
Variable types for meaning assembly: a logical syntax

for generic noun phrases introduced by ”most”

Christian Retoré

To cite this version:

Christian Retoré. Variable types for meaning assembly: a logical syntax for generic noun
phrases introduced by ”most”. Recherches linguistiques de Vincennes, Presses Universitaires
de Vincennes, 2012, 41, pp.83-102. <hal-00677312>

HAL Id: hal-00677312

https://hal.archives-ouvertes.fr/hal-00677312

Submitted on 7 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte a LUniversite Lyon 2

https://core.ac.uk/display/47712593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00677312


Ch. Retoré / Variable types for meaning assembly 1 

Christian Retoré 

Université de Bordeaux —LaBRI CNRS 

351, cours de la Libération 33405 Talence cedex 

christian.retore@labri.fr  

Variable types for meaning assembly:  

a logical syntax for generic noun phrases introduced by most 

1. Overview  

  
 This paper proposes a way to compute the meanings associated with 

sentences with generic noun phrases corresponding to the generalized 

quantifier most. We call these generics specimens and they resemble 

stereotypes or prototypes in lexical semantics. The meanings are viewed as 

logical formulae that can thereafter be interpreted in your favourite models.  

 To do so, we depart significantly from the dominant Fregean view 

with a single untyped universe. Indeed, our proposal adopts type theory with 

some hints from Hilbert ε-calculus (Hilbert, 1922; Avigad and Zach, 2008) 

and from medieval philosophy, see e.g. de Libera (1993, 1996). Our type 

mailto:christian.retore@labri.fr


Ch. Retoré / Variable types for meaning assembly 2 

theoretic analysis bears some resemblance with ongoing work in lexical 

semantics (Asher 2011; Bassac et al. 2010; Moot, Prévot and Retoré 2011).  

 Our model also applies to classical examples involving a class, or a 

generic element of this class, which is not uttered but provided by the 

context. An outcome of this study is that, in the minimalism-contextualism 

debate, see Conrad (2011), if one adopts a type theoretical view, terms 

encode the purely semantic meaning component while their typing is 

pragmatically determined.  

 

2. Type theory as a syntax of semantics.   

 

 In the viewpoint of Montague (1970), a syntactic parse tree is turned 

into a reference, that is a set of truth conditions, or an interpretation in 

possible worlds, via an intermediate step, a logical formula written as a 

lambda term, that one could call a logical form. In Montague’s analysis, 

intermediate steps ought to be wiped off once the computational process 

yielding references is over. Our article is on the contrary focused on this 

logical form and how it can be computed — this step is reminded in Moot 

and Retoré (2012).  What should be the logical formulae depicting the 

meaning? There are several reasons for addressing this question:  

 Firstly, given the subtlety of the questions we wish to consider, 

involving generalised quantification and vagueness, the right notion 

of reference, if any, is going to be tricky.  

 For such issues, it likely that other interpretations, not in terms of 

truth and reference, but in terms of argumentation are better 

designed — for instance, an interactive view of semantics has been 

proposed in Lecomte and Quatrini (2011) using ludics: roughly 

speaking, formulae are interpreted as sets of possible proofs and 

refutations.   

 In order to properly depict an interpretation, be it a referential or an 

interactive one, we first need to know precisely which formulae we 

wish to interpret.  

The logical syntax of semantics is usually split into two systems: 

1. The logic in which we express the logical form, the meaning of the 

sentence, discourse, etc. In Montague semantics it is usually higher 

order predicate logic — although some use first order logic via a 

reification of predicates. This logic is used as a language, which can 

be interpreted in models.  

2. The glue logic, also known as metalogic, is usually presented as a 

lambda calculus — simply typed lambda calculus, in the case of 

Montague.  Via the Curry-Howard isomorphism, well presented in 

Girard et al. (1988), these terms are formal proofs in propositional 

intuitionistic logic with two base types: e for entities and t for 

propositions. This logic is used as a calculus for meaning assembly, 



Ch. Retoré / Variable types for meaning assembly 3 

since such a view is mainly compositional:  the meaning of the 

whole is a function of the meaning of its parts and of the syntax — 

although context should also be taken into account, as we shall see.  

We adopt a similar viewpoint, but there will be a difference: while there is no 

interplay between the two logical layers in standard Montague semantics, we 

shall have some interaction, because the metalogic is richer:  

1. The logical forms take place into multisorted higher order logic.  

2. The metalogic, the lambda calculus for meaning assembly will be 

second order propositional intuitionistic logic, that is second order 

lambda calculus with many primitive types for entities (we give 

precise definitions of this system in the next section).  

The need for having many primitive types is guided by the following critique 

of Frege’s single sorted universe. We think that language rarely or even never 

quantifies over all entities, but over entities of a given type. Frege used a trick 

to reformulate without types what natural language or even mathematics 

expresses as a:A P(a) with A a type. He writes this as x [A(x)  P(x)]. 

But this formulation is ad hoc, and it does not extend to generalised 

quantification, since the two following propositions, in which   means 

―most‖ are not equivalent:  

 a:A P(a)    Most students go out.  

 x [A(x)  P(x)] For most entities, if they are students they go out.  

This is a reason why the standard approach view generalised quantification as 

a function of two predicates, the restrictor and the predicate itself, see e.g. 

Peters and Westerstahl (2008), Szabolcsi (2010), Mari (2011). Thus the study 

of generalised quantifiers cannot treat quantification as the usual logical 

setting does,  with quantification acting on a single predicate.  

 Our preference for a rather natural quantification over a type (a 

class, a set) rather then for an absolutely universal one is reminiscent of 

medieval philosophy. Indeed, philosophers around Avicenna, in particular his 

student Abu’l-Barakat al-Baghdadi, said that properties should always be 

asserted of an object as being a member of some class (perhaps nowadays 

they would say type), and they draw a distinction between homogenous 

predicates that apply to a class and its subclasses and predicates that apply 

across classes (De Libera, 1993). In comparison with the above formulation 

by Frege, there is quite a difference: not any formula with a single variable 

defines a type, types are much more restricted, and so are comparison classes.  

 If we adopt a type system where not any set is a type, then we shall 

probably want some flexibility, enabling an object of a given type to be 

considered as a member of another type when the context requires such a 

type change. Such transformations require operations on families of types, 

hence a second order type system. Our idea behind this framework is to draw 

a border between semantics and pragmatics: lambda terms compute semantic 

representations and types are irrelevant for computing beta reduction and 



Ch. Retoré / Variable types for meaning assembly 4 

substitutions. The types are used to filter impossible compositions (like ―The 

table shouts‖), and they are often determined the context.  

 Our notion of lexicon introduced in Bassac et al. (2010), and 

extended by Moot and Retoré (2011b) is a rather simple extension of a 

Montagovian lexicon. In addition to the standard lambda term expressing the 

argumental structure of a word, each word is endowed with a finite set of 

lambda terms that allow type transformation in case of solvable type 

mismatch. As an example, let us simply say we provide a correct account of 

sentences like:  
 (1) Liverpool is a poor town and an important harbour.  

 (2) * Liverpool defeated Chelsea and is an important harbour.  

Base types include town, location, people, soccer_team,… and many more, 

since any class that rather naturally comes to mind should be a base type. The 

type town can be converted to any other type in this list, but some 

transformations are declared as exclusive by the lexicon. For instance the 

transformation of a town into a soccer_team is incompatible with the other 

transformation that a town may undergo. [We do not handle examples 

involving phenomena like contrast― The small town of Manning defeated the 

much larger urban school of Davenport by a score of 43-46. » 

(http://en.wikipedia.org/wiki/Manning,_Iowa) nor strong contextualisation 

―Barcelona won four UEFA champions league and organised the Summer 

Olympic Games of 1992‖.]    

 Our model was initially designed to handle meaning transfers in 

compositional lexical semantics and thereafter applied to other questions like 

plurals, or here, quantification and generic NPs. By generic NPs we mean 

expressions that correspond to an implicit or explicit ―most of‖ quantifier:
 (3) Most Lords are appointed by the Queen.  (www.parliament.uk)   

 (4) The Brits love France. (www.brits-in-france.net) [Here we shall only 

consider the reading ―Most Brits love France.‖  while this sentence admits other 

readings: ―Brits prefer France to other countries‖ or ―Brits like France more than 

citizens from other countries do.‖, and possibly others.]  

 Our idea is to consider a generic element corresponding to most, as 

Hilbert x. P(x) and x. P(x) have used to model  existential  and universal 

quantification  (Hilbert 1922, Avigad and Zach, 2008). The universal 

generic x. P(x) is an element such that P(x. P(x)) holds whenever every x 

has the property P. Symmetrically, P(x. P(x)) holds whenever there exists an 

x enjoying the property P. In linguistics, the closest construct is the  of von 

Heusinger (2007), which combines Hilbert’s  with a choice function: it is 

used for picking an element among those that have a given property, when 

there are some. Demonstratives and definite articles behave like this: ―Give 

me the red pen.‖ Context and pragmatic principles have to be used to know 

which element is selected: this choice is left out of the purely semantic 

calculus.  

 

http://en.wikipedia.org/wiki/Manning,_Iowa
http://www.parliament.uk/
http://www.brits-in-france.net/


Ch. Retoré / Variable types for meaning assembly 5 

3. Metalogic: the system F of variable types 

 

Types are defined from the base type t and many base types for entities, since 

semantics is filtered by type mismatch. A typical mismatch occurs when 

syntax determines application of a predicate ranging over type ei objects to 

type ej objects. We thereafter need some uniform operations applying to all 

types, and the type of such an operation is ―for all type X T[X]‖ : such a 

universal operation can be specialized to any type X. For instance, the 

aforementioned  of von Heusinger could receive the second order type 

 ―for all type X. X‖ that is, for all type X the operator  yields an object of 

type X — see the end of the section for a discussion.  The type  ―for all type 

X. T[X]‖ is written ― X. T[X]‖ — we do  not write ―X. T[X]‖ because we 

also need the usual symbol ―‖ for quantification in the logical form. This 

second-order lambda-calculus called system F, was introduced by Girard 

(1971), but a good and freely available reference is Girard et al. (1988).   

Types are defined as the elements of the smallest set containing:  

 Base types, that are t and ej (a finite but large set of entity classes, 

which can be viewed as some linguistic ontology)  

 Type variables (variables ranging over types) denoted by upper case 

letters Xi (a countable number of them is required, as usual with 

variables) 

The set of types is closed under the following operations:  

 Whenever T1 and T2 are types, T1T2 is a type as well. This type 

represents functions that map T1 objects into T2 objects. The type 

that we write T1T2 is sometimes written <T1,T2> in the 

Montagovian literature.  

 Whenever X is a type variable and T a type, X. T is a type — 

usually T depends on X.  

The usual Montagovian system uses simply-typed lambda-calculus, which, 

via the Curry-Howard isomorphism — see e.g. Girard et al. (1988)  — 

corresponds to intuitionistic propositional logic with two base propositions, e 

and t and implication  as the only connective.  In our model, one may 

quantify over propositional variables. The corresponding logic is 

intuitionistic second order propositional logic with implication and universal 

quantification in which other connectives can be encoded such as existential 

quantification, conjunction and disjunction.  

 The terms typed within this type system can be viewed, by the 

Curry-Howard isomorphism, as proofs in intuitionistic second order 

propositional logic. They are defined as follows where both expressions 

―t:U‖ and ―t
U
‖ denote a term ―t‖ of type ―U‖.   

Firstly, terms include variables and constants:    

 For every type, we have a finite and possibly empty set of constants: 



Ch. Retoré / Variable types for meaning assembly 6 

o  Some of them correspond to constants of the semantic 

language for logical forms (proper names, predicates, 

higher order predicates, …). For instance, one could have a 

constant love of type Animated → e → t 

o Some of them correspond to logical operations 

(connectives, quantifiers etc.).  

 For every type we have a countable set of variables of this type. 

The set of terms is the smallest set containing the variables and constants 

above that is closed under the following operations:  

 Whenever f is a term of type TU and t a term of type T, the 

expression (f t) which reads ―f applied to t‖ is a term of type T.  

 Whenever u is a term of type U and x a variable of type T, the 

expression x. u is a term of type TU.  It denotes ―the function 

that maps x to u‖.  

 Whenever t is a term of type X. T and A is a type, the expression 

t{A}, ―t applied to the type A‖, or ―t specialised to the type A‖, is a 

term of type T[X:=A], that is the type T in which any occurrence of 

the type variable X is replaced with the type A.  

 Whenever t is a term of type T and X a type variable not appearing in 

the type of any free variable in t, the expression X. t is a term of 

type X. T ―the generalisation of t (in X)‖.  

This definition warrants a few comments.  

 A term u with a universally quantified type X. T may be viewed as 

a generic term, or a universal term, which can be specialised to a 

type A, by application of u to a type A, written u{A}.  

 As one can see, there is a restriction in the generalisation rule. This 

restriction means that, if in t we are assuming some properties of X, 

then we cannot generalise t to all types X:  the presence of a free 

variable whose type involves X precisely expresses that we are 

assuming that some specific properties of the type X hold.   

 Observe that the rules for specialisation and generalisation look a lot 

like the usual lambda calculus rules for application and abstraction.  

If one thinks of types as propositions and of terms of type P as proofs of P, as 

the Curry-Howard isomorphism allows, to which deductive system does this 

lambda calculus correspond? We have propositional constants, and 

propositional variables and the only connective is the implication ―‖  

together with the universal quantifier over propositional variables ―‖: 

specialisation and generalisation are respectively the quantifier elimination 

and introduction rules. From these two connectives, one can define 

conjunction, disjunction, and existential quantification over propositional 

variables, see e.g. Girard et al. (1988). Since there is no classical axiom like 

tertium non datur, it is an intuitionistic sytem. Hence, while the metalogic 

behind standard Montague semantics is propositional intuitionistic logic with 



Ch. Retoré / Variable types for meaning assembly 7 

arrow as the only connective, here the meta logic is quantified propositional 

intuitionistic logic — in which the other connectives and second order 

existential quantification can be encoded.  

 As in the usual Montagovian setting, only closed normal terms of 

type t correspond to semantic representations, which are logical formulae. 

Here as well, we need some reduction rules which compute semantic 

representations, i.e. formulae, by substituting types for type-variables, and 

terms for variables.  The two reduction rules are very similar: one of them is 

standard beta reduction and the other is more or less the same, but on type 

variables and types.  

1. ((x
A
. t

B
) u

A
) reduces to t[x:=u],  that is t in which any occurrence of 

x is replaced by the term u. Observe that necessarily x and u are of 

the same type A, and that the type B of the whole term is preserved 

under reduction.  

2. (X.t
T
){A} reduces to t[X:=A], that is t in which any occurrence of 

the type variable X is replaced with the type A. Observe that the type 

of the term, T[X:=A], is preserved under reduction.  

System F may seem a bit unsafe at first glance. Indeed we are defining the 

type X.T[X] from all the types T[X] with X ranging over all types, 

including X=X.T[X] which yields T[X.T[X]], and one may fear this 

impredicativity. However system F does not collapse. A first argument is that 

it is possible to construct a model, coherence spaces - see e.g. Girard et al. 

(1988) - with types as structured sets and proofs/terms as particular objects of 

these structured sets. Another argument shows that there is no collapse and 

will be useful to us thereafter: the terms of system F enjoy a strong 

normalisation, a confluent one yielding a unique normal form however one 

proceeds  (Girard, 1971). This shows system F is safe: if there were a 

collapse, or proof of something false, then there would be a normal one, and 

given the shape of normal terms/proofs it is easily seen that there cannot 

exists such a term/proof.  

 

4. The lexicon and the logic of semantic representations  

 

 The metalogic is second order propositional intuitionistic logic a.k.a. 

second order lambda calculus, but in which logic are we going to express the 

meaning of sentences? Actually, we do not depart much from the standard 

Montagovian approach.  We use higher order logic but a multisorted one: 

indeed, we have several base types for entities with relations among them. 

These relations between types are encoded by functions mapping one type to 

another and they represent meaning transfers that are reminiscent of Nunberg 

(1995). Here as well, both the argument and the predicate can contribute to 

the transfer of meaning, but the main difference is that we integrate these 

meaning transfers into a broader compositional type-theoretic framework, 



Ch. Retoré / Variable types for meaning assembly 8 

fully formalized and with an explicit computational mechanism — this lead 

us to some schematic model, leaving out some semantic subtleties.  

 An entry in the lexicon associates to each word a main lambda-term, 

that of standard Montague semantics, within a richer type system. But there 

might be other lambda terms for turning objects of a given type into the same 

object considered as a member of some other type. For instance a book is of 

type Book, but it can be turned into a material thing that can be heavy, or into 

contents that may be interesting. Ontological inclusions like Cars into 

Vehicles are also encoded that way. In order to block infelicitous 

compositions like ―The table barks‖, we have many base types, and the 

argument of ―barks‖ should be of type ―Dogs‖. But these type constraints 

should also be relaxed to allow composition of sentences like  ―I am parked 

in front of building 20‖ — both the predicate/function and the argument can 

provide the transfer. Finally, some meaning transfers are irreversible, and 

block other possible transformations: once a town has been understood as a 

soccer team, it cannot be considered as a location or as its major.  

 In order to illustrate the kind of operations such a system is able to 

model, let us see how we can conjoin two predicates that apply to different 

kinds of objects, like heavy and interesting which respectively apply to 

material things (M) and to abstract contents (A). This conjunction can only 

be considered if an object can be viewed both as a material thing and as an 

abstract content, as books (B) can.  Given  

 two predicates, h of type Mt and i of type At,  

 two maps, m from a type B to M and a from B to A,  

 b of type B 

the conjunct can be expressed as (h (m b)) and (i (a b)) or rather, using 

lambda calculus prefix notation, as  

(and (h (m b))) (i (a b)) 

In this expression, ―and‖ of type t(tt) is the standard conjunction of two 

propositions. As we are able to do so in any such situation, the lambda term 

AND for the word ―and‖ in a sentence like  
 (5) This book is heavy and interesting. 

is  

AND: A M i
A→t

h
M→t

 B b
B
 a

B→A
m

B→M
  

(and
t→(t→t)

 (h (m b))) (i (a b)) 

Observe that the variables whose type contains a type variable X are bound 

before quantifying over the type-variable X. The functions a and m from the 

type B (book in our example) to, respectively, the types A and M are provided 

by the entry book in the lexicon. With the strength of second order 

quantification, a single term is enough, since this single term can be 

specialised to the types of the situation under consideration. For our book 

example, AND should be successively applied to the following five terms 

and three types in this order:  

AND {Abstract}{Material} 



Ch. Retoré / Variable types for meaning assembly 9 

 interesting
Abstract→t

heavy
Material→t

 

  {Book}  

   this_book
Book 

to_contents
Book→A

 to_material
Book→M 

Another example, for the syntax of semantics, is the modelling of the 

universal quantifier . In an unsorted logic, one only needs a single 

quantifier for individuals, which from the viewpoint of lambda calculus is a 

constant of type ((et)t) and others for higher order quantifications, e.g. 

(((e(et))t)t) for quantifying over transitive verbs. Using system F, a 

single constant for universal quantification is needed. A single constant  of 

type X. (Xt)t is enough since it can be specialised to a type U if one 

wants to quantify over U-objects by specialisation to U. Indeed, the term 

( {U}) is of type (Ut)t and ( {U}) represents universal quantification 

over U-objects. The same consideration applies to von Heusinger’s . We 

said its type should be X. X but we should also have a constant  receive the 

type X. (Xt)X, which when applied to a property of X yields an element 

of type X enjoying the property P.  

 

5. Some questions on this computational model of semantics 

 

 This reorganisation of compositional semantics and of lexical 

semantics deserves some comments. Firstly one should really make a 

distinction between the metalogic, quantified propositional intuitionistic 

logic, where the proofs/terms are relevant objects, and the logic of semantic 

representations, higher order multisorted logic, where only the formulae are 

relevant. But, in our model, there is an unusual interplay between them: for 

any judgement ―u is of type P‖ i.e. u:P one can consider a predicate P and 

state as an axiom the formula P(u). On the other hand, not any formula with a 

single variable defines a type: types are much more constrained, and from an 

intuitive viewpoint, they should correspond to cognitively accessible classes.  

 A frequently asked question about our model is whether it has 

something to say about subtyping. Indeed, it is known that, despite some 

attempts by Cardelli et al. (1994) and by Soloviev and Luo (2000), 

―subtyping‖ does not get along well with second order typing. Firstly, one 

should draw a strong difference between the semantic notion of subtyping 

and the technical notion of ―subtyping‖ in typed functional programming  — 

remember that system F and similar lambda calculi can be viewed as 

functional programming languages, so the confusion is possible. Subtyping in 

functional programming is supposed to fit in with the functional types: the 

subtypes of AB should be inferred form the subtypes of A and those of B.  

Do the linguistic subtypes of eating verbs food  human  t derive from the 

subtypes of food and of human beings? We think that manners are more 

relevant for classifying eating verbs than the nature of their subjects and 

objects. Furthermore, it is likely that the linguistic IS_A relation is 



Ch. Retoré / Variable types for meaning assembly 10 

idiosyncratic and much more constrained than the real world ontological 

relations.  

 There exist alternative solutions to our proposal for handling both 

compositional and lexical semantics and pragmatics: the one by Asher 

(2011), using categorical logic, and the one by Luo (2011) using type theory. 

Although such type theories are weaker as logical systems, because they do 

not allow quantification over any type, these type theories have many 

structure-building rules, many reduction rules, and many variants. The 

structures they offer for linguistic modelling can be encoded in system F, 

except dependent types: if the only dependent types one needs are just 

records, they are already present in system F, but if real dependent types are 

absolutely needed — this is questionable  — dependent types can safely be 

added to system F, since all of this is included in the calculus of constructions 

of Coquand and Huet (1988)— see e.g. Bertot and Castéran (2004).  

 The system F also raises complexity issues, in particular for typing a 

given pure lambda term, or because it contains functions requiring an 

exponential number of reductions to compute their results. Our model does 

not have to face these issues. Indeed, we only reduce terms that are obtained 

by inserting lambda terms from the lexicon into a syntactic tree: there are 

neither problematic functions in the lexicon, nor in the syntactic tree/term, 

and we never try to compute the type of an untyped lambda term. There can 

be several choices of meaning transfers in case of type mismatch, but this is 

just the unavoidable syntactic, semantic and pragmatic ambiguity of human 

languages.  

 

6.  A logical syntax for generics introduced by “most” 

 

 Although there is not a clear cut-off between the two constructions, 

following English usage see e.g. the Grammar quizzes by Sevastopoulos 

(2012), we make a distinction between noun phrases introduced by ―most‖ 

and those introduced by ―most of‖. Indeed, while the class associated with 

the ―most‖ object is natural and immediately apprehended, the class 

associated with the ―most of‖ object may be a complex one, defined by a 

formula.  
 (7) Most students passed logic.  

 (8) Most of the students that passed logic passed algebra.  

 (9) Most of the students went to the university party.  

Observing (7) and (8) one has the feeling that the ―most of the‖ construction 

may apply to any class defined by a complex property of one entity, while the 

plain ―most‖ applies to a natural class. This impression is confirmed by 

comparing (7) and (9): in (9) one has the impression that word ―student‖ is 

used as a property of entities of a wider class, e.g. a class including students, 

professors, administration… The distinction will be reflected in our system 

by the distinction between types and formulae with a single free variable.  

 



Ch. Retoré / Variable types for meaning assembly 11 

 

 

 

6.1. The logical syntax of bare “most” generics 

  

 Our idea is that ―most‖ always refers to a type and not to any set that 

could be defined by a formula with a free variable using the comprehension 

scheme: this is the ―most_of_the‖ quantification. Consequently, combining 

our treatment of quantification, a single quantifier which can specialised to 

any type, and generic elements like the  and  of Hilbert (1922) and the  of 

von Heusinger (2007), we propose to use a constant ―‖, read as specimen 

of, of type X. X. As von Heusinger’s  whenever it is applied to a type A it 

yields the specimen in A: {A} is of type A. Using predicate logic rather than 

type theory, if A were a property, that is a unary predicate, this would be 

written x. A(x) in the style of von Heusinger’s .  

 As opposed to the work on generalized quantifiers (see Keenan, 

Peters and Westerstahl) the generalised quantifier is defined from a single 

predicate/type A, and not as a function of two predicates: we only use the 

first of them, which is assumed to be a type in the bare ―most‖ case.  

 Let us come back to the standard examples and compute the 

readings. A syntactic analysis, e.g. a categorial one, of example  

(4) ―The Brits love France.‖ will yield the linear lambda term:  

((loves France) (the Brits)) — syntactically the verb is first applied to its 

object and then to its subject.  Firstly, observe that despite the quantifier, 

there is no need for type raising. Indeed, the Brits will be a virtual element of 

type Brit, which is a subset of Human_beings which is itself a subset of 

Animals which are the right class for subjects of the binary predicate love. 

There is no need to restrain the object of the binary predicate love.   Hence 

the lexicon, within the entry Brits, provides two morphisms h of type Brits → 

Humans and a of type Human → Animals. These transformations, which are 

just type inclusions encoding the subtyping relations, are quite particular and 

transparent: hence it is possible to have a general rule saying that whenever a 

function applies to a type then it applies to any type included in it, without 

writing the transformation(s), and this amounts to having as many functions 

―love‖ as there are subtypes of its arguments. Thus the term denoting the 

semantic representation before reduction is either 

(λy λx loves x y) France (a(h({Brits})))  

which is well typed, and which reduce to the lambda term  

(loves (a(h({Brits} )))) France   

— with implicit type inclusion the first term would be (λy λx loves x y) 

({Brits}) France, and the reduced one would be (loves ({Brits} )) France.  

 The constant ―‖ is the lambda term associated with the, meaning 

most of and this term produces the specimen associated with the Brits — it 

does not prevent the from having other behaviours meaning a definite set, 



Ch. Retoré / Variable types for meaning assembly 12 

―all the‖… etc. Other examples introduced by ―most‖ are handled exactly the 

same way. Now let us turn our attention to generics introduced by ―most of 

the‖ with an NP thereafter.  

 

 

6.2. The logical syntax of “most of the” generics 

  

For processing an example like (8), the model is quite similar, but the 

constant  to be used has a slightly different type: : X. (Xt)X. This 

constant  takes a property of X-objects, and returns the specimen of the 

corresponding subset of X. Assume a categorial analysis with words replaced 

by their semantic lambda-terms yields:  

passed((x:student passed(x,logic)),topology). 

Letting s be a shorthand for the ―most of the‖ generic i.e. s=(x:student 

passed(x,logic)), the typing ensures that s is of type student, but it is a bit 

tricky, in plain lambda calculus, to also get the information passed(s,logic) 

and to produce, as final semantic representation, passed(s,logic) and 

passed(s,topology). It would be much more convenient in the lambda DRT of 

Muskens (1996). This is the way semantics is implemented in the categorial 

parser of Moot, see e.g Moot et al. (2011), but an explanation of lambda DRT 

would be too lengthy to be included in this paper.  

 

7. A word on interpreting the generic element  

 

 Although we said earlier that we do not yet have any proper 

interpretation of the specimen of a type, let us say a word about the reference 

of this generic element, that is its truth conditions, and thereafter on its 

possible interpretation in interactive terms, that is its proof theoretical usage.  

 

7.1. When is “most of the A are B” true?   

 

 Firstly, as opposed to some of the literature, but in accordance with 

Solt (2009), we strongly assert that ―most‖ is much more than ―the majority 

of the‖. For instance, after an election won with 53% against 47% of the vote, 

one cannot say that most of the electors voted for the first winner. ―Most‖ is a 

vague quantifier and starts to be true from a percentage that varies according 

to the class and the predicate. Possibly ―70%‖ is enough to say that most 

students contracted the flu, but at the same time ―70%‖ is not enough to 

assert that most of the students passed the exam.  

 Secondly, as opposed to what is said by most of (!) the literature, it 

has little to do with cardinality but rather concerns measure, and our 

apprehension of the class, which can be infinite. For instance, one can find, 

even in advanced maths books the statement ―most numbers are not prime‖ 

(An invitation to modern number theory, by Steven J. Miller and Ramin 



Ch. Retoré / Variable types for meaning assembly 13 

Takloo-Bighash). What does that mean? It is known from the Ancient Greek 

mathematicians that there are as many numbers as there are prime numbers. 

We need to consider a measure for the whole class and consider that the 

measure of the relevant subset is a large percentage of the measure of the 

whole or to consider that the limit of some cognitive perception of the class: 

the statement on prime numbers simply means that 0 is the limit of the 

proportion of prime numbers between 0 and n when n approaches infinity. A 

natural notion of measure is the usual mathematical notion of measure used 

in probability theory. It also applies to infinite sets, and makes it possible to 

consider limits, to have subsets with the same cardinal but with different 

measures,... as natural language does.   

 Given our choice to handle ―most of‖ quantification by considering a 

generic element, we would like to say which properties are true of the 

specimen of A.   An answer is that the specimen enjoys all the properties P 

that are true of most As, ―most‖ being defined by the appropriate measure on 

the type A — and a percentage depending on A and on P. Given that it is 

never the case that both a property and its negation are true of most of the A, 

there should not be any contradiction. Because of the duality between 

properties and individuals, it would be pleasant to also have a measure on the 

set of predicates that are functions to truth-values. This is mathematically 

possible, since whenever a set is endowed with a measure, the set of 

functions from this set to another set can be endowed with a measure as well, 

as some construction by Kolmogorov shows. 

 Regarding scalar functions like height, weight, etc. we would prefer 

to replace the function by a relation, and to allow the generic element to have 

a full interval of values rather than a single value.  Hence the height of the 

specimen can be any value in a given interval — an example of such a 

situation is provided by baby weight and height charts. The idea is that a 

function  ―tall‖ means taller than common values, the common values being 

the ones associated to the specimen, the ones of ―most of‖ the individuals in 

the relevant class. But it might be trickier than that.  In some species, males 

are taller than females. There should be no problem to have a height chart for 

males, one for females, but what about the size of a specimen of this species 

without specifying its sex? One could say that the interval goes from the 

minimum of the female height interval to the maximum of the male height, 

but possibly the first value has to be increased and the second one decreased.  

This is just an intuition that requires further study, with some inspiration 

from the work of Egré and Klinedinst (2011) and Bale (2011). Our proposal 

is possibly quite close to the PhD thesis of Solt (2009) that we discovered 

very recently. As one can see, this is just a proposal, and we are far from a 

neat answer.  

 

7.2. Interactive models, proofs and refutations 

 



Ch. Retoré / Variable types for meaning assembly 14 

 Given the complexity of the definition of truth for a sentence 

involving a vague quantifier, one may adopt a more pragmatic answer: what 

are the situations, contexts in which such a ―most of‖ statement can be 

asserted? On the formal side, this leads us to think about the other side of 

logic, namely proofs. Of course we do not have a complete sets of rules, but 

still we know some correct ways of reasoning with such a notion. Firstly, 

when a property is true of all individuals, it is true of ―most of‖ them, 

although because of Gricean maxims we do not say ―most of‖ when we can 

say ―all‖. We also know that when a property P is true of ―most‖ As there is 

an A satisfying P — with some precaution about empty models and 

conditionals with an ironic reading: ―if Brits do not like France, I am the 

pope‖.  

 Finding rules for ―most‖ can be split into two already difficult 

questions: 

1. Defining rules for proportional quantifiers (―the majority of‖, ―more 

than 30%‖, etc.).  

2. Adapting such rules for an undetermined large or small proportion.  

―The majority of‖ is in some sense self-dual: one asserts it because P holds of 

more than 50%, but a way to refute it is to find another property Q, which 

also holds of more than 50% but which does not intersect P. The same holds 

for X% and  (100-X)% quantifiers. This, together with our view of ―most‖ as 

acting on a single type, as universal and existential quantifications, suggests 

that generalized quantifiers apply to predicate and not to sets of individual. In 

our view, the fact that most A are P is rather a property of P than a property 

of the elements in A.  

 We must admit that, for the time being, we can only propose a 

direction for further investigations. Our proposal is as frustrating as the 

current literature with tableau rules: monotonicity principles define rules, 

―tertium non datur Xv~X for all X‖ is the axiom, but tableau rules are also far 

from complete: nothing distinguishes two quantifiers with the same 

monotonicity properties, except the models, if they are allowed to intervene 

inside the rules, which is not so satisfactory, see e.g. Peters and Westerstahl 

(2008).  

 Thus the interpretation of the generic elements is an open question, 

but at least we have a neat syntax for them and know which formulae we 

want to interpret and how they are obtained from syntactic parse trees, and 

there exist fine-grained presentations of the linguistic aspects of 

quantification like Mari (2011) and Szabolcsi (2010).   

 

8. On the debate between semantic minimalism and contextualism 

 

We actually started our reflection on generics from classical examples 

in the minimalism-contextualism debate. These examples are statements that 

can be both true and false depending on the class in which the object is 



Ch. Retoré / Variable types for meaning assembly 15 

considered, which is provided by the context. For instance, if Carlotta is a 

two-year old girl, depending on her class – her type in our type theoretic 

framework — the following statement can be both true and false:   

 (7) Carlotta is tall. 

 (8) My daughter is tall and thin for a 2 year old, but she is following her 

  curve.‖    (http://mom4mom.com) 

 (9 ) My two-year-old can't get his own cup out of the cabinet because he 

  can't reach, …( http://633woman.com) 

We noticed that the specimen notion together with the flexibility of 

second-order typing succeeds in capturing this phenomenon. As said above, 

entries in the lexicon contain optional λ -terms that encode the ontological 

relations and in the case of a two-year old girl like Carlotta, she can be 

viewed as a child, and also as a female human being, as a human being etc. 

Here are the constants and the useful lexicon entries:  

 float=type for real numbers 

 height : Πα . (α → float → t) height is a binary predicate 

 <: float→float→t 

 Carlotta  

o Carlotta : 2yoGirl (constant) 

o h : 2yoGirl → human (optional λ -term)  

 tall  

o Λαλx:α 

∀{float}λh:float  

∀{float}λhs:float height{α}({α},hs)∧ height{α}(x,h) 

⇒ hs ≤ h 

o type of tall: Πα.α →t 

The constant height is a relation between members of a type and 

numbers (float), and numbers are compared with <. The entry for tall applies 

to any type T (second order is quite important here as well) and to a term u of 

type T. It says that the object u is taller than any possible height of the 

specimen of this class T. 

If we do not use any optional λ-term, we apply the lambda term 

associated to tall to the type 2yoGirl, and to the constant Carlotta2yoGirl we 

get the reading where Carlotta is taller than the maximal height of the 

2yoGirl specimen (think again of baby height charts). This is likely to be 

interpreted as true. 

But if we apply ―tall‖ to the human type, we cannot apply the result to 

the constant Carlotta:2yoGirl. But we can firstly apply the h : 2yoGirl → 

human (optional λ -term) to the constant Carlotta:2yoGirl and proceed: using 

the type human since h(Carlotta) is of type human. We thus obtain the 

formula meaning that Carlotta is tall as a human being, which is unlikely to 

be interpreted as true. 

http://mom4mom.com/
http://633woman.com/


Ch. Retoré / Variable types for meaning assembly 16 

The semantic machinery produces every possible reading and the 

context intervenes as a preference for some optional transformation(s). It 

should be discussed whether there are one or several natural types for an 

object. Our model can handle any solution: a single natural type, several 

privileged types... — quite often, such ontological or metaphysical questions 

spontaneously pop up when dealing with the organization of the concepts in 

the lexicon.  

This case shows a general idea underlying our model: terms represent 

the computational process for obtaining semantic representations, while types 

that are flexible are pragmatically inferred from the context. This could be 

called a type-theoretic viewpoint in the debate between contextualism and 

semantic minimalism.  

 

9. Conclusion  

 

 We presented a type-theoretic framework for the logical syntax of 

lexical and compositional semantics, and we focused on its use for ―most‖ 

quantifiers, depicted via the corresponding generic elements that we called 

specimens. This strongly relies on the second order lambda calculus, with 

flexible types, as the right framework for meaning assembly. 

 Along the way we were able to have a viewpoint on the border 

between semantics and pragmatics. Formally, semantics is carried out by the 

terms, while pragmatics provides the types: types do not drive the 

computation but they filter impossible readings and sometimes trigger 

alternative readings by changing the type, hence the comparison class.  

 This work has been implemented by Richard Moot as part of a large 

lexicalised categorical French grammar producing semantic representations 

as Discourse Representation Structure with lambda-DRT (Moot et al. 

(2011)). The semantic representations are expressed in a multi-sorted first-

order logic — instead of multi-sorted higher order as we did here.  

 Delimiting the syntactic part of semantics - finding the proper 

logical syntax for compositional semantics - yields more questions than it 

solves... At least it makes the questions clear: how to interpret the semantic 

representations, the logical formulae associated with sentences involving 

―most‖ quantifiers. Two directions are possible. The standard one, for which 

we should determine the truth of a statement involving the specimen, the 

generic of ―most‖: this seems to be hardly tractable. The other direction, in 

the proof theoretical tradition, would be to find rules for asserting and 

refuting sentences involving specimens. Although we shall possibly never 

find the complete set of rules, we can hope to find convincing subsets by 

viewing quantification as acting on predicates and not on individuals.  

 

Thanks This work owes a lot to Sarah-Jane Conrad (Sprachphilosophie, 

Universität Bern). Indeed, her talk and our discussions initiated at the Cerisy 



Ch. Retoré / Variable types for meaning assembly 17 

Context Conference on the debate between contextualism and semantic 

minimalism, lead me to a new connection between logical semantics and type 

theory, here applied to generic elements. Being rather new to formal 

semantics, I also would like to thank my ―advisors‖ Claire Beyssade, Francis 

Corblin, David Nicolas, Philippe Schlenker, and especially Alda Mari who, 

in addition, organised the Genius workshop that I enjoyed. I also thank the 

people I work with on related issues, Richard Moot, Vito Michele Abrusci, 

Nicholas Asher and Zhaohui Luo. I finally thank anonymous reviewers as 

well as Heather Burnett and Hazel Pearson for their insightful comments.   

 

References  

ABRUSCI, Vito Michele; RETORÉ, Christian (2011), Quantification in ordinary 

language: from a critic of set-theoretic approaches to a proof-theoretic proposal. 14th 

Congress of Logic, Methodology and Philosophy of Sciences, 2011. 

ASHER, Nicholas (2011), Lexical Meaning in context – a web of words. Cambridge 

University Press, 2011. 

AVIGAD, Jeremy;  ZACH, Richard (2008), The epsilon calculus. The Stanford 

Encyclopedia of Philosophy. CSLI.  

BALE, Alan Clinton (2011),  Scales and comparison classes. Natural Language 

Semantics 19(2), 169-190. 

BASSAC, Christian; MERY, Bruno; RETORÉ, Christian (2010), Towards a Type-

Theoretical Account of Lexical Semantics. Journal of Logic, Language and 

Information, 19(2):229–245.  

BERTOT, Yves; CASTÉRAN, PIERRE (2004), Interactive Theorem Proving and Program 

Development. Coq'Art: The Calculus of Inductive Constructions.  Springer.  

CARDELLI, Luca;  MARTINI, Simone; MITCHELL, John ; SCEDROV, Andre (1994), An 

Extension of System F with Subtyping. Information and Computation. 109(1-2):4-56. 

COQUAND, Thierry; HUET, GÉRARD (1988), The calculus of constructions. Information 

and Computation. 76(2-3):95-120.  

CONRAD, Sarah-Jane (2011), How much context can a language bear? Cerisy  Context 

Conference.  

EGRÉ, Paul; KLINEDINST, Nathan (2011), Vagueness and language use. Palgrave 

Studies in Pragmatics, Language and Cognition, Palgrave Macmillan.   

GIRARD, Jean-Yves (1971), Une extension de l’interprétation de Gödel à l’analyse et 

son application: l’élimination des coupures dans l’analyse et la théorie des types. In 

Jens Erik Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, 

volume 63 of Studies in Logic and the Foundations of Mathematics, pages 63– 92. 

North Holland. 

GIRARD, Jean-Yves; LAFONT, Yves; TAYLOR, Paul (1988), Proofs and Types. 

Cambridge University Press, 1988.  



Ch. Retoré / Variable types for meaning assembly 18 

HEUSINGER, Klaus von (2007), Alternative semantics for definite NPs. In K. Schwabe 

and S. Winkler (eds), On Information Structure, Meaning and Form, pp. 485–508. 

John Benjamins, 2007. 

HILBERT, David (1922) Die logischen Grundlagen der Mathematik.  Mathematische 

Annalen, 88:151–165, 1922. 

LECOMTE, Alain; QUATRINI, Myriam (2011), Figure of dialogues: a view from ludics. 

Synthèse 183 (S1):59-85.  

DE LIBERA, Alain (1993), La philosophie médiévale. Presses Universitaires de  France.  

DE LIBERA, Alain (1996), La querelle des universaux — de Platon à la fin du Moyen-

Âge. Des travaux. Seuil.  

LUO, Zhaohui (2011), Contextual Analysis of Word Meanings in Type-Theoretical 

Semantics.  In S. Pogodalla and J.-Ph. Prost (Eds), Logical Aspects of Computational 

Linguistics LACL 2011, LNCS 7636, pp. 159-174, Springer.  

MARI, Alda (2011), Quantificateurs polysémiques. Mémoire d’habilitation à diriger 

des recherches. Université Paris IV.  

MONTAGUE, Richard (1970), English as a Formal Language. In Bruno Visentini (ed.): 

Linguaggi nella società e nella tecnica. pp. 189–223 Edizioni di Comunità, Milano.   

MOOT, Richard; PRÉVOT, Laurent; RETORÉ, Christian (2011), A discursive analysis of 

itineraries in an historical and regional corpus of travels: syntax,  semantics, and 

pragmatics in a unified type theoretical framework In Contraints in Discourse 2011.  

MOOT, Richard; RETORÉ, Christian (2011a), The logic of categorial  grammar. Vol. 

6850 of LNCS, FoLLI subseries, Springer.   

MOOT, Richard; RETORÉ, Christian (2011b), Second order lambda calculus for 

meaning assembly: on the logical syntax of plurals. Conference on Computing 

Natural Reasoning (Coconat) Tilburg.  

MUSKENS, Reinhard (1996), Combining Montague semantics and discourse 

representation. Linguistics and philosophy. 19:143-186.  

NUNBERG, Geoffrey (1995), Transfers of meaning. Journal of semantics. 12(2):109-

132.  

PETERS, Stanley; WESTERSTAHL, Dag (2008), Quantifiers in logic and language. 

Oxford University Press. 

SEVATOPOULOS, Julie (2012), ―Most / Most of the‖ referring to a quantity of an 

unspecific or specific group. Grammar quizzes. Practice on points of English 

grammar.  http://www.grammar-quizzes.com/article4d.html  

SOLOVIEV, Sergeï; LUO, Zhaohui (2000), Coercion Completion and  Conservativity in  

Coercive Subtyping. Information and Computation. 113(1-3):297-322.  

SOLT, Stephanie (2009), The semantics of adjectives of quantity. PhD thesis. City 

University of New-York. 

SZABOLCSI, Anna (2010), Quantification. Cambridge University Press.  

http://www.grammar-quizzes.com/article4d.html

