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with Externalities�
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Abstract

We characterize sequential (preemption) and simultaneous (coordination) equilibria, as well

as joint-value maximizing (cooperation) solutions, in a model of investment timing allowing for

externalities in both �ow pro�ts and investment costs. For two ex-ante symmetric �rms, either

preemption or attrition occur depending on the size of the investment externality. Coordination

is less likely with more discounting, as in a repeated game, and more likely with higher growth

and volatility. Optimal cooperation involves either monopoly or duopoly investment, the

latter being either symmetric or asymmetric. Finally, these characterizations are validated

by applications to standard speci�cations of capacity accumulation and of R&D investment.

In the former setup, coordination is likelier if installed capacities and lumpy investments are

both large. With R&D input choices, if investment synergies are large, coordination and

cooperation result in the same outcomes.
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1 Introduction

Business circumstances in which �rms in the same industry contemplate an investment in a grow-

ing market are prevalent. When demand is �uctuating and changes are uncertain, the investment

timing impacts the expected value of their operations. In some cases, rival �rms invest simultane-

ously. For example, two leaders in the vaccines sector, GlaxoSmithKline and Sano�Pasteur MSD,

a joint company of Sano� Aventis and Merck, brought their competing human papilloma virus

vaccines to market at roughly the same time. In some other circumstances, the same competitors

invest sequentially. In the case of the dengue vaccine, Sano� Pasteur seems to be a clear leader

and GlaxoSmithKline a late entrant.1

Such interactions are best studied in continuous time, with preemption models, and, in a

stochastic environment, with real option game models.2 Simultaneous investment can result either

when �rms non-cooperatively coordinate their decisions, or in some cases when they cooperate.

Coordination has generally been modeled with the assumption that �xed costs are constant and

stationary. A speci�city of our paper is to focus on two kinds of externalities, pro�t externalities

and investment externalities. The former are well-known in real option games, as one �rm�s

investment generally impacts the �ow pro�t of others. The latter are less often emphasized, but

allow the model to encompass cases where �xed costs are a¤ected by economies of scale in input

production, location e¤ects, or learning, to mention just a few. With respect to cooperation, to

our knowledge very few papers model this behavioral assumption. Another contribution of this

paper is to relate our general results to known industrial organization models by specifying the

structure underlying what are usually taken to be reduced form �ow pro�ts.

More speci�cally, we construct a model which allows for the �ow pro�t of a �rm to be either

reduced or enhanced by the competitor�s investment, and where the relative investment cost

of ex-ante symmetric �rms depends on their sequence of moves, and thus is endogenous. This

is complementary to several real option papers in the recent literature. In Hoppe [14] and in

Huisman, Kort, and Thijssen [18], the state of the project in which �rms invest is unknown ex-

1As for the human papilloma virus vaccines, �Gardasil by Merck has just been approved by the FDA [Federal

Drug Administration] (June 2006) to prevent cervical cancer [...]; Cervarix by GlaxoSmithKline will be �led in

2006 for similar indications to those of Gardasil�(source: �Vaccines: growth boosters�, Exane BNP Paribas Equity

Research Report, June 2006, available at http://www.bionest.com/). For more on Sano� Pasteur early investment

in �a massive new manufacturing plant�for the production of a new vaccine against the dengue fever, see Carroll,

J., 2009, �Sano� breaks ground on $477M vax plant�(available at http://www.�ercevaccines.com).
2For recent surveys of game theoretic real options models, see Chevalier-Roignant, Flath, Huchzermeier, and

Trigeorgis [7], Azevedo and Paxson [2], and Boyer, Gravel, and Lasserre [5].
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ante by both �rms. There is a second-mover advantage, as the �rst investor informs the other

�rm whether the state of the project is low or high, though investment costs are symmetric. In

Hoppe [14] the �rms possibly already compete in the pre-investment period, in Huisman, Kort,

and Thijssen [18] the market is new, and in both papers the �rst investor receives a higher �ow

pro�t. In Kort and Pawlina [20], the costs of exercising the investment option are assumed to

di¤er across the two �rms, and the e¤ect of the magnitude of the ex-ante cost asymmetry on the

nature of equilibrium is characterized. When the two �rms have invested, their �ow pro�ts are

symmetric.

In our model, the rank in the investment sequence determines the relative cost. The �rst

investor can incur a lower investment cost, which can re�ect a location e¤ect (say, there is one

best place for the investment). Alternatively, the second investor may bene�t from a reduced

cost, as would arise if there is a form of learning or experience e¤ect pertaining to the investment

process. The model speci�cations also capture situations in which a simultaneous investment has

an impact �which can be either negative or positive �on investment costs, as occurs in case of

congestion or synergies in the provision of a key input. Depending on the level of �ow pro�ts,

which can capture cases of negative or positive product market externalities among competitors,

the market can be new, or �rms can be active before any investment has occurred.

In this general framework, our main objective is to provide a thorough characterization of se-

quential (�preemption�) and simultaneous (�coordination�) non-cooperative equilibria. We �nd

that both preemption and attrition may occur, depending on the nature of investment external-

ities. A sequential (preemption) investment equilibrium occurs if the investment externality is

negative, or not too positive. Otherwise the �rms play a game of attrition. We provide a condition

characterizing a simultaneous equilibrium, which we refer to as coordination. One key �nding is

that more discounting reduces the likelihood of coordination, a result that mirrors tacit collusion

in a repeated game (supergame) context. Absent investment externalities, less interdependence

between �rms raises the likelihood of coordination.

Assuming that the requisite contracts are feasible, we also characterize a cooperative invest-

ment equilibrium, in which �rms jointly maximize industry value. When the cost of being second

is relatively high, optimal cooperation involves either symmetric duopoly investment, asymmetric

duopoly investment, or a single monopoly investment, depending on structural conditions we fully

describe.

Finally, we provide some applications of these results. We do this for both capacity choice

by Cournot duopolists, and investment in demand-enhancing R&D. In the examples we study,
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larger installed capacities (�footholds�) and greater investment increments increase the likelihood

of coordination, and greater spillovers and congestion e¤ects in the production of R&D increase

the likelihood that cooperating �rms stagger their investments.

The remainder of the paper is organized as follows. In Section 2, we construct the model,

introduce the terminology, and describe the payo¤ functions. In Section 3, we characterize the

relative investment costs for which a sequential (preemption) equilibrium exists. In Section 4,

we derive a necessary and su¢ cient condition for the existence of a simultaneous (coordination)

investment equilibrium, and discuss several corollaries. In Section 5 we study investment timing

when �rms cooperate in order to maximize industry value. In Section 6 we use our results to

characterize simultaneous (coordination) equilibria in two model speci�cations, as adapted from

the literature, that relate to capacity expansion and R&D investment.

2 The Model

The assumptions, most of which are standard, are described in the �rst part of this section.

Because the paper focuses on the link between speci�c externalities and the nature of equilibrium,

the relevant terminology for the remainder of the paper is then described. Finally, we outline a

set of payo¤ functions, which are standard for this kind of model and useful to the analysis that

follows.

2.1 Assumptions

Flow pro�ts are of the form Yt�ij , with i; j 2 f0; 1g. The multiplicative shock Yt is taken to
follow a geometric Brownian motion dYt = �Ytdt + �YtdZt, with Y0 > 0, � > 0 (growth rate),

� > 0 (volatility), and where (Zt)t�0 is a standard Wiener process. For example, this shock may

be thought of as a measure of market size that evolves stochastically over time. The value of the

multiplicative shock at the current date is hereafter denoted by y. The positive initial state Y0 is

assumed to be lower than all positive thresholds we consider below. For the equation of motion

to describe a market in expansion, it is assumed that � > �2

2 .
3 The interest rate, common to

both �rms, is r. To rule out degenerate solutions, it is assumed that 0 < � < r.4

There are two risk-neutral �rms which are ex-ante symmetric. The time invariant component

of �ow pro�t, �ij , depends on the previous and current investment decisions of both �rms. When

3The geometric brownian motion is derived from Yt = Y0 exp
h�
�� �2

2

�
t+ �Zt

i
by using Itô�s lemma.

4 It can be proved easily that a �rm increases value by waiting to invest forever if r � �.
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appropriate, � is used to denote the vector (�00; �10; �01; �11). Investment is a binary decision,

and thus i takes the value 1 if the �rm has invested, and j takes the value 1 if its rival has

invested.5 If �0j = 0 we have a new market case, otherwise �rms are active in the pre-investment

period. Investment is inherently discrete and of �xed size. For example, it may be thought of

as a purchase of a manufacturing equipment, or as an R&D expenditure. The assumption that

investment is a binary decision means that we consider a single round of investment choices by

the �rms (see Boyer, Lasserre, and Moreaux [4] for a model where �rms can invest in several

�lumpy�capacity units). Investment is assumed to be desirable, that is �1i > �0i, i 2 f0; 1g. A
second assumption regarding �ow pro�t that is made throughout the paper is that �10 > �01,

that is a �rm bene�ts more from its own investment than from its rival�s.

Investment is costly, and the cost of investment may depend on previous and current invest-

ment decisions. If a single �rm is the �rst to invest, this cost is denoted by IL. If one �rm has

already invested, the cost to the second �rm is denoted by IF . Finally, if both �rms invest si-

multaneously, this cost is denoted by IS . Thus, a cost asymmetry may arise even though the

two �rms are identical ex-ante.6 Allowing IL 6= IF 6= IS , with IF ; IL; IS > 0, and no restriction
in the ranking of the three cost levels, generalizes the analysis of some existing models (see the

discussion on the terminology used in the paper below), and complements approaches in which

�ow pro�ts depend on the entry sequence (such as in Mason and Weeds [24]). When appropriate,

I is used to denote the vector (IF ; IL; IS). In the analysis, the ratios of investment costs play an

important role, and it is useful to de�ne the following magnitudes: �F � IF
IL
and �S � IS

IL
.

2.2 Terminology

The focus of this paper is the (non-cooperative) coordination equilibria and cooperative strategies

in investment timing. These outcomes are to be understood with reference to a (non-cooperative)

preemption equilibrium, where �rms invest sequentially as a result of a race to be the �rst investor,

and which dissipates monopoly rents. Firms deciding investment thresholds strategically may opt

for an equilibrium that di¤ers from preemption in at least two ways. First, in a coordination

equilibrium, �rms invest simultaneously. The choice of a sequential or simultaneous equilibrium

solution may then be construed as a case of a coordination game. Second, the term cooperation

5We restrict �11 to be independent of the sequence of investment decisions. For an alternative speci�cation

which allows for a persistent �rst-mover advantage, see Mason and Weeds [24] .
6A complementary work is Kort and Pawlina [20], which studies the e¤ect of ex-ante �xed cost asymmetry on

the nature of equilibrium.
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refers to a framework in which �rms may make binding agreements and maximize industry pro�t

(this terminology is discussed in Azevedo and Paxson [2]).

The following speci�c terminology is used in the rest of the paper.7

Investment is said to be jointly undesirable if �11 � �00, and jointly desirable if �11 > �00.

This characteristic is key to determining the qualitative nature of coordination equilibrium, that

is whether �rms jointly abstain from ever investing, or jointly delay investing for the same �nite

amount of time. Either possibility may arise. For example, if investment involves an advertis-

ing campaign, negative advertising may decrease market size (�11 � �00), whereas preference-

enhancing advertising may increase it (�11 > �00).

Investment involves a (weakly) negative pro�t externality if �i1 � �i0, and a positive pro�t

externality otherwise, with i 2 f0; 1g. Note that since investment is taken to be individually
desirable, if it is jointly undesirable, then there must be a negative direct externality (that is,

�00 � �11 and �1j > �0j together imply �i1 < �i0, i; j 2 f0; 1g). Negative pro�t externalities
seem natural in situations such as capacity investment, whereas positive pro�t externalities may

be thought of as arising if investment is in R&D, when there is a large enough technological

spillover. Note that we assume that �10 � (<)�11 if and only if �00 � (<)�01, so the direction
of pro�t externalities is consistent.

Investment involves a (weakly) negative investment externality if �i � 1, and a positive in-

vestment externality otherwise, with i 2 fF; Sg. When necessary we refer to �S as a measure of
simultaneous investment externality. Investment externalities may arise in one of two ways. A

�rm�s investment decision may raise or lower the cost of the next �rm that invests. For example,

the former (�F > 1) would arise if �rms compete for some key resource, such as location, whereas

the latter (�F < 1) would arise if there is a form of learning or experience e¤ect pertaining to

the investment process. A similar learning phenomenon arises in Hoppe [14] and Huisman, Kort,

and Thijssen [18]. Alternatively, capacity may be resold from the �rst �rm to the second (Li and

Sick [22]), or an input supplier might practice price discrimination (Billette de Villemeur, Ruble,

and Versaevel [3]). A second way in which investment externalities may arise is if joint invest-

ment has an impact on investment cost. This can happen either because there is a congestion

in the provision of a key input (negative investment externality, �S > 1), or a synergy if an im-

portant network externality arises when the �rms enter the market together (positive investment

externality, �S < 1).

7Comparing with the expressions for �rm payo¤s given in the next section (expressions (2), (3), and (4)), the

externalities described here concern the levels and slopes of some of the payo¤ terms.
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2.3 Payo¤s

An equilibrium of the investment timing game involves a triplet of investment triggers chosen

by the �rms, which is denoted as (yP ; y�F ; y
�
S). The latter two triggers result from a well-studied

optimization problem (see Dixit and Pindyck [9]), and have the following expressions

y�F =
�

� � 1
r � �

�11 � �01
IF , y�S =

(
�
��1

r��
�11��00 IS , �11 > �00

1, �11 � �00
, (1)

where � � 1
2 �

�
�2
+
q�

�
�2
� 1

2

�2
+ 2r

�2
is a standard expression in real option models.8 The sign of

�11 � �00 is key to determining the nature of the simultaneous equilibrium: when this expression
is strictly positive, �rms jointly delay investing until a �nite threshold is reached. When it is

negative however, in a simultaneous equilibrium, �rms jointly abstain from ever investing.

Up to the relaxation of the constraint that investment cost is invariant, the investment timing

game closely follows the analyses of Grenadier [12], Mason and Weeds [24], Boyer, Lasserre, and

Moreaux [4]. The derivation of the preemption threshold and the characterization of equilibrium

involve the following �rm payo¤s.

The value of a �rm that invests immediately, when the current value of the multiplicative

shock is y, is

L (y) =

8<: �10
r��y � IL +

�
y
y�F

��
�11��10
r�� y�F , y � y�F

�11
r��y � IS , y > y�F

, (2)

where L is used to refer to the fact that the �rm is the leader in the market with respect to

investment timing. Note that after y�F is reached, one �rm�s investment immediately triggers the

second�s, so that investment is e¤ectively simultaneous and the investment cost is IS .

The value of a �rm that invests as a follower when the multiplicative shock reaches the

threshold y�F , provided that the current value of the multiplicative shock is y, and provided that

the rival �rm invests immediately at y, is

F � (y) =

8<: �01
r��y +

�
y
y�F

�� �
�11��01
r�� y�F � IF

�
, y � y�F

�11
r��y � IS , y > y�F

, (3)

where F � is used analogously to refer to the fact that the �rm invests as a follower, and also to

the fact that the investment threshold y�F results from an optimization.

8 In the certainty case, that is for � = 0, we have � = r
�
and

�
y
yi

��
= e�r(ti�t), the continuous time discounting

term.
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The value of a �rm that invests when the multiplicative shock reaches the threshold y�S ,

provided that the current value of the multiplicative shock is y, and provided that the rival �rm

also invests only when the multiplicative shock reaches the threshold y�S , is

S�(y) =

8<: �00
r��y +

�
y
y�S

�� �
�11��00
r�� y�S � IS

�
, y � y�S

�11
r��y � IS , y > y�S

, (4)

where S� is used to denote the fact that this payo¤ re�ects simultaneous investment by the two

�rms, at a threshold y�S that results from a straightforward optimization.

3 Sequential Investment (Preemption) Equilibrium

One focus of this paper is simultaneous investment and the coordination problem it may generate.

A necessary condition for a coordination problem to arise is that there be another equilibrium solu-

tion, namely a sequential investment equilibrium. Since in our model player roles are endogenous,

the sequential investment equilibrium we consider has the nature of a preemption equilibrium. In

a preemption equilibrium, �rms invest sequentially, either �rm may be the leader with equiprob-

ability, and the race to be �rst dissipates the rents that accrue to the �rst investor. A preemption

equilibrium is characterized by the triggers fyP ; y�F g, with yP < y�F , which denote the investment
thresholds for the leader and follower.9 The preemption trigger yP is determined by the �rent

equalization�condition L (yP ) = F � (yP ), i.e. �rms are indi¤erent between investing as a leader

at yP and investing as a follower at y�F when the leader invests at yP .

The existence of the preemption equilibrium when investment costs are invariant (�F = 1)

is well-established, and the same reasoning establishes the existence of a preemption equilibrium

with asymmetric �rm-speci�c investment costs.10 With investment externalities, which is a source

of investment cost asymmetry, the same argument applies.

Proposition 1 in this section characterizes the relative investment costs for which a preemption

equilibrium exists. Essentially, preemption arises whenever the investment externality is negative,

or when the investment externality is not too positive and pro�t externalities are negative. This is

to be expected as a negative investment externality means that the �rst �rm has a lower investment

cost, and negative pro�t externalities induce preemption by reducing the attractiveness of the joint

9This is a simpli�cation. See Fudenberg and Tirole [11], Huisman et al. [17], and Boyer et al. [4] for precise

descriptions of the strategies underlying the preemption equilibrium.
10See Kort and Pawlina [20].
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investment phase. Otherwise, the investment game is a war of attrition, a case of independent

interest but which is beyond the scope of this paper.11

For what follows, provided z = �11��01
�10��01 �

�
��1 , de�ne the threshold

�P (z; �) � z [� � (� � 1) z]
1

��1 : (5)

This expression appears as a lower bound on relative investment cost in Proposition 1. The

following lemma describes the relevant behavior of �P (z; �).

Lemma 1 For �11 < �10;
@�P
@z (z; �) > 0;

@�P
@� (z; �) < 0 and �P (z; �) 2 (0; 1].

Proof: See Appendix A.1

In what follows, we denote �P (z; �) simply by �P . The conditions on �F for a preemption

equilibrium to exist can now be described.

Proposition 1 A sequential (preemption) equilibrium exists whenever �F is su¢ ciently large:

(i) when pro�t externalities are non-negative (�11 � �10), a preemption equilibrium exists if and

only if investment externalities are negative (�F > 1);

(ii) when pro�t externalities are negative (�11 < �10), a preemption equilibrium exists if and only

if investment externalities are not too positive (�F � �P ).

Otherwise, the investment game is a war of attrition.

Proof: See Appendix A.2

Thus, if pro�t externalities are positive so it is disadvantageous to be the sole �rm in the

market to have invested, preemption occurs if there is a negative investment externality that

makes investing �rst inherently attractive. In addition, if pro�t externalities are negative so it is

advantageous to be the only �rm to have invested, the condition is slacker and preemption occurs

even with a positive investment externality that is not too strong. If the positive investment

externality is too strong, neither �rm seeks to enter �rst, and the investment game is in the

nature of a war of attrition.

Since the study of the attrition game at this level of generality is beyond the scope of this paper,

throughout the remainder it is assumed that the conditions of Proposition 1 on the investment

externality (�F ) hold, so a preemption equilibrium exists.
11 In Huisman et al. [18], the nature of the timing game similarly reverts from preemption to war of attrition

depending on the magnitude of a second-mover advantage due to learning.
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4 Simultaneous (Coordination) Equilibrium

In this section we develop a necessary and su¢ cient condition for the investment timing game to

have a simultaneous equilibrium, in which �rms, instead of investing sequentially in a preemption

equilibrium, both invest at the same trigger y�S , which may be in�nite.
12 We refer to this case as

coordination.13

Unlike sequential (preemption) equilibrium in the previous section, in the presence of both

investment and pro�t externalities, the simultaneous equilibrium may not be fully characterized.

The main proposition therefore involves restrictions on the space of admissible parameters. In

certain subcases that are given afterwards, a full characterization may be obtained.

To begin, de�ne the following function:

bf (y) � ��10 � �00
r � � y + IL +

�
y

y�S

�� IS
� � 1 +

�
y

y�F

�� �10 � �11
r � � y�F . (6)

Over the interval [0;min fy�F ; y�Sg], the expression in (6) corresponds to the di¤erence S��L, that
is to the incentive to invest simultaneously rather than immediately and unilaterally.

We assume:

Assumption (A) The parameter values (I;�; �) are such that bf (y) is convex.
It can be shown that this assumption holds for all � whenever �10 � �11 (non-positive pro�t

externalities). Otherwise (positive pro�t externalities), it requires that joint investment be desir-

able (�11 > �00) and then holds for instance for � � 1.

Next, de�ne y�L �
�
��1

r��
�10��00 IL. The trigger y

�
L is the optimal investment threshold for a

leader, if the sequence of investments is exogenously determined.

Assumption (B) The parameter values (I;�) are such that y�L < min fy�F ; y�Sg.

This second condition requires the investment and pro�t externalities to be such that a �rm,

if given the guarantee of being the �rst to invest, would e¤ectively choose to do so unilaterally.

12There is generally not just one, but a continuum of simultaneous equilibrium solutions, one of which is Pareto

superior to the others. We follow convention in assuming that it is this latter solution which is chosen by rational

players, and refer to it as �the�simultaneous equilibrium solution.
13 In a framework where �rms can restrict total production by non-cooperatively both postponing investment in

capacity units, Boyer, Lasserre, and Moreaux [4] refer to simultaneous equilibrium as a case of �tacit collusion�.

We use the term �coordination�since in our model investments do not necessarily relate to production capacities,

so that a departure from preemption equilibrium does not have the same anti-competitive character.
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As a benchmark, for �F = �S = 1, Assumption (B) requires that pro�t externalities be non-

positive (therefore in this case it implies Assumption (A)) and that �ow pro�ts be submodular

(�00 + �11 � �10 + �01).

Proposition 2 Suppose Assumption (A) holds and consider the condition:14

�

�
y�F
y�
� �F

��
y�L
y�F

��
+ �S

�
y�L
y�S

��
� 1. (7)

()) if (7) holds, a simultaneous equilibrium exists;

(() provided Assumption (B) holds, then if a simultaneous equilibrium exists, (7) holds.

Proof: See Appendix A.3

It remains to check that, when a simultaneous (coordination) equilibrium exists, it can yield

higher payo¤s for both �rms than the sequential (preemption) equilibrium. To do that, we

introduce another value function (as compared with (2), (3), and (4) above). It describes the

ex-ante expected value of a �rm, at a market size y � yP , when it anticipates that preemption

occurs at yP and that it is equally likely to enter as a leader or as a follower at that threshold.15

Formally:

VP (y) =
�00
r � �y +

�
y

yP

�� �
L (yP )�

�00
r � �yP

�
, all y � yP . (8)

This payo¤ satis�es VP (yP ) = L(yP ) = F �(yP ). When the market size is below the preemption

trigger, it is the comparison of S� (y) with VP (y) that constitutes a valid criterion to assess

whether the investment game has the features of a pure coordination game (i.e., whether the

payo¤ from the simultaneous equilibrium is higher than the payo¤ under preemption, so that

�rms have an incentive to coordinate on the former).

Proposition 3 Suppose Assumptions (A) and (B) are satis�ed. Then VP (y) < S�(y), all y 2
[0; y�S ], so that the simultaneous investment equilibrium dominates the premption equilibrium.

14 In condition (7) we use y� = argmaxyi2[0;y�F ]

�
y
yi

�� �
�10��01
r�� yi � IL

�
+
�

y
y�
F

��
�11��10
r�� y�F , so that y

� =
�

��1
r��

�10��01 IL. This is the trigger that would be chosen by an �altruistic� leader that internalizes the e¤ect

of its entry on the rival�s pro�t (without necessarily maximizing industry pro�t, on this see Proposition 5).
15 If initial conditions are such that Y0 > yP , other issues may be raised (�mistakes�may arise, see Huisman and

Kort [16]).
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Proof: See Appendix A.4

As is common in this literature, it is assumed throughout that when several equilibria exist,

�rms achieve the Pareto superior equilibrium (see also footnote 12). Therefore, by Proposition

3, Proposition 2 is taken to provide conditions for a simultaneous investment equilibrium to

e¤ectively arise.

As a direct consequence of the condition (7) in Proposition (2), we �nd:

Corollary 1 A simultaneous equilibrium can arise even in the new market case.

In the new market case there are no pro�ts without investment (�00 = �01 = 0). Corollary 1

is noteworthy because in so-called standard real option game models without investment exter-

nalities, it is only in the existing market case (�00�01 > 0) that simultaneous equilibrium arises

(Boyer, Lasserre, Moreaux [4], Chevalier-Roignant and Trigeorgis [6]). In the present model,

the two �rms may �nd it pro�table to coordinate their investments on the same threshold when

a unilateral deviation from the simultaneous equilibrium is su¢ ciently handicapped by a high

IL (positive investment externality). For example, suppose that �00 = �01 = 0, and �11 = 1
9 ,

�10 =
1
4 , with r � � = 1, � = 2, and IF = IS .16 Assumption (A) is satis�ed because pro�t

externalities are negative, and condition (7) in Proposition 2 is satis�ed for all �F � 56
81 .

Another result follows directly from the fact that, whenever y�L < min fy�F ; y�Sg, in the limit the
expression on the left side of the inequality sign in the condition (7) of Proposition 2 approaches

0 when � tends to in�nity.

Corollary 2 Suppose Assumptions (A) and (B) are satis�ed. Then for � large enough there is

preemption rather than simultaneous equilibrium.

The parameter � is increasing in the risk-free rate r, and decreasing in the drift � and volatility

�. The e¤ect of � on the likelihood of simultaneous equilibrium, as described by Corollary 2, is

thus consistent with the results that emerge in supergame models of tacit collusion. We now

explore this comparison further.

The condition for simultaneous equilibrium that is characterized in Proposition 2, S� (y) �
L (y) � 0, may be rewritten in an equivalent form that bears analogy to the supergame setting:

�10 � �00
r � � y

"
1�

�
y

y�S

���1#
�
"
IL �

�
y

y�S

���1
IS

#
� �10 � �11

r � � y

"�
y

y�F

���1
�
�
y

y�S

���1#
. (9)

16The numerical values for �ow pro�ts are drawn from a capacity investment example developed in section 6.1,

where �rms compete à la Cournot.
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The left side of the inequality (9) is the unilateral incentive to deviate from the simultaneous

equilibrium, provided that the rival �rm�s investment trigger remains at the simultaneous equi-

librium level y�S . This incentive consists of the present value of the increase in pro�ts that results

from the monopoly investment phase, net of the opportunity cost of procuring the input unilat-

erally at the smaller market threshold y, rather than latter at y�S . The right side of the inequality

(9) is due to the reaction of the second �rm to the (instantaneously) observed deviation of its

rival from the simultaneous equilibrium. Its interpretation depends on both pro�t and investment

externalities.

To see that, suppose that y�F < y�S . Then, upon observing a deviation at any y < y�F , the

second �rm lowers its investment trigger from y�S to y
�
F . If pro�t externalities are negative, this

earlier investment gives rise to a �punishment�phase, as the accelerated second investment short-

ens the period during which the �rst �rm earns monopoly investment pro�ts.17 This punishment

phase does not start immediately after detection, and its duration is �nite since the second �rm

would have invested at the trigger y�S anyway had no deviation occurred. Thus, although there

is some similarity to the stability condition that arises in supergames,18 and the corresponding

equilibrium payo¤s (i.e., those that result from the choice to cooperate or defect, with the re-

stricted strategy spaces fy�S ; yP g and
�
pM ; pM � "

	
for investment timing and repeated Bertrand

duopoly, respectively) have the same structure,19 the underlying dynamics are di¤erent in the

investment timing and supergame contexts.

The rest of the section examines two special cases of simultaneous equilibrium.

17 If y�F � y�S , then the second �rm�s reaction to the observed deviation is to delay its investment, which constitutes
a �punishment�with respect to monopoly investment if pro�t externalities are positive.
18Consider a standard supergame, with in�nite horizon, and trigger strategies à la Friedman [10], so that

Nash reversion occurs forever if a �rm deviates in any given period. Letting
�
�C ; �D; �N

�
denote the

(collusion; deviation;Nash) pro�ts in the repeated stage game, with � = 1
1+r

, then the condition for collusion

sustainability is �D � �C � �
1��

�
�C � �N

�
.

19Given a state y < yP , in strategic form the static 2� 2 meta game with the restricted strategy space fyP ; y�Sg
is:

�i
sequential (yP ) simultaneous (y�S)

sequential (yP ) VP (y); VP (y) VP (y); VP (y)

i

simultaneous (y�S) VP (y); VP (y) S�(y); S�(y)

This payo¤matrix has the same structure as the limit of the repeated game analog as period length (and detection

lag) converge to zero.
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4.1 No investment externalities (�F = �S = 1)

The case of no investment externalities is the one that corresponds most closely to what is termed

the standard real options model (Azevedo and Paxson [2], and the derivation of the condition for

coordination in this case can be found in Huisman [15]). Under the assumptions of Proposition

2, �ow pro�ts must be submodular (�00 + �11 � �10 + �01) and pro�t externalities must be

non-positive (�i1 � �i0, i 2 f0; 1g, and therefore Assumption (A) holds). The condition for
simultaneous equilibrium (7) then has the form:

f (u; v; w;�) � �uv� + w� � 1, (10)

with u � �10��11
�11��01 > 0, v � �11��01

�10��00 2 (0; 1] and w � �11��00
�10��00 2 (0; v]. This function is not

monotonic in �, but it is bounded above and below by functions whose behavior is straightforward

to study: f (u; v; w;�) 2
�
�uv� ; (�u+ 1) v�

�
. This is represented in Figure 1, taking u = 1. The

solid (higher) curve is the locus �v� = 1, which describes a su¢ cient condition for simultaneous

equilibrium (�v� � 1); and the dash (lower) curve is the locus (� + 1) v� = 1, which describes a
necessary condition for simultaneous equilibrium ((� + 1) v� � 1).

Figure 1: Necessary (dashed curve) and su¢ cient (solid curve) conditions on
�
�; �11��01�10��00

�
for

simultaneous equilibrium (with no investment externalities, �F = �S = 1).

Thus, without investment externalities, the lower the complementarity in �ow pro�ts (the

�less submodular��ow pro�ts are, as v � �11��01
�10��00 converges to 1 from below), the more likely is
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simultaneous equilibrium. Put another way, simultaneous equilibrium is more likely when �ow

pro�ts are less interdependent, i.e. when the impact of a �rm�s investment on its �ow pro�t is

una¤ected by rival investment (�11 � �01 almost equal to �10 � �00), and less likely otherwise.

By continuity, it is therefore possible to complement Corollary 2 as follows.

Corollary 3 Suppose Assumptions (A) and (B) are satis�ed. Then, if pro�t externalities do not

re�ect strong interdependence (�11 + �00 � �10 + �01) and investment externalities are small

enough (�P ; �S � 1), a simultaneous equilibrium arises.

4.2 Joint investment not desirable (�00 � �11)

In this subsection we examine the case in which joint investment is not desirable. In this case,

in a simultaneous equilibrium both �rms refrain from ever investing (y�S = 1), so we refer to
this the in�nite delay case. Because investment is individually desirable (�1j > �0j), it follows

that pro�t externalities are negative (�i0 > �i1, i 2 f0; 1g, and therefore Assumption (A) holds).
By Proposition 1, for a preemption equilibrium to exist, investment externalities must therefore

satisfy �F � �P .

In the in�nite delay case, it is possible to fully characterize simultaneous equilibrium. This

characterization is similar to Proposition 2, but is not a proper subcase because Assumption (B)

does not enter into the result. Moreover, it is informative to express the necessary and su¢ cient

condition for simultaneous equilibrium (7) in a form that distinguishes the e¤ect of investment

externalities. To this end, we now introduce a threshold,

�S1(�; �) �
�11 � �01
�10 � �00

�
�
�10 � �11
�10 � �00

� 1
��1

: (11)

This expression appears as an upper bound on relative investment cost (�F ) in Proposition 4

below. The following lemma describes the behavior of �S1(�; �).

Lemma 2 �P < �S1(�; �), �S1(�; �) 2
h
�11��01
�10��00 ;1

�
, and

@�S1 (�;�)
@� < 0.

Proof: See Appendix A.5

In what follows, we denote �S1(�; �) simply by �S1 . The conditions on �F characterizing

simultaneous equilibrium is:
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Proposition 4 Suppose that joint investment is not desirable (�00 � �11), and that a preemption
equilibrium exists (�F � �P ). Then, a simultaneous equilibrium arises if and only if �F � �S1.

Proof See Appendix A.6

Propositions 1 and 4 together describe the qualitative evolution of equilibrium as a function

of the relative investment cost �F . There are three equilibrium regions. First, if the relative

investment cost of the second �rm is low (0 � �F < �P ), no �rm wishes to enter �rst so there

is no preemption, and only non-investment simultaneous equilibrium or attrition. Second, in an

intermediate range of relative investment cost (�P � �F � �S1), both preemption and simulta-
neous equilibria exist, with the simultaneous equilibirum dominating the sequential one. Third,

if the relative investment cost of the second �rm is su¢ ciently high (�S1 < �F ), only preemption

(sequential investment) arises as an equilibrium. Thus, greater negative investment externalities

increase the likelihood of preemption and reduce the likelihood of a simultaneous in�nite delay

equilibrium.

By a similar argument as in the previous section, here also Proposition 3 applies to show that

a simultaneous equilibrium is Pareto optimal. Moreover, analogously to Corollary 2, applying

Lemma 2 one obtains:

Corollary 4 If investment externalities are non-negative and �ow pro�ts are supermodular, then

a simultaneous equilibrium arises for all �. Also, an increase in � reduces the likelihood of

simultaneous equilibrium. Finally, rent-shifting investment (�00 � �11) raises the likelihood of

simultaneous equilibrium.

5 Cooperation (with Asymmetric Investment Triggers)

Papers on real options game generally assume non-cooperative behavior on the part of �rms.20

This section studies investment timing with an alternative behavioral hypothesis, which is that

�rms choose triggers so as to maximize industry pro�t. If contracting options such side pay-

ments are allowed between parties, �rms might choose to cooperate on the choice of asymmetric

20A notable exception is Weeds [29], where �rms invest in uncertain R&D projects, and can cooperate by adopting

a joint-investment strategy, as if they were two R&D units under common ownership. This is a new market model

(pre-investment pro�ts are zero) with negative pro�t externalities (successful innovation by one �rm eliminates

pro�ts for its competitor), and there is no investment externality unless �rms opt for R&D cooperation.

16



investment triggers. We refer to this framework as cooperation.21

Before an investment occurs each �rm�s �ow pro�t is �00, and in case of monopoly investment

the average industry pro�t is � � �10+�01
2 . The ex-ante industry value (where J stands for

�joint�), when the current value of the multiplicative shock is y, is

J (y) =

8><>:
2 �00r��y +

�
y
yL

�� �
2(���00)
r�� yL � IL

�
+
�
y
yF

�� �
2(�11��)
r�� yF � IF

�
, yL < yF

2

�
�00
r��y +

�
y
yS

�� �
�11��00
r�� yS � IS

��
yL = yF (� yS)

.

(12)

Firms that cooperate will choose triggers that optimize the payo¤ (12), solving the problem

maxf(yL;yF );yL�yF g J (y). This optimization problem is, in fact, the same as that of a monopoly

�rm, if it has the option to make not just one but two investments. The optimum need not be the

symmetric triggers (y�S ; y
�
S) because the �rms may collectively prefer to stagger their investments.

Provided that �00 < �, de�ne the trigger y��L = �
��1

r��
2(���00)IL, and provided that � < �11,

de�ne the trigger y��F = �
��1

r��
2(�11��)IF . These triggers, when they exist, are well-de�ned in the

interior of the domain of J , that is
�
(yL; yF ) 2 R2+; yL < yF

	
, whenever �F >

�11��
���00 . For example,

if there are no investment externalities (�F = 1), this condition holds if �ow pro�ts are strictly

submodular.

Proposition 5 Suppose that investment externalities are not too small (�F > �11��
���00 ) so the

industry payo¤ (J) has a well-de�ned maximum.22 Optimal cooperation involves either symmetric

duopoly investment, asymmetric duopoly investment, or a single �rm investment:

(i) when monopoly investment lowers industry pro�t (� � �00), optimal cooperation involves

symmetric investment triggers (y�S ; y
�
S), where y

�
S is in�nite if �00 � �11;

(ii) when monopoly investment raises industry pro�t (� > �00), optimal cooperation involves �nite

symmetric investment triggers (y�S ; y
�
S) if and only if

0:5
IL

y���L
+ 1f�<�11g0:5

IF

y���F
<
IS

y��S
, (13)

and asymmetric investment triggers (y��L ; y
��
F ) otherwise, where y

��
F is in�nite if � � �11.

Proof See Appendix A.7
21Here again we do not use the term �collusion�because explicit agreements on investment times do not clearly

constitute an illegal practice in the same way as price-�xing agreements do.
22 If �F <

�11��
���00 then y

��
F < y��L , and J may have a downward jump at (y

��
L ; y

��
L ) if �S is large enough.
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Comparing Proposition 5 with Corollaries 2 and 3, the conditions for simultaneous equilibrium

when �rms act non-cooperatively are independent of the type of optimal solution they choose if

they act cooperatively.

Corollary 5 The greater the (negative) simultaneous investment externality (the larger is �S),

the more likely it is that optimal cooperation involves asymmetric investment. If joint investment

is desirable (�11 > �00), then the larger is �, the less likely it is that optimal cooperation involves

asymmetric investments.

Proof The �rst part follows directly from (13). To establish the second, note that in the

limit, (13) requires ISy�S
< 0:5min

n
IL
y��L
; IFy��F

o
, i.e. �11 � �00 < min f� � �00; �11 � �g. �

6 Applications

In the real option games literature, �ow pro�ts are generally not speci�ed further than the re-

duced form �. At the same time, compatibility between the simultaneous equilibrium conditions

(condition (7) in Proposition 2 and condition (13) in Proposition 5) and economic fundamentals

is not apparent at �rst glance. The examples of this section provide a comprehensive study of

di¤erent natures of equilibria by specifying the economic model generating the �ow pro�t. We

focus on two structures that are associated with preemption games, namely capacity expansion

and R&D investment, which o¤er simple applications of the theoretical results we derived in the

previous sections.

6.1 Capacity Investment with Quantity Competition

A canonical application of preemption is to capacity investment by duopolists. In a forthcoming

paper, Boyer, Lasserre and Moreaux [4] study industry development with Cournot duopolists that

acquire lumpy capacity units over time as inverse demand grows stochastically. Firms face an

inverse market demand that is of the form YtD (x1 + x2), where Yt is a stochastic multiplicative

shock and xi refers to �rm output, have zero marginal production cost, and compete in quantity.

Over time, �rms engage in several rounds of lumpy capacity investment over an industry devel-

opment �tree�. We consider a subcase of their model in two respects. First, we assume that the

ex-ante symmetric �rms have su¢ cient installed capacity so that just a single investment round

is necessary for them to reach the Cournot equilibrium output level. Second, inverse demand is

here speci�ed to be linear, D(x1 + x2) = 1� x1 � x2.
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Let k denote the existing capacity of each �rm, which is assumed to be symmetric, and �

the (lumpy) increase in capacity that results from the acquisition of another unit of the speci�c

input. Both �rms are initially capacity constrained at k, so they earn �00 = (1� 2k) k, with
0 � k � 1=2. Each �rm can relax the constraint by investing in one additional unit of size

� > 0.23 The end of the investment game is near, in that a single round of investment remains.

That is, xc � � � k < xc, where here xc = 1
3 denotes the unconstrained Cournot output level, so

that �11 = 1
9 . Firms decide non-cooperatively (contracts are ruled out) and without commitment

when to invest in an additional unit. There are no investment externalities, that is �F = �S = 1.

In this framework, we seek conditions on the parameters k and � under which a simultaneous

equilibrium arises (we leave cooperative equilibrium aside in this example). This allows us to

partition the (k; �) parameter space (see Figure 2). Even with simplifying assumptions (linear

demand, no investment externalities, single capacity investment, no cooperation), a variety of

equilibrium con�gurations emerges. Broadly, the likelihood of simultaneous (coordination) equi-

librium increases with �rms� initial installed capacity k, so coordination is �likelier when �rms

have footholds rather than toeholds�, and is non-decreasing in the capacity increment �.

Note �rst that the parameter space is bounded by the constraint that �rms are initially

capacity constrained and that the end of the game is near. With the linear inverse demand,

xc � � � k < xc implies k 2
�
0; 13
�
and � � 1

3 � k. Next, if the investment increment is relatively
small, a �rm that invests independently in additional capacity, while its rival does not invest, may

still be capacity constrained relatively to its Cournot best reply. Slightly abusing terminology,

we refer to this situation as the capacity constrained case. With the linear inverse demand a

�rm�s best response is a corner solution x�i (k) = k + � (rather than the best-reply x
�
i (k) =

1�k
2 )

if � � 1
2 �

3
2k. Then, �ow pro�ts are �10 = (k + �) (1� 2k � �) and �01 = k (1� 2k � �) (rather

than �10 =
�
1�k
2

�2
and �01 =

k(1�k)
2 in the unconstrained case). The construction of Figure 2

thus runs as follows. Below the light solid line (� = 1
3 � k), more than one investment round is

necessary to attain the Cournot capacities, so we restrict attention to the points above that line.

In the latter subspace, the light dashed line (� = 1
2 �

3
2k) partitions those parameter values for

which �rms are capacity constrained (below) in case of unilateral investment from those for which

they are not (above).

Against this backdrop, the conditions for simultaneous equilibrium may be assessed. To do

that, note �rst that, with �F = �S = 1 the condition in (7) simpli�es to the form ef (�) �
�uv�+1�11>�00w

� � 1 where u � �10��11
�11��01 , v �

�11��01
�10��00 > 0, and w �

�11��00
�10��00 � v. (The indicator

23This extends slightly the speci�cations in Boyer, Lasserre and Moreaux [4], where � = 1.
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function is there to capture the speci�cation that �11 � �00 implies y�S = 1, hence y�L
y�S
= 0 in

(7).) The following lemma describes the behavior of ef , independently of the speci�cation of �ow
pro�t (and thus applies whether �rms are capacity constrained or not).

Lemma 3 The function ef is quasiconcave, and ef (1) � 1 with equality if and only if �11 � �00.
Proof: See Appendix A.8

By Lemma 3, if �11 < �00 we have ef (1) > 1, so that a simultaneous equilibrium exists over

an interval of values
�
1; �
�
, by continuity. Otherwise ef (1) = 1, and a simultaneous equilibrium

arises for some � only if ef 0 (1) � 0.

Figure 2: Simultaneous equilibrium/coordination in capacity investment with linear demand and

no investment externality, given initial capacity (k) and investment increment (�).

Three additional frontiers can now be depicted in Figure 2. First, with the linear inverse

demand speci�cation, the dotted vertical line k = 1
6 is the locus of points for which �11 = �00.

Joint investment is desirable (�11 > �00) only to the left of that frontier. Next, we graph two

bold curves. The one to the left plots the values of (k; �) for which ef (1) = 1 and ef 0 (1) = 0. The
20



other bold curve, to the right, separates out those values for which � is strictly submodular, i.e.

�00 + �11 < �01 + �10, (bottom and left) for which they are not (to the Northeast). Evaluating,

�ow pro�ts are strictly supermodular if k > 5
21 (not capacity constrained case) or (1� 2k) k +

(2k + �) (2k + � � 1) + 1
9 < 0 (capacity constrained case).

This leads to a partition of the parameter space into three subregions. In the middle region,

both Assumptions (A) and (B) are veri�ed, so that Proposition 2 applies directly. Indeed, as

�F = �S = 1, the negative pro�t externality, with implies that Assumption (A) is veri�ed for all

parameter values, also implies that Assumption (B) is veri�ed if and only if � is submodular.24

In that case, the condition in (7) is satis�ed so long as � is �not too large�, with an upper bound

that increases with k. Moreover, the desirability of joint investment determines the nature the

simultaneous equilibrium that may arise. To the left of k = 1
6 , in any simultaneous equilibrium

�rms invest at a �nite trigger beyond the preemption triggers, whereas to the right �rms abstain

from ever investing.

Next, in the leftmost region, we have �11 > �00 and ef 0 (1) < 0, and there is no simultaneous
equilibrium for any value of �. Finally, in the rightmost region, all points are to the right of the

joint desirability frontier, so �11 > �00, and � is supermodular. It follows from Corollary 4 that

a simultaneous equilibrium exists for all � in this region.

To summarize, a rich pattern of equilibria arises:

Proposition 6 Greater preexisting capacity k, as well as greater increments � (if preexisting

capacity is su¢ ciently large) increase the likelihood of simultaneous (coordination) equilibrium.

When k is low enough there is no simultaneous equilibrium for any �, as in the new market case.

A detailed welfare analysis is beyond the scope of the present paper but we can make the

following observations. If preexisting capacities are low (for k < 1=6), �rms eventually invest and

both reach the Cournot outcome in the product market more or less early, whether by means

of a staggered or a joint investment. However, if preexisting capacities are high, in a simultane-

ous equilibrium �rms might never invest and product market outcomes may be perennially less

competitive than those of Cournot competition, and (because investment is lumpy) for some pa-

rameter values even strictly less competitive than the monopoly outcome (when k 2 [1=6; 1=4), for
large enough �), even though no illegal collusion (in the sense of a price-�xing or market-sharing

agreement) has occurred.

24More precisely, with �F = �S = 1, the negative pro�t externality (�10 � �11) implies that
IS
IL
= 1 � �11��00

�10��00 ,

which is equivalent to y�L � y�S , and the submodularity of � (�10 + �01 � �11 + �00) is equivalent to 1 � �11��01
�10��00 ,

or y�L � y�F .
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6.2 R&D Investment with Spillovers

It is natural to construe investment expenditures as investments in R&D. In fact, it is these

applications that the timing games literature �upon which real option games are built �considered

originally (Reinganum [25]). In this application we specify the reduced form �ow pro�ts by

adapting an approach to R&D due to Kamien, Muller, and Zang [19].25

Two �rms engage in R&D before selling vertically di¤erentiated products. Each �rm�s decides

on an amount of R&D expenditure, denoted by xi, i 2 f1; 2g, which is taken here to be a
discrete choice in f0; xg. To be consistent with the assumption of a multiplicative shock, we
suppose that R&D is demand-enhancing, i.e. �rm i�s inverse demand function is linear and

speci�ed as pi = a +
q

2
 (xi + �xj) � q, where pi is �rm i�s price, q the total quantity, and the

variable cost of production is zero. In such models of R&D, the parameter � 2 [0; 1] re�ects the
degree of inter-�rm technological spillovers.26 If � = 0, each �rm�s individual R&D expenditure

bene�ts only itself. If � = 1, the bene�t spills over completely to the other �rm. With these

assumptions, it can be veri�ed that, up to a normalization, gross instantaneous pro�ts are

�00 = a
2, �10 =

�
a+

p
x
�
2�

p
�
��2

, �01 =
�
a+

p
x
�
2
p
� � 1

��2
, and �11 =

�
a+

p
x
p
1 + �

�2
,

so investment is always jointly desirable (�00 � �11), and � is submodular.27 Here x is an R&D
budget. Therefore, we specify the cost of exercising the investment option as IL = IF = x. In

the simultaneous case, we specify IS = (1 + �)x. The latter parametrization re�ects a possible

pecuniary synergy (�1 < � � 0) or congestion (� > 0) when �rms conduct R&D simultaneously
(see Vencatachellum and Versaevel [28] and references therein).

In this example, as �F = 1 (by assumption), Proposition 1-(i) never applies. We also have

�F � �P (because �P 2 (0; 1] from Lemma 1), and �11 < �10 (negative pro�t externalities) if and

only if � < 9=16 (i.e., spillovers are low enough). It follows that, in the latter case, Proposition

1-(ii) applies, so that a preemption equilibrium exists, otherwise the game is one of attrition.

Joint investment is always desirable (�00 < �11), so in a simultaneous equilibrium, both �rms

engage in R&D at the �nite trigger y�S . It is also easy to check that, in the low-spillover case, non-

positive pro�t externalities imply that Assumption (A) holds for all �, and y�L < y
�
F so Assumption

25The R&D speci�cations that we use here results in submodular pro�ts over the relevant parameter range, which

simpli�es the analysis. This does not hold with R&D outputs as in d�Aspremont and Jacquemin [8]�s model (in lieu

of R&D inputs as in Kamien et al. [19]), which researchers have argued possesses less intuitive properties (Amir

[1]).
26Spillovers are usually denoted by the letter �, but we use � here to avoid confusion with the discounting

parameter.

27Rearranging, one �nds �00 + �11 � �10 � �01 = �2
�
1 +

p
� �

p
1 + �

��
a+

2(
p
��1)2

p
x

1+
p
��

p
1+�

�p
x < 0, all x > 0.
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(B) holds also whenever y�L < y
�
S , or equivalently � � �

�10��11
�10��00 . In that case Proposition 2 applies,

and we need only concentrate on condition (7) for the existence of a simultaneous (coordination)

equilibrium. If � < ��10��11
�10��00 , recall that (7) remains su¢ cient for a simultaneous equilibrium.

Finally, (7) holds for � = 1, so the existence of simultaneous equilibrium is thus established for �

in a neighborhood of 1 when the derivative of the left-hand term is strictly positive.

Figure 3: Simultaneous coordination equilibrium (solid curve) and cooperation regions (dashed

curve) with linear demand and R&D input choice, given pro�t spillovers (�) and investment

externality parameter (�).

The latter result may be represented in the parameter space (�; �). In Figure 3, to the left

of the dashed line (� = 9
16), �rms play a game of preemption rather than attrition, and the solid

curve delimits the region over which a simultaneous equilibrium exists. When pro�t externalities

are not too large (� � 9
16) and there are synergies resulting from simultaneous investment (�

negative and low enough), then a simultaneous equilibrium exists for a low enough discounting

term �.

A key area of interest in models of R&D is the study of inter-�rm (horizontal) cooperation.

This re�ects both �rm practice, and the fact that R&D cooperation agreements are accepted,

if not viewed favorably, by competition authorities (Martin [19]). Since �rms may legally make
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binding agreements in this context, the cooperation framework (Proposition 5) seems to be the

most adapted. An important result from the literature using static games is that industry pro�t

in not necessarily quasiconcave, so a corner solution with asymmetric investment can be optimal

in the cooperative regime, one �rm then relying on the R&D e¤ort of the other (Leahy and Neary,

[21]).

To apply Proposition 5, it is �rst useful to observe that as � is strictly submodular (�00+�11 <

�10 + �01) we have �F = 1 >
�11��
���00 , so the industry payo¤ (J) has a well-de�ned maximum. The

submodularity of �, together with joint investment desirability, also directly imply that monopoly

investment raises industry pro�t (�00 < �). It follows that case (ii) in Proposition 5 determines

the R&D choice under a cooperative regime. Whether investment triggers are symmetric or not

then depends on condition (13).

In Figure 3, to the right of the dotted line we have �11 > �, although the distinction is not

important with the parameter values that are adopted here. The dashed curve is the locus of

points at which condition (13) just holds, assuming � = 2. Thus, for large enough externalities,

asymmetric duopoly investment is optimal. Moreover, symmetric investment may be optimal, but

nevertheless not arise as a non-cooperative equilibrium. Below the solid curve, the simultaneous

equilibrium coincides with the industry optimum.

To summarize, from the speci�cation of investment cost externalities, together with conditions

(7) and (13), in this example we have:

Proposition 7 The greater the synergy (the smaller is �), the more likely the existence of a

simultaneous (coordination) equilibrium, and the more likely it is that optimal cooperation and the

simultaneous (coordination) equilibrium coincide.
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A Appendix

A.1 Proof of Lemma 1

Let z � �11��01
�10��01 2 (0; 1), so �P (z; �) =

�
�z��1 � (� � 1) z�

� 1
��1 is well-de�ned. Then @�P

@z (z; �) =

�z��2 (1� z)
�
�z��1 � (� � 1) z�

� 2��
��1 > 0:

Since �P (0; �) = 0 and �P (1; �) = 1, it follows that �P (z; �) 2 (0; 1).
Also, @�P@� (z; �) =

1
��1

h
1�z

��(��1)z �
ln(��(��1)z)

��1

i
�P (z; �). Since x lnx � x� 1 with equality if and

only if x = 1, (� � (� � 1) z) ln (� � (� � 1) z) > (� � 1) (1� z) so @�P
@� (z; �) < 0. �

A.2 Proof of Proposition 1

The existence of a preemption equilibrium hinges on the behavior of the di¤erence L (y)�F � (y).
Since L (0) � F � (0) = �IL < 0, preemption occurs if and only if there exists a y in (0; y�F ) such
that this di¤erence is non-negative. Let f (y) � L (y)� F � (y) so

f (y) =
�10 � �01
r � � y � IL �

�
y

y�F

�� IF
� � 1

� (�10 � �11) + (�11 � �01)
�11 � �01

, all y � y�F . (14)

Then the preemption threshold yP is the lower root of the equation f (y) = 0 in (0; y�F ), if it

exists. There are two cases to consider.

(i) �11 � �10
There are two subcases to consider. First, if �11 � �01 > � (�11 � �10), then f (y) is strictly

concave in y, and f 0 (by) = 0 for
by = � �10 � �01

��10 � (� � 1)�11 � �01

� 1
��1

y�F . (15)

The maximizer satis�es by � y�F . Otherwise, if �11 � �01 � � (�11 � �10), then f (y) is increasing
and strictly convex in y. In both of these subcases, f (y) is increasing in y over the relevant

interval (0; y�F ), and therefore a preemption equilibrium exists if and only if f (y�F ) = IF � IL > 0,
i.e. if �F > 1.

(ii) �11 < �10

In this case, �11 � �01 � 0 > � (�11 � �10), so f (y) is strictly concave in y, with a maximum
at by. Moreover, the maximizer satis�es by < y�F . Therefore, a preemption equilibrium exists if and

only if f (by) > 0. Evaluating and simplifying yields that f (by) > 0 if and only if �F � �P . To

establish this, insert the developed expressions of y�F and by in (14), and the inequality follows by
rearranging. �
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A.3 Proof of Proposition 2

A simultaneous equilibrium exists whenever yi = y�S is a best response to y�i = y�S , that is

whenever S�(y) � L(y) for y 2 [0; y�S ]. The function S�(y)�L(y) is continuous and di¤erentiable
with S�(y) � L(y) � bf (y), for y 2 [0;min fy�F ; y�Sg). Note that bf 0 (0) = ��10��00

r�� , and bf 00 (y) =
�IS

y��2

y��S
+ � (� � 1) �10��11r��

y��2

y���1F

. The function bf is convex (Assumption (A)) if and only if
�11��00
y���1S

+� �10��11
y���1F

> 0, in which case bf has a well-de�ned global minimum in R+, that we denote
by by, de�ned by the condition:

�10 � �00by��1 =
�11 � �00
y���1S

+ �
�10 � �11
y���1F

. (16)

When bf is convex, a non-negative minimum is su¢ cient to establish existence of a simultaneous

equilibrium ()). Moreover, after rearrangement, bf (by) = �1� by
y�L

�
IL, so bf (by) � 0 if and only ifby � y�L, which again after some rearrangement occurs is equivalent to the condition in (7).

Necessity (() remains to be established. If by < min fy�F ; y�Sg, with convexity (Assumption
(A)), bf (by) � 0 (that is, (7)) is necessary for the existence of a simultaneous (coordination)

equilibrium. Otherwise, we proceed by distinguishing two cases.

Case 1: y�S � y�F

If y�S � y�F , then S� (y)� L(y) � 0 on [0; y�S ] if and only if min[0;y�S]
bf (y) � 0. For y�S � by, we

have bf (y�S) =
"
1 +

�

� � 1
y�S
y�L

 
1

�

�
y�Sby
���1

� 1
!#

IL �
�
1� y

�
S

y�L

�
IL � 0. (17)

The last inequality follows from Assumption (B). Therefore, in this case S� (y) � L(y) � 0 on

[0; y�S ] if and only if bf (by) � 0.
Case 2: y�S � y�F

If y�S � y�F , then S
� (y) � L(y) � 0 on [0; y�S ] if and only if bf (y) � 0 for y 2 [0; y�F ] and

S� (y) � L(y) = ��11��00
r�� y + IS +

�
y
y�S

��
IS
��1 � 0 for y 2 [y�F ; y

�
S ]. Since S�0 (y) � L0(y) �

0 for y 2 [y�F ; y
�
S ] with S

� (y�S) � L(y�S) = 0, this second inequality always holds. Therefore,

S� (y) � L(y) � 0 on [0; y�S ] if and only if min[0;y�F ]
bf (y) � 0. For y�F � by, by (16) we have�

y�F
y�S

��
� �(��1)�10+��11��00

�11��00
IF
IS
. Then,

bf (y�F ) = ��11 � �00r � � y�F + IL +

�
y�F
y�S

�� IS
� � 1 �

�
1� y

�
F

y�L

�
IL � 0. (18)
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The last inequality follows from Assumption (B). Therefore, in this case S� (y) � L(y) � 0 on

[0; y�S ] if and only if bf (by) � 0.
Combining both cases, S� (y)�L(y) � 0 on [0; y�S ] if and only if bf (by) � 0, that is if and only

if (7) holds. �

A.4 Proof of Proposition 3

Proceed by contradiction, by supposing that VP (y) > S�(y) for some y 2 [0; y�S ]. Then�
y

yP

�� �
L (yP )�

�00
r � �yP

�
>

IS
� � 1

�
y

y�S

��
. (19)

Since Assumption (A) holds, by is well-de�ned (by (16)), and if y�S is a simultaneous equilibrium
and Assumption (B) holds, by � y�L so

IS

y��S
� IL

y��L
� ��10 � �11

�11 � �01
IF

y��F
. (20)

Developing L (yP ) and using (20), (19) holds if and only if

f

�
yP
y�L

�
� �

�
yP
y�L

��
+ �

yP
y�L
� (� � 1) > 0, (21)

but f attains a maximum at yPy�L
= 1, with f (1) = 0, so that (21) never holds. �

A.5 Proof of Lemma 2

First, let �f(�; �) �
�

�P
�S1 (�;�)

���1
=
�
1 + 1

�
�11��01
�10��11

��
�10��00
�10��01

��
. Then, �f(�; 1) = �10��00

�10��11 � 1,
with an equality sign if and only if �00 = �11, and

@ �f(�; �)

@�
=

��
1 +

1

�

�11 � �01
�10 � �11

�
ln
�10 � �00
�10 � �01

� 1

�2
�11 � �01
�10 � �11

��
�10 � �00
�10 � �01

��
(22)

which is negative since ln �10��00�10��01 < 0. Therefore, �P < �S1(�; �). Second, lim�!1
�
� �10��11�10��00

� 1
��1

=

e lim�!1
�
�10��11
�10��00

� 1
��1

= 1 (= e) when �00 > �11 (= �11), and lim�!1
�
� �10��11�10��00

� 1
��1

= 1, so

�S1(�; �) 2
h
�11��01
�10��00 ;1

�
. Also

@�S1(�; �)

@�
=

1

(� � 1)2

�
� � 1
�

�
�
ln� + ln

�10 � �11
�10 � �00

��
�S1(�; �). (23)

The expression in brackets is negative since �10��11�10��00 � 1 and � ln� > �� 1 (recall that � > 1), so
@�S1 (�;�)

@� < 0. �
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A.6 Proof of Proposition 4

A simultaneous � non-investment�equilibrium exists if and only if yi = y�S(=1) is a best-response
to y�i = y�S , that is if S

� (y) � L(y) over the interval [0; y�F ]. Note that here, the simultaneous

investment payo¤ has the simple form S� (y) = �00
r��y. Let

bf(y) � S� (y) � L(y) (see proof of
Proposition 2), then S� (y) � L(y) over the interval [0; y�F ] if and only if min[0;y�F ]

bf (y) = bf (by) � 0
which occurs if and only if �

�
y�F
y� � �F

��
y�L
y�F

��
� 1 (i.e., �F � �S1). �

A.7 Proof of Proposition 5

If � � �00, J is increasing in yL over R+ and the optimum is (y�S ; y
�
S) on the boundary of J�s

domain. Note that when �00 � �11, y�S =1. If � > �00, J is quasiconcave in yL with an interior
optimum at y��L . If � � �11, J is increasing in yF over over R+ and the global optimum is (y��L ;1),
i.e. monopoly investment. Otherwise (� 2 (�00; �11)), the optimal second trigger is �nite, y��F .
Note that y��F > y��L if �F >

�11��
���00 . The condition (13) assures that the local maximum (y��L ; y

��
F )

is a strict global maximum. Finally, this condition always holds if �11 � �00. �

A.8 Proof of Lemma 3

For the �rst part, evaluating in the case where �11 � �00 (otherwise w can be set to 0),

ef 00 (�) = � ef 0 (�)� w� lnw� ln v + uv� ln v + w� (lnw)2 ;
so at any �0 satisfying ef 0 (�0) = 0,

ef 00 (�0) � w�0 (lnw) (lnw � ln v) � 0;
where the �rst inequality holds because ln v � 0, and the second because w � v. For the second
part, ef (1) = �10��11

�10��00 + 1�11>�00
�11��00
�10��00 . If �11 < (=)�00 we have ef (1) = �10��11

�10��00 > (=)1,

otherwise ef (1) = 1: �
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