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Pierre-André Jouvet, Ingmar Schumacher. Learning-by-doing and the Costs of a Backstop for
Energy Transition and Sustainability. cahier de recherche 2011-22. 2011. <hal-00637960>

HAL Id: hal-00637960

https://hal.archives-ouvertes.fr/hal-00637960

Submitted on 3 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract

We assess the impact of being able to substitute an unlimited but costly energy substi-
tute (like wind, solar) for a non-renewable resource (like oil, coal) in a model of sustainable
growth. The prospects for sustainability on the optimal path depend crucially on the costs of
this substitute.Furthermore, the poorer a country, measured in terms of capital stock at a given
point in time, the later it should switch to the renewable substitute, and the more likely it will
be unsustainable. Taking learning-by-doing in account, we find that this leads to an earlier
switching time but does not guarantee sustainability.
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1 Introduction

Given that we live in a world where most countries rely on energy inputs that are essential but non-

renewable, how does the cost of a potential energy backstop technology (like solar or wind energy)

affect the optimal transition between these energy inputs? How does the optimal switching time

depend on a country’s capital stock? Furthermore, does the possibility of technological change

through learning-by-doing affect the optimal transition date? For which countries is this the most

relevant? When is sustainability along the optimal path guaranteed? These are the questions that

we address here. In order to approach these questions we make use of the literature on backstop

technologies and sustainability.

With respect to the backstop technology, our modeling approach builds upon Heal [23] and

the subsequent line of literature (Clark [10], Hanson [22], Tahvonen and Salo [55], Tsur and

Zemel [56], [57]). Heal [23], Clark [10] and Hanson [22] consider a Ramsey-type economy where

production uses capital and energy as complementary inputs. Energy may either come from a

non-renewable resource that is subject to extraction costs which are increasing in the amounts

already extracted, or from a backstop technology that comes at a high but constant marginal cost.

This literature discusses Hotelling’s Rule [25] and questions whether, on an optimal path, scarcity

rent (price minus marginal extraction cost) should grow over time at the discount rate or whether

it should decline. We, however, abstract from extraction costs of the non-renewable resource

which allows us to focus more closely on the role that the cost of the backstop technology plays

for the optimal switch to the energy substitute and sustainability. We, thus, deal with backstop

technologies that are already available but not yet commercially attractive enough due to their

higher relative price (like solar and wind energy).

The analysis in Tahvonen and Salo [55] is more closely related to ours. They allow for increas-

ing costs in both the non-renewable resource and the energy substitute at the expense of being able

to study more fully the role of the cost of the backstop technology. In contrast to Tahvonen and

Salo [55], we show that the non-renewable resources depletion may be non-monotonic1 and that

it is not optimal to use both non-renewable resources and the costly substitute simultaneously.

Indeed, our assumptions imply that the non-renewable resource should have been fully depleted
1This result has, in a different setting, also been obtained in Slade [50].
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when it becomes efficient to shift to the costly substitute. This arises since in our setting the two

energy inputs are not used simultaneously since only the resource that comes at the lowest social

cost will be used. We would argue that this result more accurately reflects reality since, firstly,

backstops (solar or wind energy) nowadays only represent a marginal fraction of overall energy

inputs and, secondly, since without the sufficient amount of subsidies these backstops would still

have a too high relative price. This suggests that backstops, in a competitive, undistorted envi-

ronment, would currently not be used.2 One can view our model as a special case of Tahvonen

and Salo [55], where extraction costs are of a significant size. This assumption allows to obtain

additional conclusions. For example, our assumptions allow us to study the timing of the switch

to the energy substitute more closely. We find that the switching time increases convexly with the

cost of the substitute and also crucially depends on the initial capital stock.

Tsur and Zemel [56] study the optimal transition from a non-renewable resource with increas-

ing extraction costs to a backstop technology. Like us, they allow for learning-by-doing in the

cost of the substitute. They maximize the net social benefit, which is increasing in the amount of

resources used and decreasing in the costs and the extraction of the resources. The main difference

to their approach is that we study the control problem in a model more in line with the approach of

Heal [23]. We have a benevolent social planner who maximizes utility of consumption subject to

the economy resource constraint, which allows for an important trade-off that leads to qualitatively

different results compared to Tsur and Zemel [56]. This setting is then similar to Tsur and Zemel

[57], who, instead of studying learning-by-doing as a means of reducing the cost of the backstop

technology, study R&D efforts.3

In the case of cost reductions via learning-by-doing we do not recover Tsur and Zemel’s [56]

result, which is that R&D activities should be undertaken directly at the maximal affordable rate.

Instead, we show the following. Learning-by-doing implies that the backstop technology will be

used earlier than if costs are exogenously given. In fact, the lower the cost of the backstop tech-

nology, the faster should we substitute to the energy substitute. This is in line with the simulations

in Chakravorty et al. [8], who simulate a model with a partial equilibrium demand curve where
2Apart from some countries that hold strong comparative advantages in the backstop, like e.g. hydro energy in

Switzerland, this argument should hold in general.
3Other approaches to technical change and resource extraction are, for example, Grimaud and Rouge [18], Perez-

Barahona and Zou [37] or Boucekkine and Pommeret [5].
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photovoltaic serves as a backstop technology for different types of non-renewable resource inputs.

Furthermore, we find a trade-off between the initial capital stock and the cost of the backstop.

In effect, poorer countries should substitute to the backstop technology at a later point in time

compared to rich countries.4

Our work is also related to the research that deals with backstop technologies from a sustain-

ability perspective. Solow [52], Dasgupta and Heal [13] and [14] have mainly influenced recent

research on the economics of sustainability by initiating the work on backstop technologies. These

articles point out that, in the absence of a backstop technology, without technical change and with

capital and the non-renewable resource being complements in production, we would see an un-

sustainable evolution of consumption over time. Including a backstop technology into the above

framework, we notice that the cost of the energy substitute is crucial for the sustainability of con-

sumption and show under what conditions optimal consumption may be non-declining. Too large

costs of the backstop technology will lead to an optimal path that is not sustainable, whereas suffi-

ciently small costs will allow for optimal paths that are sustainable. Then we investigate the role of

learning-by-doing in the energy substitute for the sustainability of consumption and the transition

between the resources. Our result is that learning-by-doing may help sustainability but it does not

guarantee it.

Additional research has looked at particular aspects of backstop technologies that are clearly

important but that we mention for completeness only. In the case of uncertainty over the date

when a potential backstop technology is discovered, Dasgupta and Heal [13] find that an optimal

policy should be to extract the non-renewable resource in a qualitatively equivalent way to the case

without a backstop technology but to use a higher discount rate which reflects the probability of

discovering the backstop technology. Though this is clearly relevant for technologies like fusion,

where we hold uncertainty over the date at which we can finally use this technology, it is less rel-

evant for solar or wind energy, which currently already exist but at a too high relative cost. Powell

and Oren [39] derive how a planner would invest in backstop capacity when choosing between the

use of a non-renewable input in production and a backstop (see also Wirl [61]). Just et al. [29]

study the optimal timing of investing in R&D if there is uncertainty over the length of time needed
4This result is closer to Tsur and Zemel [57].
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to develop a backstop technology. Chang and Young [9] illustrate some perspectives of major

oil firms on future energy developments. Growiec and Schumacher [20] study how technological

change in the substitutability between non-renewable and renewable resources in production can

lead to an endogenous emergence of the renewable resource as a backstop technology. There is

also a considerable and growing literature dealing with backstops and polluting non-renewable

resources. Aronsson et al. [2], Gjerde et al. [16] and more recently Tsur and Zemel [59] and [58]

underline the energy trade-offs under the risk of catastrophic events. Other studies on backstop

technology include Tahvonen [54], who studies how a non-polluting backstop technology should

substitute a pollution non-renewable resource. Schumacher [47] studies how the trade-off between

a polluting non-renewable resource and a renewable one is affected by pollution that may induce

an irreversible catastrophe.

The article is organized as follows. Section 2 introduces further empirical motivations and

provides the definition of sustainability that we use throughout this article. In section 3 we de-

velop the benchmark model with an exogenous cost of the substitute and the backstop technology

effect. We analyze the conditions for the resource use, the transition between resources and the

sustainability of consumption. In section 4 we introduce endogenous learning-by-doing and com-

pare the results to the exogenous cost case. Section 5 discusses our results in the light of some of

the results obtained in the integrated assessment modeling literature. Section 6 concludes.

2 Empirical motivations

There are two general questions which one could argue lie at the heart of modern environmental

economics: energy security and the costs of climate change from fossil energy use. The debate on

energy security has mainly been centered around the question of how a society can have a sustain-

able consumption paths if it, in its energy needs, so exclusively relies on limited and exhaustible

fossil fuels (oil, natural gas, and coal). For example, the World Energy Outlook [32] writes that

fossil fuels represent nearly 80 percent of world primary energy consumption. Add to this another

7% from the possibly limited5 nuclear sector, another approximately 9% from an unsustainable
5Some research suggests that too few uranium resources exist to meet demand in the future (IAEA [26]).
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use of traditional biomass and we quickly arrive at a number which is only marginally different

from 100%. The relevant question thus is: How long can we continue like we do now? Fig-

ure 1 shows the cumulative consumption6 of gas, oil and coal from 1751 to 2005. We observe

convex increases with the fastest growth in oil. The horizontal lines show the currently-known

global stock of the three types of fossil fuels and the arrows pointing at each line correspond to

the expected exhaustion time, which we obtained through an extrapolation based on the historical

series.7 Given these estimates we see that oil may already be depleated in 2048, closely followed

by gas in the year 2063 and later by coal in 2239. With the currently 1.5% annual increase in

Figure 1: Cumulative consumption of fossil fuels 1751-2005
6The plot is constructed from data from the Carbon Dioxide Information Analysis Center (CDIAC) on CO2 emis-

sions from fossil fuels for 1751 to 2005. Using the data for the consumption from fossil fuels from 1980 to 2005
from the BP Statistical Review of World Energy 2008 we then regressed the CO2 data on the consumption data and by
simple extrapolation were able to estimate the approximate consumption of fossil fuels from the CO2 data. Due to the
generally linear relationship this method is valid.

7We used a rather mechanical method by fitting a Gompertz function for time on the consumption of fossil fuels
from various dates onwards which allows a rough estimate of the time when fossil fuels will be exhausted given current
trends continue. The exhaustion estimates correspond to the ’reasonable’ case scenarios where we only use data from
1980 onwards which reflects better the later technological improvements. Similar estimates, with less crude methods,
are in Shafiee and Topal [49], see also Schmalensee et al. [45].
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primary energy consumption we will see a doubling of energy demand until 2040 and a threefold

increase until 2060. Without a considerable change in consumption and production habits, we are

very likely steering towards a scenario where society suddenly has to cope with a world in which

the non-renewable resources will be depleted and energy demand may not be met. This rather

likely scenario will lead to a situation where the developing world will face tremendous problems

to meet basic needs and where the developed world will have to change its social and productive

structures to accomodate this situation. Thus, given the exhaustible resources are an essential input

to production as is clearly the case, then what are our options?

Surprisingly, the same person who helped us in designing a world based on fossil fuels was also

the one who saw the limitations of the world that he basically created: Thomas Edison. Already

in 1931, Thomas Edison told his friends Henry Ford and Harvey Firestone: “I’d put my money

on the sun and solar energy. What a source of power! I hope we don’t have to wait until oil and

coal run out before we tackle that.” The only question that Thomas Edison did not settle down to

answer is how much money should and can be put aside for these alternative energies and as to

when we should substitute towards the alternative energy.

At the moment, alternative energies (biomass, geothermal, wind, solar, and hydropower) con-

tribute around 4% to overall energy consumption. The main reason8 for this somewhat low usage

of renewables is that their price relative to the virtually free non-renewable resources is signifi-

cantly higher. The World Energy Outlook suggests that fossil fuels are still expected to account

for approximately 85% of energy demand in 2030. However, we have also see an increasing in-

ternational effort to find solutions for this problem. One prominent example is the Renewable

Energy Task Force by the Group of Eight (G8) in 2000 which emphasizes the need to reduce costs

of alternative energies by expanding markets. At the same time we observe reductions of 10 to 20

percent in production costs for each cumulative doubling of production in photovoltaics and wind

technologies, attributable to economies of scale and learning-by-doing. Overall one can say that

the substitution of alternative energy sources for fossil energy seems globally feasible, but current
8Another reason is that the prospects for increases in certain alternative energies seem limited. For example, hy-

dropower is believed to have reached its maximum economic capacity in the developed world and is believed to have
limited applicability in the developing one due to high costs and property right problems. Furthermore, alternative
energy sources are often strongly limited by their geographical nature since they require specific geographical charac-
teristics which are not available in every region.

8



costs are still too high in order to continue our present lifestyle.

As a preliminary conclusion, we thus observe that relying on fossil energy will lead to an

unsustainable future. At the same time, if we were to substitute to the currently more expensive

alternative energy inputs like photovoltaics and wind energy, then we would almost surely see sub-

stantial GDP losses simply due to the presently higher costs of these alternative energies. Whether

and when this substitution will allow for a sustainable consumption level is one of the important

questions that we address in the remainder of this article.

2.1 The notion of sustainability

Whenever we refer to sustainability, we mean Sustainable Development, which defines sustain-

ability as non-declining consumption (Daly [11], Pezzey [38]). In our approach non-declining

consumption is equivalent to non-declining utility. Indeed, we assume that individuals are only

concerned with their level of consumption and we neglect other variables like pollution or amenity

value from decreasing natural capital. Even if pollution and the damaging aspects thereof are

sometimes considered as an important reason to adopt backstop technologies, we want to focus

only on the optimal consumption path and on the scarcity effects rather than the polluting na-

ture of the non-renewable resource.9 This particular focus allows us to draw conclusions that go

somewhat beyond those that had been reached up to now. Therefore, we consider a ‘weak sustain-

ability’ framework as is present in Pezzey’s [38] work. We shall be concerned with sustainability

along the optimal consumption path without introducing sustainability as a constraint. In that

sense we follow Anand and Sen’s [1] recommendation to capture issues of resource dependence

in the growth problem and then ask whether optimal growth has the property of sustainability.10

Our argument for this is as follows. If, indeed, an optimal path achieves sustainability by relying

on the preferences of the representative agent without the need to introduce other ethical consider-

ations (which might, for example, not fully correspond to the preferences of the agents), then this

would correspond to a sustainable first-best result. Our intention is to understand how and when
9Relevant articles that study the role of pollution in the utility function are Schou [46], policy implications are drawn

in Grimaud and Rougé [19], while John and Pecchenino [27] study an overlapping generations model with pollution
and Schumacher and Zou [48] study the role of pollution perception.

10A complementary approach is given in Endress and Roumasset [15], who analyze the impact of the cost of the
backstop technology on the golden rule and maximin consumption level in a model similar to Heal [23].
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this sustainable first-best result might be achieved.

3 The Benchmark Model

Our modeling approach here closely follows the one in Heal [23] but excludes extraction costs of

the non-renewable resource.11 This allows to focus more extensively on the role that the cost of

the energy substitute plays. We then extend Heal’s analysis by allowing for technical change in

the cost of the renewable resource substitute.

The social planner12 solves the subsequent optimal control problem13

max
{C(t),R(t),M(t)}

W =

∫ ∞
0

e−ρtu(C(t))dt (1)

subject to

K̇(t) = F (K(t), R(t) +M(t))− C(t)− γM(t), (2)

Ṡ(t) = −R(t), (3)

C(t),K(t), S(t), R(t),M(t) ≥ 0,

K(0), S(0) given.

Here, consumption at time t is represented by C(t); capital by K(t); the flow of non-renewable

resources by R(t) and the stock thereof by S(t); the costly substitute by M(t) with price γ;

u(C(t)) is the utility function14; ρ > 0 the discount rate and Y (t) = F (K(t), R(t) + M(t)) is

the production function for capital accumulation. As a matter of convenience, we exclude capital

depreciation for simplicity and without an important loss of generality. We impose the following
11An alternative assumption is to consider that extraction costs for non-renewable resources are always lower than

the cost of the energy substitute.
12In our framework, we depart somewhat from Anand and Sen [1] but conserve the seminal setting of Solow [51]

and Dasgupta and Heal and [13] [14]. Stern [53] discusses the impact of approximately zero utility discounting for
global warming and Dasgupta [12], by incorporating ethics into benefit-cost analysis, follows the same approach. In
our model, the discount rate can be as small as possible but positive, so an approximately zero utility discounting can
be possible as long as the discount rate remains strictly positive and utility is bounded.

13In terms of notation, for any variable z(t) we use ż(t) ≡ dz(t)/dt, ẑ(t) ≡ ż(t)/z(t), and we denote the partial
derivative of a function G(z, y) with respect to z by Gz .

14We consider a given utility function, for uncertainty about future preferences we refer the reader to Ayong Le Kama
and Schubert [4].
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assumptions.

Assumption 1: The utility function u : IR+ → IR is at least twice continuously differentiable and

has the standard properties of uC > 0, uCC < 0 ∀C. We assume limC→0 uC = +∞.

Assumption 2: The production function F : IR2
+ → IR+ is concave in both arguments with

FK ≥ 0 and FR ≥ 0, and verifies F (0, R+M) = F (K, 0) = 0.

An admissible path is defined as a trajectory {C(t),K(t), R(t),M(t), S(t)}0≤t≤∞ which

meets the constraints (2) and (3) with the states K(t) and S(t) being piecewise continuous and

the controls C(t), R(t), M(t) piecewise continuous. We then define the path given by the tra-

jectory {C(t)∗,K(t)∗, R(t)∗,M(t)∗, S(t)∗; t > 0} as an optimal path if it is admissible and

∀{C(t),K(t), R(t),M(t), S(t); t > 0} admissible paths we have
∫∞

0 e−ρtu(C(t)∗)dt ≥
∫∞

0 e−ρtu(C(t))dt.

The optimization problem can be rewritten in Lagrangian form as follows:

L(t) = H(t) + ωR(t)R(t) + ωM (t)M(t),

whereH(t) is the current value Hamiltonian and given by

H(t) = u(C(t)) + q(t)
(
F (K(t), R(t) +M(t))− γM(t)− C(t)

)
− λ(t)R(t),

where q(t) is the shadow value of capital and λ(t) the one of the non-renewable resource. The

first order conditions give us

uC = q(t), (4)

q(t)FR − λ(t) + ωR(t) = 0, (5)

q(t)(FR − γ) + ωM (t) = 0, (6)

−q(t)FK = q̇(t)− ρq(t), (7)

ρλ(t) = λ̇(t). (8)
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The complementarity slackness conditions are given by

ωR(t)R(t) = 0, R(t) ≥ 0, ωR(t) ≥ 0,

ωM (t)M(t) = 0, M(t) ≥ 0, ωM (t) ≥ 0.

Finally, the transversality conditions read

lim
t→∞

q(t)K(t)e−ρt = 0,

lim
t→∞

λ(t)S(t)e−ρt = 0,

and we assume that the utility integral is bounded for any optimal path, such thatW =
∫∞

0 u(C∗(t))e−ρtdt <

∞. Furthermore, both the utility function and the set of constraints are concave in states and con-

trols, wherefore the Mangasarian sufficiency conditions are fulfilled. We now analyze the basic

properties of this model before we take a look at the conditions for dynamics and sustainability.

The results here are closely related to those in Heal [23] and serve as our benchmark case. We

have the following lemmas (the proofs are available in the Appendix).

We shall denote the time where the social planner switches between resources by t = T .

Lemma 1 Given the social planner’s problem (1) the non-renewable resource will be used until

it becomes efficient to use the costly substitute, such that for ∀t < T , R(t) > 0 and M(t) = 0.

Then, ∀t ≥ T , R(t) = 0 and M(t) > 0.

Lemma 2 The social planner will choose R(t) such that when he switches energy inputs at time

t = T , then ∀t ≥ T , we have S(t) = 0.

Thus, Lemma 1 states that a switch between resources will occur only once, while Lemma 2

suggests that at the point in time where the switch occurs, the social planner will also fully deplete

the non-renewable resource.

We basically show that a (costless) non-renewable resources should ideally be fully depleted

before one moves on to a costly substitute.15

15Several modifications ought to augment this basic result. Firstly, if the extraction of non-renewable resources
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These Lemmas, assuming no extraction cost for the non-renewable resource, in essence then

boil down to comparing relative efficiencies in production and the role that the cost of the re-

newable resource plays. In terms of policy questions, one would, for example, be inclined to ask

whether we still have a sufficiently high stock of non-renewable resources in order to meet the

energy requirements of the current production process? Does the marginal increase in production

from the renewable substitute already cover its costs? For example, Canada obtains currently over

55% of its electricity from renewable energy inputs, whereas the US obtains the same amount

instead from non-renewable energy (especially coal). With similar economic and tax structures

these differences can thus be explained by price differences in the energy production. The country

which virtually exclusively relies on renewable resources in its energy generation is Brazil with

approximately 90% of its energy generation coming from renewable energy resources. This is

clearly due to the fact that Brazil, firstly, has an abundance of renewable resources and, secondly,

that they come much more cheaply than non-renewable inputs. Thus, given that we currently still

live in a world where non-renewable resources are abundant enough to keep production sufficiently

high, it is no wonder that so few countries choose to use the more costly renewable energy sources.

Therefore, today, the two main factors which lead to the choice of non-renewable resources over

renewable ones are simply their relative abundance and their generally lower costs.

3.1 The role of the backstop technology

We now study more fully the role of the backstop cost. The previous Lemmas suggest that we

can be separate the control problem into two stages. The first stage with R > 0 has been well

studied (e.g. Dasgupta and Heal [13]), the link between the first and second stage has been studied

in the previous section and the second stage will be studied here. Results are similar to Heal

[23], but while Heal [23] uses a Cobb-Douglas production function we generalize to a Constant

Elasticity of Substitution (CES) production function. The CES production function is given by

F (K,R+M) = A[αKθ+(1−α)(R+M)θ]
1
θ . Since the main problem lies in the complementarity

between inputs in production, we shall only focus on the empirically more relevant case of θ < 0,

becomes increasingly costly the further the resource gets depleted. For example, it becomes more and more costly to
mine the lower layers of coal or to withdraw oil from remote areas as in Slade [50]’s classical work which leads to
an u-shape extractions path. Secondly, one could generally assume that the non-renewable resource is polluting and
therefore imposes a negative externality on the agent. In these (non-exclusive) cases our results would be augmented.
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which implies complementarity between capital and the energy input. The use of the CES function

then helps us in identifying the role of the complementarity between the factors of production.

From FR = γ we can then solve for M as a function of K, which gives

M =

[
α

[ γ
(1−α)A ]

θ
1−θ − (1− α)

] 1
θ

K ≡ ψ
1
θK.

Important here is the linearity between M and K. As we can easily calculate, an interior solution

requires γ < (1−α)
1
θA. One can easily see that this condition is more likely satisfied the lower the

cost of the energy substitute; the larger the share of capital in production; the better the substitution

between capital and energy; and the higher the exogenously given level of technology.

We define Φ ≡ αA[α+ (1−α)ψ]
1−θ
θ , Ψ ≡ A[α+ (1−α)ψ]

1
θ − γψ

1
θ as well as the elasticity

of intertemporal substitution,− cuCC
uC
≡ 1/σ. We find that ∀t ≥ T , the dynamics are characterized

by

C(t) = (Ψ− σ(Φ− ρ))KT e
σ
(

Φ−ρ
)

(t−T ), (9)

K(t) = KT e
σ(Φ−ρ)(t−T ). (10)

Consumption will thus be a constant fraction (Ψ − σ
(
Φ − ρ

)
)−1 of capital. We defined T as the

point in time when limt→T FR = γ. For γ sufficiently big we could have T →∞, whereas for γ

sufficiently small, we would have T → 0.16 Thus, the lower the cost of the resource substitute the

earlier will we fully extract the non-renewable resource and switch to its renewable counterpart.

We are also interested in whether consumption will be positive or non-decreasing over the

whole time horizon along the optimal path. A necessary condition for non-decreasing consumption

is Φ > ρ. Comparative static exercises show that Φ increases in A and α but decreases in γ. Thus,

if capital is more important for production or the larger the (currently) exogenously given level

of technology, the more likely will consumption be non-decreasing. On the other hand, a more

expensive costly substitute makes it more likely to have an unsustainable consumption path. We

also obtain the standard result that a stronger preference towards today increases the likelihood of
16These results hold in the limit, with T → 0 meaning that the non-renewable resource would be fully extracted at

the initial point in time.
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unsustainable consumption.

We now simulate the model (the description of the simulations is in the Appendix) in order

to understand how both γ and the initial conditions for the state variables, in particular the initial

stock of capital, affect the switching time, resource depletion and sustainability. The simulations

allow us to answer the following questions: How does the cost γ and the capital stock affect the

switching time? May the non-renewable resource be depleted at a non-monotonic rate? When is

consumption sustainable along the optimal path?

3.2 Energy transition

The switching time

The analytical results show that FR = γ is the switching condition for the non-renewable resource.

It is thus evident that the size of γ is crucial for the switching time. However, so are the initial

values of the stocks K(0) and S(0). Indeed, the agent is required to build up a sufficient amount

of capital in order to satisfy the switching condition. In terms of the stocks, it suffices to look at

only one of them and we choose K(0) for convenience. Figure 2 shows how the switching time is

affected by changes in γ and K(0).

> Figure 2 about here <

What we observe is that for a large enough initial stock of capital and a low enough cost of the

substitute, the stock of the non-renewable resource will be used up completely in the first period.

Furthermore, for a given value of γ, a smaller initial stock of the capital stock implies that the

switch is postponed further. This means that a relative rich country will switch before a poor

one. For a given initial stock of capital, the switching time is a monotonic, convex function of γ.

Also, the smaller is the initial stock of capital the more convex the relationship between γ and the

switching time.

In terms of policy implications this suggests that, ceteris paribus, poorer countries, in terms

of initial capital stock, should switch to a costly energy substitute later than richer ones. Notice,

this is a pure level effect with a constant cost of the renewable resource and does not change the

subsequent growth rate of consumption or capital. If one were to continue this line of thought,
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then richer countries should provide stronger incentives for using the energy substitute than poor

countries. In a decentralized version of this model one would, therefore, expect richer countries

to induce more incentives for the use of the costly substitute through e.g. tax and subsidy efforts.

In effect, this is a behavior that we are already able to observe nowadays: mostly rich countries

subsidize renewable energy inputs and thereby help to drive their costs down.

Another policy implication will be in terms of technology transfers (knowledge transfers) be-

tween rich and poor countries. If we want to reduce the gap between rich and poor countries

then technology transfers imply that poor countries could benefit, in terms of their backstop costs,

from the knowledge accumulation of rich countries. The results presented here are thus in favor of

supported Nationally Appropriate Mitigation Actions (NAMAs), which are currently under policy

discussion.17

Non-monotonic depletion rate of the non-renewable resource

In the standard Dasgupta and Heal [13] model, if the resource inputs are complements, then the

non-renewable resource is monotonically depleted and its extraction tends to zero over time. In

our model it is possible that the non-renewable resource is depleted in a non-monotonic fashion.

> Figure 3 about here <

In Figure 3 we show how the non-monotonicity of the non-renewable resource depletion depends

on the costs of the energy substitute. For given initial conditions K(0) and S(0) we notice that

the higher is the cost of the substitute, the lower will be the non-renewable resource extraction.

Furthermore, the non-monotonicity result does not prevail for all values of γ. The more costly

the substitute the more time is needed to build up capital and therefore the longer will the non-

renewable resource be in use.

This result comes about since the policy maker firstly discounts the future and therefore uses

an initially large but declining amount of the non-renewable resource, and then secondly wishes to

build up a sufficient capital stock in order to satisfy the switching condition. It stands in contrast to
17For a discussion and overview of NAMAs, the interested reader is referred to Center for Clean Air Policy [7] and

Osornio et al. [36].
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the results in Tahvonen and Salo [55] , where non-renewable resources are used in an inversely u-

shaped manner. This happens because there is a smooth transition between non-renewables and the

backstop technology. One would, however, expect a rather quick transition towards the backstop

technology once this technology is productive enough in the sense that its implicit return (given

by FR) can cover its costs. This implicit return is, among others, depending on the substitutability

between production inputs. For example, once solar and wind energy (or potentially fusion or

battery systems for transportation) are sufficiently cheap, then we should see a (rather quick) shift

to the backstop technologies.

3.3 Impact on weak sustainability

An important lesson from this model is the potential non-sustainability of consumption despite the

existence of an energy substitute. It is clear now that this result crucially hinges on the costs of

the energy substitute. Our benchmark calibration, in Figures 4 and 5, shows a potential variety of

consumption and capital paths for an interior solution of the energy substitute for different levels

of γ.

> Figures 4 and 5 about here <

As can easily be seen, different levels of γ can lead from endogenous growth to endogenous

decline. Comparative statics show that the effect of γ on the growth rate of capital and consump-

tion is negative since dΦ/dγ < 0. Thus, a higher γ implies a lower growth rate of capital and

consumption. One can also calculate that Ċ(t) < 0 if

γ > (1− α)A

[
1− α( ρ

αA)
θ
θ−1

1− α

] θ−1
θ

≡ γ̄, (11)

and Ċ(t) ≥ 0 otherwise. Comparative statics with respect to γ̄ show that dγ̄/dρ < 0, dγ̄/dA > 0,

dγ̄/dα < 0. If we furthermore use standard parameter configurations of ρ = 0.03, α = 0.3,

A > 1, then in the neighborhood of these values we have that dγ̄/dθ > 0.

Firstly, the higher ρ the lower will be threshold γ̄, implying that less care about the future

requires an even smaller cost of the energy substitute for sustainable consumption. The parameter
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ρ can, of course, capture any reason for discounting the future, from uncertainty over cultural

reasons to personal characteristics of agents. The intrinsic relationship revealed here between

discounting the future and the costs of the energy substitute suggests that countries with a low

life-expectancy are rather likely to be unsustainable (in comparison to countries with a high life-

expectancy) despite the existence of an energy substitute.

Secondly, for a higher total factor productivity we find that consumption may still be sustain-

able with larger costs of the energy substitute. This for example suggests that countries like the

USA or UK, France and Germany, those countries that have a comparatively high total factor pro-

ductivity, are able to substitute costly renewable energy inputs at lower costs and should therefore

substitute relatively earlier than most developing countries.

Thirdly, the higher the distribution parameter of capital the lower may be the cost of the energy

substitute in order to obtain a sustainable consumption path. Thus, countries which are more

strongly relying on capital in their production function will be more likely to end up on with

positive growth. In line with this result, we find that the easier it is to substitute energy and capital

the lower may be the costs of the energy substitute for long-term growth. Indeed, what we get

from this condition is that the less importance energy has for production the more likely will

consumption be non-declining.

4 The impact of learning-by-doing

From the previous analysis we derive several results for the sustainability of consumption and

for the shift between non-renewable and renewable energy inputs. The crucial parameter that

we investigated was the cost of the renewable energy substitute, γ. We took γ as constant and

given. However, we also know that the costs of the energy substitutes like wind or solar energy

have significantly decreased over the past years. This is mostly attributed to R&D efforts or

learning-by-doing (Arrow [3], Rosenberg [43], Bramoullé and Olson [6]). We focus on learning-

by-doing here for two reasons. Firstly, Tsur and Zemel [57] have already investigated the role

of R&D in a setting similar to ours. However, what makes the analysis of learning-by-doing

particularly relevant is the fact that knowledge accumulation only occurs if one uses the alternative
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energy input. This should, therefore, provide alternative incentives for the transition between the

two energy inputs. Secondly, the applied literature has placed much emphasis on the so-called

‘learning curves’, which explain the price of the energy substitute as a function of the cumulative

capacity used (McDonald and Schrattenholzer [34], Rubin [44]). Basically, an increase in the use

of a technology is empirically associated with a price reduction, suggesting that firms learn how

to produce more efficiently the more they use a certain technology. For example, the cost of solar

cells has declined by a factor of approximately 100 since 1950 (McDonald and Schrattenholzer

[34]). Similar examples can be found for virtually all types of renewable energy substitutes (see

e.g. Goldemberg et al. [17], Rogner [42], Riahi et al. [41]).

In the following paragraphs we now extend the previous model to endogenous learning-by-

doing based on Arrow [3]. We assume the following.

Assumption 3: We assume that γ(B) > 0, ∀B, γB < 0, γBB ≥ 0 and Ḃ(t) = M(t).

B(t) therefore represents the cumulative use of M(t). The more we use the energy substitute the

higher the total cumulative capacity and therefore the larger the learning, implying lower costs for

the future use of the energy substitute.

We, therefore, now address the question of how endogenous learning-by-doing augments some

of the previous results. We are especially interested in two questions. Firstly, we wish to under-

stand how the learning process affects energy transition, and, secondly, whether it guarantees

sustainability.

4.1 Energy transition

Our intuition is that we should use the renewable resource earlier if we believe that learning-by-

doing will reduce the costs of the substitute, but this may depend on how learning translates into

cost reductions.

We now solve the previous control problem by including the endogenous learning-by-doing.

The Langrangian, in current value and omitting time subscripts for convenience, of this problem

then becomes

L = u(c) + q
(
F (K,R+M)− c− γ(B)M

)
− λR+ φM + ωRR+ ωMM. (12)
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The new terms are the endogenous cost γ(B) and φM which represents the value of M through

its use in B. The first-order conditions lead to

uC = q, (13)

λ̇ = ρλ, (14)

q̇ = −qFK + ρq, (15)

qFR = λ− ωR, (16)

φ̇ = qγBM + ρφ, (17)

ωM = q(γ(B)− FR)− φ. (18)

In the next paragraphs we collect a number of results which one can obtain from this setup.

Result 1 In the case of learning-by-doing with a costly energy substitute and for a given initial

stock of capital, the more efficient the learning the earlier will the energy substitute be used.

From the Kuhn-Tucker conditions we know that (q(γ(B) − FR) − φ)M = 0. Firstly, assume

γ = γ(0), i.e. the costs of the substitute are equal in the constant case and if no learning had yet

occurred. In this case we start to use the costly substitute much earlier in the case with learning

than in the case without learning, namely already when FR < γ(B), or q(γ(B) − FR) = φ,

where the shadow value of B is given by φ(t) = −
∫∞
t q(τ)γB(τ)M(τ)e−ρ(τ−t)dτ > 0. Clearly,

the more negative is γB , i.e. the faster the learning, the larger will be φ. In other words, the

more efficient is the cumulative capacity use of M in reducing the costs of M through learning-

by-doing the larger will be the shadow value of B. A larger shadow value of B implies that the

difference between FR and γ(B) will be greater at the time of the transition to the renewable

energy substitute. Conclusively, those countries that have good learning conditions should use the

energy substitute much earlier than those that have worse learning conditions. This is shown in

Figures 6 to 11, with different values of x reflecting different strengths of learning (the lower is

x the weaker is the learning). Here we do not recover Tsur and Zemel’s [56] result, which is that

R&D activities should be undertaken directly at the maximal affordable rate. We do, however,

show that learning-by-doing implies that the backstop technology will be used earlier than if costs
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are exogenously given and if a country has a more efficient learning process (e.g. due to better

institutions or research abilities).

4.2 Impact on weak sustainability

We are also interested in whether consumption is monotonic or not during transition, meaning

whether the existence of an energy substitute with learning-by-doing implies sustainability. For

this we shall simulate the transition period under several scenarios that only differ in their respec-

tive impacts of the learning-by-doing on the cost of the energy substitute.

Result 2 A costly energy substitute does not guarantee a monotonic consumption profile despite

the possibility of learning-by-doing.

Figure 11 clearly shows that learning-by-doing may help in obtaining sustainability in comparison

to an exogenously given level of γ (case x = 0). However, we also see that consumption can be

non-monotonic. Since we start to use the energy substitute now earlier, this implies that we reduce

the capital stock since the substitute is too expensive. However, with a higher capacity use the

agent learns and therefore the costs of the energy substitute diminish, which eventually leads to a

situation where the costs may be low enough to imply endogenous growth.

> Figures 6 to 11 about here <

As a consequence, we see an n-shaped consumption profile. Early generations benefit from the

increasing use of the non-renewable resource. Later generations see declining levels of capital and

therefore consumption since the stock of non-renewable resources has been used by the previous

generations and they face costs of the energy substitute that are too high to keep capital at the

current level. Finally, generations that come even later in time may see increasing consumption

again if learning-by-doing is able to sufficiently reduce the costs of the energy input. In contrast,

under learning-by-doing that is too weak to sufficiently reduce costs, these later generations would

also see a declining consumption profile.
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5 Tying in with integrated assessment models

In this section we discuss our results in the light of simulations done in the integrated assessment

model (IAM) literature. We focus on a selection of recent articles, namely Messner [35], Grübler

and Messner [21], Manne and Richels [33], Rao et al. [40], and van der Zwaan et al. [60]. For

surveys on further integrated assessment models that deal with technical change we refer the reader

to Löschel [31] and Kahouli-Brahmi [30].

Messner [35] introduces learning-by-doing in a bottom-up IAM called MESSAGE. She links

the investment costs of alternative energies (wind, solar) to their cumulative installed capacity. Her

main result is that learning-by-doing leads to an earlier adoption of the alternative energies, with

those energies also taking up a larger share of overall energy production. This is directly related

to our Result 1, where we show that learning-by-doing leads to an earlier use of the alternative en-

ergy.18 Grübler and Messner [21] extend the previous article by adding a carbon cycle model. They

observe that in this case, learning-by-doing leads to fewer emissions compared to the exogenous

cost case. This result is recuperated in Schumacher [47], who introduces the risk of a catastrophe

with increasing extraction of the non-renewable resource in the current model. In effect, in this

case the non-renewable resource will not be fully extracted in order to leave some carbon in the

ground. van der Zwaan et al. [60] develop a bottom-down model dubbed DEMETER. Their main

result is similar to what we presented here. Firstly, the alternative energies present the most im-

portant option for emission reductions. Secondly, learning-by-doing leads to earlier investments

in the alternative energies. Conclusively, the results that we obtained in the previous sections do

not (qualitatively) change in the standard IAM. The main qualitative change arises with the in-

troduction of catastrophic risk as in Schumacher [47], where the use of non-renewable resources

induces a permanently higher risk of a catastrophe and may lead to some resources optimally left

in the ground.

Manne and Richels [33] develop upon the bottom-up MERGE model by introducing learning-

by-doing and investigate the impact thereof on the timing and costs of emissions abatement. They

find that learning-by-doing may influence the transition time to the alternative energy resource

depending on the strength of the learning. This is precisely what we argue in Result 1. The
18This result requires that the initial level of γ is equal in both the exogenous and the learning-by-doing case.
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shadow value of the cumulative installed capacity increases, ceteris paribus, with the effectiveness

of the learning-by-doing. Therefore, the more effective the learning-by-doing the earlier will we

substitute to the alternative energies.

Rao et al. [40] develop upon the IAM model MESSAGE by introducing learning-by-doing.

They find that learning-by-doing is not not enough to stabilize greenhouse gas emissions and

that climate policies are necessary, too. Clearly, in the model presented here, the non-renewable

resources will always be fully extracted. Learning-by-doing will even lead to a higher extraction

rate. In consequence, without taking the costs from greenhouse gas emissions into account, the

model predicts a more drastic evolution of the carbon concentration. This is in line with the results

presented in Manne and Richels [33], who find that, in the medium run, emissions are lower

without learning-by-doing. If one, however, takes the costs of the carbon emissions into account

as is done in Schumacher [47], then this model would predict that some carbon may be optimally

left in the grounds. Which model is more applicable in practice obviously depends on the policy

maker and the international decision process.

Clearly, one message to take away from this section and the analysis of the model above is that

the literature, up to now, did not sufficiently investigate the leading role that rich countries can play.

One of our results was that richer countries should shift to the alternative energy earlier than poorer

countries. If one assumes learning to be an international process, this would imply that an early

energy shift of richer countries also benefits the poorer countries in the sense that they will observe

decreasing costs of their alternative energies. This, in turn, will also help them to shift more

quickly to the energy substitute. As a bonus, this will keep global emissions lower. In addition, this

could help some poor countries to end up on a sustainable path that they, due to their low capital

stock, otherwise would not have attained. Hence, in case the knowledge from learning is non-rival

and non-exclusive, then this would induce the double-dividend of both potential sustainability

and lower carbon emissions for poor countries. A policy-relevant tool should then be Nationally

Appropriate Mitigation Action (see Center for Clean Air Policy [7]).
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6 Conclusion

Considering our analysis, we recover, in a slightly different setting, Heal’s [23] result, namely

that it is never optimal to use both non-renewable resources and the costly renewable resources

over an extended period of time and the non-renewable resource should be exhausted when one

shifts to the backstop. We then study more deeply the role of the backstop cost for transition and

sustainability. We find that the switching time increases with the cost of substitute and decreases

with the initial capital stock. Therefore, a poorer country should shift towards the costly substitute

later than a richer one.

Moreover, the non-renewable resource may be depleted non-monotonically (u-shaped extrac-

tion). This result stands in contrast to Tahvonen and Salo [55], who, in a model with increasing ex-

traction costs and increasing marginal costs for the backstop, find an inversely u-shaped extraction

of the non-renewable resource. The difference comes about since in their model non-renewable

and renewable resources are used simultaneously even over a longer period of time while our as-

sumptions imply that both resources are not used simultaneously. We believe that both results

make sense depending on what kind of backstop technology one has in mind. Once mankind

manages to control fusion at a low cost then it seems reasonable to argue that, within a very short

period of time, most of our energy production will come from fusion and the results of our model

should apply. If we were to think about hydroenergy as the backstop technology, then it would be

reasonable to assume increasing marginal costs for this backstop and we would most likely see a

simultaneous use of non-renewables and the backstop.

We, furthermore, show that the existence of a backstop technology is not sufficient to insure

sustainable consumption along the optimal path. In fact, we show that countries are inclined to

rely on the non-renewable resource and when it is finally depleted they might be faced with a cost

of the energy substitute which is too high for sustainable consumption along the optimal path.

Since we know that various kinds of backstop technologies are subject to the so-called ‘learn-

ing curves’, we then study the previous results under learning-by-doing. With learning-by-doing

the energy substitute will, in general, be used earlier than if costs are exogenously given. This

opens up a great deal of possible policy implications. For example, firms that are producing in a
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competitive structure may not be able to invest in a technology that is too costly now and, there-

fore, when the non-renewable resources are depleted, the substitutes may be too expensive. This

point gives support to the current subsidy policies that we see everywhere. Helping firms to bring

energy substitutes on the market implies that, when the non-renewable resources will be finally

used up, the substitutes may be cheap enough to guarantee long-run growth.

We also argued that if countries were to interact in a world where ideas are non-rival (see

e.g. Jones [28]) and rich countries would, indeed, act optimally and shift towards the backstop

earlier than poor countries, then this would lead to a positive externality on the backstop costs in

poor countries through technological spillovers. This will also induce poor countries to adopt the

backstop technology earlier than they otherwise would. Early adoption of backstop technologies

by the rich nations coupled with technology spillovers, in the form of e.g. NAMAs, are, thus, a

useful aid allowing poor countries to make use of a backstop technology that otherwise might be

too expensive for them.

Though it is more likely that learning-by-doing may lead to endogenous growth due to its ef-

fect on the costs of the energy substitute, during the transition period consumption may be growing

non-monotonically. This comes about since the backstop technology might initially be too expen-

sive to allow for sustainable consumption along the optimal path. The increasing use of the back-

stop technology will, however, lead to cost reductions over time. In case these cost reductions are

sufficiently large, then the backstop technology will allow non-declining consumption along the

optimal path. This pattern may lead to a non-sustainable path in the sense of Sustainable Develop-

ment defined above, where later generations may be forced to rely on expensive energy substitutes

once the non-renewable resources are exhausted. This gives rise to potential concerns of intergen-

erational equity and would, for example, the question the use solely relying on learning-by-doing

in order to bring the costs of alternative energies down.

In the discussions above we abstracted from the issues raised in e.g. Heal [24] and others.

Basically, alternative energy resources still face problems of intermittency, of uncertainty as to

whether one actually invests in the good technology (compared to one that might turn out to be

more efficient later), and many countries also face problems of actually being able to tap those

alternative resources to a sufficient extent. Some countries have little sun, other little wind, yet
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others lack enough fast-flowing water. These country-specific physical constraints are unlikely

to be overcome and potentially limit a country’s means of deriving sufficient energy from these

alternatives. Clearly, our work applies less to countries that face these constraints than to those

that have the fortunate of a good geo-energy location.

Future research could, therefore, address the following points. Firstly, how does a decentral-

ized economy respond to the possibility of learning-by-doing? What is a useful government policy

in this setting? Indeed, without government intervention we would not see a firm investing in a

technology that is currently too expensive. In a completely decentralized model, energy produc-

ing firms will not make use of the learning-by-doing possibility. We would, therefore, expect that

only government intervention in the form of e.g. price subsidies will lead to an optimal earlier

adoption of the backstop technology by firms. This, obviously, only applies to the case where one

believes that learning-by-doing is the most significant factor leading to cost reductions. If R&D

were believed to reduce costs more efficiently, then a monopolistic market should be enough to

lead to an earlier adoption and government intervention might only need to focus on whether too

much or too little R&D is undertaken.

7 Appendix

Procedure for Simulations

We use the following configurations for the simulations. Simulations are done over a horizon of

250 time periods. Utility is of the constant relative risk aversion type with σ = 0.5. Production is

a CES function with a distribution parameter of α = 0.33, total factor productivity of A = 1. In

the baseline cases γ is kept constant and varied between 1.3 and 1.8. When γ is endogenous we

choose the functional form (γmin +1/(1+xB(t))). We assume gmin = 0.4 and vary x from 0 to

0.0014. Initial conditions are S(0) = 200 andK(0) = 0.2, the discount rate is chosen at ρ = 0.03

and the elasticity of substitution in the production function is θ = −0.4.

Proof of Lemma 1

We take the case of R > 0 and M = 0. This implies qFR = λ, q(FR − γ) = −ωM , and therefore
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FR < γ and we obtain a Hotelling rule, F̂R = FK . Since this implies that FR > 0, there exists a

T s.th. limt→T FR = γ, which implies that M > 0. The next case is R = 0 and M > 0. Again,

from the Kuhn-Tucker condition we calculate that qFR + ωR = λ and FR = γ, which implies

qγ < λ. Since λ > q, we know ∃T ≥ 0 s.th. qγ < λ and therefore R = 0, M > 0, ∀t > T .

Assume that R > 0 and M > 0. This implies qFR = λ and FR = γ, which implies qγ = λ. If

qγ = λ, then both resources may be used at the same time. In a continuous time setting this may

only hold at a degenerate point in time since qγ = λ implies that q̇/q = λ̇/λ. This can only be

satisfied if FK = 0, thus if K →∞, which implies a contradiction.�

Proof of Lemma 2

Proof by contradiction. Assume
∫ T

0 R(t)dt < S(0). Since R(t) = 0 ∀t ≥ T , then S(T ) > 0.

But by the transversality condition limt→∞ λ(t)S(t)e−ρt = 0, and since λ(t) = λ(0)eρt where

λ(0) > 0, this would imply limt→∞ λ(t)S(t) = λ(0)S(T ) > 0. Therefore we have a contradic-

tion which implies ∀t > T , S(t) = 0. �
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Figure 2: The switching time as a function of γ and K(0)
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Figure 3: Non-renewable resource flow
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Figure 4: Evolution of consumption
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Figure 5: Evolution of the capital stock
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Figure 6: Costs of the energy substitute under learning-by-doing

36



0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250

C
u

m
u

la
ti

ve
 s

u
b

st
it

u
te

 u
se

Time

x=0 x=0.0007 x=0.001 x=0.0014

Figure 7: Cumulative substitute use under learning-by-doing
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Figure 8: Renewable resource under learning-by-doing
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Figure 9: Non-renewable resource under learning-by-doing
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Figure 10: Capital stock under learning-by-doing
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Figure 11: Consumption under learning-by-doing
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