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Abstract—Today’s large-scale systems such as High Perfor-
mance Computing (HPC) Systems are designed/utilized towards
exascale computing, inevitably decreasing its reliability due to
the increasing design complexity. HPC systems conduct extensive
logging of their execution behaviour. In this paper, we leverage
the inherent meaning behind the log messages and propose a
novel sentiment analysis-based approach for the error detection
in large-scale systems, by automatically mining the sentiments in
the log messages. Our contributions are four-fold. (1) We develop
a machine learning (ML) based approach to automatically build
a sentiment lexicon, based on the system log message templates.
(2) Using the sentiment lexicon, we develop an algorithm to
detect system errors. (3) We develop an algorithm to identify
the nodes and components with erroneous behaviors, based
on sentiment polarity scores. (4) We evaluate our solution vs.
other state-of-the-art machine/deep learning algorithms based on
three representative supercomputers’ system logs. Experiments
show that our error detection algorithm can identify error
messages with an average MCC score and f -score of 91%
and 96% respectively, while state of the art ML/deep learning
model (LSTM) obtains only 67% and 84%. To the best of
our knowledge, this is the first work leveraging the sentiments
embedded in log entries of large-scale systems for system health
analysis.

Index Terms—Sentiment analysis lexicon, large-scale systems,
Stochastic Gradient Descent, logistic regression, error detection

I. INTRODUCTION

Failure log analysis of HPC systems, such as supercomput-
ers, is attracting more and more researchers from academia and
industry in order to improve their reliability. These systems,
consisting of sophisticated hardware and software, often fail
due to their scale and design complexity. The components of
these systems, such as OS and parallel file systems, generally
generate masses of valuable log messages that are critical
for system administrators to assess the state of the system
[1]. These message or event logs are considered the first
source about the system’s health state for administrators,
because it contains rich information about normal behavior
(i.e., informational messages) or abnormal behavior (i.e., error
messages) of various system components.

Failure-directed analysis, such as error detection, using
these system logs has been extensively studied for years. In [2],
the authors performed error detection in supercomputers by
combining entropy, mutual information, and PCA approaches.

Several recent works were generally based on detecting sys-
tem anomalies [3]–[5]). Further techniques based on natural
language processing (NLP) and artificial intelligence (AI) have
also been applied towards failure log analysis [6]–[8].

Works on error detection in HPC systems have focused
on various aspects such as identification (i) of erroneous
log entries [9], (ii) of failure-inducing erroneous execution
sequence [2], [10], [11] and (iii) of detecting quantitative
relationship among logs [12], [13]. This paper addresses the
first problem and focuses on the automated classification of
failure log entries, thereby obviating the need for the time-
consuming manual labelling of such entries. Often, automated
labeling is achieved using rule-based techniques. However,
such rule-based approaches are often inflexible as the rules
need to be revised when new types of log entries are generated.

In this paper, we explore a novel perspective on the problem
of failure log analysis. We conjecture that log messages often
encapsulate the sentiment of system developers, which pertains
to the perceived health of the system. For example, if a
typical log entry states a timeout issue on a particular node,
this message implies that there is something wrong at the
network level. That is, such a message indicates that the system
developer has a negative sentiment about the current network
status. The question is: can we leverage these sentiments
to develop a sentiment analysis-based technique for failure
log analysis? Our answer is yes, as we propose two novel
algorithms for detecting error messages and faulty nodes and
components in these systems. This is particularly helpful for
error detection in systems with non-labelled logs (such as
Ranger and Lonestar4, to be detailed later).

Sentiment analysis, which is a text classification technique
that combines NLP and AI, is based on assigning weighted
sentiment scores to the text entities within a word, phrase,
sentence, or document. One class of approaches for sentiment
analysis makes use of a sentiment lexicon where the focus is
on developing specific list of words that carry cues of affection
or sentiment, instead of using every word as a feature [14].
However, the development process of the sentiment lexicon
has some weaknesses: (i) it is often generated manually,
which is tedious and inaccurate to users; (ii) it tends to be
domain-specific for efficiency reasons. We address these two
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respective problems as follows: (i) we develop a machine-
learning approach that exploits the log sentiments to develop
a sentiment lexicon to support the detection of errors in large
systems1 and identify the erroneous components or nodes and
(ii) based on our observation that such HPC systems often
share similar components such as OS, a lexicon for one system
(i.e., source system) can be reused for another target system.

The fundamental principle of our design is that the sen-
timent intensity scores can accurately represent the system
state, among which the system developers generally use very
similar concepts or terms to record the events/messages across
different systems. In fact, the system developers often use
negative sentiments to log serious problems such as errors
and failures, neutral sentiments to highlight informational
messages indicating the system works as expected, and posi-
tive sentiments to mark the system faults/problems that have
been fixed, which inherently captures the three main classes
(sentiment polarities) of a log message.

However, to detect errors, sentiment polarity is not adequate.
A sentiment intensity score keeps track of the strength of a
sentiment, e.g., the features ‘failed’ and ‘unexpected’ may
be associated with higher negative scores than the features
‘slow’ and ‘monitor’, while the features ‘recovered’ and ‘suc-
cessfully’ are assigned higher positive scores than ‘normal’
and ‘valid’ states. This potentially allows us to exploit system
logs of a source system that are labelled with severity levels
(e.g., Blue Gene systems) and extract their sentiment features
to automatically label log entries of other unlabelled (target)
systems as an unsupervised approach.

We make four main research contributions:
1) We develop a ML-based method using stochastic gra-

dient descent logistic regression, to automatically con-
struct a reusable sentiment lexicon for such systems.

2) We develop an algorithm for error detection based on
the sentiment intensity score of log messages.

3) We develop an algorithm to discover system components
(e.g., nodes) which show erroneous behaviors based on
sentiment polarity scores of messages logged by those
components during a specific time period.

4) We perform the evaluation using the system logs of
three large systems: (i) Blue Gene/Q Mira, (ii) Ranger
and (iii) Lonestar4 which were built by three different
vendors - IBM, Sun, and Dell respectively. We also com-
pare our sentiment lexicon’s performance with ML/deep
learning classification algorithms, including Long Short
Term Memory (LSTM), Random Forest (RT), Extreme
Gradient Boosting (XGBoost), Multinomial Naive Bayes
(Multinomial NB), and K-Nearest Neighbor (KNN).
Experiments show that our sentiment-based solution
can efficiently detect error messages based on their
associated sentiment scores, with an average MCC-
score of 91% and an average f -score of 96%, whereas
state-of-art ML/deep learning model (LSTM) obtains

1A system fault refers to a potential event that may adversely affect the
system execution.

only 67% and 84% respectively. Our technique identifies
error messages with an f -score of about 99% for Blue
Gene/Q Mira system. Using the sentiment lexicon items
extracted based solely on the Blue Gene systems logs, a
majority of errors in Ranger and Lonestar4 logs can be
successfully detected, with f -scores of about 94%, and
95%, respectively. This effectively shows that our tech-
nique can generate reusable lexicon for such systems,
enabling the automated labelling of any system’s logs.

The remainder of this paper is organized as follows: Sec-
tion II presents the background for the system/fault model
& log data, and Section III formulates the research problem.
Sections IV∼VI present the main steps of our approach.
Section VII shows the results of our evaluation performed on
the logs of three large systems. Section VIII discusses related
work, and we conclude the paper in Section IX.

II. SYSTEM/FAULT MODEL AND LOG DATA

In this section, we describe the targeted system model, fault
model, the supercomputers studied in our work as well as their
system logs used in our experiments.

A. System Model

We present a generic system model of HPC cluster systems.
A cluster system consists of a set of nodes N1, . . . , Nm to
execute a set of jobs J1, . . . , Jn over a set of production time-
slots T1, . . . , Tp. To support these activities, components such
as a resource scheduler and a set of software components,
such as a file system and an operating system, are needed. The
nodes and production slots on the HPC system are allocated
to a job by the resource scheduler. Data, as input or output,
may be transferred to and from the file system by each node
or job. As the software components execute, they output log
messages and resource usage data which may be written to
containers.

B. Fault Model

We assume that various discrete fault models may be con-
sidered, depending on the abstraction level. One may consider
faults occurring at the node level, the file system level, or
an aggregate cluster level. When a fault occurs, the resulting
error leads to the output of an error message in the system log
file. If the error is not adequately handled, a failure can occur
which will also be logged. We assume that faults can occur in
any component at any level within the HPC system.

We now describe the production clusters along with their
logs used in our research, which is the fundamental in-
formation of our following sections (problem formulation,
methodology, etc.).

C. Blue Gene/Q Mira Cluster and RAS Logs

The Mira supercomputer used to be one of the most power-
ful supercomputers in the world, and its comprehensive system
logs (including RAS log, job scheduling log, I/O behavior
log, etc.) have been released to the public to promote the
understanding of extreme-scale systems. Mira consists of 48
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racks, each containing two midplanes. Every midplane has 32
compute nodes, each being facilitated with 16 active cores
on a PowerPC A2 1600 MHz processor and a total of 16G
DDR3 memory. As such, the entire Mira system has a total
of 786,432 cores and 786,432 GB of memory.

In the Mira cluster with diverse system logs, the Reliability,
Availability, and Serviceability (RAS) log is our focus. The
event in the RAS log is identified by one of three severity
levels (INFO, WARN, or FATAL). Although one message in
the RAS log consists of 14 fields, we focus only on a few
of them related to the system reliability, such as MESSAGE,
MSG ID, LOCATION, SEVERITY, and EVENT TIME, as
suggested by [15]–[17].

D. Ranger and Lonestar4 Clusters and System Logs

Here, we describe the Ranger and Lonestar4 cluster systems
operated by the Texas Advanced Computing Center (TACC)
[18]. Ranger was a Linux-based high-performance computing
(HPC) system that consisted of 4,048 nodes. It was operated
from 2007 to 2013. A high-speed Infiniband network provided
communication among all the nodes. A job scheduler provided
job scheduling and resource management services. The Lustre
file system provided high-speed file access to the users of
Ranger. Ranger is the first HPC system at a United States
academic institution that deployed Rationalized logs [19].

Lonestar4 was a Linux-based HPC system that consisted
of 1,888 nodes. It was operated from 2009 to 2015. As
was described in the description of Ranger, a high-speed
Infiniband network provided communication between all the
nodes on Lonestar4, a job scheduler provided job scheduling
and resource management services, and the Lustre file system
provided high-speed data I/O.

Next, we give an example of a system log:

Apr 4 15:58:38 012324 mds5 kernel: LustreError
: 138-a: work-MDT0000: A client on nid .*.*
.5@o2ib was evicted due to a lock blocking
callback to .*.*.5@o2ib timed out: rc

The system logs generated on Ranger and Lonestar4 do not
contain any severity level tags such as FATAL, FAILURE,
ERROR and INFO. The fields in the system log are: (i) time-
stamp (Apr 4 15:58:38), (ii) job number (012324), (iii) node
number (mds5), (iv) system software component (kernel) and
(v) message (A client on nid ...). The message is a client
eviction due to a lock blocking callback. We focus on the
message field, as this will allow for the classification of the
log as faulty or non-faulty. We collected 2 months worth of
system logs on Ranger and 2 months worth of system logs on
Lonestar4. We removed all the repeated messages to obtain a
set of unique messages.

In the Ranger system logs, we identified: (i) 1,513 unique
messages in June 2011 (reduced from 10,021,516) and
(ii) 1,676 unique messages in July 2011 (reduced from
64,822,682). In the Lonestar4 system logs, we identified:
(i) 2,804 unique messages in February 2013 (reduced from
8,993,154) and (ii) 2,576 unique messages in March 2013
(reduced from 12,267,629).

III. PROBLEM FORMULATION

We formulate our research problem based on the three
aforementioned supercomputers, including Blue Gene/Q Mira
(involving 49K nodes with a total of 786K cores), TACC
Ranger (involving 4K nodes) and Lonestar4 (about 2K nodes
with up to 63K cores), which were built by three different
vendors - IBM, Sun, and Dell respectively.

Without loss of generality, the general system model for a
large-scale system (e.g. IBM Blue Gene) contains a set N of
nodes, a queue of J jobs, a set T of production times, a job
scheduler JS, and various software components such as a file
system. The scheduler JS allocates the J jobs to the N nodes
to execute during time period T . Further, the components write
message logs in to a central writing container [18].

The problem that our approach addresses can be formulated
as follows: Assume (i) a set of log messages is generated by a
large-scale system, (ii) these log messages have different sever-
ity levels, and (iii) the message templates comprise system
developers’ sentiments (either negative, neutral, or positive),
our objective is to develop an efficient approach that is able
to:

1) Automatically construct a reusable sentiment lexicon
intended for large-scale systems.

2) Using the lexicon, identify system individual faults.
3) Using the lexicon, develop an unsupervised approach to

detect faults of other (target) systems that are missing
the severity attribute information.

4) Using the generated lexicon, identify the erroneous
nodes and components to assist precaution (e.g., avoid
node crash), thereby preventing job failures.

IV. LEXICON CONSTRUCTION USING STOCHASTIC
GRADIENT DESCENT LOGISTIC REGRESSION

In this section, we describe a machine learning based
model (namely SGDLRSL) that allows for the automatic
construction of sentiment lexicons to detect errors in large-
scale systems via the stochastic gradient descent logistic
regression technique. A sentiment lexicon is a dictionary that
consists of features (N-gram) associated with their sentiment
polarity values, and these sentiment scores are estimated based
on a model trained on a sample of log message templates.
Stochastic gradient descent logistic regression was employed
since it is a discriminative model which assigns high weights
(sentiment scores) to the significant log message features that
can distinguish error messages from non-error messages. To
generate a sentiment lexicon for a large-scale system, our
model requires four components:
• M input/label pairs of log message templates (xi,yi)

where each input log message template xi is represented
by a vector of f j features [f1, ..., f j ].

• the sigmoid (logistic) function to compute the estimated
class ȳ = σ(w.x+ b) for each log message template.

• the cross-entropy loss function for features weights
(i.e.,coefficients) learning through minimizing error on
training log messages.
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Fig. 1. ∼ 60 of IBM Gene systems lexicon’ items associated with their sentiment intensity scores

• the stochastic gradient descent algorithm for optimizing
the cross-entropy loss function and updating weights.

The SGDLRSL model performs two main steps to learn
sentiment lexicon items (features and their weights).

A. Phase I. Log Message Template Preprocessing

In the first step, we use M representative training log
message templates (xi,yi) that are labelled as either [−1, 1]
faulty or non-faulty messages where the numbers of erroneous
and non-erroneous messages are balanced. We can use severity
levels as log message template labels for those large-scale
systems with this feature in their log data. The following
preprocessing steps are conducted on the dataset with log
message templates:
• Divide log message templates into tokens such as strings,

variables, and punctuation.
• Remove all alphanumeric words, punctuation, stop words,

variables that are not strings from log messages and use
other NLP methods to clean text, such as lowercasing all
texts, etc.

B. Phase II. Sentiment Lexicon Learning

We present the sentiment lexicon learning pseudo-code in
Algorithm 1. Basically, the stochastic gradient descent logistic
regression (SGDLR) technique obtains sentiment scores (a
vector of weights) of lexicon elements by learning from the
log message templates training set. Each weight wj(used later
as a sentiment score) is a real number (∈ R) and is linked with
one of the log message features f j . The weight wj signifies
how important the log message feature is to classifying a faulty
log message from a non-faulty log message. Without loss of
generality, we assume that a high positive weight indicates
a message with a normal state or correctable error, and a
very negative weight implies that the message is a failure
or non-correctable error. This machine learning technique
automatically computes the scores of lexicon items as follows:

Step 1. We employ the Term Frequency-Inverse Document
Frequency (TF–IDF) representation technique [20] to extract
n-gram features f j from log message templates xi and convert
these features to numerical vectors ∈ R|L|, where lexicon L
is a set of n-gram features. The TF–IDF value of each feature
is calculated by multiplying two metrics: Term Frequency

Algorithm 1: SGDLR to construct a sentiment lexicon
for large-scale systems

Input: M log message templates (x, y),Logistic regression
h(),Loss function L(), learning rate η , regularization
parameter λ

Output: Log features f with their weights W
initial W , b, η ← 0.01, λ;

for each (x) ∈M do
1) Tokenization
2) Removal of alphanumeric words, variables, etc.
3) Convert into TF-IDF representation format via Formula (1).

end
repeat

for (x, y) ∈M randomly do
1) Compute ȳ ← 1

1+e−θT x
2) Compute the loss by Formula (5).
3) Compute the gradient g ← η∇L(h(x; θ), y)
4) Update weights and bias θt+1 ← θt − η∇L(h(x; θ), y)

end
until SGD Converged;
return (f,W )

tf(f j , xi) and Inverse Document Frequency idf(mfj ,M) as
follows:

tfidf(f j , xi,M) = tf(f j , xi) × idf(mfj ,M) (1)

In TF-IDF, the TF part measures how frequently a feature f j

occurs in a log message template xi and is defined as follows

tf(fj ,xi) =
nfj ,xi∑
k nfk,xi

(2)

where nfj ,xi is the total number of feature f j occurrences
in a log message template xi divided by the total number of
features

∑
k nfk,xi in that message template. The IDF part,

idf(f j ,M), measures how important a feature f j is in all
message templates M by taking the logarithm of the ratio
of the total number of log message templates M to the total
number of log message templates mfj ≤ M containing the
feature f j plus 1, to prevent dividing by zero, as follows:

idf(mfj ,M) = log (
M

mfj + 1
) (3)

We refer the readers to [20] for more details.
Step 2. We use SGDLR to train our model on log message

features to extract the dense weights vector W as follows:
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1) Compute the estimated class ȳ = σ(w.x+b) for each log
message template via the following logistic regression
function:

h(x) =
1

1 + e−θTx
(4)

where θ includes two types of parameters: features’
weights W and bias b (we neglect this parameter).

2) Then, we use the cross-entropy function and L1 regu-
larization (Formula (5)) to compute the loss L(ȳ, y) in
order to measure how close ȳ is to the actual label y.

L(ȳ, y) = −[ylogȳ + (1− y)log(1− ȳ)] + λ|w| (5)

The weights W of log message features and bias b are
learned from labelled log messages training set through
a loss function that must be minimized to make ȳ for
each log message as close as possible to the actual
output y. L1 regularization (i.e., Lasso Regression) λ|w|,
where parameter λ > 0, is added to the cost function
to prevent the overfitting problem and improving model
generalization by penalizing weights.

3) Minimize the loss function in our model via the stochas-
tic gradient descent technique (Formula (6)) to obtain the
optimal weights W of log message features.

θt+1 = θt − η∇L(f(x; θ), y) (6)

Stochastic gradient descent is a technique which is used
to minimize the loss function by calculating its gradient
after each mini-batch of log messages and updating the
vector’s parameters values θ (weights W and bias b).
Since the loss function for logistic regression is convex,
the SGD will reach the minimum of a lost function.

Step 3. The dense weight vector W is used as the senti-
ment scores with their associated log message features f as
our lexicon items. For systematic observation, we normalize
sentiment scores by dividing them by a uniform coefficient.

V. SENTIMENT POLARITY-BASED ERROR DETECTION

In this section, we present a novel error message detection
algorithm, i.e., log message labelling algorithm, exploiting
the sentiment lexicon, which is constructed using stochastic
gradient descent logistic regression. We present the approach
in Algorithm 2.

The algorithm includes three phases, which are described
as follows.

1) Phase I: Log Parsing: This phase is similar to the log
message preprocessing phase presented in Section IV, where
the opensource toolkit LogAider [15] and NLP techniques are
employed to preprocess and clean the system logs. For exam-
ple, all duplicated events with spatial or temporal correlations
are filtered out by LogAider.

2) Phase II: Log Message Sentiment Scores Assignment:
In this phase, each log message xi is associated with a
sentimental polarity score using an assignment method similar
to NLP’s lexicon techniques (e.g., Vader [21]), in which the
lexicon learned from the SGDLRSL model is used to assign
each log message a sentiment score made up of three different

Algorithm 2: Error detection algorithm based on sen-
timent lexicon

Input: Unlabelled messages logs (x1, · · · , xn), Sentiment Lexicon
Items(fi, wi),Absolute lexicon threshold µ = µ, detection
threshold ϕ = ϕ

Output: (x1posScore, · · · , xnposScore), (x1negScore, · · · , xnnegScore),
(x1SentiScore, · · · , xnSentiScore), Labels(yi, · · · , yn)

Parsing messages logs (x1, · · · , xn)
for i = 1 to n do

xiposScore ←
∑

i wi∑
i fi

; wi > 0

xinegScore ←
∑

i wi∑
i fi

; wi < 0
xiSentiScore = xiposScore + xinegScore
if xiSentiScore < ϕ then

yi ← faulty;
else

yi ← non-faulty;
end

end

scores: positive, negative, and the overall log sentiment score,
as follows:

xiposScore =

∑
i wi∑
i fi

; wi > 0 (7)

xinegScore =

∑
i wi∑
i fi

; wi < 0 (8)

xiSentiScore = xiposScore + xinegScore (9)

In general, the faulty messages contain the system develop-
ers’ negative sentiments expressing concern about unexpected
system operations, unusual situations, serious problems, failed
services, and corruption. Consequently, the xinegScore is cal-
culated by summing the negative valence scores wi < 0 for
each feature fi of a log message that matches the sentiment
lexicon features divided by their total number; the intensity of
this score lies between 0 (neutral) and -1 (extremely negative).
Moreover, log messages are generally embedded with more
negative sentiments than positive or neutral ones, as the system
developers tend to be more interested in abnormal systems’
events. On the other hand, non-faulty messages include neutral
sentiments indicating normal system behaviors and progress
of system software (e.g., service started or stopped); positive
sentiments indicate the system issues that are resolved (e.g.,
corrected errors, recovered failures). Therefore, the xiposScore
is calculated by summing the positive valence scores wi > 0
for each feature fi of a log message that matches the sentiment
lexicon features divided by their total number; the intensity of
this score lies between 0 (neutral) and +1 (extremely positive).
The xiSentiScore is the overall log polarity score that combines
the xinegScore and xiposScore. In other words, by summing the
valence scores (i.e., whether it is positive or negative) for each
feature fi of a log message that matches the sentiment lexicon
features divided by their total number. This score lies between
-1 (extremely negative) and +1 (extremely positive).

3) Phase III: Detection Phase: Once system log messages
are associated with sentiment polarity scores, the xiSentiScore,
detection threshold ϕ, and absolute lexicon threshold µ are
used to detect whether these messages are faulty or non-faulty.
A log message is classified as faulty when xiSentiScore < ϕ

5



and as non-faulty otherwise. We can refine the ϕ threshold
until we achieve an optimal value which results in a satisfied
classification, however, in our analysis, we note that ϕ = 0
is a near-optimal setting. Furthermore, the absolute lexicon
threshold µ can be adjusted until satisfactory classification
accuracy with fewer lexicon features is achieved.

VI. ERRONEOUS COMPONENT IDENTIFICATION BASED
ON SENTIMENT POLARITY SCORES

We can use our learned sentiment lexicon to calculate the
sentiment polarity scores of the log messages for a certain time
window t over some period (e.g., one hour time window over
one day) for identifying the problematic components (e.g.,
nodes). The idea is that based on the sentiment scores, the
system administrators can forecast which components may
have erroneous behaviors, such that the jobs involved can
be reassigned to other backup resources, and the problematic
components would be temporally isolated until their problems
are fixed. Specifically, the components’ sentiment scores are
anticipated to be neutral when they work as expected by
logging informational messages or logging nothing. The nega-
tive scores are anticipated to associate with some components
experiencing errors, especially when these abnormal states last
for multiple consecutive time windows. However, when the
components’ issues have been resolved and they start to log
the recovery and correction messages, their sentiment scores
are expected to be increased or set to positive, indicating that
they have been recovered well.

Our approach is composed of our sentiment lexicon that
was learned in the previous section IV, system’s components
(Ci, ..., Ck), log messages (x1, ..., xn), time window t, where
the system developers define the start time tS and end time tE
, and a detection sentiment score ϕ. The phase of erroneous
component identification is similar to that of detecting error
message logs; however, the components’ associated sentiment
scores are calculated within a certain time window specified
by the systems’ administrators. We present the pseudo-code
of erroneous component identification algorithm based on a
specific window time [ts, te] in Algorithm 3.

1) Phase I: Component’s Log Parsing: Unlike the log
parsing phase in the error detection phase, the component’s
log messages should not be filtered out, in order to keep the
spatial and temporal information. Moreover, in this phase, the
system administrator are allowed to specify the time window
in which the component logs are grouped together. Our model
aims to assign sentiment polarity scores based on what each
component logs about its health in a specific time.

2) Phase II: Component Sentiment Scores Assignment: In
this phase, the system’s components are associated with senti-
mental polarity scores using an assignment method similar to
that used in the second phase of error detection presented pre-
viously. In particular, all negative features and positive features
indicating error correction learned from the SGDLRSL model
are used to assign each component a sentiment score for a
specified time window. It is composed of three scores: positive,
negative, and overall sentiment score (denoted as CiposScore,

Algorithm 3: Erroneous component identification in
large-scale system based on sentiment scores

Input: Components (Ci, ..., Ck), Unlabelled messages logs
(x1, · · · , xn), Sentiment Lexicon Items(fi, wi), detection
threshold ϕ , Start time tS ← ts , End time tE ← te

Output: CiposScore, CinegScore, CiSentiScore, CiState
initial ϕ← ϕ, CiLogs ← “ ”
Parsing messages logs (x1, · · · , xn)
for i = 1 to k do

for j = 1 to n do
CiLogs ← Concatenate (xj , xj+1) ;xj ∈ Ci && ts ≥
t ≤ te

end
end
for i = 1 to k do

CiposScore ←
∑

i wi∑
i fi

; wi > 0

CinegScore ←
∑

i wi∑
i fi

; wi < 0
CiSentiScore ← CiposScore +CinegScore
if CiSentiScore < ϕ then

CiState ← Erroneous;
else

CiState ← non-Erroneous;
end

end

CinegScore, and CisentiScore, respectively), whose calculations
are similar to those of the phase II in the error detection (see
Formula (7), (8) and (9)).

3) Phase III: The Erroneous Component Identification:
Once the system components are associated with sentiment
polarity scores, the CiSentiScore and detection threshold ϕ, are
used to detect whether these components are erroneous or not.
A component is classified as erroneous when it is attached with
CiSentiScore < ϕ for consecutive time windows and as non-
erroneous otherwise. This model can be plugged into each
system’s components to generate sentiment scores over the
time windows customized by administrators time windows.
It works as an assistant tool that continuously alerts the
administrator of erroneous components within negative scores
and positive scores as the components’ issues are corrected.

VII. EXPERIMENTAL EVALUATION

We perform the evaluation by automatically generating a
sentiment lexicon from IBM Blue Gene systems’ distinc-
tive log message templates: BlueGene/L log templates(2007),
BlueGene/P Intrepid log templates(2012), and BlueGene/Q
MIRA log templates. Specifically, we carefully evaluate the
viability of our error detection sentiment-based approach for
three systems - Mira (year 2017&2020), Ranger, and Lon-
estar4, respectively. In the following, we first describe our
evaluation indicators and then discuss the evaluation results.

A. Evaluation Metrics

Since our sentiment model not only detects erroneous
logs but also accurately identifies non-erroneous logs, we
utilize the weighted-average of (precision, recall, F1-score)
and Matthew’s correlation coefficient (MCC) to measure our
sentiment model’s performance. The precision, recall, F1-score
are calculated for each category (faulty and non-faulty). So,
for a given detection category i, we define: (i) True Positivei
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(TPi) is the number of logs correctly detected as belonging
to i category, (ii) False Positivei (FPi) is the number of logs
incorrectly detected as belonging to i category, (iii) False
Negativei (FNi) is the number of logs detected as not belonging
to i category but, in fact, it does, and (iv) True Negativei (TNi)
is the number of logs correctly detected as not belonging to
i category [9]. Based on TPi, FPi, FNi, and TNi, we then
calculate precisioni and recalli for each category i as follows:

Precisioni = TPi/(TPi + FPi) (10)

Recalli = TPi/(TPi + FNi) (11)

and the F1-scorei, which is a balanced harmonic average of
recall and precision, as shown below:

F1-scorei = 2× recalli × precisioni
recalli + precisioni

(12)

Lastly, the overall three scores (precision, recall, F1) are
weighted by each category’s support and averaged2. The recall,
precision and F1-scores are among the most popular statistical
measures for a binary classification task. However, these mea-
sures can show overoptimistic results especially on imbalanced
datasets. Matthew’s correlation coefficient is a more reliable
metric which produces a high score only if it obtains a good
result in all the four confusion matrix categories (true positive,
false positive, false negative and true negative), proportionally
to both the size of positive and negative elements in the dataset.
MCC is defined as [22]:

MCC=
TP × TN − FP × FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
(13)

MCC returns a score between -1 to 1. A score of 1
represents a perfect detection. A score of 0 represents a
random detection. A score of -1 represents total disagreement
between detection and observation.

B. Evaluation of Error Detection

1) Learning Sentiment Lexicon for the IBM Blue Gene
system: We use the SGDLR technique to automatically con-
struct the sentiment lexicon based on the IBM Blue Gene
system’s RAS log message templates. We used 3k RAS log
message templates as our dataset, whose labels are automati-
cally inferred from the severity level field contained in a RAS
log file. The RAS events are classified into two categories:
faulty messages and non-faulty messages. The former include
warnings, failures, and fatal levels, and the latter indicate
informational messages to show the system software’s progress
or correction of errors.

We employ k-fold cross-validation with over-sampling
methods to address the imbalance within RAS dataset. Af-
ter the NLP text preprocessing phase, we adopt the Term
Frequency-Inverse Document Frequency (TF–IDF) to trans-
form terms (features) of RAS templates from text format to

2The weighted-average method may result in an f-score that is not between
recall and precision.

numerical vectors. The SGDLR algorithm with L1 regulariza-
tion and default parameters are then employed to learn the
sentiment lexicon items of the IBM Blue Gene systems by
training RAS log template feature vector with their associated
labels and obtaining the dense weights vector W (sentiment
scores for lexicon items). Our model obtains around ∼932
discriminative features associated with their sentiment scores.
Figure 1 shows ∼60 lexicon items associated with their
sentiment intensity scores learned automatically. It is clearly
observed that the learned sentiment lexicon of Blue Gene
systems consists of the system developers’ negative sentiments
that show the systems’ issues and the positive sentiments
indicating that the system problems have been corrected or
the system components work as expected. Moreover, the Blue
Gene lexicon contains more negative sentiments than posi-
tive and neutral sentiments, demonstrating that the abnormal
system issues are generally paid more attentions in the logs.
The Blue Gene lexicon contains ∼664 negative sentiments,
whereas there are ∼268 positive ones.

2) Mira Error Detection Performance: After the Blue
Gene lexicon’s items are generated from the previous phase,
we evaluate its efficacy by detecting error messages using
the entire year 2017 of the Mira RAS logs. The year-2017
RAS log contains 16.5 million messages. We first filter out
the duplicated messages by using the open source toolkit -
LogAider [15] based on the spatial or temporal correlations.
The total number of messages is thus significantly reduced
from 16, 772, 894 to 2, 380, 211. Then, we preprocess the
log messages’ content by the NLP techniques. After that,
we classify all events based on their severity attributes into
two categories - faulty and non-faulty - in order to obtain
the ground truth for evaluating our error detection method.
Our error detection sentiment-based approach takes the filtered
2, 380, 211 messages each of which is assigned a sentimental
polarity score, and detects the faulty messages based on com-
paring the associated scores with detection threshold ϕ. Figure
2 presents the evaluation results about error detection accuracy
based on the RAS log of year 2017 with different lexicon
absolute threshold µ values(i.e., the number of sentiment lexi-
con items) with detection threshold ϕ = 0. Experiments show
that our machine learning-based sentiment lexicon achieved
excellent error detection accuracy for the RAS log data of the
year 2017, 99%, 99%, 99% of recall, precision, and f1-score,
respectively, at lexicon absolute threshold µ = 0, 1, or 2, and
detection threshold ϕ = 0.

In order to assess the effectiveness of our detection method-
ology under different conditions, we evaluate our sentiment
lexicon approach with different values of µ and ϕ, which also
aims at exploring the best threshold values with respect to
high true positives and true negatives. We observe that a small
change to the lexicon absolute threshold µ (i.e., the number
of sentiment lexicon items) and detection threshold ϕ may
have a significant impact on the detection result. In general,
the detection accuracy increases as the former threshold value
decreases, meaning that using fewer lexicon items affects the
detection accuracy. Moreover, the same detection accuracy is
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Fig. 2. Detection with different lexicon absolute threshold µ, with ϕ = 0

Fig. 3. Mira error detection performance with different detection threshold
ϕ, with µ = 0

reached when only ∼ 58 sentiment items are used (i.e., µ=2),
and when using all the 932 features of our learned lexicon.
This result verifies the fact that developers often use only a
few sentiment words to log system issues and operations, as
opposed to similar NLP sentiment analysis tasks that contain
a high number of sentiment words.

We achieve a good error detection for the latter threshold
value as the ϕ is chosen within the range between 0 and
−0.8; this means the developers use high-intensity sentiments
to log the system issues (see Figure 3). Moreover, we observe
that our model’s misclassifications occur due to two reasons:
the first is the developer’s classification of some logs with
the incorrect severity. For example, the severity level is INFO
for the ‘nd receiver link error’ message and is ERROR
for the ‘correctable ecc error threshold’ message in
the RAS log. However, our model correctly classifies the
former as faulty since this is what is reflected through
the feature error, and classifies the latter as non-faulty,
since it shows the ‘ecc error threshold’ is corrected.
The second reason is that system developers tend to log
some system events with unstructured text embedded with
mixed negative and positive sentiments. For instance, the log
message ‘recoverable error message failed ecc parity

error drill down error recoverable overable

error cache parity error’ contains several negative
and positive sentiments. Therefore, our model solves not only

the problem of labeling the systems’ logs with no severity
levels but also fixes the misclassified severity levels within
systems containing this feature.

3) Comparing Our Approach with ML/Deep Learning:
New types of unlabelled logs are generated because the opera-
tors of large-scale systems (e.g., clusters, data centers) perpet-
ually upgrade on the system components (software/hardware)
and service to add new features, fix bugs, or enhance perfor-
mance [23]. Furthermore, there are several large-scale systems
(i.e., target systems) with non-labeled logs, such as Ranger
and Lonestar4. Classifying the massive number of unlabeled
logs (i.e., millions) of target systems manually into faulty and
healthy is infeasible. Consequently, our approach can be used
to detect potential faults/failures (classify logs to be faulty
and non-faulty) automatically for the systems with non-labeled
logs.

To demonstrate our approach’s effectiveness and general-
ity on cross-systems, we evaluate our sentiment lexicon’s
performance on logs of three large-scale systems to detect
potential errors. We compare our solution with many state-
of-the-art machine/deep learning classification techniques, in-
cluding Random Forest (RT), Extreme Gradient Boosting
(XGBoost), Multinomial Naive Bayes (Multinomial NB), K
Nearest Neighbor (KNN), Long Short-Term Memory (LSTM),
which have been commonly adopted by state-of-the-art ap-
proaches for error detection/prediction. There are multiple
variants of LSTM showing better performance over standard
LSTM and other ML techniques (e.g., CNN-LSTM [24] for
disk failure prediction). For a comparison, we implemented
a detection algorithm based on the standard LSTM based
on our particular objective of detecting/classifying individ-
ual erroneous log messages. For fairness, we train the five
machine/deep learning models by using the same data we
employed to extract our sentiment lexicon, and then evalu-
ate those models’ performance versus our sentiment lexicon
model’s performance on logs of three large-scale systems:
the first six months of 2020 Mira filtered RAS logs, and
all distinctive log messages from Ranger and Lonestar4 (i.e.,
target systems).

As presented in Table I and Figure 4, the results reveal
that using our lexicon achieves an average MCC score and
f1-score of 91% and 96% respectively in error detection
in the three large systems’ log messages, whereas the best
machine/deep learning model (LSTM) obtains only 67% and
84% respectively. The other models RF, KNN, XGBoost, and
Multinomial NB achieve an average MCC score of 52%, 45%,
50%, and 44%, and an average f1-score of 68%, 66%, 64%,
and 58%, respectively.

As mentioned above, new types of unlabelled message
logs in such HPC systems were generated because of their
upgraded or added components. It is non-trivial to manually
classify a large number of new system log messages induced
by the system upgrades or repairs. To cover this case, we
evaluate our sentiment lexicon in classifying the latest RAS
logs of IBM Blue Gene Mira 2020 (i.e., test dataset) and
compare its performance with the other machine/deep learning
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techniques. The IBM Blue Gene systems’ distinctive log mes-
sage templates: BlueGene/L (2007), BlueGene/P (2012), and
BlueGene/Q log templates are combined as our training dataset
to learn the lexicon and train other five machine/deep learning
techniques. The results (see Figure 5) show that our sentiment
lexicon achieves the best MCC and F1 score among the six
methods, achieving high MCC and F1 scores of 98% and 99%
respectively. All other techniques achieve satisfying accuracy
because the training runs on old RAS message templates and
tests on Mira 2020 RAS logs’ messages. The deep learning
technique, LSTM, also achieves a high MCC score of 96%
and F1 scores of 98%, respectively, and all other ML models
achieve MCC scores (91%) and f-scores (96%). In general,
our sentiment lexicon successfully identified the developers’
sentiments from old generations Blue Gene supercomputers to
use them as an unsupervised approach classifying new types
of logs Mira 2020 RAS logs.

As we stated before, our approach’s primary goal is ac-
curately identifying individual errors automatically for those
HPC systems with a huge number of non-labeled logs. For
example, the Ranger and Lonestar4 logged around 65 million
and 12 million unlabelled messages in July 2011 and February
2013, respectively. To demonstrate the effectiveness of our
solution in addressing this point, we utilize our sentiment
lexicon features learned on labeled log messages from the
source system (i.e., IBM Blue Gene) to detect errors in
the target systems unlabelled log messages ( i.e., Ranger
and Lonestar4). As illustrated in Figure 6 and Figure 7,
our lexicon achieves much higher scores in detecting error
messages of Ranger and Lonestar4 logs than other solutions,
even though they are different HPC systems developed by
different companies with distinct logging methodologies. Our
lexicon can detect the majority of errors accurately in Ranger
and Lonestar4 unique logs. In absolute terms, the MCC scores
reach up to 87% and 87%, the f-scores reach 94% and 95%, the
recalls can get up to 94% and 95%, and the precisions achieve
94% and 95%, respectively. For other solutions including
LSTM, RN, KNN, XGBoost, and Multinomial NB models,
on Ranger Logs, the MCC scores are 55%, 31%, 19%, 26%,
and 18%, respectively. The f1-scores are 76%, 51%, 46%,
44%, and 36%, respectively. On Lonestar4 Logs, those models
get the MCC score only 50%, 35%, 25%, 32%, and 23%,
respectively, and the f1-score only 79%, 57%, 55%, 51%, and
41%, respectively. The major limitations of detection accuracy
on target systems for five machine/deep learning techniques
are analyzed as follows: KNN does not work well because
the log messages are imbalanced and contain many outliers,
and LSTM, RF, and XGBoost are prone to overfitting, where
Multinomial NB assumes the logs’ features are independent,
despite this not being the case.

These results demonstrate the reusable sentiment lexicon’s
benefits of deploying it as an unsupervised log analysis
approach on different (target) systems. The key reason our
solution outperforms other ML methods is that it successfully
extracts developers’ sentiment features hidden in labeled log
messages from one source system (i.e., IBM Blue Gene)

and transfers these features with their weights as lexicon
items to detect errors in the target systems with unlabelled
log messages (i.e., Ranger and Lonestar4. This verified the
fact that developers of different systems really adopt similar
sentiment features in their logging methodology. Thus, we can
utilize a few system logs with severity levels to automatically
extract their sentiment features and label the logs of other
target systems with non-labeled logs. These promising results
motivate us to collect more logs from different systems and
generate a general sentiment lexicon using our technique to
detect hardware and software issues in our future work.

Fig. 4. The average of detection performance of our lexicon and ML models
on all three systems

Fig. 5. Detection performance of our lexicon/ML models on 2020 Mira RAS
logs

C. Evaluation of Erroneous Component Identification

We evaluate our approach of identifying erroneous com-
ponents such as compute nodes (denoted Rxx-Mx-Nxx), I/O
nodes (denoted Qxx-Ix-Jxx) and link modules (denoted Qxx-
Ix-Uxx), based on Mira’s RAS logs. We present the evaluation
results based on one-day period (27-March-2017) due to
space limit and massive components involved. We employ
our sentiment lexicon learned in Section IV and detection
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TABLE I
SCORES (RECALL, PRECISION, F1-SCORE, AND MCC) OF OUR LEXICON AND ML MODELS ON THREE SYSTEMS(MIRA, RANGER, AND LONESTAR 4)

RAS Mira Ranger Lonestar4 Average of 3 Systems
Technique Recall Precision F1-score MCC Score Recall Precision F1-score MCC Score Recall Precision F1-score MCC Score Recall Precision F1-score MCC Score

Random Forest 96% 96% 96% 91% 55% 74% 51% 31% 57% 78% 57% 35% 69% 83% 68% 52%
XGBoost 96% 96% 96% 91% 50% 74% 44% 26% 52% 78% 51% 32% 66% 83% 64% 50%

Multinomial NB 96% 96% 96% 91% 45% 71% 36% 18% 45% 75% 41% 23% 62% 81% 58% 44%
KNN 96% 96% 96% 91% 50% 66% 46% 19% 54% 71% 55% 25% 67% 78% 66% 45%

LSTM 98% 98% 98% 96% 76% 80% 76% 55% 80% 80% 79% 50% 85% 86% 84% 67%
Our Sol. 99% 99% 99% 98% 94% 94% 94% 87% 95% 95% 95% 87% 96% 96% 96% 91%

Fig. 6. Detection performance of our lexicon and ML models on Ranger logs

Fig. 7. Detection performance of our lexicon and ML models on Lonestar4.

sentiment score ϕ=0 to associate each component with 24
sentiment scores for the 24 hours, based on the hourly log
messages regarding these components. Each score is composed
of positive and negative scores, which are then summed up to
produce the overall sentiment scores. Thus, each component
is attached with a total of 72 sentiment scores (24 positives +
24 negatives + 24 overall scores).

Figure 8 demonstrates the states of some components in
Mira. A gray color indicates ‘working as expected by log-
ging informational messages or logging nothing‘; a red color
indicates that the component is experiencing some abnormal
events that affect its productivity; a green color indicates that
the issues have been corrected, or silent errors have been fixed.

We observe that majority of Mira components experienced
no issues (e.g., Q2H-I0-U02, Q2H-I0-U03, and Q2H-I0-U04).
Negative sentiment scores were attached to a few components
(e.g., Q2H-I0-J01, Q2H-I0-J02, Q2H-I5u-J00, Q2H-I5-J01,
and R2B-M0-N00) for consecutive hours, which validates
the high accuracy of our algorithm because each of them
crashed due to one or two fatal events according to the

Fig. 8. Illustration of The Erroneous Component Identification on Mira

Fig. 9. Mira Erroneous Component Identification (Q2H-I3-J00∼Q2H-I4-J05)

RAS log. Moreover, some components (e.g., the node R2B-
M0-N15) exhibit high negative scores for long consecutive
hours since it was suffering from recurrent abnormal events.
Some components such as R2B-M0-N00, exhibit positive
sentiment scores in later hours (i.e., the 14th and 15th), as
some correction events were triggered. Our technique can
assist the Mira system’s administrator to isolate these faulty
components until the problems are fixed, since there are 152
fatal events occurring in that day, and our model highlights all
the components that triggered them.

Furthermore, as shown in Figure 9 from sentiment scores
attached to Q2H-I4-J00 ∼ Q2H-I4-J05, we first observe that
components are associated with similar sentiment scores for a
consecutive or recurrent time windows. This can be explained
by the fact that components generate the same logs over those
time windows to convey that they are still facing the same
issues. Second, we also observe that neighboring components
are assigned with similar sentiments scores within similar
time windows, indicating that large-scale system components
that exhibit similar behaviors generate similar logs. Thus,
one important observation is that the issues encountered by
similar components may result in the same sentiments, and
thus similar sentiment scores, enabling our technique to be
deployed by Mira’s administrators to detect faulty components.

VIII. RELATED WORK

Log parsing is a crucial phase in log analysis which filters
out and processes the large quantities of large-scale systems’
message logs; different parsers have been developed (e.g.
[15], [25]–[27]) and many have been evaluated on different
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benchmark logs’ datasets in [28]. Moreover, various tools and
much research have been dedicated to diagnosing the root
causes of failures such as [29]–[31].

Plenty of error detection/prediction methods are proposed.
Research studies on error detection in HPC systems can be
categorized into different aspects such as identification (i) of
erroneous log entries, (ii) of failure-inducing erroneous execu-
tion sequence, and (ii) of identifying quantitative relationship
among logs. For the first two categories, various machine/deep
learning methods (e.g., Random Forest, (XGBoost), Multi-
nomial Naive Bayes, K Nearest Neighbor, Long Short-Term
Memory (LSTM)) were adopted by state-of-the-art studies for
error detection in HPC systems. For instance, Meng et al. [9]
identifies individual errors using partial labels based on PU
learning and Support Vector Classifier techniques. Many other
works (such as [32] , [33], and [2]) showed how the event logs
can be transformed into a data set that is suitable for running
some of above ML classification techniques. Also, the deep
learning technique, LSTM, has been employed in DeepLog
[7] and LogRobust [10] to identify erroneous log sequences.
The works presented in [12], [13] aim to identify quantitative
relationship among log messages.

Other works have been proposed in the domain of failure
prediction. Lu et. al. [24] developed an effective hybrid
model of the convolutional neural network and long short-
term memory (CNN-LSTM) for disk failure prediction. Das
et. al. [34] and Frank et. al. [35] developed novel techniques
for predicting node failures in HPC systems. Das et. al.
[36] developed a novel analysis approach to enable real-time
prediction of node failures in HPC systems. Also, Nie et. al.
[37] proposed various ML models for GPU error prediction
in HPC systems. Very recent studies by Patel et. al. [38], Bin
Nie et. al. [39] and Gupta et. al. [40] have provided valuable
insights through long-term analysis and quantification of HPC
jobs characteristics in large-scale systems [38], characterizing
temperature, power and soft-error behaviour in data center
systems [39] and long-term measurement and analysis of HPC
system failures [40]. Differently to these works, our sentiment
model focused on error detection in HPC systems.

Rao et. al. [41] developed a method to identify faults in
large-scale distributed systems by filtering noisy error logs.
Stearley et. al. [42] showed that a non-uniform distribution
of log words across nodes is useful for error detection, as is
the encoding of word position. Gainaru et. al. [43] modelled
the normal and faulty behaviour of large-scale HPC systems.
In [11], [44], the authors developed log entropy techniques
to detect errors in HPC systems. All these tools are working
on HPC systems and we complement them by constructing
a sentiment lexicon automatically to classify non-labelled
system logs for error detection in HPC systems.

Sentiment lexicon based analysis has been widely studied
for years. Regarding the domain of sentiment lexicon being
applied to human languages, Hutto et al. [21] built the VADER
sentiment lexicon manually by multiple independent experts or
crowdsourcing, which is particularly attuned to sentiments ex-
pressed in social media. By contrast, we construct a sentiment

lexicon automatically to detect developers’ sentiments hidden
in system log messages. The Pointwise Mutual Information
technique and SVM model learned on a distant supervised
corpora were employed by [45] and [46], to build sentiment
lexicons for English language. Also, logistic regression com-
bined with other techniques are used to extract a lexicon for
Portuguese language and stock market domains by [47] and
[48] respectively. In contrast, we used SGDLR to construct a
sentiment lexicon for error detection & erroneous component
identification in large-scale systems.

There are also some existing works leveraging sentiment
related techniques for log analysis. Allen et al. [49] is the
first research group that utilized a sentiment lexicon through a
pre-built library called IBM Watson API to analyze software
logs and assign sentiment scores for log data. Yadwad et
al. [50] applied machine learning and time series models
(e.g., PCA, Naı̈ve Bayes, logistic regression, and CNN) on
combined data of the social tweets, mails and logs for service
outage detection and predication. Based on the context and
content attention model, Studiawan et al. [51] employed a
deep learning technique to identify aspect terms and the
corresponding sentiments to extract events of interest from
log files in the forensic timeline. By comparison, our work
is the first attempt in the domain of a large-scale system.
Furthermore, our domain-specific sentiment lexicon items are
extracted automatically with the use of a machine learning-
based technique, since a feature’s sentiment is affected by the
domain in which it is used. Allen et al. [52] also proposed a
method based on using at least keyword and synonym match-
ing percentage analysis criteria to classify log messages’ levels
in applications code. In contrast, our model was designed to
detect faulty components and errors of large-scale systems
based on AI technique.

IX. CONCLUSION

In this paper, to the best of our knowledge, we are the
first to propose a sentiment analysis based approach that can
effectively build a reusable sentiment lexicon over the large-
scale system logs, based on which errors could be detected and
erroneous components could be identified. Using logs from
three HPC systems from different vendors, our results show
that our approach significantly outperforms other related state-
of-the-art approaches.
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