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Abstract:  

A variety of empirical formulas to predict river bed evolution with hydro-morphodynamic river 

models exists. Modelers lack objective guidance of how to select the most appropriate one for a 

specific application. Such guidance can be provided by Bayesian model selection (BMS). Its applica-

bility is however limited by high computational costs. To transfer it to computationally expensive 

river modeling tasks, we propose to combine BMS with model reduction based on arbitrary Poly-

nomial Chaos Expansion. To account for approximation errors in the reduced models, we introduce 

a novel correction factor that yields a reliable model ranking even under strong computational time 

constraints. We demonstrate our proposed approach on a case study for a 10-km stretch of the 

lower Rhine river. The correction factor may shield us from misleading model ranking results. In 

our case, the correction factor was shown to increase the confidence in model selection. 
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Surrogate-enabled model selection 

1 Introduction  

Modern river management must consider numerous requirements, such as flood protection, provi-

sion of safe and efficient navigation, floodplain agriculture, ecology and recreation. These require-

ments are often in conflict with each other, especially for multi-function rivers in densely populated 

areas. As the hydraulic regime, sediment transport and riverbed elevation play a significant role in 

handling these requirements, a good grasp of hydro-morphodynamic processes is important. 

The river hydrodynamics can be described by the conservation laws of mass, energy, and momentum 

applied to water as an incompressible fluid. Hydrodynamic models enable a river engineer to inves-

tigate the flow processes in water bodies and provide predictions at various scales. Water flowing in 

natural rivers is capable of scouring riverbeds, carrying particles (heavier than water) and depositing 

materials, resulting in sediment transport and corresponding changes in bed topography. The under-

standing of river morphodynamics is essential for proper management and prediction of critical ero-

sion and sedimentation processes occurring in streams, such as bank erosion, sediment wave 

propagation, interactions with man-made structures (bridges, weirs), silting up of reservoirs, sedi-

ment mining, degradation/aggradation of river channels and planform changes. 

However, sediment transport formulas (bed load or total load) have improved only insignificantly 

over time, and the proposed theories have not been able to predict the actual sediment discharges ac-

curately. Sediment transport depends, in a complex and poorly understood way, on several parame-ters related to flow and sediment (Beckers et al., 2017). Therefore, almost all the existing sediment 

transport predictors have been derived under certain simplifications and assumptions. These are 

responsible for a large fraction of inaccuracies in sediment estimations and seldomly aligned with 

natural processes in rivers (Habibi, 1994; Papanicolaou et al., 2008). Another difficulty in develop-

ing and assessing sediment transport formulas is the lack of sediment data. The amount of availa-

ble sediment data cannot fully represent the temporal and spatial variations in natural rivers. 

Most sediment transport formulas have been developed in two stages. First, a theoretic relationship 

is postulated which attempts to relate the sediment transport rate to hydraulic and sedimentological 

quantities. Second, the proposed formula is revised or parameters are adjusted after comparison 

with data (e.g. Meyer-Peter et al., 1934 or Ackers and White, 1973). Numerous sediment transport 

formulas originate from experimental data by the original authors (e.g. Schoklitsch, 1934), which 

usually have been accompanied by data obtained by one or several previous investigators, commonly 

including that of Gilbert and Murphy (1914). Moreover, the capability of a formula has been regularly evaluated based on its agreement with a limited amount of field data (Müller, 1937). Altogether, most formulas owe their origin to a relatively limited data set, and their effectiveness has been tested via comparatively few field data. Consequently, no single formula has been either widely accepted or 
recognized as being particularly appropriate. 
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While the scarcity of reliable field data has apparently not been helpful to validate sediment transport 

formulas, there have been some attempts to evaluate and compare their performances. Since the first 

comparison study by Johnson (1943), a long list of further evaluation studies have been presented in 

the literature (e.g., Cole et al., 1973; Hubbell and Matejka, 1959; Jordan, 1965; Martin and Ham, 2005; 

Yang and Wan, 1991). Batalla (1997) concludes that the degree of accuracy between observed and 

predicted values differs significantly from one formula to another. Similarly, most evaluations deduce 

that no formula performs reliably across many different situations; this can be accredited to limita-

tions of test data and to restrictions of experiments and the physical characteristics of the transport 

phenomena (López et al., 2014). Testing the predictive abilities of these formulas over intermediate 

temporal scales (approximately decades) and spatial scales (a length of at least several kilometers) 

is limited by a lack of field data on sediment transport rates at these levels, especially due to the 

spatiotemporal variability of sediment transport and riverbed composition (Wilcock, 2001). Accord-

ing to Gomez and Church (1989), there are more sediment transport formulas than reliable data to 

test them. However, the studies cited above demonstrate that no individual formula can be labeled 

as ideal for the full range of existing morphodynamic conditions. 

Regardless of the enhanced research in the field of sediment transport shortly discussed above, the 

greatest challenge in many hydro-morphodynamic studies is to determine the best formula that de-

scribes the morphodynamic condition of a given river stretch. Therefore, a set of competing formulas 

should be considered and objectively ranked in the light of the specific characteristics and available 

data of the study site. Evaluating the relative merits of competing formulas can be challenging in the 

face of limited data and uncertain model parameters and inputs. Hence, there is a need for a con-

sistent framework that allows to rank competing hydro-morphodynamic models as a basis for objec-

tive model choice. This framework must account for the uncertainty in model choice, in parameters 

and in data that plagues most hydro-morphodynamic situations. 

For this task, we suggest to apply the framework of Bayesian model selection to identify the most 

suitable hydro-morphodynamic model. Bayesian model selection (BMS) uses rigorous concepts of 

probability theory and numerical integration to obtain a model ranking (Draper, 1995; Raftery, 

1995). Objective choice of models based on this ranking significantly reduces the potential bias in 

modeling. However, direct implementation of the BMS framework requires a large number of model 

runs and becomes computationally very demanding (Schöniger et al., 2014). Several approaches to 

reduce the computational burden of BMS have therefore been proposed in the field of water re-

sources, e.g. thermodynamic integration (Liu et al., 2016), nested sampling (Skilling et al., 2006) or 

Gaussian mixture importance sampling (Volpi et al., 2017), to name a few selected examples. These 

approaches rely on efficient numerical solutions to determine Bayesian model weights, but still re-

quire on the order of tens to hundreds of thousands of model runs. 

Generally, Bayesian inference theory can be seen as a statistically rigorous approach to deal with 

uncertainty. It provides probabilistic information on the remaining uncertainty in parameters and 

predictions after calibration. Camacho et al. (2015) provide a comparison of traditional Bayesian ap-

proaches such as Bayesian Monte Carlo and Markov chain Monte Carlo with the Generalized Likeli-

hood Uncertainty Estimation for uncertainty analysis in hydraulic and hydrodynamic modeling. 

Bayesian updating of parameters for a sediment entrainment model via Markov chain Monte Carlo 
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has been presented in Wu and Chen (2009). However, sampling-based stochastic approaches are 

more expensive than classical optimization-based (deterministic) calibration techniques, because 

they need to explore the full range of possible model outcomes for the entire feasible parameter 

range requiring many model runs. A particular reason for the high computational costs is that, when 

exploring the full range of possible model outcomes, many model runs are rejected upon comparison 

with data. Therefore, the high computational costs of forward modeling get multiplied by large fac-

tors in stochastic calibration methods. Recently, various model reduction techniques have been com-

bined with Bayesian updating to reduce the computational burden (see, e.g., Bazargan et al., 2015; 

Jin, 2008; Laloy et al., 2013; Zeng et al., 2016). For a comprehensive review of approaches to model 

reduction in water resources, we refer to Razavi et al. (2012). A model calibration framework using 

strict Bayesian principles combined with the so-called arbitrary polynomial chaos expansion for 

model reduction has been established in Oladyshkin et al. (2013a). This approach was the first to be 

applied successfully to a real large-scale pilot site for geological carbon dioxide storage in Europe 

(see Oladyshkin et al., 2013b). The specific limitations of polynomial chaos-based methods for Bayes-

ian inversion have been discussed in Lu et al. (2015). Several attempts to reduce full-complexity mod-

els in river engineering have been discussed in Nicholas (2009) and Liang et al. (2015), however not 

in a Bayesian context. 

We continue this recent trend toward stochastic calibration based on so-called response surfaces, 

reduced models, surrogate models, emulators, meta-models, etc. To accelerate the forward modeling, 

we will construct response surfaces that represent the dependence of the outputs of full-complexity 

hydro-morphodynamic models on the modeling parameters. However, due to computational time 

constraints, the response surface might not be trained well enough to represent the full-complexity 

model sufficiently well. This indicates that there is a trade-off between a wide context of applicability 

and large computational time. We suggest to use iterative improvement (see Li and Marzouk, 2014; 

Oladyshkin et al., 2013a) of the response surface within the limited simulation time budget to in-

crease the reliability of the reduced models. 

Then, we make use of the fact that reduced models are already established for stochastic calibration 

and propose an approach to combine BMS with model reduction (Section 3). This combination allows 

us to transfer BMS to the practical field of river modeling, despite the large computational burden of 

hydro-morphodynamic models. Previous approaches to reduce the number of required model runs 

such as efficient numerical integration as described above are not applicable because they cannot 

reasonably operate on sample sizes on the order of 10–100, which is the computational limit set to 

our case study. Here, one full-complexity model run takes about 7.5 cluster hours. After construction 

of the reduced models with this very small number of full-complexity model runs, computational 

time of the reduced models is negligible (milliseconds). 

Since reduced models are only a (possibly rough) approximation of the full-complexity model, the 

validity of model ranking results based on reduced models clearly depends on the quality of approx-

imation. We argue that the model ranking may turn out differently for reduced models than for full-

complexity models, which could trigger biased conclusions and finally possibly adverse management 

decisions. To avoid such misleading results, we propose to explicitly account for the quality of ap-

proximation by the reduced model in model ranking. By applying a correction factor that penalizes 
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approximation errors, we obtain model ranking results that are more representative of the actual 

full-complexity model ranking. While BMS has recently gained popularity in various fields of geosci-

ences and engineering to deal with model choice uncertainty (e.g., Brunetti et al., 2017; Elsheikh et 

al., 2012; Lötgering-Lin et al., 2016; Marshall et al., 2005; Poeter and Anderson, 2005; Refsgaard et 

al., 2012; Schöniger et al., 2015; Wöhling et al., 2015), applications to reduced models to circumvent 

computational limitations are a logical next step but only start to emerge. For example, Jia et al. 

(2018) estimates integrated model uncertainty for 12 alternative carbon dioxide storage models us-

ing Bayesian model averaging approach and polynomial chaos expansion. Due to the computational 

challenging physical problem, Jia et al. (2018) suggests to estimate the corresponding model weights 

using the reduced model obtained from 50 randomly sampled model runs. Targeting the same direc-

tion, Xue et al. (2018) have employed probabilistic collocation method based on prior distribution to 

construct polynomial chaos expansion for a groundwater flow application. Then they have used the 

obtained reduce model to produce a model averaged prediction based on Bayesian model weights. 

Their comparison with traditional Monte Carlo implementation for the full models indicates that re-

duced models can yield a very accurate model weighting. However, they relied on more than 1000 

model runs to establish six reduced models. In typical practical applications, such a comparison with 

a reference solution for model weights is infeasible, given that a reliable estimation of model weights 

requires on the order of millions of model runs (Schöniger et al., 2015; 2014). To the best of our 

knowledge, we are the first to propose a correction factor that establishes a link between the model 

ranking results for reduced models and for full-complexity models, working with just the number of 

model runs required for building the reduced models. With the proposed approach, we hope to pro-

mote the use of BMS in river engineering and in fact any discipline that is confronted with model 

choice among computationally demanding models. 

In short, the main contributions of our study are: (1) applying an advanced model reduction strategy 

to hydro-morphodynamic models, (2) demonstrating Bayesian selection of several alternative hy-

dro-morphodynamic models based on model reduction, and (3) correcting the obtained model rank-

ing results in the light of the approximation errors made by the reduced models. 

We demonstrate the applicability of our proposed Bayesian concept to river engineering in both a 

synthetic benchmark study and a real-data case study of the Lower Rhine in North Rhine-Westphalia, 

Germany. The models used in our studies are described in Section 2. In Section 3.1, we explain the 

basic concepts of Bayesian updating and BMS. To satisfy the computational budget constraints of the 

presented project (limiting ourselves to less than 100 model runs in total), we first build surrogate 

models (response surfaces) via arbitrary Polynomial Chaos (aPC) (Section 3.2), and then apply iter-

ative Bayesian updating and finally BMS to the reduced models (Section 3.3). The proposed correc-

tion factor for surrogate-enabled BMS is introduced in Section 3.4. Details with respect to the 

implementation of the case studies are given in Section 3.5. We discuss the results of model calibra-

tion and selection for both the synthetic benchmark test and the real-data test case in Section 4 and 

finally draw conclusions in Section 5. 
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2 Hydro-morphodynamic model 

The applied hydro-morphodynamic models have been built in the TELEMAC-MASCARET simulation 

software, which is an open-source integrated suite of solvers for simulation of free-surface river flow 

(Hervouet, 2000) (www.opentelemac.org). We use the hydrodynamic module TELEMAC-2D and the 

morphodynamic module SISYPHE to predict sediment transport processes and the resulting changes 

in the riverbed. These two modules are internally coupled, i.e. the relevant hydrodynamic variables 

are exchanged between the hydrodynamic and the morphodynamic modules. We describe the gov-

erning equations of the hydrodynamic model and the main considered processes of the mor-

phodnymic model including the applied sediment transport formulas in Section 2.1. Details on the 

model setup for our specific case study are given in Section 2.2. Further details about the TELEMAC-

2D and SISYPHE modules can be found in Hervouet (2007), Tassi and Villaret (2014), and Villaret et 

al. (2013), respectively. 

2.1 Governing equations 

To describe the hydrodynamics of the river, TELEMAC-2D solves the shallow water equations, also 

known as Saint Venant equations:  

 

where h [m] denotes water depth, u and v [m/s] are flow velocities in x- and y-direction, respectively, 

Z [m] is the free surface elevation, and Sh [m/s] is a source or sink term of the fluid. Sx and Sy [m/s2] represent deceleration due to bed roughness, and ϑt [m/s2] is the viscosity. For sediment transport 

processes, the bed shear stress plays a major role. Local rates of sediment transport are influenced 
by near-bed flow fields. These flow fields are mostly governed by the river bed topography and bed 
evolution. To predict bed evolution, the morphodynamic module (SISYPHE) solves the Exner equa-

tion: 

 

where n [-] is the non-cohesive bed porosity, Zf [m] is the bed level, and Qb [m2 s−1] is the volume of 

sediment transport per unit width. The new river bed is used in calculation of the velocities and water 

depth in Eq. (1). The mentioned procedure is repeated according to the prescribed coupling time 

between hydrodynamic and morphodynamic modules. 

SISYPHE provides an extensive library of sediment transport relations to choose from and the op-

portunity of own implementation of any other formula. In this study, we have applied the six 
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following formulas that are widely used: the Meyer-Peter and Müller formula (Meyer-Peter and Mül-
ler, 1948), the Einstein-Brown formula (Einstein et al., 1950), the Modified Engelund-Hansen formula 

by Chollet and Cunge (Chollet and Cunge, 1980; Engelund and Hansen, 1967), the van Rijn formula 

(van Rijn, 1984), the Hunziker formula (Hunziker, 1995), and the Wu formula (Wu et al., 2000). 

The Meyer-Peter and Müller formula is probably the most commonly used in this field, but developed 
assuming a uniform sediment distribution as all of the older formulas. The Hunziker and Wu formulas 

were both explicitly developed for graded sediment and promise a better behavior in case of non-

uniform sediments. Here, a multi-grain approach was used considering different sediment classes. 
For each sediment class, the sediment discharge is calculated separately by the sediment transport 

formula. 

All of the sediment transport formulas include one or more highly intercorrelated hydrodynamic variables (depth averaged flow velocity, water depth, energy gradient as water surface slope and water discharge). Therefore, they can be regarded as scaling equations of the flow (Gomez and 
Church, 1989). Overall, this might be a reason why so many variations have been presented so far, 

why judging their merits remains challenging, the physics of sediment transport remain incompletely 

understood, why there is no good reason to a priori favor any of the existing formulas over others, and none of existing formulas offers a complete representation of the natural hydro-morphodynamic system. Instead, the most suitable sediment transport formula for a specific modeling task needs to 
be chosen carefully in the light of the system settings and the measured data. In this study, we will 

assess these six competing formulas using the rigorous Bayesian framework for model selection. 

Furthermore, the calculated sediment discharge will be changed by additional formulations to con-sider the following effects. A slanting riverbed leads to an increase of the sediment transport rate in 

the downslope direction, and to a reduction of the sediment rate in the upslope direction. This so-called slope effect changes the sediment rate and its direction. In this study, the modification of mag-
nitude was calculated with the (Koch and Flokstra, 1980) formula and the direction modification with the (Talmon et al., 1995) formula. Additionally, the sediment movement direction is also influenced by the helical flow or also known as secondary current effect in river bends. This is accounted for 
with the expression supposed by Engelund (1974). 

2.2 Model setup 

An existing hydro-morphodynamic model of a 10 km long stretch in the central reach of the Lower Rhine at Düsseldorf/Neuss (Rhine-km 739.0 to 749.0) was chosen as case study to illustrate BMS of 

sediment transport formulas. This section belongs to the free flowing part and is characterized by 
intense bends and active sediment transport. Dumping and dredging activities were conducted for a 

long time (Messing et al., 2008) and provide safe inland navigation. The river stretch has an average 

slope of about 0.17‰, and is about 400 m wide. The model geometry was created using a Digital 

Terrain Model (DTM), which included a comprehensive database on the main river channel, the floodplains, as well as groynes, longitudinal and bridge structures in the study area. A two-dimen-

sional numerical morphodynamic transport model was provided by the Federal Waterways Engi-

neering and Research Institute (BAW) in Karlsruhe, Germany (Backhaus et al., 2014; Riesterer, 2015; 
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Wenka et al., 2015). The numerical model of the 10 km Rhine section has an unstructured, triangu-

lated grid with 41,277 nodes and 81,684 elements. The average node distance is about 10–15 m in the main channel and 50 m in the floodplains. At relevant hydraulic structures, the node distance 

decreases to 5–10 m. In the 500 m inlet region, the groynes were removed from the model to smooth the incoming flow and avoid numerical instabilities. At the inlet and outlet boundaries, the whole 
cross-section was considered for the hydraulics (TELEMAC-2D). For the morphodynamics (SISYPHE) 

only the part of the main channel was opened as it is assumed that relevant sediment transport only 

occurs in this section. To obtain initial conditions for the hydrodynamics, a steady-state calculation was carried out first with the described boundary conditions for the initial time. For the morphody-
namics and sediment transport, the grain size distribution was discretized by 10 sediment classes. A 

mean grain size over the whole model area was used as initial condition for the morphodynamics. Different roughness zones with their own roughness values determine the natural flow resistance in the model area. The five zones categorize the domain of the river stretch: the main channel, the flood-
plain, the groynes, the vegetation area and the residence area. As boundary conditions, time depend-

ent discharges were set as the inlet and corresponding water levels at the outlet. From the gauge Düsseldorf (Rhine-km 744.2) located inside the model area, both values were taken and adapted to 

the location of the model boundaries. For the morphodynamics, an equilibrium condition was posted at the inlet boundary. Therefore, the sediment inflow was calculated according to a fixed bottom level 
at the entrance. The considered hydrograph starts on 27th of June 2002 and ends on fifth of May, 
2004. 

Since the model of the 10 km river stretch required a considerably large computational time, the 

concept of morphological factor was used to reduce computation time. Therefore, the hydrograph 

was compressed in time by the morphological factor while the results of the morphological simula-

tion were enlarged by the same factor. This procedure reduces the computation time about the mor-

phological factor (Wurms and Schröder, 2012). But even with a factor of 4, the computation time was 

approximately 7.5 h on the BAW parallel cluster “brutus” (Bull Blade X system) using 60 cores. 

2.3  Parameterization Five parameters (mean grain size, two of the five roughness coefficients, one parameter for the mag-nitude of the slope effect and one for the effect of secondary currents) were declared as calibration 
parameters. Their initial values came from the original model, which was manually calibrated at BAW 

using the Meyer-Peter and Müller formula (see Table 1). Typically, the mean grain size and the rough-ness coefficient of the main channel are the most sensitive parameters in morphodynamic simula-
tions of rivers. Changing the mean diameter will change the grain size of each sediment class 

proportionally. Furthermore, the roughness of the floodplains in case of flood events and the slope and secondary currents effect in this river stretch with intense bends are significant for calibration 
in this case. 

As target quantities for calculation, we chose the spatially averaged bottom level, because the evolu-

tion of the riverbed is a key quantity of interest in morphodynamic simulations. The averaged evolu-

tion is 
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Table 1: The selected uncertain parameters and their ranges. 

Uncertain parameter’s name and unit Lower bound Upper bound 

Mean sediment diameter [m] 
Roughness coefficient of the main channel [m] 
Roughness coefficient of the floodplain [m] 
Slope effect parameter beta [-] 
Secondary currents alpha coefficient [-] 

0.01856 
0.49 
0.098 
0.85 
0.75 

0.02051 
0.51 
0.102 
4.00 
1.00 

 

Fig. 1:  The simulated bed evolution from 2002 to 2004 for the lower Rhine model obtained using 

the Meyer-Peter and Müller formula (top) and the corresponding averaged bottom evolu-

tion along the river stretch (bottom). 

chosen, because the local bed level is very much influenced by random processes like e.g. dunes or 
ripples formations. Additionally, the accuracy of bed level measurements are about +/− 10 cm. In our 
case, each observation point for the calibration procedure is located at the center of an area with a 

length of 100 m and with a width equal to the sediment active width of the river stretch. Fig. 1 illus-

trates the model area and the simulated bed evolution from 2002 to 2004 (top), exemplarily shown 



 
Autorenfassung des Artikels: Mohammadi, Kopmann, Guthke, Oladyshkin, Nowak: Bayesian selection of hy-

dro-morphodynamic models under computational time constraints, 2018 

- 10 - 

for the Meyer-Peter and Müller sediment transport relation and the corresponding averaged bottom 

evolution along the river stretch (bottom). 

3 Bayesian model selection framework 

3.1 Bayesian parameter inference and model selection 

In the field of river engineering, typically an iterative manual approach of trial and error is imple-

mented to adjust the simulation models to reproduce past measurements reasonably well. However, 

such a manual process is inefficient, might lead to suboptimal results and suffers from non-unique-

ness (Oliver et al., 2008), i.e. various simulation models and parameter sets can fit the observation 

data similarly well. 

Instead of searching for a single best model and parameter set, we perform parameter inference and 

model selection within a Bayesian probabilistic framework. In the Bayesian framework, initial 

knowledge on parameters is encoded in a so-called prior probability distribution. After Bayesian pa-

rameter inference (which replaces the act of calibration), one obtains a so-called posterior probabil-

ity distribution of the parameters, which is typically narrower than the prior distributions. 

The posterior parameter distribution p(𝝎𝝎|Mk, yo) of parameter 𝝎𝝎 within a model Mk is obtained by 

updating the prior parameter distribution p(𝝎𝝎|Mk) in the light of observed data yo according to Bayes’ 

theorem: 

 

The term p(yo|Mk, 𝝎𝝎) is called the likelihood function and quantifies how well the model predictions 

Yk(𝝎𝝎) based on specific parameter combinations match the observed data yo. p(yo|Mk) is a model-

specific normalizing constant for the posterior distribution of the parameters 𝝎𝝎. Assuming independ-

ent and Gaussian distributed measurement errors, the likelihood function p(yo|Mk, 𝝎𝝎) is defined as: 

 

where R is the diagonal (co)variance matrix of size Ns × Ns (Ns refers to the length of the observation 

data set) of measurement error 𝜖𝜖. Though other arbitrary error distributions could be considered, 

this specific assumption on the measurement error distribution remains throughout the study.  

In parallel to parameter updating, we suggest employing Bayes’ theorem a second time on the level 

of model probabilities to rank the plausibility of competing models in the light of data yo. The prior 

belief about a model’s adequacy is updated to posterior model probabilities in view of the mismatch 

between model predictions and observed data. The posterior model probabilities can be used as 
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weights for model ranking and selection. BMS implicitly follows the principle of parsimony or Oc-

cam’s razor, such that the posterior model weights reflect an optimal trade-off between goodness-of-

fit and model complexity (Gull, 1988). 

According to Bayes’ theorem, the model weights for Nm competing models Mk can be calculated by: 

 

in which P(Mk) denotes the prior subjective credibility of model Mk before considering any measured 

data, p(yo|Mk) is the likelihood of the model Mk to have produced the data set yo, and P(Mk|yo) denotes 

the posterior (updated) model weight. In this study, we assume equally likely priors of 𝑃𝑃(𝑀𝑀k) = 1∕𝑁𝑁𝑚𝑚, 

due to the arguments summarized in Section 1. The denominator in (5) normalizes all model weights 

to sum up to unity. Hence, the decisive factor for model ranking is the likelihood term p(yo|Mk) which 

is called Bayesian model evidence (BME). BME is sometimes also referred to as marginal likelihood 

because it quantifies the likelihood of the model to have produced the observed data averaged over 

the complete prior parameter space (Kass and Raftery, 1995): 

 

where 𝝎𝝎 denotes the vector of parameters of model Mk with a dimension equal to the number of 

parameters N(p, k), Ω is the corresponding parameter space, and p(𝝎𝝎|Mk) represents the prior distri-

bution of parameters in each model Mk. BME can be evaluated by integration over the full parameter space Ω (Eq. (6)), referred to as Bayesian 

integral (Kass and Raftery, 1995). Several approaches exist for solving or approximating Eq. (6). For 

a comprehensive review of methods, we refer to Schöniger et al. (2014). Here, we use simple Monte 

Carlo integration (Hammersley, 1960). This approach evaluates the integrand at randomly chosen 

points in parameter space, i.e. they are randomly drawn from their prior distribution p(𝝎𝝎|Mk). The 

Bayesian integral is then determined as the mean value of the evaluated likelihoods calculated by Eq. 

(4), which is why it is often referred to as the arithmetic mean approach. 

The significance in differences between BME values of two competing models can be judged with the 

help of the rule of thumb proposed by Jeffreys (1967). This rule of thumb applies to the so-called 

Bayes factor, which is the ratio of model evidences of two models M1 and M2, p(yo|M1)/p(yo|M2). Ac-

cording to Jeffreys (1967), a Bayes factor of 1–3 is not worth more than a bare mention, a factor of 

up to 10 means substantial evidence in favor of model M1, a factor between 10 and 100 means strong 

evidence and a Bayes factor larger than 100 is said to be decisive enough to reject model M2 against 

M1. While these thresholds may serve as guidance, the responsibility of defining an application-spe-

cific confidence level at which to reject a model or to choose a single best one out of the set remains 

with the modeler. 
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3.2 Construction of reduced models 

This study focuses on model selection for computationally challenging simulations. In this case, the 

model selection analysis only becomes feasible in combination with model reduction, because the 

integral in Eq. (6) is too expensive to be evaluated otherwise. The same holds true for the parameter 

updating step according to Eq. (3). Here, model reduction is established using so-called response 

surfaces. We will construct a response surface via the Polynomial Chaos Expansion (PCE) theory 

(Wiener, 1938), which shows the dependence of a full-complexity model’s output on the modeling 

parameters via projections of the model function Yk(𝝎𝝎) onto an orthonormal polynomial basis. PCE 

offers an accurate high-order method of accounting for nonlinear effects in stochastic analysis. It can 

be seen as an advanced approach to statistical regression to exhibit the dependence of a model on its 

parameters (Li and Zhang, 2007). 

Conventional PCE methods postulate a correct knowledge of the probability density functions of all 

input parameters and they are optimal only if they are applied to a small number of certain paramet-

ric probability distributions. However, the information regarding the statistical distribution of input 

parameters is scarce, especially in environmental engineering and sciences (Red-Horse and Benja-

min, 2004). Moreover, another source of errors is the subjectivity when building probability density 

functions of any particular shape from samples of limited size or scattered information. Given the 

mentioned challenges, (Oladyshkin and Nowak, 2012) presented the generalization of PCE to the ar-

bitrary Polynomial Chaos (aPC) expansion that accommodates a broad spectrum of arbitrary distri-

butions with arbitrary probability measures. The distributions can be either discrete, continuous, or 

discretized continuous, and they can be defined either analytically (as probability density/cumula-

tive distribution functions), numerically (as histograms) or as raw data sets. The aPC adjusts to arbi-

trary probability distribution shapes of input parameters and can even work with limited data 

(Oladyshkin et al., 2011; Oladyshkin and Nowak, 2012). However, incomplete statistical information 

limits the utility of high-order polynomial chaos expansions (Oladyshkin and Nowak, 2018). 

We will consider the full-complexity model Mk that depends on multi-dimensional parameter input 𝝎𝝎, i.e 𝝎𝝎 = {𝜔𝜔1, 𝜔𝜔2, …, 𝜔𝜔𝑁𝑁 } and produces model output 𝐘𝐘𝑘𝑘 = 𝑓𝑓(𝝎𝝎). The subscript k indicates a specific 

model among a set of competing models, with N being equal to the total number of input parameters. 

We will replace the full-complexity model Mk by a reduced model 𝑀𝑀�𝑘𝑘, i.e. the model output Yk will be 

approximated via a multivariate polynomial (response surface) 𝑌𝑌�k as follows: 

 

Here, 𝜙𝜙i(𝝎𝝎) are polynomials that form a multi-variate orthogonal polynomial basis, determined ac-

cording to the procedure presented by Oladyshkin and Nowak (2012). The values P of used polyno-

mials in Eq. (7) depends on the total number of input parameters N and on the order of the expansion 

d according to the combinatory equation 𝑃𝑃 = (𝑁𝑁 + 𝑑𝑑)!/(𝑁𝑁!𝑑𝑑!). The coefficients ci determine the de-

pendence of the model output Yk on the input parameters 𝜔𝜔1, 𝜔𝜔2, …, 𝜔𝜔𝑁𝑁 . As the dependence of model 

output on parameter values may vary within the domain and over time, the coefficients ci(x, y, t) 
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depend on space and time, i.e. they have to be determined for each numerical model cell and time 

step separately.  

In order to compute the coefficients ci(x, y, t) in the expansion (7), we will employ the non-intrusive 

Probabilistic Collocation Method (PCM), because it is easy to implement and does not require any 

rearrangement of the governing equations (Li and Zhang, 2007). The main idea of the PCM method 

is to identify the unknown coefficients ci (x, y, t) from the model outputs (x, y, t, 𝝎𝝎j) evaluated with 

different parameters sets 𝝎𝝎j by curve fitting techniques. A given N-dimensional set of parameters 𝝎𝝎j 

is named as a collocation point in the multidimensional parameter space. The number of collocation 

points 𝝎𝝎j is equal to the number P of unknown coefficients ci in the formulated chaos expansion in 

(7). Formally, the main idea of the PCM method can be written in the following form: 

 

where Vc is the P × 1 vector of unknown coefficients ci, VY is the P × 1 vector holding the model output 

(x, y, t, 𝝎𝝎j) for each collocation point 𝝎𝝎j, and the P × P matrix 𝚽𝚽 contains the P polynomials evaluated 

at the P collocation points. It is worth mentioning that the matrix 𝚽𝚽(𝝎𝝎) is space- and time-independ-

ent and can be produced once for the given expansion degree and parameter number, whereas the 

Vc(x, y, t) vectors and VY(x, y, t) are space- and time-dependent. 

The efficiency of the projection method strongly rests on the selection of collocation points (Li and 

Zhang, 2007). Villadsen and Michelsen (1978) assert that the best selection of collocation points 

agrees with the roots of the polynomial of one degree higher than the order considered in the chaos 

expansion. This corresponds to the idea behind many numerical quadrature rules, such as Gaussian 

integration (Villadsen and Michelsen, 1978). Thus, the resulting polynomial surface is precise at the 

collocation points and applies a polynomial interpolation or extrapolation between and outside of 

the parameter range covered by the collocation points, respectively. 

3.3 Iterative Bayesian updating and selection of reduced models 

Once a response surface has been created, we can perform an approximate version of parameter up-

dating (Eq. (7)). In this study, we apply Bayesian parameter updating (Eq. (3)) in a Monte Carlo 

framework (see e.g., Smith and Gelfand, 1992) applied to the response surface Ỹ𝑘𝑘(𝝎𝝎). We weight NMC 

realizations from the prior distribution 𝑝𝑝(𝝎𝝎|𝑀𝑀�𝑘𝑘) of uncertain parameters with their corresponding 

likelihood to obtain statistics of the posterior distribution 𝑝𝑝(𝝎𝝎|𝑀𝑀�𝑘𝑘, 𝑦𝑦𝑜𝑜). This step involves evaluation 

of the likelihood as in Eq. (4), but using the reduced model 𝑌𝑌�𝑘𝑘 instead of the original one. However, 

when the prior information is far from reality, it is likely that the response surface is highly imprecise 

and produces wrong outcomes in the parameter ranges that show high likelihood values (see Olady-

shkin et al., 2013a). To avoid this, we use an advanced iterative approach for aPC-based Bayesian 

updating. After a first iteration of parameter updating, the realization of 𝝎𝝎 with the highest likelihood 

is chosen as additional collocation point and the original model (the hydro-morphodynamic model 

in TELEMAC-2D/SISYPHE) is executed. The result of this run is used to improve the response surface 

by repeated application of PCM. Once the response surface captures sufficiently well the main 
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features of the underlying system and the posterior distributions have stabilized during the iterative 

procedure (see Oladyshkin et al., 2013a), we use it for a final step of parameter updating. 

Subsequently, we apply the BMS approach described in Section 3.1 to the reduced models 𝑀𝑀�𝑘𝑘. Eq. (6) 

is evaluated with respect to the predictions 𝑌𝑌�𝑘𝑘 of the reduced models 𝑀𝑀�𝑘𝑘 instead of the full-complex-

ity models’ predictions Yk. As such, we perform model selection in the reduced model space and im-

plicitly assume that these results are a good proxy for model selection in full-complexity model space. 

In terms of Eq. (6), we approximate p(yo|Mk) with 𝑝𝑝(𝐲𝐲𝑜𝑜|𝑀𝑀�𝑘𝑘): 

 

Since the number of full-complexity model runs is limited by the extremely computational demand-

ing simulation, we consider response surfaces of first order for BMS. Higher-order expansions would 

strongly increase the number of required full-complexity model runs. The computation time should 

be allocated considering that the response surfaces have to be constructed for each competing model. 

Once the best model has been identified, higher-order response surfaces can be used for refined pa-

rameter updating as discussed in Oladyshkin et al. (2013b). 

3.4 Correcting Bayesian selection of reduced models  

Reduced models are only a (possibly rough) approximation of the full-complexity model. Hence, any 

conclusions drawn from BME values based on reduced models are only valid to the degree that we 

believe in the accuracy of the approximation. One may accept this limitation as a “necessary evil” of 

BMS via model reduction, i.e. a trade-off with efficiency. Indeed, as stated earlier, BMS only becomes 

feasible for applications like the one presented in this study through model reduction. 

Still, care must be taken when interpreting model ranking results based on model evidence for re-

duced models, BMERM. If, using BMERM, a model were penalized because its reduced variant shows a 

low approximation quality, model ranking via reduced models could be viewed as a conservative 

guess about the appropriateness of the full-complexity models. However, this is not necessarily the 

case: the reduced model could meet (just by chance) the observed data even better than the full-

complexity model, and in that case the evidence in favor of the model would be overestimated. Hence, 

model ranking could turn out differently for the reduced models than for the full-complexity models, 

which would trigger wrong conclusions and finally possibly wrong management decisions. 

To avoid such misleading results, we go one step further and propose to explicitly account for the 

quality of approximation by the reduced model in model ranking. We thereby hope to obtain model 

ranking results that are more representative of the desired model ranking results for the full-com-

plexity models. To do so, we consider that the full-complexity model Mk cannot be fully represented 

by the reduced model 𝑀𝑀�𝑘𝑘 and contains an approximation error Ek, i.e. Mk =  𝑀𝑀�𝑘𝑘 + 𝐸𝐸𝑘𝑘. Employing this 

property of additivity, Eq. (6) can be reformulated as follows: 
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Considering the independence of the approximation error from the measurement errors that define 

the likelihood function p(yo|Mk) in Eq. (9), Eq. (10) can be rearranged as: 

 

Here, 𝑝𝑝 (𝑀𝑀𝑘𝑘|𝑀𝑀�𝑘𝑘, 𝝎𝝎) denotes the likelihood of the predictions made by the full-complexity model, Yk, 

given the approximative predictions of the reduced model 𝑌𝑌�𝑘𝑘: 
 

where Yk(𝝎𝝎) is the full-complexity model run for the parameter set 𝝎𝝎, 𝑌𝑌�𝑘𝑘(𝝎𝝎) is the corresponding 

response surface and S is the covariance matrix of approximation errors, i.e. S reflects the uncertainty 

in the approximation. 

Without loss of generality, we can multiply and divide the right hand side of Eq. (11) by the BME 

value for the reduced model, 𝑝𝑝(𝐲𝐲𝑜𝑜|𝑀𝑀�𝑘𝑘), obtained from Eq. (9): 

 

Employing Bayes’ Theorem (Eq. (3)) and taking into consideration that the parameter prior is the 

same for the full model Mk and its reduced model 𝑀𝑀�𝑘𝑘, (𝑝𝑝(𝝎𝝎|Mk) = 𝑝𝑝(𝝎𝝎|𝑀𝑀�𝑘𝑘)), we obtain the following 

representation of the full-model BME: 

 

Eq. (14) explicitly demonstrates that the full-model BME value (BMEcorr) is a product of the BME value 

obtained for the reduced model (BMERM) and the correction factor (WeightRM) reflecting the credibil-

ity of the reduced model as representative of the full-complexity model: 

 

where each term of Eq. (15) is defined accordingly: 
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Hence, the credibility factor WeightRM is defined as the integral of the approximation likelihood 𝑝𝑝(Mk|𝑀𝑀�𝑘𝑘,𝝎𝝎) over the posterior parameter space. 

From a practical point of view, the correction factor defined in Eq. (15) can be estimated from the 

available collocation points 𝝎𝝎: 

 

This yields a corrected BME value that is more representative (although still an approximation) of 

the full-complexity model’s BME. We will compare the rankings based on Eqs. (15) (BMEcorr) and (9) 

(BMERM) and discuss the impact of approximation accuracy on model ranking results in Section 4.3. 

Additionally, we would like to remark that the correction factor in Eq. (18) could be approximated 

using only the maximum a posteriori parameter set 𝝎𝝎∗ obtained from Bayesian updating. This very 

rough estimation could be useful as a first glimpse at approximation quality. Then, evaluating Eq. 

(19) for the maximum a posteriori parameter set, 𝝎𝝎∗, obtained from Bayesian updating of the re-

duced model would simplify to: 

 

with 𝑗𝑗 = 1 …𝑁𝑁𝑠𝑠 and F∗ corresponding to the vector of approximation errors obtained for the maximum 

a posteriori parameter set 𝝎𝝎∗: 𝐅𝐅∗ = 𝐘𝐘𝑘𝑘(𝝎𝝎∗) − 𝑌𝑌�𝑘𝑘(𝝎𝝎∗). Assuming that the approximation errors are in-

dependent and Gaussian distributed, their covariance matrix turns into a diagonal matrix 𝐒𝐒 = 

(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐅𝐅∗])2. The estimation based on the maximum a posteriori estimate is very approximate; only if 

the posterior was (very close to) a Dirac function, this version of the correction factor would be reli-

able. 
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3.5 Scenarios for model selection 

We will consider two scenarios of the lower Rhine case study for BMS. The first test case is a synthetic 

experiment dedicated to the proof of the presented Bayesian concept for model selection (Section 

3.5.1). The second test case focuses on the transfer of the established framework to a real-data appli-

cation (Section 3.5.2). 

For each test case, we will perform Bayesian updating in a brute force Monte Carlo framework (Ham-

mersley, 1960), using an ensemble of 20,000 realizations on the reduced model. It is the most direct 

and straightforward numerical implementation of Bayes theorem, which can consider arbitrary non-

linear model equations and arbitrary distribution forms. Each realization corresponds to a randomly 

chosen set of parameter values, drawn from the prescribed uniform parameter distributions (Section 

3.1) with bounds given in Table 1. It can be seen as numerical estimation of the reduced model-based 

integral in Eq. (9). In the current study, sampling error of the Monte Carlo technique is negligible in 

comparison to the approximation error in the reduced models. 

Bed evolution predictions based on these parameter combinations are then compared to the obser-

vation data in order to obtain a posterior, updated distribution of parameters and predictions. After 

iterative improvement of the reduced model during the Bayesian updating procedure, we will esti-

mate BME for each model based on the observation data set for bed evolution as described in Section 

3.3. 

After iterative improvement of the reduced model during the Bayesian updating procedure, we will 

estimate BME for each model based on the observation data set for bed evolution as described in 

Section 3.3. Note that sampling from the prior has been shown to be biasfree and most reliable when 

determining BME (e.g., Schöniger et al., 2014; Zeng et al., 2018). The only disadvantage of this bias-

free method is that it needs a large number of samples; however, with the negligible run time of the 

reduced models (milliseconds), there is practically no limitation in sample size anymore. We there-

fore choose the most expensive but also most reliable method for evidence estimation over more 

efficient but bias-prone methods such as, e.g., MCMC with the harmonic mean estimator (Newton and 

Raftery, 1994). 

3.5.1 Synthetic benchmark experiment 

The goal of the experiment is to verify that the BMS framework is able to infer the true morphody-

namic model out of the six sediment transport models listed in Section 2, under the ideal condition 

that the true model is actually part of the model set. This is of course never the case in reality, but 

allows us to verify that under ideal conditions, the proposed framework fulfills its purpose. We 

choose an arbitrary parameter set for the Rhine model from the parameter ranges in Table 1 to gen-

erate 111 sample points of synthetic measurements of bed evolution. In this case, the Wu formula 

was chosen and the simulated bed evolution after 17 days was taken as synthetic measurements. 

We assume a relatively low level of measurement error for the synthetic bed evolution data with a 

standard deviation of 0.03 m. This assumption enables us to find out whether BMS is able to identify 
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the true model under relatively well-posed conditions (i.e., measurements are not overly noisy). 

Moreover, ten iterations are allowed to improve the 

 

Fig. 2:  Bayesian updating of Wu model: synthetic benchmark experiment. 

accuracy of the reduced models in reproducing the predictions of the full-complexity models. 

3.5.2  Real-data test case 

The real-data test case focuses on the transfer of the synthetically verified model selection frame-

work to a real-data application. To this end, cross-profile soundings of the river bottom collected by 

the German Federal Waterways and Shipping Administration (WSV) in 2004 are used. 111 sample 

points of the averaged bottom levels, as explained in Section 2.2, are considered as measurements 

for model selection.  

Four most promising competing sediment transport models for the current case study have been 

considered, namely (Hunziker, 1995; Meyer-Peter and Müller, 1948; van Rijn, 1984; Wu et al., 2000).  
A measurement error standard deviation of 0.05 is assumed for this test case. Although this error is 

a little larger than assumed in the synthetic test case, the much longer time series nevertheless as-

sures a strong updating effect and results in a low posterior parameter and predictive uncertainty 

(see Section 4.2). Due to a very strong computational time demands of the full-complexity models 

only five iterations are allowed to improve the accuracy of the reduced models. 
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4 Bayesian selection of sediment transport models 

4.1 Results of synthetic benchmark experiment 

The bed evolution after 17 days predicted by the hydro-morphodynamic model based on the Wu 

sediment transport model is illustrated in Fig. 2. Here and in the following figures, the horizontal axis 

shows the distance from the inlet boundary (km 738.5 of the lower Rhine), whereas the vertical axis 

represents the bed evolution. These predictions have been used as synthetic measurement data to 

rank the set of competing transport models. The synthetic measurements (black dashed line) simu-

lated by the full-complexity model (red line) and the simulation with response surface (blue line) 

overlap entirely. This indicates that the model reduction technique embedded in the Bayesian selec-

tion framework is successful in representing the full-complexity model in the relevant parameter 

region after Bayesian updating with ten iterations. Note that both the full-complexity model simula-

tion and the response surface are shown here for the parameter realization with the highest posterior 

probability after Bayesian updating. The remaining parameter uncertainty after Bayesian updating 

results in predictive uncertainty, which is represented by the gray-shaded credible interval of ±2 

standard deviations.  

Out of the five alternative model formulations, we exemplarily show the output of the Bayesian up-

dating procedure for the widely used Meyer-Peter and Müller formula in Fig. 3. Fig. 3 indicates that 
the response surface constructed during Bayesian updating is again a suitable representation of the 

full-complexity numerical model. The outputs for the remaining competing models can be found in 

Mohammadi (2017). 

The BME values of the six reduced sediment transport models are listed in Table 2. As expected, the 

true model (here: Wu) obtains 

 

Fig. 3:  Bayesian updating of Meyer-Peter and Müller model: synthetic benchmark experiment. 
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Table 2: BME ranking of sediment transport models based on reduced models (synthetic bench-

marking experiment). 

Model Rank BMERS 

Wu 
Hunziker 
Van Rijn 
Einstein-Brown 
Meyer-Peter and Müller 
Modified Engelund-Hansen 

1 
2 
3 
4 
5 
6 

1.14E+124 
1.69E+87 
7.75E+75 
1.71E+37 
6.44E-2 
9.29E-83 

 

 

Fig. 4:  Bayesian updating of Meyer-Peter and Müller model: real-data rest case. 

by far the highest evidence value. The Bayes factor with respect to the second-best model (here: 

Hunziker) is on the order of E+36, which represents more than decisive evidence on the scale pro-

posed by Jeffreys (1967) (see Section 3.1). The ranking suggested by the BME values proves that the 

proposed BMS framework is able to correctly and confidently identify the true data-generating model 

if it is in the set. This result enables us to proceed with the real-data test case where no true model 

exists; instead we are interested in identifying the most suitable model in the set in the light of the 

actually observed data. 

4.2 Results of real-data test case 

In this Section, we present the results of the Bayesian analysis using real data and four pre-selected 

competing sediment transport models. Figs. 4–7 show the measured bed evolution, the original 

model’s simulation output and the response surface using the most probable parameter set for all 

four competing formulas. All models show too large magnitudes of bed evolution, especially the lat-

est, which could be due to uncertain boundary conditions. The obvious conclusion is that none of the 

models is overly good in matching the real data, which is partly due to the practical constraints that 
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limit the available simulation time for calibration purposes. Since all models are suffering from this 

issue, it is not a trivial task to choose the single best one. Therefore, we apply the proposed Bayesian 

framework based on reduced models to identify  

 

Fig. 5:  Bayesian updating of van Rijn model: real-data rest case. 

 

Fig. 6:  Bayesian updating of Hunziker model: real-data rest case. 
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Fig. 7:  Bayesian updating of Wu model: real-data rest case. 

the most suitable model under the given strong computational time constraints. 

The plots in Fig. 4 illustrate the simulation output of the hydro-morphodynamic model including the 

widely used Meyer-Peter and Müller formula. As it is visible from Fig. 4, the updated response surface 

after five iterations could capture the pattern of the original model in TELEMAC-2D-SISYPHE, but 

was not utterly successful in representing its magnitude. However, the misfit between the full-com-

plexity numerical model and its response surface (Fig. 4) implies that the reduced model is not a 

sufficient approximation of the full-complexity model. This is probably a shortcoming of the linear 

approximation that we chose here due to the given computational limitations presented in Section 

2.2. It is to be expected that higher-order response surface approximations will have higher adaptiv-

ity and could improve the approximation during Bayesian updating. 

Fig. 5 illustrates the results for the van Rijn Model. Apparently, the response surface could not cap-

ture accurately the full-complexity model behavior before the fifth kilometer from the inlet boundary, 

particularly the peak values. However, this misfit changes significantly towards the outlet edge. Fig. 

6shows the results for the Hunziker model. In contrast to the other reduced models, here the credible 

intervals (gray intervals) of the final response surface after five iterations contain most of the bed 

evolution predictions made by the full-complexity model. 

Table 3: BME ranking of sediment transport models based on reduced models (real-data test case). 

Model Rank BMERS 

Van Rijn 
Hunziker 
Wu 
Meyer-Peter and Müller 

1 
2 
3 
4 

3.73E+36 
1.44E+36 
3.79E+27 
1.84E+10 
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Table 4: Corrected BME ranking of sediment transport models based on all available collocation 

points (synthetic benchmarking experiment). 

Model Rank BMERM WeightRM BMEcorr 

Wu 
Hunziker 
Van Rijn 
Einstein-Brown 
Meyer-Peter and Müller 
Modified Engelund-Hansen 

1 
2 
3 
4 
5 
6 

1.14E+124 
1.69E+87 
7.75E+75 
1.71E+37 
6.44E-2 
9.29E-83 

1.48E-71 
2.07E-70 
3.49E-72 
1.35E-75 
1.73E-74 
4.18E-119 

1.69E+53 
3.51E+17 
2.70E+4 
2.31E-38 
1.12E-75 
3.88E-201 

Fig. 7 shows the Bayesian updating results for the Wu Model. The response surface built in the Bayes-

ian framework captures the overall pattern, but it slightly fails in disclosing the magnitude of the 

original model in TELEMAC-2D-SISYPHE. The credible intervals of the response surface (gray inter-

vals in Fig. 7) are considerably small. The model ranking results based on BME estimation for the 

four competing models are listed in Table 3. The hydro-morphodynamic model based on the van Rijn 

sediment transport formula scores the highest BME value and is therefore ranked first. This is due to 

the fact that this model’s response surface captures the observed data best among the competing 

models. With respect to the second-best model (here: Hunziker), the van Rijn model achieves a Bayes 

factor of 2.6, which, according to the rule of thumb by Jeffreys (1967), is not significant. Hence, the 

van Rijn model and the Hunziker model seem to be practically equally suitable for the case study 

presented here. Both models achieve a Bayes factor on the order of E+8 when compared to the third-

best model (here: Wu), which suggests that the Wu model (and the Meyer-Peter and Müller model 
which ranks fourth) should be rejected against the two best models. 

4.3 Impact of model reduction accuracy on model ranking 

According to Section 4.2, the van Rijn model and the Hunziker model (as represented by their re-

sponse surfaces) have been selected as suitable models based on the real bed evolution measure-

ments. However, the response surface for the van Rijn model significantly deviates from the 

simulation output of the corresponding full-complexity model as obvious from Fig. 5. Indeed, the re-

sponse surfaces of the four competing sediment transport models vary greatly in approximation 

quality. For example, the response surface constructed for the Hunziker model captures the full-com-

plexity model’s simulations fairly well. These findings suggest that model ranking based on reduced 

models is potentially unfair - bad full-complexity models could be ranked higher than they should 

because their response surface is by chance closer to the measurements, and vice versa. This is why 

we see a need to introduce a correction factor for the reduced models that shall correct the model 

ranking in view of the approximation quality as proposed in Section 3.4. We thereby hope to obtain 

a model ranking that is representative of the full-complexity models and not (only) of the reduced 

models constructed under computational time constraints.  

We apply Eqs. (19) and (20) to assess the reduced models’ quality, based on all collocation points 

and based only on the maximum a posteriori parameter estimate, respectively. Then, we obtain two 
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versions of the corrected BME value from Eq. (15). The resulting model rankings are listed in Tables 

4 and 5, respectively, for the synthetic benchmark- 

Table 5: Corrected BME ranking of sediment transport models based only on maximum a posteriori 

parameter set (synthetic benchmarking experiment). 

Model Rank BMERM WeightRM BMEcorr 

Wu 
Hunziker 
Van Rijn 
Einstein-Brown 
Meyer-Peter and Müller 
Modified Engelund-Hansen 

1 
2 
3 
4 
5 
6 

1.14E+124 
1.69E+87 
7.75E+75 
1.71E+37 
6.44E-2 
9.29E-83 

9.42E-66 
2.68E-67 
8.32E-69 
2.99E-68 
3.45E-67 
3.51E-69 

1.07E+59 
4.54E+20 
6.45E+7 
5.09E-31 
2.22E-68 
3.27E-151 

 

Table 6: Corrected BME ranking of sediment transport models based on all available collocation 

points (real-data test case). 

Model Rank BMERM WeightRM BMEcorr 

Van Rijn 
Hunziker 
Wu 
Meyer-Peter and Müller 

1 
2 
3 
4 

3.73E+36 
1.44E+36 
3.79E+27 
1.84E+10 

1.07E-72 
3.18E-73 
8.05E-72 
5.16E-98 

3.99E-36 
4.57E-37 
3.05E-44 
9.49E-88 

 

Table 7: Corrected BME ranking of sediment transport models based only on maximum a posteriori 

parameter set (real-data test case). 

Model Rank BMERM WeightRM BMEcorr 

Hunziker 
Van Rijn 
Wu 
Meyer-Peter and Müller 

1 
2 
3 
4 

1.44E+36 
3.73E+36 
3.79E+27 
1.84E+10 

1.79E-68 
1.94E-69 
2.67E-68 
1.06E-68 

2.56E-32 
7.24E-33 
1.02E-40 
1.94E-58 

ing experiment and in Tables 6 and 7, respectively, for the real-data test case. 

For the synthetic benchmark experiment, the approximation quality of the reduced models does not 

have an impact on the final model ranking since the differences in matching the synthetic data are 

much larger than the differences in approximation quality. In such a case, the approximation error is 

small compared to the error in fitting the data, and hence a correction (reweighting) of the BME val-

ues obtained from reduced models would not be necessary. However, the effort to determine the 

correction factor is negligible since all required model results are obtained during the model selec-

tion analysis anyway and hence we recommend to perform the correction to be on the safe side. Fu-

ture applications of the correction factor in various synthetic setups will provide further insight into 

its potential benefit under specific conditions.  

For the real-data test case, the ranking of the two best models is indeed sensitive to the applied pen-

alty for approximation error. The reduced model variant of the van Rijn model scores the highest 

BME value (BMERM), but shows partially huge deviations from its full-complexity variant (reflected 
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by a low WeightRM) and is, therefore, down-graded in its ranking according to the corrected value 

BMEcorr based on the maximum a posteriori parameter set. The second-best model based on BMERM, 

the Hunziker model, then turns out as the winner because it obtains the highest likelihood in terms 

of agreement with its full-complexity variant and therefore scores the highest corrected BME value. 

However, when taking into account all available collocation points, the Van Rijn model receives a 

slightly weaker penalty than the Hunziker model and therefore remains to be ranked first. In case of 

the Wu and the Meyer-Peter and Müller models, both implementations of the correction factor only 

lead to a rescaling of the BME value but do not reverse the ranking. A Bayes factor on the order of 

E+7 (according to both error estimates) and larger still suggests to confidently reject the third- and 

fourth-ranking models against the two best models in the set. Between these two best models, the 

correction factor based on all collocation points has revealed a Bayes factor of 8.7 in favor of the Van 

Rijn model, which now translates into substantial evidence in favor of this model. The contradiction 

between the correction factors based on all available collocation points and based on only the maxi-

mum a posteriori parameter estimate is in line with the fact, that for reliable BME estimation, a good 

representation of the full parameter space is important. To obtain even more realistic correction fac-

tor values, alternative approaches to approximate the integral in Eq. (14) could be drawn upon; this 

is however beyond the scope of this study.  

Thus, we find that the proposed correction for BME values based on reduced models helps to objec-

tively penalize inaccurate reduced models. As we had feared, the inaccuracy of reduced models does 

not automatically lead to low evidence values but needs to be corrected for, otherwise the evidence 

of a lucky reduced model may be overestimated. In this specific case, the confidence in model selec-

tion was increased through applying the correction based on all available collocation points. 

5 Summary & conclusions 

In this paper, we have addressed Bayesian selection of hydro-morphodynamic models under strong 

computational time constraints. We incorporate BME as a model evaluation yardstick for ranking 

competing models that represent the hydro-morphodynamics. It accounts for measurement errors 

in the observation data and it also takes uncertainty of modeling parameters into consideration. Since 

we are limited to a maximum of approximately 10 runs per model in our case study, we cannot use 

popular sampling strategies that aim at increased efficiency of numerical integration to obtain Bayes-

ian model weights. Instead, we make use of the concept of model reduction that is commonly em-

ployed to be able to perform stochastic calibration and uncertainty quantification for these types of 

models. Hence, we render the BMS framework applicable for computationally intensive hydro-mor-

phodynamic models, by combining it with model reduction based on arbitrary polynomial chaos ex-

pansion. The reduced model represented by the response surface captures the hydro-

morphodynamic model’s dependence on uncertain parameters. Additionally, to better adapt the re-

sponse surface to the original full-complexity model and to avoid misleading inferences of parame-

ters, we iteratively update the response surface in the best-fit parameter range against the 

observation data. To do so, we increase the precision of the response surface around the current 

iteration of the posterior distribution by adding the current maximum probability parameter set into 
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the collection of model runs that is used to build the response surface. Moreover, taking into consid-

eration that the BME value based on the reduced model is merely an estimate of the true BME value, 

we newly introduce a correction factor that corrects the model ranking in view of the approximation 

quality. The calculation of the correction factor makes use of the model runs needed for establishing 

the reduced models, and hence avoids additional computational effort. The proposed correction fac-

tor is a first step towards obtaining reliable model ranking results for reduced models in practical 

applications, since a comparison with a reference solution for model weights is typically infeasible, 

given that a reliable estimation of model weights requires on the order of millions of full-complexity 

model runs. 

To assess the newly developed framework, we have established a benchmark study based on a river 

model for the lower Rhine, where synthetic bed evolution measurements are generated from one of 

the competing models. The BMS framework leads us to the correct model choice, which is the model 

used to generate the artificial bed evolution observations. To transfer the presented BMS framework 

to large-scale problems, we have simulated the lower Rhine model for 2 years and matched it against 

real measurement data of bed evolution. The hydro-morphodynamic model embedding the van Rijn 

sediment transport formula is ranked first. However, the response surfaces for all considered models 

cannot fully capture the corresponding full-complexity model and cannot be seen as fully reliable. 

With the proposed correction factor based on all available collocation points, model selection be-

comes more confident and identifies the van Rijn model as substantially more suitable than the 

Hunziker model. This model choice result is specific to the featured river segment and data, and 

should not be seen as a general recommendation. In our case, differences in model complexity were 

small compared to the vast differences in model performance. Hence, we benefited from the integral 

nature of performance assessment via BME, while in other applications additionally the penalty for 

overly complex models may be a decisive reason to choose the BMS framework for model selection. 

We conclude that blind use of Bayesian principles under strong computational time constraints could 

be misleading and an assessment of approximation quality of reduced models should be taken into 

consideration. Overall, the presented reduced model-based Bayesian selection framework is helpful 

to objectively select between different available models according to their capability to capture the 

observation data, even if the models are computationally too costly for standard procedures of BMS. 

These properties of our framework make it applicable for a wide range of models, such as subsurface 

flow models, reservoir models, reactive transport models or hydrogeophysical models, to name an 

arbitrary selection. Indeed, the proposed framework could prove useful in any modeling endeavor 

that faces model choice uncertainty under extreme computational time constraints, with the limita-

tion that the dimensionality of the parameter space and the complexity of the model allows for a 

reasonable approximation through PCE. Moreover, the suggested concept of the correction factor 

could be used in combination with other model reduction techniques (Köppel et al., 2018) available 

in various disciplines such as uncertainty quantification, applied mathematics, sparse grid or ma-

chine learning. 
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