
University of New Haven University of New Haven

Digital Commons @ New Haven Digital Commons @ New Haven

Electrical & Computer Engineering and
Computer Science Faculty Publications

Electrical & Computer Engineering and
Computer Science

8-17-2021

Forensic Artifact Finder (ForensicAF): An Approach & Tool for Forensic Artifact Finder (ForensicAF): An Approach & Tool for

Leveraging Crowd-Sourced Curated Forensic Artifacts Leveraging Crowd-Sourced Curated Forensic Artifacts

Tyler Balon
University of New Haven

Krikor Herlopian
University of New Haven

Ibrahim Baggili
University of New Haven, ibaggili@newhaven.edu

Cinthya Grajeda-Mendez
University of New Haven

Follow this and additional works at: https://digitalcommons.newhaven.edu/

electricalcomputerengineering-facpubs

 Part of the Computer Engineering Commons, Electrical and Computer Engineering Commons,

Forensic Science and Technology Commons, and the Information Security Commons

Publisher Citation Publisher Citation
Tyler Balon, Krikor Herlopian, Ibrahim Baggili, and Cinthya Grajeda-Mendez. 2021. Forensic Artifact Finder
(ForensicAF): An Approach & Tool for Leveraging Crowd-Sourced Curated Forensic Artifacts. In The 16th
International Conference on Availability, Reliability and Security (ARES 2021). Association for Computing
Machinery, New York, NY, USA, Article 43, 1–10. DOI:https://doi.org/10.1145/3465481.3470051

Comments
This is the Author's Accepted Manuscript.
Article part of the International Conference Proceeding Series (ICPS), ARES 2021: The 16th International
Conference on Availability, Reliability and Security, published by ACM.

https://digitalcommons.newhaven.edu/
https://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs
https://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs
https://digitalcommons.newhaven.edu/electricalcomputerengineering
https://digitalcommons.newhaven.edu/electricalcomputerengineering
https://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.newhaven.edu/electricalcomputerengineering-facpubs?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.newhaven.edu%2Felectricalcomputerengineering-facpubs%2F97&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dl.acm.org/doi/abs/10.1145/3465481.3470051
https://dl.acm.org/doi/proceedings/10.1145/3465481
https://dl.acm.org/doi/proceedings/10.1145/3465481

Forensic Artifact Finder (ForensicAF): An Approach & Tool for
Leveraging Crowd-Sourced Curated Forensic Artifacts

Tyler Balon
University of New Haven

Connecticut Institute of Technology
United States

Krikor Herlopian
University of New Haven

Connecticut Institute of Technology
United States

Ibrahim Baggili
University of New Haven

Connecticut Institute of Technology
United States

Cinthya Grajeda-Mendez
University of New Haven

Connecticut Institute of Technology
United States

ABSTRACT
Current methods for artifact analysis and understanding depend
on investigator expertise. Experienced and technically savvy ex-
aminers spend a lot of time reverse engineering applications while
attempting to find crumbs they leave behind on systems. This
takes away valuable time from the investigative process, and slows
down forensic examination. Furthermore, when specific artifact
knowledge is gained, it stays within the respective forensic units.
To combat these challenges, we present ForensicAF, an approach
for leveraging curated, crowd-sourced artifacts from the Artifact
Genome Project (AGP). The approach has the overarching goal
of uncovering forensically relevant artifacts from storage media.
We explain our approach and construct it as an Autopsy Ingest
Module. Our implementation focused on both File and Registry
artifacts. We evaluated ForensicAF using systematic and random
sampling experiments. While ForensicAF showed consistent results
with registry artifacts across all experiments, it also revealed that
deeper folder traversal yields more File Artifacts during data source
ingestion. When experiments were conducted on case scenario disk
images without apriori knowledge, ForensicAF uncovered artifacts
of forensic relevance that help in solving those scenarios. We con-
tend that ForensicAF is a promising approach for artifact extraction
from storage media, and its utility will advance as more artifacts
are crowd-sourced by AGP.

KEYWORDS
Cyber Forensics, Digital Forensics, Artifacts, Triage, Autopsy, AGP,
CuFA, Artifact Genome Project

ACM Reference Format:
Tyler Balon, KrikorHerlopian, IbrahimBaggili, and CinthyaGrajeda-Mendez.
2021. Forensic Artifact Finder (ForensicAF): An Approach & Tool for Lever-
aging Crowd-Sourced Curated Forensic Artifacts. In The 16th International
Conference on Availability, Reliability and Security (ARES 2021), August

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARES 2021, August 17–20, 2021, Vienna, Austria
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9051-4/21/08. . . $15.00
https://doi.org/10.1145/3465481.3470051

17–20, 2021, Vienna, Austria. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3465481.3470051

1 INTRODUCTION
Digital Forensics (DF) emerged over the last twenty years as an
independent branch of forensic science through the empowerment
of academia and industry. Practitioners rely on advancements in
the domain to aid in deciphering, segmenting, and analyzing the
cascade of events in forensic artifacts. The forensic Acquisition,
Authentication, & Analysis (AAA) of digital evidence is imperative
for its admissibility into the court of law. Technology’s widespread
use has led to challenges and opportunities in performing forensic
analysis due to the volume, velocity and variety of data [6, 39].

DF is backed by a growing market that is estimated to grow from
USD $1.72 billion in 2018 to $4.24 billion by 2025 [27]. This growth
has led to a variety of DF tools both commercial and open source
that practitioners can leverage to provide “layers of abstraction"
to aid in upholding integrity when acquiring, authenticating, and
analyzing data [37].

However, as technology becomes more complex and storage
mediums expand to larger sizes, tools have not kept up with the
need for faster analysis. Disk sizes continue to grow, while emerg-
ing systems such as: the Internet of Things (IoT), Personal Electrical
Vehicles (PEV), and embedded devices, complicate the market. Ex-
aminers are no longer able to keep up due to limited time and
resources with current investigative techniques that largely rely on
manual processing [31]. This manual processing has encouraged
isolation between forensic examiners, which has in turn housed
their knowledge in their respective forensic units.

To share knowledge, early efforts for crowd sourcing forensic
data have been explored. This started by collecting publicly avail-
able information on widely popular websites such as 4Chan, Reddit,
& YouTube [17]. However, in 2014, the AGPwas founded as a shared
repository of Curated Forensic Artifacts (CuFA) (vetted forensic
artifacts). A CuFA is an artifact of forensic relevance such as a file
that stores the chat history of a communication application like
Skype. AGP aids practitioners in locating potential evidence that
may have been uncovered through past research by a community
of academics, industry partners, and practitioners [26].

Our work outlines the development of a promising approach,
implemented through a plugin for Autopsy (a popular open source

https://doi.org/10.1145/3465481.3470051
https://doi.org/10.1145/3465481.3470051
https://doi.org/10.1145/3465481.3470051

ARES 2021, August 17–20, 2021, Vienna, Austria Balon and Herlopian, et al.

DF toolkit) to aid in automating artifact triage of digital devices.
We make the following contributions:
• We conceptualize and implement Forensic Artifact Finder
(ForensicAF) as an open source Autopsy plugin that aids
in the extraction of forensically relevant artifacts from a
storage medium and presenting them in a Hypertext Markup
Language (HTML) document
• We leverage a vetted, crowd-sourced repository of CuFAs
found in AGP to help practitioners locate artifacts that have
been deemed as noteworthy by past researchers
• We provide primary results that evaluate ForensicAF’s abil-
ity to locate artifacts on digital media, and compare analysis
times through multiple trials to gauge the speed and useful-
ness of our approach
• We explore the usefulness of artifacts uncovered using Foren-
sicAF that aid in solving publicly available DF scenarios
• We share our implemented approach publicly via GitHub

The rest of this paper is organized as follows. In Section 2 we
share our ForensicAF approach and implementation. Section 3
presents our evaluation, followed by the results in Section 4. We
discuss our findings in Section 5 and follow them with related work
in Section 6. We conclude in Section 7 and build a path for future
work in Section 8.

2 FORENSICAF
ForensicAF is our proposed approach for finding forensic artifacts
on a system under investigation. Figure 2 illustrates the differ-
ence between ForensicAF and traditional manual artifact extrac-
tion methods. Traditional manual methods can equate to hours of
research via search engines, looking up archived information in
databases, as well as pulling out old files and reference materials
to locate past research. Forensic examiners do not have the luxury
of time in terms of downloading applications, reverse engineering
them, and examining the unique and encoded artifacts that they
produce. Lastly, the traditional method relies on individuals in foren-
sic units that have gained experience in finding artifacts during
investigations, where knowledge is not shared and crowd-sourced.

ForensicAF on the other hand employs AGP to aid in automating
the process of finding artifacts during forensic examination, while
potentially cutting down hours of research – all thanks to the
availability of vetted, crowd-sourced artifacts. As shown in Figure
2, contributors from academia, law enforcement, and industry all
share an array of specific artifact findings with their respective
forensic metadata.

ForensicAF was implemented as an Ingest Module based on
the Autopsy Module Development and Application Programming
Interfaces (API) reference documentation. While the plugin is not
an end-all solution to DF analysis, it serves as an automation tool
which employs crowd-sourced CuFAs [30] to report interesting
finds.

2.1 Artifact Analysis
AGP [26] allows users to contribute artifacts to their database.While
artifacts submitted can be a variety of types, our work employs
two common types: (1) File Artifacts and (2) Windows Registry
Artifacts.

Figure 1: Example iOS Skype File Artifact in AGP. Note:
Omits artifact metadata and showcases artifacts representa-
tion in AGP.

AGP is built with CyBOX [9] as an underlying data model. Cy-
BOX is “a standardized language for encoding and communicating
high-fidelity information about cyber observables". CyBOX extends
the possibilities of attribute types to store as metadata for each
artifact. Per AGP, File Artifacts are considered “Artifacts that take
the form of a file with an extension" and Windows Registry Arti-
facts are considered, “Artifacts within the Windows Registry". Once
an artifact is approved by AGP administrators, the artifact can be
considered validated and becomes a CuFA.

File Artifacts in AGP contain a multitude of fields, including, but
not limited to: artifact name, artifact type, type of device the artifact
was found on, file hashes of the artifact, discovery information, file
name, file extension, file format, file path, creation and modification
dates, etc. An example iOS Skype Username File Artifact from AGP
is shown in Figure 1. ForensicAF uses the file name, file extension,
and file path to locate interesting finds on the disk to report. If a
CuFA does not have a file name, the entire path is considered an
artifact.

Windows Registry Artifacts in AGP contain significantly less
fields for metadata compared to File Artifacts. Users that create a
Windows Registry Artifact can submit up to, but not limited to:
artifact name, artifact type, type of device the artifact was found on,
hashes of the artifact, discovery information, a Windows Registry
Key, registry values, modification times, sub-keys, etc. ForensicAF
uses the Windows Registry Key information to locate known Win-
dows Registry Artifacts on a disk.

Despite AGP storing metadata for each artifact, anomalous arti-
fact metadata may still occur. While AGP has significant validation
efforts in place to ensure each artifact is curated, artifact metadata
may be vague, erroneous, or incomplete. Instances as such may pro-
duce a large number of false positives during analysis. To improve
accuracy of artifact finding in ForensicAF, several considerations
were adhered to:
• Artifacts may not have file names

Forensic Artifact Finder (ForensicAF) ARES 2021, August 17–20, 2021, Vienna, Austria

Figure 2: Traditional Manual Artifact Analysis v.s. ForensicAF

– Entries may be a file path to a known directory. For exam-
ple, the image path to the photos on an iOS backup, that
would contain random file names

• Artifact details may be too vague
– An artifact cataloged to be in a common directory of a
device may return a false positive

– File names may be common in multiple directories
• User submission errors may still happen
– Users may mis-type information when submitting an arti-
fact

– Users may supply misinformation while submitting an
artifact

Since ForensicAF is dependent on the amount of cataloged CuFAs
when ingesting data sources, we explored user data generated on
AGP. At the time of writing, there were 484 users registered, be-
longing to 256 different organizations. Of those organizations, they
spanned geographically over 52 different countries and other terri-
tories. The majority of organizations are registered from The United
States. At the time of writing, AGP hosted (n=1130) CuFAs, with
the largest contributing sector being academia. AGP is actively
maintained with new features being added to the project and new
CuFAs being created.

2.2 Plugin Construction
ForensicAF was implemented for Autopsy versions 4.16 and greater.
We selected Autopsy for its open source nature and wide adoption.
Per the Module Development Overview and API reference, Foren-
sicAF is written as an Ingest Module, which can be run in Autopsy
when a new data source is added to a case. Ingest Modules will
process every file that is in a data source, allowing ForensicAF to
search for CuFAs provided by AGP.

The plugin is written in Python 2.7. Autopsy utilizes Jython,
a Java implementation of Python that will convert the Python
plugin into Java byte code, allowing it to run on the Java Virtual
Machine (JVM) [10]. ForensicAF is limited to Python 2.7, and cannot
include libraries with native functions. We use several external
libraries, built as native Java, or Jython code as shown in Table 1.

Table 1: Libraries used to create ForensicAF

Libraries imported
import org.apache.poi.xssf.usermodel

from com.williballenthin.rejistry import RegistryKey
from com.williballenthin.rejistry import RegistryValue

from com.williballenthin.rejistry import RegistryHiveFile
from com.williballenthin.rejistry import RegistryParseException

ForensicAF runs on Windows, Linux, macOS, and any system
capable of running Autopsy & the JVM. Our tool is capable of
searching for files and registry keys on a system. We discuss plugin
usage in Section 2.4. Systems without aWindows Registry will have
that component of the plugin ignored. XSSFWorkbook [5] is used to
parse the AGP artifact data. File analysis on the device is performed
using all native Python functions (traversal of directories on system,
copying files, etc). Registry analysis uses Rejistry [8], to access the
hive file and search for CuFAs.

Due to conflicting functions between versions of Autopsy, we
settled on designing ForensicAF to support version 4.16 or greater,
as recommended by developers we were in contact with through
The Sleuth Kit Forum1.

1Autopsy Forum (url: https://sleuthkit.discourse.group)

https://sleuthkit.discourse.group

ARES 2021, August 17–20, 2021, Vienna, Austria Balon and Herlopian, et al.

2.3 Algorithm Design
This subsection breaks down the method used to search for Win-
dows Registry CuFAs and the algorithm that was implemented to
search for files during digital forensic analysis. On non-Windows
systems, the portion of searching for Windows Registry CuFAs
is ignored, and only the File Analysis occurs. AGP is capable of
storing artifacts for a variety of Operating System (OS)s, including,
but not limited to: Windows, macOS, iOS, Linux and Android.

To locate Windows Registry CuFAs on a data source, we search
for the registry hive containing the registry key in the artifacts
downloaded from AGP. ForensicAF makes temporary copies of the
registry hive to a temp directory before searching for the key. This
ensures that data is not deleted nor altered during this process for
forensic integrity. We search the hive for the key using Rejistry [8]
and output the results to the practitioner.

As explained, Ingest Modules in Autopsy will analyze each file
in a data source as Autopsy indexes the data source and displays
results to the practitioner. We loop through each artifact in our AGP
CuFAs list and search for them using the function findFiles(),
an Autopsy provided method. If there is nothing found at a specific
path, we traverse up one directory and search again. The user can
define how many directories to traverse backwards from the loca-
tion stored in AGP, this ensures maximum discovery of important
finds on a device. We implement Algorithm 1, into ForensicAF.

Algorithm 1 File Artifacts

1: procedure findCUFAs(t, cufaPaths, cufaNames)
2: 𝑖 ← 0 ⊲ iterator of traversed
3: 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒 ← 𝑡 ⊲ num dirs to traverse
4: 𝑝𝑎𝑡ℎ𝑠 ← 𝑐𝑢𝑓 𝑎𝑃𝑎𝑡ℎ𝑠 ⊲ list of CuFA file paths
5: 𝑛𝑎𝑚𝑒𝑠 ← 𝑐𝑢𝑓 𝑎𝑁𝑎𝑚𝑒𝑠 ⊲ list of CuFA file names
6: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← [] ⊲ blank list for results
7: for 𝑝𝑎𝑡ℎ𝑠, 𝑛𝑎𝑚𝑒𝑠 = 1, 2, . . . , 𝑁 do
8: 𝑝𝑎𝑡ℎ ← 𝑝𝑎𝑡ℎ𝑠 ⊲ current file path
9: 𝑛𝑚 ← 𝑛𝑎𝑚𝑒𝑠 ⊲ current file name
10: for 𝑖 in range(𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒) do
11: %𝑓 𝑜𝑢𝑛𝑑𝐹𝑖𝑙𝑒𝑠% = findFiles(path, nm)
12: if count(𝑓 𝑜𝑢𝑛𝑑𝐹𝑖𝑙𝑒𝑠) != 0 then
13: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← %𝑓 𝑜𝑢𝑛𝑑𝐹𝑖𝑙𝑒𝑠%
14: break
15: else
16: path = path[path[1:].find(’/’)+1:]
17: end if
18: end for
19: end for
20: end procedure

Algorithm 1 explains our Find Artifacts procedure we use to
locate CuFAs on a data source. Lines 2 - 6 initialize the iterator, how
many directories to traverse, the paths/names we will search for,
and a place to store results. Line 7 iterates each file path and name
in the list provided by AGP. We then begin to traverse upwards
N directories from the intended location, according to AGP, on
line 10. When we call findFiles, we use ’%’ to search for leading
or trailing characters added to the file name listed in AGP. If a
file is found, we add it to the results and continue searching the

remainder of our files, otherwise, we traverse up a directory and
search again, continuing until we have traversed as many times
as user defined. Depending on the traversal level, we will search
for the file traversed up that number of directories, and to all sub-
folders in that directory. CuFA paths and names are searched for
separately, to see if a known file is in a different path, or a known
path contains different files. Some CuFA entries are simply known
paths, not specific files.

2.4 Usage
In this section, we provide basic usage information for ForensicAF.
The plugin is available on GitHub2 as an open source tool that can
be modified to meet user needs.

How To: Install ForensicAF. After Autopsy is installed on the
system, navigate to ‘Tools > Python Plugins’ to install Forensi-
cAF. The folder, ‘%appdata%\Roaming\autopsy\python_modules’
contains python plugins for Autopsy. Create a new folder named
‘ForensicAF’ and move ‘ForensicAF.py’ to the new folder. This
allows Autopsy to use the Ingest Module when re-launched and a
data source is added.

How To: Download AGP CuFAs. Users should register online
at ‘agp.newhaven.edu’. AGP administrators will manually approve
new accounts [26]. Specific artifacts can be searched via AGP
using ‘Artifact > Search’ or all known artifacts in AGP can
be retrieved using the wildcard ‘*’. Select the ‘Export Results’
button to download the file ‘SearchResults.xls’. Move the file
‘SearchResults.xls’ to the ‘ForensicAF’ folder, found at the path:
‘%appdata%\Roaming\autopsy\python_modules’, do not change
the file name.

How To: Use ForensicAF. Once Autopsy is restarted after Foren-
sicAF is installed, it can be run as an Ingest Module to analyze new
data sources. Navigate to ‘Tools > Run Ingest Modules’ to select
‘ForensicAF’. The available settings can be seen in Figure 3. ‘File
Artifacts’ will enable searching the data source for file artifacts
from the AGP exported search query. ‘Registry Artifacts’ will
enable searching the data source for registry items, and should be
disabled if the image is from a non-Windows machine. ‘Export
Files’ will enable exporting the files when the report is generated.
‘Traverse Level’ will allow the user to select how many directo-
ries up the plugin should traverse to search for files, relative to the
path in AGP. As this value is increased the time to run the plugin
will increase.

Figure 3: ForensicAF Ingest Module settings

Usage: What to expect. Depending on ‘Traverse Level’ and
the size of the data source, the plugin can take several minutes to
hours. Once ForensicAF finishes running on the data source, a folder

2ForensicAF GitHub (url: https://github.com/unhcfreg/AGP-Autopsy-Plugin)

Forensic Artifact Finder (ForensicAF) ARES 2021, August 17–20, 2021, Vienna, Austria

named ‘files extracted’ and a report document in HTML named
‘report<UNIX_TIMESTAMP>’ will be saved to the plugin folder in
python_modules. Users can retrieve these files by navigating to the
directory ‘%appdata%\Roaming\autopsy\python_modules’. An
example report generation can be seen in Figure 4.

Figure 4: Example ForensicAF Report

3 EVALUATION
We evaluated our approach using Random and Systematic sampling
of CuFAs found across different data sources. We relied on both, a
data source we created and scenario images that mock real digital
forensic investigations. The results of our evaluation can be found
in Section 4. We analyze each data source twice per the traversal
level we specify, to compare the speed of our approach. During our
evaluation phase, we used the same hardware for each test (See
Apparatus in Table 2).

To evaluate Systematic Sampling, we built a disk image of known
artifacts, which we placed on a clean installation of Microsoft Win-
dows 10. The disk image contained (n=100) artifacts, known by
AGP, and that were intentionally placed on the system for Forensi-
cAF to find. We tested the ForensicAF’s ability to traverse up 0, 1,
2, and 3 levels from the path specified by AGP. Each test was run
twice to ensure the validity of the results and to compare the speed
of each run.

Table 2: Hardware Used for Evaluation of ForensicAF

Component Manufacturer Model Details
OS Microsoft Windows v10x64
CPU Intel i7-3770S 3.10GHz
RAM Intel DDR3 8GB
Disk Intel 64GB HDD

To evaluate Random Sampling, we employed data sources from
DigitalCorpora3 and Stevenson University’s 2016 Black T-Shirt Cy-
ber Forensic Challenge4 to analyze with ForensicAF. DigitalCorpora
provides scenario based disk images, memory dumps, and network
packages of user created cases. For all sources, we compared our
3DigitalCorpora (url: https://digitalcorpora.org)
4CyberWatch West (url: https://tinyurl.com/3stdjljj)

results from ForensicAF to the provided solution guide(s). In our
evaluation, we downloaded the entire list of CuFAs from AGP, and
then used them in ForensicAF. We then manually explored the re-
ported findings to explore if any artifacts of forensic relevance were
returned. It is important to note that these tests were ran without any
apriori knowledge of artifacts that may be useful i.e. we did not pur-
posefully create artifacts in AGP that were relevant to the examined
scenarios. We ran the plugin two times per data source, at traverse
levels 0 and 2 to ensure the validity of the results and to compare
the speed of each run.

4 RESULTS
We tested ForensicAF’s efficacy based on the evaluation outlined in
Section 3. A series of Systematic and Random Sampling experiments
were performed.

4.1 Systematic Sampling

0 1 2 3

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105 Max CuFAs (n=100)

41

69
73

78

20 20 20 20

61

89
93

98

Traversal Level

Cu
FA

sF
ou

nd

ForensicAF Systematic Sampling

Files Registry Files & Registry

Figure 5: Autopsy results of ForensicAF using knownmanu-
ally placed CuFAs that are listed in AGP onto a data source

During our Systematic Sampling experiments, we installed Win-
dows 10 on a 450GBHard Disk Drive (HDD) and placed 100 artifacts
on the device to test the accuracy of ForensicAF. We ran the exper-
iment using different traversal levels.

In Figure 5, we present the findings of running ForensicAF at
different traversal levels on a manually created data source. There
were 100 CuFAs placed on the data source, as denoted by the dotted
line at y = 100. As seen by the line Files & Registry, as we allowed
ForensicAF to traverse upmore directories from the path inAGP,we
approached finding 100 CuFAs. It is noteworthy that the registry
analysis portion of the plugin consistently found 20 results, as
shown by Registry on the graph. Given the registry keys are in a
set of predetermined files by Microsoft Windows, the plugin only
has to search a specific location to look for registry CuFAs in a
predictable fashion.

https://digitalcorpora.org
https://tinyurl.com/3stdjljj

ARES 2021, August 17–20, 2021, Vienna, Austria Balon and Herlopian, et al.

0 1 2 3
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110

39

63

77

102

38

61

80

100

Traversal Level

Ti
m
e
Ta

ke
n
(in

m
in
ut
es
)

ForensicAF Systematic Sampling Time

Trial #1 Trial #2

Figure 6: Time for ForensicAF Ingest Module to complete
analysis on Systematic Sampling using AGP CuFAs

We compared the time taken for ForensicAF to analyze the 450GB
data source at different traversal levels in Figure 6. At Level 0, the
plugin takes an average of 38min, 30 seconds to analyze the data
source. At Level 3, the plugin takes 1hr, 41min. As seen by the data
in Figure 6, each trial completes in a similar time frame of ± 3min
when the Ingest Module is ran on the same data source.

4.2 Random Sampling

Table 3: Data Sources used in Random Sampling

Data Source Identifier Disk Size OS
M57-Jean M57 3 GB Windows XP
domexusers DU 4.2 GB Windows XP
Black T-Shirt BT 10.6 GB Windows 7
Lone Wolf LW 15 GB Windows 10

For the Random Sampling portion of our evaluation, we use
DigitalCorpora and Stevenson University’s data sources. The data
sources vary in host OS and disk size. From DigitalCorpora, we
use: “Lone Wolf", “M57-Jean", and “nps-2009-domexusers". From
Stevenson University, we use the 2016 Black T-Shirt Challenge data
source: “Black T-Shirt". The data source names, identifier we use
on the graph, disk size, and OS can be found in Table 3. In Figure 7,
we divide the graph into Level 0 and Level 2 based on the traversal
level. The orange line denotes total artifacts found. Consistent with
our Systematic Sampling, the same number of registry items are
found regardless of the traversal level, however, at Level 0, no files
are found in any of the data sources.

Unlike in Figure 6, we use a bar graph to display the timing of
the Random Sampling in Figure 8. The Random Sampling Time in
Figure 8 is an average of two trial runs, as listed in Table 4. We
display this data in this format as there is no correlation between

M570 DU0 BT0 LW0 M572 DU2 BT2 LW2

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160

(Level 0) (Level 2)

94

111 112

87
94

111 112

87

0 0 0 0 1 1 3 5

94

111 112

87
95

112 115

92

Autopsy Data Source (Traversal Level)

Cu
FA

sF
ou

nd

ForensicAF Random Sampling

Registry Files

Figure 7: Autopsy results of using ForensicAF to find AGP
CuFAs on a data source provided by DigitalCorpora

times for each data source. Our findings show that as the size of
the data source increases, the time to run ForensicAF increases
exponentially. When comparing LW to the 450GB data source used
in our Systematic Sampling, LW at 15GB takes approximately 28min
at Level 2 to complete, while our manually created data source takes
on average 78min, 30sec.

Table 4: Random Sampling Trial Timings (in seconds)

Identifier T10 / T12 T20 / T22 AVG0 / AVG2
M57 73 / 158 79 / 172 76 / 165
DU 85 / 172 79 / 180 82 / 176
BT 461 / 904 471 / 922 466 / 913
LW 585 / 1676 593 / 1696 589 / 1686

As demonstrated across our evaluation, Registry Artifacts are
consistently detected, while File Artifacts rely on the traversal level.
In Section 5 we discuss the significance of the Random Sampling
data source findings and review the different processing times when
using ForensicAF.

5 DISCUSSION
Throughout our evaluation of ForensicAF, we learned that in each
trial of Systematic and Random sampling we performed, regardless
of the traversal level, the registry results were always consistent
across the data source. Because registry look-ups depend on [8], we
simply query the registry for keys in AGP and output the results to
the report. The number of File Artifacts increases as the traversal
level does, and if a file is not found in one location as expected by
AGP, we traverse up a directory then search again for the file. This
allows us to broaden our search from the expected location as many
directories up as the user specifies when running the ForensicAF.

In the Systematic Sampling, we built a data source that had 100
expected CuFAs from AGP. In our results, at Level 3 traversal, we

Forensic Artifact Finder (ForensicAF) ARES 2021, August 17–20, 2021, Vienna, Austria

M57 XP BT LW

250

500

750

1,000

1,250

1,500

1,750

76 82

466
589

165 176

913

1,686

Traversal Level

AV
G
Ti
m
e
Ta

ke
n
(in

se
co
nd

s)

ForensicAF Random Sampling Time

Level 0 Level 2

Figure 8: Time for ForensicAF Ingest Module to complete
analysis on Random Sampling using AGP CuFAs

were only able to find 97 of these artifacts. When creating the data
source, we purposely made anomalous artifacts, that should not
be detected, to ensure the integrity of ForensicAF. These altered
artifacts were not detected for a number of reasons:
• file namewas altered -Whenwe call findFiles in Algorithm
1, we search using ’%’ to find files that include the name but
may have leading/trailing characters attached. If a file name
is altered, ex: log_out.txt to out_log.txt, the plugin does
not detect this as an artifact.
• traversal level changed - When adding artifacts to the data
source, some artifacts were placed in different directories
than intended to ensure the plugin could find them by in-
creasing the traversal level.
– Artifacts moved 1-3 levels up were found
– Artifacts moved beyond 1-3 levels were ignored

During Random Sampling, the data sources provided by Digital-
Corpora were selected at random. We did not have apriori knowl-
edge if any artifacts on those data sources would be found, nor if
they would support the investigation. Upon further review of the
solution guide(s) for “Lone Wolf", “M57-Jean", and “Black T-Shirt":
we find that ForensicAF locates artifacts, that per the solution guide,
would assist in solving the case, as shown in Table 5.

Table 5: Random Sampling Relevant Results

Identifier Artifact Type Details
1 M57 Registry Messaging app info
2 M57 File Recently used apps
3 BT Registry Computer usernames
4 BT File Recently used apps
5 BT File Contains browser history
6 LW File Recently used apps
7 LW File Contains browser history

Results 1 & 2 for M57 include messaging information between
two suspects, showcasing malicious plans between the suspects.
Results 3, 4, and 5 for BT provides data about the users on the system
and their computer usage. Results 6 & 7 for LW show recently used
applications and browser history search results that pertain to
the suspect’s activities, providing information about incriminating
search history. Each artifact listed in Table 5 directly relates to
the solution guide(s) provided by the data source creators. This is
significant, as the goal of ForensicAF is to aid in automating the
analysis process by extracting forensically relevant artifacts.

As shown in Section 4, as a user selects to traverse higher, the
time significantly grows for the plugin to run. Of course, hardware
specifications may either improve or slow down ForensicAF.

6 RELATEDWORK
With an increase of successful cyber-attacks threatening world-
wide financial and personal security, digital forensics is at the fore-
front of incidence response. Evidence retrieved during an investiga-
tion is often large and can take days to fully analyze. The motivation
behind ForensicAF is to aid practitioners in the analysis step and
provide them with additional tooling at their disposal. Our work is
within scope of the recent needs analysis findings explored in [29].
While we recognize that recent DF work is exploring the use of
Artificial Intelligence (AI) and Machine Learning (ML) in the analy-
sis of digital evidence [43], we deem it as out of this paper’s scope,
since our approach does not employ ML and AI techniques. This
section explores work related to improving the forensics analysis
process and highlights some past efforts in automation.

6.1 Forensic Software & Framework
Research by [24] suggested that many challenges in current foren-
sic software stem from lack of standardization and standardized
data formats. Further needs-analysis style surveys amongst practi-
tioners, industry, and academia have agreed that standardization
and formalization is a major weakness in digital forensic software
[11, 35]. This challenge also extends to the development method-
ologies used to write these tools. Current forensic software uses
a variety of different languages and libraries to function. Forensic
tools are written in C, C++, Java, Perl, Python, and even proprietary
languages such as Guidance Software’s EnScript. These tools are
capable of running on Microsoft Windows, Apple Macintosh, and
Linux based OS.

Given the broad range of tools available that run on different
hosts and developed in different languages, future forensic soft-
ware should work towards creating frameworks that enable cross-
language, cross-platform development. The paper [24] notes that
frameworks that enable these features are the methods utilized by
other types of development communities, while digital forensic
tool developers have failed to follow suit. Widely used software
that runs on a variety of hosts employ these techniques, such as:
Apache2’s module system5. Frameworks should include standard-
ized processing models, cross-language API, and straightforward
data marshaling. The authors in [24] call for frameworks tailored
to DF that would allow plug-in file systems, processing of sectors,
Internet Protocol (IP) packets, bytesteam “objects", timestamps,
5Apache2 Module System (url: https://tinyurl.com/1tubc38l)

https://tinyurl.com/1tubc38l

ARES 2021, August 17–20, 2021, Vienna, Austria Balon and Herlopian, et al.

email addresses, proper names, and so on. This, coupled with corre-
lation subsystems, object-based hierarchical storage, and enhanced
output subsystems could be used for interactive reports, visualiza-
tion, and most importantly automated event systems.

In [11], the authors discuss unaddressed issues with forensic tool
development such as volume and scalability, and standardization
approaches. Efforts to examine and analyze existing analysis tools
have also been explored [14]. A general consensus from these works
is that analysis tools need to be further advanced and standardized,
especially to deal with systems at scale. A callback model has been
suggested to be the basis of plugins in digital forensic frameworks.
The paper notes that [13]’s SleuthKit and [23]’s fiwalk.py provide
limited callbacks but the APIs do not allow sufficient reporting and
correlation.

Available frameworks for DF include: PyFlag [16], Open Com-
puter Forensics Architecture (OCFA) [1], and Digital Forensics
Framework (DFF) [21]. The popular "aaS" or "as a Service" model has
made its way to DF as well, as seen in [45]. Work on DF frameworks
for cloud computing has has also been explored [4, 19, 41, 42, 44].
However, these do not provide the necessary research tools that the
experts need to generate goal-directed algorithms. They generate
unnecessary and impertinent details during an investigation. The
authors of [23] reaffirm that should a framework be developed that
enables workflow automation, developers of DF software products
will be able to focus more on algorithm enhancement, and less on
specific DF details. They go on to note that commercial products
such as NetIntercept [18], FTK [3], and Encase [2] could leverage
these frameworks.

While tooling can be improved through standardization and
frameworks, faster analysis still remains of paramount importance
in digital forensic investigations. Time-lining has become an im-
portant consideration for forensic investigators as they aid in large
investigations, as seen by tools like [34].

6.2 Faster Analysis
To improve forensic examination speeds, a number of research
thrusts have been established in the DF domain, most notably:

• Forensic triage: Digital forensic investigations rely on dig-
ital triage which comes as both live and post-mortem triage.
Authors in [32] explain that during live triage, rapid extrac-
tion of evidence from all available sourceswhile post-mortem
triage is conducted in laboratory settings with the goal of
collecting evidence on a seized device. Forensic triage is an
approach that helps prioritize digital evidence, and has been
implemented in digital forensic tooling [7, 25]. The approach
provides a solution for a case backlog problem, yet present
tools have limitations in forensic use [24, 32, 38].
• Stream-based disk forensics: Byte-stream, another digital
forensics processing model, processes the entire disk [40].
The method conducts a comprehensive search of a disk, how-
ever it requires significant Random-access memory (RAM)
to create a file system hierarchy and determine file bound-
aries. Research finds that it enables the possibility to identify
a tremendous amount of information without building any
order because most forensic files will not be fragmented [22].

Stream-based disks forensics, such as byte-stream, are impor-
tant for when involving HDD over Solid State Drive (SSD)
storage mediums. It may be easier to computationally scan
the entire storage medium to make the first pass for file-by-
file recovery, followed by a second phase during which the
undesignated fragments will be explored [24].
• Stochastic analysis: Stochastic analysis is another model
for data discovery that relies on random sampling and pro-
cessing of the designated portions of storage media. It is an
efficient approach when considering speed, however, it may
miss traces of data according to [24].
• Hashing: As the amount of data that needs analysis contin-
ues to exponentially grow, hash functions have become a
viable approach to identifying known artifacts. The utiliza-
tion of hash functions enables the identification of known
files on a device. It allows the elimination of non-relevant
data and retention of essential evidence, which expedites
the forensic analysis process by only having to search by
comparison [12, 28].
• Whitelisting:As outlined in [36], the increasing storage vol-
umes have become a pressing problem during digital forensic
investigations. One hurdle for an investigator to surpass dur-
ing analysis is to avoid extracting known-good files that
hold no importance to the investigation that are commonly
found on many devices or vendor specific files (such as OS
files). Whitelisting is a method of processing these known
to be good files and comparing them against a well-known
file collection to which the files seen as safe. Optimizing
this technique, however, requires efficient matching of files,
detection of the exact, near, and approximate matches [15].
• Blacklisting: Blacklisting is employed in digital forensic
investigations as well. A common practice in cybersecurity
is to block spam emails based on a list of known to be ma-
licious senders. This same methodology can be applied to
digital forensic investigations, very similar to whitelisting,
but would allow the investigator to know there are files
marked as bad entries on an image. This can reduce the
amount of data needed to be analyzed, as these files would
already be deemed noteworthy [33].

6.3 Artifact Databases & Curated Artifacts
Hashing, whitelisting, & blacklisting all rely on a known list of
artifacts to compare potential important finds against. While each
practitioner may have their own database, their set is limited to
solely what their institution has found or has access to. This neces-
sitates a centralized, crowd-sourced artifact database (repository)
for practitioners to be able to employ for finding artifacts on stor-
age media. The project [20] was an initial attempt at the concept
of building a community-sourced artifact repository. Formerly, a
standalone website, the project is now a GitHub repository that
contains artifacts that date back to 2010. The goal on the original
website, “to become a repository for useful information forensic
examiners may need to reference during the course of their analy-
sis.” The website has since become obsolete, and only the GitHub is
maintained, as explained in [26].

Forensic Artifact Finder (ForensicAF) ARES 2021, August 17–20, 2021, Vienna, Austria

Our approach leverages published research from AGP, since it
is vetted artifact database, and constructs ForensicAF. ForensicAF
was implemented as an Autopsy plugin so that it can be used by
field operatives and examiners 6.

7 CONCLUSION
In this paper, we presented ForensicAF, an approach implemented
as an Autopsy DF Ingest Module plugin which uses CuFAs crowd-
sourced by AGP. Our approach showed promising results in both
systematic sampling and random sampling experiments. As AGP
continues to vet more submitted CuFAs, ForensicAF will continue
to become more useful by locating a larger variety of artifacts to
search for. By using a crowd-sourced data source for plugins like
ForensicAF, practitioners can benefit from knowledge generated
from organizations around the world compiling known artifacts to
look out for.

ForensicAF is not intended to be an end-all solution to DF. The
purpose of ForensicAF is to provide the digital forensics community
with additional tooling to help uncover artifacts of potential forensic
relevance.

8 FUTUREWORK
ForensicAF may become more effective as additional CuFAs are
created and validated in AGP. To aid in AGP gaining more CuFAs,
a future iteration of ForensicAF to allow investigators to automati-
cally upload interesting findings to AGP may be implemented to
streamline the artifact submission process. This will allow Forensi-
cAF to not only benefit from the existing CuFAs in AGP, but also
provide crowd-sourced artifacts to assist other investigations.

Other future work may focus on ForensicAF’s ability to utilize
other sources of forensic artifacts such as ForensicArtifacts’s [20]
GitHub repository. Lastly, methods for locating artifacts relevant
to specific filesystems, or operating systems, may be implemented
to speed up ForensicAF’s performance. Future work should also
examine the utility of ForensicAF during real examinations, as our
testing was limited to available scenarios for testing.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1900210. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation.

REFERENCES
[1] [n.d.]. Dutch National Police Agency. http://ocfa.sourceforge.net/. Accessed:

2010-12-12.
[2] [n.d.]. Encase Forensic. http://www.guidancesoftware.com/products/ef_index.

asp. Accessed: 2007-12-12.
[3] [n.d.]. Forensic Toolkit (FTK). https://accessdata.com/products-services/forensic-

toolkit-ftk. Accessed: 2021-02-04.
[4] Inikpi O Ademu, Chris O Imafidon, and David S Preston. 2011. A new approach

of digital forensic model for digital forensic investigation. Int. J. Adv. Comput.
Sci. Appl 2, 12 (2011), 175–178.

[5] Apache Foundation. [n.d.]. Class XSSFWorkbook. https://poi.apache.org/apidocs/
dev/org/apache/poi/xssf/usermodel/XSSFWorkbook.html.

6Autopsy (url: https://www.autopsy.com)

[6] Ibrahim Baggili and Frank Breitinger. 2015. Data Sources for Advancing Cyber
Forensics: What the Social World Has to Offer. AAAI Spring Symposium Series.
https://www.aaai.org/ocs/index.php/SSS/SSS15/paper/view/10227/10092

[7] Ibrahim Baggili, Andrew Marrington, and Yasser Jafar. 2014. Performance of
a logical, five-phase, multithreaded, bootable triage tool. In IFIP International
Conference on Digital Forensics. Springer, 279–295.

[8] Willi Ballenthin. 2014. Rejistry. https://github.com/williballenthin/Rejistry.
[9] Sean Barnum. 2012. Standardizing cyber threat intelligence information with

the structured threat information expression (stix). Mitre Corporation 11 (2012),
1–22.

[10] Basis Technology. [n.d.]. Autopsy - Autopsy Forensic Browser Developer’s Guide
and API Reference. https://www.sleuthkit.org/autopsy/docs/api-docs/4.0/mod_
dev_py_page.html. Accessed: 2020-02-06.

[11] Nicole Beebe. 2009. Digital forensic research: The good, the bad and the unad-
dressed. In IFIP International conference on digital forensics. Springer, 17–36.

[12] Frank Breitinger, Huajian Liu, Christian Winter, Harald Baier, Alexey Ry-
balchenko, and Martin Steinebach. 2013. Towards a process model for hash
functions in digital forensics. In International Conference on Digital Forensics and
Cyber Crime. Springer, 170–186.

[13] Brian Carrier. 2009. The Sleuth Kit and Autopsy: forensics tools for Linux and
other Unixes, 2005. URL http://www. sleuthkit. org (2009).

[14] Brian Carrier et al. 2003. Defining digital forensic examination and analysis tools
using abstraction layers. International Journal of digital evidence 1, 4 (2003), 1–12.

[15] Sudarshan S Chawathe. 2009. Effective whitelisting for filesystem forensics. In
2009 IEEE International Conference on Intelligence and Security Informatics. IEEE,
131–136.

[16] MI Cohen. 2008. PyFlag–An advanced network forensic framework. Digital
investigation 5 (2008), S112–S120.

[17] D. Compton, J. A. Hamilton, and Jr. 2011. An Examination of the Techniques
and Implications of the Crowd-Sourced Collection of Forensic Data. In 2011 IEEE
Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE
Third International Conference on Social Computing. 892–895. https://doi.org/10.
1109/PASSAT/SocialCom.2011.232

[18] Vicka Corey, Charles Peterman, Sybil Shearin, Michael S Greenberg, and James
Van Bokkelen. 2002. Network forensics analysis. IEEE Internet Computing 6, 6
(2002), 60–66.

[19] Josiah Dykstra and Alan T Sherman. 2013. Design and implementation of FROST:
Digital forensic tools for the OpenStack cloud computing platform. Digital
Investigation 10 (2013), S87–S95.

[20] Forensic Artifacts. 2021. artifacts. https://github.com/ForensicArtifacts/artifacts.
[21] Baguelin Frederic, Jacob Solal, Mounier Jeremy, and Percot Francois. 2010. Digital

forensics framework.
[22] Simson L Garfinkel. 2007. Carving contiguous and fragmented files with fast

object validation. digital investigation 4 (2007), 2–12.
[23] Simson L Garfinkel. 2009. Automating disk forensic processing with SleuthKit,

XML and Python. In 2009 Fourth International IEEE Workshop on Systematic
Approaches to Digital Forensic Engineering. IEEE, 73–84.

[24] Simson L Garfinkel. 2010. Digital forensics research: The next 10 years. digital
investigation 7 (2010), S64–S73.

[25] Eric Gentry, Ryan McIntyre, Michael Soltys, and Frank Lyu. 2019. SEAKER: A
tool for fast digital forensic triage. In Future of Information and Communication
Conference. Springer, 1227–1243.

[26] Cinthya Grajeda, Laura Sanchez, Ibrahim Baggili, Devon Clark, and Frank Bre-
itinger. 2018. Experience constructing the artifact genome project (agp): Manag-
ing the domain’s knowledge one artifact at a time. Digital Investigation 26 (2018),
S47–S58.

[27] Grand View Research. 2019. Digital Forensics Market Size is expected to grow
to USD 6.95 billion by 2025. https://www.grandviewresearch.com/industry-
analysis/digital-forensics-market. Accessed: 2021-02-02.

[28] Vikram S Harichandran, Frank Breitinger, and Ibrahim Baggili. 2016. Bytewise
approximate matching: the good, the bad, and the unknown. Journal of Digital
Forensics, Security and Law 11, 2 (2016), 4.

[29] Vikram S Harichandran, Frank Breitinger, Ibrahim Baggili, and Andrew Mar-
rington. 2016. A cyber forensics needs analysis survey: Revisiting the domain’s
needs a decade later. Computers & Security 57 (2016), 1–13.

[30] Vikram S Harichandran, Daniel Walnycky, Ibrahim Baggili, and Frank Breitinger.
2016. Cufa: A more formal definition for digital forensic artifacts. Digital Investi-
gation 18 (2016), S125–S137.

[31] Alastair Irons and Harjinder Singh Lallie. 2014. Digital forensics to intelligent
forensics. Future Internet 6, 3 (2014), 584–596.

[32] Vacius Jusas, Darius Birvinskas, and Elvar Gahramanov. 2017. Methods and tools
of digital triage in forensic context: Survey and future directions. Symmetry 9, 4
(2017), 49.

[33] Thomas Laurenson. 2017. Automated Digital Forensic Triage: Rapid Detection of
Anti-Forensic Tools. Ph.D. Dissertation. University of Otago.

[34] log2timeline. 2021. Plaso. https://github.com/log2timeline/plaso.
[35] Laoise Luciano, Ibrahim Baggili, Mateusz Topor, Peter Casey, and Frank Breitinger.

2018. Digital forensics in the next five years. In Proceedings of the 13th International

http://ocfa.sourceforge.net/
http://www.guidancesoftware.com/products/ef_index.asp
http://www.guidancesoftware.com/products/ef_index.asp
https://accessdata.com/products-services/forensic-toolkit-ftk
https://accessdata.com/products-services/forensic-toolkit-ftk
https://poi.apache.org/apidocs/dev/org/apache/poi/xssf/usermodel/XSSFWorkbook.html
https://poi.apache.org/apidocs/dev/org/apache/poi/xssf/usermodel/XSSFWorkbook.html
https://www.autopsy.com
https://www.aaai.org/ocs/index.php/SSS/SSS15/paper/view/10227/10092
https://github.com/williballenthin/Rejistry
https://www.sleuthkit.org/autopsy/docs/api-docs/4.0/mod_dev_py_page.html
https://www.sleuthkit.org/autopsy/docs/api-docs/4.0/mod_dev_py_page.html
https://doi.org/10.1109/PASSAT/SocialCom.2011.232
https://doi.org/10.1109/PASSAT/SocialCom.2011.232
https://github.com/ForensicArtifacts/artifacts
https://www.grandviewresearch.com/industry-analysis/digital-forensics-market
https://www.grandviewresearch.com/industry-analysis/digital-forensics-market
https://github.com/log2timeline/plaso

ARES 2021, August 17–20, 2021, Vienna, Austria Balon and Herlopian, et al.

Conference on Availability, Reliability and Security. 1–14.
[36] Sebastian Neuner, Martin Schmiedecker, and Edgar Weippl. 2016. Effectiveness

of file-based deduplication in digital forensics. Security and Communication
Networks 9, 15 (2016), 2876–2885.

[37] Golden G Richard III and Vassil Roussev. 2005. Scalpel: A Frugal, High Perfor-
mance File Carver.. In DFRWS. Citeseer.

[38] Marcus K Rogers, James Goldman, Rick Mislan, Timothy Wedge, and Steve
Debrota. 2016. Paper Session II: Computer Forensics Field Triage Process Model.
(2016).

[39] Marcus K Rogers and Kate Seigfried. 2004. The future of computer forensics: a
needs analysis survey. Computers & Security 23, 1 (2004), 12–16.

[40] Vassil Roussev, Yixin Chen, Timothy Bourg, and Golden G Richard III. 2006.
md5bloom: Forensic filesystem hashing revisited. digital investigation 3, 1 (2006),
82–90.

[41] Keyun Ruan, Ibrahim Baggili, Joe Carthy, and Tahar Kechadi. 2011. Survey on
cloud forensics and critical criteria for cloud forensic capability: A preliminary
analysis. (2011).

[42] Keyun Ruan, Joe Carthy, Tahar Kechadi, and Ibrahim Baggili. 2013. Cloud foren-
sics definitions and critical criteria for cloud forensic capability: An overview of
survey results. Digital Investigation 10, 1 (2013), 34–43.

[43] Laura Sanchez, Cinthya Grajeda, Ibrahim Baggili, and Cory Hall. 2019. A practi-
tioner survey exploring the value of forensic tools, ai, filtering, & safer presenta-
tion for investigating child sexual abuse material (csam). Digital Investigation 29
(2019), S124–S142.

[44] George Sibiya, Hein S Venter, and Thomas Fogwill. 2012. Digital forensic frame-
work for a cloud environment. (2012).

[45] Harm MA van Beek, Jeroen van den Bos, Abdul Boztas, EJ van Eijk, R Schramp,
and M Ugen. 2020. Digital forensics as a service: Stepping up the game. Forensic
Science International: Digital Investigation 35 (2020), 301021.

	Forensic Artifact Finder (ForensicAF): An Approach & Tool for Leveraging Crowd-Sourced Curated Forensic Artifacts
	Publisher Citation
	Comments

	Abstract
	1 Introduction
	2 ForensicAF
	2.1 Artifact Analysis
	2.2 Plugin Construction
	2.3 Algorithm Design
	2.4 Usage

	3 Evaluation
	4 Results
	4.1 Systematic Sampling
	4.2 Random Sampling

	5 Discussion
	6 Related Work
	6.1 Forensic Software & Framework
	6.2 Faster Analysis
	6.3 Artifact Databases & Curated Artifacts

	7 Conclusion
	8 Future Work
	Acknowledgments
	References

