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Abstract: This study discusses the effects of temperature on corrosion inhibition for soft-cast steel
by the pharmaceutically active drug olmesartan in 1 mol dm−3 HCl. The sufficient number of
electron-rich elements and non-bonding π electrons in its structure favored a good capability for
coating onto the electron-deficient steel surfaces. Theoretical and electrochemical measurements
were carried out at the temperature region of 303 K to 333 K. Therefore, the experiment suggests
that the inhibition efficiency of olmesartan increases with its increasing concentrations due to the
adsorption. Additionally, even at a higher temperature of 333 K, the inhibitor molecules attain their
stability towards corrosion resistance of steel surfaces. The adsorption of inhibitors on steel surfaces
is spontaneously found to include the mixture of physisorption and chemisorption, and it obeys
Temkin’s adsorption isotherm model. Theoretical and computational considerations were made
using quantum chemical parameters and molecular dynamics simulations, which confirmed that the
olmesartan has a suitable corrosion inhibitive capability intended for soft-cast steel in 1 mol dm−3

HCl. Additionally, scanning electron microscopic measurement was used to obtain a visual idea
of the inhibitive action of the inhibitor attained by forming an adsorbed protective layer onto the
steel surfaces. The minute concentration of olmesartan of about 10–50 ppm shows high inhibition
efficiency of ~80%, even at elevated temperatures.

Keywords: soft-cast steel; electrochemical; SEM; adsorption; molecular dynamic simulation

1. Introduction

Soft cast steel is one of the most important iron alloys with a lower carbon content (i.e.,
carbon content less than 0.15%). These have industrial, automobile, and construction appli-
cations because of their superior thermal and mechanical stability. Hence, soft-cast steel
is cast off for many practices viz., acid pickling, descaling, oil well acidifying, petroleum
refineries, etc. [1,2]. Under these conditions, steel surface exposure with aggressive media
leads to corrosion. Hence, various methods are to be adopted, such as anodization, cathodic
protection, coatings, and corrosion inhibitors, for metal protection by corrosion. Among
those different practices of protecting the metal, the use of corrosion inhibitors is the most
appropriate, experimentally acceptable, and cost-effective technique [3].

Corrosion inhibitors are organic heterocyclic compounds that contain electron-rich N,
S, O, and non-bonding π electrons present in the heterocyclic ring system of its structure.
Through these, the inhibitor molecules are coated onto the electron-deficient metal sur-
faces [4]. Similarly, various physio-chemical properties of an inhibitor play an important
role in determining adsorption capability onto steel surfaces [5].
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Earlier research has already proven that many organic heterocyclic compounds act as
corrosion inhibitors, which have shown good inhibition efficiency for various metals such
as steel, aluminum, zinc, and copper in various aggressive media. In this context, a few com-
mercially available drug intermediates, such as clotrimazole [6], Rizatriptan [7] Telmisar-
tan [8], Seroquel [9], sulfamethoxazole [10], Praziquantel [11], Ketosulfide [12], Aspirin [13],
Anthranilic Acid [14], and few novel synthesized molecules such as tert-butyl 4-[(4-methyl
phenyl) carbonyl] piperazine-1-carboxylate [15], 4,5,6,7-Tetrahydro-1,3-benzothiazole [16],
1,3-bis(1-Phenylethyl) Urea [17] N1-(3-Methylphenyl) Piperidine-1,4-Dicarboxamide [18]
etc., show good corrosion inhibition efficiency for metal surfaces in aggressive acidic media.
However, a large number of studied corrosion inhibitors effectively inhibit steel corrosion
in the current scenario, showing promising results. However, reported corrosion inhibitors
may be toxic, less stable at a higher temperature, experimentally time-consuming. However,
in our study, this selected olmesartan was investigated theoretically by quantum chemical
calculations. This primary investigation was done by using it without any experimental
work and within a short period. Therefore, this quantum method plays a vital role in
showing whether or not the selected organic heterocyclic compound acts as a corrosion
inhibitor by using its molecular orbits. In addition, the molecular dynamic simulation
study strengthens quantum results. Later, these theoretical predictions were confirmed by
conducting real corrosion experiments [19].

The quantum and MD simulation method is a promising theoretical method for
obtaining information about a system at the molecular level. Therefore, the basic principle
of quantum and MD simulation, as well as methods, parameters, and applications in
corrosion inhibition, are discussed in this study. This research also looks at how to choose
parameters like the energy gap, dipole moment, force field, time step, and ensemble when
running a quantum and MD simulation for corrosion studies, which, to our knowledge,
has only been discussed in a few papers. The scope of this MD calculation is rare in recent
studies, particularly those involving ferrous metal corrosion inhibition using corrosion
inhibitors in acidic solutions [20].

Therefore, it takes less time to decide the feasibility of an organic compound that acts
as an effective corrosion inhibitor for soft-cast steel in 1 mol dm−3 HCl. Therefore, the
corrosion experiments were done by electrochemical techniques such as potentiodynamic
polarization and impedance spectroscopy. These electrochemical methods give more
accuracy and higher sensitivity and are cheap and user-friendly for conducting experiments
compared to other methods [21]. The scanning electron microscopic measurements provide
a visual representation of the process of establishing a protective barrier on metal surfaces
from the bulk of the solution [22]. Therefore, olmesartan has more nitrogen and oxygen
with π- electrons in heterocyclic rings, allowing it to serve as a suitable corrosion inhibitor
for soft-cast steel in 1 mol dm−3 HCl. The major motivation to select this olmesartan as a
corrosion inhibitor for steel is that a minute concentration is used to get stable coating onto
the metal surfaces in 1 M HCl, leading to control of the corrosion.

2. Experimental Section
2.1. Soft Cast Steel

Soft cast steel with the dimension of 6 × 1 × 0.05 cm3 was procured commercially for
this investigation. The steel strip was clean and dry, then mechanically abraded by SiC
papers (grade no 100 up to 2500) until we achieved good finishing, and we used it for all
corrosion inhibition experiments. The elementary composition of soft-cast steel is listed in
the following Table 1.

Table 1. Elemental composition of soft-cast steel used for corrosion experiments.

Elements C Mn P S (Fe)

(%) 0.41 0.029 0.031 0.04 Rest
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2.2. Inhibitor

The olmesartan is an imidazole derivative drug, which is procured commercially, was
selected as a corrosion inhibitor, and its molecular structure is shown in Figure 1. It is
colorless crystalline in nature, which is soluble in HCl. The standardized 1 mol dm−3

HCl solution was prepared with triple-distilled water. Therefore, the various increasing
concentrations from 10 to 50 ppm of olmesartan were dissolved in 1 mol dm−3 HCl as the
inhibited solution.
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2.3. Quantum Studies

The inhibition effect of any organic heterocyclic molecule is primarily estimated
theoretically by quantum chemical calculations. Quantum tests were conducted using
Hyperchem Technical Software 8.0 with complete olmesartan molecule geometry. With a
6–31 G** basis collection, DFT raised the optimized molecular structure of olmesartan. To
make calculations simple and accurate, the Polak–Rieberre algorithm was used.

2.4. Molecular Dynamics Simulations

The Hypercom 8.0 software was used to conduct the current study of molecular
dynamics (MD) simulations. For the simulation tests, the Fe (110) surface was chosen. The
interaction of the inhibitor molecule with the metal surface was studied in a simulation box
with boundary conditions (39.47 39.47 77.230 0A). To obtain accurate data, the experiments
used ten layers of iron atoms. As a result, the simulation box was used to build the
iron, solution, and vascular layers. The MD simulation box was created to represent
atomic simulation experiments (COMPASS) with a molecular potential optimized for the
condensed phase. These MD simulations were carried out at both 0.0010 and 1 ps in time.

2.5. Electrochemical Techniques

Electrochemical techniques were used for the corrosion-inhibitive capability of olme-
sartan in 1 mol dm−3 HCl at a high-temperatures ranging from 303 K to 333 K. Electrochem-
ical workstation Ivium compact state e10800 with a three-electrode assembly connection
was used for all electrochemical measurements for corrosion experiments. A working elec-
trode (soft-cast steel strip), a counter electrode (platinum wire), and a reference electrode
(saturated calomel electrode) made up the three-electrode system. In the electrochemical
polarization measurements, in the given range of potential by the scan rate of 1 mV s−1, a
potentiodynamic Tafel plot of potential against the current was reported. For electrochem-
ical impedance spectroscopy (EIS) measurements, spectra were plotted with AC signals
with an amplitude of 0.01 V/s for open circuit potential at a frequency ranging from 10 kHz
to 0.1 Hz.
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2.6. Scanning Electron Microscopy (SEM) Measurement

The 1 cm2 soft-cast steel strips were mechanically rubbed with emery paper and
degreased with acetone, accompanied by triple-distilled water. Two smooth-surfaced strips
were immersed in 1 M HCl alone and then with the addition of 50 ppm concentration for
6 h. After that, both the steel strips were taken out and washed with acetone, and then
distilled water. Steel strips were dried at room temperature and subjected to SEM analysis
using a scanning electron microscope.

3. Result and Discussions
3.1. Quantum Calculations

Quantum calculations are a powerful technique used to decide the feasible factors of
organic compounds as suitable corrosion inhibitors by using molecular orbitals. This study
was conducted using the electron density distribution for various geometries of molecules.
Figure 2 illustrates the optimized structure of the olmesartan molecule. The frontier
molecular orbitals (FMOs), such as the highest occupied molecular orbitals (HOMOs)
and the lowest unoccupied molecular orbitals (LUMOs), are shown in Figures 3 and 4
respectively. These FMOs can evaluate the reactivity of chemical compounds.

The energy states of HOMO (EHOMO) and LUMO (ELUMO) values are vital to study
the chemical interaction. EHOMO indicates electron donation capacity. Higher EHOMO
values suggest that the inhibitor has a greater ability to donate electrons and, hence, higher
inhibition efficiency. Therefore, the value of ELUMO is the capacity of the molecule, which
accepts electrons from the metal. The lesser its value, the higher its ability to accept electrons
will be [23]. The results found from this study suggest that the EHOMO value is −8.182
and the ELUMO value is −1.156. The higher energy values of EHOMO and lesser values of
ELUMO strongly imply that olmesartan is an excellent inhibitor. Therefore, the inhibitive
efficiency of olmesartan is determined by the energy gap (∆E) between HOMO and LUMO.
The lower value of ∆E indicates maximum adsorption chances of the inhibitor [24]. Higher
polarisation with more chemical reactivity and lower kinetic stability is obtained when the
energy gap is small. In our studies, the ∆E value is 7.026, and it is relatively comparable
with our earlier results. Mahendra Yadav et al. investigated the corrosion inhibition of three
Benzimidazole derivatives and found that ∆E values are 8.059 eV, 7.963 eV, and 7.947 eV
for Inh 1, Inh 2, and Inh 3, respectively [25]. J Zhang et al. studied the corrosion-inhibitive
characteristics for imidazoline phosphate and discovered an ∆E value of 8.83 eV with a
95% inhibition efficiency [26]. In a study of a few organic compounds, Nataraj et al. found
∆E values of 8.13 eV 6.56 eV, 5.47 eV, and 5.47 eV for the three inhibitors such as HYD, TAD,
and TRD, respectively [27]. HOMO and LUMO both refer to the ionization potential and
electron affinity of the molecule. In general, the capacity or potentiality of a molecule can
be defined in terms of some parameters. The vital parameters of the molecule decide the
inhibitive capability such as ionization potential (I), electron affinity (A), electronegativity
(χ), global hardness (η), and global softness (σ) were calculated by HOMO and LUMO
energies, and the mathematical expressions used to calculate them are as follows. Table 2
lists the calculated quantum chemical parameters.

A = −ELUMO (1)

I = −EHOMO (2)

χ =
I + A

2
(3)

α = − I + A
2

(4)

η =
I − A

2
(5)

σ = − I − A
2

(6)
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Table 2. Quantum chemical parameters of olmesartan molecules.

Sl. No. Quantum Chemical
Parameters Olmesartan

1 Molecular Formula C29H32N6O5
2 Molecular Weight 544.60 amu
3 Total Energy −244.84 a.u
4 EHOMO −8.182 eV
5 ELUMO −1.156 eV
6 ∆E = ELUMO − EHOMO (eV) 7.026 eV
7 Dipole Moment (µ) 7.83 Debye
8 Ionization Potential, (I) 8.182
9 Electron Affinity (A) 1.156
10 Electronegativity (χ) 4.669
11 Global hardness (η) 3.513
12 Global Softness (σ) −3.513
13 Chemical Potential (α) −4.669

The dipole moment (µ) of an inhibitor gives an idea about the inhibitor’s contact
with the surface of a metal. Higher dipole moment always suggests an excellent interplay
bearing high inhibition efficiency. The olmesartan molecule’s dipole moment is about 7.83,
which is very high compared with earlier results [28].

According to a literature review, a soft molecule is more reactive than a hard molecule,
and the energy difference is proportional to the softness or hardness of the molecule [29,30].
According to our findings, olmesartan has a low energy gap and a significantly high dipole
moment, suggesting that a reactive, soft molecule has corrosion inhibitor characteristics.
Furthermore, higher molecular weight of an inhibitor, small energy gap, and low elec-
tronegativity increase its effective adsorption on steel surfaces, leading to a lower metal
corrosion rate.

All of the above quantum chemical results suggest that the olmesartan molecule
behaves as an excellent corrosion inhibitor. The quantum parameters give a prelim-
inary idea of whether the molecule acts as a corrosion inhibitor, and they justify the
experimental results.
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3.2. Molecular Dynamics Simulation

The best approach for studying the adsorption interaction of an inhibitor with the
metal surface is molecular dynamics (MD) simulations. The beginning of the simulation
involves geometry optimization of inhibitors, solvent molecules (H2O), and corrosive ions
(H3O+). The simulation occurred when the temperature and energy of the system were
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in equilibrium. Then, the Interaction and Ebinding energies of the adsorbed inhibitor on the
surface were calculated using the following equations:

Einteraction = Etotal − (Esurface + H2O + H3O + Cl− + Einhibitor) (7)

where the total energy of the simulation system is referred to as Etotal. Einhibitor energy of
the free inhibitor molecule (Esurface + H2O + H3O + + Cl−) is equal to the energy of the iron
surface with H2O, H2O+, and Cl− ions, and the binding energy is given by

Einteraction = −Ebinding (8)

The absorption of an inhibitor molecule over the surface of Fe (110) is shown in
Figures 5–7 and provides a strong adsorption situation. The observation that the inhibitor
molecules adsorb on the iron layer suggests that chemical bonds between the inhibitor
and the metal surface are developed. The shortest bond length for the inhibitor and Fe is
2.9468 0A. This value means that there is a chemical bond created between the metal and
the inhibitor. Hence, chemisorption occurs on the Fe surface. The interaction energy of
the system is 16,575 kcal/mol. This considerable value indicates a more vital interaction
between metal and inhibitor. These values also imply that inhibitor molecule adsorption
takes place spontaneously. The higher the binding energy is another crucial factor in
measuring the adsorption behavior. A higher binding energy value indicates that stronger
adsorption is taking place between metal and inhibitor. These findings are in strong
correlation with quantum parameters and are verified by practical effects.
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3.3. Potentiodynamic Polarization Measurements

The soft-cast steel was subjected to potentiodynamic polarization studies in 1 mol dm−3

HCl. Potentiodynamic polarization plots are also referred to as Tafel plots, which were
recorded for soft-cast steel without and with the addition of various concentrations of
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olmesartan in 1 mol dm−3 HCl at temperatures ranging from 303 K to 333 K, as described
in Figure 8. Tafel plots were evaluated and discussed in contrast to corrosion kinetic
parameters such as corrosion potential (Ecorr), corrosion current density (icorr), cathodic
Tafel slope (C), anodic Tafel slope (a), and corrosion rate (v). The following expression
measures the inhibition efficiency (ηP) of olmesartan for soft-cast steel in 1 M HCl:

ηP =
i0 − i

i0
× 100 (9)

where i0 and i are described as the corrosion current density for soft-cast steel without and
with the addition of different concentrations of olmesartan in 1 mol dm−3 HCl. Table 3
shows the corrosion parameters calculated using the Tafel polarization method. The po-
tentiodynamic polarization measurement for soft-cast steel without and with the addition
of different concentrations of olmesartan in 1 mol dm−3 HCl indicates that the inhibition
efficiency increases as the concentration is increased.
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Figure 8. Soft cast steel Tafel polarization graphs without and with the various concentrations of olmesartan in
1 mol dm−3 HCl at elevated temperatures of (a) 303 K, (b) 313 K, (c) 323 K, and (d) 333 K.
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Table 3. The corrosion parameters by potentiodynamic polarization measurement.

Temp (K) Concentration of
Olmesartan (ppm) Ecorr (V) icorr

(µA cm−2) νcorr (mpy) βc
(mV/dec) βa mV/dec ηp %

303

Blank −0.415 0.228 0.369 −121 75 -
10 −0.389 0.180 0.211 −84 74 21.05
20 −0.388 0.100 0.121 −121 68 56.14
30 −0.387 0.090 0.105 −111 70 60.52
40 −0.386 0.084 0.082 −117 64 63.15
50 −0.383 0.059 0.070 −135 67 69.29

313

Blank −0.500 0.730 1.81 −102 70 -
10 −0.495 0.297 0.481 −099 59 59.25
20 −0.486 0.220 0.356 −109 62 69.81
30 −0.486 0.211 0.341 −102 65 71.09
40 −0.486 0.200 0.324 −106 61 72.50
50 −0.484 0.172 0.278 −103 65 76.38

323

Blank −0.481 0.733 8.514 −104 156 -
10 −0.486 0.327 0.547 −66 105 55.33
20 −0.489 0.250 0.415 −60 106 65.89
30 −0.485 0.241 0.312 −71 102 67.12
40 −0.386 0.230 0.248 −67 105 68.62
50 −0.468 0.202 0.146 −65 109 72.44

333

Blank −0.481 0.903 10.68 −129 96 -
10 −0.472 0.495 4.776 −90 136 45.18
20 −0.472 0.445 3.672 −128 92 50.71
30 −0.502 0.402 2.074 −120 81 55.48
40 −0.487 0.302 1.270 −96 61 66.55
50 −0.491 0.281 0.908 −101 64 68.88

The determined inhibition efficiency for olmesartan of about 76.38% was observed at
50 ppm in concentration in 1 mol dm–3 HCl at 313 K. Thus, the inhibition effect inhibitor
was decreased as the temperature was increased up to 313 K. The increasing inhibition
efficiency was due to inhibitor molecules’ adsorption over soft-cast steel surfaces from the
solution. The hydrogen liberation and metal dissolution are associated with the cathodic
and anodic reactions, respectively, and both these responses are reduced in the presence
of olmesartan.

A shift in the values of Ecorr for an inhibited solution concerning an uninhibited solu-
tion is around 32 mV, which is the indication that the olmesartan behaves as a mixed-type
inhibitor in nature [31,32]. Hence, the overall inhibition effect is due to olmesartan adsorp-
tion blocking active corrosion sites on steel surfaces. The blocking of inhibitor molecules
retards the electrochemical reaction, which reduces the corrosion of steel. The decreasing
values of corrosion current densities indicate that the decrease of metal dissolution. The
inhibitor inhibits both anodic and cathodic reactions, resulting in a decreased corrosion
rate [33].

3.4. Electrochemical Impedance Spectroscopy (EIS) Measurement

EIS measurements were carried out on soft-cast steel without and with various con-
centrations of olmesartan in 1 mol dm−3 HCl. Figure 9 shows the Nyquist plots for this
study, and Figure 10 shows the EIS data fitted with an electrical equivalent circuit. Table 4
shows the corrosion parameters calculated for EIS measurements, for instance polarization
resistance (Rp) and double-layer capacitance (Cdl). The following equation is used to
calculate the inhibition efficiency (ηZ ) of olmesartan,

ηZ =
RP − R0

P
RP

× 100 (10)
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where RP and R0
P are the polarization resistances of soft-cast steel without and with the

addition of different concentrations of olmesartan in 1 mol dm−3 HCl, respectively.
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Figure 10. Electrically equivalent circuit to fit EIS data, where R1, R2, R3, R4, and R5 are the
resistances; C1, C2, C3, C4, and C5 are the capacitances.

Because of frequency dispersion at the interfacial impedance of the metal surface
caused by inhibitor molecule adsorption [34], Nyquist plots were obtained. Confirmation
of the development of a protecting layer at the interface of the metal and the solution is
indicated by decreasing Cdl values as the concentrations of inhibitor increased. Conse-
quently, the decreasing values of Cdl are attributed to the adsorption of olmesartan to the
metal surface by displacing the water molecules and other ions previously adsorbed on
it. Additionally, decreasing Cdl values also indicate the increasing thickness of a double
layer or the shielding of the metal surface by inhibitor molecule. The inhibitor molecules
are chemically adsorbed onto the steel surface, forming a protective coating that inhibits
corrosion [35]. The inhibition efficiency of olmesartan is increased due to providing a
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protective layer at the metal/solution interface and the increasing concentration of the
inhibitor in 1 mol dm−3 HCl.

Table 4. The corrosion parameters for soft-cast steel in 1 mol dm−3 HCl by EIS measurement.

Temp Concentration of
Olmesartan (ppm) Rp Ω cm2 Cdl (F/cm2) ηz (%) Surface Coverage θ

303 K

Blank 120.7 0.032 - -
10 143.1 0.028 15.65 0.156
20 212.9 0.026 43.30 0.433
30 285.7 0.013 57.75 0.577
40 340.0 0.010 64.50 0.645
50 376.9 0.010 67.97 0.679

313 K

Blank 48.12 0.021 - -
10 158.00 0.014 69.54 0.695
20 188.00 0.013 74.40 0.744
30 215.00 0.010 77.61 0.776
40 238.60 0.012 79.83 0.798
50 281.80 0.009 82.92 0.829

323 K

Blank 48.12 0.024 - -
10 82.22 0.023 41.47 0.414
20 132.80 0.020 63.76 0.637
30 157.20 0.017 69.38 0.693
40 196.50 0.015 75.51 0.755
50 236.00 0.013 79.61 0.796

333 K

Blank 30.35 0.0321 - -
10 41.25 0.0315 40.51 0.405
20 59.68 0.0305 49.14 0.491
30 79.98 0.0236 62.05 0.620
40 101.10 0.0226 70.75 0.707
50 131.60 0.0212 76.93 0.769

The EIS provides a single depressed semicircle, and the semicircle’s diameter increases
as olmesartan increase its concentration. Therefore, the semi-circular appearance shows
that the charge transfer regulates steel corrosion, and the inhibitor does not alter the metal
dissolution process. The frequency dispersion of the interfacial impedance can determine
the deviation of an arch from the circular shape [36]. It is also generally due to the metal
surface’s inhomogeneity due to the character of the surface roughness. Increasing Rp and
decreasing Cdl values with an increasing concentration of inhibitor suggests forming a
protective layer on the surface of the metal and preventing corrosion [37].

3.5. Thermodynamics

The adsorption of inhibitor molecules on metal surfaces reduces the corrosion rate
of soft-cast steel. The inhibitor molecules from the bulk of the solution were observed
blocking the active corrosion sites above the metal surfaces. The EIS parameters showed
the mode of adsorption, such as the degrees of surface coverage (θ). We find a series of
straight lines closer to unity with the linear regression coefficient (R2), which defines the
adsorption isotherm model. As shown in Figure 11, the Temkin adsorption isothermal
model was the best fit for the present study. The expression for the adsorption isotherm of
the Temkin is

− 2aθ = ln Kads + ln C (11)

where C defines the solution concentration of olmesartan in terms of mol L−1, Kads is the
equilibrium constant for the adsorption process, which is associated with the following
standard free energy change [38]:

Kads = 1/55.5 exp(∆G0
ads/RT) (12)
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where R is the universal ideal gas constant, T is the absolute temperature, and water
concentration in solution (mol/dm3) is the standard value of 55.5. e Kad values can be
determined by the straight-line intercept obtained from the Temkin adsorption isotherm
plot, and the calculated results are reported in Table 5.
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Table 5. Thermodynamic data for steel surfaces in the absence and presence of various concentrations
of olmesartan in 1 mol dm−3 HCl at temperatures ranging from 303 K to 333 K.

Temperature (K) Kads (kJ/mol) ∆G0
ads (kJ/mol)

303 661.37 −26.47
313 986.19 −28.39
323 730.46 −28.49
333 765.11 −29.50

The negative sign in Table 5 suggests that the inhibitor adsorbs spontaneously from
1 M HCl on soft-cast steel surfaces. Therefore, the values measured within the range from
−40 to −20 kJ/mol suggest that the olmesartan has adsorbed on the metal surface [39,40].

3.6. Activation Parameters

Using activation parameters, we investigate the effect of temperature on an inhibition
efficiency of an inhibitor for metal surface in an aggressive corrosive media. Therefore,
Arrhenius and transition theory explored the activation parameters. The apparent activa-
tion energy (E∗a ) measured by Arrhenius equation for soft-cast steel in 1 mol dm−3 M HCl
is [41].

ln νcorr = ln A− E∗a
RT

(13)

where νcorr is the rate of corrosion and plots a graph of ln νcorr versus 1000/T, providing a
straight line with the slope of −E∗a /R and intercept of ln A, as presented in Figure 12. The
computed activation parameters are reported in Table 6.
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Figure 12. Arrhenius plot of soft-cast steel without and with the addition of various concentrations
of olmesartan in 1 mol dm−3 of HCl at temperatures ranging from 303 K to 333 K.

Table 6. Activation parameters for steel surfaces in the absence and presence of various concentrations
of olmesartan in 1 mol dm−3 HCl at temperatures ranging from 303 K to 333 K.

Concentration of
Olmesartan (ppm) Ea* (kJ/mol) A (g/cm2/h) ∆H* (kJ/mol) ∆S*

(J/mol/K−1)

Blank 11.61 22.46 × 102 9.09 −22.80
10 13.79 45.05 × 102 11.27 −22.10
20 13.95 42.59 × 102 11.44 −22.16
30 15.89 78.00 × 102 13.11 −21.65
40 17.29 123.82 × 102 14.44 −21.21
50 18.07 146.76 × 102 15.48 −20.95

For inhibited solutions, the E∗a values are greater than in an uninhibited solution that
controls the corrosion rate for soft-cast steel. The increased apparent activation energy
in the inhibited solution for the dissolution of carbon steel can be interpreted as physical
adsorption. Since the inhibition efficiency of an inhibitor decreases with increasing temper-
ature due to increased activation energy value, with increasing temperature, the inhibition
efficiency of olmesartan decreases.

A transition theory equation, used to measure the enthalpy (∆H∗) and entropy (∆S∗)
change in activation, is as follows:

ln
νcorr

T
=

[
ln

R
Nh

+
∆S∗

R

]
− ∆H∗

RT
(14)

where N designates the Avogadro number and h represents the plank’s constant. Plotting a
graph of transition theory ln

( νcorr
T

)
against 1/T provides a set of straight lines with a slope

value that describes the ∆H∗ value as shown in Figure 13. Computational values are listed
in Table 6. Positive values of ∆H∗ indicate the endothermic nature of the steel dissolution
phase. The shift in negative value from an increased concentration of olmesartan is the
driving force to overcome its adsorption barriers on the steel surface.
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Figure 13. Transition state plot for soft-cast steel without and with the addition of different concen-
trations of olmesartan in 1 mol dm−3 HCl at temperatures ranging from 303 K to 333 K.

3.7. SEM Analysis

SEM is a familiar study of the surface characterization for soft-cast steel without and
with the olmesartan concentration of about 50 ppm in 1 mol dm−3 M HCl. Figure 14 shows
the SEM micrographs. Closely examining Figure 14A shows that a damaged surface is
obtained when soft-cast steel is dipped in 1 mol dm−3 HCl solution in the absence of an
inhibitor solution due to corrosion attack. However, the surface shows less corrosion and
good smoothness in the presence of an inhibitor in Figure 14B. The inhibitor molecules
provide a protective layer on the metal surface, decreasing corrosion of soft-cast steel [42].
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4. Conclusions

An olmesartan drug was investigated as a corrosion inhibitor for soft-cast steel in
1 mol dm−3 HCl at temperatures ranging from 303 K to 333 K. Primarily, the anti-corrosion
property of olmesartan molecule was investigated with quantum and molecular dynamics
simulation studies helps to know the feasibility for this current research without any
experiments. Theoretical measurements confirmed that the olmesartan molecule suitably
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behaves as an effective corrosion inhibitor for soft-cast steel in 1 mol dm−3 HCl. Therefore,
the maximum inhibition efficiency of ∼80% at 50 ppm was attained. The key points of this
study are mentioned below.

• Quantum chemical parameters of olmesartan include a low energy gap value (∆E)
= 7.026 eV and high dipole moment value (µ) = 7.83, suggesting that the olmesartan
serves as an effective corrosion inhibitor for soft-cast steel in 1 mol dm−3 HCl.

• Molecular dynamic simulations anticipated spontaneous adsorption of olmesartan on
the surface of soft-cast steel by involving C, N, and O elements. They also confirmed
that the back-donation of electrons from the metal surface to the olmesartan molecule
increases the stability of the inhibitor layer.

• Electrochemical measurements such as polarization and impedance spectroscopy sug-
gest that an inhibitor’s inhibition efficiency increases in its increasing concentrations in
1 mol dm−3 HCl. The inhibitory activity of olmesartan is attributed to its adsorption
onto the surface of soft-cast steel.

• Olmesartan adsorption obeyed Temkin’s isotherm model with the values of ∆G0
ads

within the −40 to −20 kJ/mol range suggesting a mixed-mode of physisorption and
chemisorption.

• The activation parameters determine the effect of temperature on the inhibition effi-
ciency of olmesartan in 1 mol dm−3 HCl for soft-cast steel. The inhibition efficiency of
olmesartan decreases with the increasing the temperature.

• The SEM images for soft-cast steel in the presence of olmesartan in 1 mol dm−3 HCl,
indicate the smooth and uniform adsorption process of the metal surface’s protective
barrier.

Olmesartan is an effective corrosion inhibitor for soft-cast steel in 1 mol dm−3 HCl,
considering the above theoretical and experimental considerations. Hence, it can be used
in various reaction vessels and storage containers, which are having aggressive corrosive
media. Additionally, this work can be extended for different metal surfaces to protect from
corrosion attacks.
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