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1. Technical Objectives 
This effort was to develop an innovative framework to couple Computational Fluid 

Dynamics (CFD) and Computational Structural Dynamics (CSD) codes to replace current ad hoc 
coupling and trim approaches.  A computational control (CC) module will be developed using 
system identification techniques that updates trim concurrently to the more expensive CFD 
parallel simulations.  A kriging-based controller has been developed to create a computational 
simulator that more accurately approximates true flight and to perform rapid trim during 
CFD/CSD simulations.  The process included further enhancements in the guise of a python-
based framework and optimization of CFD analyses for accurate blade loads.  The modifications 
were to be demonstrated on isolated rotors for steady and maneuvering flight.  This report 
presents a subset of these results that demonstrate the efficacy of the approaches developed.  
Detailed development and analysis of the methods can be found in the papers and theses listed in 
Section 9 of this report.  
 There were eight metrics to determine the technical success of the project, as denoted in 
Table 1.  All eight metrics were met or exceeded during the project. 

. 
Table 1:  Metrics of Success 

Metric Measure of Success Project Outcome 
 

1 - New Python-based Framework 
allows plug and play of CFD-

CSD-CAA-CC modules 

Demonstration of framework on 2+ 
machines using a combination of codes 
such as OF, FUN3D, Dymore, RCAS, 

PSU-WOPWOP 

The Python framework has been 
successfully demonstrated on local Georgia 

Tech and NAS HPC computers. 

2 – Enable automated OF+Dymore 
tight coupling simulations. 

Show identical results for loose and tight 
coupling for simple cases, such as UH60-

A, C8534. 

Results for the UH60-A 8534 and 9017 
cases, and the HART-II baseline tests are 

comparable using loose and tight coupling. 
3 – Implement simple, autopilot 
based, trimming algorithm for 

tight coupling. 

Demonstrate the ability of tight coupling 
to deal with more difficult cases (e.g., 

UH60-A C9017). 

The tight coupling has been successfully 
demonstrated for cases with dynamic stall 
and BVI, as well as for stability analysis 

applications 
4 - New system identification 
based trim algorithm provides 
physics-based control of level 

flight & steady turns 

Demonstration of 40-50% clock time 
reduction in tightly-coupled simulations 
when using the new trimming strategy. 

Optimization tests indicate that tightly-
coupled simulations with kriging-based 

trim run time requirement is roughly 
comparable to loosely-coupled simulations, 
which significantly exceeds the estimated 

savings. 
5 - Neural-Network-based CC 

module provides additional 
physics-based trim and motion for 

CFD-CSD simulations 

Comparison with baseline and Task 2 
results show more robust trimming 

performance or pilot-like response of 
simulations or both 

The new steady-state trimmer and kriging 
controller are robust and respond within 1-

3 revolutions to control changes. 

6 - Optimization of CFD 
methodologies to provide accurate 

airloads while minimizing CPU 
time 

Improve UH60-A loads compared with 
flight test and baseline runs. Discrepancies 
will be quantified. Increase computation 

efficiency by 20-30%. 

Optimization tests indicate that a tightly-
coupled run started from a short (1/4-1/2 

rev) loose coupled simulation. 

7 - Portability and parallelization 
of codes from Beowulf cluster to 

HPC machines 

Demonstrate success of all modules to 
parallelize and run on a minimum of 4 

different compilers and/or computational 
platforms. 

 The parallelized framework has been 
ported to 4 and 6 different platforms, for 
FUN3D and OVERFLOW, respectively. 

8 - Successful transfer of research 
to NASA and R/C industry 

Incorporation of mods into the FUN3D 
and OF distributions; at least 2 conference 

& journal papers 

Modifications provided to NASA; new 
tightly-coupled code being used by Bell 

and provided to Sikorsky; 4 journal papers; 
contributed to 2 PhD theses. 
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2. Background 

2.1.    CFD-CSD Rotorcraft Aeroelasticity 
 Accurate simulations of rotorcraft flow fields are typically much more difficult to obtain 
due to the strong nonlinearities in the tightly-coupled fluid mechanics, structural dynamics and 
controls of the problem. As the rotor blades complete each revolution, strong variations in Mach 
regime are encountered, inducing complex elastic blade deformations in addition to their rigid 
motions. The strong wake system may also remain in the region of the vehicle, adding 
complexity to the blade loading as well as unsteady loads on the fuselage. These unsteady 
phenomena impact the intricate control system used to trim the rotor in level flight or to control 
maneuvers. 
 These three components of the aeroelastic system: aerodynamics, structural dynamics and 
controls, require dramatically different methods of numerical simulation.  A computational 
method that resolves all three components using the same numerical scheme is not truly 
practical, not only due to the different methodologies, but also because of the large base of 
excellent codes that exist within each separate field. Instead, modeling techniques have relied on 
the coupling of each individual analysis method to create multidisciplinary analyses.  

2.2.  Aerodynamics 
 Computational fluid dynamics (CFD) methods, based on the solution of the Reynolds-
averaged Navier-Stokes (RANS) equations are utilized to provide the aerodynamic response of 
the rotor.  Strawn et al1 provides a review of time-accurate RANS-based CFD analysis for rotary-
wing applications. Wake resolution still relied solely on the CFD wake capturing; the resulting 
rotor loads resolution was poor due in part to computational memory limitations that precluded 
grid refinement in the wake region.  Some hybrid methods attempt closure of the wake problem 
by applying the CFD method to capture the near-field wake and utilizing free- or prescribed-
wake methods to resolve the far-wake, reducing the computational grid requirements, but at the 
expense of the physics. The recent DARPA Quiet Helicopter project2 has resulted in efforts to 
utilize an adaptive Cartesian-based CFD method in the wake. Other efforts include the coupling 
CFD solvers with the vortex transport equations3,4.  
 These advanced CFD methods are based on two general grid topologies, either structured 
or unstructured. The structured grid topology was the initial choice, since the natural ordering of 
the grid allows optimization of computational memory and time. However, creating a structured 
grid can be very time consuming, especially for very complex configurations. Since the most 
physically accurate analysis requires the time-accurate RANS solution of individual rotor blades, 
both rotating and stationary grids must be used for rotor-fuselage interactions, since the rotor is 
in a dynamic frame and the fuselage is in an Eulerian (static) frame. Overset methodologies have 
evolved to permit the solution of these frames simultaneously.  The primary overset structured 
solver utilized in the U.S. rotorcraft industry is OVERFLOW5.  

2.3. Structural Dynamics 
A set of specialized structural dynamics methodologies has been developed for rotor 

applications.  These methods, known as comprehensive codes, were designed primarily to model 
the rotor system dynamics, but they have incorporated simplified aerodynamic and inflow 
models to make the analysis more complete. Current comprehensive codes are characterized by 
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the use of time-accurate analysis and finite element methods, as described in Kunz6.  Among 
these are RCAS7, UMARC8, CAMRAD II9, RDYNE10, HOST11, and Dymore12.  Some of these 
methods apply finite elements based on the assumption of moderate blade deflections (UMARC, 
CAMRADII), while others are based on the geometrically exact formulation.  The UMARC trim 
model solves 6 force balance equations for a target setting, while HOST, developed through the 
combined effort of ONERA, Eurocopter and DLR, incorporates trim analysis based on 
computations done on a harmonic representation of movement and internal state.  Sikorsky’s 
RDYNE trims using a minimum variance controller that uses the computed hub loads as the 
target values. Dymore, a multi-body code developed at Georgia Tech, uses geometrically exact, 
nonlinear beam and shell finite elements and uses an autopilot-based trimmer. For the elastic 
analysis, Dymore uses geometrically exact finite elements along the blades.  Dymore is also 
capable of modeling composite elements based on the work of Berdichevsky13, as extended to 
beams14 and shells15, which are very important for composite rotors and fuselage components. 

2.4. Multi-body Dynamics 
Multi-body dynamics analysis was originally developed as a tool for modeling 

mechanisms with simple tree-like topologies composed of rigid bodies, but has considerably 
evolved to the point where it can handle nonlinear flexible systems with arbitrary topologies. It is 
now widely used as a fundamental design tool in many areas of mechanical engineering. In the 
automotive industry, for instance, multi-body dynamics analysis is routinely used for optimizing 
vehicle ride qualities, a complex multidisciplinary task that involves the simulation of many 
different sub-components. Modern multi-body codes can deal with complex mechanisms of 
arbitrary topologies including sensors, actuators and controls, are interfaced with CAD solid 
modeling programs that allow one to directly import the problem geometry, and have 
sophisticated graphics, animation and post-processing features16. The success of multi-body 
dynamics analysis tools stems from their flexibility: a given mechanism can be modeled by an 
idealization process that identifies the mechanism components from within a large library of 
elements implemented in the code. Each element provides a basic functional building block, e.g., 
a rigid or flexible member, a hinge, a motor, etc. Assembling these elements, it is possible to 
construct a mathematical description of the mechanism at the required level of accuracy. 
 Figure 1 depicts the conceptual representation of a rotorcraft system as a flexible multi-
body system17. The various mechanical components of the system are associated with the 
elements found in the library of typical multi-body analysis tools. This familiar control linkage 
configuration can be modeled using the elements: rigid bodies, used to model the lower and 
upper swash-plate components and scissors links, and beams for modeling the flexible shaft and 
pitch-link. These bodies are connected through standard mechanical joints: revolute, universal, 
and spherical. 
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Figure 1:   Detailed multi-body representation of a rotor system. At right, a typical articulated blade. At left a 

bearingless blade design. 
 

In this approach, the formulations of structural elements are geometrically exact, i.e. they 
account for arbitrarily large displacements and finite rotations, but are limited to small strains. 
The equations of equilibrium are written in a Cartesian inertial frame. Constraints are modeled 
using the Lagrange multiplier technique. This leads to systems of equations that are highly 
sparse, although not of minimal size. This approach can treat arbitrarily complex topologies. 
Furthermore, because it is an extension of the finite element method to multi-body systems, the 
algorithms such as sparse solvers, and data structures developed for FEM analyses are directly 
applicable to the present approach. In contrast with most other rotorcraft dynamics codes, no 
modal reduction is performed; the analysis directly operates on the finite element model 
providing improved accuracy, particularly in the high frequency range. 

Figure 1 also shows two different rotor configurations: a classical, fully articulated design 
on the right and a bearingless design on the left. The articulated blade is connected to the hub 
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through three revolute joints that model the flap, lag and pitch hinges. Possible offsets between 
these joints could be modeled by means of rigid or flexible bodies. The blade itself is modeled by 
an appropriate beam element that should account for the inertial and elastic couplings that arise 
from the use of composite materials18. The bearingless design is a multiple load path 
configuration, involving a flex-beam and a torsion cuff assembled in parallel and connected by a 
snubber. It is important to note that the two designs, fully articulated or bearingless, can be 
modeled by assembling different sets of elements from the multi-body library of elements. There 
is no need to derive and validate two different sets of equations for the two configurations.  

2.5. CFD-CSD Coupling 
In the 1980’s, full-potential aerodynamic methods were coupled with comprehensive 

codes19, however poor moment correlations have to date limited the usefulness of these coupled 
methods. Early rotor aeroelasticity simulations with RANS occurred in the 1990's when Smith20, 
as well as Bauchau and Ahmed21 coupled CFD methods with nonlinear computational structural 
dynamics (CSD) methods. During the early 2000’s, interest in CFD-CSD coupling revived and a 
number of more advanced CFD methods have been coupled with comprehensive codes, as 
discussed by Datta et al.22.  NASA rotary-wing codes have also been coupled with these 
comprehensive codes, specifically OVERFLOW has been coupled with several comprehensive 
solvers, including CAMRADII23, RCAS24 and with Dymore by the co-PIs25.  An overset 
methodology has been recently implemented and demonstrated in FUN3D26,27 at Georgia Tech, 
and overset CFD-CSD coupling collaborations between Prof. Smith’s group (with Dymore) and 
the NASA FUN3D development group (with CAMRAD II) are underway.  

The de facto standard for coupling in the aforementioned instances has to date focused 
what is known as “loose coupling.”  In loose coupling, data is exchanged between the CFD and 
CSD codes between each rotor revolution, as soon as the blade loads have become periodic. This 
data exchange is termed “an iteration.” To accelerate the process, a rotor revolution may consist 
of a partial azimuthal sweep of each rotor blade, appended to form an entire revolution if the 
flow remains “fairly periodic.”1  For example, with a four-bladed rotor, a revolution can be 
formed from a quarter-revolution simulation by appending each blade’s motion to form the full 
360o azimuthal sweep. Blade loads are provided to the comprehensive code to compute the blade 
deflections and any control changes needed to meet user preset trim convergence criteria (e.g., 
thrust and hub moments). These deflections and control changes are provided back to the RANS 
code to compute a new set of periodic blade loads.  Data are passed in this fashion until a 
converged (trimmed) solution has been obtained. Trimming is achieved via the algorithm 
resident within the comprehensive code, using what has become known as the delta airloads 
approach29.  This approach determines the difference between the CFD and comprehensive code 
airloads, which are typically resolved using lower-fidelity aerodynamics.  This delta is frozen 
and added to the changing airloads of the comprehensive code as part of the trimming process.  

                                                
1 “fairly periodic” in this sense is interpreted by the user based on their past experience with the coupled code 
combinations.  Users have reported different levels of success using this approach. 
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Figure 2:  Trim of HART1 baseline case with loosely-coupled OVERFLOW-Dymore with an autopilot trim 
model. 

 
 Loose coupling has been improvised as a technique to improve the computational time 
required to obtain a trimmed solution for level flight (or steady turns). While in theory, for a 
quasi-steady simulation, the results from a loose coupling simulation should be identical to a 
tight coupling simulation, in practice several limitations of this approach have been encountered 
with various combinations of CFD-CSD solvers28.  Problems are typically encountered in the 
loose coupling approach when runs near the edge of the flight envelope (e.g., Case 9017 for the 
UH60) or when there is significant wake interaction (e.g., Case 8513 for the UH60 and the 
HARTI and II baseline cases).  If the initial deflections computed by the lower-fidelity 
aerodynamics solver and the comprehensive code are not close to what results in trim, then 
convergence problems may also be encountered. As seen in Figure 2, for the HARTI baseline 
case, the deflections predicted after several loose-coupled iterations indicate that the deflections 
are suddenly tracking away from the conditions needed for trim.  Convergence for a loose 
coupling approach is achieved when the CFD-CSD iterations no longer significantly change the 
parameters used to track trim (e.g., thrust and hub moments).  At this point, the simulation is 
halted and performance parameters are computed.  In some instances, this criterion for trim 
convergence may not be appropriate.  During the DARPA Quiet Helicopter program, Smith and 
Bauchau discovered that when using higher-fidelity turbulence models (LES-based), further 
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coupling iterations resulted in solutions driven away from what appeared to be convergence as 
the physical flow field was not truly periodic. 

Tight coupling is the correct way to achieve a physics-based aeroelastic rotor simulation, 
no matter what the flight condition.  Traditionally, tight coupling has been designated as the 
approach when data between the CFD and CSD codes are passed at each CFD or CSD time step. 
This approach has been designated for static aeroelastic analyses in fixed-wing simulations, such 
as level flight, as no control feedback is used.  However, for rotary-wing applications, trim is an 
integral part of even level flight or hover to achieve the correct thrust and zero the hub moments.  
The integration of a trim control in tightly-coupled analyses has to date been somewhat ad hoc, 
based on modification of the loosely-coupled approach and very specific test cases.  Nygaard et 
al.29 first demonstrated an OVERFLOW-2+RCAS coupling for transient response. They apply 
loose coupling to reach a trimmed state before the maneuver, use tight coupling for about a ¼ 
revolution, and then drive the code using user-defined control changes.  Tight coupling is 
achieved by sending loads and deflections between the CFD and CSD codes at each time step; no 
control feedback appears to be utilized during the last ¼ revolution, and there is no feedback to 
the controller during the maneuver.  Others30 simply update the trim after each revolution once 
periodicity is obtained (or each ¼ for a four-bladed rotor), resulting in the requirement that the 
rotor be run for 15-20 revolutions to obtain a steady, level flight convergence. 

2.6. Conventional Trim Procedures  
The numerical trimming of a rotor system is a complex problem. Although many trim 

targets can be selected, a typical problem statement is as follows: find the collective and cyclic 
inputs to the rotor that will generate a given thrust and moments on the rotor. Peters and 
Barwey31 have discussed a general theory of rotorcraft trim and reviewed the many algorithms 
that have been used for this purpose. However, when using very complex models such as finite-
element-based multi-body dynamics for CSD modeling coupled to CFD tools for the 
computation of airloads, far fewer approaches to trim are practical, some of which have been 
mentioned in a previous section on CSD methods. The recommended approach31 is the autopilot 
procedure, which is a very simple control algorithm. The first step of the procedure is to identify 
the trim matrix, a linearized relationship between the inputs and output of the system, i.e., 
between the collective and cyclic control inputs and the resulting rotor thrust and moments. In 
the second step, this trim matrix is used as a simplified plant model to drive the actual rotor 
thrust and moments to their target values. 

The autopilot procedure presents the following advantages. It can be used with any 
comprehensive rotorcraft model, no matter how complex, because it only deals with the inputs 
and outputs of the system, no knowledge of the comprehensive model is required. Unfortunately, 
it also suffers serious drawbacks. First, the identification of the trim matrix is an expensive, 
inefficient operation. Typically, perturbations are made to a reference, periodic equilibrium 
configuration of the rotor; each trim state must be perturbed separately to obtain the sensitivity of 
the output, thrust and moments, to each of the input, collective and cyclic controls. Each 
perturbation provides one column of the trim matrix. To obtain accurate sensitivities, the rotor 
must be simulated for many revolutions after a control input has been perturbed; indeed, the new 
periodic equilibrium configuration of the rotor resulting from the perturbation must be obtained 
to assess sensitivity to the control input through finite difference. Simulation lengths of as much 
as 6 to 12 revolutions are often required to reach the new periodic equilibrium state of the rotor. 
It must be noted that this process is very inefficient: the rotor is simulated for many revolutions, 
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but only the beginning and end points of the simulation are used to assess sensitivities. Second, 
once the trim matrix has been identified, the performance of the autopilot depends on the 
selection of a gain matrix. If low gains are selected, it will take a long time to reach trim; if high 
gains are selected, trim could be reached much faster, but system could become unstable. The 
autopilot approach does not provide guidelines for the selection of the gain matrix. 

Hence, while the autopilot approach can be applied to very complex rotorcraft models, 
including coupled CFD-CSD simulations, it is also computationally very expensive. Assuming a 
trim problem with three states, the collective and two cyclic control inputs, the complete 
identification of the trim matrix will require four separate runs. The first establishes a periodic 
reference configuration of the rotor, and the next three provide the periodic solutions under three 
distinct perturbations of the control inputs. With this information, the trim matrix is constructed 
and the actual autopilot trimming can start. An optimum estimate is that each step of the 
procedure requires the simulation of about four to six revolutions of the rotor (two for the initial 
startup, and four ¼ revolutions for a four-bladed rotor, minimum). The total process will then 
require the simulation of a total of five times four, or twenty rotor revolutions. While this 
computational effort is reasonable when using simplified aerodynamic models, it is clearly 
unacceptable if CFD is used to predict unsteady aerodynamic loads.  Neural networks have been 
applied to improve the non-linear capability of these autopilot-based trim models32,33,34 and they, 
appear to hold promise in relieving some of the coupling issues previously discussed. 

2.7. Control Theory 
The problem of system realization or system identification for linear time-invariant 

models has received considerable attention in numerous engineering applications such as 
dynamic simulation and control of flight vehicle, identification of vibration modes of large-scale 
flexible structures, the health monitoring and damage detection of civil engineering structures, or 
electrical circuits and imaging processes. In general, system identification aims at creating a 
mathematical model of a dynamical system from measurements of its input and output. Past 
decades have witnessed the development of identification tools for the construction of state space 
representation of linear systems. Kim and Arora35 have reviewed the subject of system 
identification, focusing on linear and nonlinear dynamical systems; Viberg36 has reviewed 
subspace-based identification methods. 

The seminal work Kalman introduced the concepts of controllability and observability, 
which are important prerequisites to identification. The Ho-Kalman algorithm37 subsequently 
provided a state space approach, and a minimum realization was obtained from Markov 
parameters. This algorithm is widely used as an identification algorithm, but it also contributed 
to the development of state space models presenting balanced properties38. When used in 
conjunction with numerically stable tool such as the singular value decomposition, the Ho-
Kalman algorithm has been extended to the eigensystem realization algorithm39. To decrease the 
effects of noise and nonlinearities, the eigensystem realization algorithm with data correlation 
was developed. Furthermore, eigensystem realization algorithm combined with observer/Kalman 
filter identification became an optimal procedure to construct a minimum order plant and 
compute Kalman filter gain matrix from input-output data. However, the computation of Markov 
parameters by observer/Kalman filter identification remains complex and determines the 
accuracy of the system realization. If a poor approximation of Markov parameters is obtained, 
system identification might be meaningless, prompting the development of methods aimed at 
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improving the accuracy of these parameters. System realization methods based on Ho-Kalman 
algorithms and its extensions are known as minimum realization procedures. 

Another system identification approach is based on subspace identification methods40. In 
these methods, a state space representation of linear system is found by matrix projection 
operations, and elimination of the effects of noise is a major concern. For stochastic system, 
Peeters and de Roeck41 have used Kalman filters to eliminate the effect of the white noise with 
zero mean. For more general cases, Overschee and de Moor42 have reviewed subspace methods 
and algorithms for the identification of linear time-invariant systems from given input-output 
data. Robust identification procedures have been developed for deterministic, stochastic, and 
combined deterministic-stochastic systems. Because matrix projection operations are 
computationally expensive, these methods are most suitable for solving small size problems. 

Artificial Neural Networks, or simply Neural Networks (NN) present one of the most 
popular means to approximate complex non-linear relationships )(xfy = , where nRx∈ and 

mRy∈  are vectors of inputs and outputs, respectively. This is accomplished by the process of 
statistical learning (training of NN) based on a known set of data points Σ∈= ixfy ii ),(  by 
tuning “free” parameters, vector p, that generally include the number of hidden layers and 
neurons (both are integers) and the weights assigned to neutrons assuming real values.  Here the 
data set Σ  can be obtained via a deliberate effort (design of experiments), or can be naturally 
available as a part of the problem set up. The training of NN usually involves a minimization of a 
mismatch between the “true” function and its NN approximation on the available data set: 

Σ∈− iyy iip
||,~||min  with respect to an appropriate metric, e.g., a Euclidian norm on mR ×Σ . The 

resulting approximation, often called a surrogate- or metamodel, )(~~ xfy = can be then used 
instead of the original relationship practically without any computational cost. NN are very 
flexible, so that an even single-layer configuration can approximate a function of arbitrary 
complexity with a desired precision provided it has a sufficiently large number of neurons43. This 
flexibility, while explaining popularity of the NN, comes at a price: it can lead to the problem of 
“overfitting” when the resulting metamodel captures not only the desired functional relationship 
(i.e., “trend”) but also the “noise” present in the training data set that can be amplified in an 
unpredictable fashion for inputs outside of this training set, leading to poor predictive capabilities 
of the resulting metamodel. This problem must be addressed by balancing the complexity of the 
NN (i.e., making it flexible enough to capture the trend, but simple enough to being capable of 
filtering out the noise). A related (often more critical) problem of NN is the lack of transparency; 
the resulting metamodel is effectively a black-box devoid of any physical meaning.  

Both of these issues are significantly mitigated by using a metamodel as a bridge between 
a low-fidelity model that captures some fundamental behavior of the system at hand and the 
higher fidelity model that is being approximated. This idea is effectively a foundation of a recent 
“variable fidelity” approach to global optimization, where kriging, which has generally 
comparable to NN properties, is a more popular choice of a metamodel. This also largely 
explains the success of NN applications in adaptive control where simple, usually linear, low-
fidelity models are readily available. For example44, where controller feedback linearization 
resulting in so-called pseudo-control signal is used to construct a low-fidelity model, and the 
neural net is used to model the error of this model. As an added benefit this error (called the 
disturbance signal) not only accounts for the unmodeled dynamics of the system, but captures the 
uncertainty associated with the parameters of the system as well. Further study by the same 
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group of researchers at the Georgia Institute of Technology (GIT) experimentally confirmed45 
the effectiveness of this approach to adaptive control of a model helicopter. Similar concepts 
were used where so-called “reference model” was augmented by an adaptive neural net in order 
to identify and compensate for the mismatch between the reference model, and enable solution of 
an optimal control and improving performance of an auto-pilot-based controller. Therein NN 
provided a static mapping between the state vector that does not take an advantage of the 
inherent structure of this vector that are imposed by the dynamic of the system. While it is 
possible to consider so-called dynamic/recurrent networks that do take this structure into 
consideration explicitly during the training procedure46,47, the added benefits of this approach to 
the rotor control problem are not clear.   
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3. Integrated Framework for Loose and Tight CFD-CSD Coupling 
 
The traditional delta-airloads loose coupling framework applied by most CFD-CSD 

coupling is currently some variation of the flowchart shown in Figure 3a).  In these methods, the 
trim is performed by the CSD method, typically applying an auto-pilot controller and exchanging 
data at some fraction of a revolution via external files (file I/O).  This process works well for 
level flight simulations, but transient or maneuvering aeroelastic predictions require a tight 
coupling process wherein the loads and deflections are exchanged at each time step, as illustrated 
in Figure 3b).    The amount of data that is exchanged during each time step becomes prohibitive 
when applying file I/O, so that this data exchange needs to be performed via arrays in memory 
between the two methods.   

 

               
a)  Loose Coupling    b) Tight Coupling 

 
Figure 3: CFD-CSD loose and tight coupling flowcharts demonstrating FUN3D and Dymore coupling. 
 
To achieve the ability to interchange various codes within a multidisciplinary framework 

(“plug and play”), an integrated PYTHON48-based framework that permits the CFD-CSD and 
computational controllers (CC) to interact via direct access module data without the need for 
external files has been developed.  It should be noted that this is only necessary for the CFD-
CSD-CC data; MPI and file I/O for post-processing are not affected.   
  The data structures to accomplish the transfers were originally planned to use the same 
data structures developed for the U.S. Army’s Hi-Arms project, so that the NASA OVERFLOW 
and FUN3D codes, as well as the Georgia Tech Dymore code could be utilized interchangeably 
within the resulting Hi-Arms methodology. Delays in obtaining the protocols for the Hi-Arms 
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project precluded the availability of the framework, but similar protocols have been developed 
and demonstrated. 
 The overall Python framework has the format shown in Figure 4.  For any CFD-CSD code 
that is being coupled, the codes should first be initialized, as denoted by the section labeled 
“Python Initialize”. At this point, the framework is ready to begin the integration of the CFD and 
CSD equations of motion, and moves to the section “Python Solution”.  The total number of 
coupling iterations is controlled via an input to the Python script driver, denoted in Figure 4 as 
N_total.  This would be for example, 10, to perform 10 loose-coupling cycles.  Within each 
coupling iteration, the CFD and CSD codes are advanced by CFD_int and CSD_int time steps, 
respectively, so that each code may be optimized to the required time step needed to advance the 
simulation.  For example, to exchange information every 1o of azimuth, CFD_int could be set to 
20 iterations (0.05o azimuth per time step), while the CSD_int may be set to 1 (1o azimuth per 
time step).  For “true” tight coupling, both CFD_int and CSD_int would be set to 1 and advance 
the same azimuthal amount during the time step.  When the CFD-CSD coupled solution has 
completed the required number of coupling iterations, the framework proceeds to the “Python 
Finalize” section.  Here, post-processing and orderly shut down of the individual codes is 
completed. 
 In order to accomplish the Python coupling, the main routine of each code was rewritten to 
conform to the framework illustrated in Figure 4.  For example, FUN3D’s main routine was 
decomposed into several routines, f3d_init, f3d_iter, f3d_fmg_pre, f3d_fmg_post, f3d_loop, and 
f3d_post for performing initialization, iterations, full multi-grid pre-processing, full multi-grid 
post-processing, looping through all iterations, and post-processing, respectively.  These are 
accessible to python as illustrated by the coding: 
 
   subroutine fun3D_init 
     use main, only : f3d_init 
     implicit none 
 
     call f3d_init 
   end subroutine fun3D_init 
 
   subroutine fun3D_loop 
     use main, only : f3d_loop 
     implicit none 
 
     call f3d_loop 
   end subroutine fun3D_loop 
 
   subroutine fun3D_iter(bcontinue) 
     use main, only : f3d_iter, iter 
     implicit none 
 
     logical, intent(out) :: bcontinue 
 
     call f3d_iter(bcontinue) 
     iter = iter + 1 
   end subroutine fun3D_iter 
 
   subroutine fun3D_fmg_pre 
     use main, only : f3d_fmg_pre, fl, iter, fmg_levels_request 
     implicit none 
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     call f3d_fmg_pre 
 
!....Setup variables that we need to call iter 
     fl = fmg_levels_request 
     iter = 1 
   end subroutine fun3D_fmg_pre 
 
   subroutine fun3D_fmg_post 
     use main, only : f3d_fmg_post 
     implicit none 
 
     call f3d_fmg_post 
   end subroutine fun3D_fmg_post 
 
   subroutine fun3D_fully_loop 
     use main, only : f3d_init, f3d_fmg_pre, f3d_iter, f3d_fmg_post,         
&                     f3d_post, fl, iter, fmg_levels_request 
 
     implicit none 
     logical :: bcontinue 
 
     call f3d_init 
     call f3d_fmg_pre 
     fl = fmg_levels_request 
     iter = 1 
     call f3d_iter(bcontinue) 
     call f3d_fmg_post 
     call f3d_post 
   end subroutine fun3D_fully_loop 
 
This code is wrapped within Python so that it can be called from the main Python script.  
Alternatively, these routines can be utilized outside of Python by a new main control routine, 
illustrated by: 
 
program pymain 
  use main, only : f3d_init, f3d_loop, f3d_post 
  call f3d_init 
  call f3d_loop 
  call f3d_post 
end program pymain 
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Figure 4  Python CFD-CSD Coupling Framework 

 
These new subroutines created from the original main routine are the only routines, outside of 
the routines that read and write to the Python data interfaces that need to be “wrapped” within 
Python.  The remainder of CFD code, including any libraries needed such as Suggar or Dirtlib, is 
compiled as a set of shared libraries that are accessed by the code when needed.  Thus, the 
intrusion into the CFD code is minimized. 
 To write to or read from the Python interface, existing coupling routines in CFD also were 
modified.  Rather than writing to a file or calling a CSD code directly, the routines instead write 
or read the data into the predefined kinematic interface protocols.  These are accomplished via a 
set of ifdef conditional statements that are activated or deactivated during the compile time so 
that either the Python arrays are filled or the data is output to the original file format.  An 
example of this process is illustrated by the code from  fsi_coupling: 
 
#ifdef HAVE_Dymore 
!     Get linear deflections, non-dim by R 
      write(*,'(a)',advance='no') 'Getting linear defs from Dymore ... ' 
      call Dymore_get_pos(motbuff, buffsize) 
      write(*,'(a)') 'done' 
      call se_flush 
#else 
!     Copy into the motion buffer deflections coming from python 
      motbuff = py_deflections 
#endif 
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The same coding process has been performed for the CSD code, Dymore.  Its main routine has 
been decomposed into three sections:  Dym_Initialize, Dym_Time_Step, and 
Dym_Post_Processing. Dymore.c, the main controlling routine of the code, contains the main 
functions that are called (and wrapped) by the Python script: CallInt(int, char** argv),   
CallSetFEM(), CallTimeStep(), CallTimeLoop(), CallEndFEM(), and CallFin().  The remainder 
of the Dymore code is not wrapped, but becomes a shared library as previously noted for 
FUN3D.  A swig interface was written to wrap Dymore.c under Python, and the appropriate 
typemap module, argv.i, was included in order to transform Python list into char ** as required 
for the initialization function of Dymore CallInt(int,char*argv[]): 
 
%module argv 
 
// This tells SWIG to treat char ** as a special case 
%typemap(in) char ** { 
  /* Check if is a list */ 
  if (PyList_Check( input)) { 
    int size = PyList_Size( input); 
    int i = 0; 
     1 = (char **) malloc((size+1)*sizeof(char *)); 
    for (i = 0; i < size; i++) { 
      PyObject *o = PyList_GetItem( input,i); 
      if (PyString_Check(o)) 
  1[i] = PyString_AsString(PyList_GetItem( input,i)); 
      else { 
 PyErr_SetString(PyExc_TypeError,"list must contain strings"); 
 free( 1); 
 return NULL; 
      } 
    } 
     1[i] = 0; 
  } else { 
    PyErr_SetString(PyExc_TypeError,"not a list"); 
    return NULL; 
  } 

}  
 
The data structure interface formats (SIF) were defined to pass the loads and deflections.  The 
interface format is defined in Dymore as:   
 
/*======================================================= 
/*  Data Structure KinInt 
/*======================================================= 
 
typedef struct KinInt{ 
 int NbOfLfnLines;  /*number of LfnLine 
 int *NbOfLfnLineAst; /* Ast number per LfnLine 
 int *LfnLinePsi;  /* LfnLine Psi Angle 
 double *LfnLineAstPos; /* Ast Position for Ast LfnLine 
 double *LfnLineAstOrient; /* Ast Orientation for Ast LfnLine 
 double *LfnLineAstLinVel; /* Ast Linear Velocity for Ast LfnLine 
 double *LfnLineAstAngVel; /* Ast Angular Velocity for Ast LfnLine 
}*KinInt, OKinInt; 
/*======================================================= 
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These data are retrieved from the data structure by FUN3D (in FORTRAN) by code such as the 
following: 
 
subroutine pass_deflections(deflections, rotations, buffsize) 
! 
! Inputs: 
! f2py integer check (0<buffsize) :: buffsize  
! f2py integer :: buffsize  
! f2py real*8 dimension(buffsize) intent(in) :: deflections 
! f2py real*8 dimension(buffsize) intent(in) :: rotations 
! 
  use pydata 
  implicit none 
 
  integer, intent(in) :: buffsize 
  real*8, dimension(buffsize), intent(in) :: deflections, rotations 
 
  ! Store the current deflections and rotations 
  py_deflections = deflections 
  py_rotations   = rotations 
end subroutine 
 
 The load data have a similar protocol, defined by: 
 
/*================================================================= 
/* Data structure LoadInt 
/*================================================================= 
typedef struct loadInt{ 
 int NbOfLfnLines;   /* number of LfnLine 
 int *NbOfLfnLineAst:  /*ast number per LfnLine 
 double *LfnLineAstForces; /* ast forces for Ast LifnLine 
 double *LfnLineAstMoments; /* ast moment for Ast LifnLine 
}*LoadInt, OLoadInt; 
/*================================================================== 
 
These data are placed into the data structure in FUN3D via subroutines, such as the following: 
 
subroutine get_loads(forces, moments, buffsize) 
! 
! Inputs: 
! f2py integer check (0<buffsize) :: buffsize 
! Outputs: 
! f2py real*8 dimension(buffsize) intent(out) :: forces 
! f2py real*8 dimension(buffsize) intent(out) :: moments  
! 
 
  use pydata 
  implicit none 
 
  integer, intent(in) :: buffsize 
  real*8, dimension(buffsize), intent(out) :: forces, moments 
 
  forces = py_forces 
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  moments = py_moments 
end subroutine get_loads 
 
An example of the comparable c code implemented into Dymore is  
 
%include "numpy.i" 
     %init  
     %{ 
      import_array(); 
     %} 
  %apply (double* ARGOUT_ARRAY1, int DIM1) {(double* array, int npts)}; 
  %include "get_pos.h" 
 
where get_pos.h is the header file containing the definitions of these funtions: 
 
               void get_Pos(double* array,int npts);… 
 
In compiling the new CFD-CSD Python protocol, it is necessary to have not only the Python (for 
Fortran code) and swig (for c code) resident on the computer, but also numpy and f2py.  There 
can be issues associated with compiling and porting these codes to different machines, which are 
discussed in a later section.  Porting problems can occur with the libraries that are needed by the 
core FUN3D and Dymore codes, such as SUGGAR. 

In order to ensure that the codes were properly rewritten and working under the Python 
framework, both codes were run separately for a given problem in both stand-alone and python 
mode.  The results were meticulously compared and it was found that the outputs were identical 
no matter which way the codes were run.  Next, a small case – which was not a true CFD-CSD 
coupling – was contrived to ensure that the data were passed correctly between the CFD and 
CSD codes while using the Python SIFs.  Only at this juncture was the CFD-CSD coupling under 
Python attempted. 

The modified main routines, as well as the SIFs, have been provided to both the NASA 
FUN3D and OVERFLOW developers during the course of this project. 
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4. Steady-State Trim Algorithm  
 
The classical autopilot control law49,50 is extensively used for trimming rotor models in 

comprehensive analysis codes. It consists of a simple control law that constructs a map relating 
the inputs and outputs of the system, based on a static approximation to its behavior. It is then 
easy to compute suitable filter time constants and control gains such that a closed loop controller 
will steer the system to its trimmed configuration with a desired performance. However, when 
this control law is used to steer complex rotorcraft models, such as those used in comprehensive 
analysis codes, stable behavior is only observed for judiciously chosen values of the controller 
parameters. Three major sources of error are responsible for the observed discrepancy, as 
identified by Peters et al.1: in the design of the controller, 1) the dynamic characteristics of the 
plant are ignored, 2) the non-linear behavior of the plant is not taken into account, and 3) the 
Jacobian of the system is assumed to be known exactly. 

The first part of this effort has focused on the implications of these three assumptions on the 
behavior of the classical autopilot, by studying their effect through both numerical closed-loop 
experiments on a realistic UH60-A multi-body rotor model (the plant), and eigenvalue analysis 
of the closed-loop characteristics of different reduced order models of the full plant51.  

Briefly, it is known that based on a rigid blade assumption and momentum theory, the trim 
Jacobian matrix can be approximated by as follows 

 
 
 

A quasi-steady trimmer has two phases, identified as the reference and adjustment phases.  
The trim module first computes the adjustment to the control settings at the beginning of the 
adjustment phase using the expression 

€ 

Δθ = J−1G(L − Lt arg et )  where J is the Jacobian matrix, 

€ 

J =
∂L
∂θ

, as described above.  The behavior and convergence characteristics of the quasi-steady 

trimmer are strongly affected by the diagonal gain matrix, G, and the individual gains should be 
adjusted to obtain the best convergence characteristics.  It was observed that high gain values 
may render the closed-loop system unstable.  In addition, even moderate gain values can lead to 
instabilities because the quasi-steady trimmer does not account for system dynamics.  To 
overcome this problem, an adaptive gain selection strategy was introduced such that when the 
difference between the input and its target value becomes small, the gain is gradually decreased 
to zero using a hyperbolic tangent function. Results have been obtained that imply that the 
inaccurate determination of the Jacobian matrix is responsible for the observed lack of stability 
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of the autopilot algorithm at high gains. This work has been summarized in a paper that was 
presented at the AHS Forum in 200852.  
 

The analysis of the classic autopilot algorithm underlined the fact that the dynamics of the 
system are largely ignored in that approach. This observation led to the elaboration of a new 
strategy for trimming, called the quasi-steady trim algorithm. The procedure for the proposed 
trim strategy is as follows: 

 
1. Identify the Jacobian J and its inverse J-1; 
2. Obtain the initial guess for the control settings as y0 = J-1 T0, where T0 is the target values for 

the trim; 
3. Run a static analysis with y0 as control settings; 
4. Run a dynamic analysis with y0 as control settings and the configuration from the static 

analysis of step 3 as initial conditions; the converged trim variables are obtained as T1; 
5. If ||Tk - T0|| (k = 1, 2, …) is less than the expected error criteria, stop; otherwise, update the 

control settings as follows: 
a. yk = J-1 [ T0 - Tk] + yk-1; 
b. Run a static analysis with yk as control settings; 
c. Run a dynamic analysis with yk as control settings and the configuration from the static 

analysis (in step b) as initial conditions; the converged trim variables are obtained as 
Tk+1; 

d. Go to step 5. 
 

Using the above procedure, studies to determine the sensitivity of the Jacobian were 
performed with the UH60 model. As an example, consider two cases were the rotor speed is 
27.02 rad/sec, and the target values for the trim are 17,944 lb, 6,884 lb-ft, and -2,583 lb-ft for the 
thrust, roll and pitch moments, respectively. Figure 5 and Figure 6 illustrate the results for the 
first case, where the Jacobian was computed with predetermined control settings as 0.178 ft, -
0.0183 rad, and -0.077 rad for swash plate displacement, lateral and longitudinal tilt, 
respectively. Figure 5 shows the resulting thrust and moments obtained at each coupling 
iteration, along with the errors when compared with the target values. Figure 6 provides the 
converged swash plate displacement and tilt, and the errors comparing with the results from 
autopilot run for each iteration. It is readily observed that the trim convergence is achieved in 5 
to 6 coupling iterations. 
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Figure 5:   Trimmed thrust and moments with errors for the Jacobian computed with predetermined control 

settings.  The horizontal lines in the figures on the left are the target values. 
 

The next two figures illustrate the typical results for the second example where the Jacobian was 
computed at zero settings for the swash plate displacement, lateral and longitudinal tilt.  Similar 
to the first method, Figure 7 shows the converged thrust and moments, while Figure 8 illustrates 
the resulting converged swash plate displacement and tilt. Clearly, the trim variables have not 
converged by the 6th iteration. These typical examples illustrate the sensitivity of Jacobian 
quality with convergence when using this approach. Thus, a more accurate approximation of the 
system Jacobian should accelerate the trimming process.  
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Figure 6:  Trimmed swash plate displacement and tilt with errors for the Jacobian computed with 

predetermined control settings.  The horizontal lines in the figures on the left are the autopilot solutions. 
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Figure 7:  Trimmed thrust and moments, and errors with errors for the Jacobian computed with control 

settings at zero. The horizontal lines in the figures on the left are the target values. 
 



 
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the National Aeronautics and Space Administration 

28 

 
Figure 8:  Trimmed swash plate displacement and tilt with errors for the Jacobian computed with control 

settings at zero.  The horizontal lines in the figures on the left are the autopilot solutions. 
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5. Kriging Control Algorithm 
  With an efficient trimmer in place, development focused on the identification and 

creation of a neural network approach to accelerate and enhance the trimming process for quasi-
static (e.g., level flight, steady turns) and dynamic (maneuvers, stability) simulations. The quasi-
steady trimmer was used to generate a set of trimmed flight conditions for various advance ratio 
and thrusts to construct a parametric study that facilitated the selection parameters and type of 
the meta-model for the system identification process.  

A meta-model is an approximation of the input/output (I/O) function that is implied by the 
underlying simulation model that can be either deterministic or random (stochastic).  Meta-
models may be used for validation and verification of the simulation model, sensitivity of the 
model, and optimization of the simulated system. A deterministic simulation is a simulation that 
gives same output for the same input. The linear regression methods fit the data points to linear 
or non-linear curve functions by minimizing the distances between these samples points and the 
curve to fit (the error). 

While in the case of the non-linear regression techniques like Artificial Neural Networks 
(ANN), the training points are fitted to a complicated function with no easy way to predetermine 
the character of the curve. That is, in the case of the ANN, the curve function is determined 
implicitly and not as a set of unknown coefficients as is the case for linear regression techniques. 
A Gaussian process (GP) does not require curve fitting; instead GP uses the information in this 
data set to create a statistical prediction or estimate by incorporating Bayesian regression. Not all 
the predictions obtained by a Gaussian process will have same measure of goodness (accuracy); 
the closer the point is to one of the training points, the smaller the variance of the prediction will 
be, until it reaches zero at a known training point. 

Kriging as a meta-modeling technique is similar to Gaussian processes in the local 
component, however does not typically make use of the Bayesian step in the way that Gaussian 
processes do. Kriging provides a flexible means to construct meta-models that accurately 
approximate highly non-linear behavior. Kriging meta-models are typically applied in prediction 
processes, sensitivity analysis and optimization. Its behavior entirely depends on the covariance 
function and the training data. It is a necessary and sufficient condition that a covariance function 
of a Gaussian random function be a positive semi-definite function. For application in this effort, 
an isotropic stationary covariance function that has a set of (n+2) free parameters,  

€ 

Θ = (θ1,θ3,
 r ) , 

for a function of m input directions and is infinitely differentiable (and thereby very smooth) has 
been used.  That is, 

 

  

€ 

C( x i ,
 x j ) =

1
θ1

exp −
1
2
 x i −
 x j( )2  r 

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
+δi, jθ3        i, j =1,2,...n  

 
where n is the number of training points, 

€ 

θ1 controls the overall scale variation of the function, 
and 

€ 

θ3  controls the scale of the input independent noise. The vector of free parameters 
  

€ 

 r = (r1,r2,...rm ) represents the measure of length scale of variation in each of the m input 
directions. When the Gaussian process meta-model is used to determine a deterministic computer 
experiment, there is no noise in the measurement. These hyper-parameters are determined by 
maximization of the likelihood of the observed training data to find the Gaussian random 
function that best approximates the training data. Once the meta-model data are available, the 
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covariance matrix, C, is formed by the evaluation of the covariance function between the n 
training points. The covariance vector c is formed by the evaluation of the covariance function 
between the test point   

€ 

 x *  and the n training points.  The prediction of the response y* at a 
specified test point   

€ 

 x *  is then computed by 
    

€ 

y*= cTC−1 y  
where  

€ 

 y  is the response vector corresponding to the n training input points,   

€ 

 x .  Since the 
prediction is based on a Gaussian random function, it is then in a probabilistic form and its 
estimated value is its mean value at the test point   

€ 

 x * . 
The kriging method originated in the field of geostatics and was popularized by G.  

Matheron53.   Simultaneously to the development of the approach in geostatics, Gandin 
simultaneously developed the approach for use in the field of meteorology under the name 
“optimum interpolation”54.    

This ordinary kriging meta-model was implemented in Dymore with two options to either 
specify the free parameters as a user input or to apply the implemented optimization technique to 
compute the free parameter values.  Additional details of the kriging development can be found 
in Reference 55. 

5.1. Kriging meta-model with optimized free parameters 
The most efficient set of free parameters of kriging model for a set of training points is one 

that maximizes the maximum likelihood estimate that will results in the most accurate estimates 
of the unknown points.  This method is known as the maximum likelihood estimate (MLE) 
method. However this method is based on the assumption that the observed data will behave as a 
Gaussian process, which can be a very restrictive constraint. When this constraint precludes the 
use of the MLE method, then the Cross Validation method (CV) results in better estimates of the 
model parameters. The disadvantages of the CV method are that it is significantly more 
computational expensive than the MLE method, and it does not provide an estimate of the 
variance, which is directly computed with the MLE technique56. 

Based primarily on the cost savings and error prediction, the MLE technique was selected 
and implemented in Dymore. Both steepest descent and Polak-Robiere algorithms were 
evaluated to minimize the Gaussian constraint associated with the MLE technique. The steepest 
descent algorithm was the primary method used to minimize the constraint. When difficulties 
arose during the convergence of the MLE optimization, the code applied the Polak-Robiere 
technique to improve the quality of the convergence. During investigations of these two 
methods, it was determined that poor convergence in many instances was not due to the 
efficiency of the optimizer, but was highly dependent on the test case.  The Polak-Robiere 
method’s main attraction is its simple formula that updates the direction vector, requiring only 
the computation of the first order partial derivatives. This simplification then conceptually 
decreases the computation effort associated with the computation of the second-order partial 
derivatives.  The cost of the second-order partial derivative increases with the increase of the 
number of independent variables. While this method is slightly more complicated than steepest 
descent, it exhibits more efficient convergence properties.  To further optimize convergence, the 
method was designed so that when it restarted a new loop of optimizer iterations, the free 
parameters were initialized with the free parameter values computed during the last iteration of 
the previous loop.  The algorithm was also optimized to compute the maximum log likelihood 
function at random grid points of the free parameters.  Here the initial guess of the first optimizer 
loop is based on the free parameter set corresponding to the maximum log likelihood function. 
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5.2. Test and optimization of the kriging implementation 
To test the kriging implementation, three dependent variables (thrust, rolling moment, 

pitching moment) were selected, along with three associated control angles (collective, 
longitudinal and lateral cyclics).  This mimics the current method used in CFD/CSD trim for 
level flight and steady turns.  One cost function is maximized and applied in the computation of 
the free parameters, which is then applied to determine the values of three dependent variables. 
This means that each of the dependent kriging meta-models could require a different set of free 
parameters to achieve an optimum fit.  For example, to determine an a priori value for the thrust, 
a particular set of controls will be determined that may not result in the requested values for the 
rolling and pitching moments.  To address this problem, the controls were redefined as functions 
of the rotor performance rather than the original formulation where the rotor performance 
parameters are determined from the controls.   This inverse formulation permits the target rotor 
performance to be defined by the control estimates. 

The MLE method depends on an unconstrained optimization problem, which is usually 
solved through a numerical iteration algorithm, such as the method of steepest descent or 
Newton’s method. In these algorithms, the iterative loop initialization begins from a set of initial 
guesses for the free parameters. For the trim test problem, it was observed that it was difficult to 
determine a unique set of initial guesses for the free parameters, and that the cost function could 
include several local minima that were dependent on the value of the initial guess.  Thus, during 
the minimum error search, it was quite likely that a local minimum rather than the global 
minimum was identified.  

The first optimization is based on the free parameters of the collective as function of the 
thrust and two moments, then the same free optimized set of parameters was used for the two 
cyclic controls meta-model as a function of the loading. Figure 9, Figure 10, and Figure 11 
summarize the results obtained from the kriging meta-model using thrust, longitudinal and lateral 
cyclics, respectively, as the kriging free (independent) parameters. The meta-models were 
obtained by optimization of the collective-airloads relations and the data sample points consisted 
of 9 points obtained by CFD/CSD loose coupling for the UH60 c8534 (high speed) flight case.  
In order to test the model, first the values of the independent variables for the 9 sample points 
were passed to the model, where the model then estimated values for the dependent variables.  
These estimates (red crosses) were compared to the data training points (blue squares) in Figure 
9 to Figure 11, where it is observed that the estimated values are almost identical to the trained 
values.  Next, a range of random values for the independent variables were generated and 
evaluated in the kriging meta-model to test the interpolation accuracy. These interpolated values 
are plotted as continuous lines in these three aforementioned figures.  These two-dimensional 
interpolated values detect the general behavior of the dependent variables, although a large 
variance is observed.  This variance is attributed primarily to the low number of training points 
(9) that are used to map the variation of three control variables, which are functions of three 
independent variables.  However, as the primary variable behavior was captured, which suggests 
that the Jacobian resulting from this meta-model may be accurate enough to obtain a converged 
solution. It is clear that the use of this model predicted control values that were very close to 
those of the 5th iteration loose coupling converged results, as shown in Table 2 and Table 3. 
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a)  Collective    b) Cyclic 1 

 
c) Cyclic 2 

Figure 9: CFD/CSD-based kriging algorithm training using thrust as the independent parameter 

  
a)  Collective     b) Cyclic 1 

 
c) Cyclic 2 

Figure 10: CFD/CSD-based kriging algorithm training using rolling moment as the independent 
parameter 
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a)  Collective     b) Cyclic 1 

 
c) Cyclic 2 

Figure 11: CFD/CSD-based kriging algorithm training using pitching moment as the independent 
parameter 

 
Table 2: Comparison of the controls estimated from kriging to the converged (iteration 5) loose coupling of 

UH60-AA high speed flight case, 8534 

 Collective 
[rad] 

Cyclic1 
[rad] Cyclic2 [rad] Estimation 

Variance 
 9 CFD/CSD training 

points, 1 free parameter – 
Case 1 

0.228295 0.0423120 -0.139071 0.203 

 9 CFD/CSD training 
points, 3 free parameters – 

Case 2 
0.228369 0.0423925 -0.139435 0.199, 0.156, 0.169 

5th iteration loose coupling 0.230615 0.0428699 -0.14034 
9 CSD training points, 1 
free parameter – Case 1 0.232475 0.0482541 -0.146125 0.657 

9 CSD training points, 3 
free parameters – Case 2 0.232414 0.0482736 -0.146489 0.643,  0.611,  0.622 

16 CSD training points, 1 
free parameter – Case 3 0.232997 0.0484298 -0.147962 0.3528 

16 CSD training points, 3 
free parameters - Case 4 0.232997 0.0484417 -0.148384 0.3527, 0.32,  0.321 

CSD trimmed controls 0.238321 0.0496658 -0.154414 
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Table 3: Comparison of the first iteration trim characteristics estimated from kriging to the converged 
(iteration 5) loose coupling of UH60-AA high speed flight case, 8534 

 

 
Thrust 

[lb] 
Rolling Moment  

[lb.ft] 
Pitching Moment 

[lb.ft] 
Target loads 16602 6042 -4169 
CSD trimmed loads 16602 6032 -4179 
CFD-CSD converged loads 16609 6211 -2253 
CSD Loads - Case 1 16912 5929 -3330 
CSD Loads - Case 3 16842 5983 -3667 

 
The application of the kriging control estimates to start the CFD simulation (CFD/CSD 

iteration 0) resulted in trimmed loads that were less accurate than the initial estimates with the 
known flight test control settings.  However, the use of the kriging to estimate the controls during 
the loosely-coupled simulation resulted in more rapid convergence to the target loads than the 
original autopilot CFD/CSD loose coupling using the known flight test controls, as observed in 
Table 4.  The larger error observed at iteration 0, which is the first CFD simulation using the 
initial estimates of the CSD trim without the feedback from the delta airloads, appears to be 
subsequently rapidly adjusted in subsequent coupling iterations. 

 
Table 4:  Comparison of converged loads for CSD alone and CFD/CSD loose coupling using controls 

estimated with and without the kriging algorithm. 

 
Thrust 

[lb] 
Rolling Moment 

[lb.ft] 
Pitching Moment 

[lb.ft] 
Target loads 16602 6042 -4169 
Iteration 0 (Flight test controls) 16380 -3311 -6050 
Converged at Iteration 5 (Flight test controls) 16609 6211 -2253 
Iteration 0 (Kriging controls) 16050 21140 2857 
Converged at Iteration 3 (Kriging controls) 16630 7495 -4235 

 
These initial comparisons were determined using kriging training points that were regularly 

spaced about the fifth iteration loosely-coupled converged solution.  In order to test the accuracy 
of the kriging prediction, the next numerical experiment applied the same number of training 
points, but which were randomly spaced. In order to accomplish this test, the simplified 
aerodynamics was used within the CSD stand-alone method was applied to reduce the run costs. 
This simplification is justified based on the results (CSD training points), which are included in 
Table 1. It is clear that for the same number of training points, a larger standard deviation was 
associated with the cases where the random training points were utilized.  
The variance of the estimated values of the dependent values, as compared to the locations of the 
independent variables sample points, shows that when the estimated points near the training 
points the variance decreases (a known characteristic of the kriging) with a minimum value of 
0.4 for this implementation. 

The variance of the estimates was observed in some cases to be unacceptably large for the 
estimates based on both the CFD/CSD and the CSD training. While an optimally small number 
of training points is sought, too few may result in these large variances. In examine this aspect of 
the training, additional training points were added to the CSD training model.  Table 2 confirms 
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that the variance of the CSD model with 16 training points was smaller (about half) than the 9 
training points. However, the differences in the estimated controls were insignificant. 

During these tests, it was discovered that as the value of the free parameter(s) passed to the 
optimizer loop could significantly influence the resulting control estimates and the standard 
deviation between the meta-model equation and training points.  For some instances, it was also 
difficult to achieve a converged set of free parameters using the MLE method.  

Several other researchers have also encountered this situation and proposed different 
solutions.  Reference 56 suggested that this might indicate that the constraint of the MLE method 
used to optimize the free parameters is questionable, since the method is observed to not always 
behave as a Gaussian process.  Reference 57 noted that, given some data distributions, the 
likelihood profile function has a long very flat ridge with a number of local maxima of almost 
identical height for the Gaussian correlation function is used.  This is similar to some of the data 
that are used for the controller in this application.   Another similarity to the kriging process here 
can be found in Mardia and Watkins58 who noted difficulties with the method of maximum 
likelihood estimation for a spatial linear model. In these instances, even with a regular 
covariance scheme such as the exponential function used here, the likelihood can be multimodal. 
One of their solutions proposes multiple optimization cycles, and then selecting the most 
accurate among them. The free parameters magnitude is very important and can vary widely, 
while their exact value is not so important, and hence repeating the optimization multiple times 
with different initial values for the free parameters, which vary with large steps, could help in 
resolving this issue..  

Runze and Sudjianto59 addressed the problem of the computed cost for a multi-varying 
function based on a small number of training points.  They noted that these functions encounter 
difficulty in obtaining the minimum value. They suggest the use of a penalized likelihood 
function instead of the profile likelihood in these situations. While the penalized likelihood 
function requires additional computational effort and cost, it addresses the problem that was 
faced in this study, where a minimal number of training points are sought because of the cost of 
the obtaining each point.  Runze and Sudjianto’s solution, with respect to the current trim 
algorithm, was explored using a simple sine function (y = sin(x)) using the original and new 
methods in Dymore.  A sample of 6 points (x = 0, 2, 4... 10) was employed. The prediction based 
on the Gaussian kriging model shows that the prediction becomes very erratic when x is not 
equal to the sample data, as shown in Figure 12, with a prescribed free parameter equal to 3, a 
value suggested by reference 59. When Dymore was run to detect the optimized free parameter 
for this data set, a different value of the free parameter (1.05) was obtained. When the 
independent variables in the training data set were normalized to the range [0,1], a value of 30 
was obtained for the free parameter.  The corresponding predictions for these three models are 
compared to the exact function in reference 59.  It is clear that the most accurate results are 
obtained when the free parameter is set to the value obtained using the implemented MLE in 
Dymore and normalizing the independent variables. As the profile function has a very large 
constant region near its optimum value, where the variance will increase. To minimize the 
variance, as well as to halt the optimizer before it reaches this constant region, a tolerance 
constraint of 1% on the normalized maximum independent variable of the training data was 
imposed on the Euclidian norm of the first partial derivatives of the profile function. This 
constraint, along with normalization of the independent variables, was shown to resolve this 
issue.  
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Various applications of the training model were examined for the UH60-A high thrust flight 
case (C8534).  The use of 16 versus 9 training points was evaluated, as well as the use of one 
dependent variable (thrust) or all three dependent variables as free parameters (Θ) to optimize 
the kriging algorithm. The efficacy of applying CSD training points, which are much less 
expensive than CFD/CSD training points was also examined. The reduction in the number of 
training points from 16 to 9 does not adversely impact the overall quality of the control 
predictions for CSD-based training, but it does increase the estimated variance (which is 
discussed in the next paragraph). This variance can be reduced by the use of normalization of the 
training data, implementation of a tolerance during training, and use of the MLE algorithm. The 
kriging algorithm based on the CFD/CSD training provides controls that are within 1% of the 
predicted controls from a converged CFD/CSD loose coupling simulation.  Thus, when the 
controls are not known prior to a CFD/CSD simulation, kriging can provide a close estimate 
of the controls. 
 

 
Figure 12:  Comparison of Kriging meta-models predictions with different free parameters. 
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6. Optimization of the Tight Coupling CFD/CSD Process 
The tightly-coupled CFD/CSD process was first verified using the 8534 test case for the 

UH60-A via OVERFLOW and Dymore.  This was accomplished by reproducing the last 
iteration of the loosely-coupled simulation with the slower file I/O process.  The results were 
shown in most instances to be identical, and they are discussed in a section to follow.  The cost 
of the coupling process wherein the converged loose coupling is used to start the tight coupling 
process is not efficient.  Therefore, a series of runs were examined to determine the optimal start-
up of the tightly-coupled process. 
 The initial CFD simulation whether or not it includes component motion is characterized 
by large flow field transients.  The addition of component motion during this transient period can 
compromise the stability of the simulation for some flight conditions.  Therefore, the question 
arises as with regard to the most efficient method to start up the tight coupling.  To examine this, 
the C8534 UH60-A flight case was restarted from various solutions between 0 and 1 revolution.  
The thrust was used as the parameter to determine the efficiency of the transfer between 
methods. Figure 13 pictorially illustrates the behavior of the simulation at each of these 
initializations.  Convergence for the thrust parameter is defined as the first instance in which the 
error drops below 1% and remains for a full revolution.  “Cold starting” tight coupling is not 
efficient, as it requires a number of revolutions before the error remains below the 1% threshold.  
Immediately upon restarting from some fractional portion of a loose coupling revolution (which 
used the initial kriging estimate for the controls), the errors rapidly drop below 5% towards the 
1% demarcation.  Thus, some level of loose coupling is recommended prior to starting a tightly-
coupled simulation.  Various loose coupling initializations were examined for their convergence 
characteristics, the details of which are provided in Table 5.  When examined and visually 
inspected as in Figure 14, the optimal loose coupling start appears to be ¼ to ½ revolution.   

 
Figure 13:  Summary of thrust errors during different tight coupling starts from loose coupling. 
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Table 5:  Tight coupling requirements to reach convergence using kriging to trim during tight coupling. 

Total Time Required 
(revs) 

Loose 
Coupling  

(revs) 

Tight Coupling 
(revs) 

Kriging Trim On  
(Part of Tight Coupling) 

(revs) 

CPU 
hours 

>6 0 6.0 5.0 2814 
3.6 1/8 3.5 2.5 1728 
2.4 1/4 2.2 1.2 1166 
2.7 1/2 2.2 1.2 1306 
5.1 1 4.1 3.1 2432 
2.5 5/2 0.0 0.0 1453 

 
 

 
Figure 14:  Revolutions needed to reach thrust convergence (1% error) based on loose coupling initialization. 
 
 It must be noted that the controls are held for one revolution (which has not been 
optimized) after switching from loose to tight coupling.  This approach was found to be 
necessary as an additional transient between the loose and tight coupling loads transfer appears.  
If the kriging is used immediately upon the transfer to tight coupling, then large transients, such 
as the example in Figure 15 will appear.  At the end of this time, however, an additional training 
point can be added to the kriging database for use in the current as well as future simulations. 

Due to the large cost of developing CFD-CSD training points, it was investigated as to 
whether or not efficient trimming could be achieved via kriging using a far less costly CSD 
training point database.  The CSD training databases examined for 8534 had very good 
correspondence (less than 5% error) with the controls predicted by OVERFLOW loose coupling.  
C8534 tightly-coupled simulations were performed using both a twelve point CSD and the nine 
point CFD-CSD database (Figure 16).  As it was previously noted that initialization from a 
quarter revolution of loose coupling speeds up convergence, both cases used this optimized start.  
The results indicate that, at least for some conditions, comparable convergence behavior can be 
obtained with the significantly reduced training cost using a CSD training database, provided 
directly from a comprehensive code. 

A similar tight coupling process was applied in a different effort via funding from the 
Vertical Lift/Rotorcraft Center of Excellence with FUN3D and UM/NLABS for a rotor 
undergoing camber changes.  This effort is discussed in a paper60 presented at the 2009 AHS 
Forum in Grapevine, Texas in May 2009.  In addition to verifying that the process is stable, 
additional testing was accomplished to determine the most efficient and robust method to 
transition from the initial loading used for trim as defined by the lower-fidelity CSD model to the 
loads predicted by the CFD method.  As shown in Figure 17 and Figure 18, a step function 
defining the switch between the methods appears to be robust, as well as efficient for the test 
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cases explored.  These simulations highlight the effect that the kriging has on the rapid 
convergence of the trim, observed in Figure 13.  Here, using an auto-pilot trim with the CSD 
method, comparable to the process applied for delta airloads loose coupling, the process requires 
4 to 5 revolutions to attain the 1% thrust error, even with loose coupling initialization. 

 
Figure 15:  Example of the large transients that occur when kriging is applied immediately upon transfer 

from loose to tight coupling (at revolution 1). 
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Figure 16.  Tight coupling trim may be achieved for some cases with a training database provided from a 
comprehensive code. 
 

 
Figure 17:  Pitch control history, varying length of transition between low-order and CFD loads. (From 

Reference 60) 
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Figure 18:  Hub loads history, varying length of transition between low-order and CFD loads. (From 

Reference 60) 
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7. CFD/CSD Tight Coupling Demonstrations 
 

The CFD solvers, OVERFLOW and FUN3D, have been evaluated using the new tight 
coupling implementation and kriging controller. Several test cases involving different physics 
(UH60-A cases, Table 6, and HARTI baseline) have been evaluated. Application of the 
algorithm to obtain stability characteristics has also been demonstrated.  Optimization of the tight 
coupling has also been accomplished to minimize the required computational time to obtain 
tightly-coupled results. 

 
Table 6:  UH60-A Test Cases 

Case Rotor Speed 
(RPM) 

Density 
(slug/ft^3) 

Temperature 
(F) 

Airspeed 
(ft/s) 

Pitch  
(deg) 

Sideslip 
(deg) 

c8534 258.1 0.0020823 71.814 266.5 -4.31 1.27 
c9017 255.8 0.0013242 24.761 170.2 2.85 -1.59 
c11029 257.3 0.0020066 35.43 258.5 -3.84 -1.69 

 

Case 
Thrust 

(lb) 
Roll Moment 

(ft.lb) 
Pitch Moment 

(ft.lb) 
c8534 16602 6042 -4169 
c9017 16452 379 -138 
c11029 15727 5188 -4617 

 

7.1. Grid Descriptions 
UH60-A Coarse Mesh 

The structured coarse mesh contains 44 grids for 5.2 million cells, approximately 1.9 
million of which are in the near field. The fine mesh contains 118 grids and has 80.9 million 
points with 14.3 million cells in the near field. Both were run with 4th order spatial accuracy with 
time steps corresponding to 1/20th of a degree blade motion in azimuth. Airstations were taken 
between radial nodes, as is usual in a structured grid. 

Each blade, shown in Figure 19a), has 81 spanwise stations, which are clustered at the 
root and tip (Figure 19b)) with 105 surface nodes in the chordwise direction at each station. Each 
blade has a tip and root cap grid at each of the ends, however these grids were not considered for 
calculating forces and moments due to their small size and effect. The complete overset mesh 
contains all four blades (Figure 19c)), and has 44 grids for a total of 5.165 million points. The 
spacing normal to the blade surfaces yield a y+ of approximately one over the blade. While this 
is not the optimal grid for determining in particular the drag of the system, it is sufficient to 
demonstrate the ability of the CFD-CSD tight-coupling procedure to perform a rotor stability 
analysis. 

A refined grid was also examined for a limited number of runs.  This grid is over fifteen 
times finer than the coarse grid, having a total of 80.9 million grid points while the coarse grid 
has just 5.2 million. The fine grid contains twice as many spanwise stations as the coarse grid 
(162 for the fine grid, and 81 for the coarse grid), and nearly twice as many chordwise grid 
points as the coarse grid (249 for the fine grid and 125 for the coarse grid). The fine grid also 
contained a denser near field than the coarse grid did, with 14.3 million cells compared to just 
1.9 million for the coarse grid, while maintaining a proportionally finer far field. The fine grid 
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had 82% of the grid cells located in the far field versus just 63% for the coarse grid, allowing the 
fine grid to better preserve flow features. 

The unstructured grid used by FUN3D contains 40.3 million tetrahedrals. Time steps of 
1-degree azimuth blade motion were taken using second order accuracy with 10 subiterations. 
The airstations used in coupling were taken to correspond to the coarse structured grid 
airstations, except at the tip where they were coarsened so that the FUN3D slicing algorithm 
would not skip a station when the tight coupling began. 
 

 
Figure 19. UH60-A CFD structured coarse mesh. 

 

HART-II Mesh 
The mesh used for these simulations (Figure 20) included a total of 13.6 million nodes.  

The relevant mesh statistics are summarized in Table 7.  This mesh is identical to that used by 
Biedron and Lee-Rausch in 2008, and as described in Reference 67, this mesh was the finest of a 
set of meshes used in a grid convergence study. 
 

Table 7: Dimensions of each component of the composite mesh.  All cells are tetrahedra. 
Component Nodes Boundary faces Cells Grid Generator 

Blades (each of 4) 1,156,735 114,302 6,731,961 VGRID 
Fuselage/background 8,971,420 63,026 52,733,053 VGRID 

Total 13,598,360 520,234 79,660,897  
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    a) Surface grid   b) Volume grid (sliced through centerline) 

 
c) Volume grid (close-up of hub region) 

Figure 20:  Illustrations of the 13.6 million node composite mesh used for HART-II simulations. 
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7.2. Level Flight Trim Demonstrations 
There are two current methods of accomplishing the coupling within the rotorcraft 

community.  The first method is the one applied by Potsdam et al. (Ref. 9), which updates the 
solution between coupling updates at every 1/n revolutions, where n is the number of blades in 
the rotor.  The other method monitors the periodicity of the CFD solution, and a coupling 
iteration is only performed when the rotor loads at a given reference radial station are periodic. 
The 1/n update required eight coupling iterations to converge, while the periodic update required 
five coupling iterations.  Although the latter method only needed five coupling iterations, the 
total time to achieve comparable convergence was a ½ revolution more than the 1/n update 
method.   

In tight coupling, the same trim procedure described above would be extremely expensive 
since the CFD solver would have perform as many revolutions as the CSD solver. For this effort, 
trim is computed with a conventional loose delta coupling method until convergence has been 
reached, after which the simulation is switched to a tight coupling algorithm. The initial loose 
coupling procedure (for trimming) follows that used by Abras61 and Biedron and Lee-Rausch67.  
The only difference is that the new quasi-steady trimmer (Section 4) was used in place of the 
auto-pilot trimmer.  

The baseline case applied a Spalart-Allmaras turbulence model. Menter’s kω-SST two-
equation model was compared, as well as two hybrid LES methods.  The first of these was the 
Kinetic Eddy Simulation (KES), which is a Large Eddy Simulation/Very Large Eddy Simulation 
(LES/VLES).  The second is a hybrid RANS-LES method (HRLES), that employs the Menter 
kω-SST RANS turbulence model near a wall and solve the k-equation, along with a subgrid scale 
model away from the way in the zones of separated flows. Both the HRLES and KES methods 
converged quickly to the nominal thrust coefficient, but did not converge on the moment 
coefficients, but instead fluctuated periodically about the nominal trim value. The Menter kω-
SST model had trouble with the coarse grid used in this simulation, as has been observed in prior 
applications on various grids for the UH60-AA flight test cases.  A typical radial section of the 
pitching moment is shown in Figure 21.  The Spalart-Allmaras turbulence model over predicts 
the pitch down in the third quadrant, as well as anticipating the pitch down by almost 40o. 
Overall, the HRLES simulation best predicts the phase of the pitch down moment, although it 
still over predicts the magnitude of the pitching moment. 

OVERFLOW has four dissipation schemes, which smooth different variable 
combinations to achieve numerical dissipation.  The default scheme is the TLNS3D, which was 
used in the baseline case, and it smoothes the total enthalpy, .  Another option is 
the F3D scheme, which smoothes the flow parameter ρε0 by mixing 2nd and 4th order smoothing.  
An organized attempt has been made to reduce the floating-point operation count in F3D by 
scaling the pressure sensor by the local rather than free stream Mach number.  The ARC3D 
scheme is very similar to the F3D scheme, but it has slightly different coefficients in its 2nd and 
4th order smoothing functions.  Matrix dissipation is the final dissipation scheme.  The other 
schemes are scalar based schemes, and matrix dissipation is intended to improve the quality of 
the solution.  It is more computationally intensive, but typically more accurately resolves shocks 
and boundary layers.   
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Figure 21:  Comparison of the influence of the turbulence model predictions on pitching moment at a typical 

radial section. 
 

During the simulations, it was found that the F3D and matrix dissipation schemes lacked 
robustness for this grid and flight conditions, and they did not achieve convergence. The ARC3D 
dissipation scheme converged quickly on the thrust coefficient, but its prediction of the moment 
coefficients fluctuated periodically about the nominal trim values.  Although this periodicity in 
moments were observed, overall, it appears that the ARC3D dissipation scheme may be a better 
option to apply rather than the original TLNS3D scheme.  The normal force and pitching 
moment predictions with the TLNS3D scheme missed several salient features of the simulation 
at various radial stations in the fourth quadrant, and typically produced the third quadrant 
pitching moment dip with a 40-degree phase lead over the flight test data.  The ARC3D 
dissipation scheme on the other hand did not show as large of a phase lead (0 – 10 degrees), but 
the magnitudes of the features remained the same.  
 
UH60-A Structural Model 

The Dymore multi-body finite element analysis code, developed at Georgia Tech 
provides the structural dynamics module for this effort. Dymore can be applied to arbitrary 
nonlinear elastic systems, and has been previously utilized using OVERFLOW for CFD-CSD 
loose-coupling. Dymore includes an extensive library of multi-body components to model the 
mechanical components of a rotor system so that it can be applied to new topological designs 
with existing library elements or by the addition of new elements. For modeling flexible rotors, 
Dymore uses geometrically exact finite elements based on formulations developed by Simo62, 
which have been extended to beams and shells. 
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The UH60-A rotor is a fully articulated system that exhibits all possible motions and thus 
requires that all the hinge motions be modeled. The articulated motion consists of pitch, flap, and 
lead-lag components with higher harmonic content greater than zero, as well as hinge offsets and 
shaft tilt.  This example deals with a detailed aeroelastic model of the UH60-A rotor system 
shown in Figure 22. This problem involves both structural and aerodynamic states. The structural 
model involves four blades connected to the hub through blade root retention structures and lead-
lag dampers. Each blade was discretized by means of ten cubic finite elements.  The root 
retention, connecting the hub to the blade, was separated into three segments and modeled by 
one, two and two beam elements, respectively, labeled segment 1, 2, and 3, respectively. Three 
revolute joints connecting the first two segments of the root retention structures described the 
flap, lead-lag and pitch hinges of the blade. Prismatic joints were used to model the lead-lag 
dampers, assumed to be dashpots with linear properties. The complete structural model involved 
5,656 states. 
 

 
Figure 22. Schematic of the UH60-A rotor system. 

 
UH60-A C8534 
This case was utilized to examine whether the tight and loose coupling would result in identical 
airloads.  To examine this, first the coarse structured grid was resolved using the OVERFLOW-
Dymore coupling.  The predicted airloads for both coupling approaches are compared with 
experiment in Figure 23.  These figures indicate that the difference in the loose and tight 
coupling, run to convergence in both methods do not yield any discernable differences in the 
predicted results.  This is also true for the structural moments (Figure 24 and Figure 25) and the 
predicted tip deflections (Figure 26).  The differences in the simulations and experimental data 
are comparable to those predicted by loose coupling from other researchers, such as Potsdam et 
al.63, within the context of the different CSD solver.   
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a) r/R = 0.225    b) r/R = 0.40 

 
c) r/R = 0.55    d) r/R = 0.675 

 
Figure 23:  UH60-A airloads computed with OVERFLOW-Dymore using the coarse CFD grid. 
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e) r/R = 0.775    f) r/R = 0.865 

 

 
g) r/R = 0.92    h) r/R = 0.965 

Figure 23 (cont.):  UH60-A airloads computed with OVERFLOW-Dymore using the coarse CFD grid. 
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i) r/R = 0.99 
Figure 23 (cont.):  UH60-A airloads computed with OVERFLOW-Dymore using the coarse CFD grid. 
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a) r/R = 0.2    b) r/R = 0.3 

 
c) r/R = 0.4    d) r/R = 0.5 

 
Figure 24:  Inboard UH60-A structural moments computed with OVERFLOW-Dymore using the coarse 

CFD grid. 
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a) r/R = 0.6    b) r/R = 0.7 

 

 
c) r/R = 0.9 

 
Figure 25:  Outboard UH60-A structural moments computed with OVERFLOW-Dymore using the coarse 

CFD grid. 
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Figure 26: UH60-A tip deflections computed with OVERFLOW-Dymore using the coarse CFD grid. 

 
 The influence of the grid was next evaluated for both the prediction capabilities and its 
influence on the tight coupling convergence.  As observed in Figure 27, the airloads for this case 
change only minimally for the refined grid.  These changes, which consist primarily of a phase 
shift and mild amplitude adjustments, are comparable again to those observed by Potsdam et al.23 
using the same grids, but CAMRAD-II to resolve the structural model. 
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a) r/R = 0.225    b) r/R = 0.40 

  
c) r/R = 0.55     d) r/R = 0.675 

 
Figure 27:  UH60-A airloads computed with OVERFLOW-Dymore using refined CFD grids. 
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g) r/R = 0.775     h) r/R = 0.865 

 

 
i) r/R = 0.92     j) r/R = 0.965 

Figure 27 (cont.):  UH60-A airloads computed with OVERFLOW-Dymore using refined CFD grids. 
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 k) r/R = 0.99 

Figure 27 (cont.):  UH60-A airloads computed with OVERFLOW-Dymore using refined CFD grids. 
 

 
UH60-A C9017 

Case 9017 poses a more interesting case for loose and tight coupling, as dynamic stall 
occurs on the retreating side of the blade.  Since dynamic stall is very sensitive to simulation 
parameters, the impact of tight coupling on the predictions has been a topic of speculation at the 
UH60-A airloads workshop.  For this case, the coarse grid was again run to minimize 
computational time, but the hybrid RANS-LES (HRLES) turbulence model was selected to help 
quantify differences in the coupling approaches.  Loose coupling was started after one revolution 
and updated every ¼ revolution until convergence.  Tight coupling was started after ¼ revolution 
and controls were updated every degree (20 timesteps) during the revolution, with the Jacobian 
updated every 36 degrees.  Once again convergence (Figure 28) occurred within approximately 
one revolution of each approach, depending on the point at which the solution isdeemed to be 
converged.   Similar to the 8534 case, the loose and tight coupling airloads for the 9017 case for 
the most inboard radial sections show comparable predictions (Figure 29a) and b)).  As one 
moves outboard, however, significant differences in the predictions appear, in particular for the 
retreating side of the rotor.  Phase and amplitude differences result, with loose coupling results 
providing more accurate correlation to experiment in some instances, with tight coupling results 
more accurate in others.  It is difficult to determine the cause of these differences in the 
prediction due to the plethora of numerical options that may affect this simulation (grid fidelity, 
turbulence model, time step/subiteration, etc.).  These are further explored and discussed in the 
2011 European Rotorcraft Forum article that is under preparation. 
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Figure 28:  C9017 convergence with loose and tight coupling using OVERFLOW-Dymore on the coarse grid. 
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a) r/R = 0.225    b) r/R = 0.40 

 

 
c) r/R = 0.55    d) r/R = 0.675 

Figure 29:  C9017 airloads predictions for loose and tight coupling using OVERFLOW-Dymore on the coarse 
grid with the HRLES turbulence model. 
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e) r/R = 0.775    f) r/R = 0.865 

 

 
g) r/R = 0.92    h) r/R = 0.965 

Figure 29(cont.):  C9017 airloads predictions for loose and tight coupling using OVERFLOW-Dymore on the 
coarse grid with the HRLES turbulence model. 
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j) r/R = 0.99 

 
Figure 29(cont.):  C9017 airloads predictions for loose and tight coupling using OVERFLOW-Dymore on the 

coarse grid with the HRLES turbulence model. 
 

HART-II Baseline 
Another test case chosen to validate the coupling methodology is the HART-II rotor 

test64, which was conducted in 2002 to study the effect of higher harmonic pitch control on rotor 
noise and vibration.  The rotor was situated on a model fuselage, which was at the end of a long 
sting.  Various geometric parameters for the rotor are given in Table 8.  To emulate descending 
flight, the shaft was tilted aft by 5.4 degrees by tilting the entire fuselage/rotor assembly.  This 
has been calculated to correspond to an effective shaft tilt of 4.5 degrees aft when wind tunnel 
walls are not present.  As discussed previously, a number of researchers have demonstrated loose 
CFD/CSD coupling with the HART-II rotor65,66,67. 
 

Table 8:  Geometric parameters for the HART-II rotor. 
 

Rotor radius, R 2 m 
Rotor chord, c 0.121 m 
Solidity, σ 0.077 
Pre-cone angle 2.5o 
Actual shaft tilt, αshaft 5.4o aft 
Effective shaft tilt, αeff 4.5o aft 
Rotor speed, Ω 108.9 rad/s 

 
The HART-II rotor lacks flap and lead-lag hinges between the hub and the blades. The 

blades attach directly to the hub, and the inboard portion of the blade, which has an elliptical 
cross-section and is much stiffer than the outboard portions, is allowed to bend elastically to 
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absorb some of the bending moment that would otherwise be transferred to the hub.  The 
Dymore model used in these simulations, shown in Figure 30, has a number of simplifications 
compared to the actual rotor.  First, most of the hub hardware is omitted.  The blades simply 
attach to a revolute joint at the hub axis. While the HART blade is physically a single piece, here 
each blade is modeled as two beams: a relatively stiff inboard flex beam and a more flexible 
outboard main blade beam.  The flex beam is constructed from a single third-order finite 
element.  The main blade consists of eight third-order elements. Figure 31 shows the relationship 
between the number of main blade elements and the first torsion frequency.  With eight finite 
elements, the first torsion frequency can be computed to within 0.5% of the measured frequency.  
It is important to minimize the number of elements used in the model since Dymore's 
performance scales with O(Ne m2) , where  Ne  is the number of elements, and m is the bandwidth 
of the stiffness matrix.  Since adding more one-dimensional beam elements does not change m, 
performance scales linearly with Ne. 
 

 
Figure 30:  Hub of the HART Dymore model. 

 
Figure 31:  Convergence of the 1st torsion frequency with the number of finite elements in the blade beam 

 
The pitch link is also omitted since there is a great deal of uncertainty as to its structural 

properties.  To approximate the effect of the control system stiffness on the blade response, a 
torsional spring connects the flex beam and the main blade beam.  In order for the torsional 
spring to provide the best possible approximation of the control system stiffness, the spring 
constant must be adjusted until the natural frequency associated with the first torsional mode 
matches measured values.  This tuning process resulted in a stiffness of 1632.4 N-m/rad, yielding 
the target natural frequency of 419.57 rad/s.  Figure 32 and Figure 33 show a fan plot and the 
first six mode shapes at the nominal frequency, respectively.  The computational model follows 
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the trend of the measured frequencies, and the mode shapes are nearly identical to the measured 
modes. 

As stated in Table 8, the HART blades had a small pre-cone angle of 2.5o, which was 
included in the Dymore model in the reference configuration.  This means that the deflections 
output by Dymore are relative to the pre-coned state. The aft shaft tilt was applied to the model 
via the far field velocity used by the aerodynamic interface, which mirrors the manner in which 
shaft tilt was applied to the CFD model by setting the angle of attack to 4.5o. 

The CFD portion of the coupled simulation followed as closely as possible the work of 
Biedron and Lee-Rausch67, in order to provide a correlation of the loosely-coupled analysis prior 
to tight coupling. A time step corresponding to one degree of azimuthal rotation was used, and 
the number of Newton subiterations was dynamically determined by a temporal error 
controller68, insuring that at each time step, residuals were always reduced to less than 5% of an 
estimate of the temporal error. On average, using the error controller resulted in about 30 
Newton subiterations per step. To correlate with Reference 67, the Spalart-Allmaras turbulence 
model was selected. 

 

 
Figure 32:  Fan plot for the HART Dymore model 
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Figure 33:  First six mode shapes for the HART Dymore model 

 
 

The loose coupling phase was allowed to converge via five coupling iterations.  The 
zeroth iteration was run for two revolutions, and subsequent iterations each ran for half a 
revolution.  It should be noted that for a rotor with nb blades a coupling iteration needs only to 
include 1/nb of a revolution.  At that point, the airloads from all the blades can be combined to 
create a map of airloads over an entire revolution.  However, as the blade controls undergo a step 
change at the beginning of each coupling iteration, leading to transients in airloads, running 2/nb 
revolutions allows the airloads to become quasi-periodic state before applying them to the 
Dymore model. 

Figure 34 shows the convergence of blade collective and cyclic pitch, θo, θ1c,  and θ1s,  
during the initial loosely-coupled trim phase.  The controls change very little after the second 
iteration, though as will be shown later, the airloads continue to change.  Only the Dymore 
portion of the sixth iteration was simulated.  The controls from the sixth iteration were then fixed 
for the later tight coupling phase.  The final controls are given in Table 9, along with controls 
computed via FUN3D/CAMRAD-II coupling from Reference 67. 
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Figure 34:  Convergence of blade pitch controls with loose coupling iterations 

 
Table 9: Converged blade pitch controls, in degrees. 

 θ0 θ1c θ1s 
Measured 3.80 1.92 -1.34 
Computed 3.66 1.93 -1.15 
Computed (Ref. 67) 3.47 1.77 -0.97 

 
The convergence of airloads at 87% span is shown in Figure 35.  Prior work with the 

HART rotor shows that many predictions, including airloads and structural loads, have finite 
offsets from the measured values.  Since the fluctuating component is of greater engineering 
interest than the mean value, Figure 35(c) shows pitching moment with the mean component 
removed to show the fluctuating component only. 

It is clear that by the fifth loose coupling iteration, the airloads have nearly converged on 
their final values.  The primary differences between the ultimate and penultimate iterations are 
observed for the normal force predictions in the first and fourth quadrants, which feature 
prominent blade-vortex interactions.  Since the controls remain relatively constant after the 
second iteration, it can be concluded that most of the adjustments made by Dymore after that 
point are elastic deformations in an attempt to resolve the BVI phenomena. In an effort to further 
establish the validity of the structural model, structural moments from the present simulation 
were compared against measured moments and those computed by Biedron and Lee-Rausch. The 
present loosely-coupled simulations (Figure 36) capture the character and magnitude of the flap 
moment better than FUN3D/CAMRAD-II.  The torsion and lag moments in are nearly identical, 
and Dymore has the same difficulty as FUN3D/CAMRAD-II in capturing the lag moment, which 
is very lightly damped.  For reasons discussed earlier, the second column of Figure 36 shows the 
structural loads with their means removed.  Those mean values are listed in Table 10. 
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a) Normal force, CnM2 

 

 
b) Pitching moment, CmM2  c) Pitching moment with mean removed, CmM2 

 
Figure 35:  Convergence of airloads at 87% span for the loosely-coupled trim phase.  For measured pitching 

moment, the mean value is -0.00258; for iteration 5, the mean pitching moment is -0.00513. 
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a) Flap moment at  r/R = 0.17    b) Flap moment, mean removed 

 
 

c) Torsion moment at  r/R = 0.33   d) Torsion moment, mean removed 
 

 
e) Lag moment at  r/R = 0.17   f) Lag moment, mean removed   

 
Figure 36: Comparison of structural moments computed using FUN3D/Dymore and FUN3D/CAMRAD-II in 
Reference 67.  Mean values removed in second column are listed in Table 10.  Moment is negative for FUN3D 

results. 
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Table 10: Mean values subtracted from structural moments in second column of Figure 36. 
 Flap, Nm Torsion, Nm Lag, Nm 
 r/R=0.17 r/R=0.33 r/R=0.17 
Measured -9.27 -2.90 -10.26 
FUN3D/Dymore -3.05 -5.17 -64.49 
FUN3D/CAMRAD-II -3.36 -5.18 -63.18 

 
A comparison of FUN3D/Dymore airloads from the final loose coupling iteration with those 
predicted by FUN3D/CAMRAD-II is provided in Figure 37.  The two coupling methodologies 
provide similar results at all azimuths, with FUN3D/Dymore capturing the BVI regions more 
accurately, particularly the one in the fourth quadrant. 
 

 
a) Normal force, CnM2   b) Pitching moment with mean removed, CmM2 

 
Figure 37:  Comparison of airloads at 87% span computed using FUN3D/Dymore and FUN3D/CAMRAD-II 

in Reference 67.  Mean pitching moments are -0.00258, -0.00424, and -0.00513 for measured, 
FUN3D/CAMRAD-II, and FUN3D/Dymore, respectively. 

 
When a tightly-coupled solution is initialized from a previously converged loosely-coupled 
solution, the computed elastic deformations and airloads should not change. 

Tip torsion, flap, and lag predicted after switching to tight coupling are shown in Figure 
38, along with the motions from the final iteration of loose coupling.  There is very little change 
in torsion and flap, although there is a small decrease in flap near 180o azimuth.  Airloads at 87% 
span, shown in Figure 39, also show minimal change, particularly in pitching moment.  Due to 
the small change in flapping motion at 180o, there is a small change in normal force.  There are 
other small variations in normal force in the first quadrant BVI events.  Since the tightly-coupled 
solution moves closer to the measured data, it can be surmised that the initial loosely-coupled 
solution was not completely converged.  Otherwise, the solution is quite stable. 
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a) Elastic torsion   b) Flap     c) Lead-lag 

Figure 38:  Tip deflections predicted in tight coupling and the final iteration of loose coupling.  Bars on the 
measured data indicate blade-to-blade variation. 

 
          a) Normal force, CnM2 

 
 

b) Pitching moment, CmM2  c) Pitching moment with mean removed, CmM2 

Figure 39:  Sectional normal force and pitching moment 87% span, comparing loose and tight coupling. 



 
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the National Aeronautics and Space Administration 

69 

The mean measured thrust is T=3300 N.  The mean measured rolling and pitching 
moments are Mx=20 N-m (positive for rolling to the left) and My=-20 N-m (positive for nose-up 
pitching).  At the end of the fifth loose coupling iteration, the computed mean hub loads were 
T=3326 N, Mx =11.9 N-m, and My =-29.2 N-m.  After a revolution of tight coupling, the hub 
loads are nearly the same, with T=3328 N, Mx =10.2 N-m, and My =-10.7 N-m.  Though the 
change in pitching moment as a fraction of the target value is large, instantaneous pitching 
moment varies from -200 N-m to 160 N-m, so the change in the mean is only 5.1% of the total 
variation. 

Iso-surfaces of the second invariant of the velocity gradient tensor, also known as the “Q-
criterion”, are shown in Figure 40.  Q-criterion has the property that it is only positive near 
vortices, and as such, it is a useful tool for distinguishing between sheets of high vorticity and 
actual vortices.  The roll-up of the individual tip vortices into a single horseshoe vortex is clearly 
visible in these visualization, though the horseshoe dissipates just after of the rotor disc after 
exiting the refined region of the background grid.  Just before 90o and just after 270o are regions 
where the blade tip can be observed to pass through several tip vortices in rapid succession, 
leading to the blade-vortex interactions discussed previously.  In Figure 40(a), it is also clear that 
the system of tip vortices resides primarily within the plane of the rotor, as one would expect 
since the rotor is tilted aft to simulate a descending flight case. 

   
 

Figure 40: Q-Criterion iso-surfaces.  Q=0.0075 and is non-dimensionalized by speed of 
 

The flow solution was run on a Cray XT5 supercomputer.  Each cluster node had two 2.3 
GHz quad-core CPUs, for a total of eight cores per node.  Four hundred cores were used for the 
flow solution.  A single core was used for hole-cutting with the other seven cores on that node 
sitting idle to increase the memory available to the hole-cutting process.  Each revolution 
required 7.3 hours of wall time.  A total of 5.5 revolutions were simulated, including the final 
revolution of tight coupling, resulting in a total wall time of about 84 hours or 34,272 CPU 
hours.  During tight coupling, Dymore had a negligible impact on CPU time and memory usage 
(less than 1% each).  Dymore required about 45 minutes to trim each loose coupling iteration on 
a single processor. The Suggar hole-cutting and overset assembly process, which runs as a single 
process on the first MPI rank, takes 25% of the total wall clock time in both loose and tight 
coupling.  A single overset assembly process is currently used because the mesh partitioning 
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scheme in FUN3D, which yields compact partitions that minimize communication (and therefore 
maximize scalability in the flow solver), limits the parallel scalability of Suggar. 

7.3.   Maneuvering Flight Demonstration 
The UH60-A 11029 test case was examined to demonstrate maneuvering flight.  Only tight 
coupling was run for this case, and again the coarse mesh with the Spalart-Allmaras turbulence 
model was employed to demonstrate the capabilities of the methodology.  Similar tightly-
coupled behavior to the prior cases examined are observed with the 11029 test case, as shown in 
Figure 41 and Figure 42.  Again the simulation was first initialized with a partial “0th” CFD 
simulation similar to the start of a loosely-coupled analysis, and the tight coupling started after 
the transients due to the CFD initialization have past.  Kriging is turned on after the transients 
due to the loose-to-tight coupling switch has been past, and the simulation is “flown” using 
inputs to the controller to simulate the maneuver. 
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a) r/R=0.225   b) r/R=0.40 

 
c) r/R=0.675   d) r/R=0.775 

Figure 41:  UH60-A C11029 tightly-coupled airloads using OVERFLOW-Dymore on the coarse grid. 
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c) r/R=0.865   d) r/R=0.92 

 
e) r/R=0.965   f) r/R=0.99 

 
Figure 41 (cont.):  UH60-A C11029 tightly-coupled airloads using OVERFLOW-Dymore on the coarse grid. 
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a) r/R=0.0     b) r/R=0.20    

 
c) r/R=0.30     d) r/R=0.50    

Figure 42:  UH60-A C11029 tightly-coupled structural moments using OVERFLOW-Dymore on the coarse 
grid. 

 



 
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the National Aeronautics and Space Administration 

74 

 
e) r/R=0.30     f) r/R=0.50    

Figure 42 (cont.):  UH60-A C11029 tightly-coupled structural moments using OVERFLOW-Dymore on the 
coarse grid. 

 

7.4.  Tight Coupled Application:  Stability Analysis 
Rotorcraft systems operate under flight conditions that contain nonlinearities such as 

transonic shocks, turbulent flow and interactions with their own wakes. The rotors themselves 
are nonlinear multi-body elastic systems. An aeroelastic analysis of these systems must include 
an assessment of potential instabilities and the determination of damping ratios for all modes.  
The tightly-coupled methodology developed in this effort was applied to this problem to 
determine its ability to be used for additional rotor aeroelastic problems of interest. 

The stability assessment is undertaken using an algorithm based on a partial Floquet 
approach that has been successfully applied with CSD tools on rotors by Bauchau and Wang69 
and wind turbines by Bauchau and Skjolden70. The stability analysis approach is computationally 
inexpensive and consists of post processing aeroelastic data, which can be used with any 
aeroelastic rotorcraft code or with experimental data. Unlike classical stability analysis 
methodologies, it does not require the linearization of the equations of motion of the system, 
which makes it ideally suited for use in conjunction with the tightly-coupled CFD/CSD 
simulations. 

If the governing equations of motion for a system can be formulated as linear, ordinary 
differential equations with constant coefficients, classical stability evaluation methodologies 
based on the characteristic exponents of the system can rapidly and accurately provide the 
system’s stability characteristics. For systems described by linear, ordinary differential equations 
with periodic coefficients, Floquet’s theory71,72 is the preferred approach. 

While these methods provide excellent results for simplified linear models with a 
moderate number of degrees of freedom, they become quickly unwieldy as the number of 
degrees of freedom increase73. Therefore, to accurately analyze rotorcraft aeroelastic periodic 
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systems, a formal linearization is virtually impossible. Instead, a fully nonlinear, coupled 
simulation tool is used to determine the response of the system to perturbations about an 
equilibrium configuration and determine the presence of instabilities and damping ratios. 
 

Stability analysis of rotors and other complex multi-body systems 
A multi-body system, such as a helicopter, can be modeled by a set of nonlinear 

equations of the form   

€ 

 ˙ y =  g (t, y ) , where   

€ 

 y  is a vector containing N state variables, t denotes time, 
and superscript dot represents a derivative with respect to time. The rotor in level forward flight 
can be assumed to initially operate at a constant mean rotor speed and a periodic steady state, 
  

€ 

 y ss. Assuming small perturbations,   

€ 

 x =  y −  y ss, about the steady state allows the nonlinear 
system to be approximated by a linear system with periodic coefficients: 

  

€ 

 ˙ x = A(t)  x +
 
f (t)  

where 

€ 

A(t) = A(t + T) is the periodic system matrix of period T = 2π/Ω. This system and small 
perturbations about it can then be analyzed through several different computational methods, as 
next described. 

The theoretical basis for the analysis of periodic systems, such as a rotor was developed 
by Floquet74 who demonstrated that the response of a linear system with periodic coefficients can 
be modeled as the sum of modal contributions multiplied by an time-dependent exponential term, 
ρk = exp(λkt). Floquet analysis determines the change in the states of the system at times t and 
t+nT, where nT is the time required for n integer-based periods of the system. λk are known as 
the characteristic exponents and is defined as a complex variable of the form λk = σk ± iσk. The 
damping coefficient, σk, and principal frequency, ωp,k, of mode k are determined from the 
eigenvalues, ρk, as 

€ 

σk =
1
T

ln ρk( )

ωp,k =
1
T

arctan ρk( ),    ωp,k ∈ −Ω / 2,Ω / 2[ ]
 

To obtain more physically meaningful frequencies for engineering analysis, integer multiples (jk) 
of the rotor speed can be added to the principal frequencies as ωk = ωp,k + jkΩ. The damping 

ratio can be computed from 

€ 

ςk = −σk / ωk 1+ (σk /ωk )
2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . The system is stable if, for all 

values of k, ζk < 0. 
 
For large multi-body models, a formal linearization of the governing equations is difficult and 
costly to obtain both for time invariant systems and periodic systems. To overcome these 
difficulties, Bauchau and Wang69,75,76 developed several approaches to stability analysis and 
demonstrated their applicability to large scale multi-body systems, verifying that these 
approaches provide identical results with a number of other, more complex methods, such as 
Prony’s method or Poincare mapping. 

A distinctive feature of these methods is that they can analyze one or multiple discrete 
time signals characterizing the dynamic response of the system for either time invariant or 
periodic systems, and unlike classical stability analysis methodologies, linearization of the 
system’s equations of motion is not required. Consequently, these approaches are 
computationally inexpensive, consisting of post processing that can be used with any multi-
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physics computational tool or with experimental data. Singular value decomposition is used 
systematically as a means of dealing with the noisy, highly redundant data sets obtained from 
nonlinear systems, and this approach is referred to as the partial Floquet analysis (PFA), and is 
described in Reference 77. 

When performing any aeroelastic analysis, the accuracy of the prediction is driven by the 
weakest link of the analysis, which must include consideration of the structures, dynamics, and 
aerodynamics modeling. While the linear aerodynamics used routinely in aerodynamic analyses 
provides efficient turn-around, the aerodynamics of a rotor are highly nonlinear. The use of 
CFD-CSD coupling can provide an estimate of the nonlinearities of the aerodynamics, but the 
cost is much greater. Thus, to perform a stability analysis, it is critical to determine the least 
amount of data necessary to provide accurate results without incurring overly costly 
computations 

Once the periodic trimmed solution has been obtained, a tightly-coupled simulation can 
be applied to model the perturbation and subsequent rotor response. The initial condition applied 
in the tight coupling is the solution obtained at the last iteration of a loosely-coupled simulation, 
which provides an equilibrium starting point to the tightly-coupled stability analysis. 

For this evaluation, tight coupling was achieved by compiling the Dymore code into a 
static library with a CFD interface that could then be linked into the OVERFLOW CFD code. 
This way, the CFD code controls the coupling process from inside itself. It is also possible to 
achieve tight coupling by linking the codes through Python or another scripting language. This 
tightly-coupled time stepping continues until the simulation is complete, at which point the CFD 
and CSD enter into their respective post-processing routines. Since the stability analysis was 
performed using the PFA method described earlier, it is only necessary to save the temporal data 
during the simulation at locations using sensors defined within the CSD code. No interactive 
stability analysis is required. 

The demonstration computations were obtained on the UH60-A coarse grid described 
previously, using the compressible 4th order time-accurate URANS equations with a 0.05° 
azimuthal time integration. The Spalart-Allmaras turbulence model is utilized to resolve the 
boundary layer as it has been shown (using OVERFLOW) to be comparable to more advanced 
turbulence models for the C8534 flight condition78. 

The stability analysis results were obtained using the following procedure. First, the loose-
coupling strategy with the delta-airloads approach was used to obtain a converged, periodic 
solution of the UH60-A at the C8534 flight condition. Next, using this solution as an initial 
condition, the tight-coupling procedure was applied to predict the aeroelastic response of the 
system. A perturbation was applied to the system, which consisted of three time-dependent 
concentrated loads applied at the blade’s three-quarter span (75%R) location: a load applied 
upward in the direction perpendicular to the rotor plane, a load acting in the plane of the rotor 
directed towards the trailing edge, and a torque. These three loads were applied as over time, 
linearly increasing to the maximum and then decreasing to zero. This loading creates triangular 
pulses with maximum amplitudes of 500 lbs, 100 lbs, and 2,200 ft-lbs, respectively in the 
normal, in-plane and torsional directions. For each case, the triangular pulse lasted for 0.1 
revolution. 

The applied perturbation changed the blade aeroelastic response, resulting also in modified 
airloads. After the end of the perturbation, the released rotor continued to respond to the 
perturbation and subsequent aeroelastic effects. Four signals were identified for the stability 
analysis procedure: the flap and lag displacements and lag rotation angle at the blade three-
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quarter span location, and the root flap angle. All four signals were sampled at 180 or 290 points 
per revolution. 

Finally, the proposed stability analysis method was applied to these four signals. Both 
partial Floquet and Prony methods were applied to the resulting CFD-CSD response, and very 
similar results are obtained from both approaches. 

Figure 43 shows the singular values obtained from the SVD of the Hankel matrix H0. The 
largest singular value is normalized to unity, and the subsequent singular values are arranged in 
descending order. Note the logarithmic scale on the ordinate. The magnitude of the 16th singular 
value is less than one percent of the first singular value. Since the singular values are an indicator 
of the energy associated with each mode, Figure 43 implies that over 99% of the total energy in 
the signal is concentrated in those first 16 modes. Each pair of singular values allows the 
determination of the frequency and damping of one mode of the system. 

 
Figure 43: Singular values arranged in decreasing order for the 3.5 revolution analysis. 

 
At first, a window starting 0.01 seconds after the end of the perturbation and lasting for 3.5 
revolutions was investigated.  Five different approaches (Table 11) were applied to evaluate the 
system modal parameters. Table 12 lists the damping ratios for the 1st lead-lag, 1st flap, 2nd flap, 
and 1st torsion modes. The first two approaches use the partial Floquet algorithm with rank 
numbers of 32 and 16, respectively, and sampling rates of 32 and 16 points per revolution, 
respectively. The last three approaches use Prony’s method with rank numbers of 32, 16, and 18, 
respectively and sampling rates of 180, 180 and 290 points per revolution, respectively. 
 

Table 11:  Characteristics of the stability approaches. 

Notation Algorithm 
Rank 

Number Sampling Rate [/rev] 
PF Floquet 32 180 

PF6 Floquet 16 290 
PR Prony 32 180 

PR2 Prony 16 180 
PR5 Prony 18 290 

 
Table 12:  Damping ratios for the four rotor modes. 

Case Lead-Lag 1st Flap 2nd Flap Torsion 
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PF -31.85 -21.24 0.13 -0.66 
PF6 -47.11 -30.84 -0.87 -0.25 
PR -31.85 -21.24 0.13 -0.66 

PR2 -48.37 -30.90 -0.86 -0.25 
PR5 -32.44 -17.49 -0.23 -0.39 

 
To ensure the validity of the prediction, the various signals were reconstructed based on the 
identified modal parameters. Figure 44 illustrates the original and reconstructed signals for the 
four signals selected for the analysis. Excellent correlations are observed between the original 
and reconstructed signals, indicating the robustness of the proposed approach. 
 

 
Figure 44. Comparison of the original and reconstructed signals for the four signal locations. 

 
The results presented in this section focus on four rotor modes: the first lead-lag, first 

flap, second flap and first torsion modes. The predicted frequencies are shown in Figure 45 and 
are in good agreement with the frequencies predicted with lower-order aerodynamic models, as 
expected. 

 
Figure 45:  Predicted frequencies for the four rotor modes. 
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Figure 46 shows the corresponding damping ratio. Table 12 lists the damping ratios for the five 
approaches investigated here. Predictions are consistent for the four rotor modes. As expected, 
the first flap mode is well damped, in contrast with the second flap and torsion modes that are 
very lightly damped. Note that the 3.5 revolution data used here is not long enough to obtain 
reliable predictions of these lightly damped modes. 
 

 
Figure 46:  Predicted damping ratios for the four rotor modes. 

 
The results presented in Figure 46 show that the identified damping of the first lag mode is very 
high, about 35%. This result is unexpected, since the first lag mode of the UH60-A rotorcraft is 
known to be very lightly damped. Upon investigation, it was first observed that CFD analysis 
predicted a doubling of the overall lift over the perturbation time period, compared to a 40% 
increase for lower-fidelity aerodynamics. The elastic deflection from that loading indicated a 
significant, but physically feasible response in the blade attitude, as shown in Figure 47. The 
UH60-A case selected for demonstration, C8534, is a high-speed flight case, and the tip may 
enter the transonic regime. Increases in twist angle will cause the blade outer span to enter 
further into the transonic regime, giving rise to shocks, which can dramatically influence the 
lead-lag damping. The Mach contours on the upper surface of the rotor at the 90° azimuth for the 
advancing side of the rotor in Figure 48 clearly illustrate this aerodynamic phenomenon. The 
perturbation immerses the rotor outer span in a higher transonic flow compared to the pre-
perturbed state, and this state remains for a significant portion of the window used for the 
stability analysis. The result of the transonic flow comes via the presence of stronger shocks, 
which dramatically increase the drag. Thus, the damping in the lead-lag mode is 
disproportionately high compared to the damping encountered during most of the level flight 
regime. 
 

 
Figure 47:  Blade response at maximum perturbation location. 
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Figure 48: UH60-A CFD Mach number variation during blade perturbation 

 
The tightly-coupled computational fluid dynamics and computational structural dynamics 

(CFD-CSD) technique, employing an algorithm based on a partial Floquet approach provides the 
tools to accomplish successful stability analysis of a rotor system. The UH60-A rotor in high-
speed level forward flight has been used to demonstrate the validity of this method, as well as its 
ability to predict modal characteristics within a moderate number of rotor revolutions. A number 
of observations can be made: 

• The predicted frequencies of the rotor modes correlate very well with the known rotor 
frequencies of the UH60-A. 

• Signal reconstruction indicates that the partial Floquet analysis reliably extracts the 
modal parameters from the computed signals. 

• As few as 3.5 revolutions after the system is perturbed yields good prediction of the rotor 
frequencies, but it is not long enough to reliably predict the damping characteristics of the 
lightly damped modes. 

• The number of CFD-CSD revolutions to determine the stability characteristics after the 
perturbation is released appears to be dependent on the magnitude of the perturbation. 

• A large perturbation in high-speed forward flight may generate large damping ratios in 
lead-lag due to the presence of strong shocks. 

• The proposed approach may be able to qualitatively assess the dependency of damping 
on amplitude. Further studies are proposed beyond this effort to demonstrate this 
important feature of the method. 
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8.  Parallelization and Portability of Codes 
 

Concurrent to the efforts described in the preceding technical results and development 
sections, whenever code was developed, it was parallelized (as required) and tested for 
compatibility on various compilers and computers. Scripts, including makefiles and known 
conflicts/resolutions that allow portability with minimal user input have been provided to NASA 
and other code users during the course of the project. 

The OVERFLOW and Dymore tightly-coupled code have been successfully ported to the 
following machines and operating systems: 

 Georgia Tech local Beowulf PC cluster; Fedora Linux (snowshoe) 
 Georgia Tech local PC; ubuntu  
 NAS SGI ICE; SUSE linux (Pleiades) 
 NAS SGI Altex ; SUSE Linux (columbia) 
 DoD HPC Cray XE6; CLE 3.1 UP02 (raptor) 
 DoD HPC Cray XT5; CLE 2.2.UP02 (einstein) 

The FUN3D and Dymore tightly-coupled framework has been similarly ported to these machines 
and operating systems: 

 DoD HPC Cray XE6; CLE 3.1 UP02 (raptor) 
 DoD HPC Cray XT5; CLE 2.2.UP02 (einstein) 
 DoD HPC, Cray XE6; CLE (garnet) 
 NAS SGI ICE; SUSE linux (Pleiades) 

 
The tight coupling protocol includes two methods of coupling wherein one method has both 

codes compiled and the CSD method is called as a library, wherein the second method using 
Python to accomplish the coupling.  Both methods rely on arrays and shared memory to 
exchange information, rather than file transfers. 

The Python versions of the coupled codes do have limitations based on the parallel system 
type.  Specifically, in creating shared libraries, this particular problem is encountered on Cray 
XT and SGI Altex machines when compiling in MPI: 
 
cc -fPIC -c hello.c 
/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
cc -fPIC -c goodbye.c 
/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
cc -shared -o libsay.so hello.o goodbye.o 
/opt/cray/xt-asyncpe/2.0/bin/cc: INFO: linux target is being used 
/usr/bin/ld: /usr/lib64/libpthread.a(pt-system.o): relocation 
R_X86_64_32 against `a local symbol' can not be used when making a 
shared object; recompile with -fPIC 
/usr/lib64/libpthread.a: could not read symbols: Bad value 
 

This situation exists because on these computers, any binary created by ftn or cc will be 
statically linked, and it is not possible to have a dynamically linked library (dll). This limitation 
was discussed with Army Helios developers, and DoD User Productivity Enhancement and 
Technology Transfer (PET) help desk during 2009-2010.  As a result of Georgia Tech’s early 
detection of this problem, an independent effort to provide a work-around for the static-dynamic 
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library issue was funded by the Army79, as this situation impacts many Python-based CFD-CSD 
coupling efforts, including for example Helios.  The current Python coupling methods have been 
successfully tested on the local Georgia Tech personal computers and on the NAS SGI ICE 
running SUSE linux (Pleiades). 
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9. Documentation and Technology Transfer 
 
The following papers have been presented/published or abstracts accepted 
 

•    Riviello, L., Bottasso, C., and Bauchau, O. A. “Effect of Modeling Approximations on 
the Stability of Autopilot Controllers,” Proceedings of the 64th Annual American 
Helicopter Society Forum, Montreal, Canada, April 29 - May 1, 2008. 

 
• **Zaki, A., Reveles, N., Bauchau, O., and Smith, M., “Using Tightly-Coupled CFD/CSD 

Simulation for Rotorcraft Stability Analysis,” Proceedings of the 66th Annual American 
Helicopter Society Forum, Phoenix, AZ, May 2010.  

 
•   Reveles, N., Zaki, A., Smith, M., and Bauchau, O., “An Evaluation of Loose and Tight 

CFD-CSD Coupling for UH60-A Airloads,” UH60-A Airloads Workshop, Ames 
Research Center, CA, Feb 2011. 

 
• **Reveles, N., Zaki, A., Smith, M., and Bauchau, O., “A Neural-Network-Based Trim 

Algorithm for Computational Rotor Aeroelasticity,” to be presented at the European 
Rotorcraft Forum, Milan, Italy, September 2011. 

 
• Reveles, N., and Smith, M. J., “Analysis of a Rotorcraft in Descent,” (working title), 

under preparation for the AIAA Journal of Aircraft, expected in September, 2011. 
 
** Indicates that this paper is also being/has been submitted to an archival journal. 
 
Contributions to PhD theses at Georgia Tech 
 

• Lynch, C. E., Advanced CFD Methods for Wind Turbine Analysis, PhD dissertation, 
Georgia Institute of Technology, January 2011.  (HART-II tight coupling) 
 

• Zaki, A., Using Tightly-Coupled CFD/CSD Simulation for Rotorcraft Stability Analysis, 
PhD dissertation, Georgia Institute of Technology, planned defense Summer 2011.  
(Kriging implementation and application to stability) 
 

• Reveles, N., Tightly-Coupled Rotor CFD-CSD for Steady and Transient Aeroelastic 
Simulations (working title), PhD dissertation, Georgia Institute of Technology, planned 
defense in 2012.  (Tight coupling, including Python-based framework, UH60-A 
simulations) 

 
Technology Transfer 

• The modified codes have been provided to NASA development teams for both FUN3D 
and OVERFLOW. 
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• Engineers at both Bell Textron Helicopter and Sikorsky Helicopter have modified 
versions of OVERFLOW with Dymore tight coupling and are applying them to rotor 
configurations. 
 

Patents 
• No patents have been filed as a result of this effort. 
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10. Conclusions 
 

A tightly-coupled computational fluid dynamics and computational structural dynamics 
(CFD-CSD) technique, employing an algorithm based on a partial Floquet approach provides the 
tools to accomplish aeroelastic analysis of a time-accurate rotor system.  The approach has been 
demonstrated for both unstructured and structured CFD methods, using both compilation- and 
Python-based frameworks to replace file data transfers between the CFD and CSD methods. The 
UH60-A and HART-II rotor configurations have been used to demonstrate the validity of this 
method. Eight metrics of success were defined at the beginning of the research effort, and all 
have been met or exceeded. 

A number of technical observations can be concluded with respect to this research: 
•     Both neural networks, as well as an alternative, more efficient method, kriging, were 

examined.  Based on the results, it was determined that kriging provided a viable 
alternative to neural networks in the development of the computational trimmer.  

•     Moderate numbers of CFD/CSD data have been used to train the metamodel of the new 
trim algorithm.  CSD data can also be used to train the metamodel of the kriging 
algorithm for some run configurations. 

•     Initialization of the tight coupling with loose coupling results improves the convergence 
of the tight coupling algorithm for level flight cases.  Optimization indicates that ¼ - ½ 
revolution of the initial (zeroth) loose coupling iteration is sufficient to remove 
transients that affect the tightly-coupled solution stability. 

•     Updating the controls via the kriging algorithm immediately upon commencing the tight 
coupling also creates instabilities, so a period of fixed controls is necessary.  However, 
the result of this fixed control period, if sufficiently periodic, can be added to the 
training database for the current and future kriging estimates. 

•      Tight coupling yields comparable results to loose coupling when dynamic stall in 
conjunction with advanced turbulence models are not present.  The differences that are 
yielded when these are used may provide clues to the physics of the rotor behavior. 

•     Tight coupling, when optimized and used with the kriging controller, appears, within the 
context of the test cases examined in this effort, to converge in approximately the same 
number of total revolutions as loose coupling.   

• The tight coupling has been demonstrated to determine the stability characteristics of 
rotors.   

• Signal reconstruction indicates that the partial Floquet analysis reliably extracts the 
modal parameters from the computed signals with as few as 3.5 revolutions after the 
system is perturbed yields good prediction of the rotor frequencies, but may not be 
sufficient to reliably predict the damping characteristics of the lightly damped modes. 
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