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Abstract

In this paper we propose a new tool for backtesting that examines the quality of Value-at-

Risk (VaR) forecasts. To date, the most distinguished regression-based backtest, proposed

by Engle and Manganelli (2004), relies on a linear model. However, in view of the di-

chotomic character of the series of violations, a non-linear model seems more appropriate.

In this paper we thus propose a new tool for backtesting (denoted DB) based on a dy-

namic binary regression model. Our discrete-choice model, e.g. Probit, Logit, links the

sequence of violations to a set of explanatory variables including the lagged VaR and the

lagged violations in particular. It allows us to separately test the unconditional coverage,

the independence and the conditional coverage hypotheses and it is easy to implement.

Monte-Carlo experiments show that the DB test exhibits good small sample properties

in realistic sample settings (5% coverage rate with estimation risk). An application on a

portfolio composed of three assets included in the CAC40 market index is finally proposed.
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1 Introduction

There is an intense academic debate on the validity of risk measures in general and on the

validity of the Value-at-Risk (hereafter VaR) in particular. Indeed, this is a particular problem,

since the VaR is not observable, and therefore we have to rely upon the analysis of the behaviour

of the violations so as to test its validity. A violation is actually defined as a situation where

the loss observed ex-post goes beyond the ex-ante value of the VaR in absolute value. A model

is hence valid if the violation process satisfies the martingale difference hypothesis.

There are three main issues generally emphasized when one comes to evaluating VaR se-

quences. First, the power of the backtesting test, the probability of rejecting a model that is not

valid, especially in small samples (250 to 500 observations, or, to put it differently, 1-2 years of

VaR forecasts) plays a key role. It has been shown that generally these tests have low power, as

the backtesting procedure is too optimistic in the sense that it does not reject the validity of a

model as often as it should (see Hurlin and Tokpavi, 2008).

Second, the backtesting methodology has to be model-free. Indeed, the evaluation procedure

must be implementable whatever the model used to generate the sequence of VaR, so as to

reach a diagnostic regarding the validity of the VaR. Third, estimation risk must be taken into

account. VaR series can be estimated using various models, some more, others less complicated,

with a few or numerous parameters, according to the specific methodology of a certain financial

institution. Testing procedures can thus successfully answer the question of VaR validity only

by taking into account estimation error, as the risk of estimation error present in the estimates

of the parameters pollutes VaR forecasts. Conditional on allowing for these errors, we should

observe no particular orientation of the diagnostic of the backtest in the sense of under-rejecting

or over-rejecting too often.

Various backtests have been proposed so as to satisfy these three requirements (high power,

model-free, introduce estimation risk). They can be classified into four categories. First, in

the pioneer works of Christoffersen (1998) the validity of VaR forecasts is tested through pa-
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rameter restrictions on the transition probability matrix associated with a two-states Markov

chain model (violation/no violation). To be more precise, two assumptions are derived from

the martingale difference hypothesis, namely the unconditional coverage and the independence

hypotheses. Second, tests relying on the duration between two consecutive violations are put

forward by Christoffersen and Pelletier (2004), Haas (2005) and Candelon et al. (2008) in a

likelihood-ratio framework. At the same time, the martingale difference assumption is tested

directly by Berkowitz et al. (2011), Hurlin and Tokpavi (2007) or Perignon and Smith (2008).

Last but not least, some tests are based on regression models (see Engle and Manganelli, 2004).

The general idea is to project VaR violations onto a set of explanatory variables and subse-

quently test different restrictions on the parameters of the regression model, that correspond to

the consequences of the martingale difference assumption. In such a context, both linear and

non-linear regression models can be considered. For example, the recent paper of Gaglianone et

al. (2011) proposes to evaluate the validity of the VaR by relying on quantile regression, which

allows them to identify why and when a VaR model is misspecified.

Nevertheless, the most popular test of this category is Engle and Manganelli’s Dynamic

Quantile test (2004), hereafter DQ.1 It consists in testing some linear restrictions in a linear

model that links the violations to a set of explanatory variables. However, the dependent variable

is by nature a binary one. It follows that linear regression models are not the most appropriate

choice allowing to infer on the parameters and consequently on the hypothesis of validity of the

VaR. The linear model has several shortcomings in this context. The innovations of the latent

model are assumed to follow a discrete distribution. They are also heteroscedastic in a way

that depends on the estimated parameters. At the same time, constraining the right part of

the regression to the 0-1 interval implies negative variances and nonsense probabilities. Still,

it is technically possible to test the significance of the slope parameters in the case of a binary

dependent variable by relying on linear models (see Gourieroux, 2000).

In this paper we propose a new tool for backtesting VaR forecasts. Like Engle and Man-

ganelli, we consider a regression model that links the violations to a set of explanatory variables.

1Note that the DQ backtest is not related to the quantile regression method used in the CAViaR method to
forecast the VaR (Engle and Manganelli, 2004).
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However, given the dichotomic character of the series of violations, we use a non- linear model

and, more specifically, a Dynamic Binary (hereafter DB) regression model. The issue addressed

in this paper is hence the improvement of the finite sample properties of the backtests, particu-

larly the power of these tests, when using a link function that is more appropriate for the binary

dimension of the regressand. Besides, these new tests are expected to be robust to estimation

risk.

By proposing dynamic binary models, which rely on recent extensions advocated in the

Early Warning System literature, the potential correlation between the violations (clusters) is

taken into account in the estimation. Consequently, the tests used to assess the independence

assumption for the violations and implicitly the ones testing the conditional coverage hypothesis

are expected to exhibit higher power than the ones previously proposed in the literature. To

be more precise, we propose seven different specifications, denoted by DB1 to DB7, inspired

from the CAViaR specifications put forward by Engle and Manganelli (2004). The subspace of

explanatory variables includes several lags of the violations series and of the VaR, to which the

lagged index is added in view of the dynamic nature of the models. To test the accuracy of the

VaR sequence, a two-step framework is thus implemented. First, the seven DB specifications

are estimated by constraint maximum-likelihood (Kauppi and Saikonnen, 2008). Subsequently,

likelihood-ratio statistics are used to assess the joint significance of the parameters and thus the

validity of the VaR.

Note that this test has several advantages. First, it can be easily implemented. Second, it

allows us to separately test the unconditional coverage, the independence and the conditional

coverage hypotheses. Third, Monte-Carlo experiments show that by taking into account esti-

mation risk, our conditional coverage test exhibits good finite sample properties in very small

samples (250 observations) for a 5% coverage rate.

A main issue in VaR literature regards the consequences of the potential correlation amongst

assets on the construction of risk measures. We thus propose to test the validity of the VaR ob-

tained by estimating both multivariate models, i.e. models that take into account the correlation

among assets and univariate models, i.e. models that do not care for the possible correlation
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among assets. To achieve this aim, we consider a portfolio constituted from three assets included

in the CAC40 market index for the period June 1, 2007 - June 1, 2009. Our backtest shows

that the two approaches lead us to risk measures that are valid from the conditional coverage

hypothesis viewpoint. These findings go along the lines of Berkowitz and O’Brien’s diagnostic

(2002).

The rest of this paper is organized as follows. Section 2 presents the testing framework.

In section 3 the binary regression-based backtests are presented while in section 4 their small-

sample properties are gauged. Section 5 reveals the main results of an empirical application on

a three-asset illustrative portfolio.

2 Environment and testable hypotheses

Let us denote by rt the return of an asset or of a portfolio at time t and by V aR t|t−1(α) the ex-

ante VaR for an α% coverage rate forecast conditionally on an information set Ft−1. Following

the actuarial convention of a positive sign for a loss (see Gourieroux et al., 2000 and Scaillet,

2003, inter alii), the conditional VaR is actually defined as follows:

Pr[rt < −V aR t|t−1(α)] = α, ∀t ∈ Z. (1)

Let It (α) be the binary variable associated with the ex-post observation of an α% VaR violation

at time t, i.e.:

It(α) =


1 if rt < −V aR t|t−1(α)

0 otherwise

. (2)

As stressed by Christoffersen (1998), VaR forecasts are valid if and only if the violation process

It(α) satisfies the following two hypotheses:

• The unconditional coverage (UC thereafter) hypothesis: the probability of an ex-post return

exceeding the VaR forecast must be equal to the α coverage rate,

Pr [It(α) = 1] = E [It(α)] = α. (3)
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• The independence (IND thereafter) hypothesis: VaR violations observed at two different

dates for the same coverage rate must be distributed independently. Formally, the vari-

able It(α) associated with a VaR violation at time t for an α% coverage rate should be

independent of the variable It−k(α), ∀k 6= 0. In other words, past VaR violations should

not be informative about current and future violations.

The UC hypothesis is a straightforward one. Indeed, if the frequency of violations observed

over T periods is significantly lower (respectively higher) than the coverage rate α, then the

VaR model overestimates (respectively underestimates) the true level of risk. However, the

UC hypothesis shades no light on the possible dependence of VaR violations. Therefore, the

independence property of violations is an essential one, because it is related to the ability of a

VaR model to accurately model the higher-order dynamics of returns. In fact, a model which

does not satisfy the independence property can lead to clusterings of violations (for a given

period) even if it has the correct average number of violations. Consequently, there must be no

dependence in the violations variable, whatever the coverage rate considered.

When the UC and IND hypotheses are simultaneously valid, VaR forecasts are said to have

a correct conditional coverage (CC thereafter), and the VaR violation process is a martingale

difference:

E [It(α) | Ft−1] = α. (4)

This last property is at the core of most of the backtests for VaR models available in the literature

(Christoffersen, 1998; Engle and Manganelli, 2004; Berkowitz et al., 2011; etc.).

Actually, this backtesting approach, based on the UC, IND and CC assumptions, can be con-

sidered as a special case of the event probability forecast evaluation and can be implemented

through four main types of tests. To be more exact, the first backtesting tests (Kupiec, 1995;

Christoffersen, 1998) were based on a Markov chain type model with two states (violation/no

violation). In this framework, the UC, IND and CC assumptions are simply tested through

parameter restrictions on the transition probability matrix associated with the Markov repre-

sentation. Other tests (Christoffersen and Pelletier, 2004; Haas, 2005; Candelon et al., 2008)

rely on the duration between two consecutive violations. Under the CC hypothesis, the dura-
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tion variable follows a geometric distribution with parameter α. Exploiting this property, it is

straightforward to develop a likelihood ratio (LR) test for the null hypothesis of conditional

coverage. The general idea consists in specifying a lifetime distribution that nests the geometric,

so that the memoryless property can be tested by means of LR tests. Third, some other tests

check the martingale difference assumption directly, through its main correlation based impli-

cations. It is, for instance, the case of Berkowitz et al. (2011), Hurlin and Tokpavi (2007) or

Perignon and Smith (2008). Finally, some tests are based on regression models. In this context,

the most popular backtesting test, often called DQ (Dynamic Quantile) test, was proposed by

Engle and Manganelli (2004). It is based on a linear regression model of the hits variable on a

set of explanatory variables including a constant, the lagged values of the hit variable, and any

function of the past information set suspected of being informative.

More formally, let us denote by Hitt (α) = It (α) − α the demeaned process of violation,

that takes the value 1− α every times rt is less than the ex-ante VaR and −α otherwise. From

the definition of the VaR, the conditional expectation of Hitt (α, ) given the information known

at t − 1 must be zero. In particular, under the CC assumption, the variable Hitt (α) must

be uncorrelated with its own lagged values and with any other lagged variable (including past

returns, past VaR, etc.), and its expected value must be equal to zero. To put it another way,

the CC assumption can be tested in the following linear regression model:

Hitt (α) = δ +
K∑
k=1

βkHitt−k (α) (5)

+
K∑
k=1

γk g [Hitt−k (α) , Hitt−k−1 (α) , ..., zt−k, zt−k−1, ...] + εt,

where εt is a discrete i.i.d. process and where g(.) is a function of past violations and of the

variables zt−k belonging to the entire informational set available Ft−1. To be more exact, we

can consider variables like past returns rt−k, the square of past returns r2
t−k, the predicted

Value-at-Risk V aR t−k|t−k−1(α) or even implicit volatility data. Nevertheless, testing for the null

hypothesis of conditional efficiency is equivalent to testing the joint nullity of the coefficients

βk, γk, ∀k = 1, .., K, and that of the intercept δ, independent of the VaR model specification
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considered:

H0 : δ = β1 = ... = βk = γ1 = ... = γk = 0, ∀k = 1, .., K (6)

At the same time, present violations of the VaR are not correlated with past violations if β1 =

... = βk = γ1 = ... = γk = 0 (as an implication of the independence hypothesis), while the

unconditional coverage hypothesis is fulfilled if the constant δ is null. Indeed, under the null

hypothesis, E [Hitt (α)] = E (εt) = 0, which means that by definition Pr [It (α) = 1] = E [It (α)] =

α. All in all, it results that the test of joint nullity of all coefficients corresponds to a conditional

efficiency test.

Therefore, if we denote by Ψ = (δ, β1, .., βK , γ1, .., γK)′ the vector of the 2K+1 parameters

of the model and by Z the matrix of explanatory variables of model (5), the test statistic

designated by DQCC and associated with the conditional coverage test2 satisfies the following

relation:

DQCC =
Ψ̂′Z ′ZΨ̂

α (1− α)

L−→
T→∞

χ2 (2K + 1) (7)

Similar to Christoffersen’s test, the DQ test can be decomposed so that we can verify, for

example, only the hypothesis of independence of violations. The test statistic DQIND associated

with the independence hypothesis H0 : βk = γk = 0 satisfies:

DQIND =
Ψ̂′R′

[
R (Z ′Z)−1R′

]−1
RΨ̂

α (1− α)

L−→
T→∞

χ2 (2K) (8)

where R = [0 : I2K ] is a (2K + 1, 2K) matrix so that RΨ = β, where β = (β1, .., βK , γ1, .., γK)′ .

3 A Dynamic Binary Response model

As aforementioned, Engle and Manganelli (2004) implement a test based on a simple linear re-

gression which links the current hit (violation) to the lagged violations. Nevertheless, it is well

known that this type of model is not suitable for dichotomous dependent variables (Gourieroux,

2000) since the residuals follow a discrete distribution and they are heteroscedastic by construc-

2Under the null hypothesis, the residuals εt correspond to the violation process Hitt (α), which follows a
Bernouilli distribution of parameter α and variance α (1− α) .
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tion. Additionally, the scatter plot of the observations cannot be correctly adjusted with a single

line as in the case of continuous variables.

A solution consists in using non-linear regression models suited for limited-dependent vari-

ables. Indeed, we propose a dichotomic model (logit, probit, cloglog,...) to establish a link

between the current violations of VaR and the set of explanatory variables. We actually expect

that the use of this appropriate non-linear methodology for binary dependent variables in the

backtesting regression will improve the finite sample properties of the backtesting tests.

It should be noted that the backtesting VaR topic resembles at different levels the Early

Warning Systems methodology which aims at forecasting financial crises or recessions. First,

the object of the study has the same form, since in both cases the dependent variable is binary,

e.g. the loss is greater then the VaR at time t or not; there is a crisis in a certain period or

not. It follows that a special econometric methodology must be implemented so as to obtain

consistent estimators. Furthermore, both events (loss or crisis) can be persistent as it is not

always possible to shift from loss to profit or from crisis to calm in just one period. This dynamics

should be taken into account in a VaR backtest regression models as it has been recently done in

Early Warning Systems by Kauppi and Saikonnen (2008). Therefore, we explicitly implement a

dynamic model whose main advantage is that it allows us to test both hypotheses of independence

and conditional coverage.

In this part of the paper our new methodology based on a dynamic binary response model

is introduced. First, the different model specifications considered are presented. Then, the

estimation method is developed and finally the backtesting test statistics are introduced.

3.1 Model Specification

Let us consider the following dynamic binary response model, in which the conditional probability

of violation at time t is given by:

Pr [It(α) = 1 | Ft−1] = E [It(α) | Ft−1] = F (πt) . (9)
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where F (.) denotes a c.d.f. (which does not necessarily correspond to the distribution of the

returns) and Ft−1 is a set of information available at t−1. We assume that the index πt satisfies

the following autoregressive representation:

πt = c+

q1∑
j=1

βjπt−j +

q2∑
j=1

δjIt−j (α) +

q3∑
j=1

ψjl (xt−j, ϕ) +

q4∑
j=1

γj l (xt−j, ϕ) It−j, (10)

where l(.) is a function of a finite number of lagged values of observables, and xt is a vector of

explicative variables. The role of l(.), is to link the index πt to the observable variables that

belong to the information set. A natural choice for xt−j is given by the lagged returns or the

lagged VaR.

Consequently, we propose seven specifications, denoted by DB1 to DB7, (where DB stands

for Dynamic Binary Model):

DB1 : πt = c+ β1πt−1, (11)

DB2 : πt = c+ β1πt−1 + δ1It−1 (α) , (12)

DB3 : πt = c+ β1πt−1 + δ1It−1 + δ2It−2 (α) , (13)

DB4 : πt = c+ β1πt−1 + δ1It−1 + δ2It−2 + δ3It−3 (α) , (14)

DB5 : πt = c+ β1πt−1 + +ψ1V aRt−1, (15)

DB6 : πt = c+ β1πt−1 + δ1It−1 (α) + ψ1V aRt−1, (16)

DB7 : πt = c+ β1πt−1 + δ1It−1 (α) + ψ1V aRt−1 + γ1V aRt−1 It−1. (17)

The first four specifications correspond to a dynamic binary response model including the lagged

index as an explanatory variable and some additional information through the observed past

values of the violation process. The fifth and sixth model are derived from the autoregressive

quantile specifications CAViaR used by Engle and Mangenelli (2004), and more specifically from

their symmetric absolute value specification. To be more precise, the index is assumed to respond

symmetrically to lagged VaR values. The last specification DB7 introduces an asymmetry in

the response of the index to past VaR according to the appearance of a VaR violation.
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3.2 Estimation Technique

There are several ways to estimate a dynamic binary model. A maximum smoothly simulated

likelihood estimation framework may be employed, as in Falcetti and Tudela (2006). Nonetheless,

an easier method has been recently proposed by Kauppi and Saikkonen (2008). They propose a

model that includes both the lagged value of the index and the one of the binary variable itself.

Their model is easy to estimate in a maximum likelihood framework, under appropriate regularity

conditions (stationarity of explanatory variables and normality of the random variables).

Let us recall the general form of the model: Prt−1(It(α) = 1) = F (πt), where πt corresponds

to one of the seven specifications considered in equations 11 to 17. The log-likelihood function

may be expressed as:

lnL(θ; I(α), Z) =
T∑
t=1

[It(α) lnF (πt(θ, Zt)) + (1− It(α)) ln(1− F (πt(θ, Zt)))], (18)

where θ is the vector of parameters of the binary choice model except for the intercept, i.e.

θ = [β′ , γ′, ψ′, δ′] and Zt is the vector of explanatory variables at time t corresponding to a

certain specification from the seven models considered in the paper (eq. 11 to 17).

Given the maximum-likelihood framework, this dynamic time-series model is easy to implement

and the maximum-likelihood estimators have the desired large-sample properties. Nevertheless,

one should not lose sight of the fact that since β is an autoregressive parameter, it has to satisfy

the usual stationarity condition that the roots of the corresponding polynomial lie outside the

unit circle. This means that we have to proceed to a constrained maximum likelihood estimation

(for more details, see Appendix 1).

3.3 Backtesting test

Testing the null hypothesis of conditional coverage by using our dynamic binary model is similar

to the case of the DQ test of Engle and Manganelli (2004), since it is based on a test of nullity

of the coefficients of the regression.

Given the model in equation (10), the CC assumption E [It(α) | Ft−1] = α can be simply
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defined as:

H0 : β = 0, δ = 0, ψ = 0, γ = 0 and c = F−1 (α) . (19)

Under the null hypothesis, the hit variable is orthogonal to any explanatory variable that belongs

to the information set Ft−1 and the conditional probability of a violation is equal to α:

Pr(It = 1 | Ft−1) = F (F−1(α)) = α. (20)

Three tests can be used in such a context, i.e. LR, Wald and LM . However, we present only the

results of the LR test, as it has better small sample properties, particularly in terms of power.

The dynamic binary LR test, denoted by DBLRCC
, which tests the efficiency assumption of the

VaR model takes the following form:

DBLRCC
= −2

{
lnL(0, F−1(α); It(α), Zt)− lnL(θ̂, ĉ; It(α), Zt)

}
d−→

T→∞
χ2 (dim(Zt))

(21)

where θ̂ is the vector of estimated parameters of the binary-choice model (under the alternative

hypothesis, by maximum-likelihood) and ĉ is the estimated intercept of the model.

Similarly, the test of the independence assumption is based on H0: β = 0, δ = 0, ψ = 0, γ =

0, i .e. the nullity of the coefficients, but this time in a model where the constant is no longer a

function of α, i.e. c is a free parameter. Under the null of IND, there is no temporal dependence

of violations, but the VaR violation probability could be different from the coverage rate α:

Pr(It = 1 | Ft−1) = F (c) . (22)

The corresponding LR test statistic is similar to the one associated with the conditional coverage

hypothesis, except that the degrees of freedom have to be adjusted, i.e. dim(Zt)− 1.

In a similar way, it is also possible to define a test of the null of UC as follows:

E [It(α)] = lim
j→∞

E [It(α) | Ft−j] = α. (23)
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This test rejects the null hypothesis of an accurate VaR if the true fraction of VaR violations in

the sample is statistically different from α. Actually, particular constraints, different from one

model specification to another, are imposed to the parameters of each model. For instance, if

we consider our second model specification (eq. 12), it is possible to show that E(πt|Ft−j) =

c∗(1−βj+1)/(1−β)+βjE(πt−j|Ft−j)+δE(It(α)|Ft−j)(1−βj)/(1−β). Thus, the null hypothesis

corresponding to the UC assumption can be expressed as follows: c = (β−1)F−1(α)−αδ. A LR

test statistic associated with the UC hypothesis can be computed and the degrees of freedom

adjusted so as to account for the additional constraint(s) corresponding to a specific model.

4 Small Sample Properties

In this section, we use Monte Carlo simulations to illustrate the finite sample properties (empir-

ical size and power) of our conditional coverage test statistic. However, it is worth noting that

one of the main issues in the literature on VaR assessment is the relative scarcity of violations.

Indeed, even with one year of daily returns, the number of observed violations may often be

dramatically small (in particular for a 1% coverage rate), and this situation can induce poor

small sample properties. For this reason, the size of the test has to be controlled using, for

example, the Monte Carlo (MC) testing approach of Dufour (2006), as done in Christoffersen

and Pelletier (2004) and Berkowitz et al. (2011) inter alii.

4.1 Empirical Size Analysis

To illustrate the size performance of our non-linear regression-based test in finite samples, two

cases are considered. First, we generate a sequence of violations by taking independent draws

from a Bernoulli distribution. At the same time, assessing the robustness of risk models is a very

important topic nowadays (see Escanciano and Olmo, 2010). Indeed, VaR models are specific to

each bank, which means that estimation error can be an important issue in the computation of

violation series. We hence propose a second experiment, based on the introduction of estimation

risk via a t-Garch model, so as to analyze the performance of the test in an environment closer

to reality. In this context, we are interested in the deformation scale of the tests engendered by
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estimation-error.

In both cases a dynamic logit model has been chosen for the backtesting test, as it is usually

done in the Early Warning Systems literature. We set the link function F (.) to the c.d.f of the

logistic distribution, F (.) = Λ(.) = eω/(1+eω), where ω is the vector of parameters of the binary

regression model, i .e., ω = [c θ].

First, we take the case of VaR violations drawn directly from a Bernoulli distribution. This

means that the VaR series are not available and, as a result, only the first four specifications

can actually be implemented, i .e., eq. 11 to 14. Several sample sizes ranging from 250 (which

roughly corresponds to one year of trading days) to 1500 were considered. Furthermore, the

reported empirical sizes correspond to the rejection rates calculated over 10, 000 simulations.

[insert Table 1 here]

Table 1 reports the empirical size of the DB test statistic for various specifications of the

dynamic binary model based on the binomial experiment, first considering a coverage rate of 5%

then one of 1%. For comparison reasons, we also display the results of the DQ test (considering

three different specifications DQ1, DQ2 and DQ3, which include from one to three lags of the

binary variable) and the LR test proposed by Christoffersen (1998), denoted LRCC , which is

actually based on a Markov chain assumption. Our choice relies on the fact that these tests

are currently some of the most used in empirical applications. On the one hand, it seems that

for a 5% coverage rate all the tests are oversized in small samples. On the other hand, in large

samples (with at least 500 observations), our tests are oversized, the LRCC one is undersized

(except in very large samples where it is slightly oversized), while the DQ one is quite close to

the nominal level.

For a 1% coverage rate, the results vary severely from one specification to another. More

exactly, the LRCC test and our first specification (DB1) are roughly undersized, especially in

small samples. All three other DB specifications are quite well sized in small samples, whereas

only DB2 remains well sized in large samples, the other two being slightly undersized. By

contrast, the DQ tests are somewhat oversized in large samples.

In a second experiment we propose to assess the impact of estimation risk on the finite sample
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properties of our backtesting test. Not accounting for estimation error in the simulations would

pollute the estimates of the coefficients of the binary response model and thus the properties of

our backtests. Therefore, we propose a new Bootstrap procedure based on Christoffersen and

Gonçalves (2005) in order to compute corrected critical values:

Step A1 - Generate a series of returns {rt}Tt=1 according to a standard t-Garch(1,1) DGP

given a parameterization of the coefficients (page 11):

rt = c+ σt

√(
v − 2

v

)
zt, (24)

where εt = ztσt
√

(v − 2)/v, zt is an i.i.d. series from Student’s t-distribution with ν degrees of

freedom, and where the conditional variance σ2
t is given by the following recursive relation:

σ2
t = β0 + β1ε

2
t−1 + β2σ

2
t−1. (25)

The coefficients of the model are parametrized as follows: c = 0.000999, β0 = 7.9778e−7, β1 =

0.0896, β2 = 0.9098 and ν = 1/0.1633. These parameters correspond to those estimated by a

t-Garch(1,1) for the SP500 index spanning the period from January 2, 1970 to May 5, 2006.

Step A2 - Given the simulated series of returns, a t-Garch (1,1) model is estimated in-

sample, i.e. on the first R observations so as to introduce estimation risk in the analysis and the

series of VaR forecasts is obtained using the out of sample part of the dataset (T-R observations)

according to the following equation:

V̂ aRt|t−1(α) = ĉ+

√(
ν̂ − 2

ν̂

)
σ̂tG

−1(α, ν̂), (26)

where the conditional variance is given by σ̂2
t = β̂0 + β̂1(rt−1− ĉ)2 + β̂2σ̂

2
t−1 and G−1(α, ν) stands

for the inverse of the Student distribution for a nominal coverage rate equal to α and ν degrees

of freedom. Besides, we do not use rolling estimation, but suppose that the estimated parameters

are stable during the whole period considered. Next, the series of violations is computed, the

backtesting tests are implemented and the test-statistics are compared with the corresponding
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empirical critical value obtained by bootstrapping the standardized residuals (see Steps B1 to

B6). Note that if, by contrast, the test-statistics are compared with the corresponding asymptotic

critical value, the size of the test hence obtained is ’polluted’ by estimation error.

Step A3 - Repeat Steps A1 and A2 a large number of times and count the number of rejections

for each backtesting statistic.

To gauge this estimation error issue, bootstrapped critical values are used instead of asymp-

totic critical values. Indeed, to compute the empirical critical values, at each repetition of steps

A1 to A2 we depart from Step A2 and implement the following steps:

Step B1 - Relying on the in-sample estimates of the parameters, θ̂ = {ĉ, β̂0, β̂1, β̂2, v̂} and

estimated conditional variance σ̂2
t , we compute the in-sample i.i.d. Student standardized residuals

{ût}Rt=1, given by ût = (rt − ĉ)
√

(v̂/(v̂ − 2))/σ̂t).

Step B2 - Let {ubt}Rt=1 be a resample drawn with replacement from the standardized residuals

series. We can hence compute the resampled conditional variance series by considering the

following recursive relation σ2b
t = β̂0 + β̂1σ

2b
t−1(ubt−1)2(v̂− 2)/v̂ + β̂2σ

2b
t−1, as well as the resampled

in-sample returns series {r̂bt}Rt=1 by using σ2b
t and ubt in eq. 24.

Step B3 - Next, we estimate a t-Garch(1,1) model on this new in-sample data ({r̂bt}Rt=1).

Denote by θ̃ = {c̃, β̃0, β̃1, β̃2, ṽ} the corresponding vector of parameters. Out-of-sample bootstrap

predictions of the conditional variance can be hence obtained according to: σ̃2
t

b
= β̃0 + β̃1(rt−1 −

c)2 + β̃2
˜σ2
t−1

b
, where t = R + 1, ..., T , given the historical returns at time t − 1 and the initial

value of the conditional variance:

σ̃2
R

b
=

β̃0

1− β̃1 − β̃2

+ β̃1

R−2∑
j=0

β̃j2

(
(rR−j−1 − c)2 − β̃0

1− β̃1 − β̃2

)
.

The associated out-of-sample VaR is next computed as V aRt = β̃0 +
√

(ṽ − 1/ṽ)σ̃t
bG−1(α, ṽ),

where t = {R+1, ..., T} and G−1(α, ṽ) is the inverse of the Student distribution for an α nominal

coverage and ṽ degrees of freedom, so that the series of violations {It}TR+1, taking the value of 1

in the case of a V aR exception, is finally obtained.

Step B4 - At this step, all the backtesting tests can be implemented, and the corresponding

test-statistics are regrouped in a row vector {DBb
1, DB

b
2, DB

b
3, DB

b
4, DB

b
5, DB

b
6, DB

b
7, DQ

b
1,
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DQb
2, DQ

b
3, LR

b}.

Step B5 - Repeat Steps B1 to B4 a large number of times and save the row vector of test-

statistics obtained at each iteration (i) as the ith row of the matrix of test statistics. The empirical

critical value for each of the tests is given by the 95% quantile of the corresponding series of test-

statistics (the appropriate column of the matrix of test-statistics).

These nested simulations are very time-consuming. This is why we use 1000 simulations in

steps A1-A2, whereas we consider 100 repetitions for the steps B1 to B4. The coverage rate is

fixed to 5%, and several in-sample/out-of-sample sizes are considered. We thus illustrate the

impact of the in-sample size on the estimation error and that of the out-of-sample size on the

small-sample properties of the backtests. Table 2 shows the influence of the estimation risk on

the size of the backtesting tests. It reports the uncorrected size and the corrected one. To be

more precise, the former is computed by relying on asymptotic critical values, whereas the latter,

i.e. the corrected size, is obtained by implementing the procedure presented above (steps A1-A4

and B1-B5) and it is reported between parentheses.

[insert Table 2 here]

The most striking finding is that in the presence of estimation error all tests are oversized

whatever the in-sample/out-of-sample sizes. To be more exact, the larger the in-sample size, the

closer the size of the tests is to the nominal 5% level. As expected, the estimated parameters

asymptotically converge to the true parameter values and the impact of estimation error asymp-

totically vanishes. Besides, for the same in-sample size (R=250), an increase in the out-of-sample

window (from 250 to 500) leads to a loss in the size properties of the tests, i.e. the tests become

more oversized. This finding corresponds to our a-priori expectation that the larger the number

of forecasts based upon parameters affected by estimation error, the more the backtest applied

to these forecasts will be likely to ’wrongly’ reject the null hypothesis of valid VaR forecasts.

We can emphasize, however, the fact that when correcting for estimation error, the size of

the tests is close to the nominal one. To be more precise, in small samples most of the tests are

undersized, and DB1 seems to works better than the others. For larger sample sizes this test

becomes oversized, which is also the case for DQ1 and LRCC , whereas DQ2 and DQ3 remain
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undersized. The other DB tests are in fact the closest to the nominal size in large samples (DB3

in particular).

Tables 3 and 4 present the feasibility ratios of the size simulations based on the Bernoulli

distribution and the t-Garch(1,1) returns respectively.

[insert Tables 3 and 4 here]

It can be noticed that the variables specific to dynamic discrete choice models, namely the

lagged probability and the lagged binary variables, are strongly correlated and thus sometimes

they completely separate the observations into their response groups (violation/no violation).

This situation is called complete separation of data points. Its main consequence is that the

likelihood maximization algorithm does not have a finite solution (or in other words, the max-

imum likelihood estimate does not exist). More specifically, this problem arises in the models

containing both the lagged probability and lagged binary variables, and its negative impact re-

bounds on the feasibility of these tests. Consequently, it is only the DB1 specification that can

be always computed, followed by DB5 and DB6. It is also worth noting that the LRCC and DQ

tests cannot be computed when there is no violation in the sample, which reduces their feasibility

particularly for a 1% nominal coverage, and in small samples. Similar results are obtained for

the t-Garch experiment. In consequence, we present the power results only for the DB1, the

DB5 and the DB6 specifications, as well as the DQ and the LRCC tests.

4.2 Power analysis

We now investigate the power of the test for two different alternative hypotheses. First, an

i.i.d. Bernoulli violations series with a false coverage rate is considered under the alternative

hypothesis. As usual in this literature, the Monte Carlo technique proposed by Dufour (2006) is

implemented in this case. Second, a t-Garch(1,1) model is considered. Another major implication

of the estimation error concerns the power results of this model. Thus, the empirical power has

to be computed from the rejection rates obtained with the bootstrapped critical values.

Indeed, we implement a two-step procedure specially designed to size-adjust the power results,

as follows. First, we generate a returns series {rt}Tt=1 according to a standard t-Garch(1,1) DGP
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following the different specifications considered (page 11). Then, we compute the sequence of VaR

forecasts under the alternative hypothesis by relying on the Historical Simulations method. Next,

we implement the backtests and obtain the test-statistics under the alternative. 1000 repetitions

are considered, and for each of them we compute bootstrapped critical values based on 100

simulations under the null hypothesis, performed by following the same procedure as for the size

simulations (see steps A2 and B1-B5). Note that a t-Garch(1,1) model is used for the critical

values and not the Historical Simulation method, since these simulations are performed under

the null hypothesis.

The rejection frequency for the conditional coverage tests based on i.i.d. Bernoulli sequences

of violation are reported in Table 5 (both at 5% and 1% coverage rate).

[insert Tables 5 and 6 here]

Under the alternative hypothesis a 3% coverage rate has been considered. It seems that the

LRCC and DB tests outperform the DQ specifications, particularly in small samples and for a

5% nominal coverage rate.

In the t-Garch experiment (see Table 6), a VaR-HS is estimated under the alternative hy-

pothesis, while under the null hypothesis the VaR computation is based on the t-Garch(1,1)

model. Recall that to size adjust the power results, the backtest-statistics computed under the

alternative hypothesis are compared with the corresponding bootstrapped critical values. The

coverage rate is fixed to 5% and the same pairs of in-sample/out-of-sample size are used as in

the size simulations.

As the main result, the DB, DQ1 and LRCC tests always exhibit low power. Furthermore,

the results in Table 1 show that, for a backtest which relies on dynamic regression models, the

introduction of the VaR apart from that of the lagged index (which gives the dynamics of the

system) improves the power results. In particular, it is the case of the DB5 specification, which

seems to outperform all other specifications, regardless of the pair of in-sample/out-of-sample

size we choose.

Besides, the power of the tests slowly increases with the in-sample size while it decreases

when the out-of-sample window grows but the in-sample one stays the same.
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Similar to the case of size simulations, the DB1 conditional coverage test can always be

computed, whereas the other tests are not always feasible, especially when estimation error is

taken into account (see Tables 7 and 8).

[insert Tables 7 and 8 here]

To sum up, all tests have ups and downs, especially for the size simulations when estimation

error is taken into account, as they over-reject the validity of the VaR. However, our test seems

to work slightly better than the others in this framework, as it rejects less frequently the validity

of the VaR sequence. Besides, in all sets of simulations our test exhibits good power properties,

better than the other two tests, particularly in small samples (T=250), even in the presence of

estimation risk. Since it appears that there is no “best backtest”, as none of them outperforms

the others in all cases, our findings support the use of several validation tests whenever possible,

and the implementation of a non-linear regression-based test in small samples.

5 Empirical application

Berkowitz and O’Brien (2002) compare VaR forecasts obtained from the structural models of 6

large U.S. banks to those issued from a standard GARCH model applied to the P&L volatility

for each bank and show that, against expectations, the VaR models used by those banks are not

better than simple models of volatility. In a similar vein, we gauge the impact of correlations

between the assets composing a portfolio on the computation and implicitly on the validation

of the VaR for that portfolio.

We thus illustrate our new backtest by considering a portfolio of three assets from the CAC40

market index, i.e. Alcatel-Lucent, Carrefour and Essilor International, for the period June 1,

2007 - June 1, 2009. The weights used to construct the portfolio have been chosen as the

fraction of the market capitalization of the portfolio corresponding to each asset. Besides, the

composition of the portfolio is assumed to be constant over time.

Two cases are considered. First, we care for the correlation between assets by using a

multivariate framework, i.e. the Dynamic Conditional Correlation Multivariate GARCH model
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(Engle and Sheppard, 2001, Engle, 2002), hereafter DCC. Indeed, the VaR is computed by using

the conditional variance of the portfolio issued from the second step of the DCC model. Second,

the VaR of the portfolio is issued from a standard Garch(1,1) model estimated for the portfolio

returns, i.e. that neglects the correlations between the assets.

Figure 1 presents the three conditional correlation coefficients obtained from the DCC model.

[insert Figure 1 here]

It seems that there is a strong correlation between the three assets (Alcatel-Lucent, Carrefour

and Essilor International) during this period. We proceed hence to the validation of the two

VaR sequences obtained from a model taking into account the correlation between assets and

one that does not consider this correlation.

The statistics and p-values of the DB tests are reported both at a 5% and at a 1% coverage

rate. For comparison purposes, the findings of the DQ tests and that of Christoffersen’s LRCC

test are also displayed. The results of the backtests for the first sequence of VaR (based on the

DCC model) are displayed in the left part of Table 9 while those corresponding to the second

VaR sequence (relying on a Garch(1,1) model) are presented in the right part of this table.

[insert Table 9 here]

The tests conclude to the validity of both risk measures for a 5% as well as for a 1% coverage

rate. To be more precise, the two VaR sequences (obtained from the multivariate DCC model and

from the univariate Garch model respectively) are too similar for the backtests to discriminate

between them. In other words, the correlations amongst assets do not have any impact on the

computation of the VaR and implicitly on its validity. Our findings thus go along the lines of

Berkowitz and O’Brien’s diagnostic (2002).

Besides, Figure 2 depicts the series of violation probabilities issued from the seven Dynamic

Binary backtesting specifications we propose. More exactly, it corresponds to the in-sample

VaR(5%) resulting from the Garch(1,1) model on the returns of the aggregated portfolio.3

[insert Figure 2 here]

3The plots corresponding to a 1% coverage rate and/or the DCC model are available upon request.
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For each Dynamic Binary backtest (DB1 to DB6), Figure 2 depicts the estimated hit prob-

ability from June 1, 2007 to June 1, 2009. Most importantly, this graphical result confirms the

fact that the univariate VaR-Garch validity cannot be rejected, whatever the specification of

the Dynamic Binary test. Recall that under the null, the hit probability is precisely equal to

the coverage rate, i.e. 5% in our case. We can observe that for all specifications, the estimated

probabilities level close to the coverage rate all over the period. We do not report a confidence

interval on the estimated probabilities in Figure 2, since this information is redundant with that

given by the formal backtests. Obviously, the richer the dynamic specification of the binary

model is, (including lagged values of VaR, lagged values of the hit variable, etc.), the more

volatile the estimated probabilities are and the lower the power. Besides, the introduction of

additional regressors reduces the feasibility of the tests (see the size and power feasibility tables).

This is why we recommend the first and the fifth specification, DB1 and DB5, that include the

lagged index and the lagged VaR and the lagged index, respectively.

6 Conclusion

In this paper we propose a new backtest based on non-linear regression models. The baseline

idea is that the validity of the VaR can be tested through joint restrictions on the parameters of a

regression in which the dependent variable is the series of violations. In view of the discrete choice

character of the series of violations, the use of a non-linear model seems to be more appropriate

than the estimation of a linear one. We expect to ameliorate the finite-sample properties of

the tests by gauging the impact of modelling the binary choice indicator in a proper non-linear

framework on the properties of the backtest.

Departing from the Early Warning System literature (Kauppi and Saikonnen, 2008), Dy-

namic Binary logit models including the lagged index, i.e. DB, are estimated and classic

likelihood-ratio tests are implemented. Several specifications are considered for the DB test,

including the lagged violations and the lagged VaR. For comparison reasons the DQ and LRCC

tests are also presented.

In a Monte Carlo experiment, we show that the use of a framework which is appropriate for
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the binary character of the dependent variable slightly improves the finite sample properties of

the backtesting tests. This is particularly true in small samples, when estimation risk is taken

into account, case that is notably interesting from the practitioner’s point of view.

An empirical application on an illustrative portfolio constituted from three assets included

in the CAC40 market index for the period June 1, 2007 - June 1, 2009 is finally proposed. It

reveals that the correlations amongst assets do not have a significant impact on the computation

of the VaR and implicitly on the validity of the VaR. To be more exact, the VaR sequence issued

from a multivariate DCC model, as well as the one based on a univariate Garch model, are both

valid at a 5% and 1% coverage rate.
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Appendix 1: Constrained Maximum Likelihood Estimation

(Kauppi and Saikkonen, 2008)

Let us recall the general form of the dynamic binary response model: Pt−1(It(α) = 1) = Λ(βπt−1+

δIt−1(α)+xt−1ξ), where ξ = [ψ, γ]. The initial value π0 is set to (x̄ξ)/(1−β), x̄ being the sample

mean of the exogenous variables and ξ being the vector of parameters ξ = [c, ψ, γ]. The initial

condition for the ξ vector of parameters is given by an OLS estimation, while the initial β is set

to 0.

Since β is an autoregressive parameter, a constrained maximum likelihood estimation must

be implemented. Nevertheless, the same results can be reached in a faster and easier way by

using a transformation of the β parameter in the classical maximum likelihood process. Thus,

in order to solve this problem, we denote by η the new maximization parameter identified so

that β is equal to η/(1 + |η|), i.e., β takes values in the interval [0,1].

We must emphasize the fact that, in view of the parameter transformation from β to η, the

maximization variance-covariance matrix corresponds to the parameters [ξ η], and not to the

initial parameters [ξ β]. Thus, we must proceed to a modification of the variance-covariance

matrix from the first space to the second one. To this purpose, the approximation of the

transformation function around the point η0 is computed based on Taylor’s theorem. To be more
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exact, since the estimated parameter β̂ = f(η̂), where f(η̂) = η̂/(1 + |η̂|), the approximation

becomes:

β̂ = f(η̂) ' f(η0) +
∂f(η̂)′

∂η
|η0(η̂ − η0). (27)

Since we actually aim at finding the variance of β, we use the formula V ar(a′X) = a′V ar(X)a:

V ar(β̂) ' 0 +
∂f(η̂)′

∂η
|η0V ar(η̂)

∂f(η̂)

∂η
|η0 (28)

Since η̂
p−→ η0, we can replace η0 with the estimator η̂ in eq. 28:

V ar(β̂) ' 0 +
∂f(η̂)′

∂η
|η̂V ar(η̂)

∂f(η̂)

∂η
|η̂ (29)

Last but not least, the first derivative of the transformation function f(η̂) with respect to (η̂)

can be computed through finite differences. Consequently, the standard errors obtained as the

square root of the elements laying on the first diagonal of the variance-covariance matrix are

consistent with the [β η] vector of parameters.
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Appendix 2: Figures and Tables

Figure 1: Conditional correlations
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Figure 2: Violation Probabilities - DB specifications (VaR-Garch - 5% coverage rate)
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Table 1. Empirical size - CC tests

Coverage rate 5%

Sample size DB1 DB2 DB3 DB4 DQ1 DQ2 DQ3 LRCC

T = 250 0.0940 0.1293 0.1209 0.1075 0.1029 0.0890 0.0903 0.0632

T = 500 0.0664 0.0876 0.0801 0.0788 0.0529 0.0630 0.0648 0.0376

T = 750 0.0624 0.0759 0.0728 0.0724 0.0481 0.0495 0.0495 0.0373

T = 1000 0.0690 0.0834 0.0848 0.0821 0.0518 0.0492 0.0521 0.0486

T = 1500 0.0625 0.0846 0.0785 0.0780 0.0472 0.0494 0.0504 0.0574

Coverage rate 1%

Sample size DB1 DB2 DB3 DB4 DQ1 DQ2 DQ3 LRCC

T = 250 0.0113 0.0612 0.0580 0.0490 0.0290 0.0416 0.0594 0.0065

T = 500 0.0109 0.0425 0.0286 0.0209 0.0485 0.0771 0.1112 0.0053

T = 750 0.0152 0.0479 0.0313 0.0243 0.0835 0.1256 0.1375 0.0169

T = 1000 0.0244 0.0474 0.0339 0.0237 0.1117 0.0859 0.1064 0.0267

T = 1500 0.0227 0.0474 0.0300 0.0252 0.0621 0.0612 0.0690 0.0325

Note: Under the null, the series of violations is i.i.d. from a Bernoulli distribution. For each sample, we provide the percentage of

rejection of the coverage tests both at a 5% and 1% nominal level based on 10000 replications. DBj denotes the Dynamic Binary

test for the jth specification. Similarly, LRCC represents Christoffersen’s LR test (1998) based on Markov chain approach, while

DQ denotes the Dynamic Quantile test proposed by Engle and Manganelli (2004).

Table 2. Empirical size - CC tests with estimation error

Coverage rate 5%

R T DB1 DB2 DB3 DB4 DB5 DB6 DB7 DQ1 DQ2 DQ3 LRCC

250 500 0.2400 0.2835 0.2675 0.2450 0.2490 0.3030 0.2640 0.2115 0.1990 0.1835 0.2315

(0.0420) (0.0270) (0.0220) (0.0210) (0.0310) (0.0300) (0.0290) (0.0680) (0.0140) (0.0100) (0.0380)

250 750 0.3467 0.4006 0.3840 0.3720 0.3557 0.4259 0.3862 0.3636 0.3418 0.3263 0.3263

(0.0650) (0.0410) (0.0360) (0.0410) (0.0380) (0.0400) (0.0360) (0.0810) (0.0240) (0.0170) (0.0630)

500 750 0.1510 0.1945 0.1835 0.1750 0.1660 0.2230 0.1885 0.1325 0.1270 0.1275 0.1360

(0.0630) (0.0440) (0.0390) (0.0340) (0.0320) (0.0330) (0.0320) (0.0740) (0.0170) (0.0100) (0.0540)

750 1000 0.1070 0.1535 0.1385 0.1310 0.1265 0.1995 0.1645 0.0975 0.0920 0.0900 0.0910

(0.0690) (0.0560) (0.0480) (0.0420) (0.0420) (0.0480) (0.0440) (0.0750) (0.0170) (0.0110) (0.0670)

1000 1250 0.0900 0.1395 0.1400 0.1165 0.1240 0.1935 0.1690 0.0895 0.0960 0.1035 0.0760

(0.0700) (0.0570) (0.0510) (0.0510) (0.0560) (0.0400) (0.0380) (0.0880) (0.0230) (0.0180) (0.0630)

Note: We generate returns using a Garch(1,1) model with standardized Student-t innovations and compute the out-of-sample

VaR sequence using a t-Garch(1,1) model estimated on the first R observations. We provide the results ’polluted’ by estimation

error as well as those corrected for estimation error by using bootstrapped instead of asymptotic critical values (the corrected size is

between parentheses). For each in-sample/out-of-sample pair (R, T −R), we show the percentage of rejection of the coverage tests at

the 5% nominal level based on 1000 replications. At each replication, the empirical critical values are calculated by performing 100
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resamplings of the standardized residuals from the t-Garch model. DBj denotes the Dynamic Binary test for the ′j′th specification.

Similarly, LRCC represents Christoffersen’s LR test (1998) based on Markov chain approach, while DQ denotes the Dynamic Quantile

test proposed by Engle and Manganelli (2004).

Table 3. Feasibility ratios - size simulations

5% Coverage rate

Sample size DB1 DB2 DB3 DB4 DQ1 DQ2 DQ3 LRCC

T = 250 1.0000 0.7952 0.7090 0.6446 1.0000 1.0000 1.0000 1.0000

T = 500 1.0000 0.9228 0.8648 0.8252 1.0000 1.0000 1.0000 1.0000

T = 750 1.0000 0.9653 0.9393 0.9141 1.0000 1.0000 1.0000 1.0000

T = 1000 1.0000 0.9834 0.9677 0.9574 1.0000 1.0000 1.0000 1.0000

T = 1500 1.0000 0.9946 0.9913 0.9881 1.0000 1.0000 1.0000 1.0000

1% Coverage rate

Sample size DB1 DB2 DB3 DB4 DQ1 DQ2 DQ3 LRCC

T = 250 1.0000 0.9516 0.9351 0.9181 0.9203 0.9203 0.9203 0.9194

T = 500 1.0000 0.9715 0.9653 0.9397 0.9944 0.9944 0.9944 0.9943

T = 750 1.0000 0.9775 0.9725 0.9452 0.9995 0.9995 0.9995 0.9995

T = 1000 1.0000 0.9766 0.9773 0.9458 0.9999 0.9999 0.9999 0.9999

T = 1500 1.0000 0.9835 0.9824 0.9654 1.0000 1.0000 1.0000 1.0000

Note: The results correspond to the fraction of the sample for which a certain test can be computed. DBj denotes the Dynamic

Binary test for the j′th specification. Similarly, LRCC represents Christoffersen’s LR test (1998) based on Markov chain approach,

while DQ denotes the Dynamic Quantile test proposed by Engle and Manganelli (2004). Also note that the series of violations is

i.i.d. Bernoulli.

Table 4. Feasibility ratios - size simulations with estimation risk

Coverage rate 5%

R T DB1 DB2 DB3 DB4 DB5 DB6 DB7 DQ1 DQ2 DQ3 LRCC

250 500 1.0000 0.8300 0.7542 0.7071 0.9787 0.9143 0.9063 0.9911 0.9911 0.9911 0.9911

(0.9961) (0.8319) (0.7347) (0.7308) (0.9815) (0.9077) (0.8980) (0.9864) (0.9864) (0.9864) (0.9864)

250 750 1.0000 0.9333 0.8921 0.8567 0.9942 0.9493 0.9419 0.9887 0.9887 0.9887 0.9887

(0.9970) (0.9453) (0.8946) (0.8678) (0.9891) (0.9374) (0.9314) (0.9940) (0.9940) (0.9940) (0.9940)

500 750 1.0000 0.8109 0.7260 0.6826 0.9741 0.9132 0.9107 0.9980 0.9980 0.9980 0.9980

(0.9953) (0.7978) (0.7575) (0.6807) (0.9813) (0.8886) (0.8867) (0.9916) (0.9916) (0.9916) (0.9916)

750 1000 1.0000 0.7996 0.7181 0.6577 0.9825 0.9095 0.9035 0.9995 0.9995 0.9995 0.9995

(0.9973) (0.7815) (0.7157) (0.6654) (0.9671) (0.9031) (0.8958) (0.9963) (0.9963) (0.9963) (0.9963)

1000 1250 1.0000 0.8001 0.7091 0.6667 0.9780 0.9080 0.8936 0.9995 0.9995 0.9995 0.9995

(0.9991) (0.8070) (0.7160) (0.6601) (0.9729) (0.9116) (0.8999) (0.9991) (0.9991) (0.9991) (0.9991)

Note: The results correspond to the fraction of the sample for which a certain test can be computed. We provide the results

for the size ’polluted’ by estimation error as well as that corrected for estimation error by using bootstrapped instead of asymptotic

critical values (the corrected size is between parentheses). DBj denotes the Dynamic Binary test for the ′j′th specification. Similarly,
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LRCC represents Christoffersen’s LR test (1998) based on Markov chain approach, while DQ denotes the Dynamic Quantile test

proposed by Engle and Manganelli (2004). Also note that a t-Garch(1,1) model has been considered both for the generation of the

returns and the estimation of the VaR.

Table 5. Empirical power - CC tests

Coverage rate 5%

Sample size DB1 DQ1 DQ2 DQ3 LRCC

T = 250 0.2394 0.1472 0.1171 0.0667 0.3119

T = 500 0.3649 0.3876 0.2961 0.2241 0.5072

T = 750 0.5592 0.5716 0.4390 0.3130 0.6884

T = 1000 0.7698 0.7284 0.6310 0.5258 0.8271

T = 1500 0.9394 0.9332 0.8812 0.8272 0.9417

Coverage rate 1%

Sample size DB1 DQ1 DQ2 DQ3 LRCC

T = 250 0.6563 0.6190 0.4911 0.3960 0.6292

T = 500 0.8737 0.8035 0.7685 0.7448 0.8655

T = 750 0.9785 0.9583 0.9464 0.9226 0.9801

T = 1000 0.9954 0.9934 0.9905 0.9872 0.9943

T = 1500 0.9999 0.9999 0.9998 0.9992 0.9997

Note: Under the null hypothesis, the series of violations is i.i.d. Bernoulli. For each sample, we provide the percentage of

rejection of the coverage tests both at a 5% and 1% nominal level based on 10000 replications. A 3% false coverage rate is considered

under the alternative hypothesis. DB1 denotes the Dynamic Binary test for the first specification. Similarly, LRCC represents

Christoffersen’s LR test (1998) based on a Markov chain approach, while DQ denotes the Dynamic Quantile test proposed by Engle

and Manganelli (2004).

Table 6. Empirical power

CC tests with estimation error

Coverage rate 5%

R T DB1 DB5 DB6 DQ1 DQ2 DQ3 LRCC

250 500 0.0820 0.1740 0.1520 0.1510 0.1000 0.0950 0.0890

250 750 0.0220 0.1210 0.1120 0.1170 0.0650 0.0630 0.0360

500 750 0.1820 0.2640 0.2380 0.2170 0.1370 0.1250 0.1770

750 1000 0.2680 0.3550 0.3220 0.3080 0.2470 0.2190 0.2840

1000 1250 0.3290 0.4300 0.3960 0.3790 0.2880 0.2690 0.3340

Note: We generate returns using a t-Garch(1,1) model with standardized Student-t innovations and compute the out-of-sample

VaR sequence using the Historical Simulation method. For each sample, we provide the percentage of rejection of the coverage

tests at a 5% nominal level based on 1000 replications and bootstrapped critical values so as to account for estimation error. The

empirical critical values are obtained under the null by performing 100 resamplings of the standardized residuals from the t-Garch

model. DBj denotes the Dynamic Binary test for the jth specification. Similarly, LRCC represents Christoffersen’s LR test (1998)
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based on Markov chain approach, while DQ denotes the Dynamic Quantile test proposed by Engle and Manganelli (2004). R stands

for the in-sample size whereas T represents the full-sample size.

Table 7. Feasibility ratios - power simulations

5% Coverage rate

Sample size DB1 DQ1 DQ2 DQ3 LRCC

T = 250 1.0000 0.9995 0.9995 0.9995 0.9995

T = 500 1.0000 1.0000 1.0000 1.0000 1.0000

T = 750 1.0000 1.0000 1.0000 1.0000 1.0000

T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000

T = 1500 1.0000 1.0000 1.0000 1.0000 1.0000

1% Coverage rate

Sample size DB1 DQ1 DQ2 DQ3 LRCC

T = 250 1.0000 0.9995 0.9995 0.9995 0.9995

T = 500 1.0000 1.0000 1.0000 1.0000 1.0000

T = 750 1.0000 1.0000 1.0000 1.0000 1.0000

T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000

T = 1500 1.0000 1.0000 1.0000 1.0000 1.0000

Note: The results correspond to the fraction of the sample for which a certain test can be computed. DB1 denotes the Dynamic

Binary test for the first specification. Similarly, LRCC represents Christoffersen’s LR test (1998) based on Markov chain approach,

while DQ denotes the Dynamic Quantile test proposed by Engle and Manganelli (2004). Also note that the series of violations is

i.i.d. Bernoulli with a false 3% coverage rate under the alternative hypothesis.

Table 8. Feasibility ratios - power simulations with estimation error

5% Coverage rate

R T DB1 DB5 DB6 DQ1 DQ2 DQ3 LRCC

250 500 1.0000 0.9388 0.7570 0.9815 0.9815 0.9815 0.9815

250 750 1.0000 0.9374 0.7624 1.0000 1.0000 1.0000 1.0000

500 750 1.0000 0.9101 0.7837 0.9410 0.9410 0.9410 0.9410

750 1000 1.0000 0.9013 0.7788 0.9168 0.9168 0.9168 0.9168

1000 1250 1.0000 0.9134 0.8115 0.9026 0.9026 0.9026 0.9026

Note: The results correspond to the fraction of the sample for which a certain test can be computed when analyzing the power

of the tests corrected for estimation error (by relying on bootstrapped critical values). DBj denotes the Dynamic Binary test for the

jth specification. Similarly, LRCC represents Christoffersen’s LR test (1998) based on Markov chain approach, while DQ denotes the

Dynamic Quantile test proposed by Engle and Manganelli (2004). Also note that a t-Garch(1,1) model has been considered for the

generation of the returns and the Historical Simulations method has been used under the alternative, to compute the VaR forecasts.

R stands for the in-sample size whereas T represents the full-sample size.
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Table 9. Conditional coverage Backtesting tests:

DCC Garch

VaR 5% VaR 1% VaR 5% VaR 1%

DB1 0.4076 0.0206 0.6632 0.6990

(0.8156) (0.9898) (0.7178) (0.7050)

DB2 0.9146 2.7400 0.6838 7.3746

(0.8219) (0.4335) (0.8770) (0.0609)

DB3 0.9397 2.7424 1.1083 7.3514

(0.9188) (0.6018) (0.8929) (0.1184)

DB4 0.9481 2.7411 2.2938 7.3273

(0.9666) (0.7398) (0.8072) (0.1974)

DB5 0.4074 1.3250 0.6642 2.8436

( 0.9387) (0.7232) (0.8816) ( 0.4164)

DB6 0.9187 9.2295 0.6849 9.4812

(0.9219) (0.0556) (0.9532) (0.0501)

DB7 4.0038 9.4527 0.8590 9.4802

(0.5489) (0.0923) (0.9731) (0.0914)

DQ1 0.4649 0.0505 0.6575 0.8885

(0.7926) (0.9751) (0.7198) (0.6413)

DQ2 0.6211 0.1013 0.9994 1.0296

(0.8916) (0.9917) (0.8014) (0.7941)

DQ3 0.8749 0.1532 1.3205 1.1748

(0.9281) (0.9972) (0.8579) (0.8822)

DQV aR1 0.4654 1.1330 0.6611 3.3977

(0.9264) (0.7691) (0.8823) (0.3343)

DQV aR2 0.7352 1.2037 1.1721 3.5630

(0.9810) (0.9445) (0.9475) (0.6139)

DQV aR3 1.8576 1.3115 2.1057 3.6923

(0.9673) (0.9881) (0.9538) (0.8145)

LR 0.4388 0.1005 0.6323 0.8757

(0.8030) (0.9510) (0.7290) (0.6454)

Note: A portfolio composed of three assets is considered, the returns being observed for the period between June 1, 2007 and

June 1, 2009. In a first case, the series of VaR for the portfolio is issued from a DCC model while in a second case from a t-Garch

model. 13 conditional coverage tests are used, namely 7 dynamic binary specifications DB, 6 DQ tests (Engle and Manganelli, 2004)

including several lags of the violations variable and VaR, as well as Christoffersen’s LRCC test. These tests are applied both at a

5% and 1% coverage rate respectively. The corresponding p-values are presented in the parentheses.
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