Sequeira et al. Ecol. Applic. (Accepted Version)

The importance of sample size in marine megafauna tagging studies

AMM Sequeira1*, MR Heupel 2, M-A Lea 3, VM Eguíluz 4, CM Duarte 5, MG Meekan 6, M Thums 6, HJ Calich 7, RH Carmichael 8, DP Costa 9, LC Ferreira 6, J Fernandéz-Gracia 4, R Harcourt 10, A-L Harrison11, I Jonsen 10, CR McMahon10,12, DW Sims 13 R.P Wilson 14, GC Hays 15

1 IOMRC and The University of Western Australia Oceans Institute, School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
2 Australian Institute of Marine Science, PMB No 3, Townsville, Queensland 4810, Australia 3 Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Hobart, TAS 7000, Australia
4 Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC - UIB), E-07122 Palma de Mallorca, Spain
${ }_{5}$ King Abdullah University of Science and Technology, Red Sea Research Centre (RSRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
6 Australian Institute of Marine Science, Indian Ocean Marine Research Centre (M096), University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
7 IOMRC and The University of Western Australia Oceans Institute, Oceans Graduate School, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 8 Dauphin Island Sea Lab and University of South Alabama, 101 Bienville Blvd. Dauphin Island, AL 36528, USA
${ }_{9}$ Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060
${ }_{10}$ Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia ${ }_{11}$ Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, PO Box 37012 MRC 5503 MBC Washington, DC 20013, USA
12 Sydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, 2088, New South Wales, Australia
${ }_{13}$ Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom; and Ocean and Earth Science, National Oceanography Centre Southampton, Waterfront Campus, University of Southampton, Southampton SO14 3ZH, United Kingdom
14 Swansea University, Department of Biosciences, United Kingdom
${ }_{15}$ Deakin University, Geelong, Victoria, Australia
*Corresponding author: ana.sequeira@uwa.edu.au
Indian Ocean Marine Research Centre, Corner of Fairway and Service Road 4 (M470)
The University of Western Australia; 35 Stirling Highway, Crawley; Western Australia 6009
Phone: +61 864882219

Abstract

Telemetry is a key, widely-used tool to understand marine megafauna distribution, habitat use, behaviour, and physiology, however, a critical question remains: "how many animals should be tracked to acquire meaningful datasets?" This question has wide-ranging implications including considerations of statistical power, animal ethics, logistics and cost. While power analyses can inform sample sizes needed for statistical significance, they require some initial data inputs that are often unavailable. To inform the planning of telemetry and biologging studies of marine megafauna where few or no data are available or where resources are limited, we reviewed the types of information that have been obtained in previously published studies using different sample sizes. We considered sample sizes from one to more than 100 individuals and synthesized empirical findings, detailing the information that can be gathered with increasing sample sizes. We complement this review with simulations, using real data, to show the impact of sample size when trying to address various research questions in movement ecology of marine megafauna. We also highlight the value of collaborative, synthetic studies to enhance sample sizes and broaden the range, scale, and scope of questions that can be answered.

Keywords

Movement behaviour, tracking data, telemetry studies, key questions, number of tags, animal welfare

Introduction

Tracking studies of marine animals have proliferated in recent years as a new generation of miniaturized, cost-effective and reliable telemetry tags are deployed on an ever increasing array of species (Figure 1) (Evans et al. 2013). These technological advances have led to a dramatic increase in the use of the Argos and GPS satellite systems to track highly migratory marine vertebrates (including the large-bodied marine megafauna) that surface to breathe or spend time on land (enabling transmitters to communicate with satellites). Simultaneously, an expansion of acoustic telemetry networks to track gill-breathing animals that remain submerged, like tunas or sharks, has occurred. These advances also have been coupled with an increasing diversity in the sensors available on tags and other bio-logging devices (Hebblewhite and Haydon 2010, Hussey et al. 2015, Kays et al. 2015). Combined with advanced analytical techniques, these technological innovations have transformed our knowledge of movement patterns, behaviour, habitat use and ecophysiology of animals with movement data driving a series of positive conservation outcomes across multiple taxa such as the creation of marine protected areas and other conservation zones (Hays, 2019). However, the deployment of tags can involve procedures that stress the target animals (Wilson and McMahon 2006), including capture and restraint, anaesthesia, chemical immobilization, and surgery (Harcourt et al. 2010). Further, costs and logistics associated with purchase and deployment of tags are considerable. For example, satellite-linked Argos tags cost several thousand \$US per unit with ongoing operational costs for satellite time. Consideration of these various elements leads to a fundamental but complex question: what is the minimum number of animals that should be tagged and tracked for a given study to deliver sufficient data to address the research aims (Wilson and McMahon 2006, Hays et al. 2016), while ensuring the number of animals tagged complies with ethical pillars of the three R's of Reduce, Replace and Refine (Russell and Burch 1959)?

There are well-established metrics to determine sample size and provide the statistical power necessary to draw probability-based conclusions from datasets (e.g., Green 1989,

Johnson et al. 2015). Hence, answering the question of how many tags to deploy in any given study would seem straightforward. However, power analyses require some initial data or knowledge of the expected movements of animals, such as on the variance of the behaviour being studied, or on the movement range. This information is often not available because researchers are studying new species or working in new areas. Furthermore, an important caveat to the application of power analyses is that many of these studies are still in the 'discovery' phase and the most interesting or relevant questions or observations are still unknown. Although it is always prudent to undertake power analyses when possible, here, we take a complementary approach to assist the planning of telemetry and biologging studies of marine megafauna where little or no prior data are available. We focus on marine megafauna and satellite tracking, given the growth of this area, but some of our conclusions are relevant to other biologging approaches. For example, data-storage tags that measure parameters such as diving and body acceleration, are widely deployed on marine megafauna and the increasing use of acoustic arrays, often in networks spanning 1,000s of km (Lennox et al. 2017), means that acoustic tags are also widely used within this group including smaller life stages of some taxa, such as hatchling sea turtles (Thums et al. 2013). We do not focus on smaller bodied, commercial species because there are complexities associated with sample size for this size range that need separate consideration, for example their common fine scale stock structure (Righton et al. 2007). Here, we review the types of information that have been obtained by studies with different sample sizes of marine megafauna (Figure 2). In doing so, we provide guidance for researchers embarking on tracking studies of marine megafauna by summarizing what has been achieved with sample sizes from one to well over 100 individuals. We provide examples of simulation exercises that can be used to estimate the sample size needed to address specific questions. We show evidence that significant advances can be made with small sample sizes while highlighting the benefits obtained from employing greater sample sizes, and supplement this review with simulations from real data to illustrate how the ability to answer specific research questions changes with the sample size of tracked individuals. We illustrate this, showing how different sample sizes are needed when addressing different questions of interest for the same taxa (using turtles as example), and also when addressing the same question (using home range or utilisation area as example) for multiple taxa (sharks, seabirds, seals). We also highlight the value of datasharing and showcase some of the seminal discoveries made by combining data across studies to reach very large sample sizes.

The value of different sample sizes is best exemplified in work from individuals who pioneered tagging on the same system or species, necessarily starting with the use small numbers of tags before attaining larger sample sizes that altered the scope of their work allowing new questions to be addressed. For example, a thread of work tracking leatherback turtles in the Atlantic began with $\mathrm{n}=3$ (Hays et al. 2004a), progressed to $\mathrm{n}=21$ (Fossette et al. 2010), then $\mathrm{n}=106$ (Fossette et al. 2014) to recently become part of a study involving >2500 tracked marine animals across multiple species (Sequeira et al. 2018). At each iteration, the questions that were addressed changed, and this increasing capability is reflected in the synthesis presented here.

Dare to dream (sample size of one)

136 Many researchers assert that tracking studies with sample sizes of one are of no value, but the 137 history of animal tracking includes many startling discoveries made from tracking one 138 individual. While, statistically, a sample size of one is expected to capture a 'normal' or 139 common trajectory, the value of such studies actually lies in their ability to show that certain 140 feats are possible. Examples of extraordinary feats detected in single animal studies include

141 the journey of $>1000 \mathrm{~km}$ by a leatherback turtle (Dermochelys coriacea) tagged off South 142 Africa (Hughes et al. 1998), and the discovery that white sharks (Carcharodon carcharias) 143 can last more than a month on a single large meal (Carey et al. 1982, but see Semmens et al. 144 2013). Additionally, despite multiple tags having been used in another white shark study, it 145 was the track from a single white shark traversing an entire ocean basin while performing 146 deep dives to nearly 1000 m (combined with photo ID data) that was central to the discovery 147 that these sharks are not coastal obligates (Bonfil et al. 2005). A single tagged sea turtle was 148 also found to routinely conduct sequences of dives each 6-8 h followed by short inter-dive 149 surface intervals suggesting operation within its aerobic dive limit and fundamentally altering 150 the expectations of the eco-physiological capacity for this species (Hochscheid et al. 2005). 151 Individual tracks can also provide significant information with conservation implications. For 152 example, the track of a single grey whale (Eschrichtius robustus) tagged within the feeding 153 grounds of the critically endangered western stock off Sakhalin Island, Russia, and migrating 154 to the breeding lagoons of the eastern stock in Baja California, Mexico, questioned whether 155 these two stocks were indeed distinct (Mate et al. 2015). This individual whale also broke the 156 world record (previously held by a humpback whale) for the longest known mammalian 157 migration at $22,511 \mathrm{~km}$.
158 Data from one individual can also reveal aspects of behaviour linked to physical abilities, 159 and if sampled at very high frequency, they can provide high resolution movement 160 information. For example, flipper sensors attached to a turtle revealed how swimming effort 161 was linked to depth-dependent, air-mediated buoyancy and swim angle (Hays et al. 2004c). 162 Finally, and importantly, a sample size of one may provide critical proof of concept for novel 163 equipment or attachment procedures, providing a starting point for follow up studies. For 164 example, one of the first animals tracked by Argos satellite-linked tags was a plankton165 feeding basking shark (Cetorhinus maximus) that oriented along thermal fronts for 17 days 166 (Priede 1984). The species was studied further with increasing numbers of tags providing 167 insight into other ecologically-relevant questions (Sims et al. 2003, Sims et al. 2005, Southall 168 et al. 2006).
169 As animal-borne tags are increasingly used to obtain data on the environment, single tags 170 can also provide highly valuable data that would be difficult to obtain with any other 171 observing system. For example, the use of a CTD (conductivity, temperature and depth) tag 172 on a single southern elephant seal (Mirounga leonina) provided an 8-month hydrographic 173 profile that allowed an assessment of the seasonal evolution of the upper ocean (Meredith et 174 al. 2011). Similarly, a CTD tagged Weddell seal (Leptonychotes weddellii) provided some of 175 the first data on the wintertime conditions over the Weddell Sea continental shelf (Nicholls et 176 al. 2008). Indeed, marine mammals and particularly seals, now provide the bulk of the 177 physical oceanographic observations in the polar regions and are a central component of the 178 global ocean observing system (Treasure et al. 2017). Despite the common perception of the 179 limited value of a sample size of one, the examples above show evidence that even a single 180 tag can provide ground-breaking information allowing insights into population- and species181 level ecology and guiding future studies.
182

183 Understanding variability (sample sizes up to 10)

184 As sample sizes increase, so too does the probability that tags will reveal individual 185 variability in the behaviour being observed. Statements based on such data can move from 186 possible limits of animal performance to plausible and ecologically valuable metrics for the 187 species, such as diving behaviour, home ranges and foraging areas. Variations in individual 188 foraging patterns have been observed with surprisingly small sample sizes. For example, 189 three distinct foraging patterns were detected in data derived from nine Galapagos sea lions 190 (Zalophus wollebaeki) (Villegas-Amtmann et al. 2008), which were, in subsequent studies,

191 correlated with differences in the physiological capability of these animals (Villegas192 Amtmann and Costa 2010). Sample sizes of only a few individuals may also be immensely 193 valuable when high resolution temporal data are available. This is the case for diving data of 194 marine vertebrates downloaded from the archive of recovered tags that are equipped with 195 pressure sensors (e.g. SPLASH tags; pop-off satellite-linked archival transmitters, PSAT; and 196 dive loggers), which allow for greater insight into the environmental and physiological 197 drivers of movement patterns (e.g., Deutsch et al. 2003, Meekan et al. 2015). This type of 198 high resolution temporal data is more easily collected for animals that return to areas that are 199 predictable in space and time (e.g. breeding areas) and thus facilitate tag recovery. This is 200 because the data that are transmitted to satellite are binned summaries only and the detailed 201 patterns of vertical movements are only available in the tag archives. So, for animals that do 202 not return to breeding or over-wintering sites, such as whale sharks (Rhincodon typus), the 203 detailed patterns of vertical movements can only be obtained when detached tags are 204 recovered by chance (e.g., when these sharks wash up on beaches). Such limitations to data 205 acquisition, in addition to problems with tag failure and loss, need to be factored into the 206 initial sample size of tags. Therefore, information on the expected return of data from all 207 animals tagged is important when writing ethics approvals, to estimate the cost of the project 208 and to define the research scope.
209 Although larger sample sizes typically are recommended for many ecological questions, a 210 sample size of up to 10 individuals may be immensely valuable for some applications. For 211 example, when testing and developing new methods or technologies, deploying more than 10 212 tags may lead to potentially unforeseen negative impacts on animals and waste financial 213 resources. A sample size ≤ 10 may also be appropriate when studying critically endangered 214 species. Indeed, in such cases, the limit of ≤ 10 might be enforced by permitting agencies. 215 When generating hypotheses about unknown phenomena, a sample size of up to 10 tags 216 could also be a good starting point, allowing this exploration phase to dictate if the 217 phenomenon is worth exploring further. Also a sample size of ≤ 10 may be appropriate for 218 species or questions that are difficult to study, such as following social groups on long 219 migrations, or where high logistics costs for deployment may limit funds available for tags, as 220 is the case, for instance, for killer whales (Orcinus orca) (Durban and Pitman 2012).
221 An early example of the value of relatively small sample sizes is a satellite tagging study of
222 six wandering albatrosses (Diomedea exulans), which revealed individuals travelling 223 thousands of km in a single foraging trip during an incubation shift in the southwestern 224 Indian Ocean (Jouventin and Weimerskirch 1990). Although such a small dataset might not 225 provide sufficient precision to determine preferred foraging areas, the consistency of the 226 distances covered provoked a fundamental shift in how researchers thought about habitat use 227 by these birds. Similarly, for 50 years, basking sharks were thought to hibernate in deep 228 waters of the North Atlantic Ocean during winter until satellite tracking of five individuals 229 showed that they exhibit extensive horizontal and vertical movements at this time (Sims et al. 230 2003).
231 As sample size increases, variability in space use can be defined in more detail. For 232 example, while a study of nine leatherback turtles in the Atlantic Ocean revealed individuals 233 all moving in disparate directions (Hays et al. 2004b), the majority of nine grey reef sharks 234 (Carcharhinus amblyrhynchos) in the Great Barrier Reef, Australia, showed fidelity to a 235 single reef, while one individual undertook a 134 km movement across the deep open ocean
236 (Heupel et al. 2010). Inclusion of nine individuals in the latter study indicated that although
237 large movements were present, they were not representative. In contrast, the former study
238 indicated that a larger sample size is required to fully understand patterns in movement for
239 leatherback turtles.
240 When a study species is rare or endangered, small sample sizes are unavoidable, but their

241 value is amplified because they may represent a larger proportion of the population
242 (McMahon and Hays 2006). However, the scope of questions that can be addressed for such 243 species through tracking and biologging are likely to be constrained by low sample sizes.
244 Sample sizes of approximately ten tagged individuals have been useful in identifying
245 responses to environmental variation, and possible drivers of movement of some species. For
246 example, the diving behaviour of 10 satellite tracked female Antarctic fur seals
247 (Arctocephalus gazella) highlighted their differential use of oceanographic features (Lea and 248 Dubroca 2003). Insights into size or sex-based differences in behaviour can also become
249 evident. For example, active acoustic tracking of only two male and two female benthic 250 catsharks during a 14-day period (Sims et al. 2001) suggested sexual segregation by habitat.
251 This result stimulated further studies that revealed the mechanisms underlying these sex 252 differences in behavioural patterns (e.g., Wearmouth et al. 2012).
253 To further exemplify how small sample sizes can lead to insightful sex-based differences in
254 marine megafauna, we used a simulation exercise to explore how differences in breeding 255 periodicity between male and female turtles can be detected with even small increments in
256 sample size. Understanding these differences in breeding periodicity is important because
257 turtles have temperature-dependent sex determination, and the rising incubation temperatures
258 due to climate change will likely produce increasingly sex ratios skewed towards females.
259 For our simulation, we used information published in a recent study for loggerhead turtles
260 (Caretta caretta) in the Mediterranean, where males tend to return to breed after one year
261 with probability of 0.76 ($p_{\text {male }}=0.76$) whereas females returned after longer intervals (i.e., the
262 probability of returning to breed after one year $p_{\text {female }}=0.00$) (Hays et al. 2014a). These
263 probabilities were originally based on tracks from 25 individuals (17 males and 8 females)
264 but we use them here to show the likelihood of the same biological conclusion being reached
265 with smaller sample sizes. Using these probabilities, and assuming equal numbers of tracked
266 males and females, we ran 1000 simulations for sample sizes ranging from 1 to 8 female and
267 male individuals, randomly selecting the number of males and females that would be
268 recorded to return after one year. When only three males and three females were tracked, the
269 probability of recording a significant difference in numbers returning was only 0.331 , but this
270 rose to 0.983 when eight females and eight males were tracked (Figure 3A). This simulation
271 exercise illustrates how researchers can use available data to optimise the number of
272 deployments they need to address their question of interest.
273
274 Defining the norm (sample sizes of 10 s up to 100)
275 A better assessment of overall patterns of movement or behaviour at the population scale may 276 be possible after tens of individuals of the same species have been tagged. While specifying 277 the sample size needed for these types of studies is challenging, simulation exercises can be 278 useful as exploratory tools to understand how much data are needed. Using another 279 simulation exercise, we illustrate how confidence in observed results can be improved by 280 sample sizes increasing from < 10 to a few tens of tags (Figure 3B). As an example of a study 281 question, we focused here on what is the clutch frequency of turtles, i.e., the frequency with 282 which eggs are laid within and among seasons, which is a critical life-history trait for 283 quantifying population trends of turtles. The number of nesting females in a population is 284 typically determined by counting tracks on beaches associated with nesting and then dividing
285 by a nominal mean frequency of clutches. A recent study that tracked 10 green turtles
286 (Chelonia mydas) in Diego Garcia, Indian Ocean, showed that their mean clutch frequency
287 was six (Esteban et al. 2017), and led to the understanding that the population at this locality
288 was about half the size of that estimated from previous studies that patrolled beaches on foot
289 to intercept females when they nested. Using the probabilities obtained in Esteban et al.

290 (2017), we can simulate how the confidence limits on estimates of mean clutch frequency 291 change with sample size. For each sample size ($3-40$), we ran 1000 simulations and then 292 determined the standard deviation (SD) of the estimate for mean clutch frequency, which 293 reflects the variation in the estimate of mean clutch frequency that might be recorded with 294 that sample size (Figure 3B). When the sample size was three, the SD was ~ 1.20 (i.e., the 29595% confidence limit on the estimate of mean clutch frequency that might have been derived 296 was +/- 3 clutches), but when the sample size was increased to 30 , the SD reduced to 0.38 , 297 and to 0.34 when the sample size was 40 individuals (i.e., 95% confidence limit $=+/-0.11$ 298 clutches). Examples of improvement on previous results through increased sample sizes are 299 also found in published literature. For example, assessment of the diving behaviour of 13 300 female northern elephant seals showed maximum dive durations of 106 minutes (Le Boeuf et 301 al. 2000) and was confirmed as a good approximation in a later study with a sample of 211 302 females aimed at identifying drivers of their large-scale distribution and inter-annual 303 variability in foraging and breeding success (Robinson et al. 2012). Despite the different 304 focus of these two studies, the later data confirmed that the earlier study had a large enough 305 sample size to provide a general understanding of the dive behaviour of the species. 306 Commonly, tagging studies aim to quantify space use and identify important utilisation 307 areas (e.g., 50% kernel densities). Such estimates are highly sensitive to sample size due to 308 variability in movement among individuals, as shown by Gutowsky et al (2015) with 309 albatrosses. That study demonstrated that the sensitivity of group-level space-use estimates 310 stabilizes with increasing sample size of albatrosses, in that the areas covered by space use 311 estimates generated from datasets comprising different individuals roughly approached an 312 asymptote in median area estimates around a mean sample size of $17-21$ individuals. 313 However, the range of estimates remained large with the 95% and 50% contour area 314 estimates varying by 7.2 and 1 million km2, respectively. For other seabirds, like European 315 shags (Phalacrocorax aristotelis) and Black-legged kittiwakes (Rissa tridactyla), sample 316 sizes of 39 and 83 have been used, respectively, to estimate space use (Soanes et al. 2013). 317 Estimates of area utilisation are also highly dependent on the animal's range and the context 318 of habitat utilisation. For example, a sample size of 30 was sufficient for calculating the area 319 used by flatback turtles (Natator depressus) during the nesting season but not for calculating 320 the typically larger area used post breeding (Thums et al. 2018b).
321 To demonstrate the effect of sample size on utilization area and kernel estimates for a
322 range of species, we used a resampling approach to test whether an asymptotic relationship 323 between sample size and monthly utilisation area estimates was attained. We did this for 324 probability contours of 50% and 25% (typically considered of relevance to marine spatial 325 planning) using tracking data from six different species in the Pacific Ocean (results detailed 326 in Figure 4). Together, these studies demonstrate the power and limitations of a moderate 327 number of tags to improve our understanding of animal movements. Another example 328 showing how an increasing number of tracks can assist our understanding of animal 329 movement was a study tracking 75 loggerhead turtles across the Mediterranean finding that 330 they exhibit disparate dispersal patterns. The study highlighted that extending protected areas 331 to include 10 of the core sites used by loggerhead turtles would result in better protection for 33264% of the population (Schofield et al. 2013).
333 To depict the effect of sample size on our understanding of dispersal of individuals from a 334 population, we used a simulation of a hypothetical population of 100 individuals in location 335 ' X ' where tagging took place, and then assumed equal probabilities of $0.65,0.30$ and 0.05 for 336 individuals to go to location ' 1 ', ' 2 ' and ' 3 ', respectively (Figure 3C). Increasing the number 337 of randomly tagged individuals from 5 to 50, and repeating this procedure 10,000 times, 338 showed that accurate detection of movements to location ' 3 ' was only possible at the higher 339 number of tags ($n \sim 40$). Moreover, precision around the percentage of the population

340 travelling to each location increased with increasing numbers of tag deployments. In our 341 example, 95% confidence intervals for the percentage of the population travelling to ' 1 ' 342 narrowed from between $61.0-69.1 \%$ to between $64.1-66.0 \%$ as sample size increased 343 from 1 to 40 tags, with similar reductions obtained for the other locations. As we have 344 demonstrated, power-analysis needs some understanding of the system to allow the model to
345 be parameterised, and can be used to assess if there is further information likely to be 346 obtained by tagging more individuals. However, it is important to highlight that simulation 347 results only provide an idea of how many representative tracks are needed and do not account
348 for the excess tags needed to account for potential problems with data acquisition, such as 349 early tag failure or loss prior to exhaustion of battery, as mentioned earlier. So, interpretation 350 of the results presented above are that little further detail would be gained after obtaining 351 more than 40 representative tracks to answer a specific question about dispersal patterns.
352 However, new and different questions may emerge to justify further tag deployments.
353 Examples would include the need to assess inter-annual variability in movements or to
354 address tagging sampling design to adjust not only for sample size but also sex ratio of
355 animals tagged, size range, or range of capture and release sites.
356 As sample size increases, improved evaluation of the use of marine protected areas (MPAs)
357 also becomes possible. Although the following studies provide only examples of detected
358 patterns for the sample size used, what is crucial here is that having a large enough sample
359 size across different seasons, sites or stages (e.g., breeding versus non-breeding) allows
360 detection of gradients across other variables of interest including environmental variables for
361 habitat use detection. For example, acoustic tagging of 57 sharks showed that only half of the
362 available protected space was used while sharks made excursions in and out of MPAs at
363 consistent locations along the boundaries (Knip et al. 2012). Deployment of multiple tens of
364 tags (simultaneous or staggered in time) can therefore, provide insight into the scale of
365 spatio-temporal movements to assist tailoring MPA design for improved effectiveness.
366 Similarly, tens of tags can assist the assessment of movement variability driven by changes in
367 environmental conditions. For example, behavioural changes by 32 fur seals were associated
368 with strong El Niño conditions (Lea et al. 2006), movement of 40 bonnethead sharks
369 (Sphyrna tiburo) changed in association with decreased salinity due to freshwater discharge
370 (Ubeda et al. 2009), and foraging success of 50 little penguins (Eudyptula minor) was shown
371 to relate to boundary current anomalies in different years (Carroll et al. 2016). Detection of
372 philopatry in highly migratory species has also been possible when using a sample size of
373 tens of tags. Jorgensen et al. (2010) showed high philopatry in the migratory behaviour of
374 white sharks based on the results from 68 satellite-linked tags and revealed a predictive
375 migratory cycle within the same network of coastal hotspots for a genetically distinct
376 population. The larger sample sizes used in these examples enabled researchers to claim that
377 their results were representative of the wider population of these species.
378 Although an individual study might include only a few tags, sample sizes in the 10's (and
379 greater) can be obtained by pooling data across studies, allowing researchers to pose new
380 questions and search for general patterns. For example, the compilation of eight studies with
381 low individual sample sizes ($1-13$ summing to 50 tags) across the Mediterranean Sea and
382 the Pacific, Atlantic and Indian oceans confirmed previous concerns of high sea turtle
383 mortalities by fisheries (Hays et al. 2003). The same applies for multispecies studies, where 384 even low sample sizes for individuals of different species pooled together allow some level of 385 inter-species comparisons. For example, informed comparison of vertical movement patterns
386 and their statistical properties across taxa were obtained with data from 31 individuals from
387 seven species (Sims et al. 2008). While the sample size of the later study was relatively small, 388 the high resolution of the diving data contained in the tracks, which included over one million 389 data points, allow for a comparative multispecies analysis.

391 Defining population parameters (sample sizes approximately 100)

392 With the implicit assumption that each tag results in an appropriate amount of data (e.g.,
393 number of locations and enough resolution), improved accuracy in our understanding of
394 patterns (e.g., space use) can be obtained using a larger number of tagged animals (see
395 examples of northern elephant seals and salmon sharks, Lamna ditropis, in Figure 4A). As
396 sample sizes approach 100, it becomes possible to assess movement behaviour between
397 populations of the same species and across large areas. For example, 101 tracks of
398 leatherback turtles were used to define areas of high susceptibility to by-catch across the
399 Atlantic Ocean (Fossette et al. 2014). In this example, a large sample size was necessary to
400 encompass a range of different nesting populations, all of which foraged within the Atlantic.
401 Likewise, Breed et al. (2006) investigated segregation of seasonal foraging habitats of grey
402 seals from 95 tagged individuals. In cases where sex or age leads to segregated behaviour, the
403 number of tags needed to detect specific patterns of movement will necessarily be inflated to
404 identify potential behavioural mechanisms, and more so if a comparison across populations is
405 to be completed. As the spatial scale under consideration increases, so too does the minimum
406 number of tags, until even sample sizes of 100 may be insufficient. For example, when
407 Sequeira et al. (2013) compiled all publicly available tracking data for whale sharks, they
408 found that the existing ~ 100 tracks (average 90 d deployment with a range from hours to >3
409 years) were insufficient to reveal global migration patterns.
410 Assessment of animal health and increasing anthropogenic impacts on movement is also
411 highly relevant and urgently sought for many species. For example, data from 136 West
412 Indian manatees was used to assess rehabilitation success following release (Adimey et al.
413 2016). However, the large sample sizes needed for assessing effects at the species-level are
414 not commonly available (but see Fossette et al. 2014), and pooling data across species of the 415 same guild might provide the means to obtain relevant information. This was the case for a 416 dataset of 113 oceanic sharks examined to detect spatial overlap with commercial fisheries. 417 This dataset comprised tracks from 6 species (average of 17 tags per species) and led to the 418 revelation that shark hotspots in the North Atlantic Ocean may be at risk from overfishing 419 (Queiroz et al. 2016). Similarly, passive acoustic tracking of 116 reef sharks of five species 420 (average of 17 tags per species) together with 25 hawksbill turtles (Eretmochelys imbricata)
421 determined the long-term, fine-scale space use inside and outside a marine protected area
422 (MPA) for each species. This study also revealed that a modest increase in MPA size could
423 lead to a 34% increase in spatial coverage of these predator's movements (Lea et al. 2016).
424
425 Moving toward big data analysis (very large sample sizes; >> 100)
426 Common areas of space use at large spatial scales can be revealed using a large number of 427 tagged individuals (>> 100). For example, Wakefield et al. (2013) used tracking data of 184 428 northern gannets from different breeding areas to assess the levels of foraging area overlap 429 around the British Isles. A much larger tracking dataset of 287 individual elephant seals led to 430 an improved understanding of how these seals utilise the circumpolar habitat in the Southern
431 Ocean (Hindell et al. 2016). Large datasets also allow application of big data approaches, 432 which are scalable to very large numbers of tracks (e.g., as used in human mobility studies). 433 A recent example of the application of such approaches to tracking data of 272 southern 434 elephant seals showed that, despite idiosyncrasies in movement, a clear signature of directed 435 movement emerged, highlighting the presence of intrinsic drivers of movement such as 436 memory (Rodriguez et al. 2017). In addition, samples size in the hundreds can reveal 437 correlated or coordinated movement patterns among individuals. An example is the coherent 438 movement patterns suggested by the sonification of movement (i.e., the generation of sound 439 based on the movement patterns in the tracking data) of over 300 northern elephant seals

440 tagged over ~ 10 years in the Northeast Pacific Ocean (Duarte et al. 2018). These studies 441 show that the use of techniques that can deal with big data (Leek et al. 2017) might bring new 442 insights to movement ecology.
443 Very large sample sizes of single species can also be useful to increase the probability of
444 defining events not commonly detected using tags, such as colonization of a new site or
445 mortality (Hays et al. 2003). To illustrate this point, we extended the simulation exercise 446 presented above to consider how many tags would be needed to detect a rare event with a 447 probability of 0.001 and showed that hundreds of tags would be required (Figure 3E). 448 For multiple species, the quantity of information returned climbs dramatically as sample 449 size increases to many hundreds, particularly for assessing movement patterns in response to 450 resource fields within the same geographical extent. For example, in east Antarctica, a 451 compilation of 268 satellite tracks for six top predators including penguins, albatrosses and 452 seals revealed areas of particular ecological significance for these multiple species (Raymond 453 et al. 2015). Maxwell et al. (2013) used tracks from 685 individuals of eight species in the 454 North Pacific, to show high variability in the distribution of cumulative impacts across 455 species and highlight that effective spatial management will need to account for trade-offs
456 among stressors. These individuals had been tagged as part of the Tagging of Pacific
457 Predators (TOPP) project, a much larger collaborative effort under the Census of Marine Life
458 field programme, which led to the deployment of an unprecedented number of tags $(4,300)$.
459 Of these, 1791 tracks were used in a single study to assess space use by multiple predatory 460 species in the Pacific Ocean highlighting hotspots, migration pathways, and niche 461 partitioning among species (Block et al. 2011), and was used to predict how climate change 462 will affect the available habitat for different species (Hazen et al. 2013). Another subset of 4631,648 tracks representing 14 species was also used to show annual patterns of movements 464 through the high seas and across geopolitical boundaries in the Pacific Ocean (Harrison et al. 465 2018). Most recently, the coastal movements of 2181 individuals from 92 species including 466 fish, sharks, turtles and marine mammals were used to identify four distinct functional 467 movement classes in the coastal waters of Australia, with these classes emerging only 468 through aggregating data across the entire dataset (Brodie et al. 2018). Finally, the Marine 469 Megafauna Movement Analytical Program (MMMAP, mmmap.wordpress.com) used > 2,500 470 individual tracks across 50 species of marine vertebrates including whales, sharks, seals, 471 seabirds, polar bears, sirenians, and turtles, to show that, unlike terrestrial animals, movement 472 patterns in marine animals are strongly conserved across species regardless of evolutionary 473 history, with movements being more complex in the coastal than in the open ocean (Sequeira 474 et al. 2018). As these large aggregated datasets increase further in size, their temporal and 475 spatial coverage may become sufficient to retrospectively detect signals of climate change or 476 other perturbations in the movement patterns of component species (Weimerskirch et al. 477 2012).
478 In the last decade, many tens of thousands of tags have been deployed on animals, and if 479 shared, the resulting datasets will allow for powerful analysis at large spatio-temporal scales 480 (Thums et al. 2018a). Such datasets can assist in answering topical questions (Hays et al. 481 2016), refine conservation benefits (Allen and Singh 2016), and facilitate the use of big data 482 approaches to enhance our understanding of animal movements (Meekan et al. 2017, 483 Rodriguez et al. 2017). The advantages of data sharing for researchers are clear (Nguyen et 484 al. 2017), and well-recognised in some fields of scientific inquiry such as molecular ecology 485 and physical oceanography (ncbi.nlm.nih.gov/genbank; aoml.noaa.gov/envids/gld).
486 Encouragingly, some tracking programs already have some type of open data policy, and a 487 large range of online repositories are now available (Campbell et al. 2016), including: 488 Zoatrack (Dwyer et al. 2015), Movebank (movebank.org), the Integrated Marine Observing 489 System (IMOS; imos.org.au), and the Ocean Tracking Network (OTN;

490 oceantrackingnetwork.org). The increasing use of telemetry technology also supports
491 unprecedented opportunities for collaboration among researchers studying different species.
492 By combining satellite tracking with acoustic detection and making relatively minor
493 compromises on equipment sampling parameters (i.e., scanning range of tag frequencies and
494 using collaborative acoustic monitoring arrays), there is potential for researchers to expand
495 the spatial and temporal range of tracking efforts and collect data for multiple species 496 simultaneously (Lidgard et al. 2014, Aven et al. 2015). The big, but heterogeneous data
497 acquired by pooling datasets from a variety of sources will present a challenge for analysis,
498 data visualization and storage. Ways to overcome such challenges have already been 499 addressed in other disciplines. For example, studies of human mobility interrogate massive 500 and rapidly-growing databases of geolocations available from smart phones and internet 501 records, which describe the movements of humans (Gonzalez et al. 2008). Although such 502 studies focus on a single species (humans; Homo sapiens), they have shown the power of data 503 encompassing tens of thousands of individuals to address questions associated with collective 504 responses and with processes occurring at the population level. Great examples include the 505 study of epidemics (see gleamviz.org), transmission of culture or mood (Mocanu et al. 2013), 506 or the development of models describing mobility patterns (e.g., radiation model; Simini et 507 al. 2012).
508

509 Conclusion

510 The answer to "how many animals should be tracked?" is intrinsically dependent on the 511 species of interest, on the tagging methods used, and - primarily - on the question that needs
512 to be addressed, including spatial and temporal coverage (see examples in Table 1). We
513 suggest that tracking studies usually develop in stages, including (i) an initial phase of
514 'innovation and discovery' that commonly involves small sample sizes ($\mathrm{N} \leq 10$), through to
515 (ii) a stage of 'confirmation and consolidation' of results with intermediate sample sizes (10 $516<\mathrm{N} \leq 100$), and lastly to (iii) more synthetic, overarching, and inter-disciplinary studies for 517 larger sample sizes ($\mathrm{N} \gg 100$). At each stage, the impact of the sample size on the key 518 conclusions can be assessed (e.g. the proportion of individuals travelling to different sites) 519 and the outcomes of this assessment can be used to objectively plan how the sample size 520 needs to be increased to answer different questions with the required level of confidence. As 521 sample size increases, both in relation to the number of individuals tracked and the length of 522 individual tracks, there is improved ability to resolve a range of questions associated with 523 movement, such as home-range estimates, migration patterns including identification of high524 use corridors, migration distance and variability in destinations, and foraging search patterns.
525 How large a sample size is needed to resolve these various movement components to a 526 certain level of confidence will depend on the extent of individual variability and on the 527 behaviour of the species being tracked.
528 We caution that the same given number of tags can also lead to very different data 529 depending on when the tags are deployed and the duration of the tag deployment. For 530 example, for pinnipeds, tagging the individuals close to molting may result in a track of very 531 short duration with the tag coming off before its battery is exhausted, while post-molt 532 deployments will likely result in eight to nine months of tracking data (Treasure et al. 2017).
533 For species that display different seasonal movement patterns, such as sirenians, differences
534 in the data obtained with the same sample sizes can vary as much as detection of little
535 movement in the peaks of summer or winter, to hundreds of kms of movement being captured 536 in spring and fall (Aven et al. 2016). In the latter example, if a tag continues to function for 9-
53710 months, both high resolution local data and wider regional habitat use can be obtained. In
538 such cases, the timing and duration of a small number of tags may yield more or better
539 information than larger sample sizes deployed at the wrong time. Moreover, as variability

540 increases, so too will the sample size needed to resolve research questions. Similarly, 541 variability has implications in studies pooling datasets across species and aiming to make 542 inferences on comparisons across groups. In such cases, the number of individuals 543 representing each specific group will affect the high-level inferences that can be made based 544 on the pooled datasets. Comparing changes in space use over time is only as powerful as the
545 smallest within-year group size, however, pooled datasets are generally useful to draw
546 conclusions across groups.
547 We suggest that the planning of a tracking study should include a thorough search of the 548 published literature where similar questions have been addressed (even if for other species).
549 For example, studies provided in Table 1 show the types of questions that have been asked
550 for species of different guilds with increasing sample size, and can be used as guide for
551 minimum numbers required by future studies. If prior information is available for the specific
552 study species, then the use of simulation exercises similar to those presented in Figure 3 and
553 Figure 4 (refer to code made available in SI) can be informative. Also, when estimating
554 utilisation areas and kernel densities, a full evaluation of sensitivity to sample size should be
555 carried out and results should be reported with the confidence estimates (Figure 4).
556 It is often not possible to do a priori assessments of the importance of sample size as the
557 various tracking outcomes are not known. In such cases, we suggest that the question to be
558 addressed is explicitly defined so it becomes clear in which phase of research the question
559 falls, i.e., 'innovation and discovery', 'confirmation or consolidation', or 'synthetic,
560 overarching, inter-disciplinary approach'. Depending on the phase, the relative sample size
561 (small, intermediate or large) becomes easier to estimate. Once this target sample size has
562 been identified, then it becomes useful to consult Table 1 to have an idea of the types of
563 questions that have been addressed with specific sample sizes for different taxa. Generally,
564 within each phase, the largest logistically feasible sample size should be employed, within
565 ethical and logistical constraints. This is because larger sample sizes will provide greater
566 confidence in species or population level inferences. However, sample sizes will necessarily
567 be lower for rare or cryptic species, small or critically endangered populations, and when
568 tagging may be too disruptive. The number of individuals tagged within populations, the
569 amount and resolution of data, as well as, their accuracy also impact the types of questions
570 that can be addressed. Therefore, in addition to the practical limitations in sample size in such
571 situations, there will also be financial and research scope limitations.
572 Recent advances made in the field of telemetry and bio-logging have led to an exponential
573 increase in satellite telemetry studies (Thums et al. 2018a), with very large sample size (>>
5741000 tracks) recently starting to appear in the literature (e.g., Block et al. 2011, Brodie et al.
575 2018, Sequeira et al. 2018). In spite of that, a sample size of one with sufficient track length
576 can still lead to scientific insights. This is particularly relevant for species that have never
577 been tracked before, when previous deployments have not been successful, or when testing
578 new sensors (Lennox et al. 2017). In such situations, and where the current knowledge of a
579 species' movement is still in its infancy, any new insights from small sample sizes have the
580 potential to significantly advance knowledge. In contrast, for species where tracking is well
581 established (e.g., some seals or turtles and seabirds), the questions relating to population
582 densities, biologically important areas, population structure or social networking will require
583 tracks of many individuals, or can be addressed by retrospective analysis after combining
584 existing data across studies and including multiple researchers. Clearly, there are many
585 challenges to statistically estimate an appropriate sample size for telemetry studies across the
586 many and varied contexts. Our review highlights these challenges and provides
587 recommendations based on examples and data simulations to assist in decision making.
588
589 Acknowledgements

590 GCH conceived the study and a first draft was compiled by AMMS, GCH, MH, M-AL, VME 591 at a workshop organized by MT, AMMS, CMD, MGM, and VME. AMMS and GCH led the 592 writing of the manuscript. AMMS, GCH, A-LH and HJC prepared the figures. All authors 593 contributed to the manuscript and commented on drafts. AMMS was supported by an ARC
594 Grant (DE170100841), and HJC by an Australian Government RTP scholarship at UWA.
595 Workshop funding was granted to MT, AMMS, and CMD by the UWA Oceans Institute, the
596 Australian Institute of Marine Science, and the Office of Sponsored Research at King
597 Abdullah University of Science and Technology (KAUST). We thank F Bailleul, S
598 Goldsworthy, M Hindell and all other workshop attendees for initial discussions.
599

600 References

601 Adimey, N. M., M. Ross, M. Hall, J. P. Reid, M. E. Barlas, L. W. K. Diagne, and R. K.
602 Bonde. 2016. Twenty-Six Years of Post-Release Monitoring of Florida Manatees
603 (Trichechus manatus latirostris): Evaluation of a Cooperative Rehabilitation Program.
604 Aquatic Mammals 42:376-391.
605 Allen, A. M., and N. J. Singh. 2016. Linking movement ecology with wildlife management 606 and conservation. Frontiers in Ecology and Evolution 3.
607 Aven, A., R. H. Carmichael, E. E. Hieb, and M. Ross. 2016. West Indian manatee 608 movements reveal novel occupancy and distribution patterns in the northern Gulf of 609 Mexico. PeerJ Preprints 4.
610 Aven, A. M., R. H. Carmichael, M. J. Ajemian, and S. P. Powers. 2015. Addition of passive 611 acoustic telemetry mitigates lost data from satellite-tracked manatees. Marine and
612 Freshwater Research 66:371-374.
613 Biuw, M., L. Boehme, C. Guinet, M. Hindell, D. Costa, J.-B. Charrassin, F. Roquet, F.
614 Bailleul, M. Meredith, S. Thorpe, Y. Tremblay, B. McDonald, Y.-H. Park, S. R.
615 Rintoul , N. Bindoff, M. Goebel, D. Crocker, P. Lovell, J. Nicholson, F. Monks, and 616 M. A. Fedak. 2007. Variations in behavior and condition of a Southern Ocean top Page 39 of 68 Ecological Applications

26
617 predator in relation to in situ oceanographic conditions. Proceedings of the National 618 Academy of Sciences 104:13705-13710.
619 Block, B. A., D. Jonsen, S. J. Jorgensen, A. J. Winship, S. A. Shaffer, S. J. Bograd, E. L.
620 Hazen, D. G. Foley, G. A. Breed, A.-L. Harrison, J. E. Ganong, A. Swithenbank, M.
621 Castleton, H. Dewar, B. R. Mate, G. L. Shillinger, K. M. Schaefer, S. R. Benson, M.
622 J. Weise, R. W. Henry, and D. P. Costa. 2011. Tracking apex marine predator
623 movements in a dynamic ocean. Nature 475:86-90.
624 Bonfil, R., M. Meÿer, M. C. Scholl, R. Johnson, S. O’Brien, H. Oosthuizen, S. Swanson, D.
625 Kotze, and M. Paterson. 2005. Transoceanic migration, spatial dynamics, and
626 population linkages of white sharks. Science 310:100-103.
627 Breed, G. A., W. D. Bowen, J. I. McMillan, and M. L. Leonard. 2006. Sexual segregation of 628 seasonal foraging habitats in a non-migratory marine mammal. Proceedings of the
629 Royal Society B-Biological Sciences 273:2319-2326.
630 Brodie, S., E. J. I. Ledee, M. R. Heupel, R. C. Babcock, H. A. Campbell, D. C. Gledhill, X.
631 Hoenner, C. Huveneers, F. R. A. Jaine, C. A. Simpfendorfer, M. D. Taylor, V.
632 Udyawer, and R. G. Harcourt. 2018. Continental-scale animal tracking reveals
633 functional movement classes across marine taxa. Scientific Reports 8.

634 Campbell, H. A., F. Urbano, S. Davidson, H. Dettki, and F. Cagnacci. 2016. A plea for 635 standards in reporting data collected by animal - borne electronic devices. Animal 636 Biotelemetry 4.
637 Carey, F. G., J. W. Kanwisher, O. Brazier, G. Gabrielson, J. G. Casey, and H. L. Pratt. 1982.
638 Temperature and Activities of a White Shark, Carcharodon-Carcharias. Copeia:254639260.

640 Carroll, G., J. D. Everett, R. Harcourt, D. Slip, and I. Jonsen. 2016. High sea surface 641 temperatures driven by a strengthening current reduce foraging success by penguins. 642 Scientific Reports 6.
643 Deutsch, C. J., J. P. Reid, R. K. Bonde, D. E. Easton, H. I. Kochman, and T. J. O'Shea. 2003. 644 Seasonal movements, migratory behavior, and site fidelity of West Indian manatees 645 along the Atlantic Coast of the United States. Wildlife Monographs:1-77.
646 Duarte, C. M., P. Riker, M. Srinivasan, P. W. Robinson, J. P. Gallo-Reynoso, and D. P.
647 Costa. 2018. Sonification of Northern Elephant Seal Suggests Concerted Movement
648 across the NE Pacific Ocean. Frontiers in Marine Science doi:
649 10.3389/fmars.2018.00128.
650 Durban, J. W., and R. L. Pitman. 2012. Antarctic killer whales make rapid, round-trip
651 movements to subtropical waters: evidence for physiological maintenance migrations?
652 Biology Letters 8:274-277.
653 Dwyer, R. G., C. Brooking, W. Brimblecombe, H. A. Campbell, J. Hunter, M. Watts, and C.
654 E. Franklin. 2015. An open web-based system for the analysis and sharing and 655 analysis of animal tracking data. Animal Biotelemetry 3.
656 Esteban, N., J. Mortimer, and G. Hays. 2017. How numbers of nesting sea turtles can be 657 overestimated by nearly a factor of two. Proceedings of the Royal Society B 284.
658 Evans, K., M. A. Lea, and T. A. Patterson. 2013. Recent advances in bio-logging science:
659 Technologies and methods for understanding animal behaviour and physiology and
660 their environments Introduction. Deep-Sea Research Part Ii-Topical Studies in
661 Oceanography 88-89:1-6.
662 Fossette, S., V. J. Hobson, C. Girard, B. Calmettes, P. Gaspar, J.-Y. Georges, and G. C. Hays.
663 2010. Spatio-temporal foraging patterns of a giant zooplanktivore, the leatherback
664 turtle. Journal of Marine Systems 81:225-234.
665 Fossette, S., M. J. Witt, P. Miller, M. A. Nalovic, D. Albareda, A. P. Almeida, A. C.
666 Broderick, D. Chacon-Chaverri, M. S. Coyne, A. Domingo, S. Eckert, D. Evans, A.
667 Fallabrino, S. Ferraroli, A. Formia, B. Giffoni, G. C. Hays, G. Hughes, L. Kelle, A.
668 Leslie, M. Lopez-Mendilaharsu, P. Luschi, L. Prosdocimi, S. Rodriguez-Heredia, A.
669 Turny, S. Verhage, and B. J. Godley. 2014. Pan-Atlantic analysis of the overlap of a
670 highly migratory species, the leatherback turtle, with pelagic longline fisheries.
671 Proceedings of the Royal Society B-Biological Sciences 281.
672 Gonzalez, M. C., C. A. Hidalgo, and A.-L. Barabási. 2008. Understanding individual human 673 mobility patterns. Nature 453:779-782.
674 Green, R. H. 1989. Power Analysis and Practical Strategies for Environmental Monitoring.
675 Environmental Research 50:195-205.
676 Gutowsky, S. E., M. L. Leonard, M. G. Conners, S. A. Shaffer, and I. D. Jonsen. 2015.
677 Individual-level Variation and Higher-level Interpretations of Space Use in Wide-
678 ranging Species: An Albatross Case Study of Sampling Effects. Frontiers in Marine
679 Science 2:17.
680 Harcourt, R. G., E. Turner, A. Hall, J. R. Waas, and M. Hindell. 2010. Effects of capture
681 stress on free-ranging, reproductively active male Weddell seals. Journal of
682 Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology
683 196:147-154.

684 Harrison, A. L. 2012. A synthesis of marine predator migrations, distribution, species 685 overlap, and use of Pacific Ocean Exclusive Economic Zones. Doctoral dissertation. 686 University of California, Santa Cruz, Retrieved from
687 https://escholarship.org/uc/item/1vh7h6jx.
688 Harrison, A. L., D. P. Costa, A. J. Winship, S. R. Benson, S. J. Bograd, M. Antolos, A. B.
689 Carlisle, H. Dewar, P. H. Dutton, S. J. Jorgensen, S. Kohin, B. R. Mate, P. W.
690 Robinson, K. M. Schaefer, S. A. Shaffer, G. L. Shillinger, S. E. Simmons, K. C.
691 Weng, K. M. Gjerde, and B. A. Block. 2018. The political biogeography of migratory 692 marine predators. Nat Ecol Evol 2:1571-1578.
693 Hays, G. C., A. C. Broderick, B. J. Godley, P. Luschi, and W. J. Nichois. 2003. Satellite 694 telemetry suggests high levels of fishing-induced mortality in marine turtles. Marine 695 Ecology Progress Series 262:305-309.
696 Hays, G. C., L. C. Ferreira, A. M. M. Sequeira, M. G. Meekan, C. M. Duarte, H. Bailey, F. 697 Bailleul, W. Don Bowen, M. J. Caley, D. P. Costa, V. M. Eguiluz, S. Fossette, A. S.
698 Friedlaender, N. Gales, A. C. Gleiss, J. Gunn, R. Harcourt, E. L. Hazen, M. R.
699 Heithaus, M. Heupel, K. Holland, M. Horning, I. Jonsen, G. L. Kooyman, C. G.
700 Lowe, P. T. Madsen, H. Marsh, R. A. Phillips, D. Righton, Y. Ropert-Coudert, K.
701 Sato, S. A. Shaffer, C. A. Simpfendorfer, D. W. Sims, G. Skomal, A. Takahashi, P. N.
702 Trathan, M. Wikelski, J. N. Womble, and M. Thums. 2016. Key Questions in Marine
703 Megafauna Movement Ecology. Trends in Ecology \& Evolution 31:463-475.
704 Hays, G. C., J. D. R. Houghton, C. Isaacs, R. S. King, C. Lloyd, and P. Lovell. 2004a. First
705 records of oceanic dive profiles for leatherback turtles, Dermochelys coriacea,
706 indicate behavioural plasticity associated with long-distance migration. Animal
707 Behaviour 67:733-743.
708 Hays, G. C., J. D. R. Houghton, and A. E. Myers. 2004b. Endanqered species - Pan-Atlantic
709 leatherback turtle movements. Nature 429:522-522.
710 Hays, G. C., A. D. Mazaris, and G. Schofield. 2014a. Different male vs. female breeding 711 periodicity helps mitigate offspring sex ratio skews in sea turtles. Frontiers in Marine
712 Science 1:9.
713 Hays, G. C., J. D. Metcalfe, A. W. Walne, and R. P. Wilson. 2004c. First records of flipper 714 beat frequency during sea turtle diving. Journal of Experimental Marine Biology and 715 Ecology 303:243-260.
716 Hays, G. C., J. A. Mortimer, D. Ierodiaconou, and N. Esteban. 2014b. Use of Long-Distance
717 Migration Patterns of an Endangered Species to Inform Conservation Planning for the
718 World's Largest Marine Protected Area. Conservation Biology 28:1636-1644.
719 Hazen, E. L., S. Jorgensen, R. R. Rykaczewski, S. J. Bograd, D. G. Foley, I. D. Jonsen, S. A.
720 Shaffer, J. P. Dunne, D. P. Costa, L. B. Crowder, and B. A. Block. 2013. Predicted
721 habitat shifts of Pacific top predators in a changing climate. Nature Climate Change
722 3:234-238.
723 Hebblewhite, M., and D. T. Haydon. 2010. Distinguishing technology from biology: a critical
724 review of the use of GPS telemetry data in ecology. Philosophical Transactions of the
725 Royal Society B-Biological Sciences 365:2303-2312.
726 Heupel, M. R., C. A. Simpfendorfer, and R. Fitzpatrick. 2010. Large-Scale Movement and 727 Reef Fidelity of Grey Reef Sharks. PLoS ONE 5.
728 Hindell, M. A., and M. A. Lea. 1998. Heart rate, swimming speed, and estimated oxygen
729 consumption of a free-ranging southern elephant seal. Physiological Zoology 71:74-
73084.

731 Hindell, M. A., C. R. McMahon, M. N. Bester, L. Boehme, D. Costa, M. A. Fedak, C.
732 Guinet, L. Herraiz-Borreguero, R. G. Harcourt, L. Huckstadt, K. M. Kovacs, C.
733 Lydersen, T. McIntyre, M. Muelbert, T. Patterson, F. Roquet, G. Williams, and J.-B.

734 Charrassin. 2016. Circumpolar habitat use in the southern elephant seal: implications 735 for foraging success and population trajectories. Ecosphere 7:e01213.
736 Hochscheid, S., F. Bentivegna, and G. C. Hays. 2005. First, records of dive durations for a 737 hibernating sea turtle. Biology Letters 1:82-86.
738 Hughes, G. R., P. Luschi, R. Mencacci, and F. Papi. 1998. The 7000-km oceanic journey of a 739 leatherback turtle tracked by satellite. Journal of Experimental Marine Biology and 740 Ecology 229:209-217.
741 Hussey, N. E., S. T. Kessel, K. Aarestrup, S. J. Cooke, P. D. Cowley, A. T. Fisk, R. G.
742 Harcourt, K. N. Holland, S. J. Iverson, J. F. Kocik, J. E. M. Flemming, and F. G.
743 Whoriskey. 2015. Aquatic animal telemetry: a panoramic window into the underwater 744 world. Science 348:1221-1231.
745 Jaud, T., A. C. Dragon, J. V. Garcia, and C. Guinet. 2012. Relationship between Chlorophyll 746 a Concentration, Light Attenuation and Diving Depth of the Southern Elephant Seal 747 Mirounga leonina. PLoS ONE 7.
748 Johnson, P. C. D., S. J. E. Barry, H. M. Ferguson, and P. Muller. 2015. Power analysis for 749 generalized linear mixed models in ecology and evolution. Methods in Ecology and 750 Evolution 6:133-142.
751 Jorgensen, S. J., C. A. Reeb, T. K. Chapple, S. Anderson, C. Perle, S. R. Van Sommeran, C.
752 Fritz-Cope, A. C. Brown, A. P. Klimley, and B. A. Block. 2010. Philopatry and 753 migration of Pacific white sharks. Proceedings of the Royal Society B-Biological 754 Sciences 277:679-688.
755 Jouventin, P., and H. Weimerskirch. 1990. Satellite Tracking of Wandering Albatrosses. 756 Nature 343:746-748.
757 Kays, R., M. C. Crofoot, W. Jetz, and M. Wikelski. 2015. Terrestrial animal tracking as an 758 eye on life and planet. Science 348:1222-1231.
759 Knip, D. M., M. R. Heupel, and C. A. Simpfendorfer. 2012. Evaluating marine protected 760 areas for the conservation of tropical coastal sharks. Biological Conservation
761 148:200-209.
762 Le Boeuf, B. J., D. E. Crocker, D. P. Costa, S. B. Blackwell, P. M. Webb, and D. S. Houser. 763 2000. Foraging ecology of northern elephant seals. Ecological Monographs 70:353-
764382.

765 Lea, J. S. E., N. E. Humphries, R. G. von Brandis, C. R. Clarke, and D. W. Sims. 2016.
766 Acoustic telemetry and network analysis reveal the space use of multiple reef
767 predators and enhance marine protected area design. Proceedings of the Royal Society
768 B-Biological Sciences 283.
769 Lea, M. A., and L. Dubroca. 2003. Fine-scale linkages between the diving behaviour of
770 Antarctic fur seals and oceanographic features in the southern Indian Ocean. ICES
771 Journal of Marine Science 60:990-1002.
772 Lea, M. A., C. Guinet, Y. Cherel, G. Duhamel, L. Dubroca, P. Pruvost, and M. Hindell. 2006.
773 Impacts of climatic anomalies on provisioning strategies of a Southern Ocean
774 predator. Marine Ecology Progress Series 310:77-94.
775 Leek, J., B. B. McShane, A. Gelman, D. Colquhoun, M. B. Nuijten, and S. N. Goodman.
776 2017. Five ways to fix statistics. Nature 551:557-559.
777 Lennox, R. J., K. Aarestrup, S. J. Cooke, P. D. Cowley, Z. Q. D. Deng, A. T. Fisk, R. G.
778 Harcourt, M. Heupel, S. G. Hinch, K. N. Holland, N. E. Hussey, S. J. Iverson, S. T.
779 Kessel, J. F. Kocik, M. C. Lucas, J. M. Flemming, V. M. Nguyen, M. J. W.
780 Stokesbury, S. Vagle, D. L. Vanderzwaag, F. G. Whoriskey, and N. Young. 2017.
781 Envisioning the Future of Aquatic Animal Tracking: Technology, Science, and
782 Application. BioScience 67:884-896.
783 Lidgard, D. C., W. D. Bowen, I. D. Jonsen, and S. J. Iverson. 2014. Predator-borne acoustic

784 transceivers and GPS tracking reveal spatial and temporal patterns of encounters with 785 acoustically-tagged fish in the open ocean. Marine Ecology Progress Series 501:157786168.

787 Mate, B. R., V. Y. Ilyashenko, A. L. Bradford, V. V. Vertyankin, G. A. Tsidulko, V. V. 788 Rozhnov, and L. M. Irvine. 2015. Critically endangered western gray whales migrate 789 to the eastern North Pacific. Biol Lett 11.
790 Maxwell, S. M., E. L. Hazen, S. J. Bograd, B. S. Halpern, G. A. Breed, B. Nickel, N. M.
791 Teutschel, L. B. Crowder, S. Benson, P. H. Dutton, H. Bailey, M. A. Kappes, C. E.
792 Kuhn, M. J. Weise, B. Mate, S. A. Shaffer, J. L. Hassrick, R. W. Henry, L. Irvine, B.
793 I. McDonald, P. W. Robinson, B. A. Block, and D. P. Costa. 2013. Cumulative
794 human impacts on marine predators. Nature Communications 4.
795 McConnell, B., M. Fedak, H. R. Burton, G. H. Engelhard, and P. J. H. Reijnders. 2002.
796 Movements and foraging areas of naive, recently weaned southern elephant seal pups.
797 Journal of Animal Ecology 71:65-78.
798 McMahon, C., and G. C. Hays. 2006. Thermal niche, large-scale movements and implications
799 of climate change for a critically endangered marine vertebrate. Global Change
800 Biology 12:1330-1338.
801 Meekan, M. G., C. M. Duarte, J. Fernandez-Gracia, M. Thums, A. M. Sequeira, R. Harcourt, 802 and V. M. Eguiluz. 2017. The Ecology of Human Mobility. Trends in Ecology \&
803 Evolution 32:198-210.
804 Meekan, M. G., L. A. Fuiman, R. Davis, Y. Berger, and M. Thums. 2015. Swimming strategy
805 and body plan of the world's largest fish: implications for foraging efficiency and 806 thermoregulation. Frontiers in Marine Science 2.
807 Meredith, M. P., K. W. Nicholls, I. A. Renfrew, L. Boehme, M. Biuw, and M. Fedak. 2011.
808 Seasonal evolution of the upper-ocean adjacent to the South Orkney Islands, Southern
809 Ocean: Results from a "lazy biological mooring". Deep-Sea Research Part Ii-Topical
810 Studies in Oceanography 58:1569-1579.
811 Mocanu, D., A. Baronchelli, N. Perra, B. Goncalves, Q. Zhang, and A. Vespignani. 2013.
812 The Twitter of Babel: Mapping World Languages through Microblogging Platforms.
813 PLoS ONE 8.
814 Nguyen, V., J. L. Brooks, N. Young, R. J. Lennox, N. Haddaway, F. Whoriskey, R. Harcourt, 815 and S. J. Cooke. 2017. To share or not to share in the emerging era of big data:
816 Perspectives from fish telemetry researchers on data sharing. Canadian Journal of
817 Fisheries and Aquatic Sciences 10.1139/cjfas-2016-0261.
818 Nicholls, K. W., L. Boehme, M. Biuw, and M. A. Fedak. 2008. Wintertime ocean conditions 819 over the southern Weddell Sea continental shelf, Antarctica. Geophysical Research 820 Letters 35.
821 Priede, I. G. 1984. A Basking Shark (Cetorhinus-Maximus) Tracked by Satellite Together 822 with Simultaneous Remote-Sensing. Fisheries Research 2:201-216.
823 Queiroz, N., N. E. Humphries, G. Mucientes, N. Hammerschlag, F. P. Lima, K. L. Scales, P.
824 I. Miller, L. L. Sousa, R. Seabra, and D. W. Sims. 2016. Ocean-wide tracking of
825 pelagic sharks reveals extent of overlap with longline fishing hotspots. Proceedings of
826 the National Academy of Sciences of the United States of America 113:1582-1587.
827 Raymond, B., M.-A. Lea, T. Patterson, V. Andrews-Goff, R. Sharples, J.-B. Charrassin, M.
828 Cottin, L. Emmerson, N. Gales, R. Gales, S. D. Goldsworthy, R. Harcourt, A. Kato,
829 R. Kirkwood, K. Lawton, Y. Ropert-Coudert, C. Southwell, J. van den Hoff, B.
830 Wienecke, E. J. Woehler, S. Wotherspoon, and M. A. Hindell. 2015. Important
831 marine habitat off east Antarctica revealed by two decades of multi-species predator
832 tracking. Ecography 38:121-129.
833 Righton, D., V. A. Quayle, S. Hetherington, and G. Burt. 2007. Movements and distribution

834 of cod (Gadus morhua) in the southern North Sea and English Channel: results from 835 conventional and electronic tagging experiments. Journal of the Marine Biological 836 Association of the United Kingdom 87:599-613.
837 Robinson, P. W., D. P. Costa, D. E. Crocker, J. P. Gallo-Reynoso, C. D. Champagne, M. A.
838 Fowler, C. Goetsch, K. T. Goetz, J. L. Hassrick, L. A. Huckstadt, C. E. Kuhn, J. L.
839 Maresh, S. M. Maxwell, B. I. McDonald, S. H. Peterson, S. E. Simmons, N. M.
840 Teutschel, S. Villegas-Amtmann, and K. Yoda. 2012. Foraging Behavior and Success
841 of a Mesopelagic Predator in the Northeast Pacific Ocean: Insights from a Data-Rich
842 Species, the Northern Elephant Seal. PLoS ONE 7.
843 Rodriguez-Cabello, C., F. de la Gandara, and F. Sanchez. 1998. Preliminary results on
844 growth and movements of dogfish Scyliorhinus canicula (Linnaeus, 1758) in the
845 Cantabrian Sea. Oceanologica Acta 21:363-370.
846 Rodriguez, J. P., J. Fernandez-Gracia, M. Thums, M. A. Hindell, A. M. Sequeira, M. G.
847 Meekan, D. P. Costa, C. Guinet, R. G. Harcourt, C. R. McMahon, M. Muelbert, C. M.
848 Duarte, and V. M. Eguiluz. 2017. Big data analyses reveal patterns and drivers of the
849 movements of southern elephant seals. Scientific Reports 7:112.
850 Russell, W. M. S., and R. L. Burch. 1959. The Principles of Humane Experimental
851 Technique. Methuen, London UK.
852 Schofield, G., A. Dimadi, S. Fossette, K. A. Katselidis, D. Koutsoubas, M. K. S. Lilley, A.
853 Luckman, J. D. Pantis, A. D. Karagouni, and G. C. Hays. 2013. Satellite tracking
854 large numbers of individuals to infer population level dispersal and core areas for the 855 protection of an endangered species. Diversity and Distributions 19:834-844.
856 Semmens, J. M., N. L. Payne, C. Huveneers, D. W. Sims, and B. D. Bruce. 2013. Feeding
857 requirements of white sharks may be higher than originally thought. Scientific
858 Reports 3.
859 Sequeira, A., J. Rodríguez, V. Eguíluz, R. Harcourt, M. Hindell, D. Sims, C. Duarte, D.
860 Costa, J. Fernandez-Gracia, L. Ferreira, G. Hays, M. Heupel, M. Meekan, A. Aven, F.
861 Bailleul, A. Baylis, M. Berumen, C. Braun, J. Burns, M. Caley, R. Campbell, R.
862 Carmichael, E. Clua, L. Einoder, A. Friedlaender, G. ME, S. Goldsworthy, C. Guinet, 863 J. Gunn, D. Hamer, N. Hammerschlag, M. Hammill, L. Hückstädt, N. Humphries, M.-
864 A. Lea, A. Lowther, A. Mackay, E. McHuron, J. McKenzie, L. McLeay, C.
865 McMahon, K. Mengersen, M. Muelbert, A. Pagano, B. Page, N. Queiroz, P.
866 Robinson, S. Shaffer, M. Shivji, G. Skomal, S. Thorrold, S. Villegas-Amtmann, M.
867 Weise, R. Wells, B. Wetherbee, A. Wiebkin, B. Wienecke, and M. Thums. 2018.
868 Convergence of marine megafauna movement patterns in coastal and open oceans.
869 Proceedings of the National Academy of Sciences 115:3072-3077
870 Sequeira, A. M. M., C. Mellin, M. G. Meekan, D. W. Sims, and C. J. A. Bradshaw. 2013.
871 Inferred global connectivity of whale shark Rhincodon typus populations. Journal of
872 Fish Biology 82:367-389.
873 Simini, F., M. C. Gonzalez, A. Maritan, and A. L. Barabasi. 2012. A universal model for 874 mobility and migration patterns. Nature 484:96-100.
875 Sims, D. W. 2003. Tractable models for testing theories about natural strategies: foraging 876 behaviour and habitat selection of free-ranging sharks. Journal of Fish Biology 877 63:(Supplement A) 53-73.
878 Sims, D. W., J. P. Nash, and D. Morritt. 2001. Movements and activity of male and female
879 dogfish in a tidal sea lough: alternative behavioural strategies and apparent sexual
880 segregation. Marine Biology 139:1165-1175.
881 Sims, D. W., E. J. Southall, N. E. Humphries, G. C. Hays, C. J. A. Bradshaw, J. W. Pitchford,
882 A. James, M. Z. Ahmed, A. S. Brierley, M. A. Hindell, D. Morritt, M. K. Musyl, D.
883 Righton, E. L. C. Shepard, V. J. Wearmouth, R. P. Wilson, M. J. Witt, and J. D.

884 Metcalfe. 2008. Scaling laws of marine predator search behaviour. Nature 451:10988851103.

886 Sims, D. W., E. J. Southall, A. J. Richardson, P. C. Reid, and J. D. Metcalfe. 2003. Seasonal 887 movements and behaviour of basking sharks from archival tagging: no evidence of
888 winter hibernation. Marine Ecology Progress Series 248:187-196.
889 Sims, D. W., E. J. Southall, G. A. Tarling, and J. D. Metcalfe. 2005. Habitat-specific normal 890 and reverse diel vertical migration in the plankton-feeding basking shark. Journal of 891 Animal Ecology 74:755-731.
892 Sims, D. W., V. J. Wearmouth, E. J. Southall, J. M. Hill, P. Moore, K. Rawlinson, N. 893 Hutchinson, G. C. Budd, D. Righton, J. Metcalfe, J. P. Nash, and D. Morritt. 2006.
894 Hunt warm, rest cool: bioenergetic strategy underlying diel vertical migration of a 895 benthic shark. Journal of Animal Ecology 75:176-190.
896 Soanes, L. M., J. P. Y. Arnould, S. G. Dodd, M. D. Sumner, and J. A. Green. 2013. How
897 many seabirds do we need to track to define home-range area? Journal of Applied
898 Ecology 50:671-679.
899 Southall, E. J., D. W. Sims, M. J. Witt, and J. D. Metcalfe. 2006. Seasonal space-use 900 estimates of basking sharks in relation to protection and political-economic zones in
901 the North-east Atlantic. Biological Conservation 132:33-39.
902 Thums, M., J. Fernández-Gracia, A. M. M. Sequeira, V. M. Eguíluz, C. M. Duarte, and M. G.
903 Meekan. 2018a. How big data fast tracked human mobility research and the lessons
904 for animal movement ecology. Frontiers in Marine Science
905 https://doi.org/10.3389/fmars.2018.00021
906 Thums, M., J. Rossendell, G. M, and L. Ferreira. 2018b. Horizontal and vertical movement 907 behaviour of adult flatback turtles and spatial overlap with industrial development.
908 Marine Ecology Progress Series 602:237-253.
909 Thums, M., S. D. Whiting, J. W. Reisser, K. L. Pendoley, C. B. Pattiaratchi, R. G. Harcourt, 910 C. R. McMahon, and M. G. Meekan. 2013. Tracking sea turtle hatchlings - A pilot 911 study using acoustic telemetry. Journal of Experimental Marine Biology and Ecology 912 440:156-163.
913 Treasure, A. M., F. Roquet, I. J. Ansorge, M. N. Bester, L. Boehme, H. Bornemann, J. B. 914 Charrassin, D. Chevallier, D. P. Costa, M. A. Fedak, C. Guinet, M. O. Hammill, R. G.
915 Harcourt, M. A. Hindell, K. M. Kovacs, M. A. Lea, P. Lovell, A. D. Lowther, C.
916 Lydersen, T. McIntyre, C. R. McMahon, M. M. C. Muelbert, K. Nicholls, B. Picard, 917 G. Reverdin, A. W. Trites, G. D. Williams, and P. J. N. de Bruyn. 2017. Marine 918 Mammals Exploring the Oceans Pole to Pole A Review of the MEOP Consortium. 919 Oceanography 30:132-138.
920 Ubeda, A. J., C. A. Simpfendorfer, and M. R. Heupel. 2009. Movements of bonnetheads, 921 Sphyrna tiburo, as a response to salinity change in a Florida estuary. Environmental 922 Biology of Fishes 84:293-303.
923 Villegas-Amtmann, S., and D. P. Costa. 2010. Oxygen stores plasticity linked to foraging 924 behaviour and pregnancy in a diving predator, the Galapagos sea lion. Functional 925 Ecology 24:785-795.
926 Villegas-Amtmann, S., D. P. Costa, Y. Tremblay, S. Salazar, and D. Aurioles-Gamboa. 2008.
927 Multiple foraging strategies in a marine apex predator, the Galapagos sea lion
928 Zalophus wollebaeki. Marine Ecology Progress Series 363:299-309.
929 Wakefield, E. D., T. W. Bodey, S. Bearhop, J. Blackburn, K. Colhoun, R. Davies, R. G.
930 Dwyer, J. A. Green, D. Gremillet, A. L. Jackson, M. J. Jessopp, A. Kane, R. H. W.
931 Langston, A. Lescroel, S. Murray, M. Le Nuz, S. C. Patrick, C. Peron, L. M. Soanes, 932 S. Wanless, S. C. Votier, and K. C. Hamer. 2013. Space Partitioning Without 933 Territoriality in Gannets. Science 341:68-70.

934 Wearmouth, V. J., E. J. Southall, D. Morritt, R. J. Thompson, I. C. Cuthill, J. L. Partridge, 935 and D. W. Sims. 2012. Year-round sexual harassment as a behavioural mediator of 936 vertebrate population dynamics. Ecological Monographs 82:351-366.
937 Weimerskirch, H., M. Louzao, S. de Grissac, and K. Delord. 2012. Changes in Wind Pattern 938 Alter Albatross Distribution and Life-History Traits. Science 335:211-214.
939 Wilson, R. P., and C. R. McMahon. 2006. Measuring devices on wild animals: what 940 constitutes acceptable practice? Frontiers in Ecology and the Environment 4:147-154.

Table 1: Summary of examples of information that has been captured using different sample sizes of tags (N) for seabirds, sharks, turtles, 943 and pinnipeds, highlighting the types of questions that have been answered with different sample sizes.

Table 1: Summary of examples of information that has been captured using different sample sizes of tags (N) for seabirds, sharks, turtles, and pinnipeds, highlighting the types of questions that can be answered with different sample sizes.

Question	Birds	Sharks	Turtles	Pinnipeds
N = 1				
- Provide proof-ofconcept of methodology - Discovery of new behaviours		- Demonstrated feasibility of satellite-based monitoring of movements of basking sharks (Priede 1984)	- Detected >1000 km trip for leatherback turtles (Hughes et al. 1998) - Demonstrated the potential ecophysiological capacity (aerobic limits) for loggerhead turtles (Hochscheid et al. 2005) - Revealed link between swimming effort to depth-dependent, airmediated buoyancy and swim angle (Hays et al. 2004c)	- Proved that elephant seals could act as samplers of the environment providing an 8-month CTD hydrographic profile that allowed an assessment of the seasonal evolution of the upper ocean (Meredith et al. 2011) - First free ranging heart rate recorded for an adult female southern elephant seal during the postbreeding migration (Hindell and Lea 1998)
N < $=10$				
Initial insights into: - Individual variability	- Revealed wandering albatrosses travel thousands of km in	- Revealed that basking sharks exhibited extensive horizontal and	- Recorded the first dive profiles outside the nesting season based on	- Revealed the vertical distribution of southern elephant seal's prey is

- scale of movements drivers of movement Generate hypotheses	foraging trips during an incubation shift (Jouventin and Weimerskirch 1990)	vertical movements during winter rather than hibernating (Sims et al. 2003) Provided evidence for reverse diel vertical migration in basking sharks (Sims et al. 2005) - \quad Revealed diel vertical migration for 10 individuals (Sims et al. 2006)	3 individuals (Hays et al. 2004a) - Revealed that 9 individuals all moved in disparate directions in the Atlantic Ocean (Hays et al. 2004b)	tightly related to lightlevel (Jaud et al. 2012) - Identified three distinct foraging patterns for Galapagos sea lions (Villegas-Amtmann et al. 2008)
$10<N<100$				
- Estimate space-use - Characterise spatiotemporal patterns - Identify specific behaviours (e.g., sex and age differences)	- Defined space use for albatrosses (Gutowsky et al. 2015), shags and kittiwakes (Soanes et al. 2013) - Showed that foraging success of penguins relates to boundary current anomalies in different years (Carroll et al. 2016)	- Used to quantify the annual space-use patterns of basking sharks within politicaleconomic zones in the north-east Atlantic - Demonstrated that basking sharks seasonally migrate to mesopelagic tropical waters - Confirmed that the species does not travel long distance (based on 12 individuals)	- Used to assess spatiotemporal foraging patterns in the Northern Atlantic based on 21 turtles (Fossette et al. 2010) - Calculated the area used by flatback turtles while nesting (Thums et al. 2018b) - Identified the probability of individual turtles using disparate foraging areas across the Mediterranean (Schofield et al. 2013)	- Used to estimate the extent of movements and spatio-temporal habitat use for weaner southern elephant seals (McConnell et al. 2002) - Revealed diving behaviour showing maximum dive durations of 109 minutes (22.3 min $\pm 4.6 \mathrm{SD}$ and $312 \mathrm{~m} \pm$ 117 (SD) with a maximum depth of 1380 m) for northern elephant seals (Le Boeuf et al. 2000)

		(Rodriguez-Cabello et al. 1998) - Revealed pronounced philopatry of female basking sharks (Sims 2003) and of white sharks Jorgensen et al. (2010)	- Confirmed high mortalities of sea turtles by fisheries (Hays et al. 2003)	- Identified the water bodies in the Southern Ocean where elephant seals improved their body condition (Biuw et al. 2007)
N ~ 100 or $\gg 100$				
- Quantify habitat use over large spatial scales - Assess shifts in space use with time, among sub-populations or with gender, age class and period (e.g., breeding cycles) - Estimate susceptibility to interactions with human activities	Assessed the levels of foraging area overlap for northern gannets from different breeding areas Wakefield et al., (2013)	- Revealed that oceanic shark hotspots may be at risk from overfishing (Queiroz et al. 2016)	- Used to define areas of high susceptibility for fisheries by-catch at the scale of the Atlantic Ocean based on 106 tracks (Fossette et al. 2014)	- Led to a better understanding of how seals use the circumpolar habitat in the Southern Ocean based on 287 seals (Hindell et al. 2016). - Allowed application of big data approaches to show memory as an intrinsic driver of movement for southern elephant seals (Rodríguez et al. 2017) - Reveal correlated or coordinated movements from a 10-year movement dataset of northern elephant seals suggested through

- Allow multispecies
sonification (Duarte et al. assessments at large spatial scales 2018)
- Revealed areas of particular ecological significance for these multiple species (Raymond et al. 2015)
- Showed high variability in the distribution of cumulative impacts across multiple species Maxwell et al. (2013)
- Highlighted hotspots, migration pathways, and niche partitioning among multiple species in the Pacific Ocean (Block et al. 2011)
- Showed that movement patterns in marine animals are strongly conserved across species regardless of evolutionary history (Sequeira et al. 2018)

945 Figure legends

946 Figure 1: Across a broad range of species and habitats, electronic tags are used to assess
947 patterns of animal movement. Across studies a prevailing question is "how many animals
948 need to be tagged?" To illustrate the breadth of tracking studies (a) shows an ocean sunfish
949 (Mola mola) fitted with a satellite tag, (b) a jellyfish (Rhizostoma octopus) equipped with a
950 time-depth recorder, (c) a hatchling green turtle (Chelonia mydas) equipped with a miniature
951 acoustic tag, (d) a juvenile loggerhead sea turtle (Caretta caretta) equipped with an Argos
952 satellite tag, (e) a ruddy turnstone (Arenaria interpres) equipped with a light-based
953 geolocator tag on its leg, (f) a harbor seal (Phoca vitulina) with a "mobile phone tag" that 954 relays Fastloc-GPS locations via the mobile phone network. In each panel the scale bar is 10 955 cm . Photographs courtesy of Graeme Hays, Gower Coast Adventures, Joan Costa, George 956 Balazs, Erik Kleyheeg and Paul Thompson.
957
958 Figure 2: Examples of tracking studies using various sample sizes to understand different 959 animal movement and behaviours. A) Track of a great white shark showing a transoceanic 960 migration from South Africa to north-western Australia (adapted from Bonfil et al. 2005); B)
961 Track from a leatherback turtle revealing that the species was able to travel > 1000s of km 962 (adapted from Hughes et al. 1998); C) Tracked movement of eight green turtles equipped off 963 Diego Garcia, Chagos, used to evaluate effectiveness of marine protected areas in the region 964 (adapted from Hays et al. 2014b); D) Movements of grey reef sharks in the Great Barrier 965 Reef, Australia, showing site fidelity to single reefs (adapted from Heupel et al. 2010); E) 966 Comparison of vertical movement patterns across taxa showing levy-like scaling laws 967 (adapted from Sims et al. 2008); F) Satellite tag location estimates from great white sharks 968 tagged along the central California coast, showing patterns of site fidelity and seasonal 969 variations in movements (adapted from Jorgensen et al. 2010); G) Habitat use patterns of 970 pelagic sharks in the North Atlantic Ocean, used to examine key areas of spatial overlap with
971 longline fisheries (adapted from Queiroz et al. 2016); H) Networks of species-specific 972 detections obtained from passive acoustic tracking of blacktip reef sharks, used to evaluate 973 and subsequently update a marine protected area in the Seychelles (adapted from Lea et al. 974 2016); I) Trajectories obtained for 272 southern elephant seals (left) and resulting occupancy 975 map (right), used to identify movement patterns that indicated memory may play a role in the 976 movement patterns of this species (adapted from Rodriguez et al. 2017); J) Global map of 977 tracking dataset used to quantify the movement patterns of > 50 marine vertebrate species, 978 showing movement patterns are strongly conserved across species and vary based on the 979 habitats the animals move through (adapted from Sequeira et al. 2018).
980
981 Figure 3: Simulation examples to understand the effects of sample of size when addressing 982 different key questions for the same guild (i.e., turtles). A) Probability of finding differences 983 in breeding periodicity of loggerhead turtles by simulating the number of males and females 984 that would be recorded to return after 1 year and then testing if there is a significant 985 difference ($p<0.05$) in the numbers of returning males and females for increasing sample 986 sizes up to 10 individuals. B) Standard deviation of the estimate for mean clutch frequency 987 for green turtles reflecting the variation that might be recorded for the mean estimate with 988 different samples sizes. C) Percentage of individuals perceived to travel to locations ' 1 ', ' 2 ' 989 and ' 3 ' shown in the schematic representation displayed in the centre of the figure as the 990 number of tags deployed increases from 5 to 40 . The central scheme depicts movement 991 dispersion and probabilities of detection of dispersion to different locations and detection of a
992 rare event, with arrow width proportional to probability of dispersion from the tagging
993 location X to each of the locations ' 1 ', ' 2 ' and ' 3 ' $(0.65,0.30$, and 0.05) for a population of

994100 individuals. D) Percentage of the population expected to travel to each of the locations A, Page 59 of 68 Ecological Applications
995 B and C depicted in the central scheme showing a decrease in the confidence intervals as the 996 number of tags increases. E) Representation of the confidence intervals for detection of 997 possible rare events such as colonization of a new site.
998
999 Figure 4: Effects of sample size on estimates of utilisation area at core probability contours $1000(50 \%$, and $25 \%)$ as function of sample size for six marine predator species. Bootstrapped 1001 estimates of area $(100,000 \mathrm{~km} 2)$ as a function of sample size (number of individuals tracked) 1002 of the 50% (light blue) and 25% (dark blue) contours of population utilization distributions 1003 calculated for electronically tracked marine animals. A) Estimates for five migratory marine 1004 predators for the month of September pooled across years (2002-2009; available sample sizes 1005 varied across species). B) Monthly estimates for white shark (pooled across years, 20001006 2007, available sample sizes varied across months). Circles represent mean values and lines 1007 represent standard deviations. Adapted from Harrison (2012) using data from the Tagging of 1008 Pacific Predators project (Block et al. 2011). The evaluated dataset consisted of 604 1009 individual tracks and sample sizes varied across species (12 to 231 individuals) and across 1010 months (1 to 114 individuals). Plots show means and standard deviation of home range area, 1011 with mean estimates initially increasing as a function of the number of individuals tracked 1012 (the home range area of one individual is likely much smaller than the utilization distribution 1013 of 10 individuals). Once most of the variability in the population is captured, the estimate of 1014 space use of the population stabilizes resulting in an asymptote in the plot. Estimates of home 1015 range size approached an asymptote for Northern elephant seals and salmon sharks (species 1016 with datasets 57 to 108 individuals) at sample sizes of 20-40 individuals in most months at all 1017 contour levels. In contrast, for estimates calculated from samples sizes between 10-30 1018 individuals for (A) black-footed albatross, Laysan albatross, sooty shearwater, and Pacific 1019 bluefin tuna that were recorded to undertake their trans-Pacific migration, and (B) white 1020 sharks from June through September), the sample size was insufficient to observe an 1021 asymptote in estimates of utilisation area (especially at the largest probability contours that 1022 would capture rare events). There were also large confidence intervals around the area 1023 estimates for these species' datasets, implying that larger datasets were needed to increase the 1024 precision and accuracy of the estimates.

1025 Figure 1: Across a broad range of species and habitats, electronic tags are used to assess 1026 patterns of animal movement.

1027 Across studies a prevailing question is "how many animals need to be tagged?". To illustrate 1028 the breadth of tracking studies (a) shows an ocean sunfish (Mola mola) fitted with a satellite 1029 tag, (b) a jellyfish (Rhizostoma octopus) equipped with a time-depth recorder, (c) a hatchling 1030 green turtle (Chelonia mydas) equipped with a miniature acoustic tag, (d) a juvenile
1031 loggerhead sea turtle (Caretta caretta) equipped with an Argos satellite tag, (e) a ruddy
1032 turnstone (Arenaria interpres) equipped with a light-based geolocator tag on its leg, (f) a 1033 harbor seal (Phoca vitulina) with a "mobile phone tag" that relays Fastloc-GPS locations via 1034 the mobile phone network. In each panel the scale bar is 10 cm . Photographs courtesy of 1035 Graeme Hays, Gower Coast Adventures, Joan Costa, George Balazs, Erik Kleyheeg and Paul 1036 Thompson.

1038 Figure 2: Examples of tracking studies using various sample sizes to understand different 1039 animal movement and behaviours
1040 A) Track of a great white shark showing a transoceanic migration from South Africa to north1041 western Australia (adapted from Bonfil et al. 2005); B) Track from a leatherback turtle

1042 revealing that the species was able to travel > 1000s of km (adapted from Hughes et al. 1043 1998); C) Tracked movement of eight green turtles equipped off Diego Garcia, Chagos, used 1044 to evaluate effectiveness of marine protected areas in the region (adapted from Hays et al. 1045 2014b); D) Movements of grey reef sharks in the Great Barrier Reef, Australia, showing site 1046 fidelity to single reefs (adapted from Heupel et al. 2010); E) Comparison of vertical 1047 movement patterns across taxa showing levy-like scaling laws (adapted from Sims et al. 1048 2008); F) Satellite tag location estimates from great white sharks tagged along the central 1049 California coast, showing patterns of site fidelity and seasonal variations in movements 1050 (adapted from Jorgensen et al. 2010); G) Habitat use patterns of pelagic sharks in the North 1051 Atlantic ocean, used to examine key areas of spatial overlap with longline fisheries (adapted 1052 from Queiroz et al. 2016); H) Networks of species-specific detections obtained from passive 1053 acoustic tracking of blacktip reef sharks, used to evaluate and subsequently update a marine 1054 protected area in the Seychelles (adapted from Lea et al. 2016); I) Trajectories obtained for 1055272 southern elephant seals (left) and resulting occupancy map (right), used to identify 1056 movement patterns that indicated memory may play a role in the movement patterns of this 1057 species (adapted from Rodriguez et al. 2017); J) Global map of tracking dataset used to 1058 quantify the movement patterns of >50 marine vertebrate species, showing movement 1059 patterns are strongly conserved across species and vary based on the habitats the animals 1060 move through (adapted from Sequeira et al. 2018).

1062 Figure 3: Simulation examples to understand the effects of sample of size when addressing 1063 different key questions for the same guild (i.e., turtles).
1064 A) Probability of finding differences in breeding periodicity of loggerhead turtles by 1065 simulating the number of males and females that would be recorded to return after 1 year and 1066 then testing if there is a significant difference ($p<0.05$) in the numbers of returning males 1067 and females for increasing sample sizes up to 10 individuals. B) Standard deviation of the 1068 estimate for mean clutch frequency for green turtles reflecting the variation that might be 1069 recorded for the mean estimate with different samples sizes. C) Percentage of individuals 1070 perceived to travel to locations ' 1 ', ' 2 ' and ' 3 'shown in the schematic representation 1071 displayed in the centre of the figure as the number of tags deployed increases from 5 to 40 . 1072 The central scheme depicts movement dispersion and probabilities of detection of dispersion 1073 to different locations and detection of a rare event, with arrow width a proportional to 1074 probability of dispersion from the tagging location X to each of the locations ' 1 ', ' 2 ' and ' 3 ' $1075(0.65,0.30$, and 0.05$)$ for a population of 100 individuals. D) Percentage of the population 1076 expected to travel to each of the locations ' 1 ', ' 2 ' and ' 3 ' depicted in the central scheme 1077 showing a decrease in the confidence intervals as the number of tags increases. E) 1078 Representation of the confidence intervals for detection of possible rare events such as 1079 colonization of a new site.

1081 Figure 4: Effects of sample size on estimates of utilisation area at core probability contours $1082(50 \%$, and $25 \%)$ as function of sample size for six marine predator species.
1083 Bootstrapped estimates of area ($100,000 \mathrm{~km} 2$) as a function of sample size (number of 1084 individuals tracked) of the 50% (light blue) and 25% (dark blue) contours of population 1085 utilization distributions calculated for electronically tracked marine animals. A) Estimates for 1086 five migratory marine predators for the month of September pooled across years (2002-2009; 1087 available sample sizes varied across species). B) Monthly estimates for white shark (pooled 1088 across years, 2000-2007, available sample sizes varied across months). Circles represent 1089 mean values and lines represent standard deviations. Adapted from Harrison (2012) using 1090 data from the Tagging of Pacific Predators project (Block et al. 2011). The evaluated dataset

1091 consisted of 604 individual tracks and sample sizes varied across species (12 to 231 1092 individuals) and across months (1 to 114 individuals). Plots show means and standard 1093 deviation of home range area, with mean estimates initially increasing as a function of the 1094 number of individuals tracked (the home range area of one individual is likely much smaller 1095 than the utilization distribution of 10 individuals). Once most of the variability in the 1096 population is captured, the estimate of space use of the population stabilizes resulting in an 1097 asymptote in the plot. Estimates of home range size approached an asymptote for Northern 1098 elephant seals and salmon sharks (species with datasets 57 to 108 individuals) at sample sizes 1099 of 20-40 individuals in most months at all contour levels. In contrast, for estimates calculated 1100 from samples sizes between 10-30 individuals for (A) black-footed albatross, Laysan 1101 albatross, sooty shearwater, and Pacific bluefin tuna that were recorded to undertake their 1102 trans-Pacific migration, and (B) white sharks from June through September), the sample size 1103 was insufficient to observe an asymptote in estimates of utilisation area (especially at the 1104 largest probability contours that would capture rare events). There were also large confidence 1105 intervals around the area estimates for these species' datasets, implying that larger datasets 1106 were needed to increase the precision and accuracy of the estimates.
1107

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Resamples

