
A Programming Language for
Sound Self-Adaptive Systems

Barry Porter
School of Computing and Communications

Lancaster University, UK
Email: b.f.porter@lancaster.ac.uk

Roberto Rodrigues Filho
Institute of Informatics

Federal University of Goiás, Brazil
Email: robertovito@ufg.br

Abstract—The ability for systems to adapt at runtime by
hot-swapping their logic, seamlessly and without any apparent
interruption, allows a program to adjust its behavior to its
context. Research in adaptive systems support has to date focused
on the basic mechanics of hot-swapping code at runtime, with the
soundness of a system after each hot-swap left to the developer
to assure on a case-by-case basis. Providing this assurance in
existing programming languages is sufficiently difficult that self-
adaptive systems using hot-swapping remain largely untrusted for
production use. In this context we study two research questions:
(i) what is the general soundness principle for self-adaptive
systems; and (ii) how can we embed this soundness principle
in a general-purpose programming language? We answer these
questions partly by theoretical analysis, and partly through
developing a novel general-purpose programming language which
embeds our soundness principle – allowing any module to be hot-
swapped with the soundness of the wider system guaranteed.

I. INTRODUCTION

One-size-fits-all algorithms and systems generally fail to
meet the challenges of dynamic operating environments, caus-
ing performance shortfalls compared to ideal implementations
in each environment. This is true at a micro-level for single
algorithms, such as buffer and queue management policies,
and at a macro level in the composition of entire systems.

Self-adaptive systems capture these scenarios using runtime
decision-making to dynamically infer which behaviors best
match each context experienced by a deployed system. These
systems work by connecting runtime decision logic with the
ability to hot-swap different alternative modules in and out of a
system, where hot-swapping is implemented within an existing
programming language (e.g., [1], [2], [3]). However, because
existing languages are not designed to support sound hot-
swapping, programmers are forced to manually reason about
soundness on a case-by-case basis, for every hot-swappable
module, in order to avoid catastrophic system failures [4],
[5]. This is a surprisingly complex task which requires a
deep understanding of the possible risks of hot-swapping in a
given language. Manually providing this assurance in existing
languages is sufficiently hard that self-adaptive systems using
hot-swapping remain largely untrusted.

In this context we study two research questions:
1) What is the general soundness principle for self-adaptive

systems that use hot-swapping?
2) How can we embed this soundness principle in a

general-purpose object-like language?

Our methodology to answer the first of these questions is a
theoretical analysis of the soundness problem in self-adaptive
systems, informed by existing research in hot-swap soundness
problems within languages like Java [4]. This analysis yields
a key principle that we must uphold, which is the avoidance
of un-testable hybrid state machines.

For the second question our methodology has been to design
and implement a new programming language, and test the
generality of that language across a wide range of systems.
Over the last 8 years we have developed the general-purpose
object-like language Dana which is designed to uphold our
soundness principle1. We have tested the generality of Dana
by building large-scale systems from data centre back-ends
[6] to big data processing frameworks [7], databases, IoT
frameworks, and GUI toolkits. We derive a proof sketch
to demonstrate how Dana upholds our general soundness
principle by construction – meaning the rules of the language
allow this property to be guaranteed for any program, where
any module can be hot-swapped with soundness guarantees
for the overall system in which that module exists.

II. RELATED WORK

The designs of programming languages are based on sound-
ness theorems, which allow certain properties of programs
written in those languages to be formally proven. The most
common soundness theorem is type soundness [8], typically
realised as syntatic type soundness [9], which informs the
design of a wide range of languages like Java and C++.

Soundness for runtime hot-swap of logic is rarely a language
design goal; popular languages thus offer little assurance of
well-defined behaviour after hot-swaps. Despite this, our work
builds on a long history of research on runtime code updates.

Kramer and Magee undertook seminal work on quiescence
[10] for distributed systems with transactions, demonstrating
how a node to be hot-swapped can be placed into a consistent
(but inactive) state. This was later refined by Vandewoude et
al with the concept of tranquillity for lower disruption [11].

Local systems have different assumptions to distributed
ones, including zero disruption between hot-swaps, and higher
levels of state machine entanglement between system ele-
ments. In local systems the concept of dynamic interposition,
introduced in the operating system K-42 [12], is sufficient for

1http://www.projectdana.com

[pre-print version for personal use] Appears at IEEE ACSOS 2021

the safety of the individual entity being swapped. This blocks
all calls that would transit into an entity to be hot-swapped and
places those calls in a queue, transfers state (if any) between
the outgoing and incoming entity, then resumes queued calls.
We use dynamic interposition in a similar way to K-42, but
also show this is not sufficient for wider system soundness.

Beyond hot-swap mechanics, component frameworks with
reflective runtime models such as OpenCom [1] and Fractal
[2] support self-reasoning for architectural adaptation, with a
runtime basis for meta-level operations on that architecture.
We use many of the component-based ideas of OpenCom,
though interfaces in Dana can be instantiated as objects and
object references passed around – supporting a form of internal
structure that is not controlled by an external meta-level.

A range of language-level research has more recently
demonstrated that, for local systems, dynamic interposition
and component models are not sufficient for sound hot-swaps.
While they provide protection for the entity being swapped,
the wider system can experience state machine errors which
lead to general exception faults and system exit. In particular,
dynamic Java class update toolchains such as JVolve [5] and
Javeleon [13] show the extent to which Java classes can be hot-
swapped at runtime, and which kinds of changes may cause
system failures at a JVM-level. Our research takes particular
inspiration from that of Gregersen et al. in this area [4] on the
implications of stateful side-effects.

III. DESIGNING A SOUND ADAPTIVE LANGUAGE

In this section we first present the key theoretical problem
involved in hot-swapping code at runtime, and from this derive
a soundness principle in answer to Research Question 1. We
then define the programming model of Dana, and its reference-
passing model which supports our soundness properties.

A. The Adaptation Game

We can summarise the key problem in hot-swaps as a lack
of state machine equivalence, leading to a system arriving in
a hybrid state machine which could never have been tested.
Because such a state machine could never have been tested,
we are unable to make any claims or assurances about the
behaviour of the system from this point onward.

Our soundness derivation is inspired by the classic work by
Hoare [14], in which properties of programs can be proven by
deductive inferences over a set of language axioms (this is the
basis of type soundness theorems). In addition to these axioms,
program correctness is in practice established using deductive
reasoning over source code, combined with execution-based
testing, to provide sufficient evidence that a program in state
sn will transition to state sq as a result of receiving input i.
The evidence that these transitions occur under the expected
conditions gives assurance that a program is correct to its
specification. It is then assumed that since a deployed program
is equivalent to that which was tested, it must also be correct.

Our analysis assumes the existence of multiple different
compositions of the same program, each of which has been
individually subjected to the same tests to verify correctness.

This is a generalisation of the classic hot-swap scenario, in
which one module mi in the currently-executing system has
a replacement alternative module mj loaded into memory,
and all links in the system that reference mi are updated to
instead refer to mj , after which mi is unloaded from memory.
In our generalisation, we assume two different compositions
CCa and CCb, representing the same overall program, but
with one or more sub-modules in CCb that use a different
implementation compared to that of CCa (such as a different
sorting algorithm, or a different scheduling algorithm).

We also assume that a computer program, though its source
code, represents a set of reachable states. The actual states
reached depend on the state machine described by the program
text, plus the specific inputs received during execution. We can
also say that the program text alone describes an abstract set
of states SA that are reachable given any set of inputs.

In an adaptive system with hot-swaps, each available com-
position of behaviours CCi has its own SAi. In general,
the set of states SAi that are reachable within CCi may be
significantly different to the set of states SAj that are reach-
able within a different composition CCj – even though both
compositions implement the same high-level functionality.

When we transition between two compositions CCi and
CCj at time t during execution, we then have a problem:
what happens if the state that CCi is currently in does not
exist anywhere in the SAj of CCj? More specifically, we
must consider what happens if the transition from CCi to CCj

at time t results in a hybrid state machine that exists neither
in SAi nor in SAj . In this case the hybrid state machine
could not have been tested and we can have no assurance
about the properties of the executing program after this point.
Compounding this problem, if we adapt between CCi and
CCj at time k instead of time t, we may arrive at a different
hybrid state machine that which was induced by adapting at
time t. We therefore have an infinite number of possible hybrid
state machines about which we can make no guarantees.

Without constraints, this effect makes hot-swapping inher-
ently brittle: in platforms like Java, for example, general
exception faults may occur in the language runtime due to type
system errors caused by hybrid, untestable state machines [4];
above the language runtime, fatal faults may occur in programs
generally due to object reference graph incoherence [3]. These
potential effects – which are difficult to reason about in all but
the simplest of systems – force engineers to work with extreme
caution, and engender a lack of trust in hot-swapping.

We propose that a programming language designed with
hot-swap soundness guarantees will minimally assure that:

When adapting from a composition CCi to CCj at any
point in time, the system in CCj must be in a state sj that
actually exists in the abstract state set SAj of CCj – and is
therefore within an envelope that could have been tested.

A more strict guarantee is that the post-adapted system in
CCj at time t is in exactly the same state as if the system
had always been in CCj since the start of its execution; our
experience suggests this is much more costly to assure and
may require the use of a less general programming language.

2

[pre-print version for personal use] Appears at IEEE ACSOS 2021

data Item {

 char key[]

 Data value

 }

data HashBucket {

 KeyVal v

 }

DefaultHashMap.dnHashMap.dn

data KeyVal {

 char key[]

 Data value

 KeyVal nxt

 }

interface Button extends UIObject {

 //per-instance transfer state

 transfer int xPos

 transfer int yPos

 transfer char label[]

 eventsource click()

 Button(char label[])

 void setPos(int x, int y)

 }

Button.dn

component provides HashMap(AdaptEvents) {

 HashBucket map[] //internal state

 int count = 0

 void HashMap:put(char key[], Data val) {

 KeyVal kv = new KeyVal(key, val)

 kv.nxt = map[hash(key)].v

 map[hash(key)].v = kv

 count ++

 }

 void AdaptEvents:inactive() {

 content = new Item[count]

 int j = 0

 for (int i = 0; i < map.length; i++)

 for each (KeyVal k in map[i].v) {

 content[j] = new Item(k.key, k.value)

 j ++

 }

 }

 }

component provides Button

 requires Font {

 Font font //internal state

 Button:Button(char text[]) {

 label = text

 font = new Font(Font.default, 12)

 }

 void Button:setPos(int x, int y) {

 xPos = x

 yPos = y

 }

 void Button:paint(Canvas c) {

 c.drawRect(...)

 c.drawText(font, label, ...)

 }

 void Button:mouseUp(int x, int y) {

 emitevent click()

 }

 }

BasicButton.dn

interface HashMap {

 //per-instance transfer state

 transfer Item content[]

 HashMap()

 void put(char key[], store Data val)

 Data get(char key[])

 }

Fig. 1. Example interfaces and components, showing both kinds of instance state. Objects can read/write to both transfer and internal state, but both kinds
of state are invisible to other objects.

We next introduce the key design points of the Dana
language. Together, these allow us to deductively assure that
any system and any hot-swap must inherently meet our above
soundness objective – by virtue only of each part of that
system being successfully compiled and tested in isolation.
Following any hot-swap to a composition CCj at runtime, the
resulting system must therefore arrive in a state that exists
in the SAj of CCj – and must be equivalent to a program
that has been tested and is known to be correct. With one
exception, which we discuss in Sec. IV-C, this consequently
removes the need for the programmer to consider the system
soundness risks of hot-swaps when developing their code.

B. The Dana language
Dana is a general-purpose, imperative, object-oriented lan-

guage designed for full-stack development. It is implemented
with a custom-built interpreter and compiler which work
together to assure hot-swap soundness: the compiler performs
static checks where possible, and the interpreter performs
additional dynamic checks during execution to prevent certain
design patterns that would violate soundness guarantees.

Dana uses strong typing with two distinct type hierarchies:
interface types for behavior, and data types for data, both of
which support single inheritance. An interface type is a tuple
of a set of function prototypes, a set of event prototypes, and
a set of transferable state fields. Transferable state fields are
private to the implementation of the interface for both read
and write, and are declared in the interface only to ensure
transfer state compatibility between alternate implementations.
Because interfaces only have function prototypes, such that no
publicly accessible writable state is available in any object,

we can cheaply intercept all state transitions in a system by
tracking function calls into objects.

A data type is simply a collection of named, typed fields in
which to store values. Dana also provides two primitive types,
integers and decimals, of various sizes, and an array type A<t>

which is parameterised by any of the above types. Interface
types are instantiated as objects; data and array types are also
instantiated, with instances of all three types being passed by
reference. Primitives are passed by value.

An interface I is implemented by a component C, such
that C provides an implementation of every function prototype
declared in I . Each object instantiated from an interface I has
a new copy of I’s transfer state, and C can also declare internal
per-instance state specific to the implementation. As well as
providing implementations of interfaces, components can also
declare required interfaces, which represent dependencies on
external behavior. At runtime, the required interfaces of each
component are wired to compatible provided interfaces on
other components to satisfy dependencies.

Example components, with associated interfaces, are shown
in Fig. 1, in which we highlight both transfer state on interfaces
and internal state in implementations. The HashMap interface
declares a transfer state form which is different to the internal
state representation of the implementing component. For this
reason the implementation also declares an AdaptEvents
interface, through which it is notified of adaptations and can
convert state into/out of the transfer state format and its own
internal representation. The user-interface Button example,
by comparison, has only primitive transfer state and so needs
no special functions to be inherently hot-swappable.

3

[pre-print version for personal use] Appears at IEEE ACSOS 2021

a

Object instance

Reference to
another object

bc
ex

Fig. 2. An object reference graph which may yield an incoherent hybrid state
when object a’s logic is hot-swapped.

Altogether, a Dana system is formed by loading suitable
components and wiring each required interface to a type-
compatible provided interface (wirings are in practice rep-
resented by lists of function pointers). Objects are instanti-
ated via required interfaces, where each object o comprises
{i, ts, c, cs}: a provided interface type i (that via which it was
instantiated), a copy of the transfer state fields ts of i, the
linked logic of a component c which currently implements that
object, plus an instance of the private state cs declared in c for
that object. An object’s implementation can be changed during
a runtime hot-swap to a different component c′, resulting in o
becoming {i, ts, c′, c′s}. All references to the object o remain
valid after a hot-swap of its implementation, with only o’s
internal function pointers and state changing.

C. Reference-passing rules

The use of strict encapsulation, and explicit dependencies
via required interfaces, are necessary but not sufficient to sup-
port sound hot-swapping by construction. To fully support this,
Dana also enforces restrictions on how object references can
be passed, and uses an event model to cover design patterns
that would otherwise be impossible under these restrictions.

Unrestricted object reference graph formation can make hot-
swap soundness impossible as follows. Consider three objects
a, b, and c, each sourced from three different components, as
shown in Fig. 2. Object a is given a reference to b; a then
instantiates c via one of its required interfaces, and passes a
reference of c into b. The implementation of a, which added
the edge ex to the reference graph, is then hot-swapped to a
different implementation a′ which does not include the logic to
pass the reference of c into b. Because the logic which did this
has left the system, and b is still present in the system, we have
a hybrid state machine composition which could not have been
reached had the system always been in its new composition
from start – and we are unable to make any assertions about the
subsequent behavior of the system as its hybrid state machine
has not been tested. This may result in behaviours ranging
from ‘strange’ [4] through to nonsensical runtime exceptions.

Dana therefore restricts the object reference graphs that can
be formed. First, we note that object references can be passed
freely without restriction into any object op if those references
are not going to be stored in op’s internal state (i.e., are only
used within the local scope of the called function). We can do

this because references that are only used within the scope
and lifetime of a called function do not persistently affect
the reference graph. If a reference is going to be stored in
the object’s state then Dana enforces a rule that an object a
can only pass such object references into objects that a itself
instantiated. This supports the most common kinds of object
composition (such as instantiating a window and then adding
a set of buttons to the window), while avoiding scenarios
in which component n can be hot-swapped out of a system
after having created edges in the object reference graph that
persist following its departure. Programmers declare at the
interface level whether or not an object will store any function
parameters of type Data or Object, as exemplified on the
put function of the HashMap interface in Fig. 1. In the
majority of cases the Dana compiler can automatically detect
when the programmer needs to declare parameters as storable,
introducing little extra programming complexity.

Finally, to support design patterns which would otherwise
be unavailable under the above restriction (particularly those
in which objects would register for notifications from other
objects), Dana provides an asynchronous event paradigm
whereby an interface can declare events that it emits, such
that an object on can listen to events from another object oj .
An example event provider is the Button component shown
in Fig. 1 which emits click events to interested listeners.
Objects cannot see who is listening to their events, and can
only emit an event to ‘all listeners’, allowing us to freely adjust
registrations to uphold soundness properties (see Sec. IV).

D. Hot-swap protocol

When performing a runtime hot-swap, the required interface
of a selected component is re-wired during execution to point
to the provided interface of an alternative implementation.
We first ‘pause’ the required interface, causing any future
object instantiation instructions to be blocked and placed into
a queue. We then iterate over each extant object instantiated
over this required interface, and ‘pause’ that object such that
future function calls are blocked and placed into a queue.
For stateful objects, we also wait for any in-progress function
calls to finish. We then allow the outgoing implementation of
an object to translate its internal state representation to the
transfer state definition on the interface, and the incoming
implementation of that object to translate from this common
state representation to its internal representation. The object
is then un-paused, such that any queued function calls may
continue into the object; when all objects have been adapted,
the required interface itself is re-wired and un-paused so that
any queued instantiation instructions may proceed.

IV. SOUNDNESS DERIVATION

Dana provides inherent system soundness properties after
any code hot-swap. Formally proving theorems for a full-
featured, general-purpose language would exceed the space
available here; in this section we therefore provide a sketch of
how our soundness properties are derived.

4

[pre-print version for personal use] Appears at IEEE ACSOS 2021

Our sketch assumes the existence of multiple different
compositions of the same program, each of which has been
individually subjected to the same tests to verify correctness.
We then show that, when adapting from one composition
of components CCi (with potential state machine SAi) to
another CCj (with potential state machine SAj), the adapted-
into system is not a hybrid state machine but rather must be in
a state sj ∈ SAj . Our demonstration that this is always true,
for any hot-swap, relies on understanding the way in which
Dana constrains state machine transitions in general.

We first show this property in a simpler model than that of
Dana, then introduce each complexity the full Dana language
adds to this model and extend the demonstration accordingly.

A. Simple model
Our simple model assumes there are no inter-object side-

effects in any state transitions: a state transition that occurs in
any object q induces no state transitions in any other objects.

In this model we focus on a single hot-swap of a component
x to x′, to move from composition CCi to CCj . Because we
are only changing a single component, every other component
in CCj is evidently the same as in CCi. As there are no side-
effects between objects, it follows that the state machine SAj

must be identical to SAi in every component except x′. It also
follows that the specific state of the rest of the system must
exist within SAj , and so the rest of the system must be correct
following the hot-swap with well-defined behaviour.

We can then focus on the state machines of components
x and x′. If x and x′ are stateless we can deduce the entire
system must be correct after the hot-swap, relying only the
per-component protocol described in Sec. III-D.

If x and x′ do have state we rely on the state transfer
features of Dana in which each interface can declare one
or more transfer state fields, representing elements of object
state which must be transferred when components are hot-
swapped. Using this mechanism we then require the following
assertion to uphold soundness: the specification and correct
implementation of an interface implies that any component x
is able to (i) convert its internal state to the transfer state in
its interface, and (ii) convert from the transfer state to a valid
state in its internal state machine. With this assertion, we can
then say that x′ must have arrived in a valid state and so the
entirety of CCj as defined above must be in a state sj ∈ SAj ,
and so is correct following a hot-swap.

Using our AdaptEvents interface to notify components
they are being hot-swapped out of / into a system, transfer state
thus acts as a conduit to reach valid states in the internal state
machines of different implementations of the same interface.

B. Full Dana model
We next show that we can also uphold our objective in our

full language model, and so similarly assure that a system with
hot-swaps is correct. To fully model the state machine space
of Dana we enhance our model to include the potential for
side-effects, where the state transitions in one object can cause
state transitions in other parts of a system. This can occur in

three ways: (i) the object reference graph; (ii) the registrations
on event sources; or (iii) the internal state of objects. In the
remainder of this section we cover each of these in turn.

1) Reference graph: The object reference graph is a glob-
ally shared structure between all objects, since any object can
modify the nodes and directed edges in that graph. In Dana,
an object is only permitted to add edges to the reference graph
which point from objects that it has created (to any object).

From this rule we can deductively see that when an object
leaves the system, all of the objects (nodes in the reference
graph) it created must also leave the system. Likewise, all
edges in the reference graph that an object created will also
be removed when it leaves the system.

In other words, an object cannot affect the reference graph
outside of its own created sub-graph. In this sense, the
reference graph upholds the property that no side-effects are
allowed, because when component c leaves the system the
reference graph is returned to a state that would have existed
had c never been present. Our above derivation for a model
without side-effects therefore holds for this added complexity.

2) Event registrations: Objects in Dana can register to
receive events from any other object. The list of registrations
on any given object is therefore a vector for side-effects.
However, when an object leaves the system (including when
it is being hot-swapped out), all of its registrations can be
safely deleted because objects have no way to access the list of
registrations on their event sources. This returns the system’s
event registration state to a point where the object in question
was never present, and so again upholds the above derivation
for our simpler model without side-effects.

3) Programmer-defined state: Finally, an object x can call
functions on other objects, where those calls modify the state
of those objects. x may then be hot-swapped to x′ which would
not have made the same sequence of function calls.

Our avoidance of untested hybrid state machines here relies
on a property we term permissive side effects, which all object-
oriented languages exhibit, and which forces the programmer
to accept arbitrary state transitions under certain conditions.

We first observe that, in an object-oriented language, when
one object x creates another y, and passes a third object z into
y, x gives y permission to drive arbitrary state changes in z.

As a real example, consider the simple program in Fig. 3,
in which we instantiate a JSONParser object, then a File
object, and pass the file object into the parser for reading. Here
the source code represents object x; the JSON parser is object
y and the file object is object z. Here the programmer of object
x must program in such a way that x can accept arbitrary
state transitions in z. This is reinforced in Dana because every
dependency is an abstract interface, so the programmer has no
details about the implementation of an interface (aside from
any semantics implied by the interface definition).

Now consider the hot-swap of each of the objects in our
above example in Fig. 3. The hot-swap of object x to x′

causes the destruction of objects y and z (as there are no other
references to these objects) so we can ignore their state; for
x itself we assume that the state transfer process will derive a

5

[pre-print version for personal use] Appears at IEEE ACSOS 2021

component provides App requires io.File, data.JSONParser {

 ...

 JSONParser jp = new JSONParser()

 File f = new File("dat.txt", File.READ)

 JSONDoc doc = jp.parseDocument(f)

 ...

object y
object z

x
Object instance

Reference to
another object

yz

(App)

(JSONParser)(File)

Fig. 3. Permissive stateful side effects when passing object z into y.

state for x′ which is within its set of valid states and so will
be correct (see Sec. IV-A). The hot-swap of object z has the
same properties: state transfer will derive a valid state for z′,
and z itself did not have access to any other object references
and so could not have affected the rest of the system.

The hot-swap of object y partly operates under the same
state transfer case as x and z: the only object with a reference
to y is x, and thus x has been driving all state transitions
in y. As long as y′ has a state that is internally valid to the
logic of y′, and is coherent with x’s understanding of what its
state should be, x and y′ will exhibit mutually compatible and
coherent states. However, y has also been able to arbitrarily
modify the state of z, and when y is hot-swapped out it may
have made changes to the state of z which y′ would not have.

In this scenario we can consider the validity of the state of z
with respect to the two other objects which may interact with
it: y′ and x. First, for the state of z relative to y′, our state
transfer assertion requires the transfer from y to y′ to yield an
internally valid state for y′; if the interface of y/y′ implies that
they store a reference to z, our state transfer assertion must
by induction include the state of z for y′. In other words, the
implementation of y′ is necessarily forced to either accept any
state of z, or to move z into a state acceptable to y′. Second,
the state of z relative to x must be valid since x has given
permission for the state of z to be modified in an arbitrary way;
since x must be programmed without awareness of the specific
implementation of y, x must necessarily be programmed to
operate correctly for any state of z.

In each case, the hot-swap of any of these three objects in a
transition to composition CCj must cause the resultant system
state sj to be within SAj , and thus the system must be correct
after hot-swaps despite these stateful side-effects.

C. Exposing Internal Implementation-Specific State
There is one edge case for soundness which Dana does not

explicitly cover, for return values / event data. An object x can
return a data instance or array instance that x created2, where

2Note that such data or array instances cannot, directly or indirectly,
reference any objects, as implied by Dana’s reference-passing rules.

the content of that instance is specific to the implementation –
such that hot-swapping x to an alternative implementation of
the same object x′ would leave a piece of state in the rest of
the system that could not have existed if x′ had been present
since system start. While our current implementation does not
cover this, the most obvious solution is to annotate such a
return value to indicate that it is implementation-specific, and
when a hot-swap is requested wait until there are no references
to those entities present in the rest of the system outside of
their creating object (or objects that it created). Our experience
to date suggests this scenario is rare, since abstract interfaces
(and what they return) tend to be inherently defined in a non-
implementation-specific way; we leave further examination of
this edge case as a topic of future work.

ACKNOWLEDGMENTS

This work was partly supported by the UK Leverhulme Trust
via the Self-Aware Datacentre project, grant RPG-2017-166.

REFERENCES

[1] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama,
and T. Sivaharan, “A generic component model for building systems
software,” ACM Trans. Comput. Syst., vol. 26, no. 1, pp. 1:1–1:42, 2008.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema, and J.-B. Stefani,
“An open component model and its support in java,” in Component-
Based Software Engineering, ser. LNCS, vol. 3054. Springer Berlin
Heidelberg, 2004, pp. 7–22.

[3] F. Shen, S. Du, and L. Huang, “A dynamic update framework for
OSGi applications,” in High Performance Computing and Applications,
W. Zhang, Z. Chen, C. C. Douglas, and W. Tong, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 350–355.

[4] A. R. Gregersen and B. N. Jørgensen, “Run-time phenomena in dynamic
software updating: Causes and effects,” in Proceedings of the 12th
International Workshop on Principles of Software Evolution. ACM,
2011, pp. 6–15.

[5] S. Subramanian, M. Hicks, and K. S. McKinley, “Dynamic software
updates: A vm-centric approach,” in Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation. ACM, 2009, pp. 1–12.

[6] B. Porter, M. Grieves, R. Rodrigues Filho, and D. Leslie, “REX:
A development platform and online learning approach for runtime
emergent software systems,” in Symposium on Operating Systems Design
and Implementation. USENIX, November 2016, pp. 333–348.

[7] P. Dean and B. Porter, “The design space of emergent scheduling for dis-
tributed execution frameworks,” in Proceedings of the 16th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems. IEEE, 2021.

[8] R. Milner, “A theory of type polymorphism in programming,” Journal
of Computer and System Sciences, vol. 17, pp. 348–375, 1978.

[9] A. Wright and M. Felleisen, “A syntactic approach to type soundness,”
vol. 115, no. 1, p. 38–94, Nov. 1994.

[10] J. Kramer and J. Magee, “The evolving philosophers problem: dynamic
change management,” IEEE Transactions on Software Engineering,
vol. 16, no. 11, pp. 1293–1306, 1990.

[11] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt, “Tranquility:
A low disruptive alternative to quiescence for ensuring safe dynamic
updates,” IEEE Transactions on Software Engineering, vol. 33, no. 12,
pp. 856–868, 2007.

[12] C. Soules, J. Appavoo, K. Hui, R. Wisniewski, D. da Silva, G. Ganger,
O. Krieger, M. Simon, M. Auslander, M. Ostrowski, B. Rosenburg, and
J. Xenidis, “System support for online reconfiguration,” in Proceedings
of the USENIX Annual Technical Conference, 2003, p. 141–154.

[13] A. R. Gregersen, B. N. Jørgensen, Hadaytullah, and K. Koskimies,
“Javeleon: An integrated platform for dynamic software updating and its
application in self-*systems,” in 2012 Spring Congress on Engineering
and Technology, May 2012, pp. 1–9.

[14] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–583, 1969.

6

