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Abstract. As one of the most common structural forms in port engineering, the operation environment of 
high-pile wharf is quite harsh and complex, and its pile foundation often produces structural damage of 
different degrees. Until now, there is a lack of efficient, safe and economic damage detection methods. A 
novel and precise real-time structural damage detection (SDD) method using both finite element modelling 
(FEM) and 1D convolutional neural networks (CNNs) is established in this study. The results indicate that 
the proposed method could accurately identify the presence and location of damage in real time. The results 
also demonstrated that the proposed 1D CNNs based model are more sensitive to the longitudinal and lateral 
displacement responses of the high-pile wharf structure. 

1 Introduction 
High-pile wharfs need to be monitored in real time to 
improve their operational performance, prolong their 
expected life spans, and prevent sudden failures. However, 
conventional structural damage detection (SDD) methods 
for the pile foundations of wharfs are laborious and 
costly[1-3]. Therefore, efficiently detecting and precisely 
locating the structural damage in foundations have always 
been formidable challenges. 

Studies have shown that vibration-based SDD 
methods have been adopted by most structural health 
monitoring (SHM) systems[3-7]. The basic premise of 
such methods is that the physical properties, such as mass, 
damping, and stiffness, would change due to damage[1, 2, 
6, 8]. Convolutional neural networks (CNNs), as a type of 
multilayer feedforward neural network, are extensively 
used in various supervised classification tasks. However, 
a large number of the samples in the field of SDD are time 
series, such as vibration and strain history. Therefore, 1D 
CNNs have become a state-of-the-art technique to address 
vibration-based SDD issues in civil structures.  

The primary aim of this research is to establish a novel 
method for the vibration-based SDD of high-pile wharf 
foundations using FEM and 1D CNNs, which realizes the 
accurate identification of the existence and location of 
structural damage. Moreover, we also verify the 
directional sensitivity of the model to the displacement 
responses of typical high-pile wharfs, which can be 
utilized to optimize the acquisition strategy of structural 
damage dynamic response data under limited sensor 
conditions. 

 

2 Methodologies 

2.1 Geometric model 

A structural sediment in the middle of the high-pile wharf, 
which is located in Shanghai Port, was chosen for this 
study as the analysis object. It consisted of 7 lateral bends 
of which the spacing was 7 m, and each frame was 
composed of 5 vertical piles and 1 inclined pile. These pile 
foundations are all square piles with a side length of 600 
mm. The main upper structure adopts inverted T-shaped 
beams and panels that are both made of cast-in-place 
reinforced concrete. The lower beam is 0.9 m wide and 0.8 
m high, the upper beam is 0.4 m wide and 1.6 m high, the 
longitudinal beam is 0.4 m wide and 1.6 m high, and the 
plate thickness is 0.8 m.  

The "m" method was utilized to determine the 
calculated length of the piles to meet the equivalent lateral 
stiffness principle. The “m” method assumes that the 
horizontal foundation resistance coefficient of soil 
increases linearly with the depth of soil, namely: 
 K mz  (1) 
where K denotes the horizontal foundation resistance 
coefficient of soil ( 3kN / m  ), m is the proportional 
coefficient ( 4kN / m ), and z represents the depth of the 
calculated point. 

Since the original foundation soil is distributed in 
layers, the m-value adopts the weighted average of m of 
each soil layer at a depth of 1.8 T below the ground: 

 5
0

   P PE IT
mb

 (2) 
where pE   indicates the modulus of elasticity of piles 
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( 2kN / m  ), pI   is the cross-sectional moment of the 

inertia of piles ( 4m ), and 0b  is the converted width (m). 

0b  is calculated as: 
  0 fb k 1.5d 0.5   (3) 
where fk  is the shape conversion factor of piles. Here, 
this value is set as 1.0. 

The structural foundation square piles were 
prefabricated using C30 concrete, and the modulus of 
elasticity was 2.7e4 MPa. Moreover, the straight piles are 
31 m long, the oblique piles are 32 m long, and the 
maximum depth of piles is 18.25 m. 

The depth of the embedded point is calculated 
according to the following equation: 
 t ηT  (4) 
where the empirical parameter takes values ranging from 
1.8 to 2.2. This study sets the parameter as 2.0. 

The calculated length of each piles are listed in Table 
1 as follows. 

Table 1. Summary of the calculation results of the relative 
depth of each pile bottom embedded point to the pile top based 

on the “m” method (m) 

Pile 
Number 1 2 3 4 5 6 

Calculated 
Length 14.4 13 11.4 12.4 9.8 8.55 

2.2 Structural damage scheme 

The essence of structural damage can be defined as the 
loss of local stiffness in the damaged section. The 
structural sediment selected by this research has a total of 
42 foundation piles, which were numbered sequentially 
from the top left to the bottom right of the structural floor 
plan. Condition #0   means that none of the piles have 
reduced stiffness, similarly, condition #i  means that pile 

#i  has its stiffness reduced 50% to simulate the global 
stiffness degradation induced by structural damage.  

2.3 Finite element model simulation 

The FE model of the structural sediment of a high-pile 
wharf was built in ANSYS 19.0. The interactions between 
pile foundations and soil were simplified, and fixed 
constraints were imposed on the bottom of all pile 
foundations. The grid resolution of 100 mm is used in this 
research to perform the transient dynamics calculation of 
the FE model.  

3 The proposed One-Dimension CNNs 

3.1 overall architecture 

The proposed 1D CNN architecture in this paper contains 
12 hidden layers, specifically, 6 1D convolutional layers, 

2 local pooling layers, 2 batch normalization layers, 1 
global pooling layer and 1 random deactivation (dropout) 
layer. 

3.2 data preprocessing 

In this study, displacement dataset in component form was 
constructed to evaluate the performance of the CNN 
models. For each damage condition, the displacement 
responses of all 42 beam-pile nodes in three directions 
were horizontally spliced. Next, we add a column along 
the end of the tensor as a label, and the content of the 
column is the current damage condition number i  ( i  is 
an integer from 0 to 43). At this time, the displacement 
response data under each condition are formed in a 2D 
tensor format with dimensions of (2494, 127). Finally, the 
data of all damage conditions are vertically spliced 
according to the principle of measurement point alignment, 
and a 2D tensor cD  with dimensions of (107242, 127) is 
constructed. Each label item of 214484 samples of the 
training datasets cD , were all recoded as a 1D tensor with 
a dimension of (43,1) by the one-hot coding principle. 

3.3 The training setup 

Based on the idea of orthogonal experiments, this study 
established the following training strategies, as shown in 
Table 2. Briefly, in each training group, the population 
samples were randomly divided into 80%, 10% and 10%, 
as the training set, validation set, and testing set, 
respectively. The initial value of learning rate was 0.0001.  

Table 2. Setup of the training groups 

Group 
number Direction of displacement response 

 Longitudinal 
direction 

Vertical 
direction 

Transverse 
direction 

1 ●   
2  ●  
3   ● 
4 ● ●  
5  ● ● 
6 ●  ● 

4 Results and discussions 

4.1 Impact of data format on model performance 

The models have demonstrated superior recognition 
accuracy performance (93.4%) over the course of 100 
training epochs. The Figure 1 shows that in the first 20 
training epochs, the training accuracy of the model 
increased rapidly as the number of iterations increased. 
After more than 70 training epochs, the growth trend of 
the training accuracy is very slow and gradually levels off. 
Moreover, in the first 60 training epochs, the validation 
accuracy of the model is highly consistent with the trend 
of the training accuracy.  
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Figure 1. Model performance of the 1D CNNs based on dataset in component form 
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Figure 2. Performance of the 1D CNN model based on 6 groups of reduced component displacement response datasets 

4.2 Directional sensitivity of the model to the 
displacement response 

The training accuracy and validation accuracy of the 
above 6 models are shown in Figure 2. Several main 
results can be summarized as follows:  

(a) The classification accuracies of the model trained 
by training group no. 6 are slightly lower than those of the 
model based on the dataset in component form. This 
indicates that the vertical displacement responses of the 
structure have very limited impacts on the damage 
identification accuracy.  

(b) The classification accuracies of model no. 4 and 

model no. 1 were significantly higher than those of model 
no. 5 and model no. 3, implying that the longitudinal 
displacement response component outweighs the lateral 
displacement response component.  

(c) The validation accuracy of the model no. 6 was 
significantly more discrete than that of the model based on 
the dataset in component form. Furthermore, the 
generalization abilities of model no. 4 and model no. 5 
significantly outperform those of model no. 1 and model 
no. 3. These phenomena further confirm that the vertical 
displacement response components of the structural 
segment of the high-pile wharf have an effect on 
improving the generalization and robustness of the 1D 
CNN model. 
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5 Conclusions 
This study applies a 1D CNN-based approach to the 
vibration-based structural damage detection of typical 
high-pile wharf foundations. The results indicated the 
superior performance of the 1D CNNs to extract the 
damage-sensitive features directly from the raw 
displacement response data.  

The "m" method, which calculates the depth of the 
embedding point of the pile, is shown to be useful for 
simplified structural modeling. Besides, the sample 
datasets required for the training of the proposed CNNs 
can be directly reconstructed by the displacement response 
time series of all the beam-pile nodes of the FE model. 

The proposed CNNs are more sensitive to the 
longitudinal and lateral displacement responses at the 
beam-pile nodes. More specifically, the former has a 
higher contribution to the classification accuracy of CNNs 
than the latter and their effects both significantly outweigh 
the influence of vertical displacement. Although the 
contribution of the vertical displacement response to the 
improvement of the model identification accuracy is rather 
limited, this component has a positive effect on the 
improvement of the generalization and robustness of the 
CNNs. 
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