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Abstract

This paper applies the LINEX loss functions to volatility forecasting. We derive
the optimal one-step-ahead LINEX forecast for various volatility models. Our results
suggest that the LINEX loss function may give us better forecasts than conventional
ones.

Keywords: LINEX Loss Function, Forecasting, Volatility.

1 Introduction

Empirical evidence suggests that the serial correlation of returns is not strong and
returns are not particularly forecastible. However, it is found that volatility, how-
ever measured, has strong autocorrelations over time, see Ding, Granger, and Engle
(1994). The recent study of Christoffersen and Diebold (1998) confirms that volatil-
ity can be forecasted over 10 to 15 days. We refer readers to Day and Lewis (1992),
Engle, Hong, Kane, and Noh (1993), Harvey and Whaley (1992), Lamoureux and
Lastrapes (1993), Noh, Engle, and Kane (1994), Hwang and Satchell (1998), and
Knight and Satchell (1998b) for more details on volatility forecasting.

Forecasting volatility has been a major issue in finance for some time. For
example, volatility forecasts are used to price options and to forecast option prices;
they can be used to produce confidence intervals for the prices of the underlying
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assets and the forecasts can be used as a component of multi-period investment
strategies. The recent growing concern about risk management and the rapid growth
in financial derivative markets has resulted in volatility forecasting attracting a great
deal of interest.

The major development in modelling and forecasting volatility has been the
introduction of ARCH models by Engle (1982). Since then, numerous conditional
volatility models have been suggested and tested, and there have been a number of
papers concerning the appropriateness of using mean-squared error calculations to
evaluate the efficacy of volatility forecasts, see Christoffersen and Diebold (1996).
It is now understood that a comparison between squared returns and the forecasted
volatility is not, in general, valid, and that other approaches to volatility forecast
evaluation need to be considered.

Following Varian (1975), Zellner (1986), and Christoffersen and Diebold (1996,
1997b), we advocate the use of LINEX optimal forecasts. It turns out that the
forecasts can be explicitly computed for a range of currently used volatility models.
We extend their results by presenting results for conditional and unconditional one-
step-ahead forecasts for GARCH, Exponential GARCH, stochastic volatility, and a
moving average conditional heteroskedasticity model.

A general discussion on LINEX forecasting is presented in Section 2, our formulae
are derived in Section 3, calculations and conclusions are presented in Sections 4 and
5.

2 Forecasting Returns and Volatility

In this section we consider some alternative procedures for forecasting that take into
account the asymmetry of loss. We shall initially consider LINEX loss functions,
see Varian (1975), Zellner (1986), and Christoffersen and Diebold (1996, 1997b) for
the history and motivation of this method. One of the most significant differences
between the most frequently used loss function, i.e., the mean square loss function,
and LINEX loss functions is that the mean square loss function is symmetrical, while
LINEX loss functions are asymmetic.
The asymmetric LINEX loss function L(z) is given by:

L(z) = exp(—az) + ax — 1 (1)

where x is the loss associated with the predictive error and a is a given parameter.
Figure 1 shows the asymmetric properties of the LINEX loss function. With an
appropriate LINEX parameter a, we can reflect small (large) losses for underesti-
mation or overestimation. In particular, a negative a will reflect small losses for
overestimation and large losses for underestimation. The asymmetrical weights on
losses become clear when we compare the conventional mean square loss function,
22, which is represented by the thick line in figure 1.



A forecast h is computed by carrying out the following optimization

win [ Ly~ Rpdf o)y 2

where y is the variable we wish to forecast. pdf(y) is the unconditional or conditional
probability function of y, depending on the context. If we substitute (1) into (2) we
see that

/L(y — h)pdf (y)dy = exp(ha)my(—a) + ap, — ah — 1

where my(t) is the moment generating function of y evaluated at t, u, = E(y).
Differentiating the above with respect to h, we find that the optimal h is given by

h = —tn(my(—a))/a (3)

This is essentially the result given in equation (3.2) in Zellner (1986).
Consider some fairly general returns process, y;

Yo = [y + 0y (4)

where i, is a deterministic mean and o7 is the conditional variance, e; is N(0, 1),
the unconditional mgf of y;, m,(—a), is given by
2

a

my(—a) = exp(—a,ut)mgg (7)

where mgg() is the unconditional mgf of the stochastic volatility process.
It follows immediately that the optimal unconditional LINEX forecast h; is given
by

o = 1~ (s (5)),/a )

For a > 0, the extra term can be positive or negative depending on the distribution
of o2. Furthermore, the expectation may only be defined for some values of a.
To illustrate the above, consider o following a x*(m) distribution, then

ht:ut—l—%én(l—aQ), O<a<l
and p, deterministic.
In general, from (4)
/ﬁ _ _én(my(—a)) (6)
a

1
= = tn(exp(—p0) By, (me(—a0111))

= u— EénEUt-‘rl (me(_agt+1))

where m.(—a) = Elexp(—ae;)]. In many cases, particularly in option pricing prob-
lems, forecasting the volatility is a topic of direct interest. In what follows, we shall
concentrate on LINEX volatility forecasts.

3



3 Volatility Forecasts

Christoffersen and Diebold (1997) (CD) have examined the properties of LINEX
forecasts under the assumption that the statistical process is conditionally normal.
We would write this as yon|Q% ~ N(u, Lt a? +h|t) where €2, is the information set
up to time ¢, typically € = {y1,...,y.}, and where f, 4, and aerh‘t
and variance of y;p, conditional on €2, we can write y, |2 as Yithlt-

Upon examination of standard models, however, we find that the above condition
rarely holds. For ARCH/GARCH models introduced by Engle (1982) and Boller-
slev (1986), for example, Yit1)¢ is conditionally normal but 4, is not normal for
h > 1, see Baillie and Bollerslev (1992) and Knight and Satchell (1998b) for detailed
discussion. For stochastic volatility (SV) models developed by Taylor (1986) and
Harvey and Shephard (1993, 1996), Yi+1)¢ 1s not normal, even if we expand (2 to
include the volatilities up to time ¢. For these reasons we find that the CD analysis,
although interesting, applies to very few examples of processes used by economists.
The motivation for this paper is to extend CD’s results to more general volatil-
ity forecasts. In this section we derive, in closed form where possible, conditional
and unconditional LINEX forecasts for SV models and for the E-GARCH model of
Nelson (1991) and a volatility process due to Knight and Satchell (1998b).

are the mean

3.1 Conditioning on past information and volatility models.

We shall denote €); as the information set appropriate to the conditioning. Whilst
it is obvious that we would include y;,...,7; in €, it is by no means clear that
conditional volatility, A, ..., A, should also be included since these variables are not
observed by the econometrician for any of the models that shall be discussed in
this section. However, the convenient assumption that the investors know the true
parameter values but not the econometrician can be used to give a definition of
available information. For this reason we shall adopt the following definition

Definition 1 We say that conditional volatility of time t, hy, belongs to the condi-
tioning set € if hy can be computed exactly given knowledge of the true parameters,
appropriate initial values for the stochastic process governing hy, and the observed
data, y1, ..., Y;.

We shall apply Definition 1 when considering the different models under consid-
eration. Summarising these future results we note that for a GARCH (1,1), where
hy = a+ Bhi_1 +yy?_,, we could compute hy, ..., hy1 given hg, o, 3, v and {y1, ...y; }
so that hq,..., hyy1 are clearly in €2;. Turning now to a stochastic volatility model
(SVM), y; = e &)/2 and hy = A+ ah,_1 + 14, it is apparent that knowledge of hy,
A, €, aand {yi,...y¢} is not enough to compute hy, ..., h; so that these variables are
not in €. It is interesting to see that Nelson’s Exponential GARCH model (Nel-
son, 1991) has the same properties as GARCH as does the Knight and Satchell (1,1)

4



model (Knight and Satchell, 1998b). See the following subsections for the definitions
of models and further discussions.

3.2 GARCH(p,q) Models
The GARCH(p,q) process is defined by

Y = zthtl/z (7)
P q

hy = Oé‘f‘Zﬂz'ht—l"i‘Z%th_j
i=1 =1

where 2, ~ iid N(0,1). We shall compute conditional forecasts for fny? and y;. The
information set, according to Definition 1, includes hq, ..., hy ;1.
Firstly,
Iny? = Inzt +Inhy (8)
= Enx%l) + Inhy

Thus the moment generating function of ¢ny? is
E[e—afn(y?)] — E[e_“enxﬁl)]E[e_“enht] 9)
The moment generating function of Enx?l) is

—abny?
ménx%l)(_a) = Ele "™0] (10)

[
= BEl(x{y)™

<o 1 1/2-1_—=z/2
— a x d
/0 T —F(% 21/2m e x

1 o)
- - —a+1/2-1 fw/Qd
P(%>21/2 /0 T e i

Transforming from x to w = /2 , which implies dx = 2dw, we see that

27" - —a— —w
mgnx%l)(—a) = m/o w2 dw
2

2° 1
— F— —_
O
J(=a+3)
I'(3)

2

= 27

where I'(.) is the gamma function and the LINEX parameter a is restricted to be
less than % since %— a > 0. We now consider conditional and unconditional forecasts

of volatility.



3.2.1 Optimal One-step-ahead Conditional Forecast of /ny? and y; in
GARCH Models

The moment generating function conditional on past h; is

mgn(yg)(—a) ‘Qt_l — E[efaén(y?)wnht] — E[efaﬁnxfl)]efaénht (11)
I'(3)

2

g-a hi

Therefore, the LINEX optimal conditional forecast of n(y?) is

. gn(mEn(yf) (—CL))

Bln(y))|u-1] = " [ (12)
1 T(-a+?d)
= In(hy) +0n(2) — —fn[—=——2]
a L'(3)
p q
where hy = a+ > B;hi—i + > vjyf_j.
i=1 j=1
In addition, for y;, the conditional mgf is
1/2
my(=a) o, = Blem™ | = Bl |y (13)
= ei;t

Therefore, the one step ahead conditional forecast is

n(my, (—a
Ely 1] = —%‘
1,
2 a

(14)

t—1

1
= ——ah
2
Equation (14) agrees with the CD result discussed in section 1.

3.2.2 Optimal One-step-ahead Unconditional Forecast of /ny? and y; in
GARCH Models

We now carry out unconditional one-step-ahead forecasts. The moment generating
function of ¢n(y?) is, from equations (9) and (10), given by

—aln(y; 7(111(—@—}—1) —aén
Mune)(—a) = Ele ) = 20— e ]
2
I'(—aq+ 1%
= 2 (Ca 2)menh(—a)



where my,,;,(—a) is the unconditional mgf of ¢nh;, which is typically unknown. There-
fore, we can write the LINEX one-step ahead unconditional forecast of ¢n(y?) as

In(my,2)(—a))

Bltn()] =~ (15)
1 1. TI(-a+3)
= ——tn(mun(=a)) + n(2) - EEH[T)Q]
where a < %
For 1, the unconditional mgf is
my(—a) = Ele™] = BIE["" b/ (16)
o2 +
= Bl
2
a
= mh(;)
Hence the unconditional LINEX forecast of y; is
n(my,(—a
gy = -0 a7)
(%)
a

3.3 Exponential GARCH

The Exponential GARCH model introduced by Nelson (1991) is given by (18) be-
low. It is interesting to note that following definition (7), A1, ..., hs11 belongs to the
information set. We define y; by,

Yo = 02 (18)
Oy — €ht/2

hy = o+ Zﬂj(ezt—j +9( 25 | =E | 25 1))
j=1
Note that

(ny? = Inot+Inzt

= h + 0z} (19)
setting oy = 0 without loss of generality, we have

Iny? = h, + Enx%l) (20)
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with N
he = 0,025+ 2y | —E | 25 )
j=1

Thus 9

Elexp(—atny;)] = Ele "™ |E[e 0] (21)
since h; depends only on lagged z;’s.
3.3.1 Optimal One-step-ahead Conditional Forecast of /ny? in E-GARCH

Models

Using the same method as in the GARCH(p,q) model, the moment generating func-

tion of Enyf conditioned on h; is
—afn 2
M~ o, = Blesp(—atngd)] = B (22)
I'(—a+3)
L'(3)

Therefore, the LINEX optimal conditional forecast of n(y?) is

—aht

= 2

In(myy,,2(—a
Bltn()|0n] = — ) (23)

= he+n(2) — ém[%}

where h; = Z 6j(92t7j +/7(| Zt—j | —E | Zt—j |>)
=1

3.3.2 Optimal One-step-ahead Unconditional Forecast of fny’ in EFGARCH
Models

Now since z; ~ iid N(0,1) we have

o

Ele="] = | | Elexp(~a8;2—; — aByy lz1])] - exp(@BE |ze-g]).  (24)

j=1

Examining Elexp(aiz; + b1|z|)], with z; ~ 7id N(0,1), we have

& 1 2
FElexp(aiz: + by|z = / ez thilzl___o=#/2, 25
explarzthla)] = [ e 29

0 a1z—b1z 1 —2z2/2
= e e dz

— o0

+ 6alz+b1z 6—22/2dz
/0 v 2T
8

9
— 3




Consider

o 1 9 e e}
ea1z—i—b1z_6—z /de — exp((ay + b 2/9 /
| e plan+0/2)-

1 1
exp(—=(z — (a1 + b1))?)dz
= exp(— 5~ (a4 b))
(26)

If we put ¢ = z — (a1 + by), then dz = dg, so that we have

o0 1 2

e 2dq

= oxpllas+0)?/2)- [ T

= exp((a1 +01)%/2) - ®(ay + by).

where ®(.) is the cumulative density function of the standard normal distribution.
Next

0 oo
1 2 1 2
(a1—b1)z —z /Qd _ / (b1—a1)w —w /Qd 27
€ —€ V4 € —€ w
/OO vV 2 0 vV 2 ( )

= exp((b1 — a1)2/2)q)(b1 — CL1)

by putting w = —z, then dz = —dw. Finally, for E |z| when z ~ N(0, 1), we require

() = /°° 2 jz_ﬁe-mdz (28)

z

& 1
e =2 + / z e %12
0

L |
- ‘/oo Nz o
_ i 1 2272 :i * —w _ g
2/0 z\/%e dz \/%/0 e Ydw -
Thus
E[ ) = []lexp(a®83(0 +7)*/2)®(—aB;(0 +7)) (29)
j=1

+eXp(aQB?(9 — V)Q/Q)q)(_aﬂj(’y —0))]

- exp (a@-’y@)

= my(—a)
Therefore, using equations (10) and (21), we have
I(—a+3)

I'(3)

Elexp(—alny;)] =27 -mu(—a) (30)

Therefore the optimal LINEX unconditional forecast by fny?. ; is given by

_n(mayz(—a))

Elny}] = ”

(31)




fi-a)

= —/n{27¢ mp(—a)}/a

= —i{—aEnQ + énf(% —a)— énf(%)
+Zaﬁ 7[+gn{exp( 2830 + ) /2)@(—aB;(0 + 7))
+exp( 230 —v)* /2)@(—aB; (v — 0))}]

1 %—a
- €n2—a€n SO Zﬁ

1 > 2 92 2 a262(0—~)2
- > nfe” SO b (—ay(0 + 7)) + e B B(—aB,(y - 0))]
=1

3.4 Stochastic Volatility Model

In this section, we investigate LINEX optimal forecasts of the stochastic volatility
model (SVM). This model is discussed in Taylor (1986) and Harvey and Shephard
(1993, 1996). The SVM is given by

Yy, = ze/? (32)
ht = A+ Oéht_l + vy, Vi ~ iid N(O, O'2>
where z; ~ iid N(0,1) and it is assumed that z; and v; are independent. Note

the log-volatility can be represented as fny? = hy + ¢nz?. The moment generating
function of ¢ny? is

Elexp(—alny;)] = Elexp(—ah;)exp(—alnz})] (33)
[(—a+1)
— E[e—aht]e—a£2—a 2
L'(3)
Although not immediately obvious, according to Definition 1, hq, ..., hy, hyy1 are

not in the information set, intuitively because there are two sources of noise.

3.4.1 Optimal One-step-ahead Conditional Forecast of /ny? in SVM

The optimal LINEX forecast of #ny? conditional on h; is

en(mEnyQ (—CL))

Blngi0 ] = ——— ), (34
1, T(-a+3)

In general E(h|€2; 1) will depend upon lagged y values, but a simple expression
for this term does not appear to be available in the SVM.
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3.4.2 Optimal One-step-ahead Unconditional Forecast of /ny? in SVM

Note that the unconditional moment generating function of h; is

—a\ a“o

Ele™] = exp(m) exp(m) (35)

Therefore, the optimal LINEX prediction of fny? is given by

Eltny?] = «_E”OHszG—a» -
2,2 1
= —lﬁn{e(l_fai)em_—a’f)2—ar(2—la)}
¢ I'(3)

()

A o’a 1 I'(:—-a
= — 2 “pin| 22~
= 2i—ay " a”( (L) )

3.5 Knight-Satchell Modified GARCH(p,q)

This model is presented in Knight and Satchell (1998b). Essentially, it writes h; as
linear in lagged h; and lagged 2?2, thereby eliminating the non-linearities in equation
(7). The Knight-Satchell (KS) Modified GARCH(p,q) can be represented as

vy = zh (37)
P q

hy = a+ Zﬁfht,i + Z ”yjszj
i=1 j=1

where z, ~ iid N(0,1). See Knight and Satchell (1998) for further discussion on this
model. In this model the information set, 2, 1, contains hq, ho, , , , hy.

3.5.1 Optimal One-step-ahead Conditional Forecast ofy; in the KS Mod-
ified GARCH(p,q)

The mgf of y; conditioning on the information set €2, ; is

Ele™|Q,,] = Ele="= | bl/? (38)

a2ht
e e 2
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where h; is defined in equation (37). Therefore, the LINEX optimal one-step-ahead
forecast is
tn(my(—a))

Ely Q] = T4 . (39)
1

= ——ah
2"
which is exactly the same as that for the GARCH models in equation (14) except
for the different conditional volatility process h;. Again this is a special case of the
CD result.

3.5.2 Optimal One-step-ahead Unconditional Forecast of 3, in the KS
Modified GARCH(1,1)

Now let us consider a simple case of p = 1 and ¢ = 1. The mgf of the conditional
volatility of the modified GARCH(1,1) model can be shown to be

2

() = o (51 ) - (40)

The optimal LINEX one-step-ahead unconditional predictor of y; is given by

gy = -2maa) (a1)
1 a’a > 9 in—1/2
- —a{m‘f—;én(l—a’yﬂ) /}

See Knight and Satchell (1998) for proof. The optimal LINEX forecast for the more
complicated KS GARCH(p, q) models where p>1 and ¢>1 will be obtained by an
application of the above method.

4 Results

4.1 Forecasting Measures

We first calculate the one-step ahead forecast, hyyj41 = Eirj(y7,,.1), of the GARCH
(1,1) model. Then various measures are computed for the test of forecasting power.
We first calculate conventional mean absolute forecast error (MAFE) and mean
squared forecast error (MSFE) of the forecast, which are represented as follows.
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MAFE = - Z ‘|yt+j+1| - htlJ/j'Jrl (42)

n—1
1 1/2
MSFE = - g Hyt+j+1‘_ht-{-j+1]2
=0

where the number n is the number of forecasts. We let the j run over n periods
where we have estimated the model n times. These measures are one of the most
frequently used measures to test forecasting power of a model, see Day and Lewis
(1992), Engle, Hong, Kane, and Noh (1993), and Hwang and Satchell (1998) for
examples. Alternatively, we can use mean absolute log-forecast error (MALFE) and
mean squared log-forecast error (MSLFE),

1 n—1
MALFE = - Z 10n(y7y 1) = (P i) (43)
=0

1 n—1
MSLFE = n an(ytzﬂﬂ) — tn(hyy 1))
=0

See Christodoulakis and Satchell (1998) for these measures.

We now suggest four alternative LINEX forecast measures corresponding to the
four conventional measures in equations (42) and (43). For LINEX volatility forecast
and LINEX forecast error, the logarithms of correction factor in equation (12),

LCF =/In(2) — %En[r(;g%)], should be calculated. Note that the gamma function
2
requires —a—l—% > (0 and thus we have a < % We choose eight values for a: a=0.375,
0.25, 0.125, -0.5, -1, -1.5, -2, and -2.5. To get some idea of the loss function that
these numbers imply, readers should inspect figure 1.
For given parameter values of a, we first calculated mean absolute LINEX fore-

cast error (M AFEvgx) and mean squared LINEX forecast error (M SFELNEX)

n—1

1
MAFE inex = " Z Hyt+1| — (heya exp(LCF))1/2| (44)

J=0

n—1
1

MSFErvex = — > llye| = (heyy exp(LOF)) )’
=0

and mean absolute LINEX log-forecast error (M ALF FE;nEx) and mean squared
LINEX log-forecast error (MSLFE;ngrx)

n—1
1
MALFENgx = - Z ‘gn(y?—i-l) — (In(heyr) + LCF)‘ (45)
=0
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n—1
1
MSLFE; npx = Ean(yfﬂ) — (bn(heyr) + LOF))?

g=0

These four measures can be compared with the four measures in equations (42) and
(43). The results will show the effects of LINEX forecast represented in conventional
measures.

Finally, the LINEX measure is calculated. Note that the LINEX measure is

L(z) = exp(—ax) + ax — 1

as in equation (1). Note that for a LINEX GARCH forecast, = ¢n(yz,,) —
(en(hy11)+LCF), while for a conventional GARCH forecast, © = ¢n(y7,;)—n(hi1).
We report both of these cases to assess the magnitude of the change in the LINEX
forecast measure.

4.2 Data and Procedures

For our data, we use return volatility provided by Datastream. We took a large UK
company, Glaxo Wellcome. We shall only calculate results for GARCH(1,1) in what
follows. Although we could extend our calculations to all models discussed, we focus
our attention on GARCH(1,1) because of its great popularity

The return volatility is calculated from the log-return less the mean log-return.
In what follows, we shall use 37 for the return volatility at time ¢. More formally,
y? is obtained from log-return series, ¢, as follows:

42 = 2500 — i

where the number 250 is used to annualise the squared daily return series and 7 is
the in-sample mean of r;. A total of 1978 daily log-returns of Glaxo Wellcome from
2 January 1990 to 31 July 1997 is used. We iterate that 1z is calculated using only
past observations to avoid any look-ahead bias.

We use a rolling sample of the past volatilities. On day ¢, the conditional volatil-
ity of one period ahead, t+1, is constructed by using the estimates which are obtained
from only the past observations (i.e., 1738 observations in this study). By recursive
substitution of the conditional volatility, a one-step ahead forecast is constructed.
On the next day (t+ 1), using 1738 recent observations (i.e., 1738 observations from
the second observation to the 1739 observation), we estimate the parameters again
and get another one-step ahead forecast. The estimation and forecasting procedures
are performed 240 times using rolling windows of 1738 observations.

Estimations are carried out using the Berndt, Hall, Hall, and Hausman (BHHH)
algorithm for the maximisation of the log-likelihood of the GARCH (1,1) model.
However, daily estimation of a model is time consuming work. Hwang and Satchell
(1998) show that there is little difference in forecasting performance between daily

14



estimation and longer estimation intervals, e.g., weekly, monthly, and quarterly.
In this study we estimate the GARCH(1,1) model every 20 days (approximately
monthly estimation) to avoid excessive calculation. Then the coefficients obtained
from the estimation are used for forecasting the next 20 days.

4.3 Results

The results are reported in table 1. The first four measures, MAFE, MSFE, MALFE,
and MSLFE, are conventional as in equations (42) and (43) and are not differ-
ent across the LINEX parameter a. The second four measures, MAFE;;nEx,
MSFE;;nex, MALFE; ;ngx, and MSLFE; ;yvgx, are conventional measures over
LINEX forecasts. We may not expect to find any evidence of any superior fore-
casting power of the LINEX forecast with the conventional measures. However, the
table shows that if we choose an appropriate value for the LINEX parameter, a,
we can reduce forecast error even in terms of conventional measures. The values
of MAFEL[NE)(, MSFEL[NE)(, MALFEL[NE)(, and MSLFEL[NEX are all less than
those of MAFE, MSFE, MALFE, and MSLFE when —1 < a < 0.125. In three out
of four cases, we find minimum values of forecast errors at a = 0.125 and in one case
we have a minimum value at a = —0.5.

All the LINEX parameters which give smaller values of forecast errors are larger
than —1 and the corresponding values of the logarithmic correction factor are less
than zero. This means that the one-step ahead forecast of the GARCH(1,1) model
is biased upward, giving support to the that the GARCH model is affected by a
small number of large volatilities rather than a large number of small volatilities.

The last two rows in table 1 show the results of the LINEX forecast error measure
for the GARCH forecast and the LINEX GARCH forecast. As we expected, all
values of the LINEX measures for the LINEX GARCH forecast are less than those
for the GARCH forecast except a = 1. Note that when a = 1, the LINEX forecast
error measure is equivalent to conventional mean absolute or mean squared forecast
errors.

The above results suggest that the LINEX forecast from GARCH models is pre-
ferred to the conventional forecast from the GARCH model in terms of the conven-
tional MSFE and MAFE. Moreover, the LINEX GARCH forecast performs better
than the conventional GARCH forecast.

5 Conclusions
This study shows the one-step-ahead optimal LINEX forecasts for various volatility
models. In addition, the empirical results in section 4 compares the conventional

volatility forecasts with the LINEX forecasts of GARCH(1,1) using the mean squared
and absolute forecast measures and the LINEX measure.
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Our findings are encouraging.. For the data set considered, the LINEX forecasts
outperform the conventional forecasts with an appropriate LINEX parameter.

Further research needs to look at multiperiod LINEX conditional and uncondi-
tional forecasts. Other work of interest would be to extend our empirical result to
all models. As yet we have no general results as to which models would be especially
favoured by LINEX relative to mean squared estimates for an appropriate family of
loss functions.
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Table 1 Comparison of Forecasting Results of GARCH(1,1) Model

a 0.375 0.250 0.125 -0.500 -1.000 -1.500 -2.000 -2.500
MAFE oflyt/—h,N2 0.1248 0.1248 0.1248 0.1248 0.1248 0.1248 0.1248 0.1248
MSFE of |y, /I-h, 1”2 0.0226 0.0226 0.0226 0.0226 0.0226 0.0226 0.0226 0.0226
MALFE of ln(ytz)—ln(h,) 1.9571 1.9571 1.9571 1.9571 1.9571 1.9571 1.9571 1.9571
MSLFE of ln(ytz)—ln(h,) 7.7717 7.7717 7.7717 7.7717 7.7717 7.7717 7.7717 7.7717
Conventional Measures Logarithms of Correction Factor (LCF) -3.1657] -2.1695| -1.6325[ -0.4516 0.0000 03116 0.5493 0.7415

MAFE; ex of 1y, /-(h,exp(LCF))"?

MSFELINEX of |y t /—(h ,exp(LCF))

0.1253 0.1097 0.1013 0.1058 0.1248 0.1482 0.1709 0.1930
0.0315 0.0255 0.0221 0.0187 0.0226 0.0290 0.0370 0.0461

12

MALFE, ex of In(y,> )-(In(h, )+LCF) 24641 19390 17441 17745| 19571 21470 23085 24501

MSLFE, nex of In(y, 2 )-(In(h,)+LCF) 78350 56539 53014| 65551 7.7717| 8.8488| 9.8013| 10.6538

LINEX Measure LINEX Measure of In(y,> )-In(h,) 16295 0.4508] 0.0794| 05056 14577 28799 5.4951| 11.8090
LINEX Measure of In(y,’ )-(In(h, )+LCF) 05795 02212| 0.0479] 04619 14577 27795 43608| 6.1764

Notes: A total of 1978 daily log-returns of Glaxo Wellcome from 2 January 1990 to 31 July 1997 is used. A rolling sample of the past volatilities is used.
Recent 941 observations are used for estimation of the GARCH(1,1) model. The above restults are based on 240 forecasts.




Loss Values

Figure 1 LINEX Loss Functions
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