivity and 

overpotential of heterogeneous catalysts to more complex, desirable fuel products.  One 

approach to directing CO2 reduction toward a more energy-dense product is to break down 

the complex electron transfer reaction into multiple reaction steps with fewer electron 

transfers and relatively stable products. In this type of cascade catalysis, the products of 
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the first reaction become the reactants of the second reaction, and so on, allowing for the 

design of multiple catalysts to minimize the energy barrier of each intermediate reaction 

on the way to the ultimately desired product. The advantages of cascade catalysis to 

improve product yield have been demonstrated in a “one-pot synthesis” for homogeneous 

catalysis of CO2 to CH3OH, using three different catalysts simultaneously to promote the 

conversion.207 A major difficulty with the one-pot cascade is finding compatible catalysts 

that operate effectively under the same reaction conditions and are not poisoned by any of 

the intermediates.  Alternatively, an assembly line cascade system with stepwise reactors 

can be used with varying conditions tailored to optimize the kinetic rate and selectivity at 

each stage. The major advantage of an assembly line cascade is versatility and modularity. 

Each individual reaction can be operated with the optimal choice of catalyst, temperature, 

applied bias, etc., to maximize yield and minimize overpotential. While CO2 conversion 

via heterogeneous cascade catalysis has been reported for thermochemical synthesis,208 

reports for electrochemical CO2 reduction are lacking.  This versatile systems engineering 

approach could provide a framework to improve the selectivity of CO2 electroreduction to 

higher order products.  This CO2RR cascade system demonstrated an overall FE of 11.0% 

for ethanol at an averaged applied potential of -0.52 V vs. RHE.  The overall cathode half-

reaction for ethanol formation is202: 

2CO2 + 9H2O + 12e- → C2H5OH + 12OH-; Eo = +0.09 V vs. RHE 

Ethanol production was pursued by splitting this reaction into two distinct electrochemical 

steps. For the assembly cascade approach, the intermediate product should be a stable 

species that is readily separated from the first electrolyte. CO, which has routinely been 
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demonstrated at high faradaic efficiencies from CO2 electroreduction, was targeted as the 

stable intermediate product 

from the first stage209:   

CO2 + H2O + 2e- → CO + 2OH-; Eo = -0.10 V vs. RHE 

The low solubility of CO also makes it an easily separated intermediate product for passing 

to the second-stage electrolyzer, although it also presents a challenge to achieving 

subsequent high current density for CO reduction. Among numerous electrocatalytic 

systems which have shown high selectivity for CO formation, etched Ag nanocoral (Ag-

NC) films have achieved > 95% faradaic efficiency at only -0.5 V vs. RHE in aqueous 

media with promising stability.210 Furthermore, oxide-derived nanocrystalline Cu (OD-Cu) 

catalysts have reduced CO to C2H5OH at ~ 43% faradaic efficiency at only -0.3 V vs. RHE 

following the reaction211:  

2CO + 7H2O + 8e- → CH3CH2OH + 8OH-; Eo = +0.18 V vs. RHE 

These catalytic systems were leveraged to demonstrate the cascade approach as a rational 

strategy for targeting high faradaic efficiency of a complex product at a low overall 

overpotential.  

Ag-NC foil was used as the CO2RR catalyst for the first-stage electrolysis cell, 

along with an OD-Cu foil electrode for the second-stage electrolysis cell. The Ag-NC was 

prepared from a Ag foil (99.999% pure, Alfa Aesar) by first producing a AgCl surface by 

electrochemical oxidation at +0.3 V vs. Ag/AgCl in 0.1 M KCl electrolyte for 12 h. 

Subsequently, the foil was reduced to nanocoral structure by applying a potential of -1.2 V 

vs. Ag/AgCl in the same electrolyte for 30 min.210  The OD-Cu electrode was fabricated 

from a Cu foil (99.98% pure, Alfa Aesar) which was cleaned with a 1M HCl soak for 2 
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min, then rinsed with isopropyl alcohol and water. The Cu foil was then dried with N2 gas 

(99.99% pure) and then heated at 500 °C for 1 h under atmospheric air. Following thermal 

oxidation, the foil was cooled gradually to room temperature over ~1 h to prevent 

delamination of the oxide layer. The thermally oxidized Cu foil was electrochemically 

reduced at -0.6 V vs. RHE in 0.1 M KOH solution for 45 min. After the reduction process, 

fresh electrolyte was added to the cell prior to CO reduction.211   

CO2 (99.99%, Specialty Gases) was flowed at 20 sccm with a mass flow controller 

(MKS Instruments, Inc.) through a custom absorption column filled with 0.1 M KHCO3 in 

18M-cm water in a random packing of 1mm diameter glass beads. The liquid electrolyte 

was cycled with a peristaltic pump through the column and the cathode section of the first 

electrolyzer at a rate of 80 mL min-1. The flowrates were chosen to provide near saturation 

of CO2 in the electrolyte at the column outlet and to avoid transferring gaseous CO2 bubbles 

to the first-stage electrolyzer. From the cathode (Ag-NC) of the first electrolysis cell, the 

electrolyte flowed into a separate chamber for an extended residence time, permitting the 

effective separation of product CO and H2 bubbles from the liquid, with the electrolyte 

recycled back to the inlet of the CO2 absorption column. The gaseous product output from 

the separation chamber of the first-stage electrolyzer was directed to the second-stage 

electrolyzer through a porous glass frit bubbler positioned at the bottom of the 0.1 M KOH 

catholyte to promote gas dissolution and mass transfer to the OD-Cu cathode. There was 

no pump in between the electrolyzer stages, with the evolution of gases in the first stage 

being the driver for gaseous flow. To avoid interruption of the development of steady state 

conditions in the second-stage electrolyzer, gaseous products from the first-stage 
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electrolyzer were not sampled by GC during cascade operation but were analyzed 

thoroughly in independent measurements.   

The first-stage electrolyzer was a custom-designed two compartment polycarbonate 

cell with a large Ag-NC working electrode geometric surface area (~11 cm2), a Pt mesh 

counter electrode, and a Ag/AgCl (3M KCl) reference electrode. An anion exchange 

membrane (Selemion AMV) separated the Ag-NC cathode and reference from the Pt anode 

with 0.1 M KHCO3 (pH 6.8) electrolyte in both chambers. The second-stage electrolysis 

cell was a similar two-compartment polycarbonate cell designed to maximize catalyst area 

relative to the electrolyte volume, enabling higher sensitivity for liquid product 

detection.193, 212 An OD-Cu foil working electrode of ~5 cm2 geometric surface area was 

used along with a Ag/AgCl (3M KCl) reference electrode in the cathode compartment and 

a Pt mesh counter electrode in the anode compartment. The same Selemion anion exchange 

material was used as a membrane but with 0.1 M KOH electrolyte, in accord with the 

reported optimum electrolyte for CO reduction.211 Electrochemical measurements were 

performed with either one (for an individual electrolyzer) or two (for the two-step cascade) 

Biologic SP-200 potentiostats. Potentiostatic electrochemical impedance spectroscopy 

measurements were performed before every experiment to determine the uncompensated 

cell resistance, Ru, and the potentiostat subsequently compensated for 85% of Ru in each 

cell during electrolysis. Potentials were converted to the reversible hydrogen electrode 

(RHE) utilizing the Nernst equation according to VRHE = VAg/AgCl + 0.210 V + 

0.059*pHsoln.
213 

Gaseous products were measured by gas chromatography (GC, SRI 8610) and 

liquid products were measured with nuclear magnetic resonance (NMR, Bruker 400 MHz) 



35 

spectroscopy. Both the liquid and gas phase product concentrations were determined using 

calibrations from known standards. The gas phase products were injected into the GC via 

automatic valve injection (1 mL sample) with a thermal conductivity detector (TCD) and 

a flame ionization detector (FID). Nitrogen (99.99% Specialty Gases) was utilized as a 

carrier gas to permit accurate hydrogen quantification.  For potentiostatic measurements, 

an injection to the GC was made after 5 min and then after each subsequent 30 min. Liquid 

samples for 1H NMR spectroscopy were taken periodically throughout the experiment and 

at the end of each experiment. Samples were prepared by mixing D2O and electrolyte 

aliquots in a 1:1 vol ratio.  Dimethyl sulfoxide (DMSO) was added at a known low 

concentration for internal calibration.  faradaic efficiency was calculated for the 

potentiostatic measurements by determining the charge required to produce the measured 

product concentration and dividing by the total charge passed during the time the sample 

underwent electrolysis. For the two-stage cascade experiments, the faradaic efficiency of 

ethanol was defined from CO2 to C2H5OH across the entire system, as the charge required 

Figure 2.7  XRD data for (A) Ag-NC catalyst (red) compared to unaltered polycrystalline Ag foil 

(black) and (B) OD-Cu (magenta) compared to unaltered polycrystalline Cu foil (blue). 
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to produce the measured C2H5OH from CO2 (12 mol e- required per mol C2H5OH) divided 

by the sum of the charge passed in both electrolysis cells. 

A Bruker D8 powder X-ray diffraction (XRD) system was used for crystal structure 

and phase analysis using non-monochromated Cu-Kα radiation produced by an X-ray tube 

operated at 40 kV and 40 mA. The sample XRD patterns were scanned between 20-90° at 

a scan speed of 4 seconds per step with a step size of 0.02° (Figure 2.7).  SEM of the 

catalysts were also obtained (Figure 2.8). 

The roughness of the electrodes was determined by measuring the 

electrochemically active surface area in comparison to the flat geometrically projected 

surface area of the electrodes, in accordance with the method used to benchmark 

heterogeneous catalysts (Figure 2.9).214 The electrochemical double-layer capacitance of 

the sample was measured by taking a scan-rate dependent measurement across a narrow 

range of potential in a non-faradaic region of the J-E curve.  The double layer capacitance, 

CDL, can be extracted from the slope of the resulting current vs. scan rate behavior. The 

electrochemically active surface area roughness factor, ECSA, can then be found by: 

Figure 2.8. SEM images with insets of (A) the Ag-NC catalyst and (B) OD-Cu catalyst. 
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𝐸𝐶𝑆𝐴 =  
𝐶𝐷𝐿

𝐶𝑆

where CS is the specific capacitance of the sample or the capacitance of an atomically 

smooth planar surface of the material per unit area under identical electrolyte conditions. 

For Cu in alkaline liable reference was found for specific capacitance, so a polished Ag 

foil was measured instead, in  the roughness factor of Ag-NC.electrolyte, the specific 

capacitance was taken as 29 μF cm-2.215 For Ag in neutral electrolyte, no reliable reference 

was found for specific capacitance, so a polished Ag foil was measured instead, which will 

result in a lower limit estimate for the roughness factor of Ag-NC. 
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Figure 2.9. Double layer capacitance measurements for the determination of roughness factor based 

on electrochemically active surface area. Scan-rate dependent behavior for (A) Ag-NC and (B) OD-

Cu catalysts, and (C) cathodic and anodic charging currents as a function of scan rate for both catalysts 

and a polished Ag foil reference. 
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2.6 Photocatalysis for the Reduction of CO2 

Although other liquid products such as ethanol have been produced through CO2 

electroreduction at low to moderate faradaic efficiency,199, 200, 202 much greater selectivity 

has been achieved for formic acid.179 Sn and SnOx foils and nanostructures in particular 

have been prevalent electrocatalysts for the high faradaic efficiency formation of 

HCOOH.193, 216-218 The benefits of HCOOH include stability and low volatility, and it is 

competitive with current state-of-the-art H2 storage methods with a viable volumetric 

capacity of 53.4 g H2/L at ambient temperature and pressure.219, 220 HCOOH can also be 

consumed as a fuel in direct formic acid fuel cells. Moreover, the high market value of 

HCOOH per CO2 consumed makes it one of the most economically practical products for 

the initial establishment of an industrial electrochemical CO2 reduction process.221 

In recent years, an increasing effort has been directed towards the realization of 

solar fuels through photoelectrochemical CO2 reduction.178, 222 For photoelectrochemical 

HCOOH formation in particular, numerous studies have used photoanode materials to 

drive a separate CO2 reduction electrocatalyst at the cathode,223-228 and some have used 

photocathodes with a co-catalyst.229-234 With a sophisticated tandem III–V photoanode in 

combination with a noble metal Pd cathode, up 

to 10% solar-energy-conversion to formic acid has been achieved.235 The equilibrium 

potential for the reduction of CO2 to formic acid is close to that for hydrogen evolution,178 

and thus high efficiencies should be achievable with two-junction tandem photoelectrodes 

similar to that modeled for unassisted water-splitting.157 Si, as a well-developed, low-cost 

semiconductor with a band gap of 1.12 eV, is a prominent candidate for a bottom subcell 

photocathode in such a tandem. Photocathodes of p-Si integrated with Cu and Ag catalysts 
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have previously been demonstrated to provide light-enhanced CO2 reduction, with the 

resulting faradaic efficiencies and product distribution offset by the Si photovoltage but 

otherwise largely unchanged.236 

Recently, we reported electrochemically reduced porous SnOx nanowire (Sn-pNW) 

catalysts produced by a highly scalable plasma synthesis.193 An acid etching step during 

the catalyst processing was observed to introduce the nanoporosity as well as an increase 

in crystalline grain boundaries, which resulted in notably enhanced CO2 reduction current 

density and faradaic efficiency for HCOOH. The enhanced activity was much greater than 

could be attributed to increased surface area in the Sn-pNWs alone, and the improved 

performance was credited to the introduction of more effective active sites at the grain 

boundaries. Herein we have incorporated these catalysts on Si photocathodes for the 

photoelectrochemical conversion of CO2 to HCOOH at high selectivity. 

The synthesis of Sn-pNW catalysts has been described in detail previously.193, 237 

Briefly, a solvo-plasma synthesis method was used in which bulk SnO2 powder was mixed 

with KOH in a 3:1 weight ratio and exposed to an atmospheric plasma of Ar and air at 1 

kW for 2 min. This process resulted in a potassium-rich (~7%) SnO2 nanowire (Sn-NW) 

form which was separated from the larger particles by centrifugation. The as-synthesized 

Sn-NWs were then immersed in 0.1 M HCl for 1 h to etch the potassium-rich nanowires. 

The acid-etch removed most of the K atoms and produced the porous SnO2 nanowires (Sn-

pNWs) with a high density of grain boundaries.193 The Sn-pNWs were subsequently 

calcined in air at 500 °C for 7 h.  Three types of electrode substrate were used throughout 

the work. Fluorine-doped tin oxide (FTO) coated glass (TEC 15, Hartford Glass Company, 

Inc.) substrates were used to measure the electrocatalyst properties by itself. Degenerately 



41 

doped n+p-Si(100) (doped with As to a resistivity of 0.001–0.005 Ω cm, University Wafer) 

substrates were used to measure the dark electrocatalytic behavior of the Si semiconductor 

surface as well as the Si-supported Sn-pNW electrocatalyst behavior. Photoactive 

substrates consisted of a buried-junction n+p-Si wafer (p-Si(100) doped with B to 1–10 U 

cm, University Wafer, with n+ emitter layer from P thermal diffusion to a junction depth 

of ~200 nm following an established procedure238). Before drop-casting Sn-pNW catalysts 

on Si substrates, the Si native oxide layer was removed with a 10 s dip in 10% HF. To load 

catalyst on the electrodes, 5 mg of Sn-pNWs were sonicated in 1 mL of isopropanol, and 

then drop-cast onto the substrate in three separate intervals (with 15 min in between for 

drying) to an approximate loading of ~2 mg cm-2, followed by 2 h on a hot plate at 70 °C. 

An ohmic back contact to Si substrates was made using Ga/In eutectic (Alfa Aesar). 

Current density vs. potential (J–E) photoelectrochemical energy conversion 

behavior for all electrodes was measured in CO2-saturated 0.1 M KHCO3 (pH 6.8, made 

with 18 MΩ cm H2O) under stirring with active bubbling of CO2 (99.99%, Specialty Gases) 

at a flow rate of 10 sccm at room temperature. The FTO or Si electrode served as a working 

electrode with a Ag/AgCl (saturated KCl) reference electrode (CH Instruments, Inc.) along 

with a Pt gauze counter electrode separated from the main cell compartment by an anion 

exchange membrane (Selemion AMV) in a glass cell with a flat quartz window for 

illumination. Before each measurement with a Si electrode, the native oxide was removed 

with a 10 s dip in 10% HF. A potentiostat (Bio-Logic SP-200) with electrochemical 

impedance spectroscopy (EIS) was used for all measurements. Potentiostatic EIS 

measurements were performed before every experiment to determine the uncompensated 

solution resistance, Ru, and the potentiostat subsequently compensated for 85% of Ru 
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during electrolysis. The results are reported versus the reversible hydrogen electrode 

(RHE) scale according to VRHE = VAg/AgCl + 0.197 V + 0.059*pH. Simulated sunlight at an 

intensity of 100 mW cm-2 at normal incidence to the working electrode was generated with 

a 300 W Xe lamp (Newport 6258) coupled with an AM1.5 global filter (Newport 81094) 

and calibrated in the electrolyte with a Si photodiode (Thorlabs FDS100-CAL). 

CO2 reduction products were measured by gas chromatography (GC, SRI 8610) for 

gaseous products and by nuclear magnetic resonance (NMR, Bruker 400 MHz) 

spectroscopy for liquid products. Both instruments were calibrated with standard gases or 

liquid solutions. The gas outlet from the catholyte was connected to the GC which used an 

automatic valve injection (1 mL sample) and a thermal conductivity detector (TCD) and 

flame ionization detector (FID). Nitrogen (99.99%, Specialty Gases) was used as the carrier 

gas to enable accurate hydrogen quantification. For potentiostatic conditions at each 

measured potential, the gas was injected after 5 min and again twice at 18 min intervals. 

For 1H NMR spectroscopy analysis of the liquid phase, samples were prepared by mixing 

D2O and electrolyte aliquots in a 1:1 volume ratio. Dimethyl sulfoxide (DMSO) was added 

at a known low concentration for internal calibration. faradaic efficiency for each product 

was calculated by determining the charge required to produce the measured product 

concentration and dividing by the total charge passed during the potentiostatic electrolysis 

measurement. 

The photoelectrochemical CO2 reduction current density vs. potential (J–E) 

behavior of the electrodes are shown in Fig. 2.10.  The dark electrocatalytic performance 

of Sn-pNWs in the absence of substrate effects from the Si semiconductor was first 

established on flat FTO/glass substrates. Blank FTO is a kinetically poor surface for the 
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reaction, while the addition of Sn-pNWs led to -10 mA cm-2 at -1.0 V vs. RHE. At the 

chosen catalyst loading, this performance was comparable to that previously reported on 

structured porous carbon gas diffusion layer substrates, which was competitive with many 

other reported Sn-based CO2 reduction catalysts.193   

For Si electrodes, degenerately doped n+-Si substrates were used to measure the 

dark electrocatalytic properties owing to their metallic character and abundance of 

majority-carrier electrons available for driving reduction under cathodic conditions. In 

contrast, for a buried-junction n+p-Si or a photoelectrochemical liquid junction to p-Si, 

reverse bias conditions for the resulting diode behavior in the dark prevent the flow of 

electrons across the interface and prohibit the measurement of exponentially increasing 

current density characteristic of electrocatalytic Butler–Volmer kinetics.213, 238-240 The 

degenerate n+-Si substrates were thus used to capture this dark kinetic behavior of the Si 

surface to enable the photogenerated performance of the buried-junction electrodes to be 

compared to the dark Si cathodic overpotential behavior. For all Si electrodes, the surface 

was chemically etched prior to measurement to prevent the ~1–2 nm native oxide from 

impeding charge transfer across the Si/water or Si/Sn-pNW interface. In the dark, bare n+-

Si electrodes exhibited a cathodic current onset at -0.75 V vs. RHE and reached 10 mA cm-

2 at -1.30 V vs. RHE. With the addition of Sn-pNW co-catalyst, the cathodic current onset 

increased to -0.42 V vs. RHE and reached 10 mA cm-2 at -0.98 V vs. RHE, a decrease of 

~320 mV in overpotential compared to the bare Si. However, the resulting linear ohmic 

character of the J–E curve for dark n+-Si/Sn-pNWs indicates an appreciable increase in 

series resistance, which we attribute to the interfacial series resistance from the contiguous 
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Sn-pNW layer. If it was directly contacting a p-Si photocathode, this unbroken layer of Sn-

pNWs would establish the barrier height at the Sn/Si interface and restrict the achievable 

photovoltage in a liquid-junction photoelectrochemical cell.238, 241  By using a buried-

junction n+p-Si photoelectrode instead, the Si homojunction can maintain maximum 

Figure 2.10 Current density vs. potential (J–E) behavior for electrodes in CO2-saturated 0.1 M KHCO3. 

(a) Dark electrocatalytic behavior for FTO/glass with and without Sn-pNW catalyst. (b) Dark 

electrocatalytic behavior for degenerate n+-Si with and without Sn-pNW catalyst and illuminated 1 Sun 

AM 1.5 behavior for buried-junction n+p-Si photocathodes with and without Sn-pNW catalyst. 



45 

photovoltage with minimal recombination at the junction interface.216, 242 Charge transfer 

resistance at the Si/Sn-pNW interface may also contribute to the increased ohmic 

overpotential. However, the SnO2 conduction band edge is significantly lower (i.e., more 

positive) than the Si conduction band edge,168 which should promote photoexcited electron 

transfer to the co-catalyst for photoelectrochemical CO2 reduction.  The bare buried-

junction n+p-Si photoelectrode under 1 Sun AM 1.5 illumination showed the expected 

behavior relative to the bare n+-Si. Illuminated bare n+p-Si exhibited an onset for cathodic 

current at -0.15 V vs. RHE, achieving 10 mA cm-2 at -0.64 V vs. RHE, and reaching a light-

limited current density of -33.0 mA cm-2. Coating the n+p-Si with Sn-pNW co-catalyst, the 

onset potential shifted to -0.32 V vs. RHE and exhibited 10 mA cm-2 at -0.25 V vs. RHE. 

The illuminated n+p-Si/SnpNWs photoelectrodes displayed a reduced light-limited current 

density (-19.5 mA cm-2) relative to the bare photoelectrodes due to parasitic light 

absorption within the Sn-pNW co-catalyst layer. The reduced photocurrent was consistent 

with the measured catalyst layer transmittance which averaged ~60% at wavelengths above 

the Si bandgap. The n+p-Si/Sn-pNWs electrode also maintained >90% of its photocurrent 

after >3 h of operation. On illuminated buried junction n+p-Si photoelectrodes at 10 mA 

cm-2, the Sn-pNW catalyst thus decreased the overpotential by ~390 mV. Moreover, the 

positive shift in potential at 10 mA cm-2 from dark Si electrocatalytic behavior to the 

illuminated performance reflects a 1-Sun generated photovoltage of ~660 mV for the n+p- 

Si. This is a high photovoltage for Si, indicating a quality junction and low overall 

recombination. For Sn-pNW catalyzed electrodes, the light-driven positive shift in 

potential at 10 mA cm-2 was even greater at 730 mV. This shift is perhaps too large to 

attribute to a buried-junction Si photovoltage alone, and we attribute the remainder to a 
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slightly better catalyst interface with less series resistance compared to the dark n+-Si/Sn-

pNW electrode. 

The faradaic efficiencies for CO2 reduction products measured at the cathode are 

shown in Fig. 2.12 for n+p-Si/Sn-pNWs under 1-Sun illumination and in the dark. The only 

products observed at these conditions by GC were H2 and CO, and the only liquid product 

observed by NMR was HCOOH. At low applied potential (>-0.4 V vs. RHE) in the dark 

on FTO, H2 was the dominant product with >95% faradaic efficiency.  However, the 

selectivity for formic acid increased greatly at more cathodic potentials, reaching as high 

as 65.9% at -0.8 V vs. RHE, consistent with previously reported results on porous carbon 

electrodes.193 The CO faradaic efficiency for FTO/Sn-pNWs at this potential was limited 

to 9.2%. The same trend in product distribution was observed under illumination on n+p-

Si/Sn-pNWs with H2 being the sole product detected at potentials >-0.1 V vs. RHE, while 

the peak HCOOH faradaic efficiency was 59.2% at -0.4 V vs. RHE with a corresponding 

CO faradaic efficiency of 11.4%. Although the light-driven positive potential shift was less 

than observed in the J–E curves, the overpotential for peak formic acid selectivity 

decreased by at least 400 mV. The energy of the incident light was thus converted to assist 

in the reduction of CO2 to a useful liquid product as HCOOH. Without the Sn-pNW 

catalyst, n+p-Si electrodes produced primarily H2 with <10% faradaic efficiency for CO 

(Fig. 2.11). 
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 The partial current density of each product is displayed in Fig. 2.12 for illuminated n+p-

Si/Sn-pNW photoelectrodes. The partial current density of formic acid, JHCOOH, achieved 

10.0 mA cm-2 at -0.4 V vs. RHE, increasing only slightly at more negative potentials as the 

photoelectrode reached its light-limited current density. For dark FTO/Sn-pNWs at -0.8 V 

vs. RHE, the potential measured for peak HCOOH faradaic efficiency, JHCOOH was only 

1.64 mA cm-2. Only some of the best literature Sn based catalysts have reported JHCOOH = 

10 mA cm-2. For instance, SnOx on graphene was reported to produce JHCOOH ~ 10 mA cm-

2 at -1.15 V vs. RHE.218 Hierarchical mesoporous SnO2 nanosheets on carbon cloth are 

among the highest current density formic-acid-selective CO2 electroreduction systems 

reported to date, but they required a cathodic potential of at least -0.8 V vs. RHE to achieve 

JHCOOH = 10 mA cm-2.243 Thus a solar driven JHCOOH ~ 10 mA cm-2 at -0.4 V vs. RHE makes 

this Si photoelectrode quite competitive for Sn-catalyzed HCOOH electrosynthesis from 

CO2. 

Figure 2.11  CO2 reduction product distribution in CO2-saturated 0.1 M KHCO3. Faradaic efficiency vs. 

potential for bare n+p-Si under 1 Sun AM 1.5 illumination. 
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 To estimate the system efficiency for the photoelectrochemical energy-conversion 

behavior of the illuminated n+p-Si/Sn-pNW photoelectrode for CO2 reduction, a 

photoassisted electrolysis system efficiency, ηPAE, was calculated by:244 

𝜂𝑃𝐴𝐸 =
𝑃𝑓,𝑜

𝑃𝑠 + 𝑃𝑒,𝑖

where Pf,o is the output power density contained in the chemical fuel produced, Ps is the 

incident illumination power density, and Pe,i is the input electrical power density. 

Considering the energy stored in the multiple products of this system (H2, CO, HCOOH): 

𝜂𝑃𝐴𝐸 =
𝐽𝑓,𝑜(𝜀𝐻2

𝐸𝑓,𝐻2
+ 𝜀𝐶𝑂𝐸𝑓,𝐶𝑂 + 𝜀𝐻𝐶𝑂𝑂𝐻𝐸𝑓,𝐻𝐶𝑂𝑂𝐻

𝑃𝑠 + 𝐽𝑜𝑝𝑉𝑒,𝑖

where Jop is the operating current density at the potential under evaluation, εi represents the 

faradaic efficiency of each respective product, Ef,i is the potential difference corresponding 

to the Gibbs free-energy difference between the two half-reactions for the fuels being 

Figure 2.12  CO2 reduction product distribution in CO2-saturated 0.1 M KHCO3. Faradaic efficiency for 

H2 (squares), CO (circles), and HCOOH (triangles) for FTO/Sn-pNWs in the dark (dashed lines, open 

markers) and for n+p-Si/Sn-pNWs under 1 Sun AM1.5 illumination (solid lines, filled markers). 
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produced at the cathode and for water oxidation at the anode, and Ve,i is the input voltage 

required to drive the electrolysis at the operating current density of interest. Ve,i is the total 

applied bias to the system, and thus represents the voltage required in a two-electrode 

electrolysis measurement. However, by separately measuring the J–E behavior of the Pt 

gauze anode in the cell, the corresponding anodic overpotential at Jop can be accounted for 

to estimate Ve,i.
244 In the current system for n+p-Si/ Sn-pNWs under illumination at -0.4 V 

vs. RHE, Ve,i was estimated to be ~2.03 V. Using literature values for the cathodic half-

reaction potentials for each product,209 we determined the total ηPAE ~17.4%. For the formic 

acid product alone ηPAE,HCOOH ~11.0%. Though informative, photo-assisted electrolysis 

efficiency should not be compared directly with solar-to-fuel efficiency in the absence of 

electrical bias since electricity-to-fuel efficiency is typically much higher than solar-energy 

conversion efficiency.244 To produce HCOOH with the n+p-Si/Sn-pNWs photocathode 

from sunlight unassisted by electrical bias, extra series-connected solar cells or a tandem 

combination 

with complementary bandgap subcells would be required to achieve the necessary 

additional photovoltage. 

2.7 Isotopic Labelling for the Reduction of CO2 

The two-electron reduction of CO2 in the presence of a proton donor typically yields 

HCO2
− or carbon monoxide (CO)  through common pathways that dictate the product 
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distribution.245 A significant limitation of these pathways is the requirement for reduction 

prior to CO2 binding, which limits their ability to fix CO2 at low pressure.  To date, no 

catalyst following these pathways can utilize CO2 from air or 3−13% streams commonly 

found in power plant exhaust.246 Recently, two catalysts that bind substrate prior to 

reduction have been reported, demonstrating the potential of alternate mechanistic 

approaches to improve catalytic activity.  Protonation of fac-Mn([(MeO)2Ph]2 

bpy)(CO)3(CH3CN))-(OTf) ([(MeO)2Ph]2 bpy) = 6,6′-bis(2,6-dimethoxyphenyl)-2,2′-

bipyridine, OTf = triflate) prior to reduction lowers the overpotential for CO2 reduction to 

CO by 450 mV247 relative to that of Re(bpy)(CO)3(X) (bpy = 2,2′-bipyridine, X = halide). 

The Re(bpy)(CO)3(X) derivative developed by Ishitani and co-workers, where X is a 

deprotonated triethanolamine, facilitates CO2 binding from air without prior reduction.248 

Similar complexes with Ru249 and Mn250 also sequester low levels of CO2, but only the Re 

derivative has been reported to catalytically reduce CO2.
251 The Ishitani catalyst 

underscores the necessity to bind CO2 first in order to reduce CO2 at low concentrations. 

Previously, Ito reported CO2 fixation that yielded zinc-alkylcarbonate complexes  Zn-

CO3R) from air with alcohol solutions of N4 macrocycles, such as Me4[14]aneN4, 

Scheme 3 (A) Catalytic pathway for the reduction of CO2 to HCO2
− by Zn(DMTH). The proton of the 

catalytic methanol is shown in red. The hydride (H−), which can be chemical or electrochemical, is shown 

in green. All noncoordinating lone-pair electrons are shown. (B) Representation of Zn(DMTH) 

highlighting the frustrated Lewis pair-like interaction between the noncoordinating Lewis base (blue) and 

Lewis acid (red). Formal charges are shown in green. (C) Addition of methanol to Zn(DMTH) via 

metal−ligand cooperativity. 
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containing Zn(II) and base.252 Building upon these ideas, Grapperhaus et al. developed 

Zn(DMTH) (DMTH = diacetyl-2-(4-methyl-3-thiosemicarbazonate)-3-(2-

pyridinehydrazonato)) as a sustainable catalyst for the reduction of CO2 to formate from 

air. 

To confirm that HCO2
− is derived from CO2, isotopic labeling studies with 13CO2 

were conducted. The resulting experiment showed a doublet centered at 8.44 ppm (J = 139 

Hz) for H13CO2
− and a singlet at 8.44 ppm for H12CO2

− (Figure 2.13).253 The singlet 

intensity for H12CO2
− is attributed to CO2 generated by oxidation of solvent at the anode. 

Remarkably, when the reaction was repeated using air pumped into solution from the 

surroundings in place of a CO2 stream, reduction to HCO2
− was observed with a total of 4 

turnovers. The optimal faradaic efficiency is 15.8% based on total charge consumed and 

47.6% for background corrected charge. To our knowledge, this is the first reported 

electrocatalytic reduction of CO2 to HCO2
− from air. For isotopic labeling studies, a 5 L 

tank of 13CO2 was purchased from Cambridge Isotopes. This tank was connected with 

Swagelok fittings and a regulator to the airtight electrochemical cell containing 0.1 M 

NBu4PF6 and 1.0 mM Zn(DMTH) in methanol. This cell contained a working glassy 

carbon and a Ag/AgCl reference. The flow rate was adjusted to 10.0 cc/min, and the cell 

was purged with the 13CO2 for 15 min. Then, 8.3 mM acetic acid was added to the solution 

and it was stirred. The counter compartment containing 0.1 M NBu4PF6 in methanol and a 

platinum mesh electrode was placed as close to the working cell as possible. The solution 

was held at −2.30 V vs Fc/Fc+ for 2 h using a Biologic SP200. A 500 μL aliquot of this 

solution was removed and added to 100 μL of DMSO-d6, and a 1H NMR spectrum was 

recorded. 
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Zn(DMTH) catalyzes the sequestration, activation, and reduction of CO2 to HCO2
− 

on its own or in tandem with a hydride source. Notably, Zn(DMTH) maintains its activity 

at low pressure in the presence of oxygen and water allowing for direct capture and 

reduction of CO2 from air. This system was able to achieve 18.7-24.1% FE for HCO2
- at 1 

atm CO2 streams and 14.3-15.8% FE for HCO2
- under air streams (<1000 ppm CO2).   The 

unprecedented activity of Zn(DMTH) results from the inclusion of a FLP-like interaction 

for CO2 fixation in a redox-active ligand framework that facilitates CO2 reduction at a 

nonredox active Zn(II).  Further, Zn(DMTH) is a stable catalyst that incorporates a 

sustainable earth-abundant metal in an oxygen- and water tolerant complex that can be 

synthesized from inexpensive chemical reagents. Our ligand-centric approach that 

combines features to fix and reduce CO2 at a single redox nonactive metal site is different 

from all other CO2 reduction catalysts and provides a new strategy to mitigate global CO2 

levels. 

Figure 2.13   1H NMR of 13CO2 reduction shows characteristic splitting of 13C-labelled formate (8.44 

ppm).  JC-H = 138.75 Hz (500 MHz). 
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CHAPTER 3 

ASSESSING CONTAMINANTS FROM ION-EXCHANGE MEMBRANES IN THE 

EVALUATION OF AQUEOUS ELECTROCHEMICAL DIOXIDE REDUCTION 

3.1 Introduction 

The electrosynthesis of fuels and feedstock chemicals using CO2 and water as 

precursors has been widely recognized as a vital step toward a carbon-emission-free 

economy.254, 255 Electrochemical CO2 reduction to CO has reached selectivity nearing 

100% faradaic efficiency (FE) and has achieved high current densities on both Au and Ag 

catalysts.256, 257  CO2 reduction to formic acid has been demonstrated with 94% FE and 

high current density.258 Ethylene electrosynthesis from CO2 on Cu has achieved 70% FE 

and 473 mA cm-2.259 These advances and others suggest commercial promise for the 

electrochemical CO2 reduction reaction (CO2RR). Motivated by these results and guided 

by technoeconomic analyses260, 261, CO2RR researchers are seeking to develop new 

catalysts and electrolysis strategies to selectively produce more complex, multicarbon 

products with greater value to enable CO2 electroreduction to gain a competitive foothold 

in the chemical industry. 

As many as sixteen different products have been reported for CO2RR on Cu, 

highlighting the myriad possible reaction pathways for hydrocarbon and oxygenate 

production with C-C bond formation.91 To move towards greater multicarbon product 

selectivity, researchers are striving to design catalysts that break the scaling relations, 

which limit the degree to which the free energies of intermediates for a specific pathway 
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can be optimized.206 Cascade electrolysis strategies have also been pursued262, 263, leading 

to significant work in the direct CO reduction reaction (CORR).211, 264 CO reduction on Cu 

has attained high rates with a flow cell design achieving 91% FE for C2+ products with a 

current density of 630 mA cm-2.265 Recently n-propanol production from CORR on Cu 

reached 23% FE at 11 mA cm-2, the present state-of-the-art for C3 product selectivity.97 

Even C4 products have recently been reported. With MoS2 catalyst, t-butanol was 

discovered to be a CO2RR product at low rates.93 On Ni2P, 71% FE to 2,3-furandiol was 

reported at strikingly low overpotential, although it only reached 22.25 μA cm-2.92   

In the expanding pursuit of multicarbon products from CO2RR, even minor 

products are of interest. However, particularly at low electrolysis currents, the detection 

sensitivity becomes more challenging and the possible influence of contaminants is more 

significant. One potential source of contaminants is from the ion-exchange membrane 

commonly employed in electrolysis cells to separate the anode and cathode half-reactions.  

These membranes may still contain an appreciable amount of solvents or preservatives 

used in their fabrication and processing. As researchers become increasingly proficient at 

designing catalysts and electrochemical systems for CO2RR to complex multicarbon 

products, it is vital to eliminate sources of error which could contribute to spurious product 

identification. Herein we highlight the importance of appropriate membrane choice, 

pretreatment, and proper control experiments to ensure accurate product identification. 
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3.2 Experimental 

3.2.1 Membranes and chemicals 

All reagents were used as received, including KHCO3 (ACS grade, 99.7 – 100%, 

Alfa Aesar) and KOH (Reagent grade, Amresco).  Membrane materials were purchased 

commercially, including Nafion-115 and Nafion-117 (Chemours), AMI-7001 and CMI-

7000 (Membranes International), Selemion (AGC Engineering Co., Ltd.), Sustainion 

(Dioxide Materials), and FumaSep FAPQ-375-PP (FuMA-Tech). 

3.2.2 Electrochemical CO reduction measurement 

Oxide-derived copper (OD-Cu) electrodes were prepared from Cu foil (0.127mm 

thick, 99.9%, Alfa Aesar) following the procedure described by Li et al.211 The Cu foil was 

sonicated for 30 minutes in acetone and isopropanol for cleaning and then electropolished 

in 85% phosphoric acid (Macron Fine Chemicals) at 2 V applied bias vs. a secondary Cu 

foil for 5 min under vigorous stirring. Both sides of the foil were electropolished. The foil 

was then profusely rinsed in 18 MΩ-cm water and dried under nitrogen. The Cu foil was 

subsequently placed in a muffle furnace under ambient air for thermal oxidation with a 1.5 

h ramp up to 500 °C, 12 h at 500 °C, and then a 10 h ramp down to room temperature. The 

CuOx foil was then placed in the electrochemical cell with ∼ 3 cm2 exposed to the 0.1 M 

KOH electrolyte and reduced at -0.5 V vs. RHE for 45-60 min until the current density 

reached a steady state current for 5 min at ≤ 5mA cm-2. The electrochemical cell was made 

of polycarbonate plates and set up for a three-electrode experiment with the OD-Cu foil as 

the working electrode, platinum mesh as the counter electrode separated from the cathode 

compartment by the membrane, a Ag/AgCl (CH Instruments, Inc) in 3.0M KCl as the 
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reference electrode.212  Potentials were calculated from the equation VRHE = VAg/AgCl + 

0.210+0.059*pH.  The pH of the 0.1 M KOH electrolyte was 13. The catholyte was then 

flushed and replaced with fresh 0.1 M KOH with a catholyte volume of 7.5 mL, which had 

been purified using Chelex (100 sodium form, Sigma) ion-exchange resin.   

Prior to CORR measurements, the electrolyte was bubbled with CO (99.99%, 

Specialty Gases) at 20 sccm for 20 min and potentiostatic electrochemical impedence 

spectroscopy (PEIS) was conducted to measure the uncompensated cell resistance. Typical 

resistances for the cell were 11 – 14 Ω. The potentiostat (Biologic SP-200) was then set to 

compensate for 85% of the uncompensated resistance during the electrochemical CORR 

experiment, which was conducted with a steady CO flow rate of 20 sccm through a bubbler 

in the catholyte at the base of the OD-Cu electrode. The example CORR electrolysis 

demonstrated herein was measured at -0.3 V vs. RHE for 60 min using a pretreated AMI-

7001 membrane.  

 

3.2.3 Product detection 

CO reduction products were measured by gas chromatography (GC, SRI 8610) and 

nuclear magnetic resonance (NMR) for the gas and liquid products, respectively. Both 

instruments were calibrated with standard gases or liquid solutions. The liquid products 

were collected at 0 min and 60 min for each electrolysis experiment. A 400 μL aliquot of 

the catholyte was mixed with 100 μL of D2O that contained ∼100 ppm dimethyl sulfoxide 

(DMSO, ACS grade, Amresco). The peak area of the internal standard of DMSO was 

compared to the peak area of each liquid product in 1H-NMR using a Varian 700 MHz 

cold-probe. The 1H-NMR and H-H COSY spectra were obtained on a Varian 700 MHz 
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cold probe spectrometer. The proton 1D spectra were conducted with a water saturated 

method with a 5 s presaturation delay, 4 s acquisition time, 2 s relaxation delay, 45° pulse 

angle, and 16 scans. The H-H COSY spectra was conducted with a relaxation delay of 1.2 

s, an acquisition time of 0.183 s, 64 scans, and 256 increments. Gas-chromatography mass 

spectrometry (GC-MS) was performed on an Agilent 7820A GC with a quadrupole mass 

spectrometer (Agilent Technologies 5975 MSD). Data analysis was performed with 

Agilent Chemstation and the species referenced to the NIST08 library.257 The GC-MS 

instrument was comprised of a 7820 A GC system and 5975 series MSD using He as a 

carrier gas at a flow rate of 1 mL min−1. The oven temperature was set to 50 °C and then 

ramped at a rate of 20 °C to 250 °C over 10 min. The column used was an Agilent J&W 

HP-5 ms with a length of 30 m, a 250 μm inner diameter and a 0.25 μm thickness. 

3.2.4 Membrane soak 

Several ionomer membranes common for electrolysis experiments were analyzed 

for contaminants, and one example case study was explored to demonstrate how the 

membrane residue can lead to the misidentification of electroreduction products. A 

selection of common commercially available ion-exchange membranes was tested. The 

group of anion-exchange membranes included: Selemion AMV (ammonium-

functionalized polystyrene blend with poly(vinyl chloride)266), Sustainion (imidazolium-

functionalized polystyrene267), FumaSep FAPQ-375-PP (polypropylene-reinforced 

fluorinated anion-exchange copolymer268), and AMI-7001 (quaternary-ammonium-

functionalized polystyrene269). The group of cation-exchange membranes included:  CMI-

7000 (sulfonic-acid-functionalized polystyrene269), Nafion-117 (sulfonic-acid-
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functionalized polytetrafluoroethylene270), and Nafion-115. In each case, 1 cm2 of the 

membrane material as received was immersed in 10 mL of an aqueous solution of either 

0.1 M KHCO3 or 0.1 M KOH for two hours. These are the two most common electrolytes 

used for CO2RR and CORR, respectively. Aliquots of the solution were then analyzed by 

nuclear magnetic resonance (NMR) spectroscopy (see Appendix), following the technique 

used by Kuhl, et al.91 

3.3 Results and discussion 

3.3.1 Membrane contaminants 

NMR has been a favored method of liquid product detection by CO2RR researchers. 

The analyte species were identified by the chemical shifts listed in Table 3.1. Several 

contaminants were detected from these membranes (Fig. 3.1, Table 3.2), including stearic 

acid, N-methyl-2-pyrrolidinone (NMP), n-propanol, acetone, methanol, ethylene glycol, 

and polyethylene glycol (PEG). NMR spectra for each membrane soak are shown in Figs. 

A.1-7. Stearic acid was observed in small quantities in every measurement, including blank 

electrolyte control measurements. We attribute this to the role of stearic acid as a precursor 

in the synthesis of polypropylene, which was a component in the tubes used for these 

experiments.271 Although stearic acid was thus excluded from the subsequent table of 
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membrane contaminants, its appearance further highlights the importance of control 

experiments in avoiding false product detection. Polypropylene is also used in some 

membranes (e.g., FumaSep FAPQ-375-PP). 

For the untreated membranes, some materials displayed nearly negligible 

contaminants, while others had a contaminant at levels that could lead to product 

misinterpretation. Selemion AMV, Nafion-117, and Nafion-115 contained only trace levels 

of the common solvents methanol, propanol, and acetone. However, Sustainion had high 

levels of ethylene glycol and FumaSep FAPQ-375-PP had high levels of PEG.  AMI-7001 

and CMI-7000 both had high levels of NMP, which is a casting and modifying solvent used 

in some membrane fabrication.272  Without proper controls, these contaminants could 

Table 3.1 

Figure 3.1. Chemical structures of observed contaminants (a-g) and misinterpreted hypothetical 

products (h-i). 
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easily be misidentified as products of CO2RR/CORR. Or in the case of NMP, an 

unsuspecting researcher not expecting to find N-containing products could misinterpret the 

spectroscopy results.   

Some of these membrane manufacturers specify pretreatment conditioning that 

should be applied before use. Sustainion, as received was stored in a solution of 10% 

ethylene glycol, so this contaminant is not surprising for the untreated membrane. Upon 

pretreatment by soaking in 1M KOH for 24 h, however, the ethylene glycol concentration 

fell below the NMR detection limit (Table 3.3). The pretreatment step is thus critical prior 

to using Sustainion in CO2RR/CORR research for multicarbon products. FumaSep FAPQ-

375-PP, in contrast, is sold ready to use without pretreatment. The lack of pretreatment 

makes the observed PEG contaminant more problematic. However, the FumaSep 

manufacturer does recommend an ideal electrolyte pH < 4, unlike the neutral and alkaline 

conditions tested here.  Lastly, AMI-7001 and CMI-7000, which are analogous anion-

exchange and cation-exchange membranes, respectively, from the same manufacturer 

(Membranes International), both have a recommended pretreatment consisting of a 12 hour 

soak in the application electrolyte.  After this pretreatment, the detected NMP 

Table 3.3   

Table 3.2 
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concentration was reduced by approximately an order of magnitude. However, the 

observed NMP contaminant for AMI-7001 was still 53.14 and 12.44 ppm for 0.1M KHCO3 

and 0.1 M KOH, respectively (Table 3.3). This is an appreciable concentration for a C4 

species which could cause a significant error in CO2RR/CORR product quantification if 

misinterpreted. The anion-exchange form, AMI-7001, is the more commonly employed 

membrane of the two for CO2RR/CORR studies. The untreated NMP concentration for 

AMI-7001 showed significant variability, especially at moderate pH values, as evidenced 

by large error bars at pH 7-11 (Fig. 3.2). NMP concentrations were measured ranging 

from<200 to even over 1000 ppm at pH 9-10. This variability may be partially attributable 

to solvent residue nonuniformity and edge effects across large area membrane rolls that 

were randomly sampled for testing. The pretreated membrane, however, did not show a 

Figure 3.2. NMP concentration vs. pH for the soaking of AMI-7001 in KOH, with pH adjusted by H2SO4. 

The soaks in 0.1M KHCO3 are shown with red markers. 
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pH-dependence to the contaminant level, with a steady NMP concentration from 10 – 53 

ppm.  

3.3.2 Case study 

To illustrate the detrimental effect of the membrane contaminants on product 

identification, a case study for CO reduction on oxide-derived Cu (OD-Cu) catalyst in 0.1M 

KOH with an AMI-7001 membrane was investigated. OD-Cu reaches a peak faradaic 

efficiency for ethanol at -0.3 V vs. RHE under these conditions.211 For a 60 min 

potentiostatic electrolysis at -0.3 V vs. RHE in CO- bubbled electrolyte, the resulting NMR 

spectra of the catholyte is shown in Fig. 3.3a. Peaks in chemical shift were observed at δ = 

Figure  3.3. Comparison of proton NMR spectra (700 MHz) for (a) an experimental sample from CO 

electroreduction at -0.3 V vs. RHE in 0.1 M KOH on OD-Cu, (b) a literature result for GHB at pH 8,273 (c) 

a succinic acid standard, (d) an aliquot from the AMI-7001 membrane soak, and (e) an NMP standard. 
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2.55 ppm, corresponding to the dimethyl sulfoxide (DMSO) used as an internal standard 

(see Appendix), as well as at δ=1.71 and 3.45 ppm, corresponding to substantial levels of 

the expected acetate and ethanol products, respectively. Four additional peaks were 

observed at δ=3.30, 2.65, 2.22, and 1.87 ppm. The splitting pattern of three of the peaks 

denoted a possible chain of three methylenes. The fourth peak at δ = 2.65 ppm however 

was a singlet and initially difficult to interpret. The triple methylene fragment chemical 

shifts could possibly be attributed to a C3 carbon chain with alcohol and carboxylate end 

groups. This molecule would then be γ-hydroxybutyrate (GHB) (Fig. 3.1h). This 

interpretation can be supported by a literature example of the proton NMR of GHB (Fig. 

3.3b)273 showing very similar chemical shifts, albeit the peak corresponding to the 

methylene adjacent to the alcohol group was reported at modestly higher chemical shift (δ 

= 3.59 ppm) compared to the relevant peak from the CO reduction sample (δ=3.30 ppm, 

Fig. 3.3a). However, the solution pH is known to influence this NMR peak for GHB, 

leading to a decreased chemical shift under more basic conditions.273, 274 With the CO 

reduction electrolyte at pH 13 compared to the reported GHB sample at pH 8, the deviation 

in this peak could be attributed to this effect.  Further identification was pursued by 2D 

proton-proton correlation spectroscopy (H-H COSY), and two cross-peaks representing 

links between the triple methylene chain chemical shifts confirmed the observation of this 

C3 fragment (Fig. 3.4a). These observed cross-peaks also resemble a 2D H-H COSY 

spectrum of GHB, further supporting this identification.275 For the unknown singlet peak 

at δ = 2.65 ppm, a similar chemical shift was reported in the literature for another C4 

species, succinic acid (Fig. 3.1i).276 A measured proton NMR spectrum for a standard of 

succinic acid confirmed the presence of a strong singlet peak at δ ∼ 2.65 ppm (Fig. 3.3c). 
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Thus, a CORR researcher relying solely on NMR for liquid product identification and 

unaware of the presence of possible membrane contaminants could reasonably conclude 

that the CO reduction had produced the C4 species GHB and succinic acid. 

 

3.3.3 Secondary confirmation via GC–MS 

However, expanding the catholyte characterization methods to include gas-

chromatography mass-spectrometry (GC–MS) provides additional insight. The mass-to-

charge ratio (m/z) data for the GC peak corresponding to the experimental C4 species is 

shown in Fig. 3.4b, along with the mass spectrum for a NIST reference of NMP. The 

NIST08 library confirmed the experimental C4 mass spectrum to be NMP with >95% 

probability. Because NMP is a nitrogen-containing cyclic compound, it is clearly not a 

product resulting directly from CO reduction in water, but instead is attributed to 

membrane contamination.  Indeed, a proton NMR spectrum of the aliquot from AMI-7001 

membrane soaking (Fig. 3.3d) shows the same four peaks analyzed above and naively 

assigned to GHB and succinic acid. An NMR spectrum for a standard solution of NMP 

further clarifies these peak assignments (Fig. 3.3e). Note that for the experimental 

conditions of this example, ∼1.24 mA cm-2 at -0.3 V vs. RHE for 60 min in 7.0 mL of 

electrolyte, the highest pretreated AMI-7001 concentration of 53.14 ppm NMP (Table 3.3) 

would be calculated to correspond to a faradaic efficiency of 6.26% GHB and 8.34% 

succinic acid following the incorrect NMR interpretation.  Thus, for multicarbon products 

requiring numerous electrons per molecule to produce, it is particularly important to 

eliminate spurious product detection due to contaminants from membranes and other 

sources. 
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Figure 3.4. Characterization of CORR product with AMI-7001 membrane. (a) 2D H-H COSY 

spectrum (700 MHz) demonstrating the interpretation of cross-peaks B and C to the misidentification 

of GHB. Cross-peak A is for ethanol. The 1D spectra on the top axis contains assignments to the 

analytes’ proton groups (HX). (b) GC-MS mass-to-charge ratio (m/z) data for the experimental 

CORR product (top) compared to a reference NMP standard (bottom). 
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3.4 Conclusion 

With the intensifying effort being directed towards electrochemical reduction as a 

route to synthesize increasingly more complex, multicarbon products, it is important to 

eliminate sources of error which could result in the spurious detection of novel products 

and skew faradaic efficiency calculations. As shown herein, many of the commonly 

employed membrane materials for aqueous CO2/CO reduction result in significant 

contaminant levels in the electrolyte, especially if used as received without pretreatment. 

Even after pretreatment, non-negligible contaminant concentrations are possible which can 

lead to spurious product identification. Thus, especially for cases claiming novel 

multicarbon products, it is necessary to eliminate sources of contamination and to verify 

the products with more than NMR spectroscopy alone. 
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CHAPTER 4 

PULSED ELECTROCHEMICAL CARBON MONOXIDE REDUCTION ON OXIDE-

DERIVED COPPER CATALYST 

4.1 Introduction 

Developing viable routes to convert waste CO2 to value-added chemicals is 

receiving increasing interest as a strategy to decrease greenhouse gas emissions.277  

Several technoeconomic analyses have indicated that with sufficient performance 

improvements, several products could be commercially produced through 

electrochemical CO2 reduction.278, 279  Copper is one of the few catalysts that has 

shown high activity for producing hydrocarbons and oxygenates through the carbon 

dioxide reduction reaction (CO2RR).91  Oxide-derived copper (OD-Cu), wherein an 

oxidized Cu surface is subsequently electrochemically reduced, possesses a high 

electrochemically active surface area with a high density of grain boundaries, which 

has led to increased activity compared to planar Cu.194, 280 However, designing 

catalysts for very high CO2RR selectivity to a single product is hindered by the 

scaling relations which limit the degree to which the binding energy can be 

simultaneously optimized for the various intermediate reactions in a multi-step 

reaction.281  For a simple single-carbon product like CO, several other catalysts have 
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been able to achieve near 100% faradaic efficiency (FE) from CO2 at high current 

density.87   

 Thus, a promising approach to mitigate the limitations of the CO2RR scaling 

relations is the further direct electrochemical reduction of CO in a second 

electrocatalytic system. Cascade electrolysis systems have been demonstrated by 

first reducing CO2 to CO with Au or Ag, then subsequently flowing the CO to a 

second electrolyzer or catalyst for a more selective secondary reduction.282, 283  With 

OD-Cu, for instance, the grain boundary active sites promote adjacent CO binding 

and subsequent C-C bond formation, leading to higher FE for C2 products like 

ethanol and acetate compared to conventional Cu for the electrochemical CO 

reduction reaction (CORR).11 This approach has motivated significant recent study 

of CO reduction,12, 13 which has yielded advancements like > 90% FE for CORR at 

a partial current density of over 600 mA cm-2, enabled by CO gas flow-through 

electrolyzer designs.265 

 Beyond modifications to the catalyst, the reaction branching pathway can 

also be tuned by affecting the dynamics at the electrochemical interface by pulsing 

the applied bias to the electrolyzer. This approach manipulates a complex interplay 

between the pulsing frequency and vertex potentials with the balance between 

reaction kinetics and mass transfer as well as the charging and discharging of the 

electrode double-layer capacitance.284 For potential pulses in the multi-second time 

range, improved CO2 mass transport to the electrode during the rest pulse enabled 

modestly enhanced FE for CH4 and C2 products.285-287 In the sub-200 ms pulse time 

range, the charging/discharging of the electrode capacitance favored CO2RR 
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intermediate desorption and resulted in tunable and selective syngas (H2+CO) 

formation.284 Pulsed-bias CO2RR activity was also shown to depend strongly on the 

electrode geometric surface area, with the differences attributed to induction time 

and the rate of double-layer charging.288 Pulsed-bias electrolysis has further been 

demonstrated to have the added benefit of mitigating catalyst poisoning from 

contaminants or byproducts by repeated reduction/oxidation of the electrode 

interface to release or convert the undesired adsorbed species.289, 290 Despite the 

increasing interest in electrochemical CO reduction, however, few if any reports 

exist on the ability of pulsed-bias conditions to direct the selectivity of CORR.  

Herein, we have investigated the effects of variable electrolysis parameters on the 

product distribution for reducing CO with a highly nanostructured OD-Cu catalyst 

surface. 

4.2 Results and Discussion 

First the behavior of OD-Cu for CORR under potentiostatic conditions without pulsed 

bias was established (see Experimental). After in situ reduction of the OD-Cu, current 

density vs. potential (J-E) behavior was measured to confirm the near absence of the peak 

corresponding to copper oxide reduction (Fig. A.8).  Fig. 4.1 shows the CORR product FEs 

and overall current density as determined at the end of a 60 min electrolysis. The results 

are the average of three redundant measurements at each potential. The product FE values 

(Table A.1) are consistent with other reports for potentiostatic CORR on OD-Cu.100, 291  

Minimum H2 production was observed at -0.30 V vs. RHE, with a FE of 44.1%. Peak C2+ 
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product formation occurred at -0.35 V vs. RHE, with FEs of 19.7% and 4.6% for ethanol 

and acetate, respectively, as well as trace propanol with a FE of 0.35%.  At -0.40 V vs. 

RHE, the gaseous C2 products ethylene and ethane were detected at a combined FE of 

8.0%.  At -0.25 and -0.30 V vs. RHE, the total FE to measured products was significantly 

below 100%, and we attribute the balance to continued restructuring and reduction of the 

electrode as well as unquantified acetaldehyde. Acetaldehyde, which is known to be an 

intermediate product on the way to ethanol formation,291 is highly volatile. Although the 

low concentration makes it difficult to quantify by GC with the dynamic flow mode used 

herein, a static-headspace method has permitted quantification by others.291  It was recently 

reported that acetaldehyde is a major product (~60% FE) at low overpotentials on 

nanoflower Cu,100 making this a likely source for much of the missing charge in Fig. 4.1.  

Furthermore, a moderate drop in current density occurred during the 60 min electrolysis 

(Fig. A.8), most likely due to a partial loss of the Cu wire mesh-like nanostructures over 

time as has been seen in other OD-Cu studies.194, 292 

A small amount of formate, HCOO-, (< 1.7% FE) is reported in Fig. 4.1 as an 

electrochemical CORR product on OD-Cu. The presence of formate as a product is 

noteworthy because other groups have reported that it may arise via a non-electrochemical 

route in CORR, perhaps as a hydration product.292  Some formate is clearly generated 

through a non-electrochemical route, as it has been demonstrated to form under CORR 

conditions at open-circuit voltage (OCV) with a Cu electrode.100 We performed additional 

control experiments to further elucidate the behavior of HCOO- production on OD-Cu for 
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CORR. Figure A.9 shows the total formate production rate on OD-Cu at relevant potentials, 

including where no faradaic current passed, as well as the formate produced in the absence 

of an electrode.  Only 0.09 μmol of HCOO- was detected without the OD-Cu catalyst, 

which increased to 0.95 μmol for OD-Cu at 0 V vs. RHE and reached as high as 3.99 μmol 

at -0.35 V vs. RHE. 

While some formate is likely produced through a non-electrochemical CO 

hydration, this route alone cannot explain the observed potential-dependence of 

HCOO- concentration. Instead, it is proposed that electrochemically generated OH- 

from alkaline hydrogen evolution at higher localized concentration in the vicinity of 

surface-adsorbed CO on the electrode accelerates the rate of CO hydration to 

-0.40 -0.35 -0.30 -0.25

0

20

40

60

80

100

F
a
ra

d
a
ic

 E
ff

ic
ie

n
c
y
 (

%
)

Potential, E (V vs. RHE)

 Hydrogen  Methane

 Formate  Ethane

 Ethylene  Acetate

 Ethanol

0

2

4

6

8
C

u
rre

n
t D

e
n

s
ity

, J
 (m

A
 c

m
-2)

Fig. 4.1. Product distribution for CORR on OD-Cu in CO-saturated aqueous 0.1 M KOH. Overall current 

density (diamonds) is the value after 60 min. Values are the average of three measurements at each 

potential. 
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formate (see Appendix). Faradaic efficiency for formate by an indirect 

electrochemical route was therefore determined by subtracting the baseline molar 

production of HCOO- in the 0.1 M KOH electrolyte with an OD-Cu electrode at 

open-circuit from the value measured at a given applied bias. Variation in the 

HCOO- production under pulsed-bias conditions was even more pronounced, further 

indicating that a purely non-electrochemical route was not sufficient to explain the 

generation of formate. The formate production route, along with the proposed 

reaction pathways and cathodic half-reactions for the other products for alkaline 

CORR on OD-Cu are shown schematically in Figure 4.2. 

 For the pulsed-bias CORR experiments, the main parameter investigated for its 

effect on the product distribution was the pulse frequency. A square-wave pulse between a 

cathodic potential, Ec, at -0.35 V vs. RHE and a rest potential, Er, at 0 V vs. RHE was used 

consistently throughout the study (Fig. 4.3a).  The Ec value was selected as the potential 

Fig. 4.2. Proposed reaction pathways for CORR on OD-Cu in 0.1 M KOH to the observed products. 

Cu grain boundaries promote adjacent CO binding and subsequent C-C bond formation. 

Acetaldehyde is a readily desorbed intermediate species on the reduction pathway to ethanol.291 

Acetate formation is believed to proceed through hydroxide attack of a surface-bound ketene.260  



73 

for maximum CORR FE, including to C2 products (Fig. 4.1). At the Er potential, no steady-

state faradaic current passes, which allows time for CO diffusion without promoting the 

local oxidation of the CORR products that might occur at more anodic potentials. Pulsed-

bias CO measurements applied the potential square wave for 60 min, of which only half 

that time was spent at the active Ec reductive condition. After switching potentials, a 

transient current decayed over ~1 s before reaching a pseudo-steady-state current within 

the pulse. An example pulsed-bias current density vs. time profile is shown in Fig. 4.3b.  

Within each pulse, the current is a combination of non-faradaic capacitive charging current 

and the faradaic currents directing charge to CORR, the hydrogen evolution reaction 

(HER), and Cu reduction/oxidation. It is difficult to determine an unequivocal and 

quantifiable deconvolution of the faradaic and non-faradaic components of the charge 

passed. Although double-layer capacitive charging can be fit with an RC circuit 

exponential fit, the underlying baseline faradaic current is likely not constant and thus 

difficult to accurately quantify. Thus, rather than calculate FEs in pulsed-bias conditions, 

the selectivity in these experiments is reported as the product distribution by charge. 

Moreover, OD-Cu morphology after pulsing was investigated by SEM and capacitance 

measurements (Figs. A.10-12, Table A.2). With no clear trend in surface roughness 

observed with pulsing times, we attribute the variations in product distribution to the 

dynamic interfacial electrochemistry rather than changes in the catalyst.  

Pulsing times varied from 10 ms to 50 s, covering the wide range of pulse 

frequencies reported in previous pulsed-bias studies on Cu for CO2RR.284-290  Figure 

4.4 shows the resulting product distributions measured at each pulse time along with 

the total measured charge required to produce all the detected products (Table S3). 
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Each of the values are the average of three individual measurements. The total 

measured charge was determined by calculating the required charge to produce all 

the measured products from CO and H2O reactants. 

 With increasingly longer pulses, the product distribution would be predicted 

to asymptote towards the values observed for non-pulsed continuous electrolysis as 

steady-state conditions increasingly dominate each pulse.284  However, the observed 

CORR products for 50 s pulse times deviated appreciably from the values measured 

for continuous electrolysis (Fig. 4.4a).  In particular, a lower fraction of ethanol and 

acetate was observed for long pulse times relative to the no-pulse condition. A 

control experiment was therefore conducted with a 30 min continuous electrolysis 

followed by 30 min at OCV with continued CO bubbling (i.e., a 1800 s pulse). The 

1800 s pulse product distribution was consistent with the values measured for 50 s 

pulse times and also had notably lower fractions of ethanol and acetate compared to 

the no-pulse condition. We therefore attribute the reduced measured fraction of these 

liquid C2 products to changes occurring during the rest periods of the pulsed 

Fig. 4.3. (a) Pulsed-bias waveform alternating the OD-Cu potential between the cathodic potential, Ec, at 

-0.35 V vs. RHE and a rest potential, Er, at 0 V vs. RHE. (b) Example pulsed-bias current density response 

for 1 s pulse times. 
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electrolysis. Gaseous CH4 and H2 products, however, were observed in similar 

amounts. The discrepancy between the observed liquid products for long pulses and 

non-pulsed electrolysis is likely attributable to the volatility of ethanol and acetate, 

leading to the gradual vaporization of these products into the output CO stream at 

concentrations below the GC detection limit in the continuous dynamic flow mode 

used herein. Because the NMR liquid product quantification measures the 

accumulated product at the end of the experiment, the time spent under active CO 

bubbling at the rest potential for pulsed-bias conditions reduces the observed 

fraction of volatile liquid products relative to a continuous electrolysis. The reported 

product distribution by charge for ethanol and acetate under pulsed-bias is therefore 

a lower limit, and the actual fraction of C2 species produced is assumed to be higher. 

However, precisely accounting for the volatile product with a static-headspace 

method is challenging for CORR due to the low solubility of CO, which makes 

steady-state reduction difficult in the absence of active CO bubbling. 

For non-pulsed CORR electrolysis at -0.35 V vs. RHE, the faradaic efficiency 

for H2 was 68.2%, and the total FE for CORR was 28.8% (Fig. 4.1, Table A.1). 

Accounting for faradaic current to undetected products, this is equivalent to a 

product distribution by charge of 70.3% for HER and 29.7% for CORR (Fig. 4.4a, 

Table A.2). Vaporization of volatile liquid products during the rest period accounted 

for a decrease in the charge fraction of CORR, with a product distribution by charge 

for CORR of 13% for the 1800 s pulse time, and corresponding increase in HER to 

87%.  The HER charge fraction increased to as high as 92.4% at 25 s pulses, then 

decreased with decreasing pulse times to 29.3% for 10 ms pulses (Fig. 4.4a, Table 
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Fig. 4.4. (a) Product distribution vs. pulsing time along with the corresponding total measured charge (white 

diamonds, right axis) attributed to the detected products, and (b) the fraction of CORR products which are 

either one- or two-carbon species. (c) The total charge attributable to each detected product. The “PS” 

condition refers to a potentiostatic measurement at -0.35 V vs. RHE for 60 min. 
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A.2). CORR became the dominant reaction over HER at 100 ms and shorter pulses, 

accounting for ~70% of the charge, although the total charge was lower in this pulse 

frequency range. While the partial charge for CORR products increased from 4.1 C 

at 25 s pulses to as high as 8.8 C at 100 ms pulses, the partial charge for HER 

decreased from 50.1 C to 3.6 C between the same conditions, respectively (Fig. 

4.4c). Thus, the decrease in the total measured charge at shorter pulses can primarily 

be attributed to a decrease in the rate of HER. Interestingly, this finding is the reverse 

trend of the results observed in our previous pulsed-bias work on CO2RR on Cu in 

neutral aqueous KHCO3, in which the rate of H2 formation increased with shorter 

millisecond pulses.284 In that work, an increase in HER relative to CO2RR at short 

pulse times was attributed to the constantly changing electric field due to double 

layer charging/discharging leading to desorption of the CO2 reduction intermediates 

and subsequent promotion of HER. In the present case, CO binding and reduction is 

instead competing with alkaline HER, in which water-splitting occurs through a OH- 

intermediate rather than a H+. We thus speculate that the non-faradaic current from 

charging/discharging which dominates short pulses in the ms regime could have a 

different effect on the binding energy and species adsorption which acts to inhibit 

HER in this situation. In addition, a less reductive potential (-0.35 V vs. RHE) was 

used for CORR in the present work compared to the potential (-1.0 V vs. RHE) 

applied for CO2RR in the previous study, leaving less driving force for HER to 

overcome competing effects in the present study.284 

Besides changing the relative rates of HER to CORR, pulsing frequency also 

influenced the charge distribution of carbonaceous products. For pulsed-bias 
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electrolysis, a general trend was observed in which shorter pulses corresponded to a 

lower charge fraction of the CORR products being directed towards C2 species (Fig. 

4.4b). Only minor variation was observed in the CORR product distribution for pulse 

times > 5 s, which can be attributed to the majority of the active Ec period being in 

pseudo-steady-state for pulses of this duration. For pulses ≤ 1 s, however, more 

significant variation in the CORR product distribution occurred (Fig. 4.4a). The 

charge fraction of C2 products was notably lower in the sub-second pulse range, 

reaching as low as 3.0% of the CORR products for 10 ms pulse times (Fig. 4.4b). 

While some pulsed-bias CO2RR studies have reported notable enhancements in 

selectivity toward C2 products at pulses in the 1 – 5 s range,285-287 pulsing at 100 ms 

and below decreased C2 product formation.284 The short pulse time CORR results 

herein are consistent with previous reports in which the non-faradaic component is 

dominant at sub-second pulse times and the continuously changing interfacial 

energetics affect species adsorption and prevent the pseudo-steady-state needed to 

promote adjacent adsorbed CO* species capable of C-C bond formation to C2 

products. 

Furthermore, with the decreased HER and C2 production at sub-second pulse 

times, the production of C1 methane and formate species increased as a result. The 

partial charge for C1 products varied from 2.6 C (0.4 C to formate, 2.2 C to methane) 

at 25 s pulses to 8.2 C (3.9 C to formate, 4.3 C to methane) at 0.1 s pulses (Fig. 4.4c, 

Fig. A.14). If the strong component of non-faradaic current throughout the short 

pulse times inhibits HER and C-C bond formation, reduction of the single adsorbed 

CO becomes the preferred route. Full reduction and protonation of the CO leads to 
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CH4.
23 As mentioned above, some formate is produced through a non-

electrochemical hydration step, but the potential dependence of the formate 

concentration indicates an electrochemical pathway exists as well (Fig. A.9). 

Increased formate production at short pulses is consistent with the favored reduction 

of a single adsorbed CO, as near-surface OH- reacts with the CO to make formate 

(see Appendix). At longer active cathodic pulse times, these reaction rates compete 

with diffusion of CO from the bulk to the electrode, permitting greater HER relative 

to CORR. 

4.3 Conclusions 

Herein, a pulsed-bias technique on a nanostructured Cu surface was 

investigated using the pulse time as a parameter for affecting the CORR selectivity. 

The 50% duty cycle used for pulsed-bias conditions resulted in appreciable loss of 

the volatile C2 liquid products to the gas phase relative to a continuous process. 

Using pulses from 0.01 – 50 s, the selectivity to CORR was significantly enhanced 

at sub-second pulse times mainly due to a decrease in the rate of the competing HER, 

which is a different behavior than previously observed for CO2 reduction in neutral 

electrolyte. Additionally, the shorter pulses greatly enhanced the direction of charge 

to C1 relative to C2 products, reaching a ratio as high as 97:3 at 10 ms pulse times. 

Consequently, sub-second pulse conditions had significantly higher fractions of the 

total charge resulting in the production of methane and formate. Further study with 

variable duty cycle and applied potential Ec during the cathodic pulse may yield 

additional conditions for controlling the selectivity of CORR on Cu. Pulsed-bias 
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studies such as these are a promising way to achieve an additional systems-level 

control over the electroreduction reaction as a way to complement the design of 

catalyst materials for high selectivity. 

4.4 Experimental Section 

4.4.1 Membranes and Chemicals 

All reagents were used as received, except for KOH (reagent grade, Amresco) 

which was purified using the K form of Chelex 100 (received as the Na form, Sigma-

Aldrich). All electrolyte solutions were prepared in 18 MΩ-cm water. The anion 

exchange membrane used in the electrochemical cell was 100 μm thick Selemion 

(AGC Engineering Co., Ltd.), pretreated by soaking in a bath of 1 M KOH for over 

24 hours to ensure there were negligible membrane contaminants in the electrolyte.24  

4.4.2 Electrode Fabrication 

Oxide-derived copper (OD-Cu) electrodes were prepared from Cu foil (0.127 

mm thick, 99.9%, Alfa Aesar) following a published method.5, 11 The Cu foil was 

sonicated for 30 min in acetone and isopropanol for cleaning and then 

electropolished in 85% phosphoric acid (Macron Fine Chemicals) at 2.0 V vs. a 

secondary Cu foil for 5 min under vigorous stirring.  Both sides of the foil were 

electropolished.  The foil was then rinsed in 18 MΩ-cm water and dried under 

nitrogen.  The Cu foil was subsequently placed in a muffle furnace under ambient 

air for thermal oxidation with a 1.5 h ramp up to 500 °C, 12 h at 500 °C, and then a 

10 h ramp down to room temperature.  The CuOx foil was then placed in the 
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electrochemical cell with ~ 3 cm2 exposed to the 0.1 M KOH electrolyte and reduced 

at -0.5 V vs. RHE for 45 - 60 min until the current density reached a steady-state 

value for 5 min at ≤ 5 mA cm-2. Previous XPS and XRD characterization has 

demonstrated a surface of Cu(II) present as Cu2O after thermal oxidation, converting 

to primarily Cu(0) after the electrochemical reduction step, with the return of a thin 

oxide layer and Cu(II) and Cu(I) due to residual anodic surface oxidation during 

pulsed-bias operation.5, 15 

4.4.3 Electrochemical Measurements 

Electrochemical CO reduction experiments were performed with a BioLogic 

SP-200 potentiostat.  The electrochemical cell was made of polycarbonate plates and 

set up for a three-electrode experiment with the OD-Cu foil as the working electrode, 

Pt mesh as the counter electrode separated from the cathode compartment by the 

membrane, and a Ag/AgCl (CH Instruments, Inc.) in 3.0 M KCl as the reference 

electrode.15 Potentials were calculated from the equation VRHE = VAg/AgCl + 0.210 + 

0.059*pH.  The pH of the 0.1 M KOH electrolyte was 13. Following electrochemical 

reduction of the OD-Cu, the catholyte was flushed and replaced with fresh 0.1 M 

KOH with a catholyte volume of 7.5 mL.  Prior to CORR measurements, the 

electrolyte in both the cathode and anode chambers was bubbled with CO (99.99%, 

Specialty Gases) at 10 sccm for 20 min and potentiostatic electrochemical 

impedance spectroscopy (PEIS) was then used to measure the uncompensated cell 

resistance. Typical resistances for the cell ranged from 15 – 28 Ω. The potentiostat 

was then set to compensate for 85% of the uncompensated resistance during the 
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electrochemical CORR experiment, which was conducted with a steady CO flow 

rate of 10 sccm through a bubbler with 4 - 5 μm pores in the catholyte at the base of 

the OD-Cu electrode.  Electrochemical surface area (ECSA) measurements were 

performed to obtain the double-layer capacitance values of the OD-Cu electrodes 

before and after pulsed-bias electrolysis.25  A cyclic voltammogram was produced 

at potentials without faradaic current (0.02 to 0.26 V vs. RHE) and the non-faradaic 

current was plotted versus the scan rate to calculate the double-layer capacitance.  

The scan rates were 10, 20, 40, 60, and 80 mV s-1.  The roughness factor was 

estimated by dividing the calculated OD-Cu electrode capacitance by the 

approximate capacitance of atomically smooth Cu (29 μF).6  

 

4.4.4 Product Analysis 

 CO reduction products were measured by gas chromatography (GC, SRI 

8610) and nuclear magnetic resonance (NMR) spectroscopy for the gas and liquid 

products, respectively. Both instruments were calibrated with standard gases or 

liquid solutions. The concentration of gaseous products was measured at 15, 30, 45, 

and 60 min.  The liquid products were collected at 0 min and 60 min for each 

electrolysis experiment.  The moles of each liquid product were determined by 

taking the difference between the final and initial concentrations.  A 400 μL aliquot 

of the catholyte was mixed with 100 μL of D2O that contained ~100 ppm dimethyl 

sulfoxide (DMSO, ACS grade, Amresco).  The peak area of the DMSO internal 

standard was compared to the peak area of each liquid product in 1H-NMR using a 

Varian 700 MHz cold-probe while using a water peak suppression technique.  For 



83 

non-pulsed experiments, the faradaic efficiency was determined directly by 

comparing the charge required to produce the measured products to the total charge 

passed as measured by the potentiostat.  Because of the constantly shifting 

convolution of faradaic and transient non-faradaic (i.e., double-layer capacitive 

charging) currents during pulsed-bias conditions, it is not straightforward to 

calculate faradaic efficiency for pulsed-bias experiments.  Instead, for pulsed-bias 

experiments the selectivity was based on the product distribution by charge, which 

was calculated by comparing the charge required to produce a given product relative 

to the charge required to produce all the measured products. Thus, the product 

distribution by charge is the same as faradaic efficiency except that it does not 

account for charge passed which did not result in a detected product. 

4.4.5 Catalyst Characterization 

A scanning electron microscope (FEI NOVA nano-SEM 600) was used to 

image the surface morphology of the Cu foil.  A Bruker D8 powder X-ray diffraction 

(XRD) system was used for crystal structure and phase analysis using non-

monochromated Cu-Kα radiation produced by an X-ray tube operated at 40 kV and 

40 mA. The sample XRD patterns were scanned between 30-80° at a scan speed of 

4 s per step with a step size of 0.02°. 
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CHAPTER 5 

UNASSISTED PHOTOELECTROCHEMICAL REDUCTION OF CARBON 

MONOXIDE WITH AN OXIDE-DERIVED COPPER DARK CATHODEAND 

TITANIUM DIOXIDE N+P-SILICON TANDEM PHOTOANODE 

5.1 Introduction 

The photoelectrochemical (PEC) carbon dioxide reduction reaction (CO2RR) has 

been pursued with several different strategies.293-301  Many of these strategies employ the 

combinatory effort of bias and photobias to achieve production of CO2RR products.302  One 

such effort utilizes Cu2O dark cathode directly wired to a TiO2 photoanode to perform PEC 

CO2RR.303  In this study, Cu2O remains stable for 3 hours while maintaining 90% 

selectivity.  The Cu2O dark cathode achieved a selectivity of 92.65% for carbonaceous 

products at +0.75 V vs RHE.  Many efforts for PEC systems have the goal of developing 

an “artificial leaf” device where no external bias is applied.304  One such study recently 

achieved this for CO2RR.   Syngas was produced bias-free from CO2 via integrating a 

molecular cobalt catalyst with a perovskite-BiVO4 tandem photoanode, an “artificial 

leaf”.305  They achieved a solar-to-CO efficiency of 0.02%. In a gas-diffusion electrode 

(GDE) electrolyzer a solar-to-CO efficiency of 19% was achieved.302  

Many electrochemical CO2RR systems have been shown to produce CO at near 

100% selectivity.87  Because of this achievement, several cascade style reaction designs 

have been pursued where the generated CO is allowed to reach a secondary catalytic site 
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in order for optimal CO reduction reaction (CORR) conditions to be optimized.263, 306  The 

study of the CORR has greatly expanded since it was shown that CO can be reduced with 

high selectivity to carbonaceous products.95, 264, 307  Studies have shown this is a promising 

route through modelling308 and technoeconomic analysis.261  As of yet there has not been 

a study on PEC CORR, let alone unassisted PEC CORR.  Herein we present for the first 

time PEC CORR with no assistance from bias, but only photoinduced current.  This is 

possible because many recent reports have shown that CORR can be achieved from very 

low overpotentials.100, 101  When these low overpotentials are combined with a tandem 

photoanode capable of a high enough photovoltage, enough current can then drive the 

CORR.  A CORR artificial leaf system has yet to be reported in the literature.  

5.2 Experimental 

5.2.1 Membranes and Materials 

All reagents were used as received, except for KOH (reagent grade, Amresco) 

which was purified using the K form of Chelex 100 (received as the Na form, Sigma-

Aldrich). All electrolyte solutions were prepared in 18 MΩ-cm water. The anion 

exchange membrane used in the electrochemical cell was 100 μm thick Selemion 

(AGC Engineering Co., Ltd.), pretreated by soaking in a bath of 1 M KOH for over 

24 hours to ensure there were negligible membrane contaminants in the 

electrolyte.309   



86 
 

5.2.2 Electrode Fabrication 

5.2.2a Tandem Photoanode 

p+ Emitter Layer- A boron doped p+ emitter310, 311 layer was formed on the n-Si (2cm x 

1cm wafer) by using a solid-source BN dopant wafer (Saint Gobain-BN-975). The silicon 

wafers were kept alternatively between the dopant wafers in a ceramic boat at 950 C for 4 

minutes under N2 flow (200 sccm for a 1-inch diameter tube). The boat was taken out 

slowly (in 1 min) to remove the dopant wafers while the temperature in the furnace ramped 

down to 750 °C. Each wafer was etched in BHF for 30 s to remove any excess un-reacted 

dopant glass and then loaded again at 750 °C under O2 flow (100 sccm) for 30 min to grow 

a low temperature oxide (LTO). The LTO step oxidizes the Si-B layer and a thin layer of 

Si below to prevent propagation of crystal defects during subsequent drive cycle. The 

wafers were then taken out and etched again in 10% HF for 1 min.  

FTO Deposition- The p+n Si wafers were etched with 10% HF for 30 s and then placed on 

a hotplate preheated at 400 C. Fluorinated tin oxide(FTO) was deposited using a plastic 

spray bottle that created a fine mist of the precursor when pressed.312, 313 The solution 

consisted of 0.015 M Ammonium fluoride solution in DI water and 0.5 M Butyltin 

Trichloride solution in 200 proof ethanol. The spray solution was made by mixing 97% by 

volume of the Butyltin trichloride (Sigma-Aldrich) solution and 3% by volume of the 

ammonium fluoride solution. 30 cycles of spraying were done with 2-3 sprays per cycle. 

The wafers were rotated after 15 cycles during the deposition to ensure conformal coverage 

of FTO.  

TiO2 growth- Rutile TiO2 nanorod structures were grown on p+n Si/FTO wafer using a 

hydrothermal method.312 An aqueous solution of 0.05 M titanium n-butoxide and 6M HCl 
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was prepared and poured into a PTFE cell. The FTO coated p+n Si wafers were then placed 

in, at an angle supported by the cell wall. The cell was then placed within a hydrothermal 

autoclave reactor and subsequently in a muffle furnace preheated to 200 °C for 4 h. The 

reactor is taken out and cooled under running water for 15 min. The TiO2 coated wafers 

were then taken out of the PTFE cell, washed with DI water and annealed at 450 °C for 30 

min in air. 

Electrode for PEC measurement- After the p+n- Si/FTO/TiO2 tandem semiconductor 

wafers were prepared they were cleaved from the edges to eliminate shunting. Ga-In 

(99.99%Alfa-Aesar) eutectic was scratched with a diamond scribe on the exposed n-Si side 

of the wafer to make an ohmic contact. This side was then attached to a Cu-Sn wire with 

Ag paint (SPI-05001-AB). The active area on the TiO2 grown side was defined with epoxy 

(Loctite Hysol 9640) and the entire electrode was sealed to a glass tube using epoxy. 

5.2.2b OD-Cu Dark Cathode 

The fabrication method used to make OD-Cu is detailed in previous reports.95, 309  

Specifically, OD-Cu electrodes were prepared from Cu foil (0.127 mm thick, 99.9%, Alfa 

Aesar). The Cu foil was sonicated for 30 min in acetone and isopropanol for cleaning and 

then electropolished in 85% phosphoric acid (Macron Fine Chemicals) at 2.0 V vs. a 

secondary Cu foil for 5 min under vigorous stirring.  Both sides of the foil were 

electropolished.  The foil was then rinsed in 18 MΩ-cm water and dried under nitrogen.  

The Cu foil was subsequently placed in a muffle furnace under ambient air for thermal 

oxidation with a 1.5 h ramp up to 500 °C, 12 h at 500 °C, and then a 10 h ramp down to 

room temperature.  The CuOx foil was then placed in the electrochemical cell with ~1 cm2 
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exposed to the 0.1 M KOH electrolyte and reduced at -0.5 V vs. RHE for 45-60 min until 

the current density reached a steady-state value for 5 min at ≤ 5 mA cm-2. 

5.2.3 Photoelectrochemical Measurements 

Electrochemical CO reduction experiments were performed with a BioLogic SP-

200 potentiostat.  The electrochemical cell was made of PTFE plates and the design was 

adopted from Corson et al.314  Simulated sunlight at an intensity of 100 mW cm-2 at normal 

incidence to the working electrode was generated with a 300 W Xe lamp (Newport 6258) 

coupled with an AM1.5 global filter (Newport 81094) and calibrated in the electrolyte with 

a Si photodiode (Thorlabs FDS100-CAL).  For electrode fabrication of the OD-Cu and J-

V behavior where OD-Cu was the WE, a three-electrode experiment with the OD-Cu foil 

as the WE, Pt mesh as the CE separated from the cathode compartment by the membrane, 

and a Ag/AgCl (CH Instruments, Inc.) in 3.0 M KCl as the RE, which was placed in the 

catholyte compartment.15  For J-V behavior measured for the tandem electrode as the WE 

in a three-electrode set-up, the OD-Cu was used as the CE and a Ag/AgCl RE was placed 

in the anolyte compartment.  Each individual three-electrode J-V experiment was iR-

corrected immediately before scans were started.  For two-electrode experiments (J-V 

behavior and long-term electrolyses) the photoanode was the WE and the OD-Cu was the 

RE.  Potentials were calculated from the equation VRHE = VAg/AgCl + 0.210 + 0.059*pH.  The 

pH of the 0.1 M KOH electrolyte was 13. Following electrochemical reduction of the OD-

Cu, the catholyte was flushed and replaced with fresh 0.1 M KOH with a catholyte volume 

of 3.5 mL.  Prior to CORR measurements, the electrolyte in the cathode chamber was 

bubbled with CO (99.99%, Specialty Gases) at 5 sccm for 20 min and potentiostatic 
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electrochemical impedance spectroscopy (PEIS) was then used to measure the 

uncompensated cell resistance for the three-electrode measurements. Typical resistances 

for the cell ranged from 30 – 50 Ω. The potentiostat was then set to compensate for 85% 

of the uncompensated resistance during the electrochemical CORR experiment, which was 

conducted with a steady CO flow rate of 5 sccm through a bubbler with 4 - 5 μm pores in 

the catholyte at the base of the OD-Cu electrode. 

5.2.4 Product Quantification 

CO reduction products were measured by gas chromatography (GC, SRI 8610) and 

nuclear magnetic resonance (NMR) spectroscopy for the gas and liquid products, 

respectively. Both instruments were calibrated with standard gases or liquid solutions. The 

concentration of gaseous products was measured every 15 min.  The liquid products were 

collected at 0 min and the end time-point for each electrolysis experiment.  The moles of 

each liquid product were determined by taking the difference between the final and initial 

concentrations.  A 400 μL aliquot of the catholyte was mixed with 100 μL of D2O that 

contained ~100 ppm dimethyl sulfoxide (DMSO, ACS grade, Amresco).  The peak area of 

the DMSO internal standard was compared to the peak area of each liquid product in 1H-

NMR using a Varian 700 MHz cold-probe while using a water peak suppression technique. 

5.3 Results and Discussion 

The photoelectrochemical cell used to accomplish unassisted PEC CORR was 

based off the design built by Corson et al.  The difference between that PEC cell and the 

one used here is that the incident light is allowed to hit the photoanode as opposed to a 
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photocathode.  The top port of the anolyte chamber is enlarged to allow to ease the 

switching of electrodes between specific PEC cell set-ups (i.e. the calibration Si 

photodiode, a Pt mesh CE, and the photoanode).  The PEC cell set-up used for the long 

term unassisted photoelectrolysis experiments is denoted in Figure 5.1.  The photoanode 

generates a photocurrent in which alkaline OER occurs following the half-reaction: 

4OH- → O2 + 4e- + 2H2O, E° = 1.23 V vs. RHE 

The electrons photogenerated make their way to the OD-Cu dark cathode where the 

electrons reduce CO into hydrocarbon products, 1-propanol, acetate, and ethanol, in the 

half-reactions:95 

3CO + 12e- + 11H2O → C3H7OH + 12OH-, E° = 0.36 vs. RHE 

2CO + 4e- + 3H2O → C2H3O2
- + 3OH-, E° = 0.50 vs. RHE 

Figure 5.1 Diagram of photoelectrochemical setup. 
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2CO + 8e- + 7H2O → C2H5OH + 8OH-, E° = 0.18 vs. RHE 

1-propanol’s E° was calculated using an estimation method adopted by Calvinho et al.92  

These half-reactions that produce hydrocarbon products are in competition with HER: 

2H2O + 2e- → H2 + 2OH- 

 Three trials were so far successfully complete.  The first trial began at 1 sun but 

needed to be increased to two suns which concluded at 19 h, the second trial was done at 

two suns for 20 h, and the third trial was done at five suns for 4 h.  The J-V behavior of the 

PEC set-up before and after 20 h of electrolysis is displayed in Figure 5.2 from the 

Figure 5.2  J-V behavior of the PEC setup.  Three-electrode setup before (a) and after 20 h of electrolysis 

(c).  Two-electrode before (b) and after 20 h of electrolysis (d).  Black curves represent the dark current and 

red curves represent the photocurrent. 

a

)

b

)

d

)

c

)
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Figure 5.4  Trial 1:  Chronoamperogram and hydrogen FE data for 19 h unassisted photoelectrolysis.  At 

approximately 2 hours the solar lamp was adjusted to two sun. 

Figure 5.3  Overlap CVs of OD-Cu (black) and tandem (red). 
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experimental trial 2.  The J-V behavior expressed in Figure 5.2 is similar to the J-V behavior 

in trials 1 and 3.  The J-V behavior was measured in a two-electrode setup and the three-

electrode setup where the OD-Cu dark cathode operated as the CE or RE.  For the three-

electrode measurements, PEIS was conducted immediately beforehand and the cell was 

corrected 85% for uncompensated resistance.  The short-circuit current (isc) represents the 

photocurrent at 0.0 V vs. RHE, or the unbiased photocurrent.  The photocurrent generated 

in the three-electrode J-V curve (Figure 5.2a) reached isc = 0.25 mA cm-2.  This anodic 

current generated on the 0.60 cm-2 tandem photoanode would match the cathodic current 

present at the dark 1.00 cm-2 OD-Cu cathode.  This current would then be responsible for 

the CORR and HER occurring at that dark cathode in a three-electrode setup.  This is more 

clearly expressed in Figure 5.3 by overlapping the flipped J-V curve of the dark cathode 

(OD-Cu) with the J-V curve of the photoanode (from Figure 5.2a).  The point at which the 

currents cross is the operating point of the unassisted PEC device.  The photocurrent 

generated in the two-electrode J-V curve (Figure 5.2b) reaches isc = 0.40 mA cm-2.  This 

difference in isc may be due to the decrease in collective cell resistance in the two-electrode 

setup in contrast to the three-electrode setup.  This initial isc drops in the first hours of 

electrolysis (Figure 5.4), possibly due to some stabilization of the PEC setup occurring.  

This behavior is also seen in trials 2 and 3 (Figure 5.5), although in less time.  Due to this 

decrease in photocurrent (approaching less than 0.10 mA) the power of the solar lamp was 

increased to 2 suns for trial 1.  Experiments with a current of around 0.10 mA (0.17 mA 

cm-2 on the photoanode) would result in too high a chance of product quantification issues 

with the present experimental setup.  Such small currents would inevitably produce too 

small quantities of product and not pass the detection limits of the product quantification 
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methods used.  The remaining several hours of photoelectrolysis for trial 1 remained in an 

adequate steady-state operation.  The HER measured via GC maintained a general FE of 

~10%.  The liquid products measured at the end resulted in FE values of 0.73% for 1-

propanol, 0.66% for acetate, 0% for ethanol, and 2.22% for formate.  The second trial of 

Table 5.1  Faradaic Efficiencies and related data for the three trials of unassisted PEC CORR. 

unassisted photoelectrolysis (Figure 5.5a) was completed at a continuous 2 sun condition 

resulted in similar product distribution (Table 5.1).  The absence of ethanol as a reduction 

product at the end of these long-term electrolyses may mean that the ethanol is reacted 

further to propanol due to the small photobias applied allowing more residence time of the 

ethanol intermediate.  One more trial was completed at 5 suns (Figure 5.5b).  These trials 

resulted in only slightly different product distribution (Table 5.1). 

These pilot experimental trial results obtained so far in this work represent that 

unassisted PEC CORR has been achieved, yet there are aspects of this PEC experimental 

configuration that have to be addressed in order to obtain statistically significant results.  

First, the FE result for formate isn’t yet corrected for any non-electrochemical formate 

production since the control for this specific cell has not been conducted yet as was done 

Faradaic Efficiency (%) 

Trial Suns Jave Propanol Acetate Formate H2 Total 

1 1-2 0.25 0.73 0.36 2.22 10 13.31 

2 2 0.15 0.66 0.40 2.06 10 13.12 

3 5 0.30 0.98 1.19 1.45 49 52.62 
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in our lab’s previous CORR study.  This control experiment will be conducted in the PTFE 

cell constructed for these experiments.  Secondly, the measured product distributions are 

no where near a 100% total.  It is vital to account for ~100% of the electron destinations.  

There are a few factors that are contributing to this deficit.  The product quantification of 

gas products suffers from the low photocurrent generated.  The GC used in these 

experiments has certain product detection limits.  These product detection limits are 

dictated by the flow of the gas travelling through the dynamic mode component of the GC.  

Figure 5.5  Chronoamperograms for Trial 2 (a) at 2 suns.  Trial 3 (b) at 5 suns. 
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This fact brings into question the overall accuracy of the obtained H2 measurements since 

that are at or below this detection limit.  Also, any gaseous hydrocarbon product may be 

drowned out by the CO response on the FID.  The mass flow controller in charge of 

regulating the flow of CO itself has a lower limit of approximately 5 sccm.  Future 

experiments will be using a low flow mass flow controller (ranges of 0.1-7 sccm) that will 

greatly lower the product detection limit.  Also contributing to the unbalanced FE 

measurements is the fact that several of the reduction products may be travelling across the 

anion exchange membrane and are being oxidized on the anode.  This is generally not an 

issue in short-term experiments, but for long-term experiments this can mean that 

measuring all the CORR products becomes nearly impossible.  This concept of 

electromigration of reduction products over time is thoroughly discussed by Krodel et al.315  

The measurement for efficiency of this PEC device setup can be described by the 

solar-to-fuel (STF) efficiency.304  In the following table the product distribution FE for 

each trial has been used to calculate the corresponding STF values for each product via the 

following equation: 

𝜂𝑆𝑇𝐹 =
𝐹𝐸 · 𝐽𝑎𝑣𝑒 · 𝛥𝐸

𝑃𝑠𝑜𝑙𝑎𝑟

where Jave (mA cm-2) is the average current over the period of photoelectrolysis, E (V vs. 

RHE) is the potential difference corresponding to the Gibbs free-energy difference between 

the two half-reactions for the fuels being produced at the cathode and for water oxidation 

at the anode, and Psolar (mW cm-2) is the illumination power from the solar simulator.  The 

ηSTF (%) values calculated based of the results listed in Table 5.1 are listed in Table 5.2.  
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Table 5.2  Solar-to-fuel efficiency data for propanol and acetate based off of results listed in table 5.1. 

Jave (mA cm-2)/FE(%)/STF(%) 

Product E vs. RHE Trial 1 (0.2 W cm-2) Trial 2 (0.2 W cm-2) Trial 3 (0.5 W cm-2) 

Propanol 0.87 0.25/0.73/0.079 0.15/0.66/0.043 0.30/0.98/0.128 

Acetate 0.73 0.25/0.36/0.033 0.15/0.40/0.022 0.30/1.19/0.130 

5.4 Conclusion 

Although the STF values calculated from the experimental data is <1%, it shows 

that unassisted PEC CORR is possible.  To our knowledge this reaction has yet to be 

reported for an unassisted photoelectrochemical cell system.  So far, STF values of 0.128% 

for propanol and 0.130% for acetate at 5 suns via unassisted photoelectrochemical carbon 

monoxide reduction and represents a lower limit of the real production rates due to several 

experimental obstacles that need to be tackled.  It will be interesting to see what these 

results will be in a true artificial leaf device where the OD-Cu is directly contacted to the 

back of the photoanode.  Future work will be pursued to accomplish this goal as well as 

bias-assisted experiments to explore the product distribution at different photovoltages.  
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CHAPTER 6 

FUTURE PROJECTS AND SUMMARY 

6.1 Introduction 

In this chapter ongoing projects and future goals will be discussed along with the 

summary of the dissertation.  There exists a catalyst system that has relatively been under-

researched in the field of CO2 and CO reduction.  Several catalyst systems involving 

carbonaceous catalysts exist but one system, doped-nanodiamond, has only just begun to 

be explored as a CO2 catalyst.  The second ongoing project involves the use of the 

bimetallic alloy, CuNi, as a possible catalyst system to open the product space available in 

CO2 and CO reduction.  A third project that is proposed involves the use of photo-

differential electrochemical mass spectrometry (PDEMS) to study CO2RR and CORR 

reactions.  

6.2 Doped-nanodiamond 

Doped-nanodiamond (DND) catalysts consist of a material in which diamond has 

been synthetically produced and then purposefully doped with N or B.316-318  Several 

different applications of this material have been explored.319  In particular two recent 

studies that used DND as the catalyst for CO2 electroreduction showed great selectivity 

towards a certain product.  Nitrogen-DND was demonstrated to reach a 91% FE for acetate 
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at ~-0.9 V vs. RHE.320  Boron and Nitrogen co-doped nanodiamond catalyst demonstrated 

a selectivity of 93% FE for ethanol at -1.0 V vs. RHE by the same group.321  The activity 

for this reaction is theorized to stem from the heteroatom groups that are introduced into 

the nanodiamond’s structure.  Control over the density of these active sites tunes the 

catalyst’s selectivity.  These active sites involving the incorporation of N are pyridinic, 

pyrrolic, and graphitic groups (Figure 6.1).  The pyridinic and pyrrolic groups are more 

CO2 active and the graphitic group is more HER active.  Reduction of the graphitic groups 

by steam etching was able to increase the performance of a N-DND catalyst.322  More 

recently, a group who studied their DND material found a high selectivity for CO.  A 

selectivity of 82% for CO at -1.1 V vs. RHE was achieved.323 

The author has some limited preliminary results from DND catalysts that has been 

fabricated here at University of Louisville by Alex Bates and Hank Paxton.  In brief, the 

experimental setup entails a glass H-cell designed by the author, 0.1 M KHCO3 as the 

electrolyte, 10 sccm flow rate of CO2, and a potential of -1.05 V vs. RHE to screen for 

initial activity of CO2RR.  The results that were gathered are summarized in Table 6.1. 

Figure 6.1  Nanodiamond N groups.322 
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Table 6.1 DND catalyst preliminary results. 

Electrode Designation Type Product FE 

BS22 Boron-doped 9.61% Formic Acid 

BS58 Boron-doped 
20.95% Formic Acid, 9.70% Methanol, 

2.21% Acetaldehyde 

BNS13 Boron, Nitrogen co-doped 2.86% Acetone, 3.44% Acetic Acid 

These preliminary results may indicate some dependence on N-doping to produce 

C2 products.  B-doping seems to have more selectivity for formic acid.  The extent that B 

and N doping has on the catalytic activity of this DND system needs to be explored.  It is 

possible that cooperation of B and N heteroatom active sites may reveal unknown catalytic 

pathways for CO2RR and CORR.  Control of the density of B and N sites in the DND 

lattice and ratio of B to N will most likely influence the product distribution heavily.  

6.3 Bimetallic Catalysts:  CuNi 

In the field of CO2RR, it is theorized that there are two main mechanistic 

pathways.324  Once CO2 is reduced to CO, further reduction leads to hydrocarbon products 

such as methane, methanol, ethylene, ethane, ethanol, acetic acid, and propanol.  If CO2 is 

reduced to formic acid, it is thought that this is a dead-end product.  Recent discoveries 

have shown otherwise.  One study of major significance was able to provide details 

elucidating the mechanism of the formation of C3 and C4 reduction products from the 

intermediate of formic acid.92  In this study they were able to produce 2,3-furandiol at a 

very low overpotential of 0.0 V vs. RHE on Ni2P with 71% FE.  The reason for these new 

products is theorized to be due to the presence of hydrides on the catalyst surface that end 

up not reacting to make H2 but rather incorporate themselves into the reduction products.  

Metals like Ni are known to mainly be HER catalysts, but in different forms may prove to 
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be the key to opening an entirely new product space in the field of CO2RR.  Main group 

catalysts for CO2RR have been predicted to have excellent activity for formic acid.89   

6.4 Differential Photoelectrochemical Mass Spectroscopy 

6.4.1 Introduction 

PEC electrodes for CO2 reduction have typically been studied in static conditions 

that only give snapshots of the time-averaged behavior, providing limited insight into the 

nature of these reactions.  Studying PEC CO2RR behavior in operando via real-time 

product detection provides the opportunity to develop greater understanding of the 

fundamental processes by observing the evolution of product formation including certain 

intermediate species.  One technique that allows this real-time product detection is 

differential electrochemical mass spectrometry (DEMS).325, 326  DEMS provides real-time 

information on product identity and formation rates at variable electrochemical conditions, 

and the popularity of the method for characterization has been growing in recent years.  The 

primary goal of this project will be to innovate upon the DEMS approach by designing an 

effective system to study a photoelectrochemical CO2RR reaction in real time.  This 

differential photoelectrochemical mass spectrometry (DPEMS) will provide real-time 

product information based on differing photoelectrochemical conditions for the CO2RR, 

including pH, electrolyte, light intensity, and illumination wavelength. The DPEMS system 

will be able to simultaneously measure and correlate current density, overpotential, product 

identity, relative product concentrations, and faradaic efficiencies as well as the time-

dependent evolution of these properties. Moreover, the method is amenable to isotopic 

labelling studies to trace atoms through the reaction and unravel mechanistic routes. A 

simple version of illuminated DEMS was once reported to study semiconductor 
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photocorrosion, but integration of controlled illumination with quantitative product 

detection has been elusive.327  A system will be created for the rapid real-time 

characterization of PEC CO2RR which will be the cutting-edge characterization method 

for artificial photosynthesis research. In the development of this DPEMS system, the target 

CO2RR photocatalyst that will be pursued is a p-type copper oxide (p-Cu2O) 

semiconductor with incorporated copper oxide based CO2RR catalysts along with specific 

nanostructured morphologies known for active site specific activities and hydrogen 

evolution reaction (HER) suppression, HER being a reaction in constant competition with 

CO2RR.100, 328  Such p-Cu2O/Cu heterojunctions have not significantly been explored for 

CO2RR photocatalysis.329  These copper oxide catalysts contain advantageous features for 

Figure 6.2.  a) Cu nanoparticle with high density of grain boundaries.  b) Cu nanoparticle with no 

grain boundaries favoring HER.96 c) Cu nanoparticle with fragmented binding sites promoting C3 

selectivity.99 
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C2+ products such as high density grain boundaries96 and fragmented facets.99  The high 

density of grain boundaries greatly decreases the selectivity for the parasitic HER (Figure 

6.1a and 6.1b).  Such fragmented facets provide a morphology where C1 and C2 binding 

sites, Cu(111) and Cu(100) respectively, into close proximity to each other to allow the 

production of a C3 product (Figure 6.2c).  The most recent report for copper’s CO2RR 

catalyst activity has demonstrated a 80% FE at -0.4 V  vs. reversible hydrogen electrode 

(RHE) for C2+ products on a 3D dendritic Cu/CuO structure.330  Recent efforts in our lab 

have demonstrated a cascade reactor scheme to take a known Ag catalyst structure known 

for near 100% FE for CO and directly coupling the produced CO to a Cu based reactor 

consisting of an in-series two step reactor setup, where other attempts at a similar cascade 

style catalyst system have also been pursued.263, 306, 331  Because of this, specific carbon 

monoxide reduction reaction (CORR) studies have been pursued.95, 97, 98, 265  A modeling 

study also expressed that such a cascade system would inherently be more efficient.308  In 

a recent study from Jaramillo’s group, near full selectivity (>99% FE for CORR products 

at a low overpotential of -0.23 V vs RHE) was provided by greatly enhancing the 

electrochemically active surface area  on Cu by fabricating a nanoflower structure.100  This 

accomplishment of CORR at low overpotential can lead one to reason that we are close to 

unassisted PEC CORR, if not CO2RR PEC devices.  Desirable product selectivity and 

higher reaction rates at unassisted photovoltages is therefore an achievable goal for PEC 

CO2RR/CORR in a Cu-based system involving a p-Cu2O/Cu photocathode.  One major 

condition to test these systems is the specific spectrum of light that excites the catalyst in 

the PEC device.  Copper based photocatalysts have also been shown to have significant 

activity for photoelectrochemical CO2RR.332  p-Cu2O has been used as a semiconductor in 
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several applications.333  In previous PEC CO2RR p-Cu2O structures a 32.69% FE for 

ethylene was achieved on a p-Cu2O/nanobelt Cu photocathode.334  Recently gold 

nanoparticles have shown controllable product selectivity depending on blue or red light 

excitation, selectively exciting Au’s plasmon band.335  Also, the same group found 

significant improvement to selectivity with the aid of an ionic liquid, which led to the 

formation of propane from Au, known mainly to produce CO, albeit at ~6% FE.336  This 

demonstrates a clear motivation to investigate semiconductor/catalyst heterojunctions 

involved in CO2RR photocatalysis and their performance under different light intensity and 

excitations.    Therefore, the core aim for this research is the investigation of a highly 

nanostructured p-Cu2O/Cu CO2RR photocathode that will be thoroughly understood via in 

operando techniques including the development of DPEMS by varying the following 

photoelectrochemical conditions: bias, illumination intensity, and illumination wavelength.   

6.4.2 Semiconductor/Cu Photocathode Fabrication 

The fabrication of the p-Cu2O/Cu photocathode will be performed alongside similar 

FTO/Cu, p-Si/Cu, and n+p-Si/Cu photocathodes.  Deposition of catalysts on p-Cu2O will 

be performed following literature methods,333 as well as the silicon based photocathodes.236  

Our lab has extensive experience manufacturing n+p-Si and p-Si electrodes and also 

manufacture our own n+p-Si material in house. These photoelectrodes will first be 

investigated by simple photoelectrochemistry to benchmark photoelectrode performance.  

Matching the current between a typical PEC setup and the DPEMS cell will be necessary 

to adequately perform experiments at the same illumination intensities based upon the use 

of a one sun intensity calibrated silicon photoelectrode.  Material characterization of these 
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photocathodes will be conducted with XPS, XRD, SEM, and TEM to ensure their quality 

and desired morphologies. 

6.4.3 DPEMS Experimental Setup 

DEMS provides real-time product analysis capable of correlating current density 

vs. voltage (JV) curves to volatile product formation rates.325, 326  Figure 6.3 shows the rapid 

DEMS-measured behavior compared directly to conventional static GC measurements. 

PEC CO2RR studies aim to characterize CO2RR activity with and without incident 

illumination.  Figure 6.4 shows an example from our previous work using conventional 

product analysis methods (i.e., NMR, GC) on a n+p-Si/Sn photocathode CO2RR system, 

demonstrating a ~400 mV photo-driven decrease in the overpotential.301  Using the 

envisioned DPEMS instrumentation, the data in Figure 6.3 could be generated on the order 

of minutes rather than days/weeks, with the added benefit of time-dependent information 

as a function of scan rate. It functions like a normal DEMS setup in that a porous PTFE 

membrane separates the working electrode from the high vacuum paths that lead to the 

mass spectrometer (MS).  The alteration in setup being that light is oriented into the system 

in a way to be incident upon the working electrode by the PTFE membrane encircling the 

Figure 6.3.  Comparison of conventional GC product 

quantification and DEMS results.324 



Figure 6.4.  FE for products produced on 

Sn-porous nanowires deposited on FTO 

without light and on n+p-Si with light.301 
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working electrode, allowing unimpeded incident light upon the electrode.  The light would 

enter the electrochemical cell via a quartz window fitting to make the cell airtight but still 

allow near 100% non-diffuse and collimated light to hit the working photoelectrode.  This 

will be difficult to achieve due to the cell geometry. The DPEMS schematic is illustrated 

in figure 6.5.  This design will have a fundamental limitation that a normal DEMS setup 

does not necessarily possess.  The distance the reactants and products need to travel from 

the entire working electrode (WE) surface will on average have longer lengths to travel to 

reach the PTFE membrane and be pervaporated into the vacuum.  Simple experiments 

varying the dimensions of the PTFE encirclement membrane will be tested for optimum 

detection conditions where this mass transfer issue is minimized.  Verifications of these 

optimum conditions will be performed by Ag based HER and CO2RR reaction conditions 

with known outcomes, followed by p-Si photocathodes to benchmark photocatalytic 

methods.  The dimensions of this PTFE membrane will depend on the area of the working 

photoelectrode.  Measures will be taken to ensure the WE area is as large as possible to 

increase the detection sensitivity of the cell.  Another component of the DPEMS cell that 

will need to be optimized is the volume and shape of the electrolyte chamber.  The fluid 

dynamics of the electrolyte cycling through the cell may need to be modulated via precision 

peristaltic pumps to prevent any unwanted light diffraction.  The distance and position of 

the reference electrode (RE) will be paramount to the performance of the DPEMS cell.  

Decreasing the distance between the RE and WE will greatly reduce solution resistance, 

which would impede the available range of bias that could be applied to the cell.  

Calibration curves of the products detected in the MS will be conducted following and 

building upon the work accomplished by Clark and Bell for quantification of analytes and 
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deconvolution of mixed m/z product signals detected in DEMS.326  The next innovative 

facet to this cell design will be the incorporation of a separated counter electrode (CE) 

chamber.  The design of the CE chamber will include a “sheath” space for which anolyte 

may flow in and out of the chamber with ease while being separated from the CE back 

contact along the outside of the fiber optic light connection (Figure 6.5).  The CE material 

can either be a platinum mesh or flexible carbon affixed within the sheath chamber and the 

catholyte-facing portion of the sheath chamber will comprise of a ring of Selemion anion-

exchange membrane.   The anolyte fluid channels will be incorporated into the fiber optic 

connection along with the CE back contact wiring.  The DPEMS cell itself will be 

machined out of PEEK and incorporated into an existing mass spec system.  On top of this 

the fiber optic solar input setup will require certain implements for providing 

monochromatic, modulated, and chopped light.  
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Figure 6.5   

Above: Schematic of the DPEMS cell.   

Left:  Close up of the DPEMS WE 

environment. 



109 

6.5 Dissertation Summary 

This dissertation has summarized the progress the author has achieved in the efforts 

of electrochemical reduction of CO2 and CO among other electrochemical investigations.  

The significant original contributions to this field of literature that were presented will aid 

in the efforts of other research endeavors in years to come.  In chapter two, several co-

authored works were presented and the importance of measuring faradaic efficiency, 

current density, and overpotential in order to understand catalytic activity is demonstrated.  

In chapter three, the author established the importance of accurate product quantification 

and identification methods by assessing the possible contaminants from the membrane 

component of the typical electrochemical cell utilized in this field.  In chapter four, the 

author demonstrated the control over product selectivity of CORR by pulsing the 

electrochemical bias showing C1 products are produced at higher pulse frequencies.  In 

chapter five, the efforts towards unassisted PEC CORR were detailed.  In this concluding 

chapter future directions of research involving the development of DPEMS 

instrumentation, a CuNi bimetallic catalyst system, and a DND catalyst system were 

discussed.  

This dissertation has demonstrated the importance of appropriate techniques for the 

study of CO2RR and CORR catalyst system as well as control over these catalyst systems.  

Further understanding of the catalyst systems for CO2RR and CORR in the effort to 

efficiently produce value-added products will aid in improving our economies relationship 

to the global carbon cycle.  
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Chapter 3 Supplementary Information 

Membrane Soak NMR Spectra 

The following figures show example 1H-NMR spectra from untreated membrane 

soaks in 0.1 M KOH. The contaminants present are listed in the caption of each 

figure. DMSO standard is located at δ = 2.55 ppm.  Acetone (δ = 2.06 ppm), 

methanol (δ = 3.20 ppm), and stearic acid (δ = 1.07 ppm) may be present as well in 

small quantities. Water-saturated baseline correction leads to the observed data from 

δ = 4.2 – 5.4. 

Selemion AMV 

Figure A.2. Example 1H-NMR spectra for an aliquot of 0.1 M KOH after soaking untreated Selemion 

AMV for 2 h. There were few contaminants. Stearic acid at δ = 1.07 ppm was present in all samples, even 

blank controls. 
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Sustainion 

Figure A.2. Example 1H-NMR spectra for an aliquot of 0.1 M KOH after soaking untreated Sustainion 

for 2 h. The primary contaminant was ethylene glycol at δ = 3.52 ppm. Stearic acid at δ = 1.07 ppm 

was present in all samples, even blank controls. 
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FumaSep FAPQ-375-PP 

Figure A.3. Example 1H-NMR spectra for an aliquot of 0.1 M KOH after soaking untreated 

FumaSep FAPQ-375-PP for 2 h. The primary contaminant was polyethylene glycol (PEG) at δ = 

3.60 ppm. Stearic acid at δ = 1.07 ppm was present in all samples, even blank controls. 
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AMI-7001 

Figure A.4. Example 1H-NMR spectra for an aliquot of 0.1 M KOH after soaking untreated AMI-

7001 for 2 h. The primary contaminant was N-methyl-2-pyrollidinone (NMP) with peaks in 

chemical shift at δ = 1.87, 2.22, 2.65, and 3.30 ppm. 
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CMI-7000 

Figure. A.5. Example 1H-NMR spectra for an aliquot of 0.1 M KOH after soaking untreated 

CMI-7000 for 2 h. The primary contaminant was N-methyl-2-pyrollidinone (NMP) with peaks in 

chemical shift at δ = 1.87, 2.22, 2.65, and 3.30 ppm. 
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Nafion-117 

Figure A.6. Example 1H-NMR spectra for an aliquot of 0.1 M KOH after soaking untreated 

Nafion-117 for 2 h. 
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Nafion-115 

Figure A.7. Example 1H-NMR spectra for an aliquot of 0.1 M KOH after soaking untreated Nafion-

115 for 2 h. Stearic acid at δ = 1.07 ppm was present in all samples, even blank controls.
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Chapter 4 Supplementary Information 

Electrochemical effect on formate production during CORR 

As described in the main manuscript, some researchers have attributed the presence 

of formate (HCOO-) during CO reduction to a purely non-electrochemical route 

involving hydration of the CO in alkaline electrolyte. As shown in Fig. A.9, 

however, the concentration of formate displayed a clear dependence on the applied 

potential during reactions, as well as the pulsed-bias condition as shown in Fig. 4.4. 

It has been known for many decades that carbon monoxide can combine with 

hydroxide to form formate, which is kinetically increased at higher temperature. The 

formate production observed in the absence of applied bias or faradaic current is 

attributed to slow rates of this reaction at room temperature: 

𝐶𝑂 + 𝑂𝐻− → 𝐻𝐶𝑂𝑂− (1) 

Under alkaline conditions such as the 0.1 M KOH electrolyte used herein, the 

hydrogen evolution reaction (HER) proceeds by: 

Fig. A.8. Example current density vs. potential behavior 

for OD-Cu in CO-saturated aqueous 0.1 M KOH before 
(black) and after (red) a 60 min measurement at -0.25 V vs. 

RHE without pulsed bias. 

Fig. A.9. Production of formate detected with an OD-Cu electrode after 

potentiostatic operation for 60 min under active CO bubbling in 0.1 M 
KOH. The No Catalyst condition refers to the formate detected in the 
electrolyte in the absence of an OD-Cu electrode.  
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2𝐻2𝑂 + 2𝑒− → 2𝑂𝐻− + 𝐻2 (2) 

We thus propose that the observed dependence of the formate production on applied 

bias is attributable to locally generated OH- at the surface of the electrode in the 

vicinity of adsorbed CO, leading to faster rates of reaction (1). The overall reaction 

is: 

2𝐻2𝑂 + 2𝐶𝑂 + 2𝑒− → 2𝐻𝐶𝑂𝑂− + 𝐻2 (3) 

Additional data for CORR on OD-Cu without pulsed-bias 

Surface roughness effects due to pulsed-bias electrolysis 

The effect of the pulsed-bias conditions on the OD-Cu catalyst morphology was 

investigated. Representative SEM images of some of the catalyst surfaces after 1 h 

CO reduction measurements are shown in Fig. A.10, with more pulse-time-

dependent images in Figs. A.11-12. Although some additional nanoscopic 

roughness and surface bump formations appear to arise when the applied potential 

was pulsed rather than continuous, no conclusive trend in morphology with pulse 

time was immediately evident. 

For a more quantitative comparison of surface morphology, scan-dependent 

measurements were made of the surface roughness as determined by double-layer 

Table A.1. Data for CORR on OD-Cu without pulsed-bias, including applied potential (E), current density 

(J), and the measured product faradaic efficiencies (%). 

E (V vs. RHE) 
J 

(mA cm-2) 
Methane (%) Formate (%) 

Ethanol  

(%) 

Acetate 

(%) 
Propanol (%) Ethylene (%) 

Ethane  

(%) 
Hydrogen (%) 

-0.25 0.79 ± 0.12 0 1.66 ± 0.28 6.41 ± 0.75 4.18 ± 0.51 0 0 0 48.5 ± 9.4 

-0.30 1.48 ± 0.32 0 1.25 ± 0.22 12.2 ± 1.7 5.12 ± 0.49 0.09 ± 0.02 0 0 43.1 ± 7.1 

-0.35 3.42 ± 0.39 3.14 ± 0.06 0.96 ± 0.21 20.7 ± 1.2 4.61 ± 0.60 0.35 ± 0.12 0 0 73.2 ± 4.9 

-0.40 5.91 ± 2.25 0 0.60 ± 0.24 6.34 ± 2.6 0.86 ± 0.34 0 4.73 ± 2.40 3.29 ± 1.19 84.3 ± 3.4 
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capacitance compared to the approximate capacitance of an atomically smooth Cu 

foil. Fig. A.13 shows data for an example double-layer capacitance measurement. 

Though quantitative, the accuracy of this measurement is limited. Significant 

variability arises from error inherent in the technique as well as variation in the initial 

OD-Cu oxide thickness, which subsequently affects the depth of the Cu 

nanostructures and corresponding roughness. Table A.2 shows the average 

measured capacitance and roughness values before and after 1 h pulsed-bias 

electrolysis measurements for a range of pulse times. Although no trend in 

roughness with pulse time is evident, all samples displayed an overall decrease in 

surface roughness after electrolysis ranging from 8 – 47%. Reduced surface 

roughness for OD-Cu over extended electrolysis has been previously reported. The 

reduced surface roughness is consistent with some Cu nanostructures breaking off 

during electrolysis and correlates to the gradual decrease in current density observed 

during a potentiostatic measurement. However, the lack of a clear pulse-time-

dependent effect on the roughness indicates that the product variability with pulse 

time is more strongly dependent on dynamic electrochemical and mass transport 

behavior than on in situ changes in surface area and catalyst sites. 
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Fig. A.10. SEM images of the OD-Cu surface nanostructure after a 1 h of electrolysis at (a) continuous 

potentiostatic conditions, and pulsed-bias conditions of (b) 25 s, (c) 1 s, and (d) 50 ms pulse times. The scale 

bar is 500 nm. 
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Fig. A.11. SEM images of the OD-Cu surface nanostructure after a 1 h electrolysis at pulsed-bias conditions 

of (a) 25 s, (b) 5 s, (c) 1 s, (d) 100 ms, (e) 50 ms, and (f) 10 ms. The scale bar is 1 μm. 

Fig. A.12. SEM images of the OD-Cu surface nanostructure after a 1 h electrolysis at pulsed-bias 

conditions of (a) 25 s, (b) 5 s, (c) 1 s, (d) 100 ms, (e) 50 ms, and (f) 10 ms. The scale bar is 10 μm. 
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Fig. A.13. Example data for scan-rate dependent measurement of double-layer capacitance, for 50 ms pulse 

time conditions. Current density vs. potential with varying scan rate (a) before and (b) after 1 h pulsed-bias 

electrolysis. (c) Current density vs. scan rate for the oxidative (top) and reductive (bottom) sweeps before and 

after electrolysis.  

Table A.2. Double-layer capacitance measurement data with varying pulse time, before and after 

1 h electrolysis measurements. 

Pulse Time 10 ms 50 ms 100 ms 1 s 5 s 25 s 

Before After Before After Before After Before After Before After Before After 

Reductive 

(mF) 
39.3 22.0 28.3 20.1 20.1 11.8 36.0 27.0 44.6 32.7 43.3 21.4 

Oxidative 

(mF) 
48.7 27.1 25.0 29.0 24.1 12.6 34.5 24.4 44.4 33.9 40.7 22.8 

Average 

(mF) 44.0 24.6 26.7 24.6 22.1 12.2 35.2 25.7 44.5 33.3 42.0 22.1 

Roughness 

Factor 
1517 848 919 847 762 419 1215 886 1536 1146 1449 762 
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Additional data for CORR on OD-Cu with pulsed-bias 

Table A.3. Product distribution by charge (%) data for CORR on 

OD-Cu in 0.1 M KOH with pulsed-bias conditions between Ec = 

-0.35 V vs. RHE and Er = 0 V vs. RHE. 

Pulse (s) 

Ethanol 

(%) 

Acetate 

(%) 

Methane 

(%) 

Formate 

(%) 

Hydrogen 

(%) 

0.01 0.06 2.05 57.78 10.69 29.32 

0.05 7.71 3.40 34.09 22.41 32.39 

0.1 0.74 4.02 34.54 31.43 29.26 

1 1.88 0.61 15.40 5.54 75.60 

5 1.38 0.74 5.79 1.41 90.44 

25 2.18 0.51 4.15 0.73 92.43 

50 1.94 0.89 8.10 0.93 88.14 

1800 3.00 1.04 8.88 0.08 87 

No pulse 19.7 4.61 3.14 0.96 68.20 

Fig. A.14. The total charge passed only into the detected CORR products. The “PS” 

condition refers to a potentiostatic measurement at -0.35 V vs. RHE for 60 min. 
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