

Записки Горного института. 2021. Т. 248. С. 180-189 А.Г.Булах, Г.Н.Попов, С.Ю.Янсон, М.А.Иванов brought to you by T CORE provided by Directory of Open Access Journals DOI: 10.31897/PMI.2021.2.2

УДК: 72+549+552+930

Новые данные о гранитном постаменте памятника Петру I «Медный всадник» в Санкт-Петербурге

А.Г.БУЛАХ¹, Г.Н.ПОПОВ², С.Ю.ЯНСОН¹, М.А.ИВАНОВ³

¹ Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

² ООО «Пангея», Санкт-Петербург, Россия

³ Санкт-Петербургский горный университет, Санкт-Петербург, Россия

Как цитировать эту статью: Новые данные о гранитном постаменте памятника Петру I «Медный всадник» в Санкт-Петербурге / А.Г.Булах, Г.Н.Попов, С.Ю.Янсон, М.А.Иванов // Записки Горного института. 2021. Т. 248. С. 180-189. DOI: 10.31897/PMI.2021.2.2

Аннотация. В целях расширения и популяризации знаний о каменном убранстве Санкт-Петербурга представлены новые данные о минералогии и петрографии знаменитого Гром-камня, части которого служат основанием памятнику Петру I – легендарному «Медному всаднику». При рассмотрении геологической документации для гранитного основания памятника изучен минеральный состав и внутреннее строение гранита, а также обнаруженных в нем фрагментов пегматитовой жилы и пегматитовых прожилков. Методами электронной микроскопии, элетронно-зондового и рентгено-фазового анализа изучено 25 минеральных проб, отделенных с поверхности пьедестала по имеющимся микросколам. Установлено, что калиево-натриевый полевой шпат в граните представлен микроклином, слюды представлены аннит-сидерофиллитом и мусковитом. Акцессорные минералы – монацит, ксенотим, торит, циркон, рутил, апатит, флюорит, минералы Ті, Nb, Ta, фосфаты урана. Для пегматитов характерен топаз. В результате рассмотрения структурно-тестурных особенностей четырех гранитных глыб, из которых собран постамент памятника, их минералогического состава, химизма главных и акцессорных минералов выявлены признаки сходства этой горной породы с докембрийскими биотит-мусковитовыми гранитами и топазсодержащими пегматитами (штокшайдерами) поздней фазы образования Выборгского массива гранита рапакиви. Результаты исследований рассматриваются как основа для дальнейшего геолого-минералогического изучения природы Гром-камня и определения места его отделения от коренного источника.

Ключевые слова: Санкт-Петербург; Гром-камень; Петр I; гранит; рапакиви; топаз; Выборгский массив

Уважаемые читатели! Перед вами одна из последних публикаций почетного профессора Санкт-Петербургского государственного университета Андрея Глебовича Булаха (1933-2020) – крупнейшего знатока природного камня в архитектуре Санкт-Петербурга. В своих работах А.Г.Булах стремился объединить интересы историков, архитекторов, реставраторов и геологов, показать важность точной минералогической и геологической информации при диагностике камня в произведениях искусства и в исторических реконструкциях. Публикуя статью, мы отдаем дань памяти прекрасному человеку, блестящему педагогу, яркому и самобытному ученому.

Введение. Громадный валун Гром-камень, использованный при создании памятнику Петру I («Медного всадника»), как известно, был обнаружен в Конной Лахте вблизи Финского залива в 1768 г. В деталях описано, как валун нашли, выкопали, обработали, установили на Сенатской площади, как готовили и отливали из бронзы конную статую императора [4, 5]. Указывают, что громадная скала под всадником монолитна и сложена финским гранитом. Но и то, и другое следует проверить и уточнить в целях расширения знаний о каменном убранстве Санкт-Петербурга и его сохранения [3, 4, 15]. Это по-особому важно в юбилейные годы 350-летия Петра I.

Авторы при участии сотрудников Государственного музея городской скульптуры Санкт-Петербурга получили уникальную возможность прикоснуться к постаменту памятника Петру I, обследовать и фотодокументировать его состояние, изучать микропробы камня. Впервые достоверно диагностирован гранит, изучены его минералы, установлено блочное строение и развороты блоков Гром-камня при создании постамента. Выявлено, что гранит Гром-камня отличен по отношению к традиционным для каменного убранства Петербурга выборгитам и питерлитам, а также к облицовочным плитам отмостки вокруг «Медного всадника». Строение пьедестала. При внимательном обследовании памятника становится ясным, что «скала» под ним составлена из четырех глыб (блоков) сложной конфигурации [2, 8] (рис.1). Самый большой блок – № 1, самый маленький – № 4. Имеется еще один блок – № 5 длиной 30 см, видимый в основании постамента на границе блоков № 1 и 2. В указанных глыбах выявлено три типа горных пород. Во-первых, главный объем постамента (около 90 %) сложен гранитом. Во-вторых, в нем обнаружены три включения (ксенолита) другой горной породы – мелкозернистого гранита (название условное, основанное на визуальной оценке). Включения видны на самом верху глыбы № 1, под ногами всадника. Их форма угловатая, видимые размеры 50×30 , 20×10 , 40×20 см. (рис.2). В-третьих, в блоке № 1, в граните можно видеть фрагменты пегматитовой жилы мощностью порядка 50 см. Она видна не вся, так как ее основная часть сколота и закрыта блоком № 2 (рис.3). Кроме того, в граните присутствуют тонкие пегматитовые прожилки мощностью 3-5 см. Они видны в глыбе № 1 в левой части постамента и в глыбе № 2 в лицевой части постамента.

Судя по разным оттенкам цвета гранитных блоков 1-4, окраска Гром-камня не была однородной. Ясно, что выбирали прежде всего самый прочный материал и оттенки цвета при этом не учитывались. Детальное изучение ориентировки трахитоидности гранита, положения пегматитовой жилы и прожилков позволило установить, из какой части первоначального валуна были изготовлены указанные блоки, насколько сильно они обработаны и как именно развернуты для придания постаменту, по замыслу Фальконе, вида «единой скалы» [2]. Трехмерное компьютерное моделирование показало, что для постамента использовано лишь 1/3 исходного объема Гром-камня, общий объем которого оценивается в 675 м³, что соответствует весу гранита порядка 1755 т [2]. Но авторам не удалось пока установить, где находятся оставшиеся части исходного валуна.

Рис.1. Блочное строение постамента Медного всадника. Фото Г.Н.Попова, 2016 г. 1-4 – номера гранитных блоков

Рис.2. Одно из включений мелкозернистого гранита в блоке № 1, левая часть. Фото Г.Н.Попова, 2020 г.

а

б

Рис.3. Пегматитовая жила в блоке № 1. Левая часть постамента, фото А.Г.Булаха, 2002 г. (*a*) и правая часть постамента, фото Г.Н.Попова, 2019 г. (*б*) 1, 2, 5 – номера блоков гранита

Гранит. Гранит светло-розовый с разными оттенками серого. В глыбе № 1 он явно розовый с разными вариациями цвета по объему глыбы. В глыбе № 2 он розовато-серый, в глыбе № 3 он светло-розовый, в глыбе № 4 серовато-розовый. Главные минералы гранита – К-Na полевой шпат, плагиоклаз, кварц. Присутствуют слюды – биотит и мусковит. Состав гранита (об. %), по [2]: полевой шпат – 68, кварц – 29, темноцветные минералы (слюды) – 3. Среди полевых шпатов значительно преобладает К-Na полевой шпат (приблизительное соотношение калиево-натриевого полевого шпата и плагиоклаза 3:1).

Гранит по структуре крупнокристаллический, средний размер зерен около 1,5-3 см. Полевые шпаты субидиоморфны, размер их зерен в среднем около 0,5-2 см, местами имеются выделения калиево-натриевого полевого шпата размером 3-5 см. Размер зерен кварца от 0,3 до 0,5-1 см. Слюды идиоморфны, размер от 0,5 до 2 см. Текстура трахитоидная за счет параллельной ориентировки уплощенных кристаллов полевых шпатов. В зависимости от среза в разных глыбах постамента гранит выглядит по-разному – почти массивным, порфировидным, явно трахитоидным (рис.4).

Пегматит. В глыбе гранита № 1 – передней части, обращенной к Неве, можно видеть два фрагмента пегматитовой жилы мощностью около 50 см. По содержанию минералов (калиевонатриевого полевого шпата, плагиоклаза, кварца, биотита, мусковита) пегматит соответствует граниту. Пегматитовая жила характеризуется четко выраженными контактами с вмещающим гранитом, графической и пегматоидной структурой, зональной текстурой [8]. Она сложена параллельно-шестоватым агрегатом крупных (длиной до 15 см) кристаллов полевых шпатов с мелкими письменными вростками кварца. В осевой части жилы кристаллы полевого шпата не содержат кварц, идиоморфны по отношению к обособлениям кварца (кварцевому ядру).

Пегматитовые прожилки сложены в основном агрегатом кристаллов полевых шпатов (размер 2-4 см в поперечнике) и кварца. Контакты прожилков с гранитом нерезкие. Строение участковозональное с ксеноморфными обособлениями гнезд кварца в осевых частях прожилковых тел. В глыбе № 1 жилки параллельны друг другу и тянутся вдоль глыбы. В глыбе № 2 такие же жилки тянутся поперек ее удлинения.

Материалы и методика лабораторных исследований. Всего изучено 25 мономинеральных проб, отделенных с поверхности пьедестала по имеющимся миросколам. В 2002 г. взяты две пробы, в них был диагностирован топаз [8]. В 2016 г. взято пять проб: 1) два кусочка розового калиево-натриевого полевого шпата из гранита размером $2,3\times3,9$ мм; 2) пластинка слюды размером $0,5\times2$ мм; 3) осколок слюды в 2×2 мм; 4) множество мелких обломков разных минералов 2×3 мм; 5) два зерна размерами $1,2\times2$ мм и 0,02 мм. В 2018 г. взято 18 минеральных проб (рис.5).

Рис.4. Структура и текстура гранита в разных срезах на поверхности постамента (*a*), в блоке № 1 (б), в блоке № 3 (*в*, *г*) Фото Г.Н.Попова, 2020 г.

Рис.5. Места отбора и номера микропроб в блоке № 1 (опробование 2018 г.)

Пробы 2016 и 2018 гг. исследованы в Научном парке СПбГУ [8, 13]. В Ресурсном центре «Микроскопия и микроанализ» изучены морфология зерен, их срастания и включения в них с помощью микроскопа-микроанализатора Hitachi TM3000 (Япония) с приставкой энергодисперсионного микроанализа OXFORD (Великобритания), системы со сфокусированными электронным и ионным зондами QUANTA 200 3D (FEI, Нидерланды) и с аналитическим комплексом Pegasus 4000 (EDAX, USA). Исследования проводились в режиме отраженных и вторичных электронов. Электронно-зондовый микроанализ реализован на энергодисперсионном дифрактометре Pegasus 4000 (SDD ApolloX, разрешение при 5,9 KeV Mg K α – 125,7 eV). Измерения выполнены с объемных и полированных образцов, напыленных углеродом в условиях высокого вакуума при ускоряющем напряжении 15-20 кВ. Степень триклинности полевого шпата определена порошковым методом с помощью рентгеновского дифрактометра UltimaIV (Rigaku), излучение рентгеновской трубки – СиК α 1+2; длины волн $\lambda_{CuK\alpha1}$ = 1,54059 Å и $\lambda_{CuK\alpha2}$ = 1,54443 Å; режим работы трубки 40 кВ / 30 мA; скорость вращения образца 20 оборотов в минуту; температура 25 °C, атмосфера – воздух.

Полученные результаты. Всего выявлено более 20 минеральных фаз, из которых 15 надежно продиагностированы (табл.1).

Таблица 1

		-					
Горные породы постамента	Гранит	Пегматит (жила)	Пегматит (прожилки)				
Главные минералы							
И No	I .	Г ¹ .	I .				
к-па полевои шпат	+	+	+				
Плагиоклаз (олигоклаз)	+	+	+				
Кварц	+	+	+				
	Второстепенные	е минералы					
Биотит	+	+	+				
Мусковит	+	+	+				
Магнетит	+		+				
Топаз		+	+				
Флюорит	+		+				
Редкие минералы							
Монацит	+						
Апатит	+						
Ксенотим		+					
Торит	+						
Циркон	+						
Рутил-анатаз	+		+				
Барит	+		+				

Минералы, диагностированные в горных породах постамента Медного всадника

Примечание. Кроме перечисленных минералов, в постаменте памятника выявлены, но точно не продиагностированы минералы Fe, Ti, Nb, Ta, фосфаты U, TRR. Также не указаны включения железа и никеля, природа которых в породах постамента не установлена.

Главные минералы – полевые шпаты и кварц. Калиево-натриевый полевой шпат имеет светло-розовый цвет и почти идеальный химический состав KAlSi₃O₈ (табл.2). В трех анализах в этом минерале определена примесь FeO до 1-2 %. Степень триклинности в двух анализированных точках составили 87,6 %, (в граните) и 86,1 % (в пегматитовом прожилке). Минерал практически гомогенен, присутствуют редкие пертиты альбита № 5-10. Плагиоклаз в граните имеет сиреневосерый цвет и представлен олигоклазом № 15-20. В пегматите выявлен альбит. Квари лабораторными методами не изучался. Примеры кристаллохимических формул указанных минералов:

Проба № 1 – (K_{0,84}Na_{0,08})_{0,92}(Si_{3,00}Al_{1,02}O₈) – микроклин. Проба № 9 – (Na_{0,84}Ca_{0,15}K_{0,01})_{1,00}(Si_{2,85}Al_{1,15}O₈) – плагиоклаз № 15.

Таблица 2

A 119 TU20 1		Плагиоклаз			
анцияы		из гранита		из пегматита (жила)	из гранита
Номер пробы	1	3	5	7	11
SiO ₂	65,70	54,77	64,20	65,73	61,15
Al ₂ O ₃	11,98	29,05	19,20	18,72	25,15
FeO	-	1,23	_	-	_
K ₂ O	14,41	14,95	16,51	15,37	09,45
Na ₂ O	0,92	_	_	0,18	9,85
Год	2016	2018	2018	2016	2018
Номера точек анализа	1_1_1	12_2_6	11_1_1	5_1_1	12_2_4

Полевые шпаты (содержания элементов, нормированные на 100 %)

Второстепенные минералы. Обнаружены слюды (биотит и мусковит), магнетит, топаз, флюорит. *Биотит* представлен аннитом-сидерофиллитом с переменными соотношениями FeO и MgO (табл.3). *Мусковит* заметно обогащен Fe. Во всех слюдах Li не определялся.

Таблица 3

	Биотит		Мусковит					
Анализы	из гранита	из пегматита (прожилки)	из гранита		из пегматита (жила)	из пегматита (прожилки)		килки)
Номер пробы	16	19	21	22	18	24	25	20
SiO ₂	39,42	55,18	54,65	49,27	49,20	50,62	49,57	49,31
TiO ₂	0,78	-	0,58	0,26	0,43	-	_	_
Al ₂ O ₃	21,99	21,79	24,62	34,43	29,61	37,02	37,64	32,62
FeO	27,71	8,10	6,96	4,89	9,52	2,14	1,35	7,48
MgO	0,65	10,39	11,05	0,40	0,59	-	_	_
K ₂ O	9,56	4,38	10,35	10,75	10,65	9,10	10,96	10,59
Na ₂ O	_	-	_	_	_	1,13	0,28	_
Год	2016	2018	2016	2016	2016	2018	2016	2018
Номера точек анализа	2_1_1	2_3_6	2_1_2	2_1_3	2_1_4	16_1_1	5_1_2	2_2_6

Слюды (содержания элементов, нормированные на 100 %)

Примеры формул минералов группы слюд:

Проба № 16 – $K_{0,90}(Fe^{2+}_{1,21}Al_{0,82} Mg_{0,07}Ti_{0,04})_{2,14}(Al_{1,09} Si_{2,91}O_{10})(OH)_2$ – биотит. Проба № 18 – $K_{0,84}(Fe^{2+}_{1,87}Al_{0,84}Mg_{0,07}Ti_{0,04}Fe^{3+}_{0,02})_{2,64}(Al_{1,10}Si_{2,90}O_{10,00})(OH_{1,86})$ – биотит. Проба № 21 – $K_{0,85}(Al_{1,53}Fe^{2+}_{0,37}Ti_{0,03}Mg_{0,10})_{2,03}(Al_{0,48}Si_{3,52}O_{10})(OH)_2$ – мусковит. Проба № 22 – $K_{0,88}(Al_{1,77}Fe^{2+}_{0,25}Mg_{0,04}Ti_{0,01}Fe^{3+}_{0,01})_{2,08}(Al_{0,84}Si_{3,16}O_{10})(OH)_2$ – мусковит.

Магнетит встречен в двух видах. Он обнаружен в форме уплощенных кристаллов с трещинами отдельности. Судя по единственному анализу, в нем присутствуют Cr (0,77 %) и Ti (1,37 %). Магнетит особой морфологии встречен в виде мельчайших шариков диаметром около 0,08 мм. В них содержится примесь Mg, Al, Si (в сумме около 3 %). Такие магнетитовые шарики известны в многочисленных находках мира, природа их происхождения дискутируется.

Топаз обнаружен в пегматитовых прожилках в виде одиночных зерен и в пегматитовой жиле в виде явно заметных скоплений (гроздьев), в них каждое отдельное зерно имеет размер от 0,3 до 2,5 мм, в среднем около 1,5 мм. Топаз ассоциирует с кварцем и полевым шпатом (рис.6). Топаз прозрачный, бесцветный, голубоватый, зеленоватый. В двух пробах выявлена примесь FeO (1,47 и 3,32 %). По данным анализа топаз по составу соответствует формуле $Al_{2,01}Si_{0,99}O_{4,00}(F_{1,86}OH_{0,14})$. *Флюорит* обнаружен в граните и прожилках пегматита.

Редкие минералы. В микропробах определены семь минералов. Кроме этого, выявлено еще 18 минеральных фаз, продиагностировать которые не удалось. *Циркон, монацит, торит, апатит* обнаружены в граните, *ксенотим* – в пегматите. Их химические составы стандартны. *Рутил* (и равно возможный ему *анатаз*) найден в граните и пегматитовых прожилках. Часть их зерен имеет идеальный теоретический состав TiO₂, но чаще они обогащены изоморфными примесями. Обращает внимание присутствие в непродиагностированных фазах Nb и Ta, т. е. это либо особые разновидности рутила, либо минералы типа титаносиликатов.

Рис.6. Зерна топаза из пегматитовой жилы. Фото Г.Н.Попова, 2020 г. (*a*) и С.Ю.Янсон, 2018 г. (*б*); Fsp – полевой шпат; Qu – кварц

Урановые и медные фосфаты. Обнаружено пять фосфатов, четыре из них радиоактивны. Они встречены в пегматите и пегматитовых прожилках (табл.4) в виде скоплений мельчайших (первые микроны) чешуйчатых, таблитчатых кристаллов с квадратными или округлыми очертаниями, а также в виде порошковатых масс на поверхности зерен полевого шпата, кварца, топаза. Цифры анализа пробы № 59 сходны с торбернитом, пробы № 60 – чералитом. Однозначная идентификация указанных минералов пока не достигнута.

Таблица 4

A	Минеральные фазы					
Анализы		из пегматита (жила)				
Номер пробы	56	57	58	59	60	
P ₂ O ₅	15,57	16,05	15,30	15,22	23,24	
SiO ₂	17,67	17,93	19,40	19,39	4,58	
UO ₂	44,05	45,29	42,75	42,69	5,91	
ThO ₂	0,00	0,00	0,00	0,00	45,77	
Al ₂ O ₃	10,61	10,56	11,37	11,37	3,94	
MgO	4,61	4,46	5,12	5,12	0,00	
CuO	3,63	3,67	3,97	3,91	0,00	
FeO	1,98	2,04	2,09	2,31	4,99	
CaO	0,00	0,00	0,00	0,00	11,56	
K ₂ O	1,88	0,00	0,00	0,00	0,00	
Год	2016	2016	2016	2018	2018	
Номера точек анализа	5_3_1	5_3_1a	5_3_16	9_9_1	11_1_6	

Фосфаты Th, U, Cu (содержания элементов, нормированные на 100 %)

Недиагностированные минералы. Результаты анализа проб № 61, 62, 63, 64 (табл.5, 6) указывают на силикаты и алюмосиликаты Fe, а проб № 65 – на особенный оксид Ti. Результаты анализов проб № 66, 67, 68 свидетельствуют о титаносиликате Nb и Ta.

Таблица 5

Силикаты и алюмосиликаты Fe и Ti (содержания элементов, нормированные на 100 %)

Анализы	Минеральные фазы						
		из гранита	из пегматита (прожилки)				
Номер пробы	61	62	63	64	65		
SiO ₂	15,33	26,67	26,41	32,99	10,95		
TiO ₂	1,22	_	_	_	78,58		
Al ₂ O ₃	7,71	23,57	22,95	3,03	8,53		
MgO	1,66	2,65	2,87	3,03	_		
MnO	_	_	_	0,87	_		
FeO	73,24	46,62	47,77	59,53	_		
CaO	0,85	_	_	_	_		
K ₂ O	_	0,29	_	0,55	_		
Na ₂ O	_	_	_	_	1,94		
Cl	_	0.20	_	_	_		
Год	2018	2016	2018	2018	2018		
Номера точек анализа	12_5_1	1_1_3	16_1_3	9_3_1	9_2_1		

Таблица б

Титаносиликаты Nb и Ta (содержания элементов, нормированные на 100%)

A 110 71101 1	Минеральные фазы					
Анализы		из гранита				
Номер пробы	66	67	68			
Nb ₂ O ₅	6,39	6,52	3,69			
Ta ₂ O ₅	18,80	14,87	7,99			
SiO ₂	14,73	14,57	8,22			
TiO ₂	47,15	52,06	69,97			
Al ₂ O ₃	2,04	22,41	1,65			
FeO	10,89	9,57	8,49			
Год	2016	2018	2018			
Номера точек анализа	2_2_4	3_4_1	3_4_2			

Металлы – это пластинчатые включения никеля и железа в микротрещинах кристаллов полевого шпата. Вопрос о происхождении таких включений – природные они или техногенные [13] – остается спорным.

Обсуждение результатов. Во-первых, обратим внимание на соотношение главных породообразующих минералов и структурно-тестурные особенности Гром-камня. Очевидно, что объемные соотношения кварца, полевых шпатов и темноцветных минералов характеризуют породу как биотит-мусковитовый калиево-полевошпатовый гранит. Равномернокристалличность, явно выраженная трахитоидность и полное отсутствие округлых (овоидных) выделений щелочного полевого шпата позволяют исключить сходство этой породы с типичным гранитом рапакиви – выборгитом (Baltic-Brown) и питерлитам (Carmen-Red) в соответствии с современными представлениями о породах формации рапакиви [17]. Бытующее в среде историков и искусствоведов представление о Гром-камне как «финском» граните – рапакиви, по-видимому, объясняется внешним сходством его окраски с рапакиви, широко представленным в архитектуре Санкт-Петербурга XVIII – начала XX вв. [18].

По структуре и текстуре Гром-камень также не идентичен Ольгинскому валуну, стоящему на берегу Финского залива в районе Конной Лахты, где он был обнаружен. Ольгинский валун считают частью Гром-камня. Но это мнение ошибочное – валун сложен совсем другой горной породой – овоидальным гранитом рапакиви. Также не являются фрагментами Гром-камня и три валуна, находящиеся на берегах Петровского пруда. Наблюдения показывают, что это тоже овоидальный гранит рапакиви.

Во-вторых, минеральный состав, структура, текстура, наличие флюорита, монацита, апатита и других акцессорных минералов в Гром-камне, а также топаза и флюорита в пегматитах позволяет обратить внимание на его сходство в этих отношениях с крупнокристаллическими трахитоидными биотит-мусковитовыми гранитами поздней фазы магматизма, проявившегося при образовании Выборгского массива гранитов рапакиви. Имеются в виду биотит-мусковитовые граниты, которые были выявлены Д.А.Великославинским (1953) при изучении геологического строения Выборгского массива и позднее отнесенные А.М.Беляевым [1] к редкометалльным биотит-мусковитовым топазсодержащим гранитам. В качестве примера геологического объекта, представляющего такие породы в данном регионе, указывается массив Кюми (юго-восточная Финляндия). Трахитоидные граниты такого типа, так называемые «Even-grained гаракivi granites» района Лаппеенранты, детально описаны и глубоко изучены финскими исследователями [14, 15, 16]. Как известно, возраст пород этого массива оценивается как нижнепротерозойский (1,5-1,6 млрд лет).

На родственное отношение Гром-камня к таким породам указывают и развитые в нем пегматитовые прожилки. Они по минеральному составу и строению сходны с так называемыми штокшайдерами – топазсодержащими пегматитами, развитыми в краевых зонах топазсодержащих гранитоидных тел Выборгского массива [1]. Также как и в штокшайдерах, топаз в пегматитах представлен сростками мельчайших кристаллов.

В частности, остается открытым вопрос о наличии топаза в непосредственно граните, слагающем Гром-камень. Этот минерал обнаруживается в биотит-мусковитовых гранитах Выборгского массива и проверить сходство Гром-камня с такой породой в этом отношении было бы важно. Для этого необходимо изучить каменный пьедестал «Медного всадника» в петрографических шлифах. Но выполнить такое исследование практически по понятным причинам пока что не представляется возможным.

Отмеченное сходство пород не исчерпывает вопросы происхождения Гром-камня, но определенно ориентирует на пути дальнейшего поиска их решения. Конечно, естественные выходы на поверхность пород Выборгского массива гранитов рапакиви пространственно относительно близки к месту обнаружения Гром-камня, и вывод о их пространственной близости как бы подсказывает вывод о их генетическом родстве. Но нельзя исключать из рассмотрения и другие массивы формации рапакиви, известные в материковой части Финляндии [20], на Аландских островах и в других районах северо-запада России и соседних с ней стран. Тем более, что процессы разрушения и перемещения обломков пород кристаллического фундамента на Балтийском щите в период последнего оледенения охватывали огромные территории Северной Европы [6, 10]. Минералогопетрографическое подобие пород следует рассматривать лишь как предпосылку для определения

нужного направления в дальнейших исследованиях. Можно определенно утверждать, что в необходим детальный сравнительный анализ пород каменного основания памятника и пород не только формации рапакиви, но и гранитов других формаций северо-западного региона России, Финляндии, Швеции [7, 9]. Как показывают примеры исследований рапакиви [11, 12], для корелляции пород этого типа особенно важен учет индивидуальных типоморфных особенностей акцессорных минералов.

Так как петрохимический метод сравнения горных пород по понятным причинам невозможен, представляется важным в будущем при дальнейшем изучении постамента «Медного всадника» обратиться к физиографическому анализу структуры и текстуры сравниваемых пород, а также к электронно-зондовому методу определения химического (в том числе и изотопного) состава и возраста акцессорных минералов, особенно циркона. Авторы рекомендуют принять во внимание следующие минералогические особенности Гром-камня: содержание К по результатам радиометрии составляет 6,4 $\%^*$, что в пересчете на K₂O соответствует 7,4 %; соотношение K/Na более единицы, что явствует из данных о соотношении главных породообразующих минералов; содержание в граните Fe и Mg невысокое, что следует из малой примеси темноцветных минералов; соотношение Fe/Mg высокое, что видно по химическому составу биотита; гамма-активность гранита колеблется в интервалах 31-38 мкр/ч [8]; содержания радиоактивных элементов составляют 10^{-4} Ra, 10^{-4} 65 Th. В гранитах и пегматитах Гром-камня биотит представлен аннитом-сидерофиллитом. При этом в слюде именно из гранита (см. табл.3) соотношение Fe²⁺/(Fe²⁺ + Mg) составляет 0,96, соотношение $Fe^{2+}/(Fe^{3+} + Mg)$ составляет 94,5/4,2/1,2, соотношение аннит/флогопит/мусковит составляет 65,4/2,7/31,9. По мнению авторов, эти показатели типичны для слюд из поздних фаз Выборгского массива гранитов формации рапакиви, химический состав которых хорошо изучен [15, 19].

Заключение. Таким образом, знаменитый Гром-камень, четыре основные части которого слагают постамент для «Медного всадника», представлял собой валун биотит-мусковитового калиево-полевошпатового гранита. Строение гранитного валуна было осложнено включениями ксенолитов других более мелкозернистых гранитов. С одного края он был сложен пегматитом, залегающим в гранитах в виде жилы полуметровой мощности, сохранившейся лишь частично. Также в гранитах были развиты многочисленные пегматитовые прожилки. Структурно-тестурные особенности гранита, его минеральный состав и химизм главных и акцессорных минералов в совокупности с такими же характеристиками развитых в нем пегматитов указывают на их сходство с трахитоидными биотит-мусковитовыми гранитами и топазсодержащими пегматитами (штокшайдерами) поздней фазы образования Выборгского массива гранита рапакиви, скальные выходы которых известны на территории южной Финляндии. Предполагаемый возраст образования гранита и пегматитов Гром-камня оценивается, соответственно, как и пород Выборгского массива, в 1,5-1,6 млрд лет.

Затронутые в данной статье вопросы происхождения Гром-камня, как и другие совсем неизученные аспекты его истории, в частности, условия отделения от пород коренного источника, формы разрушение с поверхности и обстоятельства перемещения к месту обнаружения в 1768 г. вблизи берега Финского залива, безусловно, представляют интерес не только для специалистов – исследователей истории Санкт-Петербурга, а также и для широкого круга просто любознательных и пытливых людей. Ведь Гром-камень, как и сам памятник Петру I «Медный всадник» в Санкт-Петербурге, – это часть исторического и культурного наследия России.

Благодарности. Авторы благодарны Ю.Б.Марину, Е.Г.Пановой, А.М.Беляеву, В.В.Иванникову, А.М.Ларину, финским геологам Р.Нärmä, O.Selonen за обсуждение геологических материалов, сотрудникам Музея городской скульптуры Санкт-Петербурга Н.Н.Ефремовой, В.В.Рытиковой, В.В.Мануртдиновой за активное содействие в исследованиях Гром-камня. Часть работы выполнена при финансовой поддержке Европейского Союза, России и Финляндии (KS1528).

Посвящается памяти геолога, исследователя рапакиви Алексея Дмитриевича Шебанова (1968-2017).

^{*} Среднее по 14 точечным определениям, спектрометр РПК-106, оператор Г.В.Романов, Российский геоэкологический центр, Санкт-Петербург.

1. Беляев А.М. Минералого-геохимические особенности гранитов Выборгского массива // Вестник Ленинградского университета. 1983. Т. 1. № 6. С. 17-26.

2. Булах А.Г. Блочное строение гранитного постамента Медного всадника и его модель / А.Г.Булах, Г.Н.Попов, М.А.Иванов // Музей под открытым небом. Стратегия сохранения скульптуры в городской среде. СПб: Знак, 2018. С. 23-26.

3. Государственный музей городской скульптуры. Вчера, сегодня, завтра: сборник научных статей / Под ред. Н.Н.Ефремовой. Нижний Новгород: Кириллица, 2017. 116 с.

4. Иванов Г.И. Камень-Гром. СПб: Стройиздат, 1994. 112 с.

5. Каганович А.Л. Медный всадник. История создания монумента. Л.: Искусство, 1982. 191 с.

6. *Кузин И.Л.* Эрратические валуны Европы // Известия Русского географического общества. 2001. Т. 133. Вып. 6. С. 45-60.

7. Ларин А.М. Граниты рапакиви и ассоциирующие породы: Монография. СПб: Наука. 2011. 402 с.

8. Минеральный состав и архитектоника пьедестала «Медного всадника» в Санкт-Петербурге / А.Г.Булах, Г.Н.Попов, С.Ю.Янсон и др. // Записки Российского минералогического общества. 2017. Т. 146. № 6. С. 111-125.

9. *Свириденко Л.П.* Граниты рапакиви Фенноскандинавского щита (на примере Карелии) // Труды Карельского научного центра РАН. 2014. № 1. С. 17-27.

10. *Чувардинский В.Г.* Четвертичный период. Новая геологическая концепция. Апатиты: Изд-во Кольского научного центра РАН, 2012. 179 с.

11. Шебанов А.Д. Типоморфные особенности циркона из трахитоидного гранита-рапакиви (Выборгский массив) // Записки Всероссийского минералогического общества. 1992. № 4. С. 83-88.

12. Шебанов А.Д. Морфология, свойства и генерации кварца в гранитах-рапакиви / А.Д.Шебанов, М.С.Порицкий // Записки Всероссийского минералогического общества. 1993. № 4. С. 77-90.

13. Янсон С.Ю. Снова об особенностях минерального состава гранита Гром-камня / С.Ю.Янсон, А.Г.Булах, Г.Н.Попов // Музей под открытым небом. Стратегия сохранения скульптуры в городской среде. СПб: Знак, 2018. С. 17-19.

14. Frank-Kamenetskaya O.V. The Effect of the Environment on Saint Petersburg's Cultural Heritage / O.V.Frank-Kamenetskaya, D.Yu.Vlasov, V.V.Rytikova. Springer, 2018. 188 p. DOI: 10.1007/978-3-319-79072-5

15. Haapala I. Petrogenesis of the Proterozoic rapakivi granites of Finland / I.Haapala, O.T.Rämö // Geological Society of America Special Paper. 1990. Vol. 246. P. 279-286.

16. Härmä P. Natural stone production in the Wiborg rapakivi granite batholith in southeast. Geotechnical report 10/2018 / P.Härmä, O.Selonen. Helsinki: The Finnish Natural Stone Association, 2018. 34 p.

17. Müller A. Rapakivi granites // Geology Today. 2007. Vol. 23. Iss. 3. P. 114-120. DOI: 10.1111/j.1365-2451.2007.00616.x

18. Rapakivi granite in architecture of St Petersburg as a potential global heritage stone from Finland and Russia / A.Bulakh, P.Härmä, E.Panova, O.Selonen // Geological Society, London, Special Publications. 2020. Vol. 486. P. 67-76. DOI: 10.1144/SP486-2018-5

19. *Rieder M*. Mineralogy of dark mica from Wiborg rapakivi batholite, southern Finland / M.Rieder, I.Haapala, P.Povondora // European Journal of Mineralogy. 1996. Vol. 8. P. 597-605. DOI: 10.1127/ejm/8/3/0593

20. The Vehmaa rapakivi granite batholith – production area for Balmoral Red granites in southwestern Finland. Geotechnical report 1/2016 / O.Selonen, C.Ehlers, H.Luodes et al. Helsinki: Finnish Natural Stone Association, 2016. 47 p.

Авторы: А.Г.Булах, д-р геол.-минерал. наук, почетный профессор (Санкт-Петербургский государственный университет, Санкт-Петербург, Россия), Г.Н.Попов, инженер-геолог, pangea@mail.ru, https://orcid.org/0000-0001-9245-2618 (ООО «Пангея», Санкт-Петербург, Россия), С.Ю.Янсон, канд. геол.-минерал. наук, доцент, jansn.sv@gmail.com (Санкт-Петербургский государственный университет, Санкт-Петербург, Россия), М.А.Иванов, д-р геол.-минерал. наук, профессор, ivanov_ma@pers.spmi.ru, https://orcid.org/0000-0001-8941-6704 (Санкт-Петербургский горный университет, Санкт-Петербург, Россия).

Авторы заявляют об отсутствии конфликта интересов.

Статья поступила в редакцию 27.07.2020. Статья принята к публикации 10.03.2021.