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Figure 1: Sample scene generated using Silver.

ABSTRACT
Large-scale synthetic data is needed to support the deep learning
big-bang that started in the recent decade and influenced almost all
scientific fields. Most of the synthetic data generation solutions are
task-specific or unscalable while the others are expensive, based
on commercial games, or unreliable. In this work, a new rendering
engine called Silver is presented in detail. Photo-realism, diversity,
scalability, and full 3D virtual world generation at run-time are
the key aspects of this work. The photo-realism was approached
by utilizing the state-of-the-art High Definition Render Pipeline
(HDRP) of the Unity game engine. In parallel, the Procedural Con-
tent Generation (PCG) concept was employed to create a full 3D
virtual world at run-time, while the scalability of the system was
attained by taking advantage of the modular approach followed
as we built the system from scratch. Silver can be used to provide
clean, unbiased, and large-scale training and testing data for various
computer vision tasks.

CCS CONCEPTS
•Computingmethodologies→Rendering;Computer vision.

KEYWORDS
synthetic data, computer vision, computer graphics

1 INTRODUCTION
When a problem can be described by a limited set of rules, comput-
ers perform very well and usually surpass human performance in
terms of speed and accuracy. However, when the problem is too
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hard to be formulated, computers fail dramatically. Human rea-
soning and intelligence are still very far from being understood or
formulated. The vast research done in this field still only scratches
the surface [4, 14, 15]. Visual perception is one of the most complex
tasks that the human brain performs accurately and efficiently. As
visual perception is important for human daily activities, it is crit-
ical for the machine (agent) to perceive the environment, reason,
plan, and then interact to achieve its goal. The machine could be as
simple as an Optical Character Recognition (OCR) program or as
complex as an autonomous car or robot on another planet. Failure
of such agents could lead to deaths or injuries, damage to the envi-
ronment or properties, failure of missions, and loss of millions of
dollars.

The recent great success of Artificial Neural Networks (ANN) in
solving complex problems motivated many researchers to apply it
to machine perception problems too. In parallel to this, the great
advancement in chip design, microelectronics, and the introduc-
tion of General-Purpose Graphics Processor Architectures like the
General Purpose Graphics Processing Unit (GPGPU), facilitated
training deep neural networks with millions of parameters. These
deep ANNs with their high degree of non-linearity, help in approx-
imating the real functions or phenomena behind complex vision
problems (like semantic segmentation, instance segmentation, and
object recognition) in a much more accurate way. Unfortunately,
training these deep learning models requires a great amount of data
together with their corresponding annotations or ground-truths.
Finding, collecting, and annotating suitable data is cumbersome,
time-consuming, error-prone, expensive, and subject to privacy is-
sues. Perhaps, the lack of diverse, high quality, and precisely labeled
data can be attributed to the previously mentioned reasons. Unfor-
tunately, these factors cause many major data quality issues in the
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field of computer vision and they clearly present an obstruction
toward the aim of optimal performance computer vision models in
practice.

The promising solution seems to be in the leading-edge game en-
gines like Unity [23], Unreal Engine [7], and CryEngine [6]. Lever-
aging the powerful tools of the Unity game engine, we present
a system that creates three-dimensional, photo-realistic virtual
worlds, procedurally at run-time. A sample scene generated by
our rendering engine is shown in Figure 1. The system currently
supports various computer vision tasks such as semantic segmenta-
tion, instance segmentation, depth estimation, and others. It allows
researchers, with no computer graphics background, to generate
large-scale synthetic datasets for training or testing their own com-
puter vision models. Our main contributions can be summarized as
follows:

• To the best of our knowledge, Silver is the pioneer work to
use HDRP of Unity game engine to build a 3D virtual world
at run-time for synthetic data generation.

• Unlike other frameworks, Silver considers data generation as
an online problem which opens the door for using synthetic
data with online learning algorithms.

• This is the first work that considers generating a photo-
realistic, full-city, procedurally and at run-time.

2 RELATEDWORK
With the substantial advancements in deep learning based ap-
proaches, we have witnessed unprecedented progress in computer
vision. This progress is attributed to the large-scale benchmark
datasets that were collected in the past few years [5, 9, 12, 13].
Although the exponential increase in the amount of digital data
today makes data collection easier than before, manual labelling of
large volumes of examples with high quality and accurate labels
still requires too much effort and comes with a tremendous cost.
The utilization of synthetic data in the computer vision field has
just started recently. Its increase in popularity started to attract
many researchers to propose novel algorithms to generate such
datasets with their corresponding ground-truths. Although special
care needs to be taken to weigh each method’s advantages and
disadvantages, they seem a promising solution to overcome the
lack of suitable data for training supervised learning models. In this
section, we summarize the mainstream of synthetic data generation.

Adapting a specific video game to generate synthetic data with
its corresponding ground-truth for the task of semantic segmenta-
tion was shown by Richter et al. (2016) [17], where the game Grand
Theft Auto V was modified for that purpose. At the same time,
another work by Shafaei et al. (2016) [21] investigated utilizing
photo-realistic video games to generate synthetic data and their
corresponding ground truths for image segmentation and depth es-
timation. Using open source animation movies was another method
discussed by Butler et al. (2012) [2] where they were able to ob-
tain an optical flow large-scale dataset, MPI-Sintel, following a
systematic and easy process.

Unfortunately, the previous methods present a partial solution
for the data generation issue because of the lack of control on the
environment elements. At the same time, integrating new elements
or behaviours to the scene like including a new 3D model, material

or texture is extremely hard or simply unattainable. Another issue is
the limitations of the proposed systems to specific computer vision
tasks. Although these approaches are based on high quality and
rich 3D virtual worlds, the failure of such methods to randomize
the scene elements will lead to some clear repetitions (to scene
elements) when a large-scale dataset is required to be generated
by these methods. Procedural synthetic data generation offers an
alternative to the previous solution.

Procedural Content Generation (PCG) has been proposed as a
solution for creating realistic looking environments in relatively
short amounts of time, making it easier and cheaper for users to
generate virtual worlds from scratch. In its simplest form, a proce-
dural generation framework follows systematic recipes to generate
scenes, populations, and actions, based on the given set of instruc-
tions. Silver, the rendering engine described in this work, is based
on this concept.

Under this category, De Souza et al. (2017) [18] investigated the
possibility of adapting the PCG concept with Ragdoll physics, ran-
dom perturbations and muscle weakening to generate a wide range
of human actions systematically with their corresponding labels.
Another work by Cheung et al. (2016) [3] applied the concept of
procedural generation to generate labelled crowd videos. Alter-
natively, Wrenninge et al. (2018) [24] presented a photorealistic
and diverse synthetic dataset that can be generated entirely proce-
durally. The ability to parameterize the scene generation process
and the fact that these parameters are not correlated are the main
contributions of [24]. While procedural concept improves diversity,
it still limits the scalability of the system and it does not guarantee
the photo-realism of the virtual world being generated by it.

An optimal solution to the problem is the one that ensures high
realism, diversity, scalability, controllability and most importantly
the generalizability of the approach to all computer vision tasks.

3 SYNTHETIC DATASETS AND COMMON
LIMITATIONS

The current available computer vision synthetic datasets seem to be
covering a wide set of the main computer vision applications like
Visual Object Tracking, Semantic Segmentation, Instance Segmen-
tation, Depth Estimation, Action Recognition, and Optical Flow.
Some of these datasets provide videos [2, 8, 18, 19] while others
[11, 17, 20] provide simply snapshots depending on the application
or the task. The resolution of these synthetic datasets is restricted
by the method used to generate it. Some of the methods allow only
fixed resolutions [16, 20] while others permit generating the dataset



Silver: Novel Rendering Engine for Data Hungry Computer Vision Models SIGKDD, August 14–18, 2021, Singapore
Ta

bl
e
1:

Sy
nt
he

ti
c
da

ta
se
ts

fo
r
co

m
pu

te
r
vi
si
on

ta
sk

s.

Na
m
e

CV
Ta

sk
s

Siz
e

Vi
de
os

Re
so
lu
tio

ns
Ot

he
rU

se
fu
lI
nf
o

Sy
ns
ca
pe
s[
22
,2
4]

In
sta

nc
ea

nd
se
m
an
tic

se
gm

en
ta
tio

n
De

pt
h
M
ap
,2
da

nd
3d

bo
un

di
ng

bo
xe
s

Ca
m
er
a’s

po
sit
io
n
an
dfi

eld
of

vi
ew

Oc
clu

sio
n
an
dt

ru
nc
at
io
n

Sc
en
em

et
ad
at
a

25
K
Fr
am

es
No

14
40
X7

20
20
48
X1

02
4

Un
bi
as
ed

pa
th

tra
cin

g
fo
rr
en
de
rin

ga
nd

M
on

te
Ca

rlo
-b
as
ed

lig
ht

tra
ns
po

rt
sim

ul
at
io
n

Vi
rtu

al
Ki
tti

[8
]

Ob
jec

td
et
ec
tio

n
an
dm

ul
ti-
ob
jec

tt
ra
ck
in
g

Sc
en
e-
lev

el
an
di

ns
ta
nc
e-
lev

el
se
m
an
tic

se
gm

en
ta
tio

n
Op

tic
al
flo

w,
an
dd

ep
th

es
tim

at
io
n

21
,26

0F
ra
m
es

Ye
s

12
42
X3

75
Un

ity
5e

nv
iro

nm
en
ts

Sy
nt
hi
a[

19
]

SY
NT

HI
A-
Ra

nd
&

SY
NT

HI
A-
Se
qs

Se
m
an
tic

se
gm

en
ta
tio

n
De

pt
h
M
ap

Ca
re

go
-m

ot
io
n

21
3K

Fr
am

es
20
0K

Fr
am

es
No Ye
s

96
0X

72
0

Un
ity

Vi
rtu

al
Ne

w
Yo

rk
Ci
ty

13
cla

ss
es

PH
AV

[1
8]

Ac
tio

n
re
co
gn

iti
on

Se
m
an
tic

se
gm

en
ta
tio

n
In
sta

nc
es

eg
m
en
ta
tio

n
De

pt
h
m
ap

Ve
rti
ca
la
nd

ho
riz

on
ta
lo

pt
ica

lfl
ow

6M
Fr
am

es
Ye
s

34
0X

25
6

39
,98

2v
id
eo
sf
or

m
or
e

th
an

1,0
00

ex
am

pl
es

fo
re

ac
h
ac
tio

n
of

35
ca
te
go

rie
s

GT
A-
V
[1
7]

Se
m
an
tic

se
gm

en
ta
tio

n
25
K
Fr
am

es
No

19
14
X1

05
2

Gr
an
dT

he
ft
Au

to
V

Co
m
pa
tib

le
wi

th
Ca

m
Vi
d

an
dC

ity
Sc
ap
es

M
PI
-S
in
te
l[
2]

Op
tic

al
flo

w
16
28

Fr
am

es
Ye
s

10
24
X4

36
(A
ny

)

Eff
ec
to

fr
es
ol
ut
io
n

on
Op

tic
al
Fl
ow

Ba
se
do

n
th
eo

pe
n-
so
ur
ce

an
im

at
ed

fil
m

Sin
te
l

SO
M
AS

et
[1
]

Pe
rs
on

re
id
en
tifi

ca
tio

n
10
0K

Fr
am

es
No

40
0X

20
0

M
ak
eh
um

an
an
dB

len
de
r

LC
ro
wd

V
[3
]

Bo
un

di
ng

bo
x,
flo

w
es
tim

at
io
n,

pe
de
str

ian
sc

ou
nt

Cr
ow

dd
en
sit
y,
po

pu
lat

io
n,

lig
ht
in
gc

on
di
tio

ns
Ba

ck
gr
ou

nd
sc
en
e,
ca
m
er
aa

ng
les

Ag
en
tp

er
so
na
lit
y
an
dn

oi
se

lev
el

20
M

Fr
am

es
Ye
s

An
y

Un
re
al
ga
m
ee

ng
in
e

Ba
se
do

n
pr
oc
ed
ur
al
m
od

eli
ng

an
dr

en
de
rin

gt
ec
hn

iq
ue
s

VI
PE

R
[1
6]

Op
tic

al
flo

w,
se
m
an
tic

in
sta

nc
es

eg
m
en
ta
tio

n,
Ob

jec
td

et
ec
tio

n
an
dt

ra
ck
in
g

Ob
jec

t-l
ev
el
3d

sc
en
el
ay
ou

t
Vi
su
al
od

om
et
ry

25
4K

Fr
am

es
Ye
s

19
20
X1

08
0

Gr
an
dT

he
ft
Au

to
V

In
jec

ta
m
id
dl
ew

ar
eb

et
we

en
th
eg

am
ea

nd
its

su
pp

or
tin

g
gr
ap
hi
cs

lib
ra
ry

UB
C3

V
[2
0]

Sin
gl
eo

rm
ul
tiv

iew
de
pt
h-
ba
se
dp

os
ee

sti
m
at
io
n

6M
Fr
am

es
No

51
2X

42
4

Ut
ili
ze

Ki
ne
ct
se
ns
or
s

Pr
eS
IL

[1
1]

De
pt
h
in
fo
rm

at
io
n,

po
in
tc
lo
ud

s
Se
m
an
tic

se
gm

en
ta
tio

n
2d

an
d3

dl
ab
els

fo
ro

bj
ec
td

et
ec
tio

n
50
K
Fr
am

es
No

19
20
X1

08
0

Li
DA

R
sim

ul
at
or

wi
th
in

Gr
an
dT

he
ft
Au

to
V



SIGKDD, August 14–18, 2021, Singapore A. Kerim, L. Marcolino and R. Jiang

at various resolutions [2, 3]. Important characteristics of synthetic
datasets are as follows:
Diversity: Synthetic datasets can be used for training and testing
purposes. For training, diversity is needed to avoid over-fitting
to the visual features of the synthetic world. On the other hand,
for testing, diversity is required to represent a good proxy of the
real world and the possible standard and rare scenarios. The real
training and testing data are collected with the aim to be a good
proxy of the actual world. Sometimes the space of the problem
could be easy to describe and to collect suitable data that represents
– approximately – this space. Unfortunately, predicting the problem
space for most of the computer vision tasks is extremely hard or
simply unfeasible. Thus, datasets with the highest diversity are
always expected to improve the overall performance.
Visual Complexity: The real world is full of details that are very
hard to be captured even by the state-of-the-art simulators or ren-
dering engines. However, generating synthetic data at a high-level
of visual complexity is very important. Moreover, some specific
details could be more critical for some computer vision tasks while
not for some others. Thus, special care is needed in deciding the
level of details the synthetic data should attain and which scene
elements are more important than others.
Realism: The ultimate goal of models trained on synthetic data is
to be tested on the real-world dataset. However, the most common
problem that causes such models to fail or not to perform well is
the domain gap (domain shift) problem. Many different approaches
are suggested to mitigate this problem. However, improving the
photo-realism of synthetic data is, nevertheless, the major approach.
It should be noted that realism should not only be limited to photo-
realism. However, the concept should be extended to animation,
camera motion, object locations in the scene, object frequency,
object scales, dynamic objects interactions with the static elements
and other dynamic objects, and so on.

The limitations of most of the observed synthetic datasets shown
in Table 1 is the lack of adverse weather conditions and limited
times of the day (hence, illumination). In addition to that, the cam-
era behaviours are quite limited, unrealistic, or cinematic. These
problems in fact simplify the actual issue, and cause computer vision
models trained on these datasets to over-fit to these situations.

4 SILVER FRAMEWORK
Using the Unity game engine, we built a system that is able to
generate a full city procedurally, randomly, at run-time and with
high degree of photo-realism. The city is populated with humans,
cars, trees, birds and so on. The system runs at around 30 Frames
Per Second (FPS) on Ubuntu 18.04 with a GeForce GTX 1080 Ti
GPU. It consists of four main components as described in Figure 2.
Scene Generator: Starting from the given parameters, Silver ini-
tially creates the static part of the 3D virtual world. In this part,
first the street length and the number of crosses are set at random.
Following this, the buildings are created where buildings’ locations,
types and frequency are set at random. After that, the other scene
elements like benches, trash containers and bags, trees, and other
elements are created. Once the static part of the scene is completed,
the dynamic part of the scene is initiated. Initially, the characters
generator retrieves the locations of buildings and benches, and

instantiates characters based on the required characters density.
The Microsoft Rocketbox Avatar Library [10] is used to define the
character avatar, and the animations are selected based on charac-
ter pose (standing or sitting). Character animations were adopted
from Mixamo1. In a similar way, the cars are created. However,
number of cars and models are selected at random. Additionally,
car shader attributes, namely, Smoothness, Metallic and BaseColour,
are all randomized at run-time to give different visual appearance
even to the same car model. After that, the plates of the cars are
selected at random from a set collected manually from the web. The
above main processes are summarized in Figure 3.
Camera Controller: The camera unit is made to be independent
of the other scene elements to support the scalability of the system.
Silver includes two different camera types. One simulates a camera
placed on an Unmanned Aerial Vehicle (UAV) or drone. While the
second imitates a person carrying a camera and recording others.
Cinemachinewas utilized for that reason since it gives unlimited sets
of behaviours that enrich the diversity of the generated synthetic
data in terms of the camera view angle, transition, and many others.
Weather and Time Unit: The Unity game engine supports creat-
ing Skybox, which is a 6-sided cube that is rendered behind all scene
objects. We deployed the High Dynamic Range Imaging (HDRI)
images from HDRIHAVEN2 to create two realistic sets of skyboxes.
One incorporated the day-time skyboxes from which one skybox at
random will be chosen if the simulation time is a day-time. While
the second includes the night-time skyboxes fromwhich one will be
selected at random when the night time is being simulated. For the
time simulation, other actions are taken to increase photo-realism
and enrich the diversity. For example, the locations of the sun and
the moon are changed randomly. The skybox is rotated at random
and the sky emission is set at random as well. After that, the street
lights are turned on and off based on the time of the day. The
main processes involved in simulating the time-of-day are shown
in Figure 4.

The weather condition component is essential in simulating
the main conditions that could present some challenges for deep
learning models. Silver currently allows researchers to generate
four different weather conditions, namely, sunny, foggy, rainy and
snowy. A parameter is used to specify the severeness (slight, very,
extreme) of the weather condition. However, the weather is ran-
domized within the chosen severeness level in a range that is still
meaningful and reflects the severeness degree. The aim was to add
further diversity even for a given weather severeness level.

After that, for rainy and snowy weathers, the Unity particle
system is used to simulate both snow and rain drops. The density of
these drops per unit volume is controlled by the severeness level. At
the same time, the ground shader is changed to simulate water drops
collision or to imitate snow accumulation on the ground. Following
this, trees animations are changed (speed up or slow down) based
in the severeness of the weather being simulated to give a sense
of wind interaction with trees. The foggy weather condition is
supported by the Unity games engine. Thus, only simple parameters
tuning was required to simulate realistic foggy weather condition.

1https://www.mixamo.com/
2https://hdrihaven.com/



Silver: Novel Rendering Engine for Data Hungry Computer Vision Models SIGKDD, August 14–18, 2021, Singapore

Figure 2: Bird’s-eye view of the system architecture.

Figure 3: Flowchart describing the scene creation.

The main processes of simulating the four weather conditions are
shown in Figure 4.
Ground-truth Extractor: One of the main goals of Silver is to
generate synthetic data with annotations for different computer
vision tasks.

A custom rendering pass and a simple shader are defined to
extract the depth maps for each frame. The vertex position and
texture coordinates are retrieved then converted to screen space.
After that, the depth information is linearized and scaled. Normal
maps are simply extracted using graph shader and a custom pass
volume. The world space normal vector is retrieved and encoded
as the base colour for the lit shader.

For instance segmentation, the objects being created in the scene
are retrieved and for each object its mesh is drawn again for each
frame.

For semantic segmentation, however, each category (class) of
objects are given a different tag at the creation process. Then, all
objects with one tag are given the same colour. It should be noted
that Unity supports around 10K tags. Thus, the number of classes
can reach 10K which is much larger than the number of semantic
classes in most of the datasets (order of 10).

For the human body pose information, the avatar is accessed at
each frame and the main 14 joints coordinates are provided. The

world space locations of these joints are transformed to screen
space locations and saved for each character.

5 SYSTEM EVALUATION
The system was evaluated both qualitatively and quantitatively. In
Section 5.1 the quality and the variation of the generated images
are discussed. On the other hand, time complexity and memory
utilization are addressed in Section 5.2.

5.1 Diversity and Photo-realism
To avoid over-fitting to the visual features of the synthetic world, the
content of the environment is diversified by including a wide set of
3D models, textures, animations, weather conditions, illumination
and lighting, and recording set-ups. A sample of the key variations
Silver currently supports is illustrated in Table 2. In parallel to
that, example frames from the supported weather conditions and
times-of-the-day are shown in Figure 5.

Silver utilizes HDRP of Unity game engine to develop a photo-
realistic 3D virtual world for synthetic data generation. HDRP
is based on the Scriptable Rendering Pipeline (SRP). Generally,
it is intended for high visual fidelity applications. The other key
feature of HDRP is the Physical Light Unit (PLU) that relies on



SIGKDD, August 14–18, 2021, Singapore A. Kerim, L. Marcolino and R. Jiang

Figure 4: Time-of-day and weather simulation flow charts.

Table 2: Variations for some of the main attributes the proposed engine supports.

Attribute Variations Attribute Variations Attribute Variations Attribute Variations

People

Gender - Age
Colour - Ethnicity
Height - Speed
Actions

Building Shops
Condominiums Weather

Normal
Rainy
Snowy
Foggy

Human Accessories
Glasses
Hats
Hand watches

Car

Model
Colour
Reflectiveness
Plates

Street

Length
Traffic Lights
Cross Locations
Cross Numbers

Time of the Day Day time
Night Vegetation Trees

Plants

Sky
Sun/Moon/Stars Location
Stars Contrast
Clouds Location

Lighting Traffic Lights
Street Lights Prop

Waste Bin
Waste Bags
Benches

Animal Birds

real-life lighting measurable values. All of these attributes together
contribute to the final photo-realistic rendering that is shown in
Figure 6.

Utilizing HDRP for the purpose of synthetic data generation
is one of the key contributions of this work. As shown in Figure
7 the synthetic data generators PHAV and Synthia generate less
photo-realistic synthetic data as compared to Silver and Synscapes.
Non-realistic weather simulation, low polygon 3D models, and
unrealistic characters and vehicles are crucial issues behind the
lack of photo-realism. An addition to this, the core problem is
utilizing a non-physically based rendering pipeline which makes
the interaction of the light with the materials clearly unrealistic. On
the other hand, the main advantage of our system in comparison
with Synscapes is the capability of Silver to simulate both different
weather conditions and diverse night-times. Additionally, Silver
diversifies buildings types, characters accessories, animations, age
and skin color.
Table 3 details some key features of Silver as compared to other
synthetic data generation systems. At the same time, it shows that
these systems present a partial solution to the problem. Most of
them are task specific, achieve diversity but neglect photo-realism
or vice versa. For these reasons, Silver is developed to present a
good solution for the synthetic data generation task.

5.2 Scalability
One main goal of this work is to make the system scalable and
extendable to a range of different problems. In other words, adding
new 3D models for human characters, buildings, trees, cars, or new
animations, or textures, or camera setup should be straightforward.
At the same time, extending the system to support new computer vi-
sion tasks shall not require major modifications to the other system

components. This was achieved by following a modular approach
in building Silver where each component is independent of the
unrelated ones.

To dissect the complexity of the system, the following six compo-
nents were analysed: Triangles, Vertices and Batches Count, CPU
Time, FPS, and SetPass Calls. The first three represent the total num-
ber of triangles, vertices and batches (static, dynamic, and instance
types) Unity processes for a single frame. CPU Time illustrates the
time required to process and render a single frame. FPS, however,
provides the number of frames rendered per second. The higher the
value, the smoother the system will run. On the other hand, SetPass
Calls shows how many times Unity changes the shader pass as it
renders one frame.

Figure 8 shows the average and standard deviation values for
these six metrics taken for 5 iterations. Scalability was studied for
four crowdedness levels, namely Few (N≤20), Moderate (N∼50),
High (N∼100), and Extreme (N∼300). N represents the number of
generated pedestrians. Figure 8 clearly shows that the number of
Triangles, Vertices, Batches, and SetPass Calls all are independent
of the system load, i.e. generating more characters. FPS decreased
and CPU time increased as expected since more characters were
generated.

5.3 Sample Dataset
Our system automatically provides ground-truth for depth estima-
tion, normal map, semantic segmentation, instance segmentation
and body pose estimation. Figure 9 shows one RGB frame with its
corresponding ground-truths for the mentioned computer vision
tasks. In addition to other textual information describing the time
of the day, the weather condition, and other useful information.
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Table 3: A comparison between Silver features and three state-of-the-art synthetic data generators, namely, Synscapes [22, 24],
Synthia [19], and PHAV [18].

Simulator Computer Vision Tasks Weather Conditions Times-of-Day Public
Availability Photo-realism

Semantic
Segmentation

Instance
Segmentation

Depth
Estimation

Surface Normals
Estimation

Pose
Estimation Normal Rainy Foggy Snowy Day-time Night-time / /

Synscapes [22, 24] ✓ ✓ ✓ - - ✓ - - - ✓ - - ✓
Synthia [19] ✓ - ✓ - - ✓ ✓ - ✓ ✓ ✓ - -
PHAV [18] ✓ ✓ ✓ - ✓ ✓ ✓ ✓ - ✓ ✓ - -

Silver (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(a) Different weather conditions

(b) Different times-of-the-day

Figure 5: Sample frames from sequences rendered at differ-
ent weather conditions (a) and times-of-the-day (b).

To show one particular usage of Silver, a sample dataset was
generated and released publicly. The dataset contains sample se-
quences spanning the main supported attributes. The ability to
generate different scenes and the process of sampling models, mate-
rials, and animations are thought to minimize the visual similarity
even among a large number of sequences.

6 DISCUSSION
In the scope of applying synthetic data for computer vision tasks,
the data diversity is of a central concern. Silver deploys uniform
distribution to set colors, select 3D models, choose animations or

to configure other scene elements. In reality this may be consid-
ered as a strong assumption. To address this, we are planning to
consider the real distribution of scene elements and their associ-
ated attributes as observed in the real world. At the same time, we
would like to make these distributions conditioned on the type of
weather condition and other related aspects of the environment.
For example, in a winter environment, it is more likely to observe
people wearing dark color clothes and so on.

In this work, a qualitative overview of the system was shown.
However, an open question is still to prove the usability of the gener-
ated data for training and/or evaluation purposes. As a future work,
we plan to answer this question considering some major computer
vision tasks such as semantic segmentation and depth estimation.
In parallel, we aim to extend the system to other computer vision
tasks and improve the photo-realism and diversity even further. We
believe that utilizing Silver to generate photo-realistic, large-scale,
and diverse training data will help computer vision models to train
better and to achieve better performance on real world data.

7 CONCLUSIONS
In this paper, we presented a tool called Silver, that allows re-
searchers to generate 3D photo-realistic virtual worlds procedurally
and at run-time. No computer graphics knowledge is required, no
privacy issues involved, and no manual annotation is needed. The
system is released for research usage and researchers are welcomed
to adopt it to their own needs. A sample dataset was generated to
show the capability of the system.

This work was not meant yet to provide a proof of the usability
of the synthetic data the system is able to generate. However, it
was dedicated to representing the system, its main features, de-
sign decisions and reasons behind them. As a future work, we are
planning to study the usability of our generated synthetic data for
different computer vision tasks. Silver can be utilized to generate
full datasets with rare and challenging attributes. The automatic
annotation process ensures accuracy. At the same time, it provides
unbiased ground truth since no human is involved in the annotation
process.

The source code of the complete system and a sample dataset are
both available at https://github.com/lsmcolab/Silver. At the same
time, a video displaying a sample 3D virtual world generated by
Silver is provided at https://youtu.be/Ktlx5bgJLXE.
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Figure 6: Photo-realism of Silver

Figure 7: Visual comparison between Silver and three synthetic data generators in terms of photo-realism. First three rows
show PHAV [18], Synthia [19], and Synscapes [22, 24], respectively, while final row presents our system Silver.
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Figure 8: System complexity when varying number of characters.

Figure 9: Silver provides RGB frames (a) with pixel-level accurate ground-truths for semantic segmentation (b), instance seg-
mentation (c), normal maps (d), depth maps (e), and human body pose information (f).
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