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Abstract— Optimization applications with TELEMAC are 
increasing due to interoperability development of the system 
module. The present work is based on a shape optimization 
process apply to a real problem: the optimization of the 
streamline trajectories in front of a pumping station intakes. 
Deflectors have been designed in the model upstream of the 
intakes to drive the flow as perpendicular as possible to the 
intake entrances. The deflector’s shape is defined based on two 
parameters controlling the size and the orientation respectively.  

In a first step, a cost function evaluating the orientation of the 
streamlines was defined. Then, a study was carried out on these 
two parameters to estimate, for each deflector, which 
configuration minimizes the cost function based on TELEMAC-
2D runs. Finally, a statistical emulator was used to link the input 
parameters with the cost function residual. Indeed, this 
metamodeling technique allowed a simplification of the 
TELEMAC-2D study, drastically reducing computational times. 
This was particularly useful to apply an optimization process on 
the parameters of the shapes, requiring many TELEMAC-2D 
study runs.  

The results of this study allowed identifying an optimal shape for 
each deflector, while ensuring a certain robustness of the 
solution. 

I. INTRODUCTION 
TELAPY, the API interface of the TELEMAC-MASCARET 

platform [1], allows the application of transverse mathematical 
tools for hydraulic studies with TELEMAC-2D. Its python 
interface offers the possibility to encapsulate a TELEMAC-2D 
run in OpenTURNS algorithms (www.openturns.org). Thus, [2] 
shows an example of uncertainty quantification on the input 
parameters of a TELEMAC-2D model. This type of method has 
also been applied for optimization processes in [3], in particular 
with automatic calibration applied on the bottom friction 
coefficient and tidal parameters, in comparison with measured 
data. [4] presents a schematic case of shape optimization on which 
the optimization process is applied. This is a fish pass for which 
shapes are defined to maximize the flow velocity in the central 
compartment. These shapes are introduced into the contour of the 
mesh and a cost function is evaluated on the TELEMAC-2D run 
to assess the relevance of the shapes to the targeted problem. As 
these shape optimization processes require a lot of evaluation of 
the numerical model, it is important, in this study with a large 
domain, to be interested in the metamodeling techniques 
developed in [5]. Indeed, the creation of a statistical model allows 
a quasi-instantaneous evaluation of an approximation of the 

TELEMAC-2D model, where the approximation error can be 
estimated. 

The aim of this study is to optimize the efficiency of pumps 
in a water intake station by modifying the streamlines 
upstream. In this framework, this work designs deflectors in 
the channel, before the intakes, to allow the flow to enter 
perpendicularly. The deflector shape should therefore allow 
the best possible response to the problem, while respecting the 
physical constraints of the pumping station channel.  

After presenting the tools used in this study in section II, 
the first step in this work is to carry out a parametric study. 
This study is organized as follow:  

1. The construction of the TELEMAC-2D model 
and the associated hydrodynamic parameters are 
presented in section III.A.  

2. The location and shape of the deflectors, the 
physical constraints associated with its shapes 
and the parameters describing them will be 
defined in III.B 

3. The cost function to evaluate the perpendicularity 
of the current lines at the inlet of the intakes is 
described in III.C.  

4. Finally, a large number of TELEMAC-2D 
simulations are run with randomly drawn 
deflector parameters to determine which shape 
minimizes the cost function, as presented in III.D.   

In a second step, described in section IV, a statistical model 
linking the shape definition parameters and the residuals 
calculated during the parametric study will be created. By 
applying an optimization algorithm to this statistical model, it 
is possible to obtain optimal shapes to respond to the problem 
of perpendicularity of the water lines. The study of the 
statistical model will also give the possibility to evaluate the 
smoothness of the solution in order to have an idea of the 
robustness of the solution (how a small change in the shape 
parameter influence the cost function evaluation). 
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II. PRESENTATION OF THE TOOLS 

A. TELEMAC-MASCARET Python tools 

1) TelApy 
TelApy [1] is a Python module that is part of the 

TELEMAC system. It is an API, Application Programming 
Interface, which allows the user to interact with the core of the 
TELEMAC system coded in FORTRAN using Python scripts. 
This module allows for example to control the execution of a 
simulation carried out with TELEMAC-2D by retrieving 
information at each time step. 

2) Postel 
Postel [8] is a Python module that is also part of the 

TELEMAC system. It allows to do post-processing by 
extracting data from the results file obtained from a 
simulation. It can be used as a visualization tool to plot the 
studied domain and the scalar fields representing the state 
variables of a simulation. In this case, it is mainly used to 
extract data for the cost function evaluation. 

B. Tools used in the SALOME platform 

1) GEOM 
SALOME's GEOM module is a design software that 

allows you to create geometric objects (curves, surfaces, 
points, etc.) in 2D and 3D. This module can be used with the 
SALOME graphical interface or by using the associated 
Python library by calling GEOM class functions in a script. 
This module has been used to define the contour of the 
calculation domain and the mesh refinement zones. 

2) MESH 
The MESH module of SALOME is used to mesh objects 

created in the GEOM module. It contains several algorithms 
to generate uniform but also more complex meshes. For 
example, it allows to mesh a domain by defining properties of 
sub-meshes. 

3) YDEFIX 
Ydefix is a C++ library of the SALOME platform that 

allows distributing a series of calculations on the resources of 
a machine. In this study, it allows us to distribute the 
calculations of the simulations on a computing cluster. This 
library can be used through the SALOME platform as a 
Python module. It allows to execute a Python script 
sequentially on a large number of processors in at the same 
time. It is therefore possible, for example, to launch a large 
number of TELEMAC-2D calculations via the module TelApy 
simultaneously. However, technical limitations of this module 
does not permit to run several TELEMAC-2D computations 
with the internal parallelism of the code. 

4) OpenTURNS 
OpenTURNS (Open source initiative to Treat 

Uncertainties, Risks'N Statistics) is a C++ library developed 
by EDF R&D, Airbus Group, IMACS Engineering, ONERA 
and PHIMECA allowing the treatment of uncertainties. This 
library can be controlled via a Python module or via the 
graphical interface of the SALOME platform. It allows a large 
number of applications, from data analysis to the creation of 

statistical models. It also contains several optimizers to solve 
minimization problems. 

III. PARAMETRIC STUDY 

A.  TELEMAC-2D model 
The pumping station studied pumps its water from the sea 

and is subject to tides. The domain represents the sea offshore 
over a 3 km zone with a 200 m mesh size, then in the channel 
the mesh size is 2 m. A third refinement zone is defined along 
the wall on which the pumps are located with a mesh size of 
20 cm. A new mesh is generated for each TELEMAC-2D run, 
keeping these characteristics, including the deflectors in the 
outline. A single mesh generation takes approximately 20 
seconds. 

The area of interest for the study is at the end of the channel 
where there are 20 intakes. The suction flow rate in the pumps 
are distributed as follows: 

• 2 pumps with a flow discharge of 1.1 m3/s; 

• 8 pumps with a flow discharge of 8.125 m3/s; 

• 2 pumps with a flow discharge of 1.1 m3/s; 

• 8 pumps with a flow discharge of 8.125 m3/s. 

Regarding boundary conditions, there are two types in the 
model. The sea boundary conditions, allowing the 
representation of the tide in the model, and the pump boundary 
conditions. Concerning the tidal boundary conditions, in order 
to have a good representation of both the free surface 
dimension in the model and the the current velocity,  a water 
height on the edge facing the channel entry and velocities, 
uniform over the depth, on the lateral edges are imposed. The 
imposed values are computed using the TPXO database and 
represent schematic tide of coefficient 120. For the boundary 
conditions of the pumping station, the suction flow rate 
imposed is constant, corresponding to the values described 
previously. In TELEMAC-2D the processing of boundary 
conditions is done in such a way that the velocity field is 
imposed perpendicularly to the boundary condition segments. 
As the objective is to study the direction of the flow at the 
entrance of the intakes a slight indentation has been created for 
each intake. They represent the beginning of the openings so 
that the entrance is not completely forced to be perpendicular. 
Figure 1 shows the position of boundary conditions and the 
definition of boundary conditions in the limits for the first 10 
intakes (the last 10 being similar). 
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Figure 1: Visualization of the imposition of the pumping station intakes in 

the model 

The calculation starts in a high sea state and lasts one and 
a half tidal cycle, i.e. 18 hours, and thus 64800 seconds. The 
beginning of the simulation, during the first half cycle, allows 
the establishment of the model to be independent from the 
initial condition. The results are therefore taken into account 
over the entire tide, in the last two-thirds of the simulation. To 
represent the friction effects of the bottom, a Manning-
Strickler friction law is used, with a Strickler's coefficient set 
at 57.6 m1/3/s. This value has been calibrated in a precedent 
study using velocity flow measurements with on several 
ADCP profiles. 

B. Definition of the deflector shapes 
In order to have a shape that is more adjustable than a 

simple circle, one opts for the catenary curve equation, a 
function well known in physics that describes the shape taken 
by a heavy and flexible cable. This shape is governed by the 
equation: 𝑓(𝑥) = 𝑎 ∙  cosh (𝑥𝑎), 

where the parameter 𝑎 has the dimension of a length, and can 
be interpreted in its physical sense as the length of the 
suspended cable.  

This function has been modified in this study to represent 
the orientation of the catenary curve. It becomes: 𝑓(𝑥) = 𝑎′ ∙ cosh (𝑥+𝑏𝑎′ ) + 𝑐, 

with: 𝑎′ = −𝑎𝑏2 and  𝑐 = 𝑎cosh ( 𝑏−𝑎)   if  𝑏 ∈ [0.5; 1], 
𝑎′ = −𝑎(1 + 𝑏)2 and  𝑐 = 𝑎cosh (1 + 𝑏−𝑎 )   if  𝑏 ∈ [0; 0.5]. 

Figure 2 shows how the length parameter 𝑎  influences the 
shape of the deflector. This parameter represents the amplitude 
of the shape, and it is used to define whether it will take up 
more or less space in the channel. It is important to note that 
the smaller is 𝑎, the larger is the shape. 

 
Figure 2: Illustration of the influence of the a parameter on the deflector 

shape (b=0.5). 

The second parameter 𝑏  influences the orientation of the 
deflector. Figure 3 illustrates its shape, depending on the value 
of 𝑏.  

 

 
Figure 3: Illustration of the influence of the b parameter on the deflector 

shape (a=1). 

These deflectors are inserted in the mesh contour, on the 
segment preceding each group of 10 pumps. Figure 4 shows 
their location in the domain. 
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Figure 4: Location of the deflectors in the domain, here with the parameters (a1 = 1, b1 = 0.5, a2 = 2, b2 = 0.5). 

Finally, we have four parameters that govern the 
optimization problem. Thus, we have two parameters 𝑎 and 𝑏  and two deflectors, so the entry points of the study are 
written as 𝑋 = [𝑎1, 𝑏1, 𝑎2, 𝑏2] ∈ [1; 5] × [0; 1] × [2: 5] ×[0; 1]. 
C. Cost function 

In order to optimize the pumping station efficiency, the 
streamlines should run as perpendicular as possible to the inlet 
of the intakes. The aim is to reduce the 𝛼 angle, shown by the 
black arc in Figure 5, between the normal line at the inlet and 
the line defined by the water velocity vectors. For every 
simulation, the goal is to give a single value of the residual to 
be able to classify the shapes of the deflectors and evaluate 
which one is the most appropriate for this physical issue.  

 
Figure 5: Schematic representation of the optimization problem. 

One defines the function atan2(𝑦, 𝑥), with the formula: 

atan2(𝑥, 𝑦) = 2arctan ( 𝑦√𝑥2 + 𝑦² + 𝑥), 
with 𝑥 ≠ 0. The interest of using this function lies in the fact 
that it allows to calculate the angle between two vectors. 

With a reference system (𝑖, 𝑗)  defined at the intake, as 
shown in Figure 6, one can note 𝑉⃗⃗ = (𝑥𝑦) , 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = (𝑥0𝑦0)  and 𝜙 = atan2(𝑦 − 𝑦0, 𝑥 − 𝑥0) . We thus have 𝜙  the angle 
between 𝑉⃗⃗ representing the velocity vector at the entrance of 
the intake and 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ , where A and B are the two points located 
at the intake entrance extremities.  

 
Figure 6: Illustration of the notation to define the cost function. 

One then distinguishes two cases: 

• If 𝜙 < 0, the velocity vector enter the intake and 
we set 𝛼 = ||𝜙| − 𝜋2| ; 

• If 𝜙 ≥ 0, the velocity vector enter the intake and 
we set 𝛼 = 𝜋 − |𝜙 − 𝜋2|. 

We therefore have a residual angle 𝛼  between 0 and 𝜋 
which takes into account the direction of arrival of the vector. 
The minimum 0 is reached when the vector enters 
perpendicularly into the intake. The maximum is π and it is 
reached when the vector exits perpendicularly from the intake.  

For a fixed simulation, for a time iteration in the 
TELEMAC-2D computation 𝑖 and an intake 𝑗 ∈ [1, 𝑛], with 𝑛 = 20, we calculate for each of the 𝑁 interpolated vector 𝑉𝑖,𝑗𝑘  on the segment [𝐴, 𝐵]𝑗 , the angle between the vector 𝑉𝑖,𝑗𝑘  
and the line normal to the segment [𝐴, 𝐵]𝑗. Averaging on the 𝑁 interpolated vector, one have:  𝑆𝑖,𝑗 = ∑ 𝛼𝑖,𝑗𝑘𝑁𝑘=1𝑁 , 
with: 

• 𝛼𝑖,𝑗𝑘 = ‖𝑉𝑖,𝑗𝑘 ‖ ||𝜙𝑖,𝑗𝑘 | − 𝜋2| si 𝜙𝑖,𝑗𝑘 < 0; 

• 𝛼𝑖,𝑗𝑘 = ‖𝑉𝑖,𝑗𝑘 ‖ (𝜋 − |𝜙𝑖,𝑗𝑘 − 𝜋2|) si 𝜙𝑖,𝑗𝑘 > 0. 
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Averaging then over the iteration number during all the 
computational time, and over all the intakes, one obtain the 
final residual estimation: 

𝑅𝑒𝑠 = ∑ ∑ 𝑆𝑖,𝑗𝑛𝑖𝑡𝑒𝑟𝑖=0𝑛𝑖𝑡𝑒𝑟𝑛𝑗=1 𝑛 . 
D. Sampling and results 

In order to carry out the parametric study, it was necessary 
to sample the shape parameters in an optimal way. Indeed, it 
is necessary to obtain as much information as possible on the 
behaviour of the model output for each point 𝑋 = [𝑎1, 𝑏1] ×[𝑎2, 𝑏2] evaluated by the TELEMAC-2D numerical model. 

There are several ways to explore a given domain: divide 
it in a regular way (all the points in the domain are equally 
distributed), sampling it randomly or using quasi-random 
methods, known as "space filling". Given that the domain has 
4 dimensions, using a regular grid would require a lot of points 
to evaluate in order to hope to explore the domain in an 
optimal way. On the other hand, the use of a random sampling 
method such as the Monte-Carlo method following a 
probability law would not allow to cover the whole space, 
some areas would remain unexplored. This is due to the 
independent nature of each point draw. There are therefore 
several quasi-random methods for obtaining an optimized 
sampling allowing exploring the domain in an optimal way 
without having to generate a too large sample. In our case, the 
LHS method (Latin Hypercube Sampling) has been used. This 
method is based on a uniform probability law, in our case, for 
each parameter. Each sample is then positioned based on the 
precedents so that they do not have common coordinates 
between them.  

In order to further optimize the space coverage, 500 LHS 
samples are drawn are made and the one with the best space 
coverage is selected, minimizing the centered 𝐿2 discrepancy 
[7]. The OpenTURNS module was used to sample the shape 
parameters. To carry out the parametric study, a sampling of 
720 points was carried out. 

All 720 TELEMAC-2D runs to obtain the results files were 
launched using the YDEFIX module of the SALOME 
platform. Each calculation is carried out on a processor and the 
duration of a calculation is between 12 and 15 hours. The 
YDEFIX module also allows calculating the residuals 
associated with each simulation, by launching both the post-
processing of the results files using Postel [8] and the 
evaluation of the cost function. This process takes about 2 h 
30 min on 36 processors with YDEFIX, compared to more 
than 10 times more if the results had been evaluated 
sequentially. Indeed, this post treatment process is very costly 
because it requires the extraction of the results on 20 intake 
entries, for 720 results file, each one containing more than 200 
frames. 

Once for each calculation, a residual is identified. The 
minimum residual the cost function is retained and the 
parameters of the forms that make it possible to obtain this 
minimum residual id extracted. The shape obtained is 
described by the point ( 𝑎1 =2.47, 𝑏1 =0.15, 𝑎2 =2.65, 

𝑏2=0.15). Figure 7 shows the shapes with the smaller residual. 
Both shapes are large and oriented towards the upstream side 
of the channel. This causes an acceleration of the flow on the 
opposite side of the channel. This also creates a small 
recirculation after the shapes, orienting the flow in the desired 
direction in the two first intakes with low suction rate. The 
minimum residual is 0.259345 and the maximum residual is 
0.5120612 obtained for the shapes with the parameter set 
(𝑎1=4.43, 𝑏1=0.53, 𝑎2=4.36, 𝑏2=0.53). 

 

 
Figure 7: Shapes of the deflector minimizing (top) and maximizing (bottom) 

the cost function. 

VII. METAMODELING AND OPTIMIZATION 

A. Creation of the metamodel 
A metamodel, is a mathematical function that allows 

replacing a very time-consuming model. It makes it possible 
to approximate the answers of a complex model, while having 
a very negligible calculation cost in comparison. In our case, 
a metamodel has been created to approximate the residuals of 
the cost function defined above. To generate a metamodel, the 
720 points already evaluated by the TELEMAC-2D model are 
used as a learning data base.  

As input for the model, one defines 𝑋𝑠 ∈ ℝ720×4, all the 
points of the LHS experimental design. At the output, one 
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defines 𝑌𝑠 ∈ ℝ720, the set of values of the residuals of a cost 
function. One then can note: 

𝑋𝑠 = ( 𝑋1⋮𝑋720) = ( 𝑎11 𝑏11 𝑎21 𝑏21⋮ ⋮ ⋮ ⋮𝑎1720 𝑏1720 𝑎2720 𝑏2720) ; 
𝑌𝑠 = ( 𝑌1⋮𝑌720) = ( 𝐺(𝑋1) = 𝑅𝑒𝑠1⋮𝐺(𝑋720) = 𝑅𝑒𝑠720), 

which is the learning database for the metamodel. 

The metamodel interpolation has been done with the 
kriging method via OpenTURNS. It consists in considering 
the deterministic output 𝐺(𝑋𝑖) = 𝑌𝑖 , 𝑖 ∈ [1, 𝑁]  and 𝑁 =720  obtained using the TELEMAC-2D model as the 
production of the random field described as: 𝐺(𝑋𝑖) = 𝛽𝐹(𝑋𝑖) + 𝑊(𝑋𝑖), 
where 𝛽𝐹  is the regression part of the model and 𝑊  the 
stochastic part. The regression function used is linear. Thus, it 
reads: 

𝛽𝐹(𝑥) = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖𝑁
𝑖=1 . 𝑊  is also called Gaussian process and one can write 𝑊 ∼𝑁(0, 𝑐) where 𝑐 is a covariance function such that 𝑐 = 𝜎²𝑟 

with 𝑅  the correlation function. The Matérn covariance 
function is used. It is described as: 𝑐(𝑥, 𝑢) = 𝜎2 2𝛼−1Γ(𝛼) − (√2𝛼 ‖𝑥 − 𝑢𝜃 ‖2)𝛼 𝐾𝛼− (√2𝛼 ‖𝑥 − 𝑢𝜃 ‖2), 
with Γ  the gamma function, 𝐾𝛼   the modified Bessel 
function of the second kind and 𝛼 , 𝜃  and 𝜎  three strictly 
positive parameters respectively set to 1.5, 1 and 1. 

Let 𝑥∗ be a new unsampled point, to determine its value 
using the metamodel. The result by Gaussian kriging is given 
by the Best Linear Unbiased Prediction: 𝐺̂(𝑥∗)|𝑋𝑠,𝑌𝑠~𝑁(𝜇(𝑥∗), 𝜎̂2(𝑥∗)), 
with: 𝜇(𝑥∗) = 𝛽𝐹(𝑥∗) + 𝑟(𝑥∗)𝑅𝑠−1(𝑌𝑠 − 𝛽𝐹(𝑋𝑠)), 𝜎̂2(𝑥∗) = 𝜎²(1 − 𝑟(𝑥∗)𝑇𝑅𝑠−1𝑟(𝑥∗), 
where one has: 𝑟(𝑥) = (𝑅(𝑥1, 𝑥), … , 𝑅(𝑥𝑁 , 𝑥))𝑇 , (𝑅𝑠)𝑖,𝑗 = 𝑅(𝑥𝑖 , 𝑥𝑗), 
with: 𝑅(𝑥, 𝑢) = 𝑐(𝑥, 𝑢)𝜎² . 

[9] shows that, with a kriging interpolation, a sample size 
of a few hundred is sufficient to get a good estimation of the 
metamodel, even with high dimensional inputs (superior to 
10). The size of the learning sample chosen here then appears 
to be sufficient. In this study, a convergence study showed that 
a sample of less than 100 inputs is enough in this case. 

B. Validation 
In order to assess the predictivity of the metamodel, the 

criterion 𝑄2  is used. It requires a test database from the 
numerical model that was not used to create the metamodel. 
We therefore use 90% of the database to learn the metamodel 
and 10% to validate it through the 𝑄2  estimation. This 
coefficient quantifies the part of variance of 𝑌̅, which is the 
set of output values of the test database, described by the 
metamodel. The criterion writes: 

𝑄2(𝑌, 𝑌̂) = 1 − ∑ (𝑌𝑖 − 𝑌̂𝑖)2𝑁𝑖=1∑ (𝑌̅ − 𝑌𝑖)2𝑁𝑖=1 , 
where: 

• 𝑌𝑖 are the observed values from the test database, 

• 𝑌̂𝑖 are the values predicted by the metamodel, 

• 𝑌̅  is the calculated average of the observed values 
from the test database. 

The closer the Q2 coefficient is to 1, the better the fit of the 
model to the observations in the test database.  

For the metamodel constructed with the cost function 
above presented, the predictivity criterion Q2 obtained is 
0.859. Figure 9 shows the differences between the evaluation 
by the model and the metamodel on the validation sample. It 
can be seen that the metamodel reproduces the TELEMAC-
2D model well in most cases. 

Figure 8: Validation test of the metamodel. 

C. Sensitivity analysis 
Sobol analysis is a sensitivity analysis technique based on 

variance decomposition. Given 𝑋𝑖𝑘  a random vector , 𝑖 ∈[1, 𝑛] with 𝑛 the number of input parameters per evaluation, 
4 in our case, and 𝑘  the model dimension. Let 𝑌𝑘   be the 
output random variable of the model obtained with the input 
vector 𝑋𝑖𝑘. Then for a fixed 𝑘, one quantifies the dependence 
of the parameter 𝑌 on the input variables of the vector 𝑋𝑖. 
One considers the numerical model G such as: 𝑌𝑘 = 𝐺(𝑋𝑖𝑘). 
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Using the Sobol index method, one therefore tries to evaluate 
the part of the variance of the vector 𝑌𝑘 due to the different 
components of the vector 𝑋𝑖𝑘. To do this, the method is based 
on a decomposition of the variance Var[𝑌] using the Sobol-
Hoeffding formula [10]: 

Var[𝑌] = ∑ 𝑉𝑖𝑛
𝑖=1 + ∑ 𝑉𝑖,𝑗𝑖<𝑗 + ∑ 𝑉𝑖,𝑗,𝑙𝑖<𝑙<𝑗 + ⋯ + 𝑉1,2,…,𝑛, 

with 𝑉𝑖 = 𝑉𝑎𝑟[E[𝑌|𝑋𝑖]]  and 𝑉𝑖,𝑗 = Var[𝐄[𝑌|𝑋𝑖]] −Var [𝐄[𝑌|𝑋𝑗]], where E represents the expected value. 

One can then define the Sobol indices: 

• the first-order Sobol index, denoted 𝑆𝑖 , which 
quantifies the impact caused by the variable 𝑋𝑖 on 
the variance Var[𝑌] , independently of the 
interactions that 𝑋𝑖 can exert on the other variables 𝑋𝑗, 𝑗 ≠ 𝑖. It is expressed as: 𝑆𝑖 = 𝑉𝑎𝑟[E[𝑌|𝑋𝑖]]Var[𝑌] ; 

• the total Sobol index, denoted 𝑆𝑇𝑖 , which defines the 
sum of all interactions in which variable 𝑋𝑖  is 
involved. It is written: 𝑆𝑇𝑖 = 𝑉𝑎𝑟[E[𝑌|𝑋−𝑖]]Var[𝑌] , 

with 𝑋−𝑖 the vector 𝑋 without its 𝑖th component. 

The Sobol sensitivity analysis is applied to the metamodel 
constructed with the cost function evaluating the orientation of 
the flow at the intakes. 5000 evaluations of the metamodel are 
used to estimate the Sobol’s indices. Figure 9 shows the 
influence of each parameter defining the shapes by displaying 
their first-order and total Sobol indices. Note that the most 
influential parameter is parameter 𝑏1  representing the 
orientation of the first deflector. It can therefore be thought that 
this parameter is very influential in minimizing the residual of 
the cost function through recirculation created by this 
orientation, greatly influencing the direction of flow at the two 
first intakes. The second most important variable is the size of 
the first deflector, which can be explained by the fact that a 
shape that is too small does not generate sufficient 
recirculation to have a significant effect at the first intakes. 
Finally, it can be seen that the parameters of second deflector 
have little influence on the residuals. This little influence on 
the residuals can be explained by the fact that the second 
deflector is the closest to the end of the channel. The pumping 
here is playing a bigger role in hydraulic forcing and thus less 
flow is drawn to the end of the channel. The flow is therefore 
less likely to be parallel to the intakes and a deflector has less 
influence on the flow orientation.  

Figure 9: Sensitivity analysis of each shape parameter using Sobol indices. 

D. Optimizer 
The COBYLA optimizer is used via OpenTURNS [6]. 

This algorithm works on an incrementally principle: for each 𝑥, the optimizer evaluates 𝑓(𝑥) then, from an 𝑥𝑖 such that |𝑥 − 𝑥𝑖| < 𝜌, 𝜌 ∈ ℝ, calculates 𝑓(𝑥𝑖) and compares its value 
to 𝑓(𝑥).  If the new value 𝑥𝑖  gives  |𝑓(𝑥𝑖)| < |𝑓(𝑥)|  then 𝑥 = 𝑥𝑖   is the new starting point for the next iteration. The 
control distance 𝜌 is decreased during iterations in order to 
evaluate the minimum of the function as accurately as 
possible. Optimization algorithm finishes when the control 
radius 𝜌 becomes less than a predefined value 𝜌𝑒𝑛𝑑  (fixed 
to 10-5). In other words, the initial input of the algorithm are a 
starting point 𝑥0 , a control radius initial 𝜌𝑏𝑒𝑔  and a target 
radius 𝜌𝑒𝑛𝑑 .  The diagram in Figure 10 can schematize it.  

Figure 10: scheme of the COBYLA optimizer algorithm. 
The main weakness of this algorithm is its inability to 

distinguish a local minimum from a global minimum. To 
overcome this disadvantage, it is necessary to make a 
multistart. This consists in running the algorithm several times 
with different starting points evenly distributed in space. The 
number of starting points is fixed to 500 in this study. 

The optimizer has been applied to the metamodel created 
from the cost function. Its application gives an optimal point 
of (𝑎1 =2.4, 𝑏1 =0.16, 𝑎2 =2.2, 𝑏2 =0.16). The shape found 
with the parametric study thus gives a lower residual than the 
one found with the optimizer. However, the values of the 
parameters obtained are close ((𝑎1=2.47, 𝑏1=0.15, 𝑎2=2.65, 𝑏2 =0.15) and (𝑎1 =2.4, 𝑏1 =0.16, 𝑎2 =2.2, 𝑏2 =0.16)) and the 
residuals are low for both configurations 0.259345 and 
0.292294. In particular, the parameters 𝑏1 and 𝑎1, which are 
the parameters identified as having the most influence during 
the sensitivity analysis are close. This seems to show that a 
small perturbation of the parameters of the first form leads to 
a small increase of the residual and therefore this could be a 
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sign that the obtained solution is robust. Figure 11 shows that 
the streamlines in the channel obtained with the shape from 
the optimizer are quite close to those observed with the shape 
from the parametric study in Figure 7. 

 
Figure 11: Velocities and streamlines for the shape obtained with the 

COBYLA optimizer. 

VIII. CONCLUSION 
This paper presents an optimization study of the shape of 

deflectors in a pumping station in order to orient the flow as 
well as possible in its intakes.  

First, after having built the TELEMAC-2D model, the 
shapes of the two deflectors had to be described with two 
parameters each, allowing to control their size and orientation. 
Then, a cost function was defined to evaluate the orientation 
of the flow lines at the intakes entrance. Then, automatic mesh 
generation methods to run 720 calculations with shape 
parameters drawn randomly, and to calculate a residual for 
each run. It was then possible, to identify for which parameters 
the minimum residual was observed. In this case, the 
deflectors obtained are of medium size, with a shape oriented 
upstream, creating a recirculation small the first one.  

Then, a metamodel was created with a kriging method, to 
interpolate the input parameters of the database of the 720 
calculations and the output residuals. This model was 
evaluated by a quality criterion, Q2, to ensure that the 
metamodel represents the responses of the numerical model. 
It then allowed a sensitivity analysis to be performed on the 
input parameters, giving the orientation of the first deflector 
and, to a lesser extent, its size, as the most important 
parameter. An optimization of the deflector parameters was 
then carried out on the metamodel and the results gave 
parameters close to those obtained with the minimum of the 
parametric study. A TELEMAC-2D calculation with the 
parameters resulting from the optimization also gave a low 
residual, close to the minimum of the parametric study. The 
solution found during the parametric study is therefore 
retained, and its robustness has been demonstrated by an 
optimization study giving very similar results. 

One perspective considered in this work is to evaluate a 
second cost function assessing the sedimentation potential in 

the channel, and to define the shapes of the deflectors by 
optimization on multi-objective criteria. 
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