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Abstract 

The ability to accurately perceive the extent over which one can act is requisite for the 

successful execution of visually-guided actions. Yet, like other outcomes of perceptual-motor 

experience, our perceived action boundaries are not stagnant, but in constant flux. Hence, the 

perceptual systems must account for variability in one’s action capabilities in order for the 

perceiver to determine when they are capable of successfully performing an action. Recent 

work has found that, after reaching with a virtual arm that varied between short and long each 

time they reach, individuals determined their perceived action boundaries using the most liberal 

reaching experience. However, these studies were conducted in virtual reality, and the 

perceptual systems may handle variability differently in a real-world setting. To test this 

hypothesis, we created a modified orthopaedic elbow brace that mimics injury in the upper 

limb by restricting elbow extension via remote control. Participants were asked to make 

reachability judgements after training in which the maximum extent of their reaching ability 

was either unconstricted, constricted or variable over several calibration trials. Findings from 

the current study didn’t conform to those in virtual reality; participants were more conservative 

with their reachability estimates after experiencing variability in a real-world setting.  
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Successful performance of action relies on the accurate perception of opportunities for 

action in the environment; in particular, action boundaries. Action boundaries are learned over 

time and are the limitations of a perceiver’s action capabilities. They distinguish between 

possible and impossible actions, and action is only possible if it is within the perceiver’s action 

boundary (Fajen, 2005). For instance, when intending to reach, the length and flexibility/range 

of movement (ROM) of an individual’s arm determine the maximum extent of their 

reachability. For an object to be reachable, the distance to the target must be within the 

perceiver’s action boundary for reaching. The ability to accurately perceive one’s action 

boundaries in relation to the environment is requisite for the successful execution of actions. 

 An ample body of research has demonstrated that people could readily perceive their 

action boundary for different types of actions and across different environmental contexts. For 

example, individuals are remarkably accurate at judging the maximum height of steps that they 

can climb, and irrespective of body height, individuals judge the maximum climbable stair 

height as a constant proportion of leg length (Warren, 1984). Other studies have demonstrated 

people’s sensitivity to their action boundaries for a variety of actions, including, but not limited 

to, passing through doorways (Franchak & Adolph, 2012; Warren & Whang,1987), fitting hand 

through apertures (Ishak, Franchak, & Adolph, 2014), grasping (Linkenauger, Witt & Proffitt, 

2011), and reaching (Carello, Grosofsky, Reichel, Solomon, & Turvey, 1989; Linkenauger, 

Witt, Bakdash, Stefanucci, & Proffitt, 2009). Furthermore, individuals are able to recalibrate 

to new action boundaries following changes in their action capabilities and/or environmental 

constraints. Such examples include calibrating their maximum sitting and stepping height 

judgements while wearing blocks under their feet (Hirose & Nishio, 2001; Mark,1987), 

adjusting their judgement of passability when fitting one’s hand through an opening with a 

prosthesis attached to their hand (Ishak, Adolph, & Lin, 2008), and updating their reachability 
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judgement when their arm’s reach has been extended or constricted in a virtual environment 

(Linkenauger, Bulthoff, & Mohler, 2015). 

However, like other outcomes of perceptual-motor experience, our perceived action 

boundaries are not immutable, but in constant flux. These changes take place over different 

timescales and have consequences for actions. Long term changes take place via naturally 

occurring changes in physiology and perceptual-motor capabilities associated with growth and 

ageing (Konczak et al., 1992; Comalli et al., 2013), whereas short term changes in action 

boundaries, such as injuries, fatigue and posture, could occur at any time and bring about 

inconsistent fluctuations in the perceptual-motor feedback specifying one’s action boundaries, 

which has consequences for motor performance (Franchak & Adolph, 2014). In addition to 

these changes, it is not possible for one to execute actions with perfect consistency. Thus, 

regardless of how consistent an action’s outcome may appear, some degree of variability is 

always present in the perceptual-motor information upon which our perception of action 

boundaries is based. Consequently, when determining one’s perceived action boundary, the 

perceptual-motor system must account for variability in perceptual-motor feedback in order to 

perform actions adaptively and minimise performance errors. How does the perceptual system 

determine the maximum extent over which an action can be performed when the information 

that we based our perception of this extent on is inconsistent? 

One possible method the perceptual system could employ would be to use the average 

experienced reach to generate the most statistically likely outcome (Kording & Wolpert, 2006; 

Deneve & Pouget, 2004). Take, for example, an observer that has experienced two different 

sized action boundaries (large and small) with equal probability during their reaching 

experience. If they use the average of their reaching experience to determine the action 

boundary, the selected action boundary should be identical to the mean, as the two action 

boundaries experienced were of equal probability. Conversely, if the smaller action boundary 
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was experienced significantly more often than the larger, then we would expect a shift towards 

the smaller action boundary as it would be more statistically likely than the larger action 

boundary.  

Whilst this approach may allow the perceiver to determine perceived action boundaries 

under conditions of uncertainty in a more optimising manner, it would also be a more time 

consuming and energetically costly approach due to the amount of information processing 

involved (Howarth, Peppiatt-Wildman & Attwell, 2009). Furthermore, both human cognitive 

and bioenergetic resources are limited (Niven & Laughlin, 2008), and not every action 

execution nor circumstance is important enough to justify expending resources to integrate 

probabilistic information and/or to formulate optimal solutions. Therefore, as another 

approach, the perceptual system could use heuristics as an effort-reduction strategy, or when 

the cost of information processing outweighs potential gain in judgement accuracy. It should 

be noted that the current study was framed as a test between optimising versus satisficing 

approaches, and our hypothesis was not based on ecological approaches of visual perception, 

but rather evolutionary approaches. Hence, one could consider fewer alternatives by 

disregarding probabilistic information to make decisions that are just ‘good enough’ (Hogarth 

& Karelaia, 2007; Gigerenzer & Gaissmaier, 2011). One such heuristic would be to select the 

action boundary using the most liberal reach experienced; this method would maximise the 

number of successful attempts, but at the same time it may also result in the highest number of 

unsuccessful attempts. Thus, this approach would only be appropriate in the absence of 

negative consequences associated with failed action. Another possible heuristic would be to 

select an action boundary using the most conservative sized reach experienced, such as in 

particular in situations where the penalties for selecting the inappropriate action boundary are 

high. This approach would result in the smallest number of successful attempts, but also the 

smallest number of failed attempts. Alternatively, the perceptual system could select a 
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moderate-sized action boundary; selecting an action boundary size that is in between the most 

liberal and most conservative action boundary would allow the perceptual system to balance 

the number of successful attempts with the number of unsuccessful attempts. Taken together, 

it is reasonable to postulate that, to maximise efficiency, the perceptual system would utilise 

different strategies on an ad hoc basis to determine perceived action boundaries under 

conditions of uncertainty.  

Recent research has investigated participants’ judgement of action boundaries for 

reaching following changes in their action capabilities in virtual environments. Lin, McLatchie 

& Linkenauger (2020) had participants estimate their action boundary for horizontal reaching 

following calibration to a long virtual arm (extended reach condition), a short virtual arm 

(constricted reach condition), or a virtual arm that varied in size randomly between a long 

virtual arm, medium virtual arm and short virtual arm each time they reached. They found that 

individuals were able to calibrate to changes in their action capabilities and their selected action 

boundaries were consistent with their reaching experience during calibration. They estimated 

their reachability to be significantly farther in the extended reach condition than in the 

constricted reach condition. However, in the variable condition in which they experienced three 

arm’s reaches with equal probability, individuals tended to indicate that their perceived action 

boundary for reaching more resembled their experience with the longer reaches than with the 

shorter reaches. Had they used the averaged reaching experience to determine their perceived 

action boundary, the difference between extended and variable conditions would be similar to 

the difference between constricted and variable conditions. Instead, they found that the 

difference between the extended and variable conditions was significantly smaller than the 

difference between the variable and constricted conditions, indicating that the estimates in the 

variable reach condition were closer to the extended reach estimates than the constricted reach 

estimates, and individuals in the variable reach condition had estimated liberally rather than 
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conservatively. These findings suggest that the perceptual system employs a liberal tactic rather 

than an average to determine perceived action boundaries for reaching in the event of 

perceptual-motor variability.  

Actions cannot be performed the same way repeatedly and variability in the outcome is 

always present, but the link between variability and perceptual estimates is often ignored in 

affordance literature. This set of studies has provided insights into the possible mechanism by 

which the perceptual system accounts for perceptual motor variability when determining 

perceived action boundaries, and they have exposed a gap in the literature that is important to 

fill if we are to fully understand the nature of affordance perception. However, these studies 

were conducted in a virtual environment and the extent to which these findings are 

generalisable to the real world is as yet unknown. In the real world, some research has 

demonstrated that people are sensitive to their movement variability and take their task-relevant 

movement variability into account when making action boundary judgements for actions such 

as aperture passing (Wilmut & Barnett, 2010; 2011; Wilmut, Du & Barnett, 2015; Hackney & 

Cinelli, 2011; Lucaites et al., 2020) and stepping over obstacles (Snapp-Childs & Bingham, 

2009). However, only individual variability in natural postural sway and stability/motor control 

during movement were considered. As mentioned above, not all perceptual-motor variability 

is large enough to be detectable when learning action boundaries, but in some instances, 

perceptual-motor variability is quite evident. Hence, to assess how the perceptual system 

accounts for overt perceptual-motor variability in motor experience and recalibrate to new 

action boundary following changes in action capabilities in the real world, it would be desirable 

to use large and observable changes in arm’s reach during the perceptual-motor 

calibration/experience.  

In Lin, McLatchie and Linkenauger (2020), reaching ability was manipulated by modifying 

the length of the virtual arms by 50% more or less than the participant’s actual arm length. Yet, 
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similar changes in arm length would be difficult or nearly impossible to accomplish in the real 

world due to the constancy of the body morphology. Therefore, in the present study, we opt to 

manipulate reaching ability by restricting the range of motion of the elbow using a modified 

orthopaedic elbow brace. In addition to its use in rehabilitation treatments, previous research 

has used a similar device to identify the necessary functional range of motion of the elbow for 

everyday activities (e.g., Vasen, Lacey, Keith & Shaffer, 1995). Elbow mobility is essential for 

upper limb function; a 50% reduction of elbow motion represents approximately 80% loss of 

upper limb function (Fusaro, Orsini, Sforza, Rotini & Benedetti, 2014). Stiffness of the elbow 

is a common occurrence after injury and can be defined as a loss of extension greater than 30° 

and/or flexion of less than 120° (Søjbjerg, 1996), and the loss of elbow extension is more 

frequently encountered than flexion loss (Charalambous & Morrey, 2012). Hence, it is a 

debilitating condition that has detrimental consequences for the individual’s ability to perform 

daily activities (Bartoszek et al., 2015). By isolating the allowable range of motion of the 

elbow, we would be able to simulate the movement of the arm in a state of injury and introduce 

variability into one’s perceptual-motor feedback for reaching in a controlled manner while still 

in the real world.  

The present study aimed to use the elbow brace to establish whether the perceptual system 

utilises the same strategy in a real-world situation as in virtual environments. Participants were 

asked to make reachability judgements after training that the maximum extent of their reaching 

ability is either constricted (limited to 60° extension), unconstricted (0° extension), or variable 

(varied randomly between 0°, 30° and 60° extension). Our manipulation was intentionally large 

to create a detectable difference in the dependent measure across the different conditions. In 

light of the findings from Lin, McLatchie and Linkenauger (2020), and given the context and 

task similarity, we expected participants to remain relatively liberal with their reachability 

estimates as they did in a virtual environment, but to a lesser degree. The latter is because, 
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while the action they had to perform was the same (i.e., reaching horizontally), the changes in 

their reaching ability were less drastic. Additionally, the changes in their reaching were 

employed in a different manner. In the virtual environment, arm length was modified, and range 

of motion was intact; whereas, here, we limited range of motion while arm length remained 

intact. Thus, it is possible that limiting elbow range of motion mimics the movement of the arm 

in a state of injury, and the perceptual system would treat the restricted movement of the arm 

as if it were a real injury, which could induce participants to be more conservative to prevent 

further injury. 
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Method 

Participants 

G*Power software application (Faul, Erdfelder, Lang, & Buchner, 2007) was used to 

perform an a priori power analysis to estimate sample sizes required to achieve adequate 

power. The required power was set at 1- β = .85, and the level of significance was kept at α = 

.05. We expected a medium effect size of .25 due to the novelty of the paradigm. Power analysis 

indicated that a sample of N = 8 would be sufficient to achieve a power of .85 and an alpha of 

.05. We have doubled the number and increased our sample size to 16 participants.  

Sixteen participants (four males) between 18 and 21 years of age (Mage = 19.13, SDage = 

.89) were recruited from Lancaster University through opportunity sampling. All participants 

but three were reported to be right-handed. All participants had normal or corrected-to-normal 

vision. All participants provided informed consent. The study was approved by the Faculty of 

Science and Technology Research Ethics Committee at Lancaster University.  

Stimulus and apparatus 

The participant sat in front of a rectangular table onto which stimuli were projected 

from a projector mounted on the ceiling.  The table (120 cm x 80 cm x 71 cm) was covered 

with a piece of black cardboard (56 cm x82 cm) to create a uniform background and minimise 

landmarks that could influence participants’ judgements. A white dot (2 cm in diameter) was 

projected on the edge of the black cardboard directly in front of the centre of the participant’s 

body from the projector. This dot was used to represent the centre of the participant’s body and 

was used as a consistent reference point for measuring reachability during the estimation phase. 

Reachability was manipulated by using a device that was made of a modified 

orthopaedic elbow brace with adjustable ROM. The modified elbow brace was 42 cm in length 

and weighed 0.6 kg. Two electric mini motors were added to the rotation hinge of the elbow 
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brace to allow systematic manipulation of the ROM by restricting the extension of the elbow.  

Three different reaches were used, and the amount of extension of the elbow was limited in 

30° increments. For the long reach, the ROM of the elbow was not limited (0° of extension); 

for the medium reach, elbow extension was limited to 30°; and for the short reach, elbow 

extension was limited to 60° (see Figure 1). 

 

Procedure 

After providing informed consent, participants were asked to sit between the table and 

the wall, in that their body was touching the table and their core was aligned with the reference 

point projected onto the table. They were given instructions for both the calibration and 

 

Figure 1. Top panel: Experimental set-up and apparatus. Bottom panel: Illustration of a 

participant completing a calibration trial with either a long reach (a), medium reach (b) or short 

reach (c). 

a b c 
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estimation phases of the experiment. After donning the elbow brace on their right arm, 

participants completed all three experimental conditions, and participants were randomly 

assigned to different orders of conditions. In the unconstricted reach condition, despite 

wearing the elbow brace on their arm, participants’ elbow ROM was completely unconstricted 

(0° extension). In the constricted reach condition, participants’ elbow extension was limited 

to 60°. In the variable reach condition, participants’ elbow ROM varied between the long reach 

(0° extension), the medium reach (30° extension), and the short reach (60° extension). In the 

variable condition, reaches changed randomly in between each calibration trial and participants 

experienced all three reaches with equal probability (i.e., an equal number of trials); all reaches 

were experienced in a randomised order. 

Each condition consisted of two phases: calibration and estimation. The calibration 

phase consisted of 36 trials in which a white dot (4 cm diameter) was presented on the left, 

right or in front of the participant. Participants were instructed to reach and touch the white dot 

with their hand. If the dot was too far for them to reach, they were instructed to point towards 

it instead. After they reached out and touched/pointed the dot, the dot disappeared and another 

white dot at a different location appeared. The dots were presented at one of the three horizontal 

distances from the reference point (20 cm, 35 cm, 50 cm) and the dots were either presented 

directly in front of the participants or 15, 25, or 35 cm to the left or the right of the central line, 

for a total of nine possible dot locations. Each location was presented four times in a random 

order for a total of 36 trials. Participants engaged in an estimation phase after each calibration 

phase. The estimation phase consisted of 12 trials, in which participants reported their maximal 

reaching ability by instructing the experimenter to move the estimation dot (using a laser 

pointer) closer or farther until it was at the maximum distance the participant believes that they 

could reach. During the estimation phase of all reaching conditions, the elbow brace remained 

on the participants’ right arm, but they were instructed to place their arms underneath the table 
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so that they had no visual feedback of their arm’s location. To control for hysteresis, in half of 

the trials, the estimation dot’s starting position was directly in front of the participant and at 

the reference point; participants moved the dot away from them in one of three directions: 

contralateral, straight, and ipsilateral (near left, near centre, near right). For the other half of 

the trials, the estimation dot’s starting position was at the central edge of the black cardboard 

or 41 cm to the left or the right (far centre, far left, far right); these dots moved straight or 

diagonally towards the reference point. The dots either started close to or far away from the 

participants and were presented directly in front of or to the left or right, for a total of six 

locations (near/far left, near/far centre, near/far right) each presented twice for a total of 12 

trials. Participants were encouraged to make as many adjustments as necessary for an accurate 

estimation of their reachability and to move the estimation dot beyond the black cardboard if 

they thought it was necessary, then close their eyes in after each trial while the experimenter 

measured the distance between the reference point and the final location of the estimation dot 

landed. Figure 2 illustrates the dot locations for the calibration and estimation phases.  
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Results 

Estimated reachability was defined as the farthest extent to which participants estimated 

they could reach. To analyse the influence of reaching condition on estimated reachability, we 

employed a repeated measures one-way ANOVA with reaching condition (unconstricted/ 

constricted/variable) and direction (left/right/centre) as within-subject factors and estimated 

reachability as the dependent variable.  

The analysis provided Greenhouse-Geisser corrected degrees of freedom to account for 

possible violations of sphericity, therefore the degrees of freedom were not always integers. 

Analysis showed effects of reaching condition on estimated reachability, F(1.19, 17.90) = 

21.84, p < .001, ƞp² = .59. Bonferroni-corrected post-hoc analysis (t-test) showed that 

participants estimated the extent of their reach as being farther in the unconstricted reach 

condition (M = 51.86 cm, SE = .84 cm) than in the constricted reach condition (M = 44.35 cm, 

 

 

 

Figure 2. Left panel: Diagram of the calibration phase. The large white dots represent the nine 

possible dot locations and the smaller white dot represents the reference dot. Right panel: Diagram 

of the estimation phase. The red dotted lines represent the axis upon the red laser pointer moved. 
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SE =1.91 cm, p=.001). They also estimated their reachability to be farther in the variable reach 

condition (M = 48.93 cm, SE = 1.16 cm, p = .003) than in the constricted reach condition. 

Furthermore, they estimated their reachability to be farther in the unconstricted reach condition 

than in the variable reach condition (p = .001), see Figure 3.  

 

Direction also significantly influenced estimated reachability, F(1.41,21.19) =28.06, 

p<.001, ƞp²=.65. Participants estimated their reachability for targets on the right (M=51.01 cm, 

SE=1.40 cm) to be farther than targets on the left (M=47.72 cm, SE=1.21 cm, p= .003) and 

farther than those in the centre (M=46.42 cm, SE=1.17 cm, p< .001). The evidence was 

Figure 3. The mean estimated reachability of the three reaching conditions. Error bars are 95% 

CI calculated within-subject with the method provided by Loftus and Masson (1994). 
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inconclusive for the estimated reachability of targets on the left and in the centre, p=.10, see 

Figure 4.  

 

 

To get a better idea of the relations between the three conditions, for each participant 

in each condition, we created two scores. We created one difference score by subtracting the 

mean variable reach estimate from the mean unconstricted reach estimate (UV), and the other 

difference score was created by subtracting the mean constricted reach estimate from the mean 

variable reach estimate (VC). If participants used the average experienced reach to determine 

Figure 4. The mean estimated reachability of the three reaching directions. Error bars are 

95% CI calculated within-subject with the method provided by Loftus and Masson (1994). 
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their action boundaries, we should expect no difference between the UV and VC scores. A 

paired-sample t-test was conducted to compare the difference between the UV and VC scores. 

The t-test found no evidence for a difference between the UV scores (M = 2.93 cm, SD = 2.60 

cm) and the VC scores (M = 4.58 cm, SD = 4.44 cm); t(15) = -1.63, p = .12, see Figure 5. These 

findings indicate that, after experiencing random variability in their reaching experience, 

participants were more conservative with their reachability estimates than those reported in 

previous studies conducted in virtual reality, and participants selected a moderate size action 

boundary that was in between the unconstricted reach condition and the constricted reach 

condition.  

 

 

Figure 5. The UV and VC difference scores. Error bars are 95% CI calculated within-subject 

with the method provided by Loftus and Masson (1994) 
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 One possibility is that the reaching experience from prior conditions could influence 

the reachability estimates in the latter conditions, and we do not doubt that some influence 

across the conditions occurs as with any form of perceptual-motor learning. Although we fully 

counterbalanced across participants, which would have eliminated/minimized any systematic 

bias in the conditions as a result of the order, we felt it’s important to assess if there was any 

cumulative effect from reaching experience in prior conditions that influenced estimates in the 

subsequent conditions.  

Hence, we created an order variable in which we dummy coded participants who 

engaged in the unconstricted reach condition prior to the constricted reach condition as 1, and 

those who engaged in the constricted reach condition prior to the unconstricted reach condition 

as 2. We expected that if the prior condition had any meaningful influence on the subsequent 

condition, then estimates in the constricted reach condition would be larger if it was conducted 

after the unconstricted reach condition, and the estimates in the unconstricted reach condition 

would be smaller if it was preceded by the constricted reach condition. To assess this 

possibility, we conducted a repeated-measures ANOVA, with condition (constricted versus 

unconstricted) as a within-subject factor and order as a between-subject factor. If there were 

order effects, then both constricted and unconstricted reach estimates should be higher in order 

1 than in order 2. Conversely, if there weren’t order effects, then both constricted and 

unconstricted reach estimates in order 1 should be similar to those in order 2.  As expected, we 

found a significant effect of condition, F (1, 14) = 23.72, p< 0.001, with unconstricted reach 

estimates being larger, M= 51.86 cm, SE= 0.79 cm, than constricted reach estimates, M= 44.35 

cm, SE= 1.97 cm. We found no effect of order, p = 0.49, or a significant interaction between 

order and condition, p = 0.53, see Figure 6.   
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To investigate this in more detail, we conducted two between-subjects t-tests to 

independently assess the effects of order on the constricted reach condition and on the 

unconstricted reach condition.  We found no significant effect of order for either condition (p 

= 0.83 and p = 0.10, respectively). These negative results could be due to a lack of power.  

However, the analyses do confirm that the reaching experience within each condition had a 

large effect on the reachability estimates; whereas, the reaching experience in each condition 

likely had a small/negligible influence on the other conditions.  

 

Figure 6. Reaching ability estimates for the constricted and unconstricted conditions for those 

who completed the constricted versus the unconstricted condition first.  Error bars represent 

95% CIs. 
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Discussion 

In the current study, we examined the effect of random perceptual-motor variability on 

action boundary perception for reaching in a real-world setting. We manipulated participants’ 

reaching capabilities by restricting the degree to which they could extend their elbow. 

Participants were asked to make reachability judgements after training that the maximum 

extent of their reaching ability is either unconstricted (0°extension), constricted (60° extension) 

or variable (elbow ROM varied between 0°/30°/60° extension). 

We found that the perceived action boundary for reaching significantly varied with 

respect to reaching calibration conditions. The relative difference between conditions was 

similar to previous studies conducted in virtual reality, suggesting that in addition to artificial 

body extension and tool use, perceived reachability can also be manipulated by changes in 

elbow range of movement and that a large degree of controlled perceptual-motor variability 

can be introduced into one’s perceptual-motor feedback associated with motor learning in the 

real world.  

Although participants continued to show a slight trend towards liberal estimates in the 

variable condition as in the virtual reality studies of Lin, McLatchie and Linkenauger (2020), 

this effect was not significant. In Lin, McLatchie and Linkenauger (2020), the difference 

between the extended reach and variable reach was significantly smaller than the difference 

between the constricted and variable reach, which indicates that participants were estimating 

liberally rather than conservatively in the variable condition. Whereas in the current study, the 

difference between unconstricted and variable reach conditions did not significantly differ from 

the difference between the constricted and variable reach condition, suggesting that a moderate-

sized action boundary was selected.  

One possible reason as to why the current findings did not conform to those in virtual 

reality may be the context in which the actions were learned. Previous studies were conducted 
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in virtual reality and the perceptual system may handle variability differently in a real-world 

setting. Possibly, individuals are less conservative in virtual environments, because they are 

aware that the environment is not real.  Hence, they might glean that they would not suffer the 

same consequences for failing as they would in the real world.  However, this explanation is 

unlikely due to there being no real consequences for failing to successfully reach in either 

environment.  Another explanation for the differences could be that perceived distances are 

compressed in virtual environments in comparison to the real world (Loomis & Knapp, 2003).  

However, previous research has shown that the presence of a fully animated avatar nearly 

eliminates distance compression in virtual reality (Mohler, Bülthoff, Thompson, & Creem-

Regehr, 2008). Moreover, if perceived distances were compressed in the virtual environment, 

the compression would apply to all calibration distances in all three conditions, hence this 

compression is unlikely to account for differences between the real and virtual environments. 

 Another reason as to why we found slightly different results here could be the way by 

which perceptual-motor variability was introduced. In the current study, we used a modified 

orthopaedic elbow brace with the intention to simulate injury to the upper limb by restricting 

elbow extension. In the virtual study by Lin, McLatchie & Linkenauger (2020), we modified 

the length of the arm itself, which left the range of motion intact and arm movements in their 

natural state.  In the case of this experiment, we restricted and modified the natural arm 

movement.  Restricting elbow range of motion resembles the movement of the arm in a state 

of injury.  Consider that much of the physical therapy following a serious injury to the arm, 

e.g. bone breakage, involves gradually stretching the arm overtime to recover its range of 

motion. Perhaps, here, the perceptual system was treating the reduction in the range of motion 

as if it were a real injury. Hence, by selecting a less liberal action boundary the perceptual 

system may have been trying to maximise the probability of success while minimising the 

probability of exacerbating a potential injury.  
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Therefore, the current findings could be a reflection of the differences in the methods 

used to manipulate reaching ability. Different manifestations of motor variability in the same 

actions produced different patterns of results. For instance, if perceptual-motor variability is 

introduced by inducing tremors or involuntary muscle contraction in arm muscles, while the 

arm’s length and ROM remain unchanged, the individual’s reaching ability will differ from 

one moment to the next due to inconsistent muscle contractions. Therefore, how the perceptual 

system selects an action boundary may be different in this situation. Consider, for example, the 

reaching ability variance that occurs in individuals with Parkinson’s and stroke patients, whose 

perceptual-motor feedback for reaching is constantly in flux due to abnormalities of neural and 

muscular activation (Mazzoni, Shabbott & Cortes, 2012). Therefore, understanding the 

influence of perceptual-motor variability and the way in which it is manifested differently 

within a given action will provide valuable insights. Future research could explore these factors 

further by examining whether different strategies are employed for different manipulations. 

In summary, the current study demonstrated that the manipulation of elbow range of 

motion can influence the perception of action boundaries in the real world. Our findings also 

show that when anticipating our reaching capability in the event of perceptual-motor variability 

in a real-world setting, individuals were not as liberal with their reachability estimates as they 

were in virtual reality. However, other factors such as the context, methodology, as well as the 

way in which variability is introduced to perceptual-motor feedback specifying one’s action 

boundary may also influence the size of the action boundary selected. 

    

 

 

 

Open practices statement  
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This experiment was not preregistered. The data that support the findings of this study will be 

made freely available in a repository after publication.  
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