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ABSTRACT 

FUNCTIONALIZING NANOPARTICLES WITH CAFA PROTEIN 

TO TARGET BAR PEPTIDE FOR ORAL DELIVERY 

APPLICATIONS 

May 1, 2020 

Background: Porphyromonas gingivalis adherence to Streptococcus gordonii 

may be important for P. gingivalis colonization in the oral cavity. Nanoparticles 

encapsulating synthetic peptide BAR (BAR-NPs) inhibit P. gingivalis adherence 

more potently than free BAR. However, BAR-NPs would exhibit low retention 

in an open flow environment. 

Hypothesis: Targeting BAR-NPs to the streptococcal surface using CafA protein 

will enhance their efficacy. 

Methods: CafA-modified NPs encapsulating BAR were synthesized using double 

emulsion approach. Surface binding and retention, and release kinetics of BAR 
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from CafA-modified NPs was assessed. Functional inhibition assays were 

performed using dual a species biofilm. 

Results: CafA-modified NPs demonstrated specificity of adhesion, remained 

bound to S. gordonii surfaces and released inhibitory concentrations of BAR for 

over 8hr. CafA-modified NPs inhibited P. gingivalis adherence to S. gordonii 

potently for over 8hr. 

Conclusions: CafA-modified NPs represent a delivery vehicle that targets BAR 

to preferred niches of P. gingivalis in the oral cavity. 



 

vi 
 

TABLE OF CONTENTS 

                                                                                                      PAGE 

ACKNOWLEDGEMENTS ................................................................ iii 

ABSTRACT ....................................................................................... iv 

CHAPTER 1 ........................................................................................ 1 

INTRODUCTION ............................................................................... 1 

CHAPTER 2 ...................................................................................... 35 

HYPOTHESIS AND SPECIFIC AIMS ............................................ 35 

CHAPTER 3 ...................................................................................... 38 

MATERIAL AND METHODS ......................................................... 38 

Peptide Synthesis ............................................................................ 38 

Growth of Bacterial Strains ............................................................ 38 

CAfA expression and purification .................................................. 39 



vii 

Conjugation of CafA protein with Palmitic acid (CafA-Palmitate 

Synthesis) ........................................................................................ 40 

Synthesis of CafA-modified nanoparticles ..................................... 41 

Synthesis of CafA-modified NPs encapsulating C6/F-BAR/BAR . 41 

NP Characterization: NP morphology and size .............................. 44 

Quantification of Surface Density of CafA .................................... 44 

Loading and release kinetics of BAR peptide from unmodified and 

CafA-modified NPs ........................................................................ 44 

Determination of functionality of surface modification ................. 45 

CafA-modified NP-mediated inhibition of P. gingivalis adherence 

to streptococci ................................................................................. 48 

CHAPTER 4 ...................................................................................... 51 

RESULTS .......................................................................................... 51 

NP Characterization: NP morphology and size .............................. 51 

Quantification of ligand surface density ......................................... 53 



viii 

Loading and release kinetics of BAR peptide from unmodified and 

CafA-modified NPs ........................................................................ 55 

Determination of functionality of surface modification ................. 57 

Duration of retention of CafA-modified C6 NPs ........................ 57 

Specificity of adhesion of CafA-modified C6 NPs ..................... 59 

CafA-modified NP-mediated Inhibition of P. gingivalis adherence 

to streptococci ................................................................................. 61 

CHAPTER 5 ...................................................................................... 64 

DISCUSSION .................................................................................... 64 

REFERENCES .................................................................................. 69 

CURRICULUM VITAE .................................................................... 77 



ix 

LIST OF FIGURES 

FIGURE                                                                                                     PAGE 

Figure 1: Schematic of plaque development and anti-biofilm strategies………5 

Figure 2: Schematic of mechanism of quorum sensing in bacteria...................11          

Figure 3: Overview of drug delivery systems ………...……………………...16 

Figure 4: Considerations for development of actively targeted nanoparticles..22 

Figure 5: Schematic of P. gingivalis — S. gordonii interaction……...……….26 

Figure 6: Schematic of P. gingivalis — S. gordii signalling mechanism.....30,31 

Figure 7: Schematic of type 2 fimbriae of A. oris…...………………………..34 

Figure 8: Schematic representation of nanoparticles and targeting strategy.....37 

Figure 9: Schematic representation of nanoparticle synthesis …………...…..43 

Figure 10: Schematic of duration of retention assay…………………...……..47 

Figure 11: Schematic of functional inhibition assay………………...………..50  

Figure 12: SEM images of unmodified and Caf-modified NPs………...…….52 

Figure 13: Quantification of surface ligands …………...…………………….54 



x 

Figure 14: Release kinetics of BAR peptide from unmodified and   

CafA-modified NPs…………………………………………...……………….56 

Figure 15: Duration of retention of CafA-modified NPs on S. gordonii cells..58 

Figure 16: Specificity of adhesion of CafA-modified NPs…………………...60 

Figure 17: Functional inhibition assay using dual species biofilm…………...62 



 

1 
 

CHAPTER 1 

INTRODUCTION 
 

Periodontitis is the chronic inflammation of tooth-supporting structures, which begins as 

gingivitis and progressively leads to the destruction of periodontal ligament and alveolar bone. 

From 2009 to 2012, 46% of adults (age > 30 years) in the United States, were diagnosed with 

periodontal diseases. Of these, 8.9% had advanced periodontitis. Domestically, over 14 billion 

dollars are spent annually towards the prevention and treatment of periodontal diseases [1]. 

Periodontal disease is the major cause of tooth loss after the age of 30 and has been 

associated with systemic diseases, such as cardiovascular diseases, type 2 diabetes mellitus, 

low birth weights, premature labor and osteoporosis [2]. Periodontitis is caused by the 

interplay of host susceptibility and changes in the normal microbiota of dental plaque  [3]. 

Role of biofilm in periodontal disease 

Periodontal disease is a biofilm-mediated infection. Biofilms consist of a consortium of 

organisms that are embedded in a matrix containing extracellular polymeric substances 

(EPS). As the bacterial colonies in the biofilm grow, the biofilm develops “emergent properties” 

which differ from those of organisms in the planktonic phase [4]. These properties protect the 

biofilm and render them resilient to minor environmental alterations. However, environmental 

alterations beyond a threshold could prompt competitive overgrowth of certain 

microorganisms, leading to dysbiosis and disease [5]. Gaining a thorough understanding of 

the mechanism of biofilm formation, its  properties, and disease etiology will aid in developing 

effective therapeutics for periodontal diseases.
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Formation of dental plaque 

Dental plaque is a highly complex biofilm consisting of a diverse bacterial community and their 

products [6]. It forms via a series of specific, sequential molecular interactions between 

bacteria and host surfaces that ultimately result in the development of a structurally and 

functionally organized heterogenous microbial community  [7]. 

Stages of plaque formation: 

(i) Initial Adhesion  

The formation of dental plaque begins with the developpment of  acquired pellicle on the tooth 

enamel. The acquired pellicle is a thin coating formed by the adsorption of proteins and other 

macromolecules from the saliva and gingival crevicular fluid on the tooth surface. It is 

comprised of proline-rich proteins (PRPs), albumin, sialic acid, alpha amylase, and 

glycoproteins, and provides substrates for attachment to early colonizing bacteria [8]. 

Streptococci constitute 80% of these primary colonizers [9, 10] and bind to components of the 

salivary pellicle via adhesins, e.g., antigen I/II protein family, amylase-binding adhesin (AbpA), 

and serine-rich repeat glycoproteins (Has, GspB) [8, 11, 12]. Actinomyces oris is another 

primary colonizer and its adherence to the PRPs and statherin of the salivary pellicle is 

mediated via type 1 fimbriae [13]. Initial adherence of the bacteria to the tooth surface is a 

crucial event in plaque development which prevents the organisms from being washed away 

by mechanical shearing forces of salivary fluid flow and tongue movement [14]. 

(ii) Bacterial Coaggregation and Biofilm Maturation  

After initial adherence, the plaque evolves to contain additional species of bacteria, primarily 

consisting of gram-negative rods. Biofilm formation and growth occurs by the adherence of 

secondary colonizers to already attached bacterial cells and their metabolic products [14, 15]. 
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Specific interspecies bacterial adhesion is termed coaggregation and leads to an increase in 

the biovolume and complexity of the biofilm [16]. Coaggregation can occur via direct cell-cell 

interactions mediated by reciprocal adhesin-receptor binding or via multivalent molecules 

such as mucin and glucans [14]. Bacterial coaggregation promotes microbial interactions by 

co-locating physiologically relevant organisms in the same milieu, thereby facilitating 

development of complex nutritional co-operation, gene transfer and cell-cell signalling [5]. In 

microbial communities, nutritional interdependence develops amongst the residing 

organisms, where the product of metabolism of one bacterial species becomes the food 

source for another, resulting in the development of food webs [4]. Furthermore, metabolic 

pathways drive the order of colonization, whereby different layers of the biofilm are associated 

with a specific metabolic pathway that results in a functionally-structured community [17]. The 

close proximity of the cells also facilitates horizontal gene transfer and increases the adaptive 

ability of the organisms to changing oral environment [18]. Moreover, cell-cell signalling 

enables bacterial cells to sense and adapt to various environmental stimuli and control the 

expression of virulence-regulating genes [5]. 

As the biofilm grows by bacterial coaagregation, the organisms induce the genetic program 

to promote biofilm formation which facilitates interbacterial agglutination by the formation of a 

slimy matrix. All microorganisms residing within biofilms are embedded in this matrix 

containing extracellular polymeric substances (EPS) [19]. The matrix allows the bacteria to 

adhere to each other and the colonizing surfaces, protects the bacteria from host defenses, 

enhances the mechanical stability of the biofilm, facilitates communication between bacterial 

species, and forms chemical/nutrient gradients that create microenvironments within the 

biofilm which vary widely in pH, oxygen and nutrient availability [20, 21]. Thus the matrix allows 

individual bacterial cells to behave as a cohesive multicellular unit, whose properties and 
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characteristics collectively differ from those of free-living bacteria. These “emergent 

properties” of the biofilms make them more conducive to survival in harsher environments [4, 

21]. 

(iii) Biofilm Dispersion  

Detachment of cells from the mature biofilm occurs by various processes, e.g., mechanical 

sloughing, enzymatic degradation of biofilm matrix, and downregulation of genes responsible 

for matrix production [15, 22]. The detached cells disperse and can initiate the formation of a 

new biofilm under favorable conditions [22] .  

These details surrounding the process of biofilm formation can  provide insights for developing 

novel, effective strategies to prevent their initial formation (prophylactic approach) and disrupt 

existing biofilms (therapeutic approach). Treating biofilm-mediated infections poses a special 

challenge due to the “emergent properties” of the biofilm and the resulting biofilm-mediated 

resistance [22, 23]. The effectiveness of antibiotics in treating biofilm-mediated infections is 

limited due to: (i) compromised penetration of antibiotics through the polysaccharide matrix of 

the biofilm [24], (ii) increased drug resistance of bacteria in the biofilm versus planktonic state 

[23], and (iii) reduced/altered cellular activity of bacteria within the biofilm [25]. Some novel 

anti-biofilm strategies to prevent, weaken or disrupt biofilm formation are illustrated  in Figure 

1B.
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 (A) 

(B) 

Figure 1: (A) Schematic representation of plaque development.  (B) Schematic representation 

of anti-biofilm strategies (i) coating tooth surfaces with materials to limit initial bacterial 

adherence and prevent biofilm formation, (ii) interrupting bacterial communication to inhibit 

development of biofilm properties such as expression of virulence factors, And (iii) disrupting 

pre-established mature biofilms using “anti-biofilm” peptides and matrix degrading enzymes 

leading  to biofilm destabilization. 

Image adapted from: Reffuveille, F., et al., Staphylococcus aureus Biofilms and their Impact on the 

Medical Field. 2017.
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Etiology of periodontal diseases 

The oral cavity harbors more than 700 bacterial species, some of which have been implicated 

in the initiation and progression of periodontal diseases. In a study done by Socransky et al., 

it was observed that periodontal diseases are caused by a consortium of organisms rather 

than individual pathogens. Moreover, the composition of the microbiome at healthy and 

diseased periodontal sites varied drastically and certain microbes were repeatedly found 

clustered together at diseased and healthy sites. Based on these findings, five microbial 

complexes were defined. Of these, the red complex, which appears later in biofilm 

development, and comprises three species, Tannerella forsythia, P. 

gingivalis and Treponema denticola, has been considered to be the most pathogenic 

microbial complex [26-28].  

 

In recent times, metatranscriptome analysis of dental biofilms from sites with active 

periodontal disease have found that in addition to periodontal pathogens such as Tannerella 

forsythia and P. gingivalis, organisms such as Veillonella parvula, Pseudomonas fluorescens 

and various streptococci are highly active in transcribing putative virulence factors [29]. These 

findings have provided evidence for the role of the entire community and not just a few 

pathogens in causing the disease.  

 

Our current understanding of periodontal disease is based on the Polymicrobial Synergy and 

Dysbiosis model, which proposes that periodontitis is caused by the dysbiosis of the host 

microbiome, rather than an exogenous pathogen [3]. P. gingivalis has been shown to play a 

key role in inducing dysbiosis by modulating the innate host responses and elevating the 

virulence of the microbiome by altering gene expression via interspecies signalling [3, 30]. 
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One of the proposed ways in which P. gingivalis modulates host immunity is by initiating 

C5aR1-TLR2 crosstalk to subvert immune response and promote inflammation [31, 32]. 

P. gingivalis also suppresses the expression of IL-8 and Th1 chemokines which aid in the 

recruitment of neutrophils. Transient delays in neutrophil recruitment facilitate initial 

colonization and allow an increase in the overall microbial load [33]. Uncontrolled bacterial 

growth disrupts tissue homeostasis and triggers a robust inflammatory response causing 

tissue breakdown [34]. Under these circumstances, bacterial species that thrive well in an 

inflammatory environment may outcompete those that do not, resulting in a shift in the host 

microbiome towards a disease-causing microbiota [3]. Subsequent tissue breakdown yields 

nutrients (e.g., degraded collagen and heme compounds) which promote the growth of 

subgingival proteolytic and asaccharolytic bacteria. The gene expression of the microbial 

community is altered such that genes associated with proteolysis and LPS synthesis are 

upregulated [35-37], which in turn leads to more inflammation. The dysbiosis-inflammation 

interplay generates a vicious cycle that drives periodontitis [35, 38, 39].   

In summary, P. gingivalis may exert a community-wide effect in oral biofilms. It modulates the 

host immune response to facilitate an overall increase in bacterial load, along with a shift in 

microbial composition to a more disruptive microbial community. The altered microbiota 

triggers an uncontrolled inflammatory host response leading to periodontal tissue destruction. 

P. gingivalis also alters the gene expression of the microbiome [40]. Thus, P. gingivalis plays 

a key role in promoting dysbiosis and elevating the virulence of the host microbiome.  
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Treatment of periodontal diseases 

The conventional treatment of periodontal diseases involves the mechanical removal of 

plaque/calculus by scaling and root planning, along with the use of antibiotics, administered 

by systemic or local routes, as adjuncts to prevent its reoccurrence [41-44]. Systemically 

delivered antibiotics reach the deep periodontal pockets, which are not amenable to 

professional cleaning, via serum, but require patient compliance and must be administered at 

a higher dose to be effective [45]. However, chronic, indiscriminate use of antibiotics in the 

treatment of periodontal disease may lead to adverse side effects such as toxicity, allergies, 

alteration of gut microflora and increased antimicrobial resistance [46]. Moreover, antibiotic 

effectiveness in periodontal treatment is limited due to biofilm-mediated resistance and the 

prevalence of resistant pathogens. In a recent study, 25.49%, 23.52% and 21.56% of 

P. gingivalis isolates from patients with periodontitis were found to be resistant to amoxicillin, 

clindamycin and metronidazole, respectively [47].  

Organisms such as P. gingivalis can also evade host immune surveillance by residing and 

multiplying within gingival epithelial cells and preventing host cell apoptosis posing a special 

challenge in the treatment of periodontitis [48, 49]. At disease sites, P. gingivalis have been 

found to reside within all the layers of the epithelial tissue and in the connective tissue [50]. 

Commonly used antibiotics such as metronidazole do not readily cross the plasma membrane 

of cells and therefore are inefficient at killing intracellular organisms. In many cases, after the 

cessation of antibiotic therapy, these intracellular organisms recolonize periodontal tissue and 

cause recalcitrant disease. These findings underscore the importance of developing 

innovative, antimicrobial agents for targeting oral pathogens.  
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Why target P. gingivalis? 

A  longitudinal metatranscriptomic analysis of microbiota from stable to disease-progressing 

sites showed that only P. gingivalis expressed virulence factors at healthy sites, whereas the 

virulence of T. denticola and T. forsythia was upregulated after tissue breakdown [29]. This 

suggests that of all the red complex organisms, P. gingivalis likely initiates dysbiosis at healthy 

sites and other organisms contribute to the acceleration of disease process after homeostasis 

has already been disrupted [30]. Thus, although P. gingivalis is not essential for periodontal 

diseases, it is an important risk factor in periodontal diseases [30].  

Studies have also shown that antibody levels to P. gingivalis are consistently higher in patients 

diagnosed with adult periodontitis [51, 52]. These findings, combined with the role of P. 

gingivalis in inducing host dysbiosis and modulating immunity, makes targeting P. gingivalis 

an effective strategy for developing novel therapies for the prevention and treatment of 

periodontal diseases. 

Current novel treatment strategies targeting P. gingivalis 

• Quorum sensing inhibitors (QSI)

Bacteria in biofilms produce signalling molecules called autoinducers (AI) to communicate

with each other. As the density of the bacteria increases, the concentration of AI also

increases. By sensing the concentration of AI in the environment, bacteria gauge their

population density, and when the density of the population reaches a certain threshold, it

triggers gene expression.. This mechanism of intercellular signalling is known as quorum

sensing (QS) (Figure 2).
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Differential gene expression in response to quorum sensing allows bacteria to modulate their 

phenotypes and behavioral activities when growing in biofilms.  At low densities, the bacteria 

behave as solitary organisms; however, at high densities they develop beneficial traits that 

facilitate their survival at a community-level. Quorum sensing-dependent activities include 

biofilm development, expression of virulence factors and bioluminescence [53]. For P. 

gingivalis specifically, the LuxS/AI-2 signalling system is used for quorum sensing and biofilm 

development [54, 55]. Therefore, inhibiting this signalling system can potentially weaken 

biofim formation and suppress the expression of the quorum controlled virulence genes [56]. 

QSI such as furanone compound [(5Z)-4-bromo-5-(bromomethylene)-2(5H)-furanone] and D-

ribose inhibit AI-2 and have been shown to inhibit P. gingivalis biofilm formation in vitro and 

mitigate bone loss in a murine model of periodontitis [57]. 
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           Figure 2: Schematic represention of the mechanism of quorum sensing in bacteria. 

           Image adapted from: Parray, J., et al., Quorum Sensing: Melody Beneath the Ground. 2018. p. 

118. Sankar Ganesh, P. and V. Ravishankar Rai, Alternative Strategies to Regulate Quorum 

Sensing and Biofilm Formation of Pathogenic Pseudomonas by Quorum Sensing Inhibitors of 

Diverse Origins, in Biotechnological Applications of Quorum Sensing Inhibitors, V.C. 
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• Naturally Derived Compounds

Plant and marine based compounds such as essential oils, capsaicin, chitosan (crustaceans),

andOligoG (oligosaccharide from brown algae alginate) that have the potential to inhibit P.

gingivalis biofilm formation are currently being investigated for therapeutic use [58]. Presently,

a thorough understanding of their precise mechanism of action and cytotoxic potential is

lacking, which precludes their use as therapeutic agents [58]. However, some are believed to

induce this effect by reducing P. gingivalis adherence to gingival epithelial cells, interfering

with proteolylic activity of gingipain and inhibiting cytokine secretion. Some naturally derived

compounds and their mechanism of action have been listed in Table 1 [59-61].

  Table 1: Mechanism of action of some naturally derived compounds. 

Naturally 

Derived 

Compound 

Mechanism of Action 

 A-type 

cranberry     

proanthocyanidin 

• Anti- P. gingivalis biofilm activity

• Anti-inflammatory (Inhibits IL8 & chemokine ligand 5 secretion)

• Reduces the adherence of P. gingivalis to oral epithelial cells

Lacinartin 

• Anti- P. gingivalis biofilm activity

• Reduces the adherence of P. gingivalis to oral epithelial cells

• Disrupts pre-formed biofilms

Prenylated 

flavonoids 
• Inhibits P. gingivalis biofilm

• Interferes with Rgp and Kgp gingipain activity
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• Antimicrobial Peptides (AMPs)

Antimicrobial peptides have been deemed as promising drug candidates since they are

conserved and therefore exhibit broad-spectrum activity. AMPs target negatively-charged

bacterial cell membranes and kill bacteria by membrane disruption or pore formation [62].

Synthetic AMPs can be engineered to be species-specific with the addition of a targeting

moiety [63, 64]. AMPs also have a lower tendency to induce resistance compared to

conventional antibiotics [64]. Some currently studied antimicrobial peptides are discussed

below.

§ Lactoferrin (LF) is an iron binding glycoprotein and plays an important role in innate immunity.

The lipopolysaccharide (LPS) found on the outer membrane of P. gingivalis is a crucial

virulence factor that mediates its biofilm formation. Lactoferrin binds to LPS and inhibits biofilm

formation. Additionally, P. gingivalis has an absolute requirement of iron for its growth and LF,

due to its ability to sequester iron, can inhibit its growth [65].

§ Nal- p-113 is a cationic AMP which exhibits bactericidal activity by perforating the

plasmalemma, resulting in cell death. Moreover, it is resistant to proteolytic degradation. In

vitro studies have shown that it is effective in eradicating P. gingivalis in the planktonic state

and inhibiting subsequent biofilm formation [66].

§ BAR peptide is a synthetic peptide derived from a  specific region of the streptococcal SspB

polypeptide (residues 1167 to 1193) and is comprised of the functional motifs VXXLL and

NITVK. BAR peptide blocks the interaction between P. gingivalis and S. gordonii and

therefore limits the colonization of P. gingivalis and has been shown to reduce virulence in

murine model of periodontitis [67].
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• Small molecules:

Owing to the high cost of peptide synthesis and the susceptibility of peptides to degradation

by proteases [68], small molecules with antimicrobial activity against P. gingivalis are being

researched for therapeutic potential. For example, BAR peptide consists of lysine residues

that are susceptible to Lys-gingipain expressed by P. gingivalis. 1,2,3-Triazole-based

compounds, formed by joining the synthetic mimics of the functional motifs of BAR peptide

(VXXLL and NITVK) by a click-reaction, have been found to be compact, stable and potent

inhibitors of P. gingivalis – S. gordonii biofilm formation [69, 70]. Of these compounds, PCP-

III-201 was found to inhibit P. gingivalis biofilm formation even in the presence of

F. nucleatum, to disrupt pre-established three-species biofilms, and to significantly reduce

alveolar bone loss in murine models of periodontitis [71].

Use of nanotechnology in the control of biofilm mediated infection 

In recent times, nanoparticles (NPs) have emerged as promising delivery vehicles to combat 

biofilm formation due to their unique nanoscale physicochemical properties [72]. Properties 

such as NP size, shape and surface charge help to facilitate or hinder penetration into biofilms 

via fluid channels. The self-diffusion coefficient of NPs decreases with the square of the NP 

radius [73]. For a constant volume, decreasing the size and increasing the aspect ratio 

enhances the efficacy of the NP [74]. Furthermore, while anionic and neutral quantum dots 

have been shown to have difficulty penetrating biofilms, cationic quantum dots have been 

found to widely distribute throughout biofilms. In addition, factors such as hydrophobicity can 

impact bacterial internalization or localization at the bacterial surface. As one example, 

cationic quantum dots with hydrophobic terminal groups are more readily internalized by the 

bacteria relative to hydrophilic quantum dots which remain in the EPS matrix of the biofilm 

[75]. Hence, manipulation of physical attributes such as size and shape, combined with 
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chemical characteristics of surface charge and hydrophobicity, can enhance NP penetration 

and alter their ability to be internalized by bacteria.  

Along with improved biofilm penetration and increased cellular uptake, another advantage of 

NPs is the reduced likelihood of resistance development since NPs use several mechanisms 

simultaneously to combat microbes [76]. For instance, chitosan nanoparticles have a positive 

charge and therefore can associate with negatively-charged bacterial cell walls, increase cell 

permeability and cause osmotic damage. Additionally, chitosan can bind to DNA in bacterial 

cells and inhibit mRNA transcription and protein translation. It may also decrease the activity 

of metalloproteins by chelating metals [77]. Therefore, multiple simultaneous genetic 

mutationions are required to occur in the same bacterial cell for resistance development. NPs 

may also be used to overcome existing bacterial resistance mechanisms such as permeability 

regulation, multidrug efflux pumps and target site mutations [78-80]. Figure 3 depicts some 

advantages of using nanosized carriers as drug delivery systems over traditional systematic 

and local routes. A more in-depth description of delivery vehicle options that can be used in 

oral delivery can be found in review papers by Zupancic, S., et al and Goyal, G., et al. 
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Figure 3: Overview of drug delivery systems.  

Image adapted from: Zupancic, S., et al., Contribution of Nanotechnology to Improved 

Treatment of Periodontal Disease. Curr Pharm Des, 2015. 21(22): p. 3257-71. 

 

 

• Systemic administration, e.g., tablets and capsules
• Advantages: Ease of administration, inexpensive.
• Disadvantages: High therapeutic dose, low concentration at target 
sites, distritution throughout the body, side-effects, resistance 
development, frequent dosing. 

• Local drug delivery systems, e.g., films and fibers
•Advantages: High concentration at target sites, less frequent dosing, 
lower dosing requirements, fewer side-effects, bypass first-pass 
effects.

•Disadvantages: Limited dose due to smaller area, need for removal 
(fibers), burst release (gels). 

• Nanocarrier drug delivery systems, e.g., nanoparticles 
and nanofibers

•Advantages: Improved drug stability, protection of drug/peptides, 
improved retention and bioadhesiveness, targeted delivery, high 
intracellular uptake. 

•Disadvantages: Unknown safety profile, complex preparation. 
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A wide variety of materials have been used to fabricate nanoparticle delivery vehicles for oral 

applications, which include metals and metal oxides, such as silver [81]; gold and copper [82, 

83]; lipids [84]; and polymers [85]. Metal and metal oxide particles have been used due to 

their inherent antimicrobial properties [86]; however, there are several concerns regarding the 

toxicity associated with their accumulation at target sites [87]. Biodegradable materials such 

are polymers have gained popularity in recent times due to their biocompatibility, reduced 

side-effects, diverse features (e.g., hydrophilicity, lipophilicity) and ease of modifying their 

physical properties by changing their chemical structure or by using polymer blends to 

optimize NP function [88, 89]. Owing to their ability to be internalized, polymeric NPs can be 

developed to address special challenges posed by intracellular dwelling organisms such as 

P. gingivalis that can cause recalcitrant disease. Polymersomes encapsulating metronidazole 

have been shown to penetrate through two-third of the epithelium in 24 hr and reduce 

intracellular P. gingivalis levels significantly relative to free drug, due to their ability to be 

internalized by the gingival epithelial cells [90]. Polymeric nanoparticle that repond to stimuli 

have been developed to provide more control over the release of the active agent and diminish 

undesirable side effects. These NPs demonstrate therapeutic selectivity by responding to 

stimuli such as shifts in pH, pressure, temperature and oxygen [91].  Horev et al. designed 

farnesol loaded pH-responsive polymeric nanoparticles to bind avidly to the pellicle and EPS 

of the biofilm, enhancing drug retention at target sites at physiologic pH. The nanoparticles 

were tuned to rapidly release the drug when the local pH became acidic, as would be observed 

in a cariogenic environment [92]. 

In addition to the aforementioned features, polymeric nanoparticles offer some special 

advantages such as the protection and stabilization of drugs/proteins, high drug loading 

capacity, controlled and sustained drug release, modifiable rate of polymer degradation and 

drug release. The rate of polmer degradation can be reduced with the use of hydrophobic 



 

 18 

polymers such as polylactic acid (PLA) and polycaprolactone (PCL) which decrease the 

diffusion of water, whereas, the use of hydrophilic polymer such as polyglycolic acid (PGA) 

demonstrates the opposite effect. Additionally, the size and surface characteristics of 

polymeric NPs can also be easily manipulated to promote penetration of NPs, increase 

residence time at target sites and enable site-specific targeting [93]. Lately, there has been a 

tremendous interest in developing targeted NPs to improve safety, biodistribution and efficacy 

of drugs. In vivo, targeting has been shown to increase accumulation and retention of NPs at  

target sites free drug  [94-97]. Moreover, localized release of encapsulated agent from the 

accumulated NPs at the target sites can enhance the potency of the drug relative to free drug  

[94-97]. 

 

Development of targeted nanoparticles  

Two basic strategies of active and passive targeting have been applied to design NPs that 

promote site-specific delivery of active agents. Passive targeting relies on the 

physicochemical properties of the NPs (i.e., size, surface charge, mucoadhesivity) and 

features of the disease causing agent/disease process (negative charge on bacterial surfaces, 

leakiness of tumor vasculature) [98]. Passive targeting strategies have involved integrating 

carboxymethyl cellulose (CMC) [99], polyacrylic acid (Carbopol) [100], polyethylene glycol 

(PEG) [101, 102], polyvinyl alcohol (PVA) [103] or polyvinyl pyrrolidone (PVP) [103, 104] on 

the surfaces of NPs, which has been shown to improve NP retention and accumulation at 

target sites. The nanoparticles act as drug depots at target sites and release the active agent 

at the desired sites in a controlled and sustained manner [105]. Chitosan has been widely 

used in oral applications, due to its inherent mucoadhesive properties [106].  

 

In comparison, active targeting relies on a biological interaction between ligands on the NP 

surface and target cell receptors. The use of specific targeting ligands has been shown to 
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increase NPs binding efficiency by more than two to four-fold at target sites, due to multivalent 

interactions [107-109]. Moreover, minimizing non-specific interactions between NPs and non-

target cells helps to reduce indiscriminate distribution of active agents at non-target sites and 

promotes localized delivery to target sites, enhancing NP efficacy [110, 111].  

Polymeric nanoparticles and treatment of periodontal diseases 

Both passively and actively targeted NPs have been developed for use in the treatment of 

periodontal disease.  

Passively targeted NPs 

Chitosan NPs have been extensively used as passively targeted NPs due to their 

mucoadhesive properties. NPs formulated using thiolated chitosan (TCS)-poly (methacrylic 

acid) (PMAA) (TCS-PMAA) encapsulating metronidazole benzoate (MET) have been shown 

to exhibit high mucoadhesiveness due to water uptake from the mucosal tissue by adsorption, 

swelling and capillary effect, leading to stronger adhesion. These NPs also demonstrated 

sustained release of MET over 24 hr and improved its oral availability at target sites [112]. In 

another study, PLGA-lovastatin-chitosan-tetracycline nanoparticles were found to exhibit 

potent antibacterial activity against A. actinomycetemcomitans and P. nigrescens in vitro. 

They also improved alkaline phosphatase activity leading to a significant increase in new bone 

formation in beagle dogs [113].   

Actively targeted NPs 

Actively targeted NPs involve modifying the surfaces of the NPs with biological ligands that 

promote specific interactions between the ligands on the NP surfaces and target cell 

receptors. Several biological ligands such as antibodies, aptamers, peptides and small 

molecules have been used to modify the surfaces of the NPs to improve their binding 

efficiency on target cells [94, 95]. Often, ligands are directed to exploit endogenous differences 

between normal and pathological tissues and to direct therapy to classical or diseased target 
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site markers. As one example in periodontitis, inflamed gingival epithelial cells express a 

higher level of the b1 integrin including a2b1, a3b1, a5b1 and a6b1, relative to normal epithelial 

cells. Surface modification of NPs with a peptide, RGD, which binds to the b1 integrin, helps 

to facilitate NP adherence and retention at periodontal disease sites for a prolonged duration. 

As such, minocycline-loaded poly(ethylene glycol)-poly(lactic acid) (PEG–PLA) NPs 

functionalized with RGD peptides demonstrated potent anti-periodontitis activity relative to 

non-targeted NPs and free minocycline [114]. Additionally, RGD-modified minocycline NPs 

delivered a higher localized concentration of minocycline to the gingiva and retained the 

effective concentration for a longer duration, relative to unmodified minocycline  NPs [114].   

While few studies have employed active targeting approaches for the treatment of periodontal 

diseases, previous work in our group sought to utilize the targeting capabilities of BAR peptide 

to improve NP targeting, and thereby enhance potency, via surface-modification. In our 

previous work, we developed PLGA nanoparticles functionalized with a synthetic peptide 

(BAR) (IC50=0.2 µM), and showed that BAR-modified NPs are more efficacious and inhibit 

P.gingivalis adherence to S. gordonii more potently relative to free BAR (IC50=1.3 µM)  in vitro. 

In murine models of periodontitis, BAR-modified NPs reduced alveolar bone loss and 

promoted an anti-inflammatory response by decreasing the expression of IL-17, a pro-

inflammatory cytokine [115].  

Considerations for developing actively targeted nanoparticles 

Although active targeting can enhance NP efficacy by improving binding efficiency to target 

cell receptors, increasing NP residence time at target sites and promoting the localized 

delivery of active agents, several factors must be considered in the design of optimally 

functioning actively-targeted nanocarriers. Generally, increasing the surface ligand density 

improves the receptor binding avidity of surface-modified NPs by promoting multivalent 
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interactions. However, several studies have found that NPs with an intermediate ligand 

density are more efficacious and exhibit higher binding relative to higher ligand density NPs  

[116-118]. This may be due to steric hindrance that affects receptor accessibility (Figure 4A); 

increased size of NPs following surface modification, which limits NP diffusion to receptors at 

target sites; and improper ligand orientation, with high packing density that interferes with 

ligand functionality [105, 119]. It has also been found that the addition of surface ligands 

improves binding efficiency only if the receptors are spaced closely enough together to allow 

for multiple ligands on the same NP to simultaneously bind to several target cell receptors 

(Figure 4B) [119]. Furthermore, receptor clustering due to multiple receptor binding on the 

target cell could result in cell activation, proliferation and other adverse effects [105]. 

Moreover, surface modification with target ligands may impede the release of the encapsulant. 

Slower release rates may result in lower available concentrations of the active agent at the 

target sites and reduced effectiveness of the surface-modified NPs [107]. Therefore, while 

designing NPs for optimal function, the addition of ligands to enhance binding efficiency must 

be weighed against its impact on key parameters including encapsulation efficiency, release 

kinetics of the encapsulant, and intracellular signalling [107].  

 

 

 

 

 

 

 

 

 



22 

Figure 4: Considerations for developing actively targeted nanoparticles. (A) High ligand 

density may not always improve NP binding efficiency. One reason may be limited 

accessibility to receptors on the target cell. (B) Binding efficiency improves only when multiple 

ligands on the same NP bind to multiple receptors on target cell, promoting multivalent 

interactions. However, when receptors on target cell are placed further apart and do not allow 

for multiple ligands on the same NP to bind to them simultaneously, addition of ligands does 

not improve NP binding efficiency. Figure not drawn to scale. 

(B) 

Cell 

NP

Cell 

NP
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BAR peptide 

Oral biofilm formation occurs via sequential, species-specific bacterial coaggregation. 

One of the bacteria involved in this coaggregation is P. gingivalis, a gram-negative, 

assacharolytic, obligatory anaerobe that resides mainly in the subgingival sulcus [120]. 

However, the subgingival colonization of P. gingivalis is likely to occur only after its initial 

colonization within the supragingival biofilm. The initial supragingival colonization of P. 

gingivalis is mediated through interactions with certain species of oral streptococci and/or 

Fusobacterium nucleatum that provide physiologic support to facilitate its survival in the 

supragingival environment [121]. After its supragingival colonization, P. gingivalis disperse 

and colonize in their preferred niches of the anaerobic subgingival sulcus [120]. Given the 

downstream events initiated by P. gingivalis binding, these initial supragingival interspecies 

interactions present viable targets for early therapeutic intervention to limit P. gingivalis 

colonization.  

One of the primary organisms that promotes the supragingival colonization of P. gingivalis is 

S. gordonii. Adherence of P. gingivalis to S. gordonii is a multimodal protein-protein interaction 

that involves both the short and long fimbriae of P. gingivalis [122]. FimA, the structural subunit 

of the major fimbriae, interacts with cell surface glyceraldehyde 3-phosphate dehydrogenase 

of S. gordonii [123, 124], while Mfa1, the structural subunit of the minor fimbriae, interacts with 

discrete domains of the streptococcal cell surface protein SspB of the antigen I/II family [125]. 

The Mfa-SspB interaction is the driving force that mediates interbacterial coaggregation and 

is essential for the development of P. gingivalis biofilms on a streptococcal substratum. SspB 

polypeptide is 1500 residues in length and consists of seven structural domains that are 

conserved in all antigen I/II polypeptides. A region encompassing residues 1167 to 1250 

promotes the adherence of SspB protein of S. gordonii to P. gingivalis [126]. Although virtually 
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all oral streptococci express antigen I/II proteins, P. gingivalis selectively adheres to certain 

species such as S. oralis and S. gordonii but not S. mutans and S. intermedius. Further 

comparison of the adherence-promoting region of SspB protein of S. gordonii to the 

corresponding region of S. mutans antigen I/II showed that a protein determinant comprising 

of 1167 to 1193 was adequate to promote P. gingivalis adherence [127]. The recognition of 

this discrete structural motif of SspB (SspB Adherence Region), that is not conserved in SspA, 

a related antigen I/II protein of S. mutans, accounts for the species specificity of P. gingivalis 

adherence. More specifically, Asn 1182, Thr 1184 and Val1185  in SspB are not conserved in the 

SpaP sequence of S. mutans [127]. 

The synthetic analog of SspB adherence region (BAR), comprised of residues 1167 to 1193, 

also potently inhibits Mfa-SspB interaction. It consists of two structural motifs, VXXLL and 

NITVK (amino acids 1171 to 1180 and 1182 to 1186, respectively in the full-length antigen I/II 

protein of S. gordonii) which are essential for the interaction of the peptide with Mfa. 

Additonally, a motif EXXP, upstream of VXXLL, also contributes to the interaction. Analogs of 

BAR that lack the EXXP motif, exhibit a lower specific activity relative to BAR [67, 128]. In a 

study by Daep et al. it was found that P. gingivalis bound efficiently to BAR-like peptides with 

amino acid substitutions at both the non-conserved residues 1182 and 1185.  Substitution of 

positively-charged amino acids at position 1182 and hydrophobic residues at 1185, further 

enhanced the activity of the peptide, whereas substitution with acidic residues at position 1182 

reduced P. gingivalis adherence and no other amino acids were tolerated at position 1185. 

These findings suggest that the (i) properties and characteristics of the amino acids occupying 

these positions were more important, not the specific amino acids, and (ii) Mfa-SspB 

interaction is driven by both electrostatic and hydrophobic bonding [67]. Substitution of 

cysteine residues for Leu1167 and Leu1191, which yielded a cyclic structurally-constrained 
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peptide was found to be a more competitive inhibitor of P. gingivalis biofilm formation than 

BAR peptide, suggesting that the secondary structure and conformation of the peptide is 

crucial to the function of the peptide. Overall these results suggested that peptides or 

peptidomimetics with greater specific inhibitory activity than that of BAR can be synthesized. 

In vivo studies demonstrated that BAR peptide inhibits P. gingivalis – S. gordonii biofilm 

formation potently mitigates the bone loss in murine model of periodontitis [129]. 
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Figure 5: Schematic representation of P. gingivalis – S. gordonii interaction. P. gingivalis – S. 

gordonii adhesion is mediated via the interaction of major (fimA) and minor fimbriae (Mfa1) of 

P. gingivalis and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and discrete 

domains on SspA/B (Antigen I/II) adhesin of S. gordonii, respectively. The domains of SspA/B 

that interact with the minor fimbriae subunit, Mfa1, are highlighted on the right. These domains 

reside within the SspA/B adherence region (BAR) and are required to promote P. gingivalis 

adherence. P. gingivalis does not adhere to organisms lacking the BAR motif in the antigen 

I/II protein.  

Image: Wright, C.J., et al., Microbial interactions in building of communities. Mol Oral 

Microbiol, 2013. 28(2): p. 83-101. 
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P. gingivalis – S. gordonii Interaction (Figure 6A and B) 

P. gingivalis – S. gordonii aggregation is mutualistic and tightly regulated. P. gingivalis – S. 

gordonii aggregration is regulated by contact-based signalling and through the detection of 

diffusible mediators such as para-amino benzoic acid (pABA). These interactions initially 

facilitate the formation of heterotypic community and ultimately limit the development of 

excessive microcolonies to prevent states of depleted nutrition and exposure to elevated 

levels of oxygen [130, 131].  

The accumulation of P. gingivalis on a substratum of S. gordonii is facilitated by increased 

expression of mfa1 and luxS genes. Increased transcription of mfa1 results in increased 

expression of fimbrial protein, which in turn primes the organism for colonization, whereas, 

increased luxS transcription results in elevated levels of AI-2, a quorum signalling molecule 

that aids in P. gingivalis – S. gordonii community development [125, 132].   

In P. gingivalis, the expression of mfa1 is suppressed through a pathway involving Ltp1 (Low 

Molecular Weight Tyrosine Phosphatase), which dephosphorylates Ptk1 and indirectly 

upregulates the transcription of CdhR (Community Development and Hemin Regulator), a 

negative regulator of luxS and Mfa gene [130].  

Following contact with S. gordonii, a streptococci derived contact based signal propogating 

through Mfa elevates the levels of Ltp1 in P. gingivalis. Increased Ltp1 levels, indirectly results 

in increased CdhR levels, which in turn reduces the  transcription of luxS and mfa gene and 

consequently restrains P. gingivalis accumulation on S. gordonii. Furthermore, AI-2 is a 

negative regulator of CdhR. Therefore, reduced levels of luxS/AI-2 further increases cdhR 

expression which further constrains community development. Thus, reduction of AI-2 levels 
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compensates for the loss of contact based signalling due to the reduction of Mfa fimbrial 

expression and continues to restrain community development [130].  

CdhR is a positive regulator of hmu operon involved in hemin uptake and dephosphorylation 

of gingipain proteases. Increased levels of CdhR increases hmu transcription and in turn 

elevates the pathogenic potential of the organism [130].  

In summary, the activation of Ltp1-CdhR pathway in P. gingivalis via contact-based signalling 

limits P. gingivalis – S. gordonii heterotypic community development by downregulating the 

expression of mfa1 and luxS genes and increases the pathogenicity of P. gingivalis by 

upregulating the expression of hmu gene .  

Chorismate-binding enzyme encoded by cbe gene in S. gordonii produces a metabolite 4-

amino benzoate/para-amino benzoic acid (pABA) which can be released extracellularly 

(Figure 6a). PABA inactivates Ltp1-CdhR pathway in P. gingivalis and upregulates the 

expression of Mfa1 fimbrial protein. Consequently, the dephosphorylation and inactivation of 

Ptk1 is reduced.  Since Ptk1 activity converges on fimA gene, the level of FimA fimbrial protein 

is elevated. Therefore, pABA upregulates the expression of both Mfa1 and FimA, priming the 

organism for coadhesion with S. gordonii and community development. Concomitantly, pABA 

dimishes the pathogenicity of P. gingivalis by reducing the production of extracellular 

polysaccharides. However, following the aggregation of  P. gingivalis on S. gordonii, the 

calming effects of pABA are reduced, most likely due to spatial constraints in the accessibility 

of pABA and subsequently, the pathogenicity of the P. gingivalis – S. gordonii community is 

increased due to the activation of the Ltp1-CdhR pathway via contact based signalling [131].  

P. gingivalis – S. gordonii coadhesion and signalling is crucial for development of a dysbiotic 

microbial community. P. gingivalis virulence is increased following coadhesion with 
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S. gordonii . Co-infection with both bacterial species causes a greater amount of alveolar bone 

loss relative to infection with either species alone [129]. Therefore blocking these early 

interactions could potentially limit the colonization of P. gingivalis and reduce the pathogenicity 

of the subsequent biofilm.  
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Figure 6a: Schematic representation of P. gingivalis – S. gordonii signalling mechanism.  

(a) Binding of Mfa1-SspB (contact dependent signalling) increases the levels of Ltp1 and 

cdhR(indirectly). Higher levels of cdhR decreases the levels of Mfa and luxS which results in 

decreased P. gingivalis – S. gordonii aggregation. Reduction in the levels of AI-2 further 

increases the levels of cdhR and limits community development.  

Image adapted from : Chawla, A., et al., Community signalling between Streptococcus gordonii 

and Porphyromonas gingivalis is controlled by the transcriptional regulator CdhR. Mol 

Microbiol, 2010. 78(6): p. 1510-22. 

a 
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Figure 6b: Schematic representation of P. gingivalis – S. gordonii signalling mechanism.  

(b) Binding of Mfa1 –SspB increases Ltp1 activity and reduces the expression of fimbrial 

adhesins. Mfa1-SspB binding also decreases the expression of chorismate binding enzyme 

(Cbe), resulting in reduced pABA production. Increased Ltp1 activity and reduced Cbe 

expression limits bacterial aggregation and enhances the pathogenicity of P. gingivalis. 

Image from: Lamont, R.J., H. Koo, and G. Hajishengallis, The oral microbiota: dynamic 

communities and host interactions. Nat Rev Microbiol, 2018. 16(12): p. 745-759. 
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Our approach 

In our previous work, we demonstrated that a synthetic peptide, consisting of residues 1167 

to 1193 of the surface protein SspB expressed by S. gordonii, designated BAR (SspB 

Adherence Region), blocks the Mfa1-SspB interaction and reduces the virulence of 

P. gingivalis in murine models of periodontitis [67, 129]. However, free peptide is only retained 

transiently in the oral cavity owing to the constant flow of saliva. Moreover, while BAR potently 

inhibited the initial adherence of P. gingivalis to S. gordonii, it was less effective at inhibiting 

pre-established P. gingivalis biofilms. 

To enhance the efficacy of BAR peptide (IC50=1.3 µM),  we developed polymeric poly (lactic-

co-glycolic acid) (PLGA) nanoparticles (NPs) encapsulating BAR (BAR-NPs). These NPs 

inhibited P. gingivalis – S. gordonii biofilm formation more potently relative to free peptide (IC50

= 0.7 µM). BAR-NPs also disrupted pre-established biofilms more potently than free BAR. 

 We envision our NPs to be ultimately incorporated in oral hygiene products such as oral gels 

which are used two to three times daily. Hence, we ideally seek to develop NPs that will be 

retained in  the oral cavity and release inhibitory concentrations of BAR peptide for a minimum 

of 8 to 12 hours. However, BAR-NPs released  > 50% of BAR peptide within the first 2 hr of 

delivery and would exhibit low retention in an open flow environment such as the oral cavity 

[133]. Hence, the BAR-NPs would benefit from a strategy that would improve their retention 

in the oral cavity and promote a gradual release of the BAR peptide.  

Several approaches have been employed to improve NP retention, including alteration of 

properties such as surface charge and hydrophobicity, and functionalizing NPs with non-

specific mucoadhesive or specific targeting ligands that bind to host receptors [134]. As 
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previously discussed, the use of specific targeting ligands has been shown to increase NP 

binding efficiency at target sites, due to multivalent interactions with host cell receptors [107-

109]. These ligands seek to minimize non-specific interactions between NPs and non-target 

cells reducing indiscriminate distribution of active agents at non-target sites and promoting 

localized delivery at target sites, thereby enhancing NP efficacy [110, 111].  Thus, developing 

actively targeted NPs, using specific ligands, is a promising strategy to enhance the efficacy 

of NPs. For our experiments, we utilized Coaggregation Factor A protein (CafA) as a targeting 

ligand to functionalize the BAR-NPs.  

Coaggregation Factor A Protein (CafA) 

Actinomyces oris expresses two types of heterodimeric fimbriae:  

Type 1 – Mediates the binding of the bacteria to the proline rich salivary proteins which coat 

the tooth surface.   

Type 2 – Mediates the coaggregation of streptococci and actinomyces species [135].   

The type 2 fimbriae is composed of a fimbrial shaft made of FimA subunits and tip fimbrillin 

consisting of either FimB or CafA protein. During plaque formation, CafA protein binds to the 

GalNAcβ1-3Gal motif of the receptor polysaccharides (RPS) found on oral commensal 

streptococci such as S. gordonii and S. oralis, facilitating the coaggregation of actinomyces 

and streptococci. Since CafA is the key adhesin which mediates actinomyces−streptococci 

binding [136], we anticipated that functionalization of NPs with CafA would enable us to 

actively target NPs to areas of the oral cavity harboring commensal streptococci, to gradually 

release BAR in P. gingivalis preferred niches. 

 We hypothesized that modifying the surface of BAR-encapsulated NPs with CafA, would 

enhance NP efficacy by augmenting their adhesion to commensal streptococci, facilitating 

retention for a longer duration, promoting more gradual release of BAR peptide, and resulting 

in potent inhibition of P. gingivalis adhesion to S. gordonii in a dual-species biobiofilm.  
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Figure 7: Schematic representation of type 2 fimbriae of A. oris. The type 2 fimbriae facilitates 

bacterial coaggregation and consists of a shaft comprising of FimA subunit and tip fimbrillin 

consisting of either CafA or FimB.  

Image adapted from: Reardon-Robinson, M.E., et al., Pilus hijacking by a bacterial 

coaggregation factor critical for oral biofilm development. PNAS, 2014. 111(10): p. 3835-40. 
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CHAPTER 2 

HYPOTHESIS AND SPECIFIC AIMS 

Antibiotics are commonly used as adjuncts in the treatment of periodontal diseases to prevent 

its reoccurrence [42-44]. However, the effectiveness of antibiotics in the treatment of 

periodontal diseases is limited owing to (i) biofilm-mediated resistance and (ii) reduced 

susceptibility of resistant pathogens in subgingival microflora [58]. Therefore, there is a 

compelling need to develop novel, targeted, treatment strategies beyond antibiotics for the 

prevention and treatment of periodontal diseases. 

This project builds on previous work which demonstrated that a synthetic peptide (BAR) blocks 

the P. gingivalis – S. gordonii interaction and reduces the virulence of P.gingivalis in the 

murine model of periodontitis. Furthermore, nanoparticles encapsulating BAR peptide inhibit 

the biofilm formation more potently relative to free BAR [133]. However, similar to free peptide, 

NP delivery vehicles may exhibit low retention in an open flow environment such as the oral 

cavity, necessitating administration of higher, more frequent doses. Furthermore, due to the 

time frame of peptide release (over the course of hours) from BAR-NPs, we hypothesized that 

BAR-NPs may benefit from a strategy that augments their retention in an open flow 

environment. Our vision is to develop delivery vehicles that will ultimately be incorporated into 

oral healthcare products such as oral gels which are commonly used twice daily. Therefore, 

ideally, we seek to formulate nanoparticles that will be retained in the oral cavity and release 

inhibitory concentrations of BAR peptide for a minimum of 8 to 12 hours.
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Our hypothesis is that modifying the surfaces of NPs with specific targeting moieties such as 

CafA will (i) augment the retention of the NPs in the oral cavity via multivalent interactions and 

increased avidity of contact with targeted receptor polysaccharides and (ii) prolong the release 

of BAR peptide from the NPs by facilitating a more gradual release of the encapsulant.  

 

Thus, the efficacy of the BAR- NPs can be further enhanced by modifying the surfaces of the 

BAR-NPs with a specific targeting moiety, such as CafA. Surface modification would augment 

the adhesion of the NPs to specific receptors on bacterial surfaces, facilitate their 

accumulation at target sites and promote a gradual, localized release of the BAR peptide in 

P. gingivalis preferred niches.  

 

To accomplish this, we propose three specific aims:  

Specific Aims 

1. Synthesize and characterize CafA-modified nanoparticles encapsulating BAR peptide.  

2. Evaluate the functionality of the surface modification and the release kinetics of BAR         

peptide from surface-modified NPs.  

3. Determine the efficacy of the CafA-modified NPs using biofilm inhibition assays.
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 (B) 

Figure 8: (A) Schematic representation of nanoparticles and (B) NP targeting 
strategy. Surface modification of nanoparticles with CafA protein will aid in 
directing NPs to S. gordonii for targeted delivery of BAR peptide. 

Palmitic acid Nanoparticle 

CafA protein BAR peptide 
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CHAPTER 3 

MATERIAL AND METHODS 

Peptide Synthesis 

BAR peptide consists of residues 1167 to 1193 of the SspB surface protein expressed by    

S. gordonii.  BAR peptide constitutes the following amino acid sequence:  

NH2-LEAAPKKVQDLLKKANITVKGAFQLFS-COOH 

To visualize and quantify the release of the peptide from CafA-modified NPs, 

6-carboxyfluorescien was covalently attached to the ε – amine of the lysine residue highlighted 

in red in the peptide sequence above to produce fluorescent BAR (F-BAR).  Functional studies 

of CafA-modified NPs was carried out using NPs encapsulating unlabeled BAR peptide.  Both 

labelled and unlabeled BAR peptide were synthesized by Biosynthesis, Inc. (Lewisville, TX) 

and were obtained with a greater than 94% purity. 

Growth of Bacterial Strains 

Porphyromonas gingivalis ATCC 33277 was cultured in Trypticase soy broth media (TSBY 

media) (Difco laboratories Inc., Livonia, MI, USA) supplemented with 0.5% (w/v) yeast extract, 

1 μg/ml menadione, and 5 μg/ml hemin. The growth medium was reduced for 24hr in an 

anaerobic chamber (10% CO2, 10% H2 and 80% N2). Twenty mls of reduced media was 

subsequently inoculated with 2 mls of an overnight P. gingivalis culture and incubated under 

anaerobic conditions for 48hrs at 37°C. S. gordonii DL-1, S.oralis SO34, S.mutans KPSP2 

and A actinomycetemcomitans 652 were cultured aerobically without shaking in brain-heart 

infusion (BHI) broth supplemented with 1% yeast extract for 16 hr at 37°C. 
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CafA expression and purification 

CafA synthesis was done by isolating the genomic DNA of Actinomyces oris (ATCC 43146) 

from 10 mL of an overnight culture using the Wizard Genomic DNA purification kit (Promega, 

Madison WI) as specified by manufacturer. The cafA gene was amplified by PCR using 200 

ng of genomic DNA as the template and 30 pmol each of the following primers: Forward: 5’- 

AAG GAT CCC TGA GGC CGT TCA -3’; Reverse: 5’- CCG GAA TTC TAC GAC TTG CGG 

TTG GAG-3’. PCR amplification was conducted by denaturation at 94°C for 2 min, annealing 

of primers and template at 63°C for 30 s, strand extension at 72°C for 2 min 45 s for 30 cycles, 

followed by a final extension cycle at 72oC for 5 min. 

The PCR product was subsequently electrophoresed in 1% agarose at 90 V for 40 min and 

the cafA band was excised and purified using the gel purification kit (Qiagen). The purified 

cafA DNA (1 µg) and a sample of the pGEX-6p-1 expression vector (0.5 µg) were digested 

with BamHI and EcoRI overnight at 37°C. Prior to ligation, 50 µL of the digested vector were 

dephosphorylated with 4 µL calf intestinal alkaline phosphatase (NEB) at 37°C for 30 min. 

Subsequently, 3 µL of protease K were added and incubated for 30 min at 50°C to terminate 

the reaction. The vector and cafA fragments were purified using the DNA clean and 

concentrator kit (Zymoresearch) and ligated with T4 ligase. Ligation reactions comprised 3 µL 

vector, 5 µL cafA fragment, 1 µL 10x ligase buffer and 1µL T4 ligase.  

The ligation mixture was initially transformed into E. coli Top10. Fifty µL of competent E. coli 

Top10 were incubated with 5 µL of ligation mixture on ice for 30 min, then the sample was 

heat shocked at 42°C for 45 s and placed on ice for 2 min. Two hundred µL of SOC media 

were added, the sample was incubated at 37°C for 1 hr and plated on LB agar. After overnight 

incubation at 37°C, single colonies were selected and cultured in 5 mL LB broth supplemented 

with 100 µg ampicillin. Plasmid purification was carried out using the miniprep kit (Qiagen) 

and the cafA insert was excised and confirmed by sequencing. 
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For CafA expression, the purified cafA plasmid was transformed into E. coli BL21 using the 

transformation protocol described above.  After selecting and confirming the appropriate 

transformant, 400 mL of LB broth was inoculated with 10 mL of an overnight culture and 

incubated to OD600 of 0.5. Protein expression was induced by the addition of 0.5 mM IPTG 

and the culture was then incubated at 18°C for 17 hr. After centrifugation at 4,250 x g, the cell 

pellet was suspended in 40 mL 50 mM Tris, 100 mM NaCl, 1 mg/mL lysozome,10 µg/mL 

Dnase I, protease inhibitor cocktail, 10 mM CHAPS, incubated overnight at 4°C, then for an 

additional 2 hr at 25°C. The cell suspension was then sonicated for 2 min on ice. 

CafA purification was carried out with the Pierce GST Spin Purification Kit (Thermo Fisher). 

Seventeen mL of crude cell lysate were bound to the GST column for 2 hr at room temperature 

and the column was then centrifuged to remove unbound protein according to the 

specifications of the manufacturer. After washing the column with loading buffer, the GST tag 

was cleaved by the addition of 50 µL precision protease (GE Health) and overnight incubation 

at 4°C. Released CafA was then collected by centrifugation. The sample was then sequentially 

dialyzed against 30 mM, 20 mM, and 10 mM Tris for 2 hr each. CafA purity was determined 

by PAGE gels and protein concentration was determined using the BCA assay (Pierce). 

Conjugation of CafA protein with Palmitic acid (CafA-Palmitate Synthesis) 

CafA-palmitate was synthesized as previously described [137-139]. Briefly, 2 mg of purified 

CafA was dissolved in 1.2 mL of 2% (w/v) sodium deoxycholate (NaDC) in phosphate-buffered 

saline (137 mM NaCl, 2.7 mM KCl, 1.8 mM KH2PO4, 10 mM Na2HPO4; PBS) and warmed to 

37°C. Next, a solution with 14-fold molar excess of the palmitic acid-N-hydroxysuccinimide 

ester (NHS- palmitic acid; Sigma-Aldrich, St Louis, MO, USA) was prepared by dissolving 

NHS–palmitic acid in 2% (w/v) NaDC at 0.125 mg/mL. The solution was sonicated until well 

mixed in an ultrasonic bath and 800 uL of this solution was added dropwise to the reaction 
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vial containing CafA and reacted overnight at 37°C. To remove excess fatty acid and 

hydrolyzed ester, reactants were dialyzed against 1.2 L of PBS with 0.15% deoxycholate, 

using a 3,500 molecular weight cut-off dialysis tube. After overnight dialysis at 37°C, CafA-

palmitate was stored at 4°C until use. 

 

Synthesis of CafA-modified nanoparticles 
 
Nanoparticles were synthesized using poly(lactic-co-glycolic acid) (PLGA) carboxyl-

terminated polymer (0.55–0.75 dL/g inherent viscosity; LACTEL®). To formulate CafA-

modified nanoparticles, a previously described oil-in-water (o/w) single emulsion technique 

was used [140, 141].  Briefly, 100 mg PLGA was dissolved in 2 mL dichloromethane (DCM) 

by overnight incubation at 25°C. The next day, 2 mL of 5% (w/v) polyvinyl alcohol (PVA) was 

added to 2mL CafA-palmitate solution. This solution was vortexed and 2 mL of PLGA/DCM 

solution was added to it in a dropwise manner. The resulting solution was ultrasonicated and 

excess DCM was evaporated by adding the solution to 50 mL of 0.3% (w/v) PVA and mixing 

using a magnetic stir bar for 3 hr. After evaporation, the NP solution was centrifuged at 13,000 

rpm (20,442 x g) at 4°C for 10 min. The supernatant was discarded, and the NPs were washed 

twice with deionized water (diH2O) followed by centrifugation at 13,000 rpm (20,442 x g) at 

4°C for 10 min. After washing, CafA-modified NPs were suspended in 5 mL of diH2O, freeze 

dried at -80°C and lyophilized. 

 

Synthesis of CafA-modified NPs encapsulating C6/F-BAR/BAR 
 
For our experiments, three different types of CafA-modified NPs were synthesized. CafA-

modified NPs encapsulating the fluorescent dye, Coumarin6 (C6), were synthesized to assess 

the binding functionality of CafA surface modification. CafA-modified NPs encapsulating 

fluorescent BAR (F-BAR) were synthesized to determine the loading and controlled release 
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characteristics of the NPs, and CafA-modified NPs encapsulating unlabeled BAR were 

synthesized to determine the efficacy of NP-mediated inhibition of P. gingivalis adherence to 

streptococci using a two-species biofilm model.  

CafA-modified NPs encapsulating C6 were synthesized using a previously described w/o/w 

double emulsion solvent evaporation technique [138, 139]. Briefly, C6 was dissolved overnight 

in 200 μl DCM at a concentration of 15 μg/mg PLGA. In parallel, 100 mg of PLGA crystals 

were dissolved in 2 ml of DCM by overnight incubation at 25°C.  The following day, the C6 

DCM solution was first emulsified in the PLGA/DCM solution by vortexing followed by 

ultrasonication to achieve a homogenous suspension. Next, the homogenous suspension was 

added dropwise to a mixture of 2ml of 5% (w/v) polyvinyl alcohol (PVA) and 2ml CafA-

palmitate while vortexing followed by ultrasonication. Excess DCM was evaporated and NPs 

were collected as described above. CafA-modified NPs encapsulating F-BAR/BAR were 

synthesized using a similar approach.  All synthetic reactions were protected from exposure 

to light. For the synthesis of CafA-modified NPs encapsulating either F-BAR or unlabeled 

BAR, the peptide was dissolved in 200 μl Tris EDTA buffer (VWR; 100 mM Tris HCl,10 

mM EDTA at a pH of 8.0; T.E buffer) at a concentration of 43 µg /mg PLGA [133]. 
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(A) 

(B) 

Figure 9: (A) Schematic representation of synthesis of CafA-modified NPs encapsulating 

BAR peptide using double emulsion solvent evaporation technique. (B) Collection of NPs after 

solvent evaporation, centrifugation and washing.  

Bottom image adapted from McCall, R.L., Sirianni, R.W. PLGA Nanoparticles Formed by Single or 

Double-emulsion with Vitamin E-TPGS. J. Vis. Exp. (82), e51015.      
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NP Characterization: NP morphology and size 

Unhydrated NP morphology, diameter, and size distribution were determined using scanning 

electron microscopy (SEM, XL-30 ESEM-FEG SEM, FEI Company, USA). Lyophilized NPs 

were mounted on carbon tape and sputter coated with a thin layer of gold/palladium. Average 

diameters of 500 particles were determined from SEM images (n=3) using image analysis 

software (ImageJ, National Institutes of Health, version 1.5a, ImageJ.nih.gov).  

Quantification of Surface Density of CafA 

CafA-modified NPs were synthesized using varying input concentrations of CafA protein 

(5 to 80 ug/mg polymer). For each input condition, the resulting concentration of CafA 

conjugated to the NP surface was measured using the microBCA assay (Pierce). CafA-

modified NPs (1 mg) were suspended in 1% dimethyl sulfoxide (DMSO) in PBS. Aliquots (100 

uL) of the NP samples were analyzed in triplicate in a microtiter plate and NP-associated 

absorbance was measured by spectrophotometry at a wavelength of 562 nm. The 

concentration of CafA was determined by comparing absorbance values to a known standard 

curve of CafA and subtracting the background absorbance values of unmodified NPs (control 

group).  

Loading and release kinetics of BAR peptide from unmodified and CafA-modified NPs 

Nanoparticles modified with an intermediate density of CafA (20 ug/mg polymer) were 

selected for subsequent characterization and functionality studies. To determine BAR peptide 

loading, approximately 2 mg CafA-modified NPs encapsulating F-BAR were dissolved in 1 mL 

DMSO. Aliquots (100 uL) of the NP samples were analyzed in triplicate in a microtiter plate 

and the amount of F-BAR in the dissolved solution was determined by measuring fluorescence 
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(488/518 nm excitation/emission) and quantified by comparing these values to a known 

standard curve of F-BAR.  

To analyze the release kinetics of F-BAR, aliquots of CafA-modified and unmodified NPs 

encapsulating F-BAR were incubated in microcentrifuge tubes containing 1 mL PBS (pH 7.4) 

at 37ºC with gentle horizontal agitation. At fixed time points (1, 2, 4, 8, and 24 hr) after the 

initial suspension, the samples were centrifuged at 18,900 x g and the supernatant was 

collected. The pelleted NPs were then suspended in fresh PBS and incubated until the next 

time point. The amount of F-BAR in the supernatant was determined by measuring 

fluorescence (488/518nm excitation/emission) and quantified by comparing these values to a 

known standard curve of F-BAR. 

Determination of functionality of surface modification 

The functionality of surface modification and preservation of the function of CafA protein 

during NP synthesis was analyzed using two approaches.   

To determine the duration of retention of CafA-modified C6 NPs on S. gordonii DL-1 cells, 

S. gordonii was cultured as previously described and bacterial cells were harvested by 

centrifuging 10 mL of culture at 3700 x g for 5 min. The supernatant was discarded and the 

pelleted cells were suspended in 1 mL of 1X PBS. The O.D. at 600 nm of the cell suspension 

was adjusted to 0.2 and 100 µL of the S. gordonii cell suspension was added to each well of 

a 96-well microtiter plate and incubated overnight at 4°C. After removing unbound cells, the 

wells were blocked for non-specific binding with 300 µL of 0.3% bovine serum albumin (BSA) 

for 1 hr. Thereafter, the microtiter plate was washed three times with 1X PBS containing 0.05% 

Tween (PBST). Immobilized S. gordonii cells were then incubated with 100 µL of CafA-

modified C6 NPs (0.25 mg/mL), avidin-modified C6 NPs (0.25 mg/mL) or PBST in the absence 

of NPs in triplicate for 1 hr on a rocker platform. After washing three times with PBST, the cell-
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associated fluorescence was measured using Synergy HT reader (BioTek, Winooski, VT, 

USA) (485/520 nm excitation/emission). After subtracting the control fluorescence (S. gordonii 

in PBST), this initial reading (at t = zero) was defined as 100% binding. After obtaining the 

initial reading, 100 µL of PBST was added to each well and at fixed time points (1, 2, 4 and 8 

hr), the PBST was removed and the cell-associated fluorescence that remained was 

measured.  Subsequently, an additional aliquot of fresh PBST was added per well and 

incubated until the next time point was reached.  

For determining the specificity of CafA adhesion, the adherence of CafA-modified C6 NPs to          

S. gordonii DL-1, S. oralis SO34, P. gingivalis ATCC 33277, A. actinomycetemcomitans 652 

or S. mutans KPSP2 cells was measured. CafA binds to receptor polysaccharides (RPS) 

found only on commensal oral streptococci such as S. gordonii and S. oralis. It does not bind 

to bacteria that are RPS- negative and therefore, P. gingivalis ATCC 33277, A. 

actinomycetemcomitans 652 and S. mutans KPSP2 were selected as negative bacterial 

controls. Each of the organisms was cultured and harvested as described previously, and the 

final O.D. at 600 nm for each cell suspension was adjusted to 0.2. The bacterial cells were 

immobilized on a 96-well microtiter plate as described above and after overnight incubation, 

wells were blocked for non-specific binding with 300 µL of 3% bovine serum albumin (BSA) 

for 1 hr. The plate was washed three times with PBST and immobilized bacterial cells were 

incubated with 100 µL of CafA-modified C6 NPs (0.25 mg/mL) or with PBST in triplicate for 1 

hr on a rocker platform. The microtiter plate was again washed three times with PBST and 

cell-associated fluorescence was measured (485/520 nm excitation/emission). To determine 

the final cell associated fluorescence, the reading obtained from bacteria incubated in PBST 

alone (background) was subtracted from that of bacteria incubated with CafA-modified C6 

NPs. Data was analyzed using an unpaired t-test.
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Figure 10: Schematic of duration of retention assay. S. gordonii cells were immobilized on a 

microtiter plate and incubated with CafA C6-NPs. At fixed time points, the supernatant 

containing the unbound NPs was removed and the cell associated fluorescence was 

measured.  Thereafter, fresh buffer was added to the wells, until the next time point was 

reached. Avidin-modified C6 NPs were used as controls. To measure specificity of adhesion, 

adherence of CafA-modified NPs to S. mutans KPSP2, S. oralis SO34, P. gingivalis ATCC 

33277 or  A. actinomycetemcomitans 652 cells was compared to the level of adherence to S. 

gordonii DL-1 cells. 
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CafA-modified NP-mediated inhibition of P. gingivalis adherence to streptococci 

S. gordonii DL-1 was cultured as previously described and bacterial cells were harvested by 

centrifuging 10 mL of culture at 3700 x g for 5 min. The supernatant was discarded, and the 

pelleted cells were suspended in 1 mL of 1X PBS in a microcentrifuge tube. The cells were 

labelled with 20 µL of 10 mM hexidium iodide (Thermo Fisher Scientific) for 15 min on a rocker 

platform at room temperature. The microcentrifuge tube was covered with foil, centrifuged at 

3700 x g for 5 min, and the pelleted cells were suspended in 1 mL of 1X PBS. The O.D. at 

600 nm was measured as previously described and adjusted to 0.8. One mL of the resulting 

cell suspension was added to each well of a 12-well microtiter plate containing a glass 

coverslip. The cells were incubated overnight under anaerobic conditions on a rocker platform 

and protected from light. 

On the following day, the wells were washed to remove unbound S. gordonii cells. The 

immobilized S. gordonii cells were incubated with CafA-modified BAR NPs (treatment) or 

CafA-modified blank NPs (control) at a concentration of 240 µg/mL for different durations on 

a rocker platform. Due to the 50% inhibitory concentration (IC50) of free BAR peptide 

equivalent to 1.3 µM or ~4 µg, and NP loading results, we calculated that 240 µg CafA-

modified BAR NPs would encapsulate an equivalent amount of BAR. After the first hour of 

binding (t = 0) and at each subsequent time point  (t =  2, 4, 8, 12 hr) the supernatant containing 

the unbound NPs and released BAR was removed and P. gingivalis was added in triplicate to 

the control and treatment plates as described below.   

P. gingivalis ATCC 33277 was cultured and harvested as previously described. P. gingivalis 

was labelled with 15 µL of 5-(6) carboxyfluorescien-succinylester (4 mg/mL) for 30 min, 

centrifuged at 3700 x g for 2 min and the pelleted cells were suspended in 1 mL of 1X PBS. 

The O.D. at 600 nm was measured and adjusted to 0.4. At each time point, 1 mL of labelled 

P. gingivalis cell suspension (O.D. 0.4) was added to the treatment and control plates in 
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triplicate. The plates were incubated at 37 °C for 24 hr under anaerobic conditions. The 

subsequent day the supernatant was removed, the wells were washed with 1X PBS to remove 

the unbound bacterial cells. The adherent cells were fixed with 4% (w/v) paraformaldehyde. 

The coverslips were mounted on a glass slide using Prolong gold anti-fade reagent and fixed 

with clear nail polish. The prepared slides were stored at 4°C.  

Confocal Microscopy and Imaging 

The dual-species biofilms were visualized using a LEICA SP8 confocal microscope (Lieca 

Microsystems Inc., Buffalo Grove, IL) under 60 X magnification. Three dimensional z-stack 

biofilm images were obtained using a z-step size of 0.7 µm. Images were analyzed using 

Volocity software (version 6.3; Perkin Elmer, Waltham, MA, USA) to quantify the bacterial 

populations by quantifying fluorescence (S. gordonii – red, P. gingivalis – green).  Adherence 

of P. gingivalis to streptococci was determined by measuring the green to red fluorescence 

ratio (GR). Inhibition at each time point was analyzed in triplicate (treatment and control plates) 

and three independent frames were obtained for each well. The percentage of P. gingivalis 

inhibition was calculated using the formula: (1- GR treatment /GR control) * 100. The mean 

and S.D. of inhibition at each time point was calculated and the data was analyzed using a 

paired t-test.  
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           Visualize 
biofilms using confocal 

microscope 

Measure GR ratio using Volocity software 
      % adherence inhibition P. g. = 1-GR(S)/GR(C)×100 

Figure 11: Schematic representation of inhibition assay using dual-species biofilm. The 

efficacy of the CafA-modified NPs was evaluated by performing functional inhibition assays 

using a two species biofilm model. 
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CHAPTER 4 

RESULTS 
 

NP Characterization: NP morphology and size 
 
The morphology of CafA-modified BAR NPs, relative to unmodified BAR NPs, is shown in 

Figure 12. CafA-modified BAR NPs demonstrated a spherical morphology and were smaller 

relative to unmodified BAR NPs. The average unhydrated diameters of CafA-modified BAR 

NPs and unmodified BAR NPs measured from SEM images were 89.7 ± 26.3 nm and 165.8 

± 33.4 nm, respectively. 
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*Figure 12: SEM images of (A) CafA-modified BAR-encapsulated NPs and (B) Unmodified

BAR-encapsulated NPs PLGA NPs. Images are representative of a minimum of 3 

independent samples, with n > 500 NPs assessed in total. Scale bar represents 1 µm. 

*This data was collected by Mohamed Y. Mahmoudd
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Quantification of ligand surface density 

The concentration of CafA conjugated to the surface of the NP was measured using the 

microBCA assay. The total protein content ranged from 3 to 36 µg CafA/mg polymer and 

varied directly with the input concentration of CafA (5 to 80 µg CafA/mg polymer) used during 

synthesis. The conjugation efficiency ranged from 45 to 79%, with higher conjugation

efficiency observed at lower concentrations (Figure 13, Table 2). Although saturation was not 

achieved under these conditions, the results suggest that an increased surface density may be 

attained with higher CafA input.  
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**Figure 13:  Quantification of surface density of ligands. The total amount of CafA conjugated 

to the NP surface was determined using the microBCA assay. The amount of CafA conjugated 

to the NP surface varied directly with the input concentration of CafA during synthesis. Data 

represent mean NP associated CafA ± S.D, n = 3. 

Table 2: Input and output concentration of CafA 

**Data collected together with Mohamed Y. Mahmoudd 

Input 
Concentration 

(µg CafA/ mg NP) 

Output 
Concentration 

(µg CafA/ mg NP) 

Conjugation 
Efficiency (%) 

5 2.9 ± 0.1 58 

10 7.9 ± 1.9 79 

20 14.4 ± 2.6 72 

40 25.4 ± 2.2 64 

80 36.3 ± 3.5 45 
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Loading and release kinetics of BAR peptide from unmodified and CafA-modified NPs 

Nanoparticles modified with an intermediate density of CafA (20 ug/mg polymer) were 

selected for subsequent characterization and functionality studies, as they represent a 

practical minimum modification density that in preliminary studies (and results here) provided 

a therapeutically-relevant concentration of BAR release. To determine the loading of BAR 

peptide in unmodified and CafA-modified NPs, the amount of F-BAR from dissolved NPs was 

determined by measuring fluorescence (488/518 nm excitation/emission) and quantified by 

comparing these values to an F-BAR standard curve. Loading experiments showed that 

unmodified and CafA-modified NPs encapsulated 16.95 ± 0.8 and 15.73 ± 1.9 µg of BAR per 

mg of NP respectively, corresponding to loading efficiencies of 39% and 37% (Table 3), 

suggesting that surface modification at this density had minimal effect on BAR loading.  

To measure BAR release, sample eluates were taken 1, 2, 4, 8, and 24 hr after incubation in 

PBS. The overall release trends showed that CafA-modified NPs demonstrated slower 

release of BAR, relative to unmodified NPs; however, inhibitory concentrations of BAR peptide 

(2 to 4 µg/mg NP) were released from CafA-modified NPs at each of the measured time points 

up to 8 hr. For unmodified NPs, more rapid release profiles were observed, with greater than 

50% of BAR peptide released within 1 hr and a plateau in release after. After 2, 4, 8 and 24 

hr, less than 1 µg of peptide/mg NP was released from the unmodified NPs (Figure 14), 

demonstrating inadequate, non-inhibitory levels of release. In comparison, CafA-modified NPs 

released 23% of BAR during the first hour, and inhibitory concentrations (3.1, 2.7, 2.9, and 

3.3 µg/mg) of BAR peptide after 2, 4, 8, and 24 hr. Cumulatively, after 24 hr, BAR peptide 

(15.5 µg/mg) was completely released from CafA-modified BAR NPs, whereas 61% of the 

encapsulated BAR (10.3 µg/mg) was released from unmodified BAR-encapsulated NPs. 

Thus, after 24 hr, the total quantity of BAR released from CafA-modified NPs was significantly 

higher than the amount of BAR released from unmodified NPs.  
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**Table 3: Encapsulation efficiency of CafA-modified and unmodified NPs. 

NP Type BAR input 
(µg/mg) 

BAR output 
(µg/mg) 

Encapsulation 
Efficiency (%) 

Unmodified NPs 43 16.95 ± 0.8 39.4 

CafA-modified NPs 43 15.73 ± 1.9 36.5 

 

 

 

**Figure 14: Release kinetics of BAR peptide from unmodified and CafA-modified NPs 

Cumulative release of BAR as (A) function of mass (µg BAR per mg NP) and (B) percent of 

total BAR loaded over 24 hr. Asterisks denote a statistically significant difference between two 

groups (* p < 0.01, ** p < 0.001, *** p < 0.0001, **** p < 0.00001).  

**These data were collected together with Mohamed Y. Mahmoud 
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Determination of functionality of surface modification 

Duration of retention of CafA-modified C6 NPs 

CafA-modified C6 NPs were incubated with immobilized S. gordonii cells for 1 hr, after which 

unbound NPs were washed and cell-associated fluorescence was measured to determine the 

amount of NPs that initially bound to S. gordonii (t = 0). As shown in Figure 15A, after the first 

hour of binding (t = 0), CafA-modified NPs bound to S. gordonii at a 2.3-fold higher 

concentration (5.7 µg/mL), relative to non-specific avidin-modified NPs (2.5 µg/mL). The most 

significant dissociation of CafA-modified NPs from S. gordonii was observed within 1 hr of 

assessing initial binding (t = 1), after which NP dissociation stabilized for both CafA-modified 

and avidin-modified NPs. After 8 hr, 65% (3.7 µg/mL) of CafA-modified and 56% of avidin-

modified NPs (1.4 µg/mL) remained associated with S. gordonii, resulting in a 2.5-fold higher 

concentration of CafA-modified NPs bound to S. gordonii  (Figure 15B). These results indicate 

that the ratio of CafA-modified to avidin-modified NPs bound to S. gordonii was maintained 

after the first wash and suggest that CafA modification enhances NP retention by increasing 

the concentration of NPs that initially bind to S. gordonii. After 8 hr, similar rates of subsequent 

dissociation resulted in a higher concentration of CafA-modified NPs remaining bound to S. 

gordonii.  
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(C) 

**Figure 15: Duration of retention of CafA-modified C6 NPs. (A) After one hour of initial 

binding (t=0),  a 2.3-fold higher concentration of CafA-modified C6 NPs (5.7 ug/mL) bound to 

S. g. relative to avidin-modified C6 NPs (2.5 µg/mL) and this difference in concentration was 

maintained for up to 8 hr. (B) 65% of CafA-modified C6 NPs remain bound to S. g. after 8 hr. 

(C) Concentration of CafA-modified NPs bound to S. g. normalized against Avidin-modified 

NPs. Asterisks denote a statistically significant difference between two groups (* p < 0.01, ** 

p < 0.001, *** p < 0.0001, **** p < 0.00001).  

**Data collected together with Mohamed Y. Mahmoud 
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Specificity of adhesion of CafA-modified C6 NPs 

While the overall binding of CafA-modified NPs to S. gordonii is important, we sought to 

assess the differences in CafA-modified NP binding across several bacteria to determine the 

specificity of NP adhesion. The adherence of CafA-modified NPs to S. gordonii DL-1 was 

measured relative to S. oralis SO34, S. mutans KPSP2, P. gingivalis ATCC 33277 and A. 

actinomycetemcomitans 652 cells. For commensal oral streptococci, S. gordonii DL-1 and S. 

oralis SO34, that express the receptor polysaccharides (RPS), there was no statistical 

significance in the concentration of bound CafA-modified NPs between groups. For bacterial 

groups that were RPS-negative, CafA-modified NPs bound to S. gordonii DL-1 at a 1.8-fold 

higher concentration relative to S. mutans KPSP2 and 2.6-fold higher concentration relative 

to P. gingivalis ATCC 33277 and A. actinomycetemcomitans 652. The concentration of CafA-

modified NPs bound to S. gordonii DL-1 relative to S. mutans KPSP2, P. gingivalis ATCC 

33277 and A. actinomycetemcomitans 652 was found to be statistically significant (P ≤ 0.05). 

Among non-commensal streptococci, the concentration of CafA-modified NPs bound to S. 

mutans KPSP2 relative to P. gingivalis ATCC 33277 and A. actinomycetemcomitans 652 was 

found to be statistically significant (P ≤ 0.05). 
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Figure 16: Specificity of CafA-modified C6 NP adhesion. CafA binds the receptor 

polysaccharides (RPS) found only on commensal oral streptococci such as S. gordonii and 

S. oralis. It does not bind to bacteria lacking the receptor and therefore, CafA-modified NPs 

bound to S. gordonii DL-1 (S. g.) and S. oralis SO34 (S. o.) at a higher concentration than S. 

mutans KPSP2 (S. m.), P. gingivalis ATCC 33277(P. g.), and A.actinomycetemcomitans 652 

(A. a.), demonstrating specificity of adherence. Asterisks denote a statistically significant 

difference between two groups (* p < 0.01, ** p < 0.001, *** p < 0.0001, **** p < 0.00001). 
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CafA-modified NP-mediated Inhibition of P. gingivalis adherence to streptococci 
 
Functional inhibition assays were performed to determine the impact of CafA-modified BAR 

NPs on the inhibition of P. gingivalis adhesion to S. gordonii. Immobilized S. gordonii were 

incubated with CafA-modified BAR NPs (treatment group) or CafA-modified blank NPs 

(control control) for 1 hr. After the first hour of binding (t = 0) and at each subsequent time 

point (t = 2, 4, 8, 12 hr) the supernatant containing the unbound NPs and released BAR was 

removed and P. gingivalis was added to the control and treatment plates The plates were 

incubated for 24 hr and the formed biofilms were visualized using confocal microscopy. 

Representative images of treatment and control biofilms are shown in Figure 17. At each time 

point (t = 0, 2, 4, 8 and 12 hr), P. gingivalis adherence to S. gordonii was significantly reduced 

in the presence of CafA-modified BAR NPs, relative to control CafA-modified blank NPs 

(Table 4). After initial administration for one hour (t = 0), P. gingivalis adherence was inhibited 

by 87.9 ± 4.1% and maintained more than 80% inhibition after 2 and 4 hr, relative to control 

CafA-modified blank NPs. After 8 and 12 hr, time frames relevant to oral administration 

regimens, P. gingivalis binding to S. gordonii was inhibited by 66.3 ± 4.1% and 40.6 ± 9.3%, 

demonstrating the potential of CafA-modified BAR NPs to significantly inhibit P. gingivalis 

adherence to S. gordonii.  
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Figure 17(A-E): Functional inhibition assay demonstrating inhibition of P. gingivalis 

adherence to S. gordonii. CafA-modified BAR NPs inhibited P. gingivalis adherence for more 

than 8 hr relative to CafA-modified blank NPs (control). Biofilms were visualized using confocal 

microscopy and the ratio of green (P. g) to red (S. g.) fluorescence in z-stack images was 

determined using Volocity software.  

(A) 

(E) 

(D) (C) 

(B) 
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Table 4: Percent inhibition of P. gingivalis adherence to S. gordonii at various time points. 

Time Point Inhibition of P.g. Adherence (%) 
t = 0 hr 87.9 ± 4.1 
t = 2 hr 85.5 ± 2.6 
t = 4 hr 81.4 ± 9.7 
t = 8 hr 66.3 ± 4.1 

  t = 12 hr 40.6 ± 9.3 
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CHAPTER 5 

DISCUSSION 

The adherence of P. gingivalis to S. gordonii is a crucial, initial event which facilitates the 

colonization of P. gingivalis in the oral cavity. The binding of P. gingivalis to S. gordonii is 

driven by a protein−protein interaction between Mfa1, the structural subunit of the minor 

fimbriae of P. gingivalis, and discrete domains of the streptococcal cell surface protein, SspB, 

of the antigen I/II family [125, 127, 142, 143]. These early interactions provide ideal targets for 

therapeutic interventions to limit the supragingival colonization of P. gingivalis in the oral 

cavity. Previous studies have shown that a synthetic peptide designated BAR potently inhibits 

P. gingivalis/S. gordonii adherence and reduces the virulence of P. gingivalis in a murine 

model of periodontitis [67, 128, 129]. However, owing to the constant flow of saliva in the oral 

cavity, free peptide is only transiently retained. Moreover, a higher concentration of free 

peptide is needed to disrupt pre-established P. gingivalis biofilms.  

To overcome this challenge, we developed polymeric nanoparticles that encapsulate BAR. 

BAR-encapsulated NPs (IC50 = 0.7 µM) were found to be more efficacious relative to free 

peptide (IC50 = 1.3 µM) and inhibited pre-established biofilms potently. However, similar to 

free peptide, BAR-encapsulated NPs also lack a mechanism by which to prolong retention in 

the oral cavity. Since BAR-encapsulated NPs release BAR peptide over the course of hours, 

they may benefit from a strategy to augment their retention in the oral cavity [133]. Given this, 

the goal of this study was to formulate NPs with improved binding to the GalNAcβ1-3Gal motif 
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of the receptor polysaccharides (RPS) expressed by commensal oral streptococci. In parallel 

we sought to prolong the release of inhibitory concentrations of BAR peptide for 8 to 12 hr, for 

future application in oral hygiene products, such as oral gels, that are traditionally 

administered twice daily. 

CafA is the tip fimbrillin of type 2 fimbriae of A. oris, and during plaque development, it 

mediates the coaggregation of A. oris with commensal oral streptococci. CafA binds to the 

GalNAcβ1-3Gal motif of the RPS found on commensal oral streptococci such as S. gordonii 

and S. oralis that promote P. gingivalis adherence. We hypothesized that functionalization of 

BAR-encapsulated NPs with CafA would promote the adherence of BAR-encapsulated NPs 

to oral commensal streptococci such as S. gordonii, indicating future potential in targeting to 

S. gordonii harboring niches of the oral cavity.  Since the S. gordonii/P. gingivalis interaction 

promotes supragingival P. gingivalis colonization, accumulation of BAR-encapsulated NPs 

and the localized, prolonged release of BAR from this niche may potently inhibit S. gordonii/P. 

gingivalis biofilm formation and reduce P. gingivalis colonization of the oral cavity. 

Surface modification of the NPs with ligands such as CafA can be accomplished in two ways; 

(i) by chemical conjugation or physical adsorption of the ligands on the NP surface after NP 

formation, or  (ii) by linking the ligands to components of the NP (eg: polymer) before formation 

[144]. Previous studies have shown that the lack of functional groups on the aliphatic polyester 

backbone of PLGA makes coupling ligands on the surfaces of the nanoparticles particularly 

challenging. While adsorption of ligands on the surfaces of the NPs is an effective approach 

for surface modification, there are drawbacks associated with this approach including limited 

density of surface ligands and decreased targeting effects over time due to desorption of 

ligands and NP degradation [137]. It has been previously shown that coupling ligands with a 

lipid (eg: palmitic acid) to form an amphiphilic molecule prior to NP synthesis enhances the 

density of ligands incorporated into the PLGA matrix and helps to achvieve a stable protein 
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coat on NP surfaces [137, 145, 146]. To facilitate a sustained presentation of ligands, we 

conjugated CafA to palmitic acid prior to its addition during NP synthesis.  

Following synthesis, we selected NPs with an intermediate density of surface ligands (20 

µg/mg polymer) for further characterization and functional studies. Although in general, higher 

ligand density increases binding avidity via multivalent interactions, several studies have 

reported that NPs with intermediate ligand density exhibit higher binding relative to higher 

ligand densities [116-118]. Several explanations have been offered for this effect including 

steric interference; improper ligand orientation which may impede ligand function; or ligand 

overcrowding, leading to competition between ligands for the same receptor [116-118]. 

Additionally, these reports have suggested that increasing the ligand density beyond a certain 

threshold does not improve binding efficiency [147, 148]. While NPs were formulated with an 

intermediate CafA concentration, due to the feasibility of using a practical amount of peptide 

and the satisfactory release properties, these results demonstrate the effectiveness of the 

formulated NPs in functionality and efficacy. Future studies may focus on improving the 

efficacy of CafA-modified NPs by tuning ligand surface density to optimize binding efficiency 

without impeding BAR release kinetics. 

 

While both formulations exhibited high peptide loading, it is well known that polymeric NPs 

that encapsulate hydrophilic agents demonstrate high burst release due to the entrapment of 

the encapsulant in the form of small clusters on the surface or within the polymer matrix just 

below the surface of the particles during synthesis [149]. Studies have shown that surface 

modification using amphipathic molecules slows the release of the encapsulant from the 

polymeric NPs [102, 137, 149-151] due to the increased hydrophobic stabilization and uniform 

dispersion of the encapsulant in the polymer matrix [152]. Our results were consistent with 

these findings in that unmodified BAR NPs demonstrated more rapid release corresponding 

to a burst (< 50% peptide) within one hour of delivery. We attribute these findings to the 
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release of BAR that is adsorbed at, or just underneath the surface of the polymer matrix. After 

the first hour, minimal additional peptide was released from unmodified NPs. In comparison, 

CafA-modified NPs demonstrated a more gradual release of BAR peptide over 24 hr, likely 

because to the increased hydrophobic stabilization and uniform dispersion of the peptide 

within the matrix due to the presence of the Caf-palmitate conjugates on the NP surface. 

Cumulatively over 24 hr, while 61% of the BAR peptide was released from unmodified NPs, 

Caf-modified NPs exhibited a near complete release of the BAR peptide. This improved 

release was likely due to surface modification with hydrophilic ligands, which facilitated the 

drawing out of a higher amount of BAR peptide from CafA-modified NPs, promoting a 

complete release of the peptide payload.   

In addition to high loading and favorable release kinetics, another desirable characteristic is 

NP retention at target sites for a prolonged duration. Given the site-specific nature of 

periodontal disease, local application of therapeutic agents has been found to have better 

patient acceptance, reduced side-effects and improved clinical outcomes. Although 

therapeutic agents applied directly to periodontal pockets are effective, they too get drained 

by the gingival crevicular fluid and saliva flow. Therefore, improving the binding characteristics 

of delivery vehicles can increase residence time at target sites and enhance NP efficacy. Here 

we targeted CafA-modified NPs to RPS-expressing bacteria such as S. gordonii, which 

promote P. gingivalis colonization. Our results suggest that CafA-modified NPs demonstrate 

high binding efficiency and specificity to RPS-expressing commensal bacteria relative to other 

bacteria including S. mutans, P. gingivalis and A.actinomycetemcomitans. Moreover, CafA-

modified NPs remained bound to S. gordonii cell surfaces for a prolonged duration (over 8 hr). 

Functionally, in a dual-species biofilm, CafA-modified NPs inhibit P. gingivalis adherence to 

S. gordonii potently for up to 8 hr.  While these results seem promising, future experiments 

will seek to develop NPs that can be retained at target sites for longer durations (12-24 hr). 
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Overall our study suggests that surface modification of NPs with specific biological ligands 

such as CafA can facilitate NP targeting and adherence to specific receptors on the surfaces 

of S. gordonii cells for a prolonged duration. Moreover, CafA-modified NPs release inhibitory 

concentrations of the BAR peptide and potently inhibit P. gingivalis adherence to S. gordonii 

for a duration of time relevant to delivery in the oral cavity. CafA-modified NPs represent an 

efficacious vehicle for targeting BAR peptide to P. gingivalis preferred niches.  

Future experiments will focus on optimizing the surface density of CafA and evaluating the 

functionality of these NPs. We anticipate that optimizing the surface density of CafA further 

will also enhance the retention, drug loading and release kinetics of modified NPs for 12 to 24 

hr. In the long term, we hope to apply this work to incorporate CafA-modified NPs into oral gel 

formulations and test their effectiveness in clinical trials.
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