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Abstract— Erosion and bedload transport have a high influence on 
industrial facilities and water quality. These phenomena can be 
modelled by the Saint-Venant Exner system defined by shallow 
water equations and a sediment mass balance equation. This 
system is often handled by using a splitting method which consists 
in developing solvers for the hydraulic part and the 
morphodynamic part. 

However, this numerical resolution can lead to instability issues 
when complex flows are treated. Spurious oscillations can appear 
for different flow regimes, and in particular for supercritical flows. 
For example, [1] carried out hydrodynamic and morphodynamic 
simulations dealing with a torrential flow. They showed numerous 
oscillations and were forced to fix a non-erodible bed in high 
erodible zones with supercritical flows in their simulations.  

In this work, we present the current numerical methods proposed 
in GAIA module to solve the Exner equation. We also propose an 
upwind scheme for the two dimensional Exner equation which is 
the 2D adaption of the upwind scheme proposed in COURLIS [6]. 
A coupled scheme [7] has been implemented in order to be 
compared with the splitting method. 

In order to validate the different results and to highlight the 
various limitations of the current schemes, a numerical 
benchmark is set up, using test cases from the scientific literature. 
This benchmark is composed of several dunes evolutions under 
fluvial, transcritical and torrential flows in order to test the ability 
of the schemes to deal with regime changes and is also made of 
dam break cases which are relevant indicators for testing shock 
treatment. 

It is shown that the centered scheme is stable most of the time, but 
fails on two tests including the full torrential one. The currently 
implemented upwind scheme does not work as soon as 
supercritical flow appears and the newly implemented is stable for 
almost all test cases.  

 

 

 

 

 

I. INTRODUCTION 
Erosion and bedload transport can be modelled by the Saint-

Venant Exner system. Some numerical papers [2] and recent 
studies [1] have shown that using splitting methods to solve this 
system can lead to instabilities. Oscillations often appear for 
different flow regimes and pollute simulations with transcritical 
flows apparitions. 

The aim of this work is to find when theses numerical 
oscillations appear and how to deal with it. For this purpose, we 
have listed the current numerical schemes developed in the 
GAIA module of the v8p1 version of TELEMAC-MASCARET. 
Moreover, we have implemented a two dimensional upwind 
scheme adapted from COURLIS, which is a one dimensional 
sedimentology module. A coupled scheme [7], which consists in 
considering the system as a whole, has also be studied in order 
to be compared with the other methods. Therefore, we have set 
up a numerical benchmark of test cases composed of dune 
evolutions under fluvial, transcritical and torrential regimes 
flows and dam break cases. These simulations have enabled us 
to test the stability of the different schemes and to highlight the 
outbreak of spurious oscillations.  

This work is organized as follows: in Section 2, the 
mathematical model, the several numerical schemes and the 
numerical benchmark are introduced. In Section 3, the results on 
those tests cases are presented. 

II. METHODS 

A.  Mathematical model 
In this work, one considers the 2D bedload transport 

modelled by the Saint-Venant Exner system defined by the 
shallow water equations [3] and the Exner sediment mass 
balance equation. This system can be written as: 

{ 𝜕𝑡ℎ + 𝑑𝑖𝑣(ℎ𝒖) = 0 𝜕𝑡ℎ𝒖 + 𝑑𝑖𝑣(ℎ𝒖⨂𝒖) + ∇(𝑔ℎ²2 ) 𝜕𝑡 𝑏 +  𝜀𝑑𝑖𝑣(𝒒) = 0 =  −𝑔ℎ∇𝑏 − 𝝉𝜌𝑤    () 

with the water depth ℎ(𝑡, 𝒙)  in m, the velocity  𝒖(𝑡, 𝒙) =(𝑢1, 𝑢2) in m/s and 𝒙 = (𝑥, 𝑦), g the gravitational constant in 
m²/s, b(t,x) the bathymetry in m, the water density 𝜌𝑤 in kg/m3, 
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𝝉 = (𝜏𝑥, 𝜏𝑦 ) the frictional stress in m1/3.s, the solid discharge 𝒒 = (𝑞𝑥(𝒙), 𝑞𝑦(𝒙))  in m²/s and 𝜀 = 1/(1 − Φ)  with Φ  the 
bed porosity. In this work, Grass formula is used [4]: 𝒒 = (𝐴𝑔𝑢1(𝑢12 + 𝑢22), 𝐴𝑔𝑢2(𝑢12 + 𝑢22)),            (2) 

which is widely present in numerical papers due to its simplicity. 
The constant Ag takes values between 0 and 1 and models the 
intensity of the interaction between the fluid and the bed. 

Meyer Peter & Muller formula [5], which is often used in 
industrial studies, has also been tested in order to ensure that the 
schemes also produce similar results in term of stability. 

Solving (1) by a splitting approach consists in building a 
solver for the hydrodynamical part and another for the 
morphodynamical part that communicate together. Solving this 
system by a coupled approach consists in treating all three 
equations at the same time. This splitting method allows to add 
some complex physical processes and is easier to set up in an 
industrial context than the coupled approach. However as shown 
in [2], it can lead to some instabilities issues because the 
eigenvalues of the fluid part with a zero fixed bottom evolution 
are not always convenient approximations of the eigenvalues of 
the full system. In particular, with supercritical flows, one of the 
eigenvalues of the full system is always negative which can be 
interpreted as information propagating upstream. The use of 
splitting strategy in such situation cannot take into account this 
information since the two eigenvalues of the shallow water 
equations are always positive in this case. 

B. Numerical methods 
1) Current numerical methods in GAIA 

GAIA is a sediment transport and bed evolution module of 
the TELEMAC-MASCARET modelling system [16]. It 
manages different sediment classes and numerous physical 
processes for both 2D and 3D spatial dimensions. In this paper, 
we only focus on finite volumes schemes solving bedload 
transport without suspension. The finite elements centered 
scheme of GAIA has shown the same stability results as the 
finite volumes one. 

To solve the two-dimensional Saint-Venant Exner system on 
an unstructured mesh, a control volume Ci is built around each 
node Pi as shown on Figure 1. It passes through the gravity 
center of each element adjacent to that node. 

 
Figure 1: Control volume on an unstructured mesh [15]. 

 

Exner equation can be discretised by a finite volume method 
as: 

E. 𝑏𝑖𝑛+1 = 𝑏𝑖𝑛 − 𝛥𝑡 ∑ 𝜎𝑖𝑗𝑞𝑖𝑗𝑛𝐾𝑖𝑗   (3) 

with 𝜎𝑖𝑗 = 𝐿𝑖𝑗𝜀|𝐶𝑖|  and ∑ 𝜎𝑖𝑗𝑞𝑖𝑗𝑛𝐾𝑖𝑗 ≅ ∫ 𝜀𝑑𝑖𝑣(𝑞)𝐶𝑖 . 

 𝑏𝑖𝑛is the bottom variable discretized at the time 𝑛, 𝐶𝑖 is 
the cell 𝑖  and |𝐶𝑖|  its area, 𝐾𝑖𝑗   is the interface between the 
cells 𝑖 and 𝑗, 𝐿𝑖𝑗  its length. 𝑞𝑖𝑗𝑛  is the solid discharge at the 
interface between cells 𝑖 and 𝑗. 

There are two finite volumes schemes implemented in 
GAIA, a decentring scheme and a centered scheme.  

1.1) GAIA decentring scheme 
The decentring is chosen according to the sign of the 

projected solid discharge at the interface between two cells: 

F. (𝑞𝑝𝑟𝑜𝑗)𝑖𝑗𝑛 = 𝑛𝑥,𝑖𝑗𝑞𝑥,𝑖𝑗 + 𝑛𝑦,𝑖𝑗𝑞𝑦,𝑖𝑗   (4) 

G. with 𝑞𝑥,𝑖𝑗   and 𝑞𝑦,𝑖𝑗  the mean of the x and y solid 
discharge components at each side of the interface, 𝑛𝑥,𝑖𝑗 and 𝑛𝑦,𝑖𝑗 the components of the normal of the interface. 

H. If (4) is positive i.e the solid discharge comes from the cell 𝑖 so we take 𝑞𝑖𝑗𝑛 = 𝑞𝑖𝑛, the solid discharge at the node 𝑖. If (4) 
is negative i.e the solid discharge comes from the cell 𝑗 so we 
take 𝑞𝑖𝑗𝑛 = 𝑞𝑗𝑛, the solid discharge at the node 𝑗. 

This gives us the following scheme: 
 𝑞𝑖𝑗𝑛 = { 𝑞𝑗𝑛, if   (𝑞𝑝𝑟𝑜𝑗)𝑖𝑗𝑛 < 0𝑞𝑖𝑛, if   (𝑞𝑝𝑟𝑜𝑗)𝑖𝑗𝑛 ≥ 0,  (5) 

 
with 𝑞𝑖 ≅ 1|𝐶𝑖|  ∫ 𝑞𝐶𝑖 . 

  
1.2)  GAIA centered scheme 

 
The numerical flux for the centered scheme is defined by:  𝑞𝑖𝑗𝑛 = 𝑞𝑖𝑛+𝑞𝑗𝑛2 . 

 
 

 
2) Newly implemented COURLIS adapted scheme 

 

An upwind scheme based on the same idea as one proposed 
in the module COURLIS has been implemented [6]. COURLIS 
is a 1D-sedimentology module coupled with MASCARET, the 
1D hydraulic code of TELEMAC-MASCARET. The proposed 
numerical scheme in this module is an upwind scheme based on 
the Froude number. The Froude number is defined as: 𝐹𝑟 = 𝑢√𝑔ℎ  ,   (7) 

 

and indicates the flow regime. If the regime is fluvial the Froude 
number is smaller than one, otherwise the regime is torrential. 
In the fluvial case, the information concerning bed evolution 
propagates in the direction of the fluid stream so an upstream 
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decentring is made. In the torrential case, solid flow information 
propagates upstream so a downstream decentring is made. It is 
known that some instabilities can appear with transcritical flows 
[2,7] so the main idea behind this scheme is to capture regimes 
changes in order to adapt the stream to the flow regime. We need 
to construct velocities and water height at the interfaces in order 
to calculate an associated Froude number discretized as:  

(𝐹𝑟)𝑖+12 = 𝑢𝑖+12𝑅𝑜𝑒
√𝑔ℎ𝑖+12𝑅𝑜𝑒,  (8) 

 
 

In this one-dimensional scheme, the left cell is centered on 
the node 𝑖, the right cell is centered on the node 𝑖 + 1 and 𝑖 +12   is the cells interface. Velocities and water heights are 
computed with the following Roe intermediate states: 

 ℎ𝑖+12𝑅𝑜𝑒 = √ℎ𝑖ℎ𝑖+1 ,  (9) 𝑢𝑖+12𝑅𝑜𝑒 = √ℎ𝑖𝑢𝑖+√ℎ𝑖+1𝑢𝑖+1√ℎ𝑖+ √ℎ𝑖+1 ,  (10) 

 
The numerical flux is defined as: 

 𝑞𝑖+12𝑛 = { 𝑞𝑖𝑛, if   (𝐹𝑟)𝑖+12 < 1𝑞𝑖+1𝑛 , if   (𝐹𝑟)𝑖+12 ≥ 1.  (11) 

  
To extend this resolution in two dimensions, we now have to 

take into consideration the tangential velocity at the interface, 
indeed not to consider this quantity could result to an 
underestimation of the Froude number and to decenter in the 
wrong direction. 

We have the new Froude number and Roe intermediate 
states: 

 
 (𝐹𝑟)𝑖𝑗 = ||𝒖𝒊𝒋 ||√𝑔ℎ𝑖𝑗𝑅𝑜𝑒   ,  (13) 

𝑢𝑖𝑗𝑁 = √ℎ𝑖𝑢𝑖𝑁+√ℎ𝑗𝑢𝑗𝑁√ℎ𝑖+ √ℎ𝑗   ,  (14) 

 𝑢𝑖𝑗𝑇 = √ℎ𝑖𝑢𝑖𝑇+√ℎ𝑗𝑢𝑗𝑇√ℎ𝑖+ √ℎ𝑗 ,  (15) 

 
with 𝒖𝒊𝒋 = (𝑢𝑖𝑗𝑁 , 𝑢𝑖𝑗𝑇 ). 

 
 

We are now able to calculate (11) with these new variables. 

 
 

 3) Coupled implemented scheme 
 

The coupled approached has been proved to be more stable 
than the splitting one and can be used as a reference in terms of 
stability. In order to compare the stability of the two methods, 
two numerical schemes have been implemented. The first is an 
approached Riemann solver for the shallow water equations [14] 
and the second is its extension to the Saint-Venant Exner system 
[7]. They satisfy several essential properties. These schemes 
guaranty water depths positivity and preserve the steady state of 
the lake at rest, the wet-dry and dry-wet transition. Numerical 
fluxes are derivatives of the Harten-Lan-van Leer flux [9] with 
a specific discretization of source terms. The numerical scheme 
for the shallow waters equations will be used in TELEMAC-2D 
to solve the hydrodynamical part when the splitting approach 
will be considered for the test cases. Its extension to the whole 
system (1) will be used when the coupled approach will be 
considered. 

 
4) Second order extension 

A simple second order extension of the newly implemented 
upwind scheme has been tested. For the Saint-Venant Exner 
system (1), the main idea is to calculate the numerical fluxes 
with reconstructed variables [13]. A MUSCL reconstruction 
(Monotonic Upstream-centered Scheme for Conservation Laws) 
is made in TELEMAC-2D when second order scheme are used. 
It consists in replacing the piecewise constant approximation of 
the variables by reconstructed ones. Reconstructed left and right 
states are obtained by linear or parabolic approximation 
computed with the previous time steps states. These corrected 
variables are now used to calculate second order flux. 

Our naïve approach has consisted in using the reconstructed 
variables computed by TELEMAC-2D and to send it to GAIA. 
They are used to calculate the Froude number and the solid 
discharge in the Grass formula. Unfortunately, spurious 
oscillations appeared even with the most diffusive flux limiter. 

 

C. Numerical Benchmark  
The scientific literature on this subject has shown that 

instabilities can appear with flow regime changes and shock 
apparitions [1,2,14]. Therefore, we have selected test cases that 
include all these configurations. It will enable to link theoretical 
assumptions on the instabilities apparitions with practical results 
and to highlight the limitations of the each scheme.  
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1) Dune evolutions under various flows 
 

Dune evolutions are classical test cases for 
morphodynamical simulations and deal with different flow 
regimes, which is interesting for our work. We have set up five 
dune evolution tests, two full fluvial cases with a strong and a 
weak interaction, two transcritical cases with and without a 
shock and a full torrential one.  

Fluvial flow: These classic test cases of sedimentology 
model the evolution of a dune under a fluvial flow. The first one 
simulates a strong interaction between the flow and the bed 
river [7]. The second models a weak interaction [10] and results 
are compared with an asymptotic solution given in [11].  The 
channel is 1000 m long and 10 m wide, the initial data are given 
by: 

 

{  
  
  𝑏(0, 𝑥) = {  

  0.1 + 𝑠𝑖𝑛 ((𝑥 − 300)𝜋200 )2 𝑖𝑓 300 ≤ 𝑥 ≤ 500  ,0.1   elsewhere  ,ℎ(0, 𝑥) = 10 − 𝑏(0, 𝑥),𝑢(0, 𝑥) = 𝑞0ℎ(0, 𝑥) ,
 

 
with 𝑞0 = 10 m²/s the inflow discharge. Grass formula (2) is 
used with 𝐴𝑔 = 1.0 for the strong interaction and 0.001 for the 
weak interaction case. The asymptotic solution is valid for a 
low interaction of the riverbed with water, 𝐴𝑔  < 0.01 and a 
flow rate less than 10 m²/s. It is given by: 

 𝑏(𝑡, 𝑥) = {0.1 + sin ((𝑥0 − 300)𝜋200 )2    if  300  ≤ 𝑥0 ≤ 500, 0.1                       , otherwise          , 
 

with x0 solution of:  𝑥 = 𝑥0 + 𝐴𝑔𝜖𝑚𝑔𝑞0𝑚𝑔𝑡 (10 − sin ((𝑥0 − 300)𝜋200 )2)−(𝑚𝑔+1) , if 300 ≤ 𝑥0 ≤ 500 𝑥 = 𝑥0 + 𝐴𝑔𝜖𝑚𝑔𝑞0𝑚𝑔𝑡10−(𝑚𝑔+1) ,         otherwise  

 
This solution is valid until t < t0 where t0 is the time at which 
the characteristics cross. It is estimated at 𝑡0 = 23827912.4 s 
with mg = 3.  
 

Transcritical flow without shock: it corresponds to the 
transition from a subcritical regime (Froude number <1) to a 

supercritical regime (Froude number >1).This test evaluates the 
robustness of schemes that may be sensitive to flow regime 

changes. The channel is 10 meters long and 1 meter wide, the 
initial data are given by: 

 

{ 
 𝑏(0, 𝑥) = 0.1 + 0.1𝑒(𝑥−5)²ℎ(0, 𝑥) = 0.4 − 𝑏(0, 𝑥)𝑢(0, 𝑥) = 𝑞0ℎ(0, 𝑥) ,     

  
with 𝑞0 = 10m²/s the inflow discharge.. 
Grass formula (2) is used with 𝐴𝑔 = 0.0005  on a 2300 
elements unstructured mesh. 

 
Transcritical flow with a shock: it models a hydraulic 

jump that is characterized by two regime flow changes, 
subcritical to supercritical then supercritical to subcritical. The 
channel is 20 m high and 2 m wide. The initial bathymetry is:  

 𝑏(0, 𝑥) = 0.25𝑒−0.5(𝑥−10)² . 
 

We evaluate the initial water height in a steady state with the 
equations in [12] with  𝑞(𝑡, 0) = 𝑞0 = 0.45𝑚2/𝑠  and ℎ(𝑡, 0) = 0.5 m. Grass formula (2) is used with 𝐴𝑔 = 0.0005 
on a 1270 elements unstructured mesh. 

 
Torrential flow: Under a torrential flow, we expect the 

sand dune to move upstream. The initial bathymetry is given 
by: 
 𝑏(0, 𝑥) = {0.2 − 0.05(𝑥 − 10)2, if 8 ≤ 𝑥 ≤ 20 ,                                otherwise   . 

 
The inflow discharge is 𝑞(𝑡, 0) = 2 m²/s and ℎ(𝑡, 0) = 0.5 m. 
The channel is 10 m long and 1 m wide and we use Grass 
formula with 𝐴𝑔 = 0.001  on a 2680 elements unstructured 
mesh. 

 
2) Dam break tests  

 
Dambreak test cases are useful to evaluate a scheme ability 

to deal with shock and rarefaction waves. The initial data of the 
wet case are:  

 

{ 𝑏(0, 𝑥) = 0 ,ℎ(0, 𝑥) = { 2 𝑖𝑓 𝑥 ≤ 5 ,0.125 otherwise ,𝑢(0, 𝑥) = 0 ,   

 
with Grass formula (2) and 𝐴𝑔 = 0.005. 
For the dry bottom case, the water height now includes a dry 

zone: 
 𝑏(0, 𝑥) = { 2  𝑖𝑓    𝑥 ≤ 5  0   otherwise . 
 

Moreover we include a friction term based on the Strickler 
formula with 𝐾𝑠 = 50. 

III. RESULTS 
In all the different test cases results, the centered scheme of 

GAIA will be named as CENTER, the decentring scheme of 
GAIA as GAIA DECENTRING, the newly implemented 
scheme as COURLIS_2D and the coupled scheme as ACU. 
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A. Dune evolutions under fluvial flow 
Long simulations are useful to highlight diffusivity or lack 

of stability of a scheme. The first result on Figure 2 is obtained 
after 

a 

1000-second simulation on the strong interaction case. We 
notice that GAIA DECENTRING and COURLIS_2D give same 
results, which seems logical because the Froude number is 
always smaller than one and the solid flow is always positive. 
However, CENTER oscillates and is less diffusive. 

The weak interaction case shown on Figure 3 is obtained 
with a 238 080 s simulation. Results are similar and we can see 
that ACU and CENTER begin to oscillate. It shows that even on 
weak interaction case, spurious instabilities can appear. Mesh 
convergence has been made on this case and a one-order 
accuracy has been highlighted for COURLIS_2D on Figure 4 
that explains the numerical diffusion. 

 
Figure 3: Bottom evolution for the weak interaction fluvial case. 

 
Figure 4: Strong interaction fluvial case: relative error on the bottom. 

C. Dune evolution under a shock-free transcritical flow 

Figure 5 illustrates the initial and final states at T = 20s, 
GAIA DECENTRING is not shown for clarity sake due to its 
high oscillations. The inflow is subcritical and the outflow is 
supercritical.  

Bottom evolution for all scheme can be seen on Figure 6, we 
notice that GAIA DECENTRING is the only one to produce 
oscillations in particular in the torrential zone and that CENTER 
shows a small bump at the critical outflow that increases with 
time. 

 

 

Figure 2: Bottom evolution for the strong interaction fluvial 
case. 

Figure 5: Free surface and bottom at initial and final time for 
the shock-free transcritical flow. 
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Figure 6: Bottom evolution for the shock-free transcritical flow. 

B. Dune evolution under a transcritical flow with shock 
This test represents a hydraulic jump characterized by two 

regime changes after a 20-second simulation on Figure 7. GAIA 
DECENTRING is not shown for clarity sake due to its high 
oscillations. COURLIS_2D and ACU seem to give smoother 
results than CENTER. 

 
Figure 7: Free surface and bottom at initial and final time the transcritical 

flow with a shock case. 

Once again, the upwind scheme of GAIA produces 
oscillations in flow regimes changes area seen on Figure 8. 
 

 
Figure 8: Bottom evolution for the transcritical flow with a shock case. 

 

C. Dune evolution under a full torrential flow 
COURLIS_2D and ACU are the only ones to finish the 20-

second simulation without producing oscillations. GAIA 
DECENTRING was not able to finish it and CENTER produces 
a sediment abnormality at the right boundary shown on Figure 
9. This abnormality increases with time that has forced us to stop 
the simulation after 20 seconds. 

 
Figure 9: Bottom evolution for the anti-dune test case. 
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D. Dambreak over a wet bottom 
Figure 10 illustrates the initial and final situation one second 

after the break. 

 
Figure 10: Free surface and bottom at initial and final time for the dambreak 

wet bottom case. 

As shown on Figure 11, CENTER and ACU do not produce 
any oscillations. We notice a small peak at the shock for 
COURLIS_2D and bigger ones for GAIA DECENTRING. 
However, COURLIS_2D oscillations seem to be bounded and 
do not grow with longer simulations whereas those of GAIA 
DECENTRING do. 

 

E. Dambreak over a dry bottom 

I. Figure 12 illustrates the initial and final situation one 
second after the break. 

J.  
Figure 12: Free surface and bottom at initial and final time the dambreak 

dry bottom case. 

We can see on Figure 13 that GAIA DECENTRING still 
oscillates and ACU seems to produce the smoothest result. 

 

 
Figure 13: Bottom evolution for the dambreak dry bottom case. 

 

 

 

 

Figure 11: Bottom evolution for the dambreak wet bottom case.  
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F. Discussion 
All the previous results are summarized in Table 1. We can 

see that the decentring scheme of GAIA is not stable and has 
only succeeded the full fluvial test. The centered scheme fails on 
the two dune evolutions with no regime change but handle the 
two dambreak cases whit no oscillations. Our newly 
implemented upwind scheme have passed all dune evolutions 
test including the full torrential one, however some small 
oscillations have appeared on the dambreak wet bottom test case 
that explains the yellow case. The coupled scheme has only 
failed on the fluvial test case but has handled all the other tests 
giving the smoothest results. For this benchmark, 
COURLIS_2D seems to be the strongest approach for the 
splitting method but is diffusive as an order one accuracy. ACU 
is the most stable scheme for the treatment of shocks and 
rarefaction waves as shown on the dambreak tests results. 

TABLE 1: SUMMARY OF RESULTS (✓: SIMULATION SUCCEEDED WITHOUT 
OSCILLATIONS /   ≈: APPARITIONS OF SMALL BOUNDED OSCILLATIONS /  

: PRESENCE OF SPURIOUS OSCILLATIONS) 

 CENTER GAIA 
DECENTRING 

COURLIS 
2D 

ACU 

Fluvial   ✓ ✓  
Transcritical ✓  ✓ ✓ 
Transcritical 
with shock ✓  ✓ ✓ 
Torrential   ✓ ✓ 
Dambreak 

wet ✓  ≈ ✓ 
Dambreak 

dry ✓  ✓ ✓ 

IV. CONCLUSION 
The aim of this work was to find when instabilities appear 

solving bedload transport by a splitting approach and to 
determine how current implemented scheme or its adaptations 
can handle this issue.  

To do this, we have presented the current finite volumes 
method implemented in the v8p1 version of GAIA and adapted 
a one-dimensional COURLIS upwind scheme based on the 
evaluation of the Froude number at the interfaces. An 
approximate Riemann solver has also been implemented [14] to 
solve the shallow waters equations and its extension to the Saint-
Venant Exner system based on the coupled approach. [7]. 

A numerical benchmark has been set up, composed of cases 
found in the scientific literature in order to test the ability of each 
scheme to deal with flow regime changes and shocks. 

Results have shown that the decentring scheme of GAIA was 
not stable and was only able to deal with full fluvial flows. As 
soon that regime changes or a torrential flow arise spurious 
oscillations appear. The centered scheme of GAIA showed 
oscillations on the subcritical test case and the full torrential one 
but was able to handle regime changes and shocks treatment. 
The newly implemented 2D adaptation of the COURLIS 
scheme seems to be stable and only produces a small oscillation 
on one dam break test case. The coupled scheme has only 

produced instabilities on the fluvial flow test case and has 
presented the smoothest results. However, this approach does 
not allow us to use complex physical processes like managing 
different sediment classes, sediment slide or slope effect. 

This benchmark has enabled us to highlight the apparition of 
oscillations in flow regime changes and torrential areas. 
Moreover, it has allowed us to identify the limitations of the 
present methods and cases where no one works. The newly 
implemented upwind scheme has filled in this gap by handling 
torrential flows and can be easily integrated into GAIA. 
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