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Abstract 57 

Aim: Here we examine the functional profile of regional tree species pools across the latitudinal 58 

distribution of Neotropical moist forests, and test trait-climate relationships among local 59 

communities. We expected opportunistic strategies (acquisitive traits, small seeds) to be 60 

overrepresented in species pools further from the equator, but also in terms of abundance in local 61 

communities in currently wetter, warmer and more seasonal climates.  62 

Location: Neotropics. 63 

Time period: Recent. 64 

Major taxa studied: Trees. 65 

Methods: We obtained abundance data from 471 plots across nine Neotropical regions, 66 

including ~100,000 trees of 3,417 species, in addition to six functional traits. We compared 67 

https://www.eeb.ucla.edu/
mailto:bxpinho@hotmail.com


occurrence-based trait distributions among regional species pools, and evaluated single trait-68 

climate relationships across local communities using community abundance-weighted means 69 

(CWM). Multivariate trait-climate relationships were assessed by a double-constrained 70 

correspondence analysis that tests both how CWMs relate to climate and how species 71 

distributions, parameterized by niche centroids in climate space, relate to their traits. 72 

Results: Regional species pools were undistinguished in functional terms, but opportunistic 73 

strategies dominated local communities further from the equator, particularly in the northern 74 

hemisphere. Climate explained up to 57% of the variation in CWM traits, with increasing 75 

prevalence of lower-statured, light-wooded and softer-leaved species bearing smaller seeds in 76 

more seasonal, wetter and warmer climates. Species distributions were significantly but weakly 77 

related to functional traits. 78 

Main conclusions: Neotropical moist forest regions share similar sets of functional strategies, 79 

from which local assembly processes, driven by current climatic conditions, select for species 80 

with different functional strategies. We can thus expect functional responses to climate change 81 

driven by changes in relative abundances of species already present regionally. Particularly, 82 

equatorial forests holding the most conservative traits and large seeds are likely to experience the 83 

most severe changes if climate change triggers the proliferation of opportunistic tree species. 84 

 85 

Key-words: climate change, climate seasonality, community assembly, functional composition, 86 

functional traits, latitude, precipitation, species pool, temperature.  87 



Introduction 88 

Plants have evolved a broad range of functional strategies to cope with diverse environmental 89 

conditions (Díaz et al., 2016; Pierce et al., 2017). The functional assembly of plant communities 90 

results from the interplay among eco-evolutionary forces operating at different spatial-temporal 91 

scales (Kraft & Ackerly, 2014). At regional scales, the diverse functional strategies found in any 92 

given species pool reflect long-term speciation, dispersal and extinction filters (Mittelbach & 93 

Schemske, 2015). For instance, long-term climatic instability and natural disturbance regimes, 94 

such as hurricanes, storms and forest expansion-retraction dynamics due to glacial cycles, may 95 

select for functional profiles that favor population persistence under unstable conditions, while 96 

disturbance-sensitive species may be rare of even absent from regions under such conditions 97 

(Balmford, 1996; Betts et al., 2019). At local scales, the functional profile of plant communities 98 

depends on the filtering of regionally available species across varying current climate regimes 99 

(Swenson et al., 2012; Cadotte & Tucker, 2017). Assessing changes in functional composition of 100 

regional species pools and local communities along wide (bio)geographic and climatic gradients 101 

can help to understand potential responses to climate change and other human-caused disturb-102 

ances (Violle et al., 2014). For instance, global climate change will soon bring unprecedented ex-103 

treme climates to the Neotropics (Mora et al., 2013). Therefore, assessing how tree communities 104 

are functionally structured by trait-climate relationships helps predict the future of Neotropical 105 

forests in a rapidly changing world. 106 

The advent of global plant trait databases in recent decades has enabled numerous 107 

investigations of patterns of trait variation and their relationships with climatic and 108 

biogeographic gradients (e.g., Swenson et al., 2012). These studies have revealed intriguing 109 

patterns, such as the tendency of plant species in warmer and less seasonal sites (closer to the 110 



equator) to be taller and bear larger and softer leaves, larger seeds and denser woods (Wright et 111 

al., 2004, 2017; Moles et al., 2007, 2009; Swenson et al., 2012). However, these large-scale trait 112 

patterns were described mostly from species occurrence data across spatial grid-cells or 113 

latitudinal bands, and therefore failed to account for ecological processes operating at local 114 

scales that govern abundance of species and ultimately the functional profile of plant 115 

assemblages. On the other hand, studies that have assessed variation in abundance of species and 116 

their traits in local communities are based on either a single regional flora (e.g., van der Sande et 117 

al., 2016) or a single trait (e.g., Swenson & Enquist, 2007), and thus are unable to capture species 118 

assembly processes along wide biogeographic and climatic gradients. Scaling up abundance-119 

based analyses of local communities to biogeographic scales can improve our understanding 120 

about climatic effects on local trait dominance, which ultimately drives ecosystem functioning 121 

(Poorter et al., 2017). In this way, Bruelheide et al. (2018) recently used a large dataset to 122 

examine global trait-environment relationships at the local community level (including 123 

abundance data), and found only weak support (R2 < 0.1) for trait-climate relationships. These 124 

global-scale analyses, though insightful, can mask relevant patterns within biotas that share a 125 

relatively common (but diverse) biogeographic history, such as Neotropical moist forests.  126 

Neotropical moist forests extend from southern Mexico to northern Argentina and 127 

represent an enormous variation in past and current climatic conditions (Frierson et al., 2013; 128 

Blonder et al., 2018) and biogeographic histories (Gentry, 1982; Burnham & Graham, 1999). 129 

Overall, these differences clearly result in distinct taxonomic and phylogenetic composition more 130 

or less packed into biogeographic provinces. For instance, tropical moist forests of Meso-131 

America (including Mexico) are taxonomically distinct from those in South America; the flora of 132 

the latter being mostly of Gondwanan origin while the northern Neotropics supports many plant 133 



lineages with Laurasian affinity (Gentry, 1982; Graham, 1999). Also, palynological evidence 134 

points to a higher frequency of past disturbance events and faster recovery of tropical forests in 135 

northern Central America compared to South American counterparts (Cole et al., 2014). Mexican 136 

forests are the northern limit of the Neotropical forest distribution and experienced repeated 137 

expansion-retraction cycles due to Pleistocene glaciations (Burnham & Graham, 1999; Graham, 138 

1999), compared to South America, where many large blocks of forests remained stable during 139 

the last glacial and the influence of the Andes and the South American dry diagonal corridor is 140 

remarkable (Colinvaux et al., 2000; Hoorn et al., 2010; Leite et al., 2016).  141 

While assessing relationships between traits and current climate is straightforward, 142 

addressing the effects of biogeographic history is challenging. Historical contingencies such as 143 

speciation/extinction dynamics and dispersal events must have affected the functional structure 144 

of current species pools and different drivers might act across localities (Fukami, 2015). Distance 145 

from the equator is related to current climate seasonality but has also been used as a proxy of 146 

biogeographic history, from plants to mammals, given its correlation to past cycles of climate 147 

change (Dynesius & Jansson, 2000; Betts et al., 2019). It is thus reasonable to expect that 148 

tropical biotas far from the equator experienced, currently and in the past, more shifting climates 149 

than their equatorial counterparts (Blonder et al., 2018; Betts et al., 2019). Such instability might 150 

select for opportunistic strategies related to fast growth and high dispersal ability. For instance, 151 

northern forests are mostly composed of broad-ranged plant species due to short- and long-term 152 

climatic instability, while small-ranged species concentrate under stable climates in Central 153 

America, Amazonia and Atlantic forests (Morueta-Holme et al., 2013), which are relatively 154 

equatorial regions that also support higher phylogenetic endemism (Sandel et al., 2020). In 155 

contrast, extreme southern Neotropical vegetation has developed under relatively low and 156 



seasonal temperature and precipitation levels (Oliveira-Filho et al., 2013). The extent to which 157 

such historical contingencies can induce distinct signatures on the functional composition of 158 

Neotropical moist forests is yet to be fully understood.  159 

Several key aspects of community functional composition can be expressed through the 160 

‘global spectrum of plant form and function’ (Díaz et al., 2016). Specifically, plants well adapted 161 

to resource-poor/stressful environments with low disturbance regimes tend to grow slowly (i.e., 162 

low metabolic resource demand) and invest in dense, durable tissues (i.e., conservative traits). In 163 

contrast, acquisitive resource-use traits (e.g., low-density woods, soft leaves) favor hydraulic 164 

efficiency and rapid plant growth, allowing resource pre-emption in productive habitats such as 165 

those under wetter and warmer climates (Westoby et al., 2002; Reich, 2014). Such opportunistic 166 

strategy can also benefit under more seasonal climates by optimizing carbon gain during the 167 

growing season in the more open forests that allow more light to reach the understory (Kobe, 168 

1999; Kikuzawa et al., 2013). Regarding size-related traits, increasing leaf area favors light 169 

capture, but limits heat exchange with the surrounding air, and leads to a higher daytime 170 

transpirational water loss, thereby being favored in warm, moist and sunny environments 171 

(Wright et al., 2017). Also, larger seeds may promote higher seedling performance under low 172 

resource availability (Leishman & Westoby, 1994; Muller-Landau, 2010), while smaller-seeded 173 

species have greater seed output that favors dispersal to recently disturbed sites and seeds that 174 

are more likely to exhibit dormancy, which favors survival under variable climates (de Casas et 175 

al., 2017). Finally, larger trees tend to have greater access to light and belowground resources, 176 

but are more prone to hydraulic failure during drought (Brum et al., 2019). Combinations of 177 

these traits define ecological strategies that influence plant responses to environmental 178 

conditions (Grime & Pierce, 2012).  179 



Here we test two mutually compatible effects of biogeographic history and current climate 180 

as structuring drivers of the functional organization of tree communities across Neotropical moist 181 

forests. If historical contingency prevails, then we should expect functional dissimilarities among 182 

regional tree species pools, which could lead to differences in functional composition of local 183 

communities occurring in similar climates at different regions. If current climate represents a 184 

prevailing force, functional differences should emerge at the local scale due to changes in trait 185 

dominance in response to climatic conditions. In particular, we expected that regional species 186 

pools should be composed of different sets of functional strategies, with higher prevalence of 187 

species with opportunistic ecological strategies (i.e., low-density tissues, small seeds) in regions 188 

further from the equator due to long-term instability that selects for fast-growth and high disper-189 

sal ability. Across local communities, more seasonal, wetter and warmer climates should favor 190 

dominance of opportunistic strategies. We additionally assessed the consistency of trait-climate 191 

relationships by evaluating to what extent the distribution of species, expressed as the abun-192 

dance-weighted mean climatic conditions at which they are found (i.e., niche centroids), is medi-193 

ated by functional traits. We discuss our results in terms of how useful they are for the under-194 

standing of both community assembly patterns and potential responses of Neotropical tree floras 195 

to climate change and anthropogenic disturbances in human-dominated landscapes. 196 

 197 

Methods 198 

Study regions and plots  199 

We studied 471 forest plots from nine biogeographic regions distributed across the Neotropics, 200 

covering the whole latitudinal distribution of Neotropical moist forests (Fig. 1; see Table S1 in 201 

Supporting Information for details on sampling across regions). All plots were located in lowland 202 



(up to 800 m a.s.l.), old-growth forests within a variable matrix of land uses. Mean annual 203 

precipitation ranged from 1,154 to 7,068 mm, and mean annual temperature from c. 17 to 28 ºC 204 

(Fig. S1). Temperature seasonality increases with distance from equator (Wright et al., 2009), 205 

while average temperature and precipitation are typically higher towards the northern Neotropics 206 

due to northward heat transport by ocean circulation (Frierson et al., 2013; Fig. 1).  207 

 208 

Vegetation data 209 

We used data from 96,290 live adult trees (stems with diameter at breast height, DBH ≥ 10 cm; 210 

excluding lianas and palms) belonging to 3,417 species. Tree inventories were carried out by the 211 

authors as described elsewhere (Pitman et al., 2001; Santos et al., 2008; Arroyo-Rodríguez et al., 212 

2009; Faria et al., 2009; Hernández-Ruedas et al., 2014; Benchimol & Peres, 2015; Orihuela et 213 

al., 2015; Pinho et al., 2018) or compiled from the “Salvias” database through the Botanical 214 

Information and Ecology Network - ‘BIEN’ R package (Maitner et al., 2017), which includes the 215 

Gentry plots (Gentry, 1988). The sampled area and total number of individuals and species 216 

sampled by region are summarized in Table S1. The slight difference in sampling methods (e.g., 217 

plot sizes) should not affect our results as we focus on the relative dominance of functional traits 218 

and strategies within communities and the resulting variation across the Neotropics.  219 

 220 

Functional traits 221 

A comprehensive set of six traits was measured in the field (following Pérez-Harguindeguy et 222 

al., 2013) and compiled from global databases, such as ‘TRY’ (Kattge et al., 2020) and the ‘Seed 223 

Information Database’ – SID (Royal Botanic Gardens Kew, 2020). These traits are leaf area - LA 224 

[cm²], specific leaf area – SLA [cm²/g], leaf dry matter content –LDMC [mg/g], wood density –225 



WD [g/cm³], seed mass – SM [mg] and maximum height – Hmax [m]. We chose these traits 226 

because they are known to influence tree performance along climatic gradients (Westoby et al., 227 

2002; Reich et al., 2014), and position species along the plant (and organ) economics and size-228 

related traits spectra (Díaz et al., 2016; Pierce et al., 2017). For instance, the leaf and stem traits 229 

considered are expected to reflect a trade-off between rapid resource acquisition that enables 230 

growth in resource-rich environments (indicated by high SLA, low LDMC, low WD), and 231 

conservation of resources in well-protected tissues that ensure survival under low resource 232 

availability, indicated by the opposite traits (Reich, 2014). 233 

For leaf traits in compound-leaved species, we considered leaflets as the sample unit. 234 

Although we recognize the importance of intraspecific trait variation in community assembly 235 

(Siefert et al., 2015), we used species’ mean functional traits as we consider a meaningful 236 

approach for the purpose of this study due to the extensive species-level trait data and high 237 

species turnover among regions. Species-level trait data covered on average from 57 to 80% of 238 

total plot abundances across traits/regions (see Table S2 for a summary of trait coverage by 239 

region). For species with doubtful identification and/or no trait information, we first used 240 

average trait values at the genus level, then we imputed remaining missing values (for which no 241 

genus-level data were available) through multivariate trait imputation with chained equations by 242 

predictive mean matching, using the R package ‘mice’ (van Buuren & Groothuis-Oudshoorn, 243 

2011). The imputed trait data represented 3% or less of individuals in plots for 40 of the 54 244 

region-trait combinations and over 10% for just one combination (see Table S2 for a summary 245 

by region), and the distribution of the original and imputed datasets largely overlapped (Fig. S2). 246 

Genus-level trait means were well correlated with species mean traits (Table S3), and their 247 

inclusion led to similar distributions of CWM trait values (Fig. S3). These findings demonstrate 248 



that our results are not due to spurious artefacts in the imputation of missing trait data. Also, the 249 

exclusion of trees with DBH < 10 cm should not represent a significant bias because adults 250 

covered the whole range of functional strategies evident among saplings, and abundance-251 

weighted distributions of species trait values largely overlap when considering smaller trees (see 252 

example for Northern Meso-America, Fig. S4).  253 

 254 

Climate data 255 

For each plot, we assessed the average of five key bioclimatic variables that are thought to drive 256 

trait distributions and vegetation patterns (Swenson et al., 2012; Moles, 2018). The five climatic 257 

variables include mean annual precipitation (MAP), mean annual temperature (MAT), 258 

precipitation seasonality (PS – coefficient of variation of monthly values), temperature 259 

seasonality (TS – standard deviation of monthly values, multiplied by 100) and potential 260 

evapotranspiration (PET – the amount of water expected to be removed by the atmosphere 261 

through evapotranspiration processes annually). The first variables were obtained from 262 

WorldClim version 2.0 (Fick & Hijmans, 2017), which is a high-resolution global geo-database 263 

(30 arc seconds or ~ 1 km at equator) of monthly average data from 1970 to 2000. The PET was 264 

calculated from a set of WorldClim variables (taken in the same timeframe as above), using an 265 

equation proposed by the Food and Agriculture Organization of the United Nations, which 266 

involves minimum, maximum and average temperature, solar radiation, wind speed and water 267 

vapor pressure (Trabucco & Zomer, 2018). Other climatic variables were considered but then 268 

excluded due to collinearity (see below, Table S4). The five climatic variables considered were 269 

weakly inter-correlated (Table S4), but were strongly related to latitude (i.e., south-north 270 

gradient) or degrees from equator (Fig. S1). Despite complex climate variability due to, for 271 



example, ocean circulation and elevation (Frierson et al., 2013), in this dataset temperature 272 

seasonality was strongly positively correlated with degrees from equator, while other climatic 273 

variables (MAP, MAT, PET, PS) increased linearly from south to north (Fig. S1, see Fig. 1 for 274 

the overall climatic pattern across the Neotropics). 275 

 276 

Data analyses 277 

We log-transformed LA, SLA and SM values, and sqrt-transformed Hmax to reduce skewness in 278 

trait distributions. We also log-transformed MAP to reduce the influence of two exceptionally 279 

wet sites. Functional composition of regional species pools was described from distributions of 280 

the traits of species occurring in each region. Functional traits were scaled-up from the species-281 

level to the plot-level by calculating the Community-Weighted Mean (‘CWM’ – i.e., species’ 282 

trait values weighted by their relative abundances), which reflects the dominance of trait values 283 

in a community (Muscarella et al., 2017). CWM trait values were calculated using function 284 

‘functcomp’ from the ‘FD’ R package (Laliberté & Legendre, 2010). To examine trait co-285 

variation patterns among species and communities, we applied Principal Component Analyses to 286 

the species and CWM trait matrices, using the ‘prcomp’ R function (Venables & Ripley, 2002). 287 

We also computed CWM of species scores on the first two principal component axes, which 288 

should reflect economics and size trade-offs in functional strategies (Díaz et al., 2016).  289 

To assess changes in community functional composition in response to climate or 290 

geography, we constructed separate linear mixed-effects models, for the CWM of each 291 

functional trait or strategy (i.e., species scores on the PCA axes, see above). The fixed effects 292 

were either the five bioclimatic variables described above or the geographic variables, latitude 293 

(to describe south-to-north gradients) and degrees from equator (to describe gradients toward 294 



higher latitudes in both hemispheres). The random effect ‘biogeographic region’ was included in 295 

all models to account for the nested structure of our sampling design, and to assess among-region 296 

variation not explained by latitude or climate. To avoid multicollinearity between climatic or 297 

geographic variables, we checked the variance inflation factor of each predictor in each model, 298 

using the ‘car’ package for R. All values were < 3, which allowed us to include all five climate 299 

variables or the two geographic variables in the models (Neter et al., 1996). After running a full 300 

model with each set of predictors (i.e., climatic and geographic variables) for each response 301 

variable (i.e., CWM of each trait and PCA axes scores) using the maximum likelihood method 302 

with the R package ‘lme4’ (Bates et al., 2015), we tested all possible combinations of predictors 303 

and performed a model selection procedure to select the best-fit models as those with lowest 304 

Akaike Information Criterion values (ΔAICc < 2). Then, we applied model averaging to make 305 

inferences on how individual climatic variables influence CWM of traits and strategies, using the 306 

‘MuMin’ R package (Barton, 2014).  307 

To assess the variance in CWM of traits and strategies (i.e., species scores on principal 308 

component axes, see above) among regions and the strength of their relationships with latitude or 309 

climate, we partitioned the R2 of each selected model into the total variance between-regions 310 

(“conditional R2”) and the component explained by climate or latitude (“marginal R2”; 311 

Nakagawa & Schielzeth, 2013), reporting the variance explained by the model with highest 312 

marginal R2 for each response variable. The difference between conditional and marginal R2 313 

values represents the variance between-regions not explained by climate/latitude (expressed as 314 

fraction of the total variance). The within-region component is the remaining unexplained 315 

variance (i.e., 1 – conditional R2). For this, we used the R package ‘piecewiseSEM’ (Lefcheck, 316 

2016).  317 



To assess composite trait-climate relationships at both species- and community-level, we 318 

applied double constrained correspondence analysis (dc-CA; ter Braak et al., 2018). The dc-CA 319 

method is a new and powerful regression-based approach, similar to the covariance-based three-320 

table ordination RLQ method used to assess multivariate trait-environment relationships in what 321 

is known as the fourth-corner problem (Dray & Legendre, 2008). Like RLQ, dc-CA uses three 322 

data tables (trait values of species, environmental conditions of sites, and abundances of species 323 

per site) to define the correlation between traits and environmental conditions (i.e., the fourth-324 

corner correlation). The fourth-corner correlation has proved to be powerful to test trait-325 

environment relationships (Peres-Neto et al, 2017; ter Braak 2017). dc-CA searches for linear 326 

combinations of traits and environmental variables that maximize their fourth-corner correlation, 327 

using weighted least-squares, where the weights for species and for sites are their total 328 

abundance. In contrast, RLQ maximizes covariance not correlation. By maximizing the fourth-329 

corner correlation, dc-CA considers the influence of environmental conditions on community 330 

functional composition (i.e., CWM traits) in combination with how species (environmental) 331 

niche centroids (SNC) relate to their traits (ter Braak et al., 2018). SNCs represent the mean 332 

climatic conditions where species are found (weighted by abundances) and are related to species’ 333 

traits to discover whether trait-mediated mechanisms influence species’ distributions. 334 

Specifically, the SNC with respect to environmental variable e is a weighted mean, calculated as 335 

𝑢𝑗 = ∑ 𝑦𝑖𝑗𝑒𝑖
𝑛
𝑖=1 ∑ 𝑦𝑖𝑗

𝑛
𝑖=1⁄ , where yij refers to the abundance of the jth species in the ith site, and ei is 336 

the value of the environmental variable at the ith site.  337 

We additionally applied dc-CA considering geographic gradients (latitude, longitude and 338 

degrees from equator) instead of climate variables as predictors, and performed variation 339 

partitioning to define the separate and shared effects of geographical and climatic gradients. We 340 



used the dc-CA based max-test to check significance of the dc-CA axes (ter Braak et al., 2017). 341 

The max-test solves the problem of inflated type I error rate in the fourth-corner approach 342 

(Peres-Neto et al, 2017) by applying two independent permutations for testing species- (SNC ~ 343 

traits) and community-level (CWM ~ climate) patterns, and selecting the highest p-value. We 344 

applied the max-test after aggregating plots separated by less than 50 km (Fig. S5) to avoid 345 

pseudo-replication caused by nearby plots. In the analyses using dc-CA, the issue of the two 346 

exceptionally wet sites was solved by replacing their MAP values with the value 4500 mm/year, 347 

slightly higher than the maximum in the data set; this gave a slightly higher fit than the log-348 

transformation, but did not give qualitatively different results. We performed the dc-CA using 349 

the software Canoco 5.12 (ter Braak & Šmilauer, 2018). 350 

 351 

Results 352 

Functional composition of Neotropical moist forest regions 353 

The functional composition of tree species pools largely overlapped across regions (Fig. 2a), but 354 

strong differences among regions emerged from abundance-weighted trait values at the local 355 

community-level (i.e., CWM) (Fig. 2b). Tree communities in forests near the equator (e.g., 356 

Amazonia, Northeastern Atlantic forest) were dominated by taller species with larger seeds, 357 

harder woods and greater leaf dry matter content. Tree communities in regions further from the 358 

equator were dominated by lower-statured species with smaller seeds and lower LDMC, 359 

particularly in the northern hemisphere (Fig. 2b). CWM values of wood density and maximum 360 

height were, however, relatively high at the extreme south (i.e., southeastern Atlantic forests), 361 

where specific leaf area achieved the lowest values (Fig. 2b).  362 



The first two principal component axes of species-level trait values captured 55% of the 363 

variation in the functional space composed by six traits (Fig. 3a). The first PC axis indicated a 364 

common spectrum of variation among economic- and regenerative-traits, varying from species 365 

with acquisitive traits (i.e., high SLA, low LDMC and WD) and small seeds (i.e., opportunistic 366 

strategies), to species with more conservative strategies (i.e., low SLA, high LDMC and WD) 367 

and larger seeds (Fig. 3a, Table S5). The second axis mainly reflects variation in leaf area and 368 

maximum height, which co-varied positively (Fig. 3a, Table S5). Variation in SLA was mostly 369 

captured by a third PC axis (Table S5).  370 

The first two principal components of community-level trait values (i.e., CWM) captured 371 

more variation (74%) and revealed similar trade-offs (Fig. 3b), except maximum height was 372 

strongly related to the first PC axis (Table S5). Tree communities from different regions could be 373 

distinguished along the first two PC axes (Fig. 3b). Specifically, the first axis indicated a gradient 374 

from communities dominated by species with conservative traits (high WD and LDMC) in 375 

equatorial regions and in the extreme south of the Neotropical forest biome, to a more acquisitive 376 

(high SLA) community composition in Northern forests. In turn, the second community trait axis 377 

distinguished communities at the Southeastern Atlantic region and Caribbean Islands as 378 

dominated by species with smaller leaves compared to more equatorial forests, particularly those 379 

across North-Amazon and Southern Meso-America (Fig. 3b). 380 

 381 

Trait-climate relationships across Neotropical tree communities 382 

Current climate explained 16 to 57% of the variation in CWM trait values across Neotropical 383 

moist forests (Table 1a, Fig. 4). Temperature seasonality presented the strongest relationships 384 

with CWM traits, except for leaf area which was more strongly related to mean annual 385 



precipitation, and SLA which was not responsive to climate variation (Table 1a). LDMC, SM, 386 

WD and Hmax decreased with increasing temperature seasonality, while mean annual 387 

temperature had similar (but much weaker) effects on the last three of these traits (Table 1a). 388 

Additionally, increasing annual precipitation was associated with increased dominance of tree 389 

species with lower wood density, larger organs and lower leaf dry matter content, while 390 

precipitation seasonality was negatively related to seed mass (Table 1a). The species functional 391 

strategies evident on the first two PC axes (Fig. 3a) also changed predictably in response to 392 

climatic variables (Table 1b): PC1 (acquisitive to conservative resource economy) was strongly 393 

negatively related to temperature seasonality, while PC2 (small to large plants and organs) 394 

increased mainly with mean annual precipitation (Fig. 4). 395 

The first two dc-CA axes revealed significant (max-test, P = 0.001) composite trait-climate 396 

relationships (Fig. 5, Table S6). The first axis describes a gradient from environments with 397 

relatively high seasonality in temperature and precipitation, combined with high annual 398 

precipitation and potential evapotranspiration, to less seasonal climates, along which there was a 399 

shift in dominance from shorter plants with relatively acquisitive traits and small seeds, to slow-400 

growing species with conservative traits and large seeds (Fig. 5a). This first axis separated 401 

communities across Northern regions from those at more equatorial regions (Fig. 5b). The 402 

second dc-CA axis was mostly explained by variation in MAP and PET, reflecting a gradient 403 

from drier sites under high potential evapotranspiration to exceptionally wet sites (Fig. 5a). This 404 

second gradient explained the variation in dominance from small-leaved species with high 405 

woody density across southeastern Atlantic forests and Caribbean Islands, to large-leaved, soft-406 

wooded species in communities across northern regions, particularly the Chocó bioregion and 407 

North-Western Amazon (Fig. 5b).  408 



Climate variables were good predictors of taxonomic composition across communities 409 

(CCA eigenvalues of 0.8 and 0.7 for the first two axes), as well as of multivariate gradients in 410 

community abundance-weighted traits (46% of variance explained; Table S6). In turn, traits were 411 

weak predictors of the distribution of individual species abundances across communities, 412 

explaining only 4% of variation in species climate niche centroids (Table S6). Forward selection 413 

on climate variables revealed that three of the five climate variables (MAP, TS and PET) account 414 

for most variation in composite trait-climate gradients (Fig. S6).  415 

 416 

Geographic gradients in community functional composition 417 

All community weighted mean traits were significantly related to either latitude or degrees from 418 

equator. LA, LDMC, WD and SM decreased with increasing degrees from equator, while SLA 419 

increased and Hmax decreased with latitude (i.e., from southern to northern forests; Fig. S7). 420 

Latitude was more strongly related to vegetation patterns (i.e., taxonomic turnover across 421 

communities), while degrees from equator explained relatively more of functional variation 422 

(Table S7). Variance partitioning revealed unique and shared effects of geography and climate, 423 

combining to explain 66% of the variation in CWM trait values (Table 2). Most of this explained 424 

variation (39%) resulted from shared effects of geographical gradients and climate variables, 425 

though there were also unique effects of similar size from both climate (15%) and geography 426 

(12%) (Table 2). 427 

 428 

Discussion 429 

Species pools of Neotropical moist forest regions from southern Mexico to southern Brazil 430 

possess similar distributions of trait values. Long-term filters that can control for the functional 431 



composition of regional species pools thus have little to no importance. In contrast, local tree 432 

communities are functionally structured along climatic and (bio)geographical gradients. Species 433 

assembly processes that govern local abundance of species in tree communities must have 434 

generated the documented functional dissimilarities. The novelty of our findings is that we found 435 

clear though complex trait-climate relationships across Neotropical moist forests, that are not 436 

simply driven by geography. The observed patterns suggest an increase in relative abundance of 437 

lower-statured, light-wooded and softer-leaved species bearing smaller seeds (i.e., opportunistic 438 

strategies) under more seasonal climates in communities further away from the equator, 439 

especially under wetter and warmer conditions across northern forests. In contrast, communities 440 

in more stable climates (mostly close to the equator) are dominated by species with large seeds 441 

and conservative traits (i.e., the typical functional profile of late-successional tree species).  442 

Trait-climate relationships at the species-level (i.e., Species Niche Centroids ~ traits) were also 443 

significant but weaker, suggesting either that changes in the abundance of dominant species are 444 

responsible for varying functional signatures across Neotropical forests, or that there is scope for 445 

improvement of the trait set. It is important to recognize that dominance of functional strategies 446 

differ between regions mainly due to local assembly processes related to climate rather than 447 

changes in species pools that would be the result of biogeographic history. This helps to 448 

understand how Neotropical forests may respond to climate change and other human-imposed 449 

disturbances.  450 

Our results contrast with those of Bruelheide et al. (2018), in which functional composition 451 

of plant communities (abundance-based) was weakly related to climate at the global scale. At the 452 

continental/biome scale (i.e., within Neotropics), we found strong trait-climate relationships 453 

across Neotropical moist forest tree communities, with combinations of climatic variables 454 



explaining up to 57% of variance in CWM trait values. Changes in trait dominance were mainly 455 

driven by the increase in temperature seasonality with distance from the equator and, to a lesser 456 

extent, by changes in precipitation regimes, average temperature and potential evapotranspiration 457 

(Table 1) that are less clear in geographic terms (Fig. 1). Slightly different from our findings, 458 

previous assessments of global trait distributions suggest that higher mean annual temperature 459 

and/or precipitation in equatorial regions leads to increased prevalence of conservative traits and 460 

larger seeds (e.g., Swenson et al., 2012; Moles et al., 2014; Bruelheide et al., 2018). This 461 

discrepancy may arise because global patterns of trait distribution may reflect major differences 462 

among predominant biomes across climatic zones. Also, global-scale studies usually include 463 

both woody and herbaceous species (e.g., Bruelheide et al., 2018), which respond differently to 464 

climate across the Neotropics (Šímová et al., 2018). Most importantly, global-scale studies 465 

include dry forests, where the combination of high temperatures with low and highly seasonal 466 

precipitation may represent a physical stress, favoring conservative strategies (Westoby et al., 467 

2002). As our study focuses on Neotropical moist forests, higher temperatures and precipitation 468 

should actually favor acquisitive traits of trees, as we found, due for example to increased 469 

hydraulic efficiency (Zhang et al., 2013; Santiago et al., 2018). Our findings strengthen the 470 

notion that climatic conditions play a key role in trait filtering across Neotropical tree 471 

assemblages. 472 

Despite differences in magnitude of climate effects, the direction of community-level trait-473 

climate relationship (i.e., including abundance data) in the Neotropics generally agrees with that 474 

of species-level global trait-climate relationships (e.g., Swenson et al., 2012; Wright et al., 2017, 475 

see Moles, 2018 for a review of these relationships). For example, we found that seed mass tends 476 

to be lower in plants growing at more seasonal sites further from the equator, as observed 477 



elsewhere (Moles et al., 2007; Swenson et al., 2012; Malhado et al., 2015), presumably because 478 

larger seeds require longer growing seasons for development and are less likely to exhibit 479 

dormancy that helps to survive under adverse seasonal conditions (Thompson et al., 1993; de 480 

Casas et al., 2017). Moreover, tree species in wetter sites tend to present larger leaves and softer 481 

wood and leaf tissues, as we found, because these traits maximize resource capture in productive 482 

environments (Westoby et al., 2002; Wright et al., 2017). Conversely, small leaves with low 483 

specific leaf area (SLA) characterize cold tolerance (Poorter et al., 2009; Wright et al., 2017) as 484 

we observed in the southeastern Atlantic forests, a region that experiences relatively low and 485 

seasonal temperatures (Fig. S1; Oliveira-Filho et al., 2013). Also in agreement with our findings, 486 

plant height tends to be limited under more seasonal climates (Moles et al., 2009; Swenson et al., 487 

2012), and non-significant relationships between SLA and climatic gradients is more a rule than 488 

an exception (Moles, 2018). Finally, large seeds and conservative traits may provide advantages 489 

for species in shaded conditions of relatively closed-canopy forests near the equator (Leishman 490 

& Westoby, 1994; Kitajima & Poorter, 2010).  491 

While trait-climate relationships we observed are well supported by theory, they might to 492 

some extent be driven by (bio)geography, as some climatic variables were strongly correlated to 493 

either latitude or distance from equator. For instance, temperature seasonality increases sharply 494 

with distance to equator (R² = 0.81), which similarly explain community functional composition 495 

(cf., Figs. 4 and S7). We can thus only speculate about the relative importance of climatic and 496 

geographic gradients, as they share the largest fraction of explained variance in CWM traits. 497 

However, we note that both climate and geography have also unique effects on community func-498 

tional composition (Table 2). To illustrate this, the Southern Brazilian Atlantic forest does not 499 

fully follow the trend of increasing dominance of opportunistic strategies with distance from 500 



equator, as it supports many large, hard-wooded trees. This can, however, be explained by com-501 

binations of climatic factors, given the seasonal but relatively cold and dry climates in the south-502 

ern (compared to the northern) extreme of the Neotropics (Fig. S1), which select for conservative 503 

strategies. In fact, most species in this southernmost region have tropical-subtropical ranges due 504 

to forest expansion over subtropical grasslands during the last glacial maximum (Oliveira-Filho 505 

et al., 2013; Costa et al., 2017). Also, the dominance of species with small leaves and conserva-506 

tive traits under wet and warm climates in the Caribbean region deviates from the trait-climate 507 

relationships, but may reflect selection by hurricane-force winds for stronger structural support 508 

(Lugo, 2000). 509 

There is a consensus that climate change will make tropical forests warmer, with more 510 

seasonal rainfall and temperature including more frequent droughts, more heavy rains and 511 

frequent heatwaves (IPCC, 2014). These are conditions currently found across northern 512 

Neotropical moist forest regions, where opportunistic strategies thrive. Therefore, it is reasonable 513 

to expect forests in northern Neotropical regions to be more resilient to predicted climate 514 

changes, unless climate change leads to drastic changes towards alternative ecosystem states, like 515 

dry forest or woodlands. In contrast, climate changes should lead southern and especially 516 

equatorial forests of the future to more closely resemble the today’s northern Neotropical moist 517 

forests due to proliferation of opportunistic strategies already present in regional species pools 518 

(Fig. 2a). This can disrupt ecosystem services such as carbon sequestration and storage if forests 519 

once dominated by conservative traits experience the proliferation of more opportunistic 520 

strategies (Poorter et al., 2017), including soft-wooded species that grow fast but die young 521 

(Brienen et al., 2020). 522 



In summary, tree communities across Neotropical moist forests are functionally distinct 523 

because particular traits are favored under particular climates. Such functional predictability 524 

permits insights into tropical forest responses to global changes and the consequences for 525 

biodiversity persistence, provision of ecosystem services and global sustainability (Díaz et al., 526 

2007). In fact, as ecosystem functioning is determined by the dominant traits in tropical forests 527 

(Poorter et al., 2017), our findings can help to anticipate the impact of future climate change 528 

and/or human-induced disturbances (e.g., habitat loss, fragmentation) on the functioning of 529 

Neotropical forests. For instance, we must expect an increase in prevalence of low-statured tree 530 

species with relatively acquisitive traits and small seeds, based on scenarios of increasing climate 531 

seasonality (IPCC, 2014). This functional strategy is associated with faster growth and 532 

reproductive rates (Reich, 2014; Moles, 2018) and thrives in human-modified tropical landscapes 533 

worldwide (Laurance et al., 2006; Santos et al., 2008), but plays a limited role in crucial 534 

ecosystem services such as carbon and nutrient retention (Poorter et al., 2017). Overall, this 535 

changing functional structure of Neotropical moist forests is likely to confer varying degrees of 536 

resilience to human-caused disturbances. Neotropical moist forests vary widely in functional 537 

terms and one should be aware of these differences when it comes to understand the functional 538 

assembly of Neotropical tree communities. 539 

 540 

Acknowledgements 541 

This study was carried out with the financial support of the Coordenação de Aperfeiçoamento de 542 

Pessoal de Nivel Superior – Brasil (CAPES) – Finance code 001; and the Conselho Nacional de 543 

Desenvolvimento Científico e Tecnológico – CNPQ (grant 403770/2012-2). BXP was funded by 544 

a PhD scholarship from CNPq (140260/2015-3). BXP collected functional data in the Mexican 545 



regions with the financial support of the Catedra José Sarukhán and the Centro del Cambio 546 

Global y la Sustentabilidad en el Sureste. BXP finished this study with the support of a 547 

postdoctoral fellowship from Fundação de Amparo à Ciência e Tecnologia do Estado de 548 

Pernambuco (FACEPE). FPLM, MT and BAS thank CNPq for productivity grants. 549 

 550 

Data Accessibility  551 

Data and R codes used for the analyses are available from the Dryad Digital Repository: 552 

http://doi.org/10.5061/dryad.vq83bk3s3. The dc-CA variation decomposition with statistical tests 553 

of Table 2 is available at https://doi.org/10.6084/m9.figshare.13259534.v2  554 

 555 

Authorship 556 

BXP, MT and FPLM conceived the ideas and designed methodology; BXP collected, compiled 557 

and analysed the data, with the supervision of CtB on the dc-CA analysis; BXP wrote the first 558 

draft with significant contribution from FPLM. All authors contributed data and/or with critical 559 

insights that improved the manuscript. 560 

 561 

References 562 

Arroyo-Rodríguez, V., Pineda, E., Escobar, F., & Benítez-Malvido, J. (2009). Value of small 563 

patches in the conservation of plant-species diversity in highly fragmented rainforest. 564 

Conservation Biology, 23, 729-739.  565 

Balmford, A. (1996). Extinction filters and current resilience: the significance of past selection 566 

pressures for conservation biology. Trends in Ecology and Evolution, 11, 193-196.  567 

https://doi.org/10.5061/dryad.vq83bk3s3
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.6084%2Fm9.figshare.13259534.v2&data=04%7C01%7Ccajo.terbraak%40wur.nl%7C091933d2ed4b4d4acb6308d8f4434b20%7C27d137e5761f4dc1af88d26430abb18f%7C0%7C0%7C637527917159917502%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=9sHHJKe3HUuXUXdSMowmFJxL4HyTBnWE%2BvATPMNdEv4%3D&reserved=0


Barton, K. (2014). MuMin: Multi-model inference. R package version 1.10.0. https://cran.r-568 

project.org/web/packages/MuMIn/index.html 569 

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models 570 

Using lme4. Journal of Statistical Software, 67, 1-48. 571 

Benchimol, M., & Peres, C. A. (2015). Edge-mediated compositional and functional decay of 572 

tree assemblages in Amazonian forest islands after 26 years of isolation. Journal of 573 

Ecology, 103, 408–420.  574 

Betts, M. G., Wolf, C., Pfeifer, M., Banks-Leite, C., Arroyo-Rodríguez, V., … Ewers, R. M. 575 

(2019). Extinction filters mediate the global effects of habitat fragmentation on animals. 576 

Science, 366, 1236-1239.  577 

Blonder, B., Enquist, B. J., Graae, B. J., Kattge, J., Maitner, B. S., Morueta-Holme, N., ... Violle, 578 

C. (2018). Late Quaternary climate legacies in contemporary plant functional composition. 579 

Global Change Biology, 24, 4827-4840. 580 

Brienen, R. J. W., Caldwell, L., Duchesne, L., Voelker, S., Barichivich, J., Baliva, M., … Gloor, 581 

E. (2020). Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nature 582 

Communications, 11, 4241.  583 

Brown, J. H. (2014). Why are there so many species in the tropics? Journal of Biogeography, 41, 584 

8-22. 585 

Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S. M., ... 586 

Jandt, U. (2018). Global trait–environment relationships of plant communities. Nature 587 

Ecology & Evolution, 2, 1906-1917. 588 

Brum, M., Vadeboncoeur, M. A., Ivanov, V., Asbjornsen, H., Saleska, S., … Oliveira, R.S. 589 

(2019). Hydrological niche segregation defines forest structure and drought tolerance 590 

https://cran.r-project.org/web/packages/MuMIn/index.html
https://cran.r-project.org/web/packages/MuMIn/index.html


strategies in a seasonal Amazon forest. Journal of Ecology, 107, 318-333. 591 

Burnham, R. J., & Graham, A. (1999). The History of Neotropical Vegetation: New 592 

Developments and Status. Annals of the Missouri Botanical Garden, 86, 546-589. 593 

Cadotte, M. W., & Tucker, C. M. (2017). Should environmental filtering be abandoned? Trends 594 

in Ecology and Evolution, 32, 429-437.  595 

Cole, L. E. S., Bhagwat, S. A., & Willis, K. J. (2014). Recovery and resilience of tropical forests 596 

after disturbance. Nature Communications, 5, 3906. 597 

Colinvaux, P. A., De Oliveira, P. E., & Bush, M. B. (2000). Amazonian and neotropical plant 598 

communities on glacial time-scales: The failure of the aridity and refuge hypotheses. 599 

Quaternary Science Reviews, 19, 141–169.  600 

de Casas, R., Willis, C. G., Pearse, W. D., Baskin, C. C., Baskin, J. M., & Cavender-Bares, J. 601 

(2017). Global biogeography of seed dormancy is determined by seasonality and seed size: 602 

A case study in the legumes. New Phytologist, 214, 1527–1536. 603 

Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., … Gorné, L. D. 604 

(2016). The global spectrum of plant form and function. Nature, 529, 167–171. 605 

Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K., Robson, T. M. (2007). Incorporating 606 

plant functional diversity effects in ecosystem service assessments. Proceedings of the Na-607 

tional Academy of Sciences, 104, 20684-20689.  608 

Dray, S., & Legendre, P. (2008). Testing the species traits–environment relationships: the fourth‐609 

corner problem revisited. Ecology, 89, 3400-3412. 610 

Faria, D., Mariano-Neto, E., Martini, A. M. Z., Ortiz, J. V., Montingelli, R., Rosso, S., ... 611 

Baumgarten, J. (2009). Forest structure in a mosaic of rainforest sites: The effect of 612 



fragmentation and recovery after clear cut. Forest Ecology and Management, 257, 2226–613 

2234. 614 

Fick, S. E., & Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces 615 

for global land areas. International Journal of Climatology, 37, 4302-4315. 616 

Frierson, D., Hwang, Y., Fučkar, N., Seager, R., Kang, S. M., Donohoe, A., Battisti, D. S. 617 

(2013). Contribution of ocean overturning circulation to tropical rainfall peak in the 618 

Northern Hemisphere. Nature Geoscience, 6, 940–944. 619 

Fukami, T. (2015). Historical contingency in community assembly: integrating niches, species 620 

pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1-621 

23. 622 

Gentry, A. H. (1982). Neotropical Floristic Diversity: Phytogeographical Connections Between 623 

Central and South America, Pleistocene Climatic Fluctuations, or an Accident of the 624 

Andean Orogeny? Annals of the Missouri Botanic Garden, 69, 557-593.  625 

Gentry, A. H. (1988). Changes in plant community diversity and floristic composition on 626 

environmental and geographical gradients. Annals of the Missouri Botanic Garden, 75, 1-627 

34. 628 

Graham, A. (1999). The Tertiary History of the Northern Temperate Element in the Northern 629 

Latin American Biota. American Journal of Botany, 86, 32-38. 630 

Grime, J. P., & Pierce, S. (2012). The Evolutionary Strategies that Shape Ecosystems. Wiley-631 

Blackwell, Chichester, UK. 632 

Hernández-Ruedas, M. A., Arroyo-Rodríguez, V., Meave, J. A., Martínez-Ramos, M., Ibarra-633 

Manríquez, G., Martínez, E., … Santos, B.A. (2014). Conserving tropical tree diversity and 634 



forest structure: The value of small rainforest patches in moderately-managed landscapes. 635 

PLoS ONE, 9, e98931. 636 

IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and 637 

III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 638 

[Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland 639 

Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., … Wirth, C. (2020). TRY plant trait 640 

database ‒ enhanced coverage and open access. Global Change Biology, 26, 119–188.  641 

Kikuzawa, K., Onoda, Y., Wright, I. J., & Reich, P. B. (2013). Mechanism of leaf longevity 642 

patterns. Global Ecology and Biogeography, 22, 982-993. 643 

Kitajima, K., & Poorter, L. (2010). Tissue-level leaf toughness, but not lamina thickness, 644 

predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytologist, 645 

186, 708-721. 646 

Kobe, R. K. (1999). Light gradient partitioning among tropical tree species through differential 647 

seedling mortality and growth. Ecology, 80, 187-201.  648 

Kraft, N. J. B., & Ackerly, D. D. (2014). Assembly of Plant Communities. In: Monson R. 649 

(eds) Ecology and the Environment. The Plant Sciences, vol 8. Springer, New York. 650 

Laliberté, E., & Legendre, P. (2010). A distance-based framework for measuring functional 651 

diversity from multiple traits. Ecology, 91, 2099–3005. 652 

Laurance, W. F., Nascimento, H. E. M., Laurance, S. G., Andrade, A. C., Fearnside, P. M., 653 

Ribeiro, J. E. L., & Capretz, R. L. (2006). Rain forest fragmentation and the proliferation 654 

of successional trees. Ecology, 87, 469–482.  655 

Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modeling in R for ecology, 656 

evolution, and systematics. Methods in Ecology and Evolution, 7, 573-579. 657 



Leishman, M. R., & Westoby, M. (1994). The role of large seed size in shaded conditions – 658 

Experimental evidence. Functional Ecology, 8, 205–214.  659 

Leite, Y. L. R., Costa, L., Loss, A. C., Rocha, R. G., Batalha-Filho, H., Bastos, A., & Pardini, R. 660 

(2016). Neotropical forest expansion during the last glacial period challenges refuge 661 

hypothesis. Proceedings of the National Academy of Sciences of the United States of 662 

America, 113, 1008-1013. 663 

Maitner, B. S., Boyle, B., Casler, N., Condit, R., Donoghue II, J., Durán, S. M., ... Enquist, B. J. 664 

(2018). The BIEN R package: A tool to access the Botanical Information and Ecology 665 

Network (BIEN) Database. Methods in Ecology and Evolution, 9, 373–379. 666 

Malhado, A., Oliveira-Neto, J. A., Stropp, J., Strona, G., Dias, L. C., Pinto, L. B., & Ladle, R. J. 667 

(2015). Climatological correlates of seed size in Amazonian forest trees. Journal of 668 

Vegetation Science, 26, 956–963.  669 

Mittelbach, G. G., & Schemske, D. W. (2015). Ecological and evolutionary perspectives on 670 

community assembly. Trends in Ecology and Evolution, 30, 241 – 247. 671 

Moles, A. T. (2018). Being John Harper: Using evolutionary ideas to improve understanding of 672 

global patterns in plant traits. Journal of Ecology, 106, 1-18.  673 

Moles, A. T., Ackerly, D. D., Tweddle, J. C., Dickie, J. B., Smith, R., Leishman, M. R., … 674 

Westoby, M. (2007). Global patterns in seed size. Global Ecology and Biogeography, 16, 675 

109-116. 676 

Moles, A. T., Perkins, S. E., Laffan, S. W., Flores-Moreno, H., Awasthy, M., Tindall, M. L., ... 677 

Bonser, S.P. (2014). Which is a better predictor of plant traits: temperature or 678 

precipitation? Journal of Vegetation Science, 25, 1167–1180.  679 



Moles, A. T., Warton, D. I., Warman, L., Swenson, N. G., Laffan, S. W., Zanne, A. E., … 680 

Leishman, M.R. (2009). Global patterns in plant height. Journal of Ecology, 97, 923–932. 681 

Mora, C., Frazier, A., Longman, R., Dacks, R. S., Walton, M. M., Tong, E. J., … Giambelluca, 682 

T. W. (2013). The projected timing of climate departure from recent variability. Nature, 683 

502, 183-187. 684 

Morueta‐Holme, N., Enquist, B. J., McGill, B. J., Boyle, B., Jørgensen, P. M., Ott, J.E., … 685 

Svenning, J-C. (2013). Habitat area and climate stability determine geographical variation 686 

in plant species range sizes. Ecology Letters, 16, 1446–1454. 687 

Muller-Landau, H. C. (2010). The tolerance-fecundity trade-off and the maintenance of diversity 688 

in seed size. Proceedings of the National Academy of Sciences of the United States of 689 

America, 107, 4242-4247.  690 

Muscarella, R., Lohbeck, M., Martínez-Ramos, M., Poorter, L., Rodríguez-Velázquez, J. E., van 691 

Breugel, M., & Bongers, F. (2017). Demographic drivers of functional composition dy-692 

namics. Ecology, 98, 2743-2750. 693 

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from 694 

generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133–142. 695 

Neter, J., Kutner, M.H., Nachtsheim, C.J., & Wasserman, W. (1996). Applied linear statistical 696 

models. – McGraw- Hill/Irwin. 697 

Oliveira-Filho, A. T., Budke, J. C., Jarenkow, J. A., Eisenlohr, P. V., Neves, D. R. M. (2013). 698 

Delving into the variations in tree species composition and richness across South American 699 

subtropical Atlantic and Pampean forests. Journal of Plant Ecology, 8, 242–260. 700 

https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.12184
https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.12184
https://www.worldcat.org/search?q=au%3AKutner%2C+Michael+H.&qt=hot_author
https://www.worldcat.org/search?q=au%3ANachtsheim%2C+Christopher+J.&qt=hot_author
https://www.worldcat.org/search?q=au%3AWasserman%2C+William.&qt=hot_author


Orihuela, R. L. Z., Peres, C. A., Mendes, G., Jarencow, J. A., & Tabarelli, M. (2015). Markedly 701 

divergent tree assemblage responses to tropical forest loss and fragmentation across a 702 

strong seasonality gradient. PLoS One, 10, e0136018 703 

Peres-Neto, P. R., Dray, S., & ter Braak, C. J. F. (2017). Linking trait variation to the 704 

environment: critical issues with community-weighted mean correlation resolved by the 705 

fourth-corner approach. Ecography, 40, 806-816. 706 

Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., … 707 

Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant 708 

functional traits worldwide. Australian Journal of Botany, 61, 167–234. 709 

Pierce, S., Negreiros, D., Cerabolini, B. E. L., Kattge, J., Díaz, S., Kleyer, M., … Tampucci, D. 710 

(2017). A global method for calculating plant CSR ecological strategies applied across 711 

biomes world-wide. Functional Ecology, 31, 444–457. 712 

Pinho, B. X., de Melo, F. P. L., Arroyo-Rodríguez, V., Pierce, S., Lohbeck, M., & Tabarelli, M. 713 

(2018). Soil-mediated filtering organizes tree assemblages in regenerating tropical forests. 714 

Journal of Ecology, 106, 137–147.  715 

Pitman, N. C. A., Terborgh, J. W., Silman, M. R., Núñez, V. P., Neill, D. A., Cerón, C. E., 716 

Palacios, W.A., & Aulestia, M. (2001). Dominance and distribution of tree species in upper 717 

Amazonian terra firme forests. Ecology, 82, 2101-2117. 718 

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and 719 

consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 720 

182, 565–588. 721 

Poorter, L., van der Sande, M. T., Arets, E. J. M. M., Ascarrunz, N., Enquist, B., Finegan, B., ... 722 

Peña-Claros, M. (2017). Biodiversity and climate determine the functioning of Neotropical 723 



forests. Global Ecology and Biogeography, 26, 1423–1434. 724 

Reich, P. B. (2014). The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. 725 

Journal of Ecology, 102, 275–301.  726 

Royal Botanic Gardens Kew (2020). Seed Information Database (SID). Version 7.1. Available 727 

from: http://data.kew.org/sid/  728 

Santiago, L. S., De Guzman, M. E., Baraloto, C., Vogenberg, J. E., Brodie, M., Hérault, B., 729 

Fortunel, C., & Bonal, D. (2018). Coordination and trade‐offs among hydraulic safety, 730 

efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New 731 

Phytologist, 218, 1015-1024. 732 

Sandel, B., Weigelt, P., Kreft, H., Keppel, G., van der Sande, M. T., Levin, S., Smith, S., Craven, 733 

D., & Knight, T. M. (2020). Current climate, isolation and history drive global patterns of 734 

tree phylogenetic endemism. Global Ecology and Biogeography; 29, 4-15. 735 

Santos, B. A., Peres, C. A., Oliveira, M. A., Grillo, A., Alves-Costa, C. P., & Tabarelli, M. 736 

(2008). Drastic erosion in functional attributes of tree assemblages in Atlantic forest 737 

fragments of northeastern Brazil. Biological Conservation, 141, 249–260. 738 

Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., … Wardle, D. 739 

A. (2015). A global meta-analysis of the relative extent of intraspecific trait variation in 740 

plant communities. Ecology Letters, 18, 1406–1419.  741 

Šímová, I, Violle, C, Svenning, J‐C, Kattge, J., Engemann, K., Sandel, B., ... Enquist, B.J. 742 

(2018). Spatial patterns and climate relationships of major plant traits in the New World 743 

differ between woody and herbaceous species. Journal of Biogeography, 45, 895-916. 744 



Swenson, N. G., & Enquist, B. J. (2007). Ecological and evolutionary determinants of a key 745 

plant functional trait: Wood density and its community-wide variation across latitude and 746 

elevation. American Journal of Botany, 94, 451–459. 747 

Swenson, N. G., Enquist, B. J., Pither, J., Kerkhoff, A. J., Boyle, B., Weiser, M. D., … Nolting, 748 

K. (2012). The biogeography and filtering of woody plant functional diversity in North and 749 

South America. Global Ecology and Biogeography, 21, 798–808.  750 

ter Braak, C. J. F. (2017). Fourth-corner correlation is a score test statistic in a log-linear trait–751 

environment model that is useful in permutation testing. Environmental and Ecological 752 

Statistics, 24, 219–242. 753 

ter Braak, C. J. F., & Šmilauer, P. (2018). Canoco reference manual and user's guide: software 754 

for ordination (version 5.10). Microcomputer Power, Ithaca, USA, 536 pp. 755 

ter Braak, C. J. F., Šmilauer, P., & Dray, S. (2018). Algorithms and biplots for double 756 

constrained correspondence analysis. Environmental and Ecological Statistics, 25, 171-757 

197. 758 

Thompson, K., Band, S. R., & Hodgson, J. G. (1993). Seed size and shape predict persistence in 759 

the soil. Functional Ecology, 7, 236-241.  760 

Trabucco, A., & Zomer, R. J. (2018). Global Aridity Index and Potential Evapo-Transpiration 761 

(ET0) Climate Database v2. CGIAR Consortium for Spatial Information (CGIAR-CSI). 762 

Published online, available from the CGIAR-CSI GeoPortal at https://cgiarcsi.community 763 

van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained 764 

Equations in R. Journal of Statistical Software, 45, 1-67. 765 

https://cgiarcsi.community/


van der Sande, M., Arets, E., Peña-Claros, M., De Avila, A., Roopsind, A., Mazzei, L., ... Poorter, L. 766 

(2016). Old-growth Neotropical forests are shifting in species and trait composition. Ecological 767 

Monographs, 86, 228-243. 768 

Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S, Springer-Verlag. 769 

Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J., & Kattge, J. (2014). The emergence and 770 

promise of functional biogeography. Proceedings of the National Academy of Sciences of 771 

the United States of America, 111, 13690–13696. 772 

Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant Ecological 773 

Strategies: Some Leading Dimensions of Variation Between Species. Annual Review of 774 

Ecology and Systematics, 33, 125–159.  775 

Wright, I. J., Dong, N., Maire, V., Prentice, I. C., Westoby, M., Díaz, S., ... Wilf, P. (2017). 776 

Global climatic drivers of leaf size. Science, 357, 917–921. 777 

Wright, S. J., Muller‐Landau, H. C., & Schipper, J. (2009). The Future of Tropical Species on a 778 

Warmer Planet. Conservation Biology, 23, 1418-1426. 779 

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., …, Villar, R. 780 

(2004). The world-wide leaf economics spectrum. Nature, 428, 821–827. 781 

Zhang, S. B., Cao, K. F., Fan, Z. X., & Zhang, J. L. (2013). Potential hydraulic efficiency in 782 

angiosperm trees increases with growth-site temperature but has no trade-off with 783 

mechanical strength. Global Ecology and Biogeography, 22, 971–981.784 



Table 1. Results of averaging of the best-fitted mixed-effects models (ΔAICc< 2) analysing the effects of climatic variables on the 785 

abundance-weighted community mean of (a) functional traits and (b) functional strategies, across 471 forest plots in nine 786 

biogeographic regions distributed throughout the Neotropics (see Fig. 1). For each variable retained in a best-fit model, we indicated 787 

the mean coefficient (β), the standard error (SE), the 95% confidence intervals (95% CI) and the p-value. P-values of significant 788 

variables (according to 95% confidence intervals) are in bold. The predictors were standardized and thus the coefficients indicate their 789 

relative contribution for each response variable. The marginal R2 (variance explained by climatic factors) and conditional R2 (the 790 

former plus additional among-regions variance not explained by climatic factors) values of the full model are also shown. Units of 791 

climatic variables: MAP (mm), PET (mm), MAT (ºC), PS (coefficient of variation of monthly values), TS (standard deviation of 792 

monthly values multiplied by 100).  793 

Model factors β SE 

95% CI 

p-value 

Models R2  

(marginal/conditional) Lower Upper 

(a) Functional traits       

Log (leaf area [cm²])      0.24/0.29 

Annual precipitation (MAP) 0.096 0.017 0.062 0.130 <2e-16  

Potential evapotranspiration (PET) -0.124 0.024 -0.171 -0.076 4.00E-07  

Annual temperature (MAT) 0.059 0.026 0.008 0.109 0.023  



Precipitation seasonality (PS) 0.043 0.028 0.015 0.092 0.126  

Temperature seasonality (TS) 0.024 0.031 -0.016 0.102 0.443  

Log (specific leaf area [cm²/g])      0.09/0.32 

Annual precipitation (MAP) 0.010 0.007 0.000 0.024 0.160  

Annual temperature (MAT) 0.010 0.007 -0.001 0.025 0.155  

Precipitation seasonality (PS) 0.010 0.010 0.000 0.030 0.284  

Potential evapotranspiration (PET) -0.001 0.005 -0.029 0.011 0.795  

Temperature seasonality (TS) -0.003 0.007 -0.030 0.009 0.695  

Leaf dry matter content (g/g)      0.47/0.70 

Temperature seasonality (TS) -0.025 0.003 -0.031 -0.020 <2e-16  

Annual precipitation (MAP) -0.003 0.002 -0.006 0.000 0.026  

Annual temperature (MAT) -0.003 0.003 -0.008 0.000 0.224  

Potential evapotranspiration (PET) -0.002 0.003 -0.010 0.003 0.576  

Precipitation seasonality (PS) 0.0001 0.001 -0.005 0.004 0.894  

Log (seed mass [mg]+1)      0.57/0.68 

Temperature seasonality (TS) -0.653 0.067 -0.783 -0.522 <2e-16  



Annual temperature (MAT) -0.161 0.056 -0.270 -0.051 0.003  

Precipitation seasonality (PS) -0.107 0.047 -0.188 -0.016 0.022  

Potential evapotranspiration (PET) -0.032 0.058 -0.220 0.035 0.577  

Annual precipitation (MAP) -0.003 0.017 -0.088 0.062 0.869  

Wood density (g/cm³)      0.39/0.62 

Temperature seasonality (TS) -0.052 0.006 -0.064 -0.040 <2e-16  

Annual precipitation (MAP) -0.018 0.003 -0.024 -0.011 3.00E-07  

Annual temperature (MAT) -0.016 0.005 -0.026 -0.005 0.003  

Potential evapotranspiration (PET) 0.009 0.007 0.000 0.024 0.207  

Precipitation seasonality (PS) -0.003 0.005 -0.016 0.001 0.523  

Sqrt (maximum height [m])      0.16/0.41 

Temperature seasonality (TS) -0.190 0.034 -0.256 -0.125 <2e-16  

Annual temperature (MAT) -0.173 0.033 -0.239 -0.108 2.00E-07  

Potential evapotranspiration (PET) 0.057 0.045 0.005 0.145 0.204  

Precipitation seasonality (PS) -0.004 0.014 -0.065 0.030 0.767  

       

(b) Functional strategies       



PC1 (economics spectrum)      0.40/0.69 

Annual precipitation (MAP) -0.096 0.032 0.034 0.158 0.002  

Annual temperature (MAT) -0.159 0.043 0.075 0.243 0.0002  

Temperature seasonality (TS) -0.560 0.057 0.448 0.673 <2e-16  

Precipitation seasonality (PS) -0.017 0.035 -0.033 0.140 0.634  

Potential evapotranspiration (PET) 0.013 0.037 -0.174 0.068 0.739  

PC2 (size spectrum)      0.28/0.28 

Annual precipitation (MAP) 0.120 0.013 -0.145 -0.094 <2e-16  

Potential evapotranspiration (PET) -0.125 0.017 0.092 0.158 <2e-16  

Precipitation seasonality (PS) 0.060 0.015 -0.090 -0.031 7.15E-05  

Temperature seasonality (TS) -0.024 0.021 0.001 0.068 0.255  

Annual temperature (MAT) 0.022 0.023 -0.073 0.002 0.325   

794 



Table 2. Variation partitioning of the trait-structured variation in the dc-CA with all traits, showing the unique and shared effects of 795 

geography (latitude, longitude, and degrees from equator) and climate (MAP, MAT, TS, PS, PET) in aggregated samples of tree 796 

communities across Neotropical moist forests (N = 59; see Fig. S5). The trait-structured variation is a weighted variance of the CWMs 797 

with respect to orthonormalized traits with the sample total as weight. 798 

Component 

Variation  

(Adj R2) 

% of Explained DF 
Mean 

Square 
F P 

Climate (unique) 0.15 22.7 5 0.03 5.9 0.0005 

Geography (unique) 0.12 17.8 3 0.04 7.2 0.0045 

Shared 0.39 59.5 -- --  -- 

Total Explained 0.66 100 8 0.09 15.3 0.0005 

799 



 800 

Figure 1. Location of the 471 forest plots studied in nine biogeographic regions, and variation in 801 

the five climatic variables considered throughout the Neotropics. MAP, mean annual 802 

precipitation (mm); MAT, mean annual temperature (ºC); PS, precipitation seasonality 803 

(coefficient of variation of monthly precipitation values); TS, temperature seasonality (standard 804 

deviation of monthly temperature values); PET, potential evapotranspiration (mm).805 
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 815 

Figure 2. Differences between regions in functional trait values of (a) species present in each regional species pool (unweighted by 816 

abundance), and (b) the communities (i.e., abundance-weighted means – CWM) in each region, for 3,417 tree species distributed in 817 

471 forest plots across nine Neotropical moist forest regions. Boxplots indicate the median (center line), 25-75% quartiles (box edges), 818 

< 1.5 times the inter quartile range (whiskers), and extreme values (dots). The boxplots are organized from the northernmost (left) to 819 

the southernmost region (right) along the distribution of the Neotropical moist forest biome. LA, leaf area (cm²); SLA, specific leaf 820 

area (cm²/g); LDMC, leaf dry matter content (g/g); WD, wood density (g/cm³); SM, seed mass (mg); Hmax, maximum height (m).821 



 822 

Figure 3. Ordination diagram of the first two axes of principal component analysis (PCA) of (a) 823 

Neotropical tree species trait values (n = 3,417 species); and (b) community-weighted mean trait 824 

values of tree communities (n = 471 plots) distributed across nine Neotropical moist forest re-825 

gions. The occurrence probability of species in the trait space is illustrated in (a) by color gradi-826 

ents from highest (red) to lowest (white) kernel density, with contour lines indicating 0.5, 0.95 827 

and 0.99 quantiles. LA, leaf area; SLA, specific leaf area; LDMC, leaf dry matter content; WD, 828 

wood density; SM, seed mass; Hmax, maximum height.829 
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 841 

Figure 4. Significant relationships between climatic variables and community weighted-mean (CWM) of functional traits and 842 

strategies (i.e., species scores on the two first axes of PCA on functional traits, see Fig. 3a), for 471 tree communities distributed 843 

across nine Neotropical moist forest regions (see Table 1 for details on the best models). LA, leaf area; LDMC, leaf dry matter 844 

content; WD, wood density; SM, seed mass; Hmax, maximum height. MAP, mean annual precipitation; TS, temperature seasonality; 845 

SD, standard deviation. The relationship with highest slope (i.e., estimate) is shown for each trait/strategy, except for LA and PC2, for 846 

which we selected the relationship with the lowest error and p-value from two relationships with similar slopes.847 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Ordination diagrams from double-constrained correspondence analysis (dc-CA) for 

3,417 species across 471 Neotropical moist forest plots, showing (a) biplot of canonical weights 

of climate variables and scaled correlations of traits summarizing the coefficients of the multiple 

regressions of all CWMs of traits on the climate predictors; and (b) position (constrained scores) 

of samples (plots) in the dc-CA biplot. Graphs (a) and (b) form a biplot of the CWMs of all plots 

and traits. The significance of dc-CA results has been tested by aggregating community data by 

spatial clusters of plots (N = 59; see Fig. S5) to avoid pseudo-replication (see Table 2 for related 

statistics). The position of the 30 species which contribute most to the first two dc-CA axes is 

showed in Fig. S8. 
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Table S1. Summary of sample sizes for each Neotropical moist forest region studied. 

Region N plots Sampled area (ha) N species N trees 

Northern Meso-America 78 7.8 329 5,174 

Caribbean Islands 5 0.50 96 412 

Southern Meso-America 62 48.24 890 38,050 

Tumbes-Chocó-Magdalena 8 0.8 259 542 

North-Western Amazon 37 27.52 1605 20,008 

Central-Eastern Amazon 85 20.3 493 9,831 

Northeastern Atlantic 38 3.17 198 2,775 

South-Western Amazon 123 26.66 1029 16,378 

Southeastern Atlantic 35 3.28 494 3,120 

Neotropics 471 138.27 3,417 96,290 



Table S2. Mean trait data coverage of total plot abundances across the study regions, represented by (a) species-level data, (b) genus 

average, and (c) imputation. For species-level trait data, we show in parenthesis the proportion covered by authors’ data. The 

difference between the total proportion of species-level and of the authors’ data represent the proportion covered by data compiled 

from global databases.  

Trait data 
N Meso-

America 

Caribbean 

Islands 

S Meso-

America 

Tumbes-

Chocó  

NW- 

Amazon 

CE- 

Amazon 

NE- 

Atlantic 

SW- 

Amazon 

SE- 

Atlantic 

Species-level 

(author's data) 
         

LA 0.94 (0.92) 0.72 (0.61) 0.83 (0.8) 0.51 (0.48) 0.73 (0.71) 0.65 (0.55) 0.78 (0.73) 0.84 (0.83) 0.74 (0.71) 

SLA 0.94 (0.93) 0.55 (0.49) 0.8 (0.74) 0.5 (0.43) 0.69 (0.55) 0.66 (0.42) 0.76 (0.72) 0.78 (0.64) 0.72 (0.69) 

LDMC 0.94 (0.93) 0.45 (0.18) 0.75 (0.66) 0.29 (0.47) 0.25 (0.41) 0.46 (0.11) 0.7 (0.7) 0.4 (0.35) 0.67 (0.68) 

WD 0.88 (0.83) 0.79 (0.48) 0.85 (0.71) 0.52 (0.38) 0.67 (0.51) 0.8 (0.33) 0.84 (0.3) 0.78 (0.65) 0.79 (0.62) 

SM 0.94 (0.93) 0.62 (0.51) 0.78 (0.7) 0.46 (0.41) 0.6 (0.56) 0.46 (0.25) 0.72 (0.35) 0.75 (0.7) 0.73 (0.62) 

Hmax 0.87 (0.81) 0.51 (0.33) 0.83 (0.68) 0.46 (0.37) 0.66 (0.58) 0.66 (0.34) 0.89 (0.33) 0.8 (0.75) 0.86 (0.19) 

Genus average          

LA 0.06 0.27 0.16 0.44 0.23 0.34 0.22 0.14 0.24 

SLA 0.06 0.45 0.19 0.47 0.28 0.33 0.24 0.20 0.26 

LDMC 0.05 0.42 0.23 0.64 0.66 0.50 0.27 0.55 0.29 



WD 0.12 0.19 0.15 0.44 0.30 0.19 0.16 0.21 0.20 

SM 0.06 0.32 0.20 0.48 0.34 0.53 0.28 0.23 0.24 

Hmax 0.12 0.47 0.17 0.49 0.30 0.32 0.10 0.18 0.12 

Imputation          

LA 0.00 0.01 0.01 0.05 0.04 0.01 0.00 0.02 0.02 

SLA 0.00 0.00 0.01 0.03 0.03 0.01 0.00 0.02 0.02 

LDMC 0.01 0.13 0.02 0.07 0.09 0.04 0.03 0.05 0.04 

WD 0.00 0.02 0.00 0.04 0.03 0.01 0.00 0.01 0.01 

SM 0.00 0.06 0.02 0.06 0.06 0.01 0.00 0.02 0.03 

Hmax 0.01 0.02 0.00 0.05 0.04 0.02 0.01 0.02 0.02 



Table S3. Correlation between species and genus mean in the trait database studied, considering 

genus with at least two species with available trait data (N). All correlations were significant 

after adjustment for multiple comparisons (p < 0.001). 

Functional trait 
Correlation (r-pearson)  

species-genus mean 

Leaf area (N = 1,718) 0.74 

Specific leaf area (N = 1,555) 0.61 

Leaf dry matter content (N = 845) 0.84 

Wood density (N = 1,643) 0.86 

Seed mass (N = 1,297) 0.73 

Maximum height (N = 1,653) 0.66 

  



Table S4. Bivariate relationships (r-values) between climatic variables across 471 moist forest 

sites distributed across the Neotropics. In addition to the five variables considered in model 

selection (see Table 1), correlation coefficients are also shown for variables that were initially 

considered but then excluded due to high variance inflation factor values or insignificant results. 

Strong correlations (r> 0.7) are highlighted in bold. MAP, mean annual precipitation (mm); 

MAT, mean annual temperature (ºC); PET, potential evapotranspiration (mm); PS, precipitation 

seasonality (coefficient of variation of monthly precipitation values); TS, temperature seasonality 

(standard deviation of monthly temperature values); PreDryQua, precipitation in the driest 

quarter (mm); SPEI, standardized precipitation-evapotranspiration index (mm); CWD, 

cumulative water deficit (mm). 

  
MAT PET PS TS 

Pre-

DryQua Aridity SPEI CWD 

MAP 0.43 0.15 -0.15 -0.32 0.52 0.82 -0.21 0.33 

MAT  0.31 0.14 -0.67 0.06 0.19 0.14 -0.08 

PET   0.62 0.12 -0.51 -0.37 -0.28 -0.66 

PS    0.18 -0.84 -0.5 -0.03 -0.77 

TS     -0.28 -0.35 -0.37 -0.07 

PreDryQua      0.83 -0.09 0.74 

Aridity       -0.12 0.58 

SPEI               0.16 



Table S5. Trait loadings of principal component analysis (PCA) on Neotropical tree species mean traits (n = 3,417) and community-

weighted mean traits (n = 471). Traits were standardized to Z units (mean = 0, SD = 1) after being transformed. The axis with highest 

loading for each trait is highlighted in bold. 

Functional trait 

Species-level   Community-level 

PC1 

(35.6%) 

PC2 

(19.1%) 

PC3 

(15.0%)  

PC1 

(53.3%) 

PC2 

(20.9%) 

PC3 

(10.8%) 

Leaf area -0.193 0.672 0.513  -0.191 0.765 -0.301 

Specific leaf area -0.391 -0.070 -0.643  -0.350 0.347 0.771 

Leaf dry matter content 0.564 -0.043 0.009  0.510 0.113 0.136 

Wood density 0.449 -0.356 0.108  0.475 -0.174 0.374 

Seed mass 0.466 0.279 -0.125  0.433 0.428 0.226 

Maximum height 0.270 0.580 -0.544   0.409 0.261 -0.325 



Table S6. Statistics from double constrained correspondence analysis (dc-CA) of species 1 

abundance matrix from 59 aggregated samples (clusters of 471 forest plots, connected by 2 

maximum 50-km, see Fig. S5). Samples have been aggregated to spatial cluster means to avoid 3 

pseudo-replication. E = environmental (climate) variables; T = functional traits; CWM = 4 

community weighted mean traits; SNC = species niche centroids. Max-test consider the highest 5 

p-value across species- and community-level tests. 6 

Statistic Axis 1 Axis 2 Axis 3 

dc-CA eigenvalues 0.10 0.04 0.02 

fourth-corner correlations (rFC) 0.31 0.20 0.12 

% Explained fitted variation (cum.) 61 87 97 

% CWM variation expl. by E (adj R2) 30 46 53 

% SNC variation expl. by T (adj R2) 3 4 4 

Max test (p-value) 0.001 0.004 0.152 

  7 



Table S7. Relative effects of geographical and climate variables (the three most important 8 

according to forward selection) in driving taxonomic (CCA) and functional (dc-CA) structure on 9 

the species abundance table by aggregated samples (i.e., plots connected by maximum 50-km, 10 

see Fig. S5). The ratio represents the fraction of the trait-structured environmental variation in 11 

relation to the environment-structured variation. 12 

 
Explained inertia of count (species) 

table 

Species unconstrained 
Trait-

constrained 
Ratio                 

(dc-CA:CCA) 

Source CCA dc-CA 

Geography      

Latitude 0.8 0.03 0.04 

Longitude 0.74 0.06 0.08 

Degrees from equator 0.67 0.07 0.10 

Climate    

Temperature seasonality  0.71 0.05 0.07 

Potential evapotranspiration  0.77 0.05 0.06 

Mean annual precipitation  0.54 0.03 0.06 

  13 



Table S8. Names of tree species associated with the eight-letters codes showed in Figure S7. 14 

Code Species 

CrotSchi Croton schiedeanus 

TabeDonn Tabernaemontana donnell-smithii 

PseuGlab Pseudolmedia glabrata 

RollMuco Rollinia mucosa 

MabeOcci Mabea occidentalis 

PeraGlab Pera glabrata 

VochGuat Vochysia guatemalensis 

OrthObla Orthion oblanceolatum 

CymbBail Cymbopetalum baillonii 

HyerAlch Hyeronima alchorneoides 

ProtHebe Protium hebetatum 

EschOvat Eschweilera ovata 

SipaAndi Siparuna andina 

GuapOppo Guapira opposita 

MatiMala Matisia malacocalyx 

HampNutr Hampea nutricia 

SapiLate Sapium lateriflorum 

MicrElat Micrandra elata 

EschCori Eschweilera coriacea 

DendArbo Dendropanax arboreus 

CecrObtu Cecropia obtusifolia 



MicoCabu Miconia cabucu 

LunaMexi Lunania mexicana 

GuarGlab Guarea glabra 

PogoScho Pogonophora schomburgkiana 

PipeSanc Piper sanctum 

BursSima Bursera simaruba 

EschTrun Eschweilera truncata 

HirtHebe Hirtella hebeclada 

AspiAust Aspidosperma australe 
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 32 

Figure S1. Relationships between climatic variables and latitude across 471 Neotropical moist 33 

forest plots (see Fig. 1). The variance explained is the marginal R-square from mixed-effects 34 

models with ‘biogeographic region’ as random factor. MAP, mean annual precipitation; MAT, 35 

mean annual temperature; PET, potential evapotranspiration; PS, precipitation seasonality; TS, 36 

temperature seasonality; SD, standard deviation of average monthly values; CV, coefficient of 37 

variation of average monthly values.  38 



 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

Figure S2. Distribution of species trait values for the original data (blue line) and five imputed 48 

datasets (red). Trait imputation was performed through chained equations by predictive mean 49 

matching, using R package ‘mice’. LA, leaf area (cm²); SLA, specific leaf area (cm²/g); LDMC, 50 

leaf dry matter content (g/g); WD, wood density (g/cm³); SM, seed mass (mg); Hmax, maximum 51 

height (m).  52 
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 65 

 66 

Figure S3. Distribution and mean differences (p > 0.05 according to paired-tests) of CWM trait 67 

values calculated from species-level data only (blue) and considering genus trait averages (red). 68 

LA, leaf area (cm²); SLA, specific leaf area (cm²/g); LDMC, leaf dry matter content (g/g); WD, wood 69 

density (g/cm³); SM, seed mass (mg); Hmax, maximum height (m). 70 
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 72 

Figure S4. Abundance-weighted distributions of tree species trait values for all individuals with 73 

diameter at breast height (DBH) from 2.5 cm (red), and for only adults with DBH > 10 cm 74 

(blue), at the Northern Meso-America region. 75 
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Figure S5. Spatial clusters (plots connected by maximum 50-km distance) that represented ag-91 

gregated samples (N = 59) in double constrained correspondence analysis (dc-CA).  92 
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 104 

Figure S6. Biplot of the coefficients of the regressions of CWMs of functional traits on to the 105 

climate variables (similar to Fig. 5a), with only the three most relevant climate variables, 106 

according to forward selection in dc-CA analysis. ‘eig’ = eigenvalue; ‘rFC’ = fourth-corner 107 

correlation. MAP, mean annual precipitation (mm); PET, potential evapotranspiration (mm); TS, 108 

temperature seasonality (standard deviation of monthly values); LA, leaf area (cm²); SLA, 109 

specific leaf area (cm²/g); LDMC, leaf dry matter content (g/g); WD, wood density (g/cm³); SM, 110 

seed mass (mg); Hmax, maximum height. 111 
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 113 

Figure S7. Significant relationships from mixed-effects models with latitude (south-north gradi-114 

ent) and degrees from equator (the strongest for each trait/strategy) as predictor of abundance-115 

weighted community mean (CWM) of functional traits and strategies, for 471 tree communities 116 

distributed across nine Neotropical moist forest regions. The variance explained is the marginal 117 

R-square from mixed-effects models with ‘biogeographic region’ as random factor. LA, leaf 118 

area; SLA, specific leaf area; LDMC, leaf dry matter content; WD, wood density; SM, seed 119 

mass; Hmax, maximum height.  120 
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 129 

Figure S8. Position (unconstrained scores) on the dc-CA biplot (Fig. 5) of the 30 species which 130 

contribute most to the first two dc-CA axes. The species names associated with the eight-letter 131 

codes in are shown in Table S8. 132 


