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Abstract—A device-to-device (D2D) ultra reliable low latency
communications (URLLC) network is investigated in this paper.
Specifically, a D2D transmitter opportunistically accesses the
radio resource provided by a cellular network and directly
transmits short packets to its destination. A novel performance
metric is adopted for finite block-length code. We quantify the
maximum achievable rate for the D2D network, subject to a
probabilistic interference power constraint based on imperfect
channel state information (CSI). First, we perform a convexity
analysis which reveals that the finite block-length rate for the
D2D pair in short-packet transmission is not always concave. To
address this issue, we propose two effective resource allocation
schemes using the successive convex approximation (SCA)-based
iterative algorithm. To gain more insights, we exploit the mono-
tonicity of the average finite block-length rate. By capitalizing
on this property, an optimal power control policy is proposed,
followed by closed-form expressions and approximations for the
optimal average power and the maximum achievable average rate
in the finite block-length regime. Numerical results are provided
to confirm the effectiveness of the proposed resource allocation
schemes and validate the accuracy of the derived theoretical
results.

Index Terms—Finite block-length codes, URLLC, average
achievable rate, performance analysis, optimal power allocation.

I. INTRODUCTION

Due to the explosive growth of data traffic in wireless
services, the evolution of the fifth-generation (5G) networks
is necessary to secure higher data rates while guaranteeing
a highly reliable transmission [1]. In addition, wireless com-
munication mechanisms are employed in emerging mission-
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critical applications and services (such as remote surgery,
unmanned aerial vehicle (UAV) deliveries, smarter transporta-
tions, and augmented/virtual reality (AR/VR)), which necessi-
tates ultra low-latency (time delay required for information
exchange via wireless networks) transmissions [2]. Thus,
the scenario of ultra reliable low latency communications
(URLLC) has been considered as one of the major use cases
in 5G networks.

Unlike the human-centric 4G long-term evolution (LTE)
networks, the URLLC system is required to achieve no less
than 99.999% reliability (i.e., 10−5 packet error probability)
and no longer than 1 ms latency for a small packet size (e.g.,
32 bytes) in 5G [3]. Ultra-high reliability and low-latency
are considered to be the most difficult technical challenges in
URLLC networks [4], and there is a tradeoff between them.
Specifically, the reliability can be improved by introducing
an increase in latency, which is due to the fact that some
network resources, i.e., signalling, re-transmission, etc., may
be employed [5]. On the other hand, the existing wireless
networks have been designed to focus on long-packet trans-
mission scenarios to maximize the system throughput/energy
efficiency, where high reliability and low latency are generally
challenging to be guaranteed simultaneously. This highlights
the need for developing novel architectures and transmission
schemes to satisfy the URLLC requirements which emphasizes
both high-reliability and ultra low-latency.

According to [6]–[10], the main challenge in URLLC
applications is to support short packets transmission, which
is the generic form of data traffic in mission-critical com-
munications. As a traditional information-theoretical metric,
Shannon′s capacity has been widely used to characterize
the maximal achievable rate. Specifically, ergodic capacity
and outage capacity are typically considered for sufficiently
large packet lengths. However, these conventional performance
metrics are not accurate performance indicators in URLLC
networks. This is due to the fact that the block-length of
channel coding is short due to the low-latency requirement
and small packet size. Under this scenario, the impact of
finite block-length and decoding error is more prominent and
cannot be ignored. There has been some recent work to support
short packet transmissions. In [11], a novel performance metric
was exploited for the maximum achievable rate, by taking
into account a finite packet length and a given packet error
probability. Ultra high-reliability and stringent low-latency
requirements can be satisfied by sacrificing the achievable
throughput/energy efficiency with a finite transmitted packet
size [11]. Recently, finite packet-length transmission has been
introduced in some typical scenarios, i.e., downlink broadcast
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channel, and uplink random access channel [7]. Specifically,
new theories focusing on the design of wireless protocols
for finite packet-length transmission have been recently de-
veloped which have a direct impact on the system design of
URLLC networks [7]. In addition, short packet transmission
was applied to the relay-enabled URLLC network in [8],
[9], where accurate performance modeling and optimization
were discussed. These references highlighted the advantage of
applying relaying in 5G URLLC transmissions in comparison
to the direct transmission scenario (without relaying). Very
recently, a novel access technique, namely, non-orthogonal
multiple access (NOMA), was introduced and analyzed to
support low-latency communications, by applying the coding
rate in the finite block-length regime [12]–[15], to improve the
fairness and spectral efficiency.

Device-to-device (D2D) communications have recently at-
tracted increasing research attentions as one of the promising
techniques in 5G networks, which was standardized by the
3GPP release 12 [16], [17]. A generic D2D pair consists of
one D2D transmitter (DT) and one D2D receiver (DR) in close
proximity to communicate directly rather than via a cellular
base station (BS). D2D communication provides new mobile
service opportunities and potential capability to reduce the
traffic load in cellular networks [18]. In addition, D2D commu-
nications can be applied to mission-critical applications such
as providing public safety and disaster monitoring and relief
services due to the low-cost deployment and low-complexity
configuration of D2D devices [19]–[22]. Furthermore, D2D
communications can improve the spectral utilization via en-
abling direct communication between the neighbouring mobile
devices without the involvement of BS, which is well suited for
high data rate, delay constrained and quality of service (QoS)-
specific communication [23]. This implies that the latency
between two neighbouring devices can be greatly reduced by
transmitting with the D2D proximity link while guaranteeing
the data rate. In [24], a D2D network was designed to satisfy
stringent delay requirements and high reliability, which is
suitable for factory automation configurations. The presented
results revealed that the introduction of D2D pairs or groups
helps to support stringent URLLC requirements. The above-
mentioned works only focus on the conventional performance
metric for long packets to support stringent URLLC require-
ments, which is not accurate for short packet transmission.
Moreover, there are only few papers in the existing literature
which exploit the performance metric of D2D networks in
support of URLLC services, which motivates this paper.

In this paper, we study a generic D2D cellular network, in
which the D2D transmitter reuses the cellular link to directly
send short packets to its destination. Since short packets are
essential for low-latency mission-critical communications, we
adopt the maximum achievable rate in the finite block-length
regime as a suitable performance metric [11]. Our aim in this
paper is to maximize the achievable rate of the D2D pair
for low-latency communications, subject to a received-power
outage constraint at the cellular BS and the imperfect channel
state information (CSI) between the D2D user and the cellular
BS. The probabilistic received-power constraint implies that
the QoS of the cellular network can be guaranteed while only

imperfect channel knowledge may be available in a practical
environment, when the D2D users are relatively close to each
other and far away from the cellular BS. We summarize the
contributions of this paper as follows:

1) Optimal Resource Allocation: The convexity analysis is
first presented which reveals that the achievable rate in
short-packet transmission is not always concave/convex.
This makes the rate-maximization problem for the D2D
pair in the finite block-length regime intractable and
difficult to solve. In order to circumvent this issue, we
resolve the instantaneous achievable rate maximization
problem via convex optimization reformulations. Ac-
cordingly, the successive convex approximation (SCA)
method is adopted to linearize the objective function so
that the finite block-length rate-maximization problem
can be iteratively solved to determine the optimal re-
source allocation.

2) Performance Analysis: To gain more insights, we prove
that the average achievable rate in the finite block-length
regime is a monotonically increasing function in the
high signal-to-noise ratio (SNR) region. By utilizing
this property, an optimal power control policy is then
proposed, which is achieved at the maximum power
limit and maximizes the average achievable rate for the
D2D pair for short-packet transmissions. Finally, closed-
form expressions and approximations are derived for
the optimal average transmit power and the maximum
achievable average rate, respectively.

The rest of this paper is organized as follows. The D2D
network which supports short packets transmission is first
described in Section II, followed by the formulation of the
achievable finite block-length rate-maximization problem. The
optimal resource allocation and performance analysis are in-
vestigated in Section III and Section IV, respectively. Numer-
ical results are presented in Section V, and we conclude this
paper in Section VI.

II. SYSTEM MODEL

In this section, we investigate a classic D2D cellular system
which consists of a D2D pair, a cellular user (CU) and a
cellular BS. In this model, the DT opportunistically accesses
and reuses the frequency resources of the cellular network,
and reliably transmits mission-critical short packets to the DR.
Moreover, the interference power at the cellular BS will be
limited to guarantee the QoS in the cellular network. The
discrete-time block-fading channel model is considered in this
paper, which means that the channel gains remain fixed within
one coherence interval and vary independently at the following
interval.1 The complex channel coefficient between the DT and
DR is denoted by hd[i] where i indicates the i-th interval, and
hc[i] represents the channel coefficient between the DT and
the cellular BS. Specifically, it is assumed that hd[i] and hc[i]
are independent and identically distributed (i.i.d.) zero mean
circularly symmetric complex Gaussian (ZMCSCG) random

1Channel coherence time is larger than the frame duration including control
signaling and data transmission. Hence, the channel code of finite block-length
can be transmitted within one coherence duration [25].



variables, i.e., CN (0, 1). Furthermore, we assume that the D2D
pair has perfect CSI of hd[i], whereas only imperfect CSI of
hc[i] is available between the DT and the cellular BS. This
may happen when the two D2D users are relatively close to
each other and far away from the cellular BS. Thus, the actual
channel coefficient hc[i] is given by

hc[i] = ĥc[i] + ∆hc[i], (1)

where ĥc[i] is the minimum mean square error (MMSE)
estimate of hc[i] and ∆hc[i] denotes the estimation error. It is
assumed that ∆hc[i] ∼ CN (0, σ2

e) and the channel estimate
ĥc[i] is ZMCSCG distributed with variance 1− σ2

e . Note that
perfect CSI is obtained when σ2

e = 0.
Furthermore, it is noted that for short-packet transmissions,

finite error probability is inevitable [7]. We assume that ε
denotes the block error probability, i.e., 0 < ε < 1, m
represents the finite block-length, and γ denotes SNR. Then,
the instantaneous achievable rate at the DR with finite block-
length codes in the i-th time interval is approximately given
by [11]

R̂i ≈ log2

(
1 + γ|hd[i]|2

)
−

√
1

m

(
1− 1

(1 + γ|hd[i]|2)2

)
Q−1(ε)

ln 2
, (2)

where Q−1(x) is the inverse of the Gaussian Q-function with
Q(x) =

∫∞
x

1√
2π
e−

t2

2 dt. We model the transmission process
as a service process. Note that the transmissions may fail
with a probability ε. If the transmitted message cannot be
decoded correctly, we claim that the effective service rate is
zero. Hence, the effective service rate (in bits per m block-
length) is given by [26]2

R̄i =

{
0, with probability ε,
mR̂i, with probability 1− ε. (3)

Thus, the achievable normalized average rate at the DR with
finite block-length codes is written as

R = (1− ε)E
[
R̄i
m

]
= (1− ε)E[R̂i]. (4)

Remark 1: In ultra reliability and low latency scenarios,
we expect that the users transmit short packets to achieve
low latency. Under such a scenario, finite block-length rate
becomes a more accurate performance metric for the D2D
network. Hence, we adopt finite block-length rate to measure
the low-latency feature, which is typical for event-driven
packets in URLLC [25]. This shows that we have taken the
latency requirement of the D2D network into consideration.
On the other hand, ultra high reliability is considered in terms
of successful packet decoding probability, which may be as
high as (1 − ε) where ε is the block error probability. From
the definition of finite block-length coding rate given in (2), it
can be seen that the impacts of the finite block-length m and
the block error probability ε have been taken into account.
Specifically, when m decreases, a larger penalty is placed
on the instantaneous achievable rate. This demonstrates the

2The transmission failure with probability ε can be affected by finite block
length and the CSI imperfection. When the decoding error occurs, the DR
can adopt a simple automatic repeat request (ARQ) mechanism which will
transmit a negative acknowledgement (NACK) requesting the re-transmission.

tradeoff between the achievable finite block-length rate and
low-latency requirements.

A. Problem Formulation

In this subsection, we formulate the average achievable rate
maximization problem for the D2D pair, subject to an outage
probability constraint on the received power at the cellular BS
and the CSI imperfectness of hc[i]. In this paper, we assume
that the interference caused by the DT due to spectrum sharing
may exceed the peak limit, but only for a very small percentage
of time. First, we make the definitions gd = |hd|2, ĝc = |hc|2,
and ∆gc = |∆hc|2.3 The probability density functions (PDFs)
of gd, ĝc, and ∆gc are respectively given as

f(gd) = e−gd , f(ĝc) =
1

1− σ2
e

e
− ĝc

1−σ2
e , f(∆gc) =

1

σ2
e

e
−∆gc

σ2
e .

(5)
Then, we perform optimal power control over time to maxi-
mize the average achievable rate for the D2D pair, which is
given as

R = max
Pd

(1− ε)E
[
log2

(
1 +

Pdgd
N0B

)

−Q
−1(ε)

ln 2

√√√√√√ 1

m

1− 1(
1 + Pdgd

N0B

)2


 , (6a)

s.t. Pr{Pd(ĝc + ∆gc) ≥ Ith} ≤ %, (6b)
where Pd is the transmit power at the DT, which depends upon
the channel condition of the link between D2D pair as well as
the link between the DT and the cellular BS. E{·} indicates
the expectation over the joint PDF of gd and gc. B and N0

are the channel bandwidth and the single-sided noise power
spectral density. Furthermore, Ith is the interference power
threshold. The constraint (6b) is defined as the interference
outage probability constraint imposed at the cellular BS with
imperfect CSI to guarantee that this interference does not
exceed a threshold, which is probabilistically constrained by
a given outage parameter %. Constraint (6b) is the functional
requirement for D2D transmission on the cellular frequency
band. Problem (6) is a packet delivery mechanism for event-
driven packets in URLLC, and the block error probability
is employed to measure the reliability of URLLC [25]. For
example, the VR/AR system provides high-quality multimedia
content which is delivered to the specific devices over the air
and enables new business verticals in media and entertainment.
This scenario not only requires ultra reliable and low latency
transmissions, but also high data rates to guarantee the quality
of service (QoS) of the device. In addition, the remote live
production is another 5G use case that requires the high-quality
signal transmission without sacrificing the ultra reliability and
low latency requirements. In order to solve the formulated
problem (6), we first analyze the interference constraint (6b)

3Here, the time index i is omitted for simplicity.



under the condition of Ith
Pd
≥ ĝc, as

Pr{Pd(ĝc + ∆gc) ≥ Ith} ≤ %⇒ Pr
{

∆gc ≥
Ith
Pd
− ĝc

}
≤ %

⇒
∫ ∞

0

f(gd)dgd

∫ ∞
0

f(ĝc)dĝc

∫ ∞
Ith
Pd
−ĝc

f(∆gc)d∆gc ≤ %

⇒
∫ ∞

0

e−gd
∫ ∞

0

e
− Ith
Pdσ

2
e

+ ĝc
σ2
e

1

1− σ2
e

e
− ĝc

1−σ2
e dĝcdgd≤%. (7)

Apparently, it is challenging to derive a closed-form power
allocation which maximizes the average achievable rate while
satisfying the interference outage constraint (7). However,
one sufficient instantaneous power constraint can be obtained
which guarantees that the interference constraint (7) will be
always satisfied, which has been derived in [27]. In order to
obtain the optimal power allocation satisfying the interference
outage constraint (7), we consider the following upper-bound∫ ∞

0

e−gd
∫ ∞

0

e
− Ith
Pdσ

2
e

+ ĝc
σ2
e

1

1− σ2
e

e
− ĝc

1−σ2
e dĝcdgd

≤
∫ ∞

0

e−gd
∫ ∞

0

%
1

1− σ2
e

e
− ĝc

1−σ2
e dĝcdgd.

Hence, the following sufficient interference power constraint
holds

e
− Ith
Pdσ

2
e

+ ĝc
σ2
e ≤ %, ⇒ − Ith

Pdσ2
e

+
ĝc
σ2
e

≤ ln %,

⇒ Ith
Pdσ2

e

≥ ĝc
σ2
e

− ln %, ⇒ Pd ≤
Ith

ĝc − σ2
e ln %

. (8)

If the proposed power allocation satisfies the constraint in (8),
then it is guaranteed that the outage constraint (7) is also met
[27]. Note that (8) is a sufficient condition of (7). In other
words, the solution which satisfies the constraint (8) definitely
guarantees the constraint (7). Thus, we substitute (8) into (6b),
and problem (6) can be reformulated as

R = max
Pd

(1− ε)E
[
log2

(
1 +

Pdgd
N0B

)

−Q
−1(ε)

ln 2

√√√√√√ 1

m

1− 1(
1 + Pdgd

N0B

)2


 ,

s.t. Pd ≤
Ith

ĝc − σ2
e ln(%)

. (9)

In order to solve the problem (9), we first analyze the convexity
of the instantaneous achievable rate in the following section,
and then solve it via iterative SCA.

III. OPTIMAL RESOURCE ALLOCATION

In this section, we exploit the convexity of the instantaneous
achievable rate in problem (9) for a given finite block-length
and a block error probability. By removing the expectation
notation, we focus on the instantaneous achievable rate max-
imization problem which can be written as

max
b≥0

R̂ = log2(1 + b)− c
√
b(b+ 2)

b+ 1
(10a)

s.t. b ≤ Ithgd
[ĝc − σ2

e ln(%)]N0B
, (10b)

where b = Pdgd
N0B

, c = Q−1(ε)√
m ln 2

. Note that problem (10) is
intractable due to the unknown properties of its objective
function (10a). Hence, in the following, we first provide the
convexity analysis of the achievable rate in the finite block-
length regime, which can help us to design effective and low-
complexity resource allocation algorithms.

First, let us define f0(b) as

f0(b) = log2(1 + b)− c
√
b(b+ 2)

b+ 1
. (11)

Then, the following lemma is proposed to characterize the
convexity of problem (10).

Lemma 1: The convexity of the achievable rate in the finite
block-length regime, i.e., f0(b), is analyzed as follows:

1) f0(b) is a concave function for b > f−1
1 (c) if c > d,

2) f0(b) is a concave function for b > f−1
2 (c) if c ≤ d,

3) f0(b) is a convex function for f−1
1 (c) ≤ b ≤ f−1

2 (c) if
c ≤ d,

where d = f1(b0) = f2(b0), and b0 = 1.1481 is the solution
of the equation f1(b) = f2(b) satisfying b0 ≥ 0.

f1(b) =
(1 + b) log2(1 + b)√

b(b+ 2)
,

f2(b) =
(b+ 1)[b(b+ 2)]

3
2

(3b2 + 6b+ 1)
.

Proof: Please refer to Appendix A.
From the analysis in Lemma 1, one can see that f0(b) is

not always concave/convex, which means that the optimization
problem (10) cannot be directly solved using convex opti-
mization techniques. However, the optimization problem (10)
belongs to the class of difference of convex (DC) programming
problems, since its objective function (10a) can be written
as the difference of two concave functions and the constraint
(10b) is linear. Thus, a first-order Taylor approximation will be
used to convexify the non-convex objective function to refor-
mulate problem (10) into a convex one [28]. Its basic mathe-
matical manipulation at the approximated value x(n) with the
n-th iteration is given by f(x) ≤ f(x(n)) + 5f(x(n))(x −
x(n)). The resulting problem can be solved using standard
convex optimization solvers iteratively [29]. In the following,
we introduce two transformation schemes to linearize the non-
convex objective function (10a) such that the original problem
can be reformulated into a convex optimization framework
and finally tackled via the SCA method or the interior-point
algorithm.

A. Scheme 1

In this subsection, we employ the first-order Taylor approx-
imation to convexify the second term of (10a), i.e.,

c

√
b(b+ 2)

b+ 1
≈ c

√
b(n)(b(n) + 2)

b(n) + 1

+
c

(1 + b(n))2
√
b(n)(b(n) + 2)

(b− b(n)),



where b(n) is the updated value of the variable b at the n-th
iteration. Hence, problem (10) can be reformulated as

max
b≥0

log2(1 + b)− c
√
b(n)(b(n) + 2)

b(n) + 1

− c

(1 + b(n))2
√
b(n)(b(n) + 2)

(b− b(n))

s.t. b ≤ Ithgd
[ĝc − σ2

e ln(%)]N0B
. (12)

After applying the first-order Taylor approximation, the trans-
formed problem (12) at the n-th iteration is a concave problem
which can be easily solved. Specifically, for a given b(n), we
solve problem (12) by using the interior-point method [29],
and then update b(n + 1) = b(n) until convergence. The
procedure is summarized in Algorithm 1. We note that the
obtained optimal solution at each iteration is guaranteed to be
a feasible solution for the next iteration. Thus, the iteratively
updated finite block-length achievable rate obtained in the
(n + 1)-th iteration is larger than or equal to that in the n-
th iteration. In other words, Algorithm 1 generates a non-
decreasing sequence of objective values. Moreover, problem
(12) is bounded due to its interference power constraint.
Hence, Algorithm 1 converges to a locally optimum solution
[30], [31].

Algorithm 1: Algorithm to solve problem (10)

1) Initialization: b(0) is a feasible solution for problem
(10).

2) Solve problem (12) with a given b(n) to obtain b at n-th
iteration.

3) Update b(n) = b.
4) n := n+ 1.
5) Until convergence

B. Scheme 2

In this subsection, we propose an approximation scheme to
solve problem (10) in the high interference threshold region.
Particularly, we apply

√
1− a ≈ 1 − 1

2a, for |a| < 1,
to approximate the objective function in problem (10) and
reformulate the problem as follows

max
b≥0

R̂ ≈ log2(1 + b) +
c

2(1 + b)2
− c

s.t. b ≤ Ithgd
[ĝc − σ2

e ln(%)]N0B
. (13)

After applying the approximation step, problem (13) is still
non-concave because of its objective function. To tackle this
problem, we consider the first-order Taylor approximation to
reformulate the problem, which is given by

max
b≥0

log2(1 + b) +
c

2(1 + b(n))2
− c

(1 + b(n))3
(b− b(n))

s.t. b ≤ Ithgd
[ĝc − σ2

e ln(%)]N0B
. (14)

The reformulated problem (14) at the n-th iteration can be
easily proved to be a concave problem. Hence, it can be
iteratively solved using the procedure similar to Algorithm
1, which is omitted here. These two proposed schemes are
solved iteratively by employing Algorithm 1 and the standard

interior-point methods, thus, it follows that the computational
complexity of the SCA approach is on the order of O(N),
where N is the maximum iteration time [32, Lecture 6].

IV. PERFORMANCE ANALYSIS

In the previous section, we solved the instantaneous achiev-
able rate maximization problem (10) approximately via the
iterative SCA method. To further investigate problem (9), in
this section we first analyze the monotonicity of the average
achievable finite block-length rate in the high SNR region.
Then, based on the theoretical analysis, we propose an optimal
power control at high SNRs, followed by the closed-form ex-
pressions and approximations for the average optimal transmit
power and the average achievable rate.

First, we analyze the monotonicity of the objective function
in problem (9). Note that the average achievable rate R at the
DR with finite block-length codes is rewritten as R = (1 −
ε)E{R̂i}, where the term E{R̂i} is simplified and expanded
as follows:

R̂=E

log2 (1 + ρgd)−
Q−1(ε)

ln 2

√√√√ 1

m

(
1− 1

(1 + ρgd)
2

) ,
(15)

where ρ = Pd
N0B

is the transmit SNR. The following is required
to characterize the monotonicity of (15).

Lemma 2: For the AWGN channel, its achievable rate
monotonically increases with the transmit SNR ρ̄, under the
following assumptions, m ≥ 102, ε ≥ 10−6, and ρ̄ ≥ −10
dB4.

Proof: Please refer to Appendix B.
Note that Lemma 2 proves the monotonicity for the AWGN
channel without the consideration of fading. For a fading
channel, in the following we will argue that the average finite
block-length rate R̂ is a monotonically increasing function
when the transmit SNR is large. Firstly, the average finite
block-length rate R̂ can be approximated at high SNRs as
follows:

R̂(ρ) ≈ E[log(1 + ρgd)−
Q−1(ε)

ln(2)

√
1/m]. (16)

By taking the first-derivative of (16), it can be easily verified
that the average finite block-length rate R̂ is a monotonically
increasing function with ρ in the high SNR region. Since the
transmit power Pd is equal to ρ multiplied by the constant
noise power, we conclude that the achievable finite block-
length rate R̂ monotonically increases with Pd, for sufficiently
large values of ρ. To relax the condition of high SNR, we
plot Fig. 1 which shows that although the monotonicity is
proved for the high SNR region, it holds true for SNR level
as small as −6 dB. Based on the above analysis and Fig. 1,
the optimal power allocation P ∗d should be achieved at the
maximum power limit such that the maximum value of the
average finite block-length rate is achieved. Thus, we have

P ∗d =
Ith

ĝc − σ2
e ln(%)

. (17)

By substituting (17) into the objective function in (9), we

4The assumptions here are reasonable for URLLC applications.
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Fig. 1: Comparison between high SNR finite block-length rate and
achievable finite block-length rate.

have

R = (1− ε)E
{

log2

(
1 +

Ithgd
N0B(ĝc − σe ln(%))

)

−
√

1

m

Q−1(ε)

ln 2

√√√√1− 1(
1 + Ithgd

N0B(ĝc−σ2
e ln(%))

)2

 , (18)

and the optimal average transmit power is given by

P̄ ∗d = E[P ∗d ] = E
[

Ith
ĝc − σ2

e ln(%)

]
. (19)

To proceed, in the following theorem, we derive the average
achievable rate and the optimal average power allocation in
closed-form.

Theorem 1: A closed-form approximation can be derived
for the maximum average achievable rate, i.e., R in (18),
which is given in (20) on the top of the next page, where
η1 = N0B

Ith
, η2 =

N0Bσ
2
e ln(%)
Ith

, en(x) =
∑n
k=0

xk

k! , β =√
1
mQ

−1(ε) log2(ε), and E1(·) is the exponential integral
function [33]. In addition, the optimal average transmit power
P̄ ∗d for the DR can be derived in closed-form

P̄ ∗d =
Ith

1− σ2
e

e
−σ

2
e ln(%)

1−σ2
e E1

[
−σ

2
e ln(%)

1− σ2
e

]
. (21)

Proof: Please refer to Appendix C.

Theorem 1 presents the closed-form expression for the maxi-
mum average achievable rate and the optimal average power
of the D2D pair. Then, we provide the asymptotic analysis for
the maximum achievable average rate at high SNRs. Firstly,
it can be easily shown that in the high SNR regime,1− 1(

1 + Ithgd
N0B(ĝc−σ2

e ln(%))

)2

→ 1. (22)

Accordingly, the maximum achievable average rate obtained at

TABLE I: Notations
Parameters Notation Typical Values

Channel estimation error variance σ2
e 10−2

Interference outage probability % 10−2

Block error probability ε 10−2

Interference threshold Ith 10 dBW
Block-length m 500

high SNRs, denoted by Rh, can be approximated as follows:

Rh ≈ (1− ε)
{
E
[
log2

(
1 +

Ithgd
N0B(ĝc − σ2

e ln(%))

)]
− β

}
.

(23)
Following similar proof steps as in Theorem 1, a closed-form
expression can be derived for (23), which is omitted here.
The gap between them depends on the values of the error
probability and the block-length. This phenomenon will be
clearly shown in Section V, which confirms the above analysis
and indicates that the gap between the achievable finite block-
length rate and ergodic capacity can be reduced by carefully
selecting the parameter values.

Remark 2: In the high SNR region, the average finite block-
length rate is expressed as the difference between the ergodic
capacity and the penalty term, i.e., β in (23), due to the fact
that the term E

{
β
√

1− 1
(1+ρgd)2

}
will approach β as the

SNR ρ increases. In addition, Fig. 1 demonstrates that the
average finite block-length rate versus SNR ρ, and as indicated
by the figure, the average rate in the high SNR case can
achieve the same performance when ρ ≥ 0 dB at a given block
error probability ε. Moreover, the optimal power allocation can
improve the average finite block-length rate. This is because
the transmit power is optimized to satisfy the upper bound
of the interference power constraint. Thus, the average finite
block-length rate can be maximized with the optimal power
allocation in the high SNR region. The block length m can
improve the average rate, which represents the low latency
feature.

V. NUMERICAL RESULTS

In this section, numerical results are presented to validate
the proposed iterative SCA schemes and the accuracy of
the theoretical analysis will be numerically confirmed by
comparing with Monte Carlo simulations. The summary of
the simulation parameter configuration is presented in Table I
unless otherwise specified.

First, we evaluate the proposed SCA-based resource al-
location schemes given in Section III. Fig. 2 shows the
convergence of Algorithm 1 for Scheme 1 and Scheme 2.
It is observed that the proposed resource allocation schemes
can converge to the same optimal value of the finite block-
length achievable rate. This confirms the accuracy of the
approximation

√
1− x ≈ 1− 1

2x and the effectiveness of these
two schemes. In addition, the interference threshold Ith and
the block-length value m can produce a positive effect to the
finite block-length achievable rate, while the larger channel
estimation errors σ2

e can lead to a degradation of the finite
block-length achievable rate.

In Fig. 3, it is observed that the finite block-length achiev-
able rate increases with the interference threshold Ith with



R ≈ (1− ε)

{
Ith

Ith ln 2−N0B ln 2(1− σ2
e)

[
−e−

σ2
e ln(%)

1−σ2
e E1

[
−σ

2
e ln(%)

1− σ2
e

]
+ e−η2E1[−η2]

]

−β

1− η1

2
(1− σ2

e) +
η2

2
− e

− η2
(1−σ2

e)η1

η1(1− σ2
e)
(

1
(1−σ2

e)η1
− 1
)3

(
E1

(
− η2

(1− σ2
e)η1

)

−e2

[
−η2

(
1

(1− σ2
e)
− 1

)]
e
η2

(
1

(1−σ2
e)
−1

)
E1(−η2) + e

η2
(1−σ2

e)η1

2∑
k=1

ek−1

(
− η2

η1(1−σ2
e)

)
k

(
1 + 1

1
η1(1−σ2

e)
−1

)k
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Fig. 2: Convergence of Algorithm 1.

m = 20 or m = 6000 for the URLLC context. Both
proposed SCA-based iterative schemes converge to the same
performance in terms of the finite block-length achievable
rate, which validates the proposed Algorithm 1. Moreover,
in order to validate the proposed resource allocation schemes,
we compare our proposed schemes with the optimal solutions
obtained from Monte Carlo simulations. It can be observed that
the Monte Carlo simulation has a slightly better performance
than the proposed SCA-based iterative schemes in terms of
the finite block-length achievable rate. This is owing to the
fact that Monte Carlo simulations can guarantee a globally
optimal solution for the average achievable rate maximiza-
tion problem, whereas our proposed schemes consider the
instantaneous achievable rate maximization with some ap-
proximations, leading to sub-optimal solutions. However, the
performance difference between the proposed schemes and the
Monte Carlo simulations is not significant, which confirms the
accuracy and effectiveness of the proposed schemes.

Fig. 4 plots the instantaneous achievable rate versus the
finite block-length m, obtained using the proposed resource
allocation schemes in Section III. As one can see from this fig-
ure, both proposed schemes first monotonically increase with
the block-length m and become flat in the large block-length
region. Moreover, both of them have the same performance in
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Fig. 3: The achievable rate versus the interference power threshold
Ith.

terms of the achievable finite block-length rate, which validates
the proposed approximation schemes. In addition, a larger
interference threshold increases the achievable finite block-
length rate, while a larger block error probability leads to a
smaller achievable finite block-length rate. Interestingly, it can
be observed that in Fig. 6, similar trends and arguments hold
for the average achievable rate performance as in the closed-
form expressions derived in Section IV. Further details will
be given in the following discussions.

Next, we evaluate the average achievable rate performance
to confirm the accuracy of the proposed closed-form expres-
sions given in Section IV. Fig. 5 shows the finite block-length
rate versus the interference threshold Ith. It is observed from
this figure that the average achievable rate versus the inter-
ference power threshold Ith, with two different block-length
values, namely, m = 20 and m = 2000. From this figure,
it is clear that the analytical result provided by the closed-
form expression of the average achievable rate R matches
with the Monte Carlo simulation results for a relatively large
interference power threshold, i.e., Ith ≥ 0 dBW. In addition,
there is a negligible difference between the theoretical and
numerical results in the low interference tolerance region
because of the slight inaccuracy of the approximation step,
i.e.,
√

1− x ≈ 1− 1
2x. In addition, the average achievable rate
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at high SNRs, i.e., Rh, approaches R in the high interference
power region. This is due to the fact that the average finite
block-length rate has a slightly increasing trend with a larger
block length m and the achievable finite block-length rate.
Specifically, it depends on the term

E


√

1

m

Q−1(ε)

ln 2

√√√√1− 1(
1 + Ithgd

N0B(ĝc−σ2
e ln(%))

)2

 ,

which approaches E
{√

1
m
Q−1(ε)

ln 2

}
with a larger m and Ith

such that Rh achieves a performance very close to the average
finite block-length rate R in the high interference threshold
regime.

Then, we evaluate the average achievable rate versus the
block-length m in Fig. 6. It can be observed that the average
achievable rate R first monotonically increases with the block-
length m and then stays flat in the large block-length regime.
This is due to the fact that the achievable average rate with fi-
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Fig. 6: The average achievable rate versus block-length m.

nite block-length codes is basically an expression calculated by
incurring a penalty on ergodic capacity, in which the penalty is
inversely proportional to m. Hence, when m becomes larger,
the penalty added to the achievable rate in the finite block-
length regime gradually reduces. Meanwhile, Fig. 6 shows that
the traditional ergodic capacity is flat with the block-length m.
This is due to the fact that the ergodic capacity is defined for
arbitrarily small packet error probability and sufficiently large
packet lengths, which implies that it is independent of the
finite block-length m. In addition, the interference tolerance
has a positive effect on the average achievable rate, which is
easy to understand since a larger interference tolerance power
results in a larger transmit power limit and thus contributes
to a higher average achievable rate. Moreover, Fig. 6 also
indicates that a larger channel estimation error variance σ2

e

and a larger block error probability ε will lead to a smaller
average achievable rate. This indicates that accurate channel
estimation can greatly benefit the achievable rate performance
in the finite block-length regime.

Fig. 7 shows the performance of the optimal average power
versus the interference outage probability %. From this figure,
it can be observed that the derived closed-form expression
of the average optimal power P̄ ∗d matches with the Monte
Carlo simulation results, which confirms the accuracy of our
derivations. Furthermore, Fig. 7 shows that a larger value of %
leads to a higher average power allocation which is required
to support the D2D transmission. In this case, the interference
power at the cellular BS may exceed the interference threshold
Ith with a higher probability. In addition, we can observe that
a larger interference tolerance leads to a larger average optimal
power, whereas the channel error estimation variance has an
adverse effect on the average optimal power allocation.

VI. CONCLUSION

In this paper, we investigated opportunistic spectrum sharing
for a D2D based URLLC system. A novel performance
metric for finite block-length codes was adopted to for-
mulate an achievable rate maximization problem subject to
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outage probability threshold % with finite block-length value

m = 500.

the outage probability constraint of the interference power
and the imperfect CSI. To facilitate the design of effec-
tive resource allocation algorithms, convexity analysis was
first presented which showed that the objective function is
not always concave/convex. Then, the original problem was
transformed using some approximations and then solved by
applying the iterative SCA-based schemes. In addition, we
analyzed the monotonicity property of the average rate in the
finite block-length regime for the AWGN channel, and we
also argue that the property is true for the fading channel.
Based on this property, an optimal power control policy was
proposed, followed by derivations of closed-form expressions
and approximations for the optimal average transmit power
and the maximum achievable average rate. Numerical results
confirmed the effectiveness of the proposed resource allocation
schemes and validated the accuracy of the theoretical closed-
form expressions.

APPENDIX

A. Proof of Lemma 1
First, it is required that the finite block-length achievable

rate should be non-negative, i.e., f0(b) ≥ 0 such that the
following inequality can be obtained

c ≤ f1(b) =
(1 + b) log2(1 + b)√

b(b+ 2)
. (24)

Next, we find the second-order derivative to check the con-
vexity of f0(b), which yields

∂2f0(b)

∂b2
= − 1

(1 + b)2
+
c[2b2 + 2b+ (1 + b)2]

(1 + b)3[b(b+ 2)]
3
2

, (25)

=
c(3b2 + 6b+ 1)− (b+ 1)[b(b+ 2)]

3
2

(b+ 1)3[b(b+ 2)]
3
2

. (26)

If f0(b) is concave, it means that ∂2f0(b)
∂b2 ≤ 0. In other

words, c(3b2 + 6b + 1) − (b + 1)[b(b + 2)]
3
2 ≤ 0, which can

be written as

c ≤ f2(b) =
(b+ 1)[b(b+ 2)]

3
2

(3b2 + 6b+ 1)
. (27)

From (24) and (27), we notice that both f1(b) and f2(b) are
monotonically increasing functions in terms of b ≥ 0. Also,
it can be easily verified that f1(b) ≥ f2(b) for 0 ≤ b ≤ b0
and f1(b) ≤ f2(b) for b ≥ b0, where b0 = 1.1481 satisfying
f1(b) = f2(b). Hence, by denoting d = f1(b0) = f2(b0), the
concavity of f0(b) can be analyzed as follows:
• If c > d, i.e., c > f1(b0) = f2(b0), this means that b0 ≤
f−1

2 (c) ≤ f−1
1 (c). From (24), we note that b ≥ f−1

1 (c) is
required to guarantee a non-negative finite block-length
achievable rate. Therefore this condition implies that b ≥
f−1

1 (c) ≥ f−1
2 (c), which satisfies (27) and confirms that

f0(b) is concave.
• If c ≤ d, i.e., c ≤ f1(b0) = f2(b0), this means

that b0 ≥ f−1
2 (c) ≥ f−1

1 (c). From (24), we note that
b ≥ f−1

1 (c) is required to guarantee the feasibility of
the calculated finite block-length rate. Therefore there
are two possible cases: 1) b ≥ f−1

2 (c) ≥ f−1
1 (c), 2)

f−1
2 (c) ≥ b ≥ f−1

1 (c). If b belongs to case 1), then it
satisfies (27) and f0(b) is concave. On the other hand, if
b belongs to case 2), then c ≥ f2(b), ∂2f0(b)

∂b2 ≥ 0 and
hence f0(b) is convex.

B. Proof of Lemma 2

Let us focus on the AWGN channel with a transmit SNR ρ̄,
and we take the first derivative of the instantaneous achievable
rate R̂, given by

∂R̂

∂ρ̄
=

1

(1+ρ̄) ln 2

[
1−
√

1

m
Q−1(ε)

(
1− 1

(1+ρ̄)2

)− 1
2 1

(1+ρ̄)2

]
.

(28)
The remaining part is to show that (28) is greater than
zero under some practical assumptions. Specifically, for
m ≥ 102 and ε ≥ 10−6, we have m−

1
2 ≤ 10−1 and

Q−1(ε) ≤ Q−1(10−6).5 In addition, we define g(ρ̄) =√
1
mQ

−1(ε)
(

1− 1
(1+ρ̄)2

)− 1
2 1

(1+ρ̄)2 , which is easily shown to
be a monotonically decreasing function with ρ̄ and g(ρ̄) < 1
when ρ̄ is not extremely low, e.g., ρ̄ ≥ −10 dB. We completed
the proof of Lemma 2.

C. Proof of Theorem 1

First, we rewrite the average achievable rate R as

R = (1− ε)

E
{

log2

(
1 +

Ithgd
N0B(ĝc − σe ln(%))

)}
︸ ︷︷ ︸

C

−β E


√√√√1− 1(

1 + Ithgd
N0B(ĝc−σ2

e ln(%))

)2

︸ ︷︷ ︸
D

 , (29)

5Q−1(x) monotonically decreases in terms of x.



where β =
√

1
mQ

−1(ε) log2(ε). Next, we derive the closed-
form expression for the first term C, which is given by

C=

∫ ∞
0

e
− ĝc

1−σ2
e

1− σ2
e

∫ ∞
0

1

ln 2
ln

(
1+

Ithgd
N0B(ĝc−σ2

e ln(%))

)
e−gddgddĝc

=
1

ln 2

∫ ∞
0

e
− ĝc

1−σ2
e

1−σ2
e

e
N0B(ĝc−σ2

e ln(%))

Ith E1

(
N0B(ĝc−σ2

e ln(%))

Ith

)
dĝc.

(30)

Let us denote x = η1ĝc − η2, where η1 = N0B
Ith

and η2 =
N0Bσ

2
e ln(%)
Ith

. Hence, we have

C =
e
− η2

(1−σ2
e)η1

η1(1− σ2
e) ln 2

∫ ∞
−η2

e

(
1− 1

(1−σ2
e)η1

)
x
E1(x)dx

=
Ith

[Ith −N0B(1− σ2
e)] ln 2

[
−e−

σ2
e ln(%)

1−σ2
e E1

[
−σ

2
e ln(%)

1− σ2
e

]
+ e−η2E1[−η2]

]
. (31)

Then, we focus on the derivation of closed-form expression
for D, which can be expanded as

D=

∫ ∞
0

e
ĝc

1−σ2
e

1−σ2
e

∫ ∞
0

√√√√1− 1(
1+ Ithgd

N0B(ĝc−σ2
e ln(%))

)2 e
−gddgddĝc.

(32)

Note that
√

1− a can be approximated as 1− 1
2a, for |a| < 1.

Thus, we have that

D≈
∫ ∞

0

e
ĝc

1−σ2
e

1−σ2
e

∫ ∞
0

1− 1

2

1(
1+ Ithgd

N0B(ĝc−σ2
e ln(%))

)2

 e−gddgddĝc
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∫ ∞
0
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1−σ2
e
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e
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− 1
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∫ ∞
0
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e
ĝc

1−σ2
e

1−σ2
e

[
N0B(ĝc−σ2

e ln(%))

Ith

×e
N0B(ĝc−σ2

e ln(%))

Ith Ei

(
−N0B(ĝc−σ2

e ln(%))

Ith

)
+1

]
dĝc

= 1− 1

2

∫ ∞
0

N0B(ĝc − σ2
e ln(%))

Ith

e
ĝc

1−σ2
e

1− σ2
e
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− 1
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e

1− σ2
e

[
N0B(ĝc − σ2
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Ith
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e
N0B(ĝc−σ2

e ln(%))

Ith

× Ei
(
−N0B(ĝc − σ2

e ln(%))

Ith

)
dĝc

= 1− η1

2
(1− σ2

e) +
η2

2

+
1

2η1(1− σ2
e)
e
− η2

(1−σ2
e)η1

∫ ∞
−η2

x2e

(
1− 1

(1−σ2
e)η1

)
x
E1(x)dx︸ ︷︷ ︸

Γ

.

(33)
To obtain the closed-form expression for Γ, we consider [34,
Eq. 4.2.16], given as∫

xneaxE1(bx)dx=
n!

an+1
E1[(a+b)x]

− n!

an+1
en(ax)e−axE1(bx) +

n!

an+1
E1(bx)

+
n!

an+1
e−(a+b)x

n∑
k=1

ek−1[(a+ b)x]

k
(
1 + b

a

)k , (34)

where en(x) =
∑n
k=0

xk

k! . Thus, Γ is derived in closed-form
as follows:

Γ = − e
− η2

(1−σ2
e)η1

η1(1− σ2
e)
(

1
(1−σ2

e)2η1
− 1
)3

{
E1

(
− η2

(1− σ2
e)η1

)

−e2

[
−η2

(
1

(1− σ2
e)
− 1

)]
e
η2

(
1

(1−σ2
e)η1
−1

)
E1(−η2)

+e
η2

(1−σ2
e)η1

2∑
k=1

ek−1

(
− η2

η1(1−σ2
e)

)
k

(
1 + 1

1
η1(1−σ2

e)
−1

)k
 . (35)

By exploiting (31), as well as the approximation of D in (33)
with Γ in (35), the approximated closed-form expression of
R can be derived and is given in (20). Similarly, the optimal
average transmit power P̄ ∗d can be derived in closed-form,
given in (21), and its proof is omitted here for simplicity.
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