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Di¤erential geometry has found fruitful application in statistical infer-
ence. In particular, A mari’s (1990) expected geometry is used in higher order
asymptotic analysis, and in the study of su ¢ ciency and ancillarity. However,
we can see three drawbacks to the use of a di¤erential geometric approach in
econometrics and statistics more generally. F irstly, the mathematics is unfa-
miliar and the terms involved can be di ¢ cult for the econometrician to fully
appreciate. Secondly, their statistical meaning can be less than completely
clear, and …nally the fact that, at its core, geometry is a visual sub ject can
be obscured by the mathematical formalism required for a rigorous analysis,
thereby hindering intuition. A ll three drawbacks apply particularly to the
di¤erential geometric concept of a non metric a ¢ ne connection.

T he primary ob jective of this paper is to at tempt to mitigate these draw-
backs in the case of A mari’s expected geometric structure on a full exponen-
tial family. We aim to do this by providing an elementary account of this
structure which is clearly based statistically, accessible geometrically and
visually presented.

¤ T his work has been partially supported by ESR C grant ‘ Geodesic Inference, E ncom-
passing and Preferred Point Geometry in Econometrics’ ( G rant Number R000232270).
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Statistically, we use three natural tools: the score function and its …rst
two moments with respect to the true distribution. Geometrically, we are
largely able to restrict at tention to tensors, in particular, we are able to
avoid the need to formally de…ne an a ¢ ne connection. To emphasise the
visual foundation of geometric analysis we parallel the mathematical devel-
opment with graphical illustrations using important examples of full expo-
nential families. A lthough the analysis is not restricted to this case, we
emphasise one dimensional examples so that simple pictures can be used to
illustrate the underlying geometrical ideas and aid intuition. It turns out
that this account also sheds some new light on the choice of parametrisation
as discussed by A mari (1990), extending earlier work by Bates and Wat ts
(1980, 1981), Hougaard (1982) and K ass (1984). T here are also a number of
points of contact between our presentation and F irth (1993).

A key feature of our account is that all expectations and induced distribu-
tions are taken with respect to one …xed distribution namely, that assumed
to give rise to the data. T his is the so called preferred point geometrical ap-
proach developed in Critchley, Marriot t and Salmon (1993, 1994), on whose
results we draw where appropriate.

Our hope is that the folowing development will serve to broaden interest
in an important and developing area. For a more formal but still read-
able treatment of di¤erential geometry, see Dodson and Poston (1977). For
broader accounts of the application of di¤erential geometry to statistics see
the review papers or monographs by Barndor¤-Nielsen, Cox and Reid (1986),
K ass (1987, 1989), A mari (1990) and Murray and Rice (1993).

T he paper is organised as follows. T he elementary prerequisites are es-
tablished in Section 2. T he key elements of A mari’s expected geometry of
general families of distributions are brie‡y and intuitively reviewed in Section
3. In particular, his ®-connections are discussed in terms of the characteris-
tic statistical properties of their associated a ¢ ne parametrisations. T he …nal
section contains our account of this geometry in the full exponential family
case, as outlined above.
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1 P reli mi n a r ies.

1.1 T he gener al fr a mewor k .
Let

M = f p(x; µ) : µ 2 £ g

be a p-dimensional parametric family of probability (density) functions. T he
available data x = (x1; : : : ; x n )T is modelled as a random sample from some
unknown true distribution p(x; Á) 2 M . Let the parameter space £ be an
open connected subset of R p . T he family M is regarded as a manifold,
with the parameter µ playing the role of a coordinate system on it. Formally,
certain regularity conditions are entailed. T hese are detailed in A mari (1990,
page 16).

1.2 T he score fu nc t ion.
T he score function

s(µ; x) = (
@

@µ1 ln p( x; µ); : : : ;
@

@µp ln p(x ; µ))T

is very natural to work with statistically as it contains precisely all the rele-
vant information in the likelihood function. Integrating over £ recovers the
log likelihood function, l , up to an additive constant which is independent of
µ. T his is equivalent to the likelihood up to a multiplicative positive factor
which may depend on x but not on µ. As discussed by Cox and Hinkley
(1974, page 12), two di¤erent choices of the constant do not a¤ect the essen-
tial likelihood information, which we refer to as the shape of the likelihood.
V isually, the graph of the score function displays the shape of the likelihood
in a natural and direct way. We use this to advantage later.

T he score function is also a very natural tool to work with geometrically.
A n important concept of di¤erential geometry is that of the tangent space.
We can avoid the general abstract de…nition here as we have a concrete
representation of this space in terms of the score function. Regarding x now
as a random vector and following A mari (1990), we identify the tangent space
T M µ at each …xed p( x; µ) 2 M with the vector space of random variables
spanned by

f si (µ; x) =
@

@µ i ln p( x; µ) : i = 1; : : : ; pg:
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Under the regularity conditions referenced in Section 2.1, this vector space
has dimension p, the dimension of M .

1.3 D ist r i b u t ion of t he score vec t or .
Naturally associated with each …xed tangent space T M µ is the joint distri-
bution ½Á

µ of the components of the score vector s(µ; x). T his may be known
analytically but can always, by the central limit theorem, be approximated
asymptotically by the multivariate normal distribution N p( ¹ Á (µ); gÁ (µ)) where

¹ Á (µ) = E p( x ;Á) [s(µ; x)] = n E p( x ;Á) [s(µ; x)]

and
gÁ (µ) = Covp( x;Á) [s(µ; x )] = n Covp( x ;Á)[s(µ; x)]

T hese last two quantities are statistically natural tools that we shall employ
in our account of A mari’s geometry. T he matrix gÁ (µ) is assumed to be
always positive de…nite.

Note that, for all Á,

¹ Á (Á) = 0 and gÁ (Á) = I (Á) = n i(Á)

where I and i denote the F isher information for the sample and for a single
observation respectively.

For later use we de…ne the random vector ²Á (µ; x) by the decomposition

s(µ; x) = ¹ Á (µ) + ²Á (µ; x)

so that E p( x ;Á)[²Á (µ; x)] vanishes identically in µ and Á.
In the one dimensional case there is a particularly useful graphical repre-

sentation of the three tools on which our account is based. For a particular
realisation of the data x the plot of the graph of s(µ; x) against µ can give
great insight into the shape of the observed likelihood function. We call this
graph the observed plot. Together with this we use the expected plot. T his is
a graph of the true mean score together with an indication of variability. We
make extensive use of this graphical method for several important examples
below.
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1.4 R epa r a met r isa t ion.
So far, we have worked in a single parametrisation µ. It is important to
consider what happens under a reparametrisation.

We consider reparametrisations µ ! »(µ) that are smooth and invertible.
De…ne,

B ®
i (µ) =

@»®

@µ i and ¹B i
® (») =

@µ i

@»® ;

for 1 · i; ® · p. B y the chain rule, the components of the score vector
transform as 1-tensors. T hat is:

s® (»(µ); x) : =
@ l

@»® =
pX

i = 1

¹B i
®(»(µ))

@ l
@µ i : =

pX

i = 1

¹B i
®(µ)si (µ; x) (1)

for each …xed µ. T his amounts to a change of basis for the vector space T M µ .
B y linearity of expectation, the components of ¹ Á (µ) are also 1-tensors. T hat
is:

¹ »(Á)
® (»(µ)) =

pX

i = 1

¹B i
®(µ) ¹ Á

i (µ) (2)

As covariance is a bilinear form, we see that gÁ (µ) is a 2-tensor. T hat is, its
components transform according to:

g»(Á)
® ¯ (»(µ)) =

pX

i = 1

pX

j = 1

¹B i
® (µ) ¹B j

¯ (µ)gÁ
i j (µ) (3)

B y symmetry, the assumption of positive de…niteness and since gÁ (µ) varies
smoothly with µ, gÁ (µ) ful…ls the requirements of a metric tensor , see A mari
(1990, page 25). It follows at once, put ting µ = Á, that the F isher information
also enjoys this property.

In parallel with this tensor analysis plot ting the observed and expected
plots for di¤erent parametrisations of the model can be extremely useful in
conveying the e¤ects of reparametrisation on the shape of the likelihood and
the statistical properties of important statistics such as the maximum like-
lihood estimate. T he question of parametrisation is therefore an important
choice which has to be taken in statistical analysis.
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2 So me elements of A m a r i’s ex p ec ted geom-
et r y.

2.1 C on nec t ions.
Formally, A mari’s expected geometry is a triple ( M ; I ; r + 1 ) in which M is a
family of probability (density) functions and I the F isher information metric
tensor, as described above. T he ma jor di ¢ culty in understanding revolves
around the third component r + 1 which is a particular non metric a ¢ ne con-
nection. In Section 3, we obtain a simple, statistical interpretation of it in the
full exponential family case. Here we note certain facts concerning connec-
tions and A mari’s geometry, o¤ering intuitive explanations and descriptions
where possible. For a formal treatment, see A mari (1990). We emphasise
that such a treatment is not required here, as our later argument proceeds
in terms of the elementary material already presented.

A connection allows us to (covariantly) di¤erentiate tangent vectors and,
more generally, tensors, see Dodson and Poston (1977, Chapter 7). A connec-
tion therefore determines which curves in a manifold shall be called ‘geodesic’
or ‘straight’. Generalising familiar E uclidean ideas, these are de…ned to be
those curves along which the tangent vector does not change.

A metric tensor induces in a natural way an associated connection called
the Levi-Civita or metric connection. In A mari’s structure the F isher in-
formation I induces the a ¢ ne connection denoted by r 0 . T he Levi-Civita
connection has the property that its geodesics are curves of minimum length
joining their endpoints. No concept of length is associated with the geodesics
corresponding to non metric connections.

A mari shows that the two connections r 0 and r + 1 can be combined to
produce an entire one parameter family f r ® : ® 2 R g of connections, called
the ®- connections. T he most important connections statistically correspond
to ® = 0; § 1

3 ; § 1, as we now explain.

2.2 C hoice of pa r a met risa t ion.
For each of A mari’s connections it can happen that a parametrisation µ of
M exists such that the geodesic joining the points labelled µ1 and µ2 simply
consists of the points labelled f (1 ¡ ¸ )µ1 + ¸ µ2 : 0 · ¸ · 1g. For example,
Cartesian coordinates de…ne such a parametrisation in the E uclidean case.
W hen this happens M is said to be ‡at, such a parametrisation is called
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a ¢ ne, and the parameters are unique up to a ¢ ne equivalence. T hat is, any
two a ¢ ne parametrisations are related by a nonsingular a ¢ ne transforma-
tion. In the important special case of a metric connection M is ‡at if and only
if there exists a parametrisation µ in which the metric tensor is independent
of µ.

For a connection to admit an a ¢ ne parametrisation is a rather special cir-
cumstance. W hen it does, we may expect the a ¢ ne parametrisation to have
correspondingly special properties. T his is indeed the case with A mari’s ex-
pected geometry. W hen an ®-connection has this property, the manifold is
called ®-‡at and the associated parametrisations are called ®-a ¢ ne. A mari
(1990, T heorem 5.12, page 152), established the following characteristic fea-
tures of certain ®-a ¢ ne parametrisations:

1. ® = 1, corresponds to the natural parameter, µ.

2. ® = 1
3 , corresponds to the normal likelihood parameter.

3. ® = 0, gives a constant asymptotic covariance of the M L E .

4. ® = ¡ 1
3 , gives zero asymptotic skewness of the M L E .

5. ® = ¡ 1, gives zero asymptotic bias of the M L E .

T hese correspond to the ± = 0; 1
3 ; 1

2 ; 2
3 ; 1 parametrisations respectively of

Hougaard (1982), who studied the one dimensional curved exponential family
case. In any one dimensional family an ®-a ¢ ne parameter exists for every
®. A full exponential family, of any dimension, is always + 1-‡at and ¡ 1-‡at,
with the natural and mean value parameters respectively being a ¢ ne. A mari
(1990) also established the duality result that M is ®-‡at if and only if it is
¡ ®-‡at. T his duality between r ® and r ¡ ® has nice mathematical properties

but has not been well understood statistically.
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3 T he ex p ect ed geomet r y of t he full ex p o-
nent ial fa mil y.

3.1 I n t ro d uct ion.
We restrict at tention now to the full exponential family. In the natural
parametrisation, µ, we have

p(x; µ) = exp f
pX

i = 1
t i (x)µ i ¡ Ã (µ)g:

T he mean value parametrisation is given by ´ = ( ´ 1; : : : ; ´ p), where

´ i (µ) = E p( x ;µ)[t i (x)] =
@ Ã
@µ i (µ):

T hese two parametrisations are therefore a ¢ nely equivalent if and only if Ã
is a quadratic function of µ, as with the case of normal distributions with
constant covariance. As we shall see this is a very special circumstance.

In natural parameters, the score function is

si (µ; x) = n f ¹t i ( x) ¡
@ Ã
@µ i (µ)g = n f ¹t i (x ) ¡ ´ i (µ)g (4)

where n ¹t i ( x) =
P n

r = 1 t i (x r ). From (4) we have the useful fact that the maxi-
mum likelihood estimator ^́ i : = ´ i (µ̂) = ¹t i . Further the …rst two moments of
the score function under p(x; Á) are given by,

¹ Á
i (µ) = n f

@ Ã
@µ i (Á) ¡

@ Ã
@µ i (µ)g = n f ´ i (Á) ¡ ´ i (µ)g (5)

gÁ
i j (µ) = n

@ 2 Ã
@µ i @µ j (Á) = I i j (Á): (6)

3.2 E x a m ples.
T he following one dimensional examples are used for illustrative purposes:
Poisson, Normal with constant (unit) variance, E xponential and Bernoulli.

A lthough, of course, the sample size a¤ects the Á-distribution of ¹t, it
only enters the above equations for the score and its …rst two moments as a
multiplicative constant. T herefore our analysis, which is based solely on these
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quantities, is essentially invariant under independent repeated samples. Our
third and fourth examples implicitly cover the Gamma and Binomial families
and together then, these examples embrace most of the distributions widely
used in generalised linear models (McC ullagh and Nelder, 1989).

T he examples are summarised algebraically, in Table 1, and are displayed
visually in F igures 1 to 4 respectively. For each example, for a chosen Á and
n shown in Table 1, we give observed and expected plots, both in the natural
parametrisation µ and in a non-a ¢ nely equivalent parametrisation »(µ).

Poisson(µ) Normal(µ; 1) E xponent ial(µ) Bernoulli(µ)
( F igure 1) ( F igure 2) ( F igure 3) ( F igure 4)

t(x) x x ¡ x x

Ã (µ) eµ 1
2 µ2 ¡ ln µ ln(1 + eµ )

s(µ; x) n( ¹x ¡ eµ ) n( ¹x ¡ µ) n( ¡ ¹x + µ ¡ 1) n( ¹x ¡ eµ (1 + eµ ) ¡ 1)

¹ Á (µ) n(eÁ ¡ eµ ) n(Á ¡ µ) n( ¡ Á ¡ 1 + µ ¡ 1 ) n eÁ

1 + eÁ ¡ n eµ

1 + eµ

gÁ (µ) neÁ n nÁ ¡ 2 neÁ (1 + eÁ ) ¡ 2

»(µ) ´ (µ) = eµ µ
1
3 ´ (µ) = ¡ µ ¡ 1 ´ (µ) = eµ (1 + eµ ) ¡ 1

¹B (µ) » ¡ 1 3»2 » ¡ 2 (»(1 ¡ »)) ¡ 1

s(»; x) n( ¹x ¡ »)» ¡ 1 3n( ¹x ¡ »3)»2 ¡ n( ¹x + »)» ¡ 2 n( ¹x ¡ »)(»(1 ¡ »)) ¡ 1

¹ »(Á) (») n(»(Á) ¡ »)» ¡ 1 3n(»3 (Á) ¡ »3)»2 n(»(Á) ¡ »)» ¡ 2 n (»(Á) ¡ »)
(»(1 ¡ »))

g»(Á) (») n»(Á)» ¡ 2 9n»4 n»(Á)2» ¡ 4 n »(Á)(1 ¡ »(Á))
(»(1 ¡ »)) 2

Á 0 0 1 0

n 10 10 10 10

Table 1: E xamples.
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I NSE RT F I G U R ES 1 to 4 H E R E

We take »(µ) to be the mean value parameter ´ (µ) except in the normal

case where we take »(µ) = µ
1
3 . We use this last parametrisation for illus-

tration only even though it is not invertible at µ = 0. In each case, » is an

increasing function of µ. In the expected plots, we illustrate the …rst two mo-

ments of the score function under the true distribution (that is under p(x; Á))

by plot ting the mean § 2 standard deviations. In the observed plots, to give

some idea of sampling variability, we plot …ve observed score functions corre-

sponding to the 5%, 25%, 50% 75% and 95% points of the true distribution

of ¹t for the continuous families and the closest observable points to these in

the discrete cases. Recall that these plots precisely contain the shape of the

observed and expected likelihood functions and thus are a direct and visual

representation of important statistical information.

T he observed score graphs do not cross since, for each …xed parameter

value, the observed score function is non decreasing a ¢ ne function of ¹t. T his

holds in all parametrisations, using (1). From (1), (2), (4) and (5) it is

clear that, in any parametrisation, the graph of the true mean score function

coincides with that of the observed score for data where ¹t( x ) equals its true

mean ´ (Á). In the examples the true distribution of n ¹t is given by Poisson(Á +
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ln n), Normal(nÁ; n), Gamma(Á; n) and Binomial(n; Á), respectively.

T he most striking feature of the plots is the constancy of the variance of

the score across the natural parametrisation, and the fact that this property

is lost in the alternative parametrisation. A lso remarkable is the linearity of

the normal plots in the natural parametrisation. A close inspection reveals

that for each example, in the natural parametrisation, each of the observed

plots di¤er only by a vertical translation. Again this property will not hold

in a general parametrisation. We use these and other features of the plots to

bet ter understand A mari’s expected geometry.

Certain information is evident from the plots straight away. Under stan-

dard regularity conditions, the unique maximum likelihood estimate of a

parameter for given data occurs when the graph of the corresponding ob-

served score function crosses the horizontal axis from above. T hus, as ¹t = ^́

in our examples, (even in the degenerate Bernoulli case), these …ve crossing

points are the 5%, 25%, 50%, 75% and 95% percentage points of the true

distribution of the maximum likelihood estimate. T he position of these …ve

crossing points gives visual information about this distribution, in particular,

about its location, variance and skewness.

Of more direct relevance to our present concern is the fact that, in these
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one dimensional cases, there is a straightforward visual representation of the

tangent space at each point. T M µ can be identi…ed with the vertical line

through µ, and ½Á
µ (see Section 2.3) with the distribution of the intersec-

tion of this line with the graph of the observed score function. Identical

remarks apply in any parametrisation. T hese tangent spaces are shown in

both parametrisations, at the above …ve percentage points of the maximum

likelihood estimator, as lines in the observed plots and as vertical bars in the

expected plots.

In the observed plot, the …ve intersection points with any given tangent

space T M µ , are the …ve corresponding percentage points of ½Á
µ . T he same is

true in any increasing reparametrisation ». T hus, comparing the position of

these …ve intersection points at corresponding parameter values in the two

observed plots gives direct visual information on the di¤erence between ½Á
µ

and ½»(Á)
»(µ) ; in particular, on changes in skewness. T he observed plots also

show very clearly that as the natural parameter varies, the true distribution

of the score changes only in its location, whereas this is not so in a general

parametrisation.

T his brings to light a certain natural duality between the maximum like-

lihood estimator and the score function. Consider the observed plots in the
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natural and mean value parametrisations. For any given point consider its

corresponding tangent space T M µ and T M ´ (µ) in the two plots. In each plot

we have …ve horizontal and …ve vertical crossing points, as above, giving in-

formation about the distribution of the maximum likelihood estimator and

the score function respectively in the same parametrisation. Now, these two

plots are far from independent. As ^́( x) = ´ (µ) + n ¡ 1s(µ; x), the horizontal

crossing points in the mean parameter plot are just an a ¢ ne transformation

of the vertical crossing points in the natural parameter plot. T he converse is

true asymptotically. As we discuss below, this simple and natural duality be-

tween the maximum likelihood estimator and the score function corresponds

with the duality present in A mari’s expected geometry.

3.3 A m a r i’s + 1-geo met r y

T he above one dimensional plots have already indicated two senses in which

the natural parametrisation is very special. We note here that this is so

generally. Our analysis then provides a simple statistical interpretation of

A mari’s + 1-connection.

From (4) we see that in the natural parametrisation the score function

has the form of a stochastic part, independent of µ, plus a deterministic part,
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independent of the data. Recalling (1) and (4) we see that this property is

lost in a non a ¢ ne reparametrisation » , since ¹B (µ) (: = ¹B 1
1 (µ)) is independent

of µ if and only if » is an a ¢ ne transformation of µ. A n equivalent way to

describe this property is that the ‘error term’ ²Á (µ; x ) in the mean value

decomposition of s(µ; x) de…ned at the end of Section 1.3 is independent of

µ. Or again, as ¹ Á (Á) vanishes, that this decomposition has the form

s(µ; x) = ¹ Á (µ) + s(Á; x): (7)

Note that ½Á
µ di¤ers from ½Á

µ0 only by the translation ¹ Á (µ) ¡ ¹ Á (µ0). In

this parametrisation, from one sample to the next, the whole graph of the

observed score function just shifts vertically about its Á-expectation by the

same amount s(Á; x ).

As a consequence of (7), the Á-covariance of the score function is indepen-

dent of µ, (and therefore coincides with gÁ (Á) = I (Á)). But gÁ (µ) is a metric

tensor (Section 1.4) and, in this parametrisation, the metric is constant across

all tangent spaces. Recalling Section 2.2 we note that if a metric is constant

in a parametrisation then the parametrisation is a ¢ ne for the metric connec-

tion. A ll tangent spaces thus have the same geometric structure and di¤er

only by their choice of origin. For more details on this geometric idea of

‡atness, see Dodson and Poston (1977).
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T he metric connection is the natural geometric tool for measuring the

variation of a metric tensor in any parametrisation. But Critchley, Marriot t

and Salmon (1994) prove that, in the full exponential family, the metric

connection induced by gÁ (µ) coincides with A mari’s + 1-connection. T hus we

have the simple statistical interpretation that r + 1 is the natural geometric

measure of the non constancy of the covariance of the score function in an

arbitrary parametrisation. In the one dimensional case, the + 1-connection

measures the variability of variance of the observed score across di¤erent

points of M . Looking again at F igures 1 to 4 we see a visual representation

of this fact in that the § 2 standard deviation bars on the expected plot are

of a constant length for the µ-parametrisation, and this does not hold in the

non a ¢ ne »-parametrisation.

3.4 A m a r i’s 0-geo me t r y.

T he fact that in the natural parametrisation all the observed score functions

have the same shape invites interpretation. From (7) we see that the common

information conveyed in all of them is that conveyed by their Á-mean. W hat

is it?

T he answer is precisely the F isher information for the family. T his is
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clear since ¹ Á determines I via

I i j (µ) = ¡
@ ¹ Á

j

@µ i (µ)

while the converse is true by integration, noting that ¹ Á (Á) = 0. T hus, in

natural parameters, knowing the F isher information at all points is equivalent

to knowing the true mean of the score function, (and hence all the observed

score functions up to their stochastic shift term). In particular, in the one

dimensional case, the F isher information is conveyed visually by minus the

slope of the graph of ¹ Á (µ) as, for example, in the natural parameter expected

plots of F igures 1 to 4.

A mari uses the F isher information as his metric tensor. It is important

to note that when endowed with the corresponding metric connection an

exponential family is not in general ‡at. T hat is, there does not, in general,

exist any parametrisation in which the F isher information is constant. T he

multivariate normal distributions with constant covariance matrix and any

one dimensional family are notable exceptions. In the former case, the natural

parameters are a ¢ ne. In the lat ter case, using (3), the a ¢ ne parameters are

obtained as solutions to the equation

(
@µ
@»

(µ))2 Ã 00(µ) = constant:
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For example in the Poisson family where Ã (µ) = exp(µ) one …nds »(µ) =

exp( µ
2 ) as in Hougaard (1982).

T hus far we have seen that, in the case of the full exponential family,

the fundamental components of A mari’s geometry ( M ; I ; r + 1 ) can be sim-

ply and naturally understood in terms of the …rst two moments of the score

function under the distribution assumed to give rise to the data. I is de-

…ned by the true mean, and r + 1 by I and the true covariance. Further,

they can be understood visually in terms of the expected plots in our one

dimensional examples. We now go on to comment on duality and choice of

parametrisation.

3.5 A m a r i’s ¡ 1-geo met r y a n d d u ali t y.

T he one dimensional plots above have already indicated a natural duality

between the score vector and the maximum likelihood estimator, and that

there is a natural statistical curvature, even in the one dimensional case,

unless the manifold is total ly ‡at. T hat is, unless the graph of the true mean

score function is linear in the natural parametrisation. We develop these

remarks here.
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A mari (1990) shows that the mean value parameters

´ (µ) = E p( x ;µ)[t(x)] = Ã 0(µ)

are ¡ 1-a ¢ ne and therefore, by his general theory, duality related to the

natural + 1- a ¢ ne parameters µ. We o¤er the following simple and direct

statistical interpretation of this duality. We have,

^́ = ´ (µ) + n ¡ 1s(µ; x):

E xpanding µ(^́) to …rst order about ´ gives an asymptotic converse

µ̂ _= µ + n ¡ 1 ¹B (µ)s(µ; x) = µ + n ¡ 1s( ´ ; x);

the right hand equality following from (1) and where we use _= to denote

…rst order asymptotic equivalence. Note that ¹B (µ) = i ¡ 1 (µ). T hus the

duality between the + 1 and ¡ 1 connections can be seen as the above strong

and natural asymptotic correspondence between the maximum likelihood

estimator in one parametrisation and the score function in another. In fact

this simple statistical interpretation of A mari’s duality is not restricted to

the full exponential family, see C ritchley, Marriot t and Salmon (1994).It is

established formally in a more general case than + 1 duality here in section

3.7.
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3.6 To t al ‡ a t ness a n d choice of pa r a met r isa t ion.

T he above approximation to µ̂ is exact when µ and ´ are a ¢ nely equivalent.

In this case, µ̂ and ^́ are in the same a ¢ ne relationship and so their distri-

butions have the same shape. In particular, as normality is preserved under

a ¢ ne transformations, these distributions are as close to normality as each

other whatever the de…nition of closeness that is used. In the case where M

is a constant covariance normal family µ̂ and ^́ are both exactly normally

distributed.

A ¢ ne equivalence of µ and ´ is a very strong property. W hen it holds

much more is true. It is the equivalent in the full exponential family case of

the general geometric notion of total ‡atness de…ned and studied in Critchley,

Marriot t and Salmon (1993). Recall that the natural parametrisation µ has

already been characterised by the fact that the true covariance of the score

function is constant in it. Total ‡atness entails this same parametrisation

simultaneously has other nice properties. It is easy to show the following
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equivalences,

µ and ´ are a ± nely equivalent

( ) Ã is a quadrat ic funct ion of µ

( ) I (µ) is constant in the natural parameters

( ) ¹ Á (µ) is an a ± ne funct ion of µ

( ) 9 ® 6= ¯ with r ® = r ¯

( ) 8®; 8 ¯ ; r ® = r ¯

( ) the µ parametrisat ion is ® ¡ a ± ne for all ®

see Critchley, Marriot t and Salmon (1993). In particular, the maximum

likelihood estimator of any ®-a ¢ ne parameters are all equally close (in any

sense) to normality.

It is exceptional for a family M to be totally ‡at. Constant covariance

multivariate normal families are a rare example. In totally ‡at manifolds the

graph of ¹ Á (µ) is linear in the natural parametrisation, as remarked upon

in the one dimensional normal example of F igure 2. More usually, even in

the one dimensional case, a family M of probability (density) functions will

exhibit a form of curvature evidenced by the non linearity of the graph of

¹ Á (µ).

Recall that the graph of ¹ Á (µ) enables us to connect the distribution of

20



µ̂ and ^́. In the natural parametrisation µ each observed graph is a vertical

shift of the expected graph. T his shift is an a ¢ ne function of ¹t = ^́. T he

intersection of the observed plot with the µ axis determines µ̂. W hen the

expected plot is linear (the totally ‡at case) then µ̂ and ^́ are a ¢ nely related

and so their distributions have the same shape. W hen it is non linear they

will not be a ¢ nely related. T his opens up the possibility that, in a particular

sense of ‘closeness’, one of them will be closer to normality.

In all cases, the 0-geometry plays a pivotal role between the § 1-geometries.

T hat is, the graph of ¹ Á (µ) determines the relationship between the distri-

butions of the maximum likelihood estimators µ̂ and ^́ of the § 1-a ¢ ne pa-

rameters. We illustrate this for our examples in F igure 5. Both distributions

are of course exactly normal when the parent distribution is. In the Poisson

case the concavity of ¹ Á (µ) means that the positive skewness of ^́ is reduced.

Indeed, µ̂ has negative skew as F ig 5a illustrates. T he opposite relationship

holds in the E xponential case where ¹ Á (µ) is convex. In our Bernoulli exam-

ple, the form of ¹ Á (µ) preserves symmetry while increasing kurtosis so that,

in this sense, the distribution of µ̂ is closer to normality than that of ^́.

I NSE RT F I G U R E 5a H E R E

probability function of µ̂ T he mean score in probability function of ^́
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µ parameters

F igure 5a. Poisson
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.

I NSE RT F I G U RU R E 5b H E R E

density of µ̂ T he mean score in density of ^́

µ parameters

F igure 5b. Normal

I NSE RT F I G U R E 5c H E R E

density of µ̂ T he mean score in density of ^́

µ parameters

F igure 5c. E xponential

I NSE RT F I G U R E 5d H E R E

probability function of µ̂ T he mean score in probability function of ^́

µ parameters

F igure 5d. Bernoulli

3.7 A m a r i’s § 1
3 -geo met r y a n d d u ali t y.

A mari’s 1
3 -connection can be simply interpreted in terms of linearity of the

graph of the true mean score function, at least in the one dimensional situ-

ation where the 1
3 -a ¢ ne parameters are known to exist. If M is totally ‡at,

this graph is linear in the natural parametrisation, as in the normal con-
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stant covariance family. It is therefore natural to pose the question: Can a

parametrisation be found for a general M in which this graph is linear?

T his question can be viewed in two ways. F irstly, for some given p(x; Á),

is such a parametrisation possible? However in this case, any parametrisation

found could be a function of the true distribution. In general, there will not

be a single parametrisation that works for all Á. T he second way is to look

local ly to Á. T his is the more fruitful approach statistically. T he question

then becomes: Can a single parametrisation µ ! » be found such that, for

all Á, the graph of the true mean score is linear local ly to » = »(Á)? In the

one dimensional case, we seek » such that

8Á;
@ 2 ¹ »(Á) (»)

@»2 j» = »(Á) = 0

Such a local approach is su ¢ cient asymptotically when the observed score

function will be close to its expected value and the maximum likelihood es-

timate will be close to the true parameter. T hus in such a parametrisation,

whatever the true value, the observed log likelihood will asymptotically be

close to quadratic near the M L E . Hence the name, normal likelihood pa-

rameter. A mari (1990) shows that such parameters always exist for a one

dimensional full exponential family, and that they are the 1
3 -a ¢ ne parame-

ters.
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T he vanishing of the second derivative of the true expected score function

in one parametrisation » …nds a dual echo in the vanishing of the asymptotic

skewness of the true distribution of the maximum likelihood estimator in

another parametrisation ¸ . T his is called the ¡ 1
3 -a ¢ ne parametrisation as it

is induced by A mari’s ¡ 1
3 -connection. Note again that the duality is between

the score function and the maximum likelihood estimator as in Section 3.5.

T his can be formalised as follows.

Consider any one dimensional full exponential family,

p(x; µ) = exp f t(x)µ ¡ Ã (µ)g:

Let » and ¸ be any two reparametrisations. E xtending the approach in

Section 4.5, it is easy to show the following equivalences:

»̂ _= » + n ¡ 1s( ¸ ; x) ( ) ^̧ _= ¸ + n ¡ 1s(»; x) ( )
@ ¸
@µ

@»
@µ

= Ã00(µ):

In this case, we say that » and ¸ are Ã-dual. Clearly, the natural ( + 1- a ¢ ne)

and mean value ( ¡ 1-a ¢ ne) parameters are Ã-dual. A parameter » is called

self Ã-dual if it is Ã-dual to itself. In this case we …nd again the di¤erential

equation for the 0-a ¢ ne parameters given in Section 4.4. More generally, it

can be shown that for any ® 2 R

» and ¸ are Ã ¡ dual ) [» is ® ¡ a ± ne ( ) ¸ is ¡ ® ¡ a ± ne ]
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For a proof see the appendix. T hus the duality between the score function

and the maximum likelihood estimator coincides quite generally with the

duality in A mari’s expected geometry.

Note that the simple notion of Ã-duality gives an easy way to …nd ¡ ®-

a ¢ ne parameters once + ®-a ¢ ne parameters are known. For example, given

that » = µ
1
3 is 1

3 -a ¢ ne in the exponential family (Hougaard, 1982) where

Ã (µ) = ¡ ln(µ), one immediately has

@ ¸
@µ

= 3µ ¡ 4
3

whence µ ¡ 1
3 is ¡ 1

3 -a ¢ ne. Again, in the Poisson family, » = exp(µ=3) is

1
3 -a ¢ ne gives at once that exp(2µ=3) is ¡ 1

3 -a ¢ ne.

T he local linearity of the true score in + 1
3 -parameters suggests that asymp-

totically the distributions of the maximum likelihood estimator of the § 1
3 -

a ¢ ne parameters will be relatively close compared, for example, to the those

of the § 1-a ¢ ne parameters. In particular, it suggests that both will show

lit tle skewness. F igure 6, which may be compared to F igure 5(c), conveys

this information for our E xponential family example.

I NSE RT F I G U R E 6 H E R E

+ 1
3 -parametrisation true mean score in + 1

3 parametrisation ¡ 1
3 - parametrisation

F igure 6: E xponential
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4 Sa m ple size e¤ec ts.

In this section we look at the e¤ect of di¤erent sample sizes on our plots of

the graph of the score vector. For brevity we concentrate on the exponential

model. In F igure 7 we plot the observed scores, taken as before at the 5, 25,

50, 75, and 95% points of the distribution of the score vector. We do this

in the natural µ-parameters and the ¡ 1- a ¢ ne mean value ´ -parameters, for

sample sizes 5, 10, 20 and 50.

I NSE RT F I G U R E 7 H E R E

In the natural parameters we can see that the distribution of µ̂ approaches

its asymptotic normal limit. Its positive skewness visibly decreases as the

sample size increases. More strikingly, the non linearity in each of the graphs

of the observed scores reduces quickly as n increases. For the sample size 50

case we see that each graph is, to a close degree of approximation, linear.

T his implies that at this sample size there will be almost an a ¢ ne relationship

between the score in µ coordinates and the maximum likelihood estimator

µ̂. T hus demonstrating their well known asymptotic a ¢ ne equivalence. It

also throws light on the familiar asymptotic equivalence of the score test, the

Wald test and (given the asymptotic normality of the maximum likelihood
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estimate) the likelihood ratio test.

For any model in any smooth invertible reparametrisation of the natural

parameters asymptotically the graphs of the observed score will tend to the

natural parametrisation plot of the normal distribution shown in F igure 2.

In this limit the graphs become straight and parallel. We can see both these

processes in the ´ -parametrisation of F igure 7. In this example a higher

sample size than for the natural parameter case are needed to reach the same

degree of asymptotic approximation. T he highly non-linear and non-parallel

graphs of sample size 5 and 10 have been reduced to a much more moderate

degree of non-linearity for sample size 50. However this sample size is not

quite su ¢ cient to produce the parallel, linear graphs of the µ-parametrisation,

thus there will still not quite be an a ¢ ne relationship between the score and

the maximum likelihood estimator.

A p p en di x .

We give the proof of the equivalence claimed in Section 3.7. We assume here

familiarity with the use of Christo¤el symbols, see A mari (1990, page 42).

T heore m . Let M be a 1-dimensional full exponential family, and assume
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the parameterisations » and ¸ are Ã-dual. T hen » is + ®-a ¢ ne if and only if

¸ is ¡ ®-a ¢ ne.

Proof. From A mari (1990) we have in the natural µ-parametrisation

¡ ®(µ) = (
1 ¡ ®

2
)Ã 000(µ)

T hus in »-parameters, by the usual transformation rule, the Christo¤el sym-

bols are

¡ ® (») = ( @µ
@» )3 ¡ ® (µ) + i(µ) @µ

@»
@ 2 µ
@»2

= ( 1 ¡ ®
2 )Ã 000(µ)( @µ

@» )3 + Ã 00 (µ) @µ
@»

@ 2 µ
@»2

T hus » is ®-‡at if and only if

(
1 ¡ ®

2
)Ã 000(µ) + Ã 00(µ)(

@ 2µ
@»2 )(

@»
@µ

)2 = 0 (8)

Similarly in ¸ parameters we have ¸ is ¡ ®-‡at if and only if

(
1 + ®

2
)Ã 000(µ) + Ã 00(µ)(

@ 2µ
@ ¸ 2 )(

@ ¸
@µ

)2 = 0 (9)

Since » and ¸ are Ã-dual we have

@µ
@ ¸

@µ
@»

= (Ã 00) ¡ 1(µ)

Di¤erentiating both sides with respect to µ using the chain rule gives

@ 2µ
@ ¸ 2

@ ¸
@µ

@µ
@»

+
@ 2µ
@»2

@»
@µ

@µ
@ ¸

= ¡ (
1

Ã 00 (µ))2 Ã 000(µ)
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multiplying through by (Ã 00 )2 and using the Ã-duality gives

@ 2µ
@ ¸ 2 (

@ ¸
@µ

)2 Ã 00 (µ) +
@ 2µ
@»2 (

@»
@µ

)2 Ã 00(µ) = ¡ Ã 000(µ) (10)

Substituting (10) into (9) gives (8), and (10) into (8) gives (9) as required.
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