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Abstract

This paper describes phase retrieval approaches in music by focusing on the particular
case of the cyclic groups (beltway problem). After presenting some old and new results on
phase retrieval, we introduce the extended phase retrieval for generalized musical Z-relation.
This concept is accompanied by mathematical definitions and motivations from computer-aided
composition. We assume from the reader basic knowledge of groups, topological groups, group
algebras, group actions, Lebesgue integration, convolution products, and Fourier transform.

Keywords: GIS (Generalized Interval Systems); interval vector; Patterson function; Z-relation;
homometry; phase retrieval; spectral units; k-deck.

MCS/CCS/AMS Classification/CR Category numbers: AMS MSC 05E15, 20H15,
43A20.

1 Introduction
One class of combinatorial problems deals with the problems of reconstruction. Especially, a problem
that arises in very different contexts is the reconstruction of a set from the collection of its k-subsets
up to isomorphism. The same thing may be done with the reconstruction of graphs from a collection
of subgraphs (see [7], [6]). One can come across this type of problem in computer graphics, in physics,
in genetics, in crystallography and also in musical composition. In Section 2, we define the phase
retrieval problem, introduce alternative formulations of it, stressing the role of spectral units in the
case of discrete abelian groups, trying to characterize homometric sets in a constructive way. In
Section 3 we extend the definitions of our previous paper, Z-Relation and Homometry in Musical
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Distributions [17, Sec. 4], by introducing the k-deck, the k-deck up to reflection, the k-vector, and
higher-order generalizations of Z-relation and homometry associated to them. Finally, in Section
4, we define the extended phase retrieval problem and the reconstruction index of a cyclic group.
The study of k-decks has been widely developed lately, while the k-deck up to reflection has been
pretty much left aside. After providing some properties of the Zk-relation, we end up with the first
example of 4-Homometric sets.

2 The phase retrieval problem
We have seen in our paper that immediately precedes this one [17] many properties of the Patterson
function of a distribution and the interval contents of a measurable subset of finite measure. In this
section, we will focus on the reconstruction problem.

This problem consists in determining whether a given integrable distribution over a locally-
compact topological group fitted with its Haar measure, can be uniquely reconstructed – up to
translation and inversion, or up to translation – from its Patterson function, and in case it cannot,
which distributions are non-trivially homometric with the given one.1.

2.1 Definition of the problem
Let G be a locally compact group with a right-Haar measure µ.

We recall the notationD(G) for the image in Aut(ΣC(G)) ofD(G), the generalized dihedral group
on G. Let H be the largest subgroup of D(G) such that the Patterson function is constant on the
orbits of the action of H on ΣC(G), that is for every P in H, every E in ΣC(G), d2(P (E)) = d2(E).
According to [17, Prop. 3.5], when G is unimodular, H is the group of left transposition operators2
{Tg, g ∈ G}, and when G is abelian, H = D(G).

Definition 2.1. The phase retrieval problem consists in:

1. determining for every E ∈ ΣC(G), whether there is some F ∈ ΣC(G) non-trivially Z-related
to E; if there is no such F , one says that E can be uniquely retrieved from its Patterson
function up to H;

2. determining, for every E ∈ ΣC(G) that cannot be uniquely retrieved, a family F = (Fi)i∈I of
ΣC(G) such F ∪ (E) is a maximal family of non-trivially Z-related distributions.

In this definition, H is instrumental in pruning out all trivial Z-relatives.
One defines likewise a “restricted” phase retrieval on Ã, wherein H is defined as the largest

subgroup of D(G) such that for all A ∈ Ã, P ∈ H, iv(P (A)) = iv(A). This restricted phase
retrieval problem is identical to the approach used by Forte for classifying pitch class sets in his
musical set theory, whereas the definition with distributions comes from crystallography.

2.2 Alternative formulations
We have defined the most general notion of homometry in terms of Patterson functions. But in a
number of practical situations, the computations – and indeed the comprehension of the process –

1This paper will make use of the notations introduced in [17].
2H does not contain I because I does not preserve intervals, that is I does not preserve the interval content of

pairs.
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are made easier by using the appropriate algebraic tools. A summary of these formulations is shown
in Figure 1 at the end of this section.

2.2.1 Polynomials

In the case of distributions on the group Zn, i.e. maps from Zn to some field K, we deal with the
algebra (KZn ,+, ., ∗), of which the product law ∗ is essential in defining the Patterson function. It
is possible to replace this algebra by the algebra of polynomials.

Definition 2.2. The characteristic polynomial of a subset A ⊂ Zn is A(x) =
∑
k∈A x

k ∈ K[x] =
K[X]/(Xn− 1), where we note x = X mod Xn− 1. More generally, for any distribution E : Zn →
K,E =

∑
ekδk, we define E(x) =

∑
k∈Zn ekx

k.

Proposition 2.3. The above transformation is an algebra isomorphism between (KZn ,+, ., ∗) and
(K[x]/(xn − 1),+, .,×), namely (E ∗ F )(x) = E(x)× F (x).

Essentially, the translation operator on subsets turns into multiplication by x: T (A)(x) = x ×
A(x). This transformation was introduced by Redei et al. around 1950 in the study of tilings by
translation. For us, the spotlight is on the Patterson function. Transposing the definitions already
given yields the following.

Definition 2.4. The reciprocal polynomial of E(x) =
∑
k∈Zn akx

k is I(E)(x) = xn−1E(1/x) =∑
k∈Zn akx

n−k. The Patterson polynomial function associated with the distribution E is d2(E)(x) =

E(x)I(E)(x) =
∑
k∈Zn ekx

k with ek =
∑
p∈Zn apap−k where the indices are computed modulo

n.

Notice that for any root ξ of E(x), both ξ and 1/ξ are roots of d2(E)(x). Also, for ξ ∈ S1 (the
unit circle), one gets d2(E)(ξ) = E(ξ)E(ξ) = |E(ξ)|2 ∈ R+.

This approach can be further extended to any finite abelian group, or even any finitely generated
abelian group, with polynomials in several variables – one for each element of a generator set of the
group. Such constructions are essential in Polya’s theory of combinatorics.

Any such polynomial, with degree d < n, can be determined uniquely with the values it takes in n
different points. A judicious choice is to evaluate E(x) in the nth roots of unity, since E(e−2i jπ/n) =∑n−1
k=0 ake

−2i j kπ/n is exactly the Fourier transform of the map E.

2.2.2 Fourier transform

Historically, the idea of using the Fourier transform in the theory of intervals goes back to David
Lewin’s first paper [14]. It was refurbished in recent years, mainly starting from Quinn’s PhD [21].

As we have mentioned before, in the case of characteristic functions of subsets of Zn, the Pat-
terson functions reduces to the simpler case of discrete Fourier transforms (DFT for short):

1̂A(t) =
∑
k∈A

e−2iπkt/n

This is indeed closer to the crystallographic origin of the Patterson function: as we mentioned
in the introduction, the Fourier transform of the interval content is exactly the module of the DFT
of the subset: since iv(A) = 1A ∗ 1−A, applying the Fourier transform yields îv(A) = 1̂A × 1̂−A =

1̂A × 1̂A = |1̂A|2
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It is perhaps interesting to mention the slightly more complicated equation used by Lewin:
he aimed to retrieve a pc-set A, knowing pc-set B and the interval function between the two:
ifunc(A,B)(t) = #{(a, b) ∈ A×B, a+ t = b} = 1B ∗ 1−A(t).

Since ̂ifunc(A,B) = 1̂B × 1̂A, the retrieval of A is always possible provided that 1̂B does not
vanish. As we will see below, this condition arises again in the discussion of k-decks. It is also
instrumental in numerous problems, for instance rhythmic tilings. For practical retrieval, see the
following section.

This approach can of course be extended to distributions on Zn, enlarging the codomain from
{0, 1} to C; but also to any commutative group instead of Zn, with the Fourier transform defined
in terms of characters. This will be useful again below: in the study of k-decks we will introduce
multi-dimensional Fourier transform.

An interesting alternative, introduced by Thomas Noll, is the case Zn → Tn ⊂ Cn, modelizing
ordered sequences of n notes, e.g. musical scales. On these topics, see [2, 3].

2.2.3 Circulating matrices

Circulating matrices of order n are defined as Cn(K) or Cn for short, the (commutative) algebra of

matrices of the form

 a0 an−1 ··· a1
a1 a0 ··· an−1

...
. . . . . .

...
an−1 ··· a1 a0

, with coefficients in any field K.

This algebra is actually the algebra of polynomials in the matrix J =

 0 ··· 0 1
1 0 ··· 0
0 1 0 ··· 0
...
. . . . . . . . .

...
0 ··· 0 1 0

. J can

be seen as the matrix for the elementary translation operator T1 : k 7→ k + 1.
There is a natural mapping from distributions on Zn onto Cn, setting for any map E ∈ KZn

ak = E(k). For instance if E = 1A, one gets ak = 1 ⇐⇒ k ∈ A and ak = 0 if k /∈ A. What makes
this bijection interesting is the following:

Proposition 2.5. The above mapping is an isomorphism of algebras between (KZn ,+, ., ∗) and
(Cn,+, .,×).

In other words, this matricial representation turns the cumbersome convolution product into the
(slightly less cumbersome) matricial product.3 This is easily checked by a direct computation, left to
the reader. But the deep reason for this apparent miracle is linked to simultaneous diagonalization
of these matrices:

Theorem 2.6. Let Ω = 1√
n

[
e2iπj k/n

]
j,k=0...n−1 be the Fourier matrix.4 Then for any circulating

matrix S associated with E : k 7→ ak,

Ω−1S Ω =

 ψ0 0 ··· 0
0 ψ1 ··· 0

...
...

...
0 ··· 0 ψn−1

 .

where the ψk = Ê(k) are the Fourier coefficients of map E.
3Actually one of the authors first introduced this algebra as the natural representation of KZn acting on itself by

way of the adjunction operator E 7→ (F 7→ E ∗ F ).
4 Notice that tΩ = Ω−1.
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Figure 1: Isomorphisms between different algebras.

Proof. It is straightforward to check that the colums of Ω are eigenvectors of the matrix J , with eigen-

value equal to the first element of the column. Hence Ω−1J Ω =

 1 0 ··· 0
0 e−2iπ/n ··· 0
...

. . .
...

0 ··· 0 e−2iπ(n−1)/n

 and for

S = a0I + a1J + · · · an−1Jn−1, Ω−1S Ω =

 ψ0 0 ··· 0
0 ψ1 ··· 0

...
. . .

...
0 ··· 0 ψn−1

 where ψk =
∑n
j=0 aje

−2iπj k/n.

So the miracle of the algebra morphism is just the fact that convolution ∗ is turned into ordinary
product by the Fourier transform. Here the Fourier transform is read as a diagonal matrix, whose
algebra is clearly isomorph to Kn with term-to-term product.

This matrix representation is still close enough to the musical material (the distribution can be
read verbatim in the first column) and introduces the whole, powerful machinery of linear algebra.
For some fascinating applications, see [5]. We will sample here a few results or techniques related
to our topic:

• The Fourier transform is non-vanishing iff the determinant of the matrix is different from 0.
This is a straightforward criteria for all of Lewin’s ‘special cases’, which was hitherto a messy
catalogue of obscure conditions.

• The matrix associated with ifunc(A,B) (resp. iv(A)) is tSASB (resp. tSASA ) where SA, SB
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are the matrices associated with 1A,1B . For more general distributions (complex valued
instead of 0,1) the conjugate must be used, e.g. if S is associated with map E, then its iv is
associated with tSS.

• Hence “Lewin retrieval” (finding A from ifunc(A,B)) is accomplished by inverting SB (notice
the condition on non-vanishing Fourier coefficients again here).

• SA and SB are homometric iff tSASA = tSBSB . Diagonalizing, this in turn is equivalent to
the existence of some matrix U such that

1. U is a circulating matrix [it diagonalizes with the same eigenvectors as all others] and

2. U is unitary: its eigenvalues lie on the unit circle (or equivalently: tUU = In, the identity
matrix).

3. SB = USA.

We will elaborate below on these so-called spectral units, see 2.3. A straightforward example is
J , the equation SB = JSA expressing that B = T1(A). It is, however, much less easy to characterize
the inversion operator I in terms of spectral units.

In this paragraph, we have restricted ourselves to (distributions on) the cyclic group; nonetheless
we look forward to further research making use of group representation theory, of which this is but
one of the most elementary examples. It might be the best access to the non-commutative case.

2.3 Spectral units
As the Patterson function of a bounded distribution with compact support is defined using a con-
volution product, it is natural to ask whether there exist distributions U such that the convolution
with U does not change the value of the Patterson function, i.e. such that for every E ∈ ΣC(G)
E ∗ U ∗ I(E ∗ U) = E ∗ I(E), which is equivalent – if d2(U) is well defined and G abelian – to
d2(E) ∗ d2(U) = d2(E), i.e. E and E ∗ U are homometric.

When the algebra (L1(µ),+, ., ∗) does not have a unit, which is equivalent to G having a non-
discrete topology [24, Chap. 3, 5.6], in order to formulate the Z-relation and phase retrieval problem,
it is necessary to enlarge the algebra to the space of distributions, which has been done in depth for
G = R in [25].

When G is discrete and abelian, which we will assume henceforth, such distributions U are easily
characterized as distributions homometric to the unit of L1(µ), which is the Dirac distribution in e,
the neutral element of G.

Definition 2.7. A distribution U ∈ ΣC(G) is called a spectral unit of G if I(U) ∗ U = δe.

Proposition 2.8. The set of spectral units of G is a subgroup of the group of invertible elements
of the algebra L1(G).

Rosenblatt has proven that any pair of homometric distributions is connected by a spectral unit.5
Hence, in a way, enumerating all spectral units would solve the phase-retrieval problem. In practice
it is not so, because we do not want E ∗ U to be just any distribution; for instance for pc-sets, we
would want its codomain to be {0, 1}. As we will see below, even in the simplest case of distributions
in Zn, this is far from obvious.

5There are some technical conditions about the field wherein the computations are made.
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2.4 Phase retrieval in the case of cyclic groups: the beltway problem
2.4.1 Spectral units of Zn

Putting together circular matrices and spectral units, we are looking for unitary circulating matrices:
tU−1 = U ∈ Cn. Then any pair of circulating matrices S, T such that S = UT provides homometric
distributions. For convenience, let us generally denote by shortcase s ∈ Kn the first column of
uppercase S ∈ Cn.

For instance, let the first column of S be s = ‘(1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0) (the C minor triad)
and T defined by the first column t = ‘(1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0) (the C major triad). Then
transposition is achieved by multiplication with j = ‘(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and its pow-
ers, e.g. E-flat minor triad is obtained with the matrix product J3S, or equivalently j3 ∗ s =
‘(0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0). It is, however, much less straightforward to achieve inversion by
way of a spectral unit: from C major to C minor we must have U = S−1T , which yields u =
1
15 (7, 4,−2, 1, 7, 4,−2, 1,−8, 4,−2, 1). Contrary to transposition, the spectral unit achieving inver-
sion depends on the inversed subset (or distribution), and even more strangely, in general, such
units are of infinite order in the group of units, like u in the example above.

Still, we managed to completely characterize rational6 spectral units with finite order:

Theorem 2.9. Any spectral unit with finite order is completely determined by the values of the
subset {ξj , j | n} of its eigenvalues. The possibilities are listed infra:

• ξ0 = ±1;

• When n is odd, for all j | n, ξj OR −ξj is any power of e2ijπ/n.

• When n is even, ξj is any power of e2ijπ/n if n/j is even, or any power of eijπ/n if n/j is odd.

Then for any k coprime with n, ξkj = ξkj (or −ξkj in a specific case, cf. [4]).

For instance, for n = 12 the structure of this group is Z12 × (Z6)2 × Z4 × (Z2)2, with 6,912
elements. In general, the group of rational spectral units with finite order is isomorphic with∏
d|n Z/(lcm(2, d)Z).
Notice the similarity with 4.1.2 below. Proofs and details can be found in [4].

2.4.2 Existence of non-trivially Z-related subsets of Zn

Theorem 2.10. Let n ∈ N with n > 2. There exist A, B non-trivially Z-related subsets of Zn if
and only if n = 8 or n = 10 or n > 12.

Proof. If n = 8, setsA,B that fit are given by {0, 1, 3, 4}8, {2, 5, 6, 7}8. If n = 10, A = {0, 1, 3, 4, 8}10, B =
{2, 5, 6, 7, 9}10 fit. It is easily seen that these two cases are instances of the (Generalized) Hexa-
chord Theorem [17, Th. 7.2]; the non-triviality of the Z-relation comes from the fact that there is
a sequence of three consecutive elements {5, 6, 7} ⊂ B, whereas there is no such sequence in A.

6 For many musical applications, homometric distributions will be Z-related (multi)sets, and because of the
matricial equation between them, a spectral unit connecting them must have rational coefficients. Conversely of
course, a rational spectral unit will not necessarily yield integer coefficients when multiplied with the characteristic
function of a (multi)set. Finally, the whole group of rational (or real) spectral unit matrices can be described
implicitely by the equations (Ek) :

∑n−1
j=0 ajaj+k = 0, k = 1 . . . bn−1

2
c, and the condition

∑
a2j = 1, where indices

are taken modulo n. For instance, for n = 3 the group of real spectral units is the pair of circles made of the matrices(
a b c
c a b
b c a

)
with a2 + b2 + c2 = 1 and a + b + c = ±1.

7



Let us assume now that n > 12; we note πn : Z → Zn the canonical projection. A =
{0, 1, 2, 6, 8, 11} and B = {0, 1, 6, 7, 9, 11} are Z-related in Z, so using [17, Cor. 6.2], πn(A) and
πn(B) are Z-related; moreover, there is a sequence {0, 1, 2} of three (four in the case n = 12) con-
secutive integers in πn(A), whereas there is no such sequence in πn(B), so this Z-relation is not
trivial.

Conversely, for n 6 7, n = 9 and n = 11, it is easy to check by computer search that there are
no non-trivially Z-related subsets in Zn.

2.5 Is there a group action representing the Z-relation?
An appealing formulation of the phase retrieval problem is asking whether there is a non-trivial group
action on ΣC(G) wherein the orbits are the equivalence classes of the homometry, and whether there
is a non-trivial group action on the set of elements of A of finite measure wherein the orbits are the
equivalence classes of the Z-relation.

A “trivial group action” can always be achieved with the direct sum of the permutation groups of
the equivalence classes, which is both a huge and uninteresting group. Precluding this is essential in
practice if one is to use properties of group actions of which both the group and the set are finite, for
instance computing effectively the number of orbits using the equation of Burnside-Frobenius. We
prove below that, in essence, there is no reasonable group action whose orbits are the homometric
classes.

Theorem 2.11. Let n ∈ N with n > 2. If n = 8, n = 10 or n > 12, then for every field K
and for every subgroup H of the linear group GLn(K) such that the natural group action of H on
P(Zn) identified with {0, 1}n is well-defined, the orbits of this group action are not identical with
the equivalence classes of the Z-relation.

Proof. We suppose that n = 8, n = 10 or n > 12. Let K be a field, let H be a subgroup of
GLn(K) such that the natural group action of H on Kn can be restricted to a group action of H
on {0K , 1K}n; note that this restriction is well-defined if and only if {0K , 1K}n is a union of some
orbits of the group action of H on Kn.

We note the natural injective group morphism into permutation matrices

P : S(Zn)→ GLn(K)
σ 7→ Pσ = (δi,σ(j))i,j∈Zn

From Theorem 2.10, there exist two non-trivially Z-related subsets A,B of Zn. If we assume
that the orbits of H are the classes of Z-related sets, B is in the orbit [A]H of A, so there exists
M ∈ H such that M1A = 1B , and since the homometry between 1A and 1B is not trivial, M is not
in P (D(Zn)).

On the other hand, we get from [17, Lemma 4.8] that any distribution with codomain {0, 1}
homometric to 1{0} is a 1{k} for some k ∈ Zn. In particular, as M1{0} and 1{0} are homometric,
there is a k ∈ Zn such that M1{0} = 1{k}. Identifying the distributions with circulating matrices
(cf. 2.2.3), we find MIn = Jk, so M ∈ P (D(Zn)), which leads to a contradiction.

A previous version of this theorem, looking for a group of permutations of Zn, was made in [16].
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3 Homometry and Z-relation of higher order

3.1 k-vector, k-deck and k-deck up to reflection
We have seen that the Patterson function does not, in general, provide enough information for the
reconstruction of a distribution. So we need to extend these concepts far enough to describe exactly
the content of our distribution.

Let G be a discrete abelian group.

Definition 3.1. Let H be a subgroup of S(G). Let us define a H-copy of a set S ⊂ G as any set
of the form h(S), with h ∈ H.

Two interesting cases are H = T (G), the group of transpositions; and H = D(G), the generalized
dihedral group of transpositions and inversions.

We begin by noticing that the interval vector of a set A is simply counting, for every interval
g ∈ G, how many D-copies of the set {0, g} are embedded in A, and this correspond exactly to
#(A ∩ (A − g)). Analogously, the coefficient of δg (or xg in polynomial representation) of the
Patterson function of a distribution 1A tells us how many D-copies of the distributions δ0 + δg are
embedded in 1A, which still correspond exactly to #(A∩(A−g)). We may now ask, more generally,
how many D-copies of some general k-subsets are contained in A. This has been done on the musical
side in [15] and then [8] and [9].

Following these works, we define the concept of k-vector; contrary to the definition of the
interval content [17, Def. 3.2], but similarly to Forte’s interval vector, we define it on the orbits of
k-subsets of G for the action of the dihedral group D.

Definition 3.2. Let A ⊂ G; we call k-vector of A the map

mvk(A) : [S]D, where S ⊂ G and #S = k 7→ mvk(A)S = #{S′ ∈ [S]D, S
′ ⊂ A}

which counts for of any k-set S the number of its D-copies embedded in A.

It is obvious from the formula that this definition is correct, i.e. that each value of the k-vector
at [S]D does not depend of the choice of T ∈ [S]D.

Example 3.3. The set A = {0, 1, 3, 4, 7}12 has essentially only 6 non-zero entries in its 3-vector, as
shown in Figure 2.

mv3(A){0,1,3}12 = 2 mv3(A){0,1,4}12 = 3
mv3(A){0,1,6}12 = 1 mv3(A){0,2,6}12 = 1
mv3(A){0,3,6}12 = 1 mv3(A){0,3,7}12 = 2

Indeed, mv3(A){0,1,3} = 2 since there are two D-copies of {0, 1, 3}12 embedded in A (they are
{0, 1, 3}12 and {1, 3, 4}12); mv3(A){0,1,4} = 3 since there are three D-copies of {0, 1, 4}12 embedded
in A (they are {0, 1, 4}12, {0, 3, 4}12 and {3, 4, 7}12); and so on.

Since iv(A)h = mv2(A){0,h}, this definitions extends the concept of interval vector. Analogously
we define the concept of k-deck:

Definition 3.4. Let E =
∑
g∈G egδg be a K-valued distribution on G. We call

9



Figure 2: An OpenMusic patch showing the computation of a 3-vector in Z12.

Definition 3.5. k-deck of E the function dk(E) : Gk−1 → K defined by

dk(E)(s1, . . . , sk−1) =
∑
g∈G

egeg+s1eg+s2 · · · eg+sk−1
. (1)

Notice that, since E ∗ E′ =
∑
g∈G

∑
h∈G ege−hδg−h =

∑
t∈G

(∑
s∈G eset+s

)
δt, when k = 2,

dk(E)(s) =
∑
g∈G egeg+s is exactly the value at s of the Patterson function of E, and thus the

k-deck extends the Patterson function.
Now, let G = Zn and E = 1A; then all the eg’s are either 0 (if g ∈ A) or 1 (otherwise), and thus

dk(1A)(s1, . . . , sk−1) = #(A ∩ (A− s1) ∩ . . . ∩ (A− sk−1)), which is non zero if and only if there is
a T -copy of {0, s1, . . . , sk−1} in A. In other words, the k-deck of 1A tells us how many T -copies of
{0, s1, . . . , sk−1} are contained in A.

These two definitions extend (respectively) the concept of interval vector and the concept of
Patterson function. Indeed iv(A)h = mv2(A){0,h}, and d2(A)(s) = #(A∩ (A− s)) is the coefficient
of δs in the Patterson function of A.

We see that the k-vector and the k-deck are quite similar objects, with the difference that the
first one counts the D-copies, while the last one counts the T -copies. We may solve this discrepancy
by introducing the k-deck up to reflection, with a capital D as a symbol, following the terminology
of [22]:

Definition 3.6. Let E =
∑
g∈Zn egδg be a real distribution on Zn. We call k-deck up to reflection

of E the function dk(E) : (Zn)k−1 → Q defined by Dk(E) = dk(E) + dk(I(E)).
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In this way, we get back the invariance by inversion, and since dk(1A) is the number of D-copies
of {0, s1, . . . , sk−1} in A, the k-deck up to reflection is nothing more than the extension of the
k-vector to a generic distribution.7

3.2 Zk-relation, k-homometry, k-Homometry
As we have extended the interval vector and the Patterson function, we are now able to extend also
the Z-relation and the homometry.

Definition 3.7. Sets A1, . . . , As are Zk-related if mvk(A1)S = mvk(A2)S = . . . = mvk(As)S for
all S ⊆ Zn, #S = k.

Definition 3.8. Distributions E1, . . . , Es are k-homometric if dk(E1) = dk(E2) = . . . = dk(Es).

Definition 3.9. Distributions E1, . . . , Es are k-Homometric if Dk(E1) = Dk(E2) = . . . =
Dk(Es).

Clearly, the Z2-relation is the Z-relation and the 2-homometry (which is equivalent to 2-Homometry)
is plain homometry. Again, for all these definitions, we will add the “non-trivially” prefix if the sets
(or distributions) belong to different classes under the action ofD (for Zk-relation and k-Homometry)
or T (for k-homometry). This vocabulary makes sense because of the following straightforward re-
sults.

Lemma 3.10.

(i) If A ⊂ Zn and B = I(Th(A)) or B = Is(Th(A)), s ∈ {0, 1}, h ∈ Zn, then mvk(A)S =
mvk(B)S, for all k > 2, S ⊂ Zn, such that #S = k.

(ii) If E ∈ RZn and F = Th(E), h ∈ Zn, then dk(E) ≡ dk(F ).

(iii) If E ∈ RZn and F = Is(Th(E)), s ∈ {0, 1}, h ∈ Zn, then Dk(E) ≡ Dk(F ).

Proof. (i) is straightforward, since there is an obvious 1-to-1 correspondence between the 3-sets
embedded in A and the 3-sets embedded in Is(Th(A)); (ii) and (iii) come from an easy direct
computation.

Non-trivial Z3-related sets exist, as first shown by Collins [8].

Example 3.11. Let us consider, in Z18, the two setsA = {0, 1, 2, 3, 5, 6, 7, 9, 13}18 andB = {0, 1, 4, 5, 6, 7, 8, 10, 12}18.
They are not related by translation/inversion, but mv3(A)S = mv3(B)S for all S, as illustrated by
Figure 3.

7More precisely, if I({0, s1, . . . , sk−1}) = Th({0, s1, . . . , sk−1}) for some h, each D-copy is counted twice. If we
want complete accordance between the two definitions, we must treat separately that case. But this does not scupper
the equivalence between Dk(A) and mvk(A). Besides, Definition 3.6 of the k-deck up to reflection in this form will
be quite useful later.
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Figure 3: A non-trivial Z3-relation in Z18. The two sets share the same 3-vector, whose entries
specify the number of copies of the corresponding elements in the prime forms list (given in the
right part of the figure). For instance, in both sets there are exactly 3 copies of {0, 1, 2}18, 5 copies
of {0, 1, 3}18, and so on.
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3.3 Nesting
Following Jaming8 [11], we notice that, if E =

∑
g∈Zn egδg is a non negative real distribution

on Zn (eg > 0), then
∑
s1,...,sk−1∈Zn d

k(E)(s1, . . . , sk−1) =
(∑

g∈Zn eg

)k
and so, if two posi-

tive distributions E =
∑
g∈Zn egδg, F =

∑
g∈Zn fgδg have the same k-deck, they surely satisfy∑

g∈Zn eg =
∑
g∈Zn fg i.e. they have the same 1-deck. Then we notice also that∑

sk−1∈Zn

dk(E)(s1, . . . , sk−1) = dk−1(E)(s1, . . . , sk−2)
∑
g∈Zn

eg (2)

and thus we immediately have the following lemma:

Lemma 3.12. Let E,F ∈ QZn . If dk(E) ≡ dk(F ) for some k, then dh(E) ≡ dh(F ) for all h 6 k.

This lemma is crucial, since it states that, as k increases, the information given by the k-deck
is more and more precise; in particular, the sets which share the same k-deck, as k increases, are
nested. By definition of the k-deck up to reflection, this result applies equally to the case of D.
So, the k-homometric sets and the k-Homometric sets, as k increase, are nested. On the musical
side, the k-vector version of the Nesting Lemma has been independently developed by Collins [8],
starting from a reconstruction formula given by Lewin [15].

Lemma 3.13. Let A,B be sets in Zn. If mvk(A) ≡ mvk(B) for some k 6 min(#A,#B), then
mvh(A) ≡mvh(B) for all h 6 k.

4 The Extended Phase Retrieval Problem
The extended phase retrieval problem deals precisely with the question of where this nesting
stops. If we know that in Zn there exist (r−1)-homometric sets but no r-homometric sets, it means
that r-decks provide enough information for phase retrieval.

Definition 4.1. The T -reconstruction index r(n) is the minimum integer k for which there
exist no k-homometric 0-1 distributions in Zn. The D-reconstruction index R(n) is the minimum
integer k for which there exist no k-Homometric 0-1 distributions in Zn. We define rQ(n) and RQ(n)
analogously, but for general distributions in QZn .

Clearly, r(n) 6 rQ(n) and R(n) 6 RQ(n). By the way, it is interesting to notice how R(n)
finds its musical mirror-image in the concept of “uniqueness of pitch class spaces”, independently
developed by Collins in [8].

Direct computer search can give the values of r(n), R(n) for small n, but we need some algebra
to explore the general cases.

4.1 The k-deck problem
If E,F are k-homometric distributions, i.e. dk(E)(s1, . . . , sk−1) = dk(F )(s1, . . . , sk−1) for all
(s1, . . . , sk−1) ∈ Zk−1n , then we can take the discrete Fourier transform of these k-decks, consid-
ered as functions in the k − 1 variables s1, . . . , sk−1.

8We correct here two small typos in the paper, concerning the exponent of the norm and a sign of an inequality.
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It is then easy to check that the homometry condition is equivalent to

Ê(ω1)Ê(ω2) · · · Ê(ωk−1)Ê(−ω1 − . . .− ωk−1) =

= F̂ (ω1)F̂ (ω2) · · · F̂ (ωk−1)F̂ (−ω1 − . . .− ωk−1) (3)

for every (ω1, . . . , ωk−1) ∈ Zk−1n .
We now assume that E,F ∈ RZn

+ , i.e. they are non negative distributions. In this case, Ê(0) =∑
g∈Zg eg > 0. By choosing ωi = 0 for all i, we get immediately that (Ê(0))k = (F̂ (0))k, and then

Ê(0) = F̂ (0). By choosing ω1 = ω arbitrary and ω2 = . . . = ωk−1 = 0 we reach the Patterson
equality ‖Ê(ω)‖2 = ‖F̂ (ω)‖2 ∀ω. This is not surprising (we know that the k-deck information is
nested as k increase), but it tells us that supp Ê = supp F̂ , i.e. either the two Fourier transforms
are both nil, or they are both non-zero.9 Moreover, the Patterson equality allows us to perform the
substitution F̂ (ω) = eiφ(ω)Ê(ω) and to get equivalentely (after simplifying)

φ(ω1 + ω2 + . . .+ ωk−1) = φ(ω1) + φ(ω2) + . . .+ φ(ωk−1) mod 2π (4)

which must be valid for all ω1, . . . , ωk−1 ∈ supp Ê such that ω1 + . . .+ ωk−1 ∈ supp Ê.

4.1.1 The Case supp Ê = Zn

We can easily show that if the Fourier transform never vanishes on Zn, then the 3-deck suffices for
the reconstruction. The 3-deck version of equation (4) is

φ(ω1 + ω2) = φ(ω1) + φ(ω2) mod 2π (5)

for all the (ω1, ω2) ∈ Z2
n, which tells us that the function ψ : ω 7→ eiφ(ω) is a character of Zn. Since

we know the form of the characters of Zn, necessarily there exist a k0 such that ψ(ω) = e2iπk0ω/n.
But this means that

F̂ (ω) = eiφ(ω)Ê(ω) = ψ(ω)Ê(ω) = e2iπk0ω/nÊ(ω) = Ê ∗ δk0(ω) = T̂k0(E)(ω)

where we have applied the shift theorem for the DFT. Thus F = Tk0(E), which means that, if the
Fourier transforms never vanish, two distributions with the same 3-deck are necessarily related by
transposition, and the (extended) phase retrieval is succesful.

4.1.2 The Case supp Ê 6= Zn

If Ê(ω) vanishes for some ω, the function φ(ω) is not everywhere defined, (5) is no more valid for
all the (ω1, ω2) ∈ Z2

n, and thus ψ is no more a character, being defined only on supp Ê. However, if
we succeed in showing that we can extend ψ(ω) = eiφ(ω) to a character on all Zn, we can apply the
shift theorem again, and thus prove that F and E are related by transposition.

We will follow the lead of Jaming and Kolountzakis in [12], and we start by gathering some
information about the position of the zeros of Ê.

Lemma 4.2. If Ê(ω) = 0 for some ω 6= 0, then Ê(η) = 0 for all η such that gcd(ω, n) = gcd(η, n).

9We denote as supp Ê the support of Ê i.e. the set of values on which Ê does not vanish.
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Proof. First recall (see 2.2.1), denoting ζn = e2πi/n, that Ê(ω) = E(ζωn ), i.e. computing the Fourier
transform is equivalent to the evaluation of the polynomial E(x) in the powers of an n-th primitive
root of unity ζn.

If Ê vanishes on ω, then E(ζωn ) = 0, which means that (x − ζωn ) divides E(x). But ζωn is
a primitive n/ gcd(ω, n)-root of the unity, and thus if (x − ζωn ) divides E(x), necessarily all the
cyclotomic polynomials Φn/ gcd(ω,n)(x), which are irreducible in Q[x], divide E(x) in Q[x], and in
particular it will vanish also for all other roots of unity with the same order, i.e. E(x) = 0 for all
x = ζηn such that gcd(ω, n) = gcd(η, n). For such η, Ê(η) = E(ζηn) = 0.

This means that we can partition Zn =
⊔
i∈Z,i|n Ci where each Ci = {a ∈ Zn : gcd(a, n) = i} and

if a transform vanishes on a certain element of Ci, then it must vanish on all the class Ci.

Lemma 4.3. The class Ci (i < n) of the partition of Zn is isomorphic to the multiplicative group
Z∗n/i.

Proof. Consider the subgroup Zn/i of Zn, in the sense of the injection ι : Zn/i → Zn defined by
ι([a]n/i) := [ia]n, a ∈ Z. The generic element of Ci is of the type [ia]n, with gcd(a, n) = 1, and thus
we can apply ι−1 to get to [a]n/i. Since a is coprime with n, it is also coprime with n/i, and thus
[a]n/i ∈ Z∗n/i. It is immediate to see that ι−1 is an isomorphism between Ci and Z∗n/i.

Example 4.4. We can easily decompose Z12 = C1 t C2 t C3 t C4 t C6 t C12 where

C1 = {[1]12, [5]12, [7]12, [11]12} = Z∗12 C4 = {[4]12, [8]12} ∼= Z∗3
C2 = {[2]12, [10]12} ∼= Z∗6 C6 = {[6]12} ∼= Z∗2
C3 = {[3]12, [9]12} ∼= Z∗4 C12 = {[0]12}

Proposition 4.5. If p is prime, in RZp the 3-deck suffice for the reconstruction, i.e. if d3E ≡ d3F
then F = Tk0E for some k0 ∈ Zp.

Proof. We have just 2 classes Ci: Cp = {[0]p} and C1 = Z∗p. Since Ê(0) > 0 (we’re assuming that E
is a positive real distribution), we have 2 cases:

1. supp Ê = Zn, which has already been seen in section 4.1.1.

2. supp Ê = {[0]n}, which means Ê ≡ F̂ , since Ê(0) = F̂ (0) (the 3-homometry implies the
1-homometry).

With this kind of argumentations Pebody in [19, 20], and Jaming and Kolountzakis in [12] have
shown that the 3-deck suffices also in the cases n = pa, n = pq, n = p2q and n = pqr (p, q, r odd
primes, a > 2). Pebody in [19] reaches a complete determination of the function rQ(n) (see Theorem
4.7). By the way, many steps of the proofs in [19, 20] that may not seem obvious have been well
detailed in [13].

It turns out that, while the behaviour of the functions rQ(n) is completely known (see [19] and
for details), the same thing is almost true for r(n): Pebody in [20] gives all the boundaries for odd n,
and conjectures that r(n) = 4 for n even and greater than 10. There is a previous attempt at proving
what Pebody conjectured in [10, Theorem 5]; however, since it uses the restrictive hypothesis that
the Fourier transform does not vanish on Z∗n, and since some points in [10] resisted to clarification,
we do not retain it.

Computer calculation shows that r(2) = 1, r(4) = 2, r(6) = r(8) = r(10) = 3; to complete the
boundaries a bit, we prove the following.
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Lemma 4.6. If n is an even integer, n > 12, then r(n) > 4.

Proof. Let n = 2m and consider A = {0, 1, 2, . . . ,m − 4,m − 1, 2m − 3, 2m − 2}2m and B =
{0, 1, 2, . . . ,m− 4,m− 2,m− 1, 2m− 3}2m

Notice that B is obtained from A by a one-pitch shift of m (which is very similar to what Althuis
and Göbel did in [1] to find some Z-related families). More precisely: C = {0, 1, 2, . . . ,m − 4,m −
1, 2m−3}2m, A = C∪{2m−2}2m, B = C∪{m−2}2m. So we just need to show that there’s a 1-to-1
correspondence between the 3-subsets of A containing 2m − 2 and the 3-subsets of B containing
m− 2. We shall give it explicitely. Let a ∈ {0, 1, 2, . . . ,m− 4}2m. Then the correspondence is the
following one:

{2m−2, a, a+1}2m 7→ {m−4−a,m−2,m−1}2m, for a 6= [m−4]2m

{2m−2, a, a+k}2m 7→ {3m−a−4−k,m−2−k,m−2}2m, for k∈{[2]2m, . . . , [m−4−a]2m}
{a,m−1, 2m−2}2m 7→ {a−1,m−2, 2m−3}2m, for a 6= [0]2m

{0,m−1, 2m−2}2m 7→ {m−2, 2m−3,m−4}2m
{m−1, 2m−3, 2m−2}2m 7→ {0,m−2,m−1}2m
{a, 2m−3, 2m−2}2m 7→ {m−2,m−5−a,m−4−a}2m, for a 6= [m−4]2m

{m−4, 2m−3, 2m−2}2m 7→ {2m−3,m−2,m−1}2m

Notice that, as requested, 2m− 2 is always present in the left 3-subsets and m− 2 is always present
in the right ones. So A and B have the same 3-deck.

To complete the proof, we notice that, if n > 12, the homometry is non-trivial - just look at the
intervals between the pitch classes and at the order of the intervals bigger than 1 (3,m− 2, 2 for A
and 2,m − 2, 3 for B), which cannot be related by transposition if m > 6. Instead, for n = 10 the
sets become A = {0, 1, 4, 7, 8} and B = {0, 1, 3, 4, 7} which are transpositionally related. The same
thing happens for n = 8.

We are ready to summarize all the results in the following theorem.

Theorem 4.7. Let p, q be odd primes and let α, β be integers α > 1, β > 1. Then

rQ(n) =



1 if n = 1

2 if n = 2

3 if n = pα or
if n = pq

4 if n is any other
odd number or
if n = 2β or
if n = 2pα

5 if n = 2βpα

6 if n is any other
even number

r(n) =



1 if n = 1, 2, 3

2 if n = 4, 5

3 if n = pα > 5 or
if n has less than 4
not-necessarily distinct
odd prime factors or
if n = 6, 8, 10

4 if n is any other odd number
4, 5or 6 if n if any other even number

4.2 The problem of the k-deck up to reflection
Let us try to do the same thing with the problem of the k-deck up to reflection, which is the case
we are most interested in, since there is an exact correspondence between k-Homometry and Zk-
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relation. If E,F are k-Homometric distributions, Dk(E)(s1, . . . , sk−1) = Dk(F )(s1, . . . , sk−1) i.e.
dk(E)(s1, . . . , sk−1) + dk(E)(−s1, . . . ,−sk−1) = dk(F )(s1, . . . , sk−1) + dk(F )(−s1, . . . ,−sk−1), and
taking again the Fourier transform, we get

Re
(
Ê(ω1)Ê(ω2) · · · Ê(ωk−1)Ê(−ω1 − . . .− ωk−1)

)
=

= Re
(
F̂ (ω1)F̂ (ω2) · · · F̂ (ωk−1)F̂ (−ω1 − . . .− ωk−1)

)
(6)

The difference between (3) and (6), the real parts, is the main obstacle in pursuing the analysis.
Indeed, (6) leads to either one of the following equations:

Ê(ω1) · · · Ê(ωk−1)Ê(ω1 + . . .+ ωk−1) = F̂ (ω1) · · · F̂ (ωk−1)F̂ (ω1 + . . .+ ωk−1) (7)

Ê(ω1) · · · Ê(ωk−1)Ê(ω1 + . . .+ ωk−1) = F̂ (ω1) · · · F̂ (ωk−1)F̂ (ω1 + . . .+ ωk−1) (8)

and things are complicated because (7) might be valid for some values of ωi’s while (8) might be
valid for others.

By choosing ωi = 0 for all i, we still get to Ê(0) = F̂ (0), and by arbitrarily choosing ω1 = ω and
ω2 = . . . = ωk−1 = 0 we get again the Patterson equality ‖Ê(ω)‖2 = ‖F̂ (ω)‖2 ∀ω which is little
surprising, since the 2-deck and the 2-deck up to reflection coincide.

Considering these obstacles, the best we can do is to provide a list of computer-calculated values
for n 6 37:

Proposition 4.8.

R(n) =



1 if n = 1, 2, 3

2 if n = 4, 5, 6, 7, 9, 11

3 if n = 8, 10, 12, 13, 14, 15, 16, 17, 19, 22, 23, 25, 29, 31, 37

4 if n = 18, 20, 21, 24, 26, 27, 28, 30, 32, 33, 34, 35

5 if n = 36

4.2.1 An upper bound

As a direct consequence of Theorem 4 in [23], by Radcliffe and Scott, one easily gets R(n) 6 2r(n).
Thus R(n) 6 2× 6 = 12.

4.2.2 Existence of Z4-related Sets

Notice, in particular, that R(36) = 5, which means that there are some non trivially Z4-related sets.
To stress the interest of the research in the problem of the k-deck up to reflection, and the

intimate difference with the k-deck problem, we finish with an explicit example of Z4-related sets,
obtained by computer search. In Z36 consider the sets

A = {0, 1, 2, 3, 4, 5, 7, 10, 12, 15, 19, 20, 22, 23, 24, 25, 27, 28}36
B = {0, 1, 2, 3, 4, 5, 6, 9, 14, 17, 18, 19, 21, 22, 24, 26, 27, 29}36

They are not related by transposition or inversion, but mv4(A) ≡mv4(B), or equivalently D4(A) ≡
D4(B), see Figure 4.
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Figure 4: Two Z4-related sets A and B in Z36. As an example, we consider the subset C =
{0, 1, 4, 6}36, and we show that the same number of copies, up to transposition and inversion (3, in
this case) are included in the two initial sets. The OpenMusic patch shows also that this is true for
any other 4-subset, by comparing the two mv4 functions.
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5 Conclusion and open problems
After providing the general definition of the phase retrieval problem, we have summed up the recent
results on the characterization of the homometry and the k-homometry, then have begun the analysis
of the k-Homometry, and finally concluded with the first example of Z4-related sets.

A number of outstanding open problems still remains. In particular:

• there is still no constructive characterization of the homometry, i.e. there is no reasonable way
to determine, given a set (a distribution, respectively), whether it is non-trivially Z-related to
other sets (homometric to other distributions, respectively) and to reconstruct them;

• the phase retrieval problem in the GIS of time spans [17, Sec. 5] is still to be solved; because of
the non-commutativity of the group, the usual approach based on Fourier transform cannot be
used, which calls for the search of new mathematical constructions, as suggested, for example,
by Pebody in [19]; [18] uses a technique which is effective in abelian and hamiltonian10 groups,
but the time spans group is not hamiltonian;

• r(n) still has to be fully determined (see Theorem 4.7);

• the behaviour of R(n) as n increase is still unknown. It is likely to have a finite upper bound,
like r(n); given the example in section 4.2.2, we only know that the upper bound of R(n) is
greater or equal than 5; to study R(n), we will probably need a way to circumvent the problem
of dealing with potentially two different relations (7) and (8).

Although we have implemented original algorithms for searching Z and Zk related sets, an
extensive review and assessment of them will be necessary for a real application in computer-assisted
musical composition and analysis. In particular, finding Z-and Zk relations in existing musical works
should help judging about the musical interest of Z and Zk-relation in general.
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