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SUMMARY 

 

This work addresses the issue of transverse combustion instabilities in annular gas 

turbine combustor geometries.  While modern low-emissions combustion strategies have 

made great strides in reducing the production of toxic emissions in aircraft engines and 

power generation gas turbines, combustion instability remains one of the foremost 

technical challenges in the development of next generation combustor technology.  To 

that end, this work investigates the response of a swirling flow and swirl-stabilized flame 

to a transverse acoustic field is using a variety of high-speed laser techniques, especially 

high-speed particle image velocimetry (PIV) for detailed velocity measurements of this 

highly unsteady flow phenomenon. 

Several important issues are addressed.  First, the velocity-coupled pathway by 

which the unsteady velocity field excites the flame is described in great detail.  Here, a 

transfer function approach has been taken to illustrate the various pathways through 

which the flame is excited by both acoustic and vortical velocity fluctuations.  It has been 

shown that while the direct excitation of the flame by the transverse acoustic field is a 

negligible effect in most combustor architectures, the coupling between the transverse 

acoustic mode in the combustor and the longitudinal mode in the nozzle is an important 

pathway that can result in significant flame response.  In this work, the frequency 

response of this pathway as well as the resulting flame response is measured using PIV 

and chemiluminescence measurements, respectively. 

Next, coupling between the acoustic field and the hydrodynamically unstable 

swirling flow provides a pathway that can lead to significant flame wrinkling by large 
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coherent structures in the flow.  Swirling flows display two types of hydrodynamic 

instability:  an absolutely unstable jet and convectively unstable shear layers.  The 

absolute instability of the jet results in vortex breakdown, a large recirculation zone along 

the centerline of the flow.  Experiments in this study showed that high amplitudes of 

acoustic forcing could alter both the time-average and dynamical characteristics of this 

structure, although very little effect was measured at low amplitude forcing.  The 

convectively unstable shear layers, however, displayed significant response to the 

acoustics, even at low levels of acoustic forcing, and are responsible for the majority of 

the flame wrinkling and resultant heat release fluctuation of the flame.  The modal 

structure of the transverse acoustic field played a large role in the characteristics of the 

response of these structures. 

The two major contributions of this work are the development of a detailed 

velocity-coupled pathway for transversely forced flames, as well as a methodology based 

on the principles of hydrodynamic stability theory by which to assess the response of 

complex combusting flows to acoustic fields.  Additionally, a large archival data set has 

been produced with measurements of velocity and flame behavior for future modeling 

and analysis. 
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CHAPTER 1 

INTRODUCTION 

 

Combustion instabilities have long plagued the development and operation of 

high performance combustion technologies.  These instabilities, the result of a coupling 

between flame heat release fluctuations and resonant acoustics inside the combustion 

chamber, have proven to be destructive to engine hardware, burdensome on engine 

operation, and detrimental to engine performance and emissions.  The coupling between 

fluctuating heat release sources and sound fields was predicted by Lord Rayleigh [1], 

where he described the process by which heat release sources, when fluctuating in phase 

with acoustic fluctuations in the chamber, can add energy to the sound field and create a 

feedback loop between the heat release source and the acoustic field.  The basic structure 

of this feedback loop is shown in Figure 1. 

 

Figure 1.  Basic combustion instability feedback loop. 

In the case described in Figure 1, the interaction between the sound field and heat 

release source is direct.  In the situation where the heat release source is a flame, the 

coupling between heat release fluctuations and the acoustic field often contains a 

coupling mechanisms, or intermediary step between the acoustic fluctuations and the 

flame heat release fluctuations.  These processes can produce heat release fluctuations in 
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a variety of ways, including fluctuations in fuel flow, flame area, flame speed, and heat of 

reaction of the mixture [2, 3].  This modified feedback loop is shown in Figure 2. 

 

Figure 2.  Combustion instability feedback loop with coupling mechanism. 

This feedback mechanism, a coupling between flame heat release fluctuations, 

combustor acoustics, and one or more coupling mechanisms, is the basis for combustion 

instability events in a variety of high performance combustion technologies.  Often these 

instability events are differentiated based on the acoustic mode excited in the combustion 

chamber.  The three components of the acoustic modes possible in a combustion chamber 

are the longitudinal, circumferential (or azimuthal), and the radial modes, each of which 

is shown in Figure 3 for both a can combustor and annular combustion geometry. 
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Figure 3.  Mode geometry for a can (left) and annular (right [4]) combustor 

geometry showing the 1) longitudinal, 2) radial, and 3) azimuthal (or 

circumferential) mode. 

The longitudinal mode instabilities have been studied in a variety of combustion 

technologies, but in gas turbine engines in particular [5-11].  More specifically, 

instabilities have caused major challenges in the development of lean, premixed 

combustors used in low NOx gas turbines [12].  In this mode of instability, fluctuations in 

the acoustic field oscillate in the direction of flow.   

The radial and azimuthal modes are collectively referred to as “transverse” 

modes, as the acoustic field oscillates in a direction transverse to the direction of flow.  

Transverse instabilities have been discussed frequently in the afterburner [13-16], solid 

rocket [17, 18], and liquid rocket literature [19-24].  Significantly less work has been 

done on the analysis and characterization of transverse instabilities for gas turbine 

applications, typically characterized by a swirling, premixed flame [11, 25-29].  There are 

two key application areas where transverse acoustic oscillations are of significant 
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practical interest.  The first occurs in annular combustion systems, such as the 

instabilities in the Solar Mars 100, Alstom GT24, GE LM6000, Siemens V84.3A, and 

other engines [26, 30-32].  Because of the larger length scales involved, these instabilities 

often occur at the “lower” frequencies (e.g., 100’s of Hertz) that are typical of the 

longitudinal oscillations observed in can combustion systems.  While these modes cannot 

typically be simulated without the full annulus, several of these studies report the results 

of longitudinal instability tests obtained on single nozzle rigs scaled to have similar 

longitudinal acoustic frequencies as the observed transverse instabilities [30, 33, 34].    

The second application where transverse instabilities are of interest is the higher 

frequency transverse oscillations encountered in can combustion systems.  These 

instabilities occur at relatively high frequencies, e.g., in the 1-5 kHz range, and scale with 

the combustor can diameter.  While relatively little treatment of these high frequency 

oscillations can be found in the technical literature, there is significant discussion of them 

in the gas turbine operator/user community;  e.g., see Combined Cycle Journal [35] or 

Sobieski and Sewell’s chapter in Combustion Instabilities in Gas Turbine Engines [31].      

One of the significant issues associated with transverse instabilities in annular gas 

turbines is the fact that each nozzle is subjected to a different acoustic field than its 

neighbors.  In the case of a longitudinal instability, the oscillations in the acoustic field, 

moving in the same direction as the flow, are the same at each azimuthal location and 

affect each nozzle equally.  During a standing wave transverse instability, the acoustic 

field strength may vary for each nozzle as the fluctuation amplitude varies in the 

circumferential direction.  In this case, it is possible for several nozzles to be positioned 

at pressure anti-nodes, and several at pressure nodes, two very different acoustic forcing 
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conditions for both the flame and the nozzle flow field.  For a traveling wave instability, 

where the transverse mode shape may spin or wander in the azimuthal direction, the 

difference between the acoustic field experienced by each nozzle is a function of the 

forcing frequency and the speed of rotation of the wave.  In both these cases, the acoustic 

field that results from a transverse mode is fundamentally different from that in the 

longitudinal direction, and, as will be discussed in the ensuing chapters, can have a 

significant effect on the resulting flow and flame response. 

In this work, the key problem of interest is the manner in which the flame 

responds to oscillations in flow velocity.  This is referred to as the “velocity coupled” 

response mechanism [36-40], to be distinguished from the also important “fuel/air ratio 

coupling” [9, 41] mechanism, or the probably negligible “pressure coupling” mechanism 

[3].  Flow oscillations lead to flame wrinkling that, in turn, causes oscillations in flame 

surface area and rate of heat release.  This pathway of flame heat release fluctuation is 

shown in Figure 4, which has been reproduced from Shreekrishna and Lieuwen [42]. 

 

Figure 4.  Physical mechanisms causing heat release oscillations due to velocity 

fluctuations. 

While acoustic flow oscillations can directly excite the flame, they also excite 

organized flow instabilities associated with shear layers, wakes, or the vortex breakdown 
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bubble [10, 43, 44].  These velocity coupling mechanisms are the focus of Chapters 4 and 

5 of this thesis.  Taken together, there are a number of potential sources of flow 

disturbances that can lead to heat release oscillations.  Two of these sources are directly 

acoustic in origin - transverse acoustic motions associated with the natural 

frequencies/mode shapes of the combustion system, and longitudinal oscillations in the 

nozzle due to the oscillating pressure difference across the nozzle.  Simulations by 

Staffelbach (2009) suggest that it is these longitudinal mass flow oscillations that most 

significantly control the flame response to the imposed transverse disturbance.   

Studies suggest that vortical flow oscillations also have a significant role in the 

flame’s heat release response [45-47].  In other words, acoustic oscillations excite flow 

instabilities that, in turn, excite the flame.  As such, the receptivity of these flow 

instabilities to both transverse and longitudinal acoustic oscillations must be considered.  

For example, consider the convectively unstable shear layers, which form tightly 

concentrated regions of vorticity through the action of vortex rollup and collective 

interaction [48].  The transverse acoustic oscillation will disturb them in both normal and 

parallel directions.  Normally incident transverse acoustic oscillations will push the shear 

layers from side to side in a flapping manner, while parallel incidence will graze over 

them.  In contrast, longitudinal oscillations will lead to an axially oscillating core flow 

velocity that will excite an oscillation in shear layer strength [49, 50].  Other literature on 

the response of wakes and swirling flows to longitudinal and transverse excitation can be 

found in several references [10, 51, 52].   

These disturbance modes are difficult to separate in complicated geometries and 

all play some role in exciting the flame.  Although the initial disturbance is transverse, 
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the disturbance velocity field that is created in the region of the flame is highly three-

dimensional [25, 26].  This is significant in that the flame will experience a varying type 

of disturbance along its length. For example, a point in the middle of the flame may 

experience a strong transverse acoustic excitation source locally, as well as the 

disturbance from a vortex that was excited at the nozzle exit and has convected 

downstream.  Complex interactions like these are difficult to separate, and it is one of the 

goals of this work to understand these characteristics of the disturbance field.  

Having discussed some basic features of the transverse forcing problem, the focus 

of this thesis, the response of a swirl-stabilized flame to transverse acoustic excitation,  is 

discussed in more depth.  To start, the nature of the flame response to these acoustic 

modes is discussed before delving further into the response of the swirling flow itself to a 

range of acoustic forcing conditions. 

Returning to the combustion instability feedback loop, shown in Figure 3, the 

flame response metric that controls the gain of this feedback loop is the global flame 

response, or the heat release fluctuation of the entire flame over an acoustic cycle.  

Quantification of global flame response is often in the form of a flame transfer function.  

In the case of velocity coupled flame response, the definition of the flame transfer 

function is given as the normalized flame heat release fluctuation divided by a 

normalized reference velocity fluctuation [53], as is shown in Equation (1).    

( , )

( , )

o

ref o

q f A q
F

u f A u
 (1) 

Flame transfer functions have been measured and calculated for longitudinally 

excited flames in several studies [54-59].  Here, the reference velocity has usually been 
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defined as the axial velocity fluctuation at the nozzle exit, measured using a two 

microphone technique or hot-wire anemometry.  An important motivation for 

determining these transfer functions is that they isolate the flame response and can be 

used as a submodel in a larger system dynamics model.  However, because the actual 

velocity field along the flame front, u x , may vary substantially in amplitude and phase 

from 
refu , F should not be interpreted as describing the flame response alone – it also 

depends upon certain features of the combustor system.  This dependence is particularly 

important for transversely forced flames, which are the focus of the present study.  The 

remainder of this section describes the motivation behind measuring flame transfer 

functions and how a detailed understanding of the velocity coupling physics informs a 

better understanding of the definition and meaning of the flame transfer function for both 

longitudinally and transversely forced flames. 

Flame transfer function development 

The behavior of self-excited combustion instabilities is dictated by the Rayleigh 

gain [60], which is given in Equation (2), 

0

1
( ) ( )

T

RG p t q t dt
T

 (2) 

where ( )p t  is the pressure fluctuation in time, ( )q t  is the flame heat release fluctuation 

in time, and T  is the period of the fluctuation cycle. 

The Rayleigh criterion states that the gain of the thermoacoustic instability is 

determined by the phase between the pressure and heat release fluctuations.  If the 

absolute value of this phase is less than 2 , the Rayleigh gain (RG) will be greater than 
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zero, indicating that the instability will amplify.  Conversely, if this phase is greater than 

2 , the instability is damped.  While the pressure fluctuation term, ( )p t , can be solved 

for by analyzing the acoustic modes of the combustion chamber, the heat release 

fluctuation term, ( )q t , is dependent on complicated flow and flame dynamics. 

A transfer function approach has been historically used to describe these flame-

flow dynamics.  The form of the transfer function depends on the dominant coupling 

mechanism.  In a velocity-coupled instability, the heat release fluctuation takes the form, 

refq Fu  (3) 

where q  is the globally integrated heat release fluctuation, 
refu  is the reference velocity 

fluctuation, and  F is the flame transfer function describing the relationship between 

flame heat release fluctuations and reference velocity perturbations.  Thus, F is a global 

quantity that describes overall flame heat release fluctuations that are excited by a chosen 

reference quantity. 

As discussed above, the reference velocity for a longitudinally forced flame has 

been well established as the acoustic velocity fluctuation at the base of the flame.  This 

reference velocity is not only experimentally tractable, but captures the driving physics 

behind the flame response.  The initial longitudinal acoustic velocity fluctuation causes 

disturbances on the flame surface through the action of a “base wave” or “root wave” [61, 

62], but also excites vortical velocity motions that wrinkle the flame [63-66].  These 

velocity disturbance field pathways are shown in Figure 5. 
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Figure 5.  Velocity disturbance mechanisms present in a longitudinally forced flame. 

F can be expressed in terms of the pathways shown in Figure 5.  The flame is 

excited directly by acoustic velocity disturbances, as well as acoustically excited vortical 

disturbances.  The flame responds quite differently to velocity disturbances arising from 

acoustic and vortical disturbances because of their substantially different phase speeds 

and length scales.  As such, the same value of u’ref may lead to very different 

characteristics of the vortical velocity field downstream [67].  To illustrate, the heat 

release expression for the longitudinally forced case is broken into two constituent 

disturbance parts: 

, ,L L L aq F F F u      (4) 

where F  is now the sum of two components, the flame transfer function due to acoustic 

velocity fluctuations, LF , and the product of the velocity transfer function describing the 

coupling between acoustic and vortical motions, 
,LF , and the flame transfer function 

describing the flame response to vortical motion, F .  It should be noted, though, that an 

assumption of linearity has been made in this framework by the multiplication of 
,LF

 

and F .  If either of these sub-transfer functions are highly nonlinear in nature, this 
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framework would not be applicable.  Historically, though, flame transfer function 

measurements have been made in the linear regime and so this nonlinearity should appear 

rarely.  

The reference velocity here is the incident longitudinal acoustic velocity, 
,L au .  

Significantly, it shows that by using a single reference velocity, 
,L au , the flame transfer 

function is not only a function of the actual flame response, 
LF  and F , but also the shear 

layer response, 
,LF .  Thus, the exact same flame could exhibit different transfer function 

characteristics if the shear layer response is different. 

These pathways have long been established in the case of longitudinal forcing and 

efforts towards measuring and predicting both the LF  [62] and 
,LF F  [63, 66] terms 

have been made.  Transverse modes of combustion instability open new velocity 

disturbance pathways that incorporate both transverse and longitudinal acoustic motion, 

as well as the acoustic to vortical coupling mechanisms.  The incident transverse acoustic 

perturbation may directly disturb the flame, as seen in the work by Ghosh et al. [68] for 

rocket injectors.  The transverse acoustic pressure field also leads to longitudinal acoustic 

fluctuations in the flame nozzle region, as shown by Staffelbach et al. [25] in simulation 

and in experimental results from O’Connor et al. [69].  The longitudinal acoustic 

disturbance, a result of the fluctuating pressure from the transverse mode, leads to 

excitation of a longitudinal acoustic field in and around the nozzle area.  Additionally, 

vortical velocity disturbances are excited through both longitudinal and transverse 

acoustic excitation.  A study by Rogers and Marble [15] shows an example of this 

coupling in a high blockage-ratio combustor, where a self-excited transverse instability 
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lead to asymmetric vortex shedding from the edges of the triangular bluff-body.  These 

disturbance mechanisms and their pathways are shown in Figure 6. 

 

Figure 6.  Velocity disturbance mechanisms in a transversely forced flame. 

Similar to the decomposition of the longitudinally forced disturbance field in 

Equation (4), the processes in Figure 6 can be expressed as: 

,T TL L T TL L T aq F F F F F F F u  (5) 

where TF  is the flame transfer function describing the coupling between flame response 

and transverse acoustic fluctuations,
 TLF  is the velocity transfer function describing the 

coupling between the transverse and longitudinal acoustic motion at the nozzle exit, LF  is 

the flame transfer function describing the coupling between flame response and 

longitudinal acoustic fluctuations, TF  and LF  are the velocity transfer functions 

describing the acoustic to vortical velocity coupling, F  is the flame transfer function 

describing the coupling between flame heat release fluctuations and vortical motion, and 
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,T au  is the transverse acoustic velocity, or the reference velocity for this form of the 

transfer function. 

Each of these sub-transfer function describe can describe a variety of processes, 

particularly in the case of the excitation of vortical structures by acoustic fluctuations 

(several different vortical structures could be excited at once, each with different 

coupling characteristics).  Additionally, these transfer functions can be a function of 

frequency as well as forcing amplitude, as will be seen in the work described in Chapters 

3-5. 

Although quantifying each of these “sub” transfer functions ( TF , LF , TLF , etc.) is 

an essential step towards a more complete understanding of flame response to transverse 

acoustic excitation, two important considerations stand out.  First, what is the relative 

contribution of each of these sub-functions to the overall flame transfer function, F ?   

Second, what is the proper reference velocity for the resulting flame transfer function in 

light of the relative importance of each of these sub-functions?  In the longitudinally 

forced example, the longitudinal acoustic velocity fluctuation, 
,L au , is the proper 

reference velocity because it is not only a source of direct flame disturbance (via LF ), but 

also the source of the vortical velocity fluctuations (via LF ) that cause significant flame 

heat release fluctuation. 

For the transversely forced flame, it would seem intuitive that the transverse 

acoustic velocity is the proper reference velocity since it is the “source” disturbance, but 

several issues arise.  First, where is the location of this reference velocity?  Second, is the 

direct flame heat release fluctuation from the transverse acoustic excitation branch ( TF ) 
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significant enough to warrant the transverse velocity as a proper reference?  Third and 

more significantly, how important is the transverse to longitudinal coupling branch and 

could the gain of the transfer function 
TLF  be large enough to cause longitudinal motions 

to dominate the flame response?  The answer to the third question may supersede the first 

two questions.  Determining the role of 
TLF  and the relative strength of the transverse and 

longitudinal acoustic motion is the first step towards developing a flame transfer function 

with physical significance.  The transverse to longitudinal velocity transfer function is 

given as, 

,

,

( , )

( , )

L a o

TL

T a o

u f A
F

u f A  

 (6) 

This transfer function describes the resulting axial velocity fluctuation divided by 

the incident transverse velocity fluctuation.  If the gain of this transfer function is 

significantly greater than one, the flame response may be largely a result of the 

longitudinally driven pathways – in this case, the more appropriate reference velocity for 

the transversely excited flame is the longitudinal acoustic velocity.  Conversely, if the 

amplitude of the transfer function is significantly less than unity, the dominant acoustic 

velocity fluctuation would be in the transverse direction and would drive both the 

vorticity generation, through FT,ω, and the flame response. 

As the frequency of transverse acoustic excitation is modulated, the amplitude of 

longitudinal velocity fluctuations changes due to acoustic response of the nozzle section.  

Studies by Schuller et al. [70] and Noiray et al. [71] have both used external transverse 

acoustic disturbances to characterize the resonant frequencies of unconfined burners.  

This same concept can be applied to the case of transverse instabilities.  The axial 
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velocity fluctuations will be greatest at the resonant frequencies of the inlet nozzle cavity 

(not of the combustor), and this coupling will be highly dependent upon system 

geometry.  The transverse to longitudinal velocity transfer function will therefore be 

highly frequency dependent and its magnitude will give an indication of the dominant 

acoustic disturbance imposed on the flame at the nozzle. 

The importance of this coupling implies that the flame transfer function, in the 

case of transverse forcing, will be neither decoupled from the hydrodynamic fluctuations 

nor the system acoustics, as the longitudinal transfer function was.  It is important to note, 

then, that the quantitative results shown in these experiments cannot necessarily be 

extrapolated to other systems because of the geometric dependence built into the 

definition of this transfer function.  One goal, then, is to propose a formulation by which 

flame transfer functions for transversely forced flames can be measured and understood. 

The second goal of this work is to further characterize the response of the swirling 

flow to transverse acoustic excitation.  This work supports the efforts of the first part by 

provide phenomenological understanding of the pathways shown in Figure 6, in 

particular, the coupling between acoustic fluctuations and vortical fluctuations.  To 

understand this issue, an approach is taken that first considers the hydrodynamic stability 

issues in the swirling flow before considering the response of that flow to acoustic 

excitation.  The ideas behind this approach are developed below. 

Figure 7 illustrates the basic geometry considered in this study, showing an 

annular, swirling jet that is excited by a transverse acoustic field.  This notional picture 

shows the annular swirling jet with two spanwise shear layers, emanating from each edge 

of the annular nozzle, and the large central recirculation zone downstream of a 
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centerbody.  Here, the flame is stabilized on the centerbody and resides in the inner shear 

layer. 

 

Figure 7.  Time-average structure of an annular swirling jet with vortex breakdown.  

The spanwise shear layers, vortex breakdown bubble, and flame are shown here. 

This flow is an example of a typical high swirl number jet with vortex breakdown 

as is often encountered in a gas turbine main combustor geometry.  Vortex breakdown 

stems from an absolute instability of the swirling jet and arises from the conversion of 

radial and axial vorticity to azimuthal vorticity [72, 73].  Though several states of vortex 

breakdown are possible [74], the one of primary interest here is the bubble-type vortex 

breakdown state (VBB), which appears at higher swirl numbers.  This bubble creates a 

time-average "blockage" in the flow, forcing the fluid to flow around the bubble and 

converting even circular jets into a sort of annular jet downstream of the breakdown 

bubble stagnation point.  A large literature on the mechanisms of breakdown and swirling 

flow structure  exists, e.g., see Liang and Maxworthy [75], Billant et al. [76], Sarpkaya 

[77, 78], Hall [79], Faler and Leibovich [74, 80], and others [81-90].   
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Combustion significantly alters swirling flow features [91-93].  Combustion 

induced heat release, and the associated gas expansion, increases the average axial flow 

velocity, but has little effect on the average azimuthal velocity, leading to a decrease in 

swirl number and an increase in axial velocity gradients and shear.  As such, both the 

time-average (bubble length, width, backflow velocity) and dynamical features of the 

flow are effected by heat release, but in a manner that appears to be a strong function of 

the configuration and operating conditions of the device, so that general comments on 

heat release effects are difficult to make.   

Next, the annular, swirling jet is considered in more detail. As is evident in Figure 

7, this geometry introduces two spanwise shear layers originating from the inner and 

outer annulus edges, and two streamwise shear layers associated with the azimuthal flow.  

These shear layers are subject to the Kelvin-Helmholtz instability, which can be 

convectively or absolutely unstable, depending upon the reverse flow velocity and swirl 

number [94, 95].  In addition, the centerbody introduces a wake flow.  For small 

centerbody diameters and/or weak swirl, the time-average wake closes upstream of the 

upstream stagnation point of the vortex breakdown region, and thus the two flow 

structures (centerbody wake and VBB) are distinct, as shown in Figure 8a.  For larger 

centerbodies and strong swirl, the wake and vortex breakdown bubble merge into a 

single, interacting structure, as shown in Figure 8b [96].  This, in turn, influences the 

potential flame shapes that can be present in both geometries, as shown in Figure 8c and 

d.  When the vortex bubble is detached as in Figure 8c, flame stabilization is possible in 

the stagnation region preceding the VBB or in one or both of the low velocity shear 

layers.  In this way, four different flame topologies (all of which have been 
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experimentally observed [50, 97-99]) are possible. For example, the OH PLIF image in 

Figure 9 shows a flame stabilized by the stagnation region preceding the VBB and the 

outer shear layer. In contrast, when the centerbody wake and vortex breakdown bubble 

are merged, as in Figure 8d, no nearfield stagnation point is present in the flow, and the 

flame stabilizes in the shear layers. 

a) b)  

c) d)  

Figure 8.  Possible flow (a and b) and flame (c and d) configurations for two 

different vortex breakdown bubble structures where a,c) the bubble is lifted, and 

b,d) the bubble is merged with the centerbody wake.  

Next, the effects of harmonic acoustic forcing on the flow and, particularly, the 

effects of excitation amplitude are considered.  In this discussion, it is important to 
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recognize the different types of instabilities present in the flow, particularly their absolute 

or convectively unstable nature.  This specific flow field can be roughly broken into the 

convectively unstable shear layers and the absolutely unstable swirling jet, which results 

in a vortex breakdown bubble (VBB).  While useful, this demarcation should not be taken 

too far, though, as interactions between flow structures does exist, particularly between 

the flow structures in the VBB and the inner shear layer.  

The convectively unstable shear layers are treated first.  A free shear layer is a 

convectively unstable flow, where the separating vortex sheet rolls up into concentrated 

regimes of vorticity that pair with downstream distance [95, 100].  As a disturbance 

amplifier, shear layers respond strongly to acoustic forcing [94, 101-104].  In this case, 

the vortex passage frequency locks onto the forcing frequency, generally through a vortex 

pairing or collective interaction phenomenon [105].  Acoustic forcing has been shown to 

have similar effects on the shear layers in a variety of flow geometries, including circular, 

annular, and swirling jets [49, 106-112]. 

Consider next forcing effects on the VBB, a result of absolute instability in the 

flow field.  The effect of harmonic motions on the stagnation point in the flow is, as 

argued above, an important consideration for flows with small centerbodies and/or weak 

swirl.  Khalil et al. [113] showed that high levels of forcing, over a limited range of 

forcing frequencies, could elicit a response in the vortex breakdown bubble.  The 

response of the bubble, measured by movement of the upstream stagnation point, grew 

monotonically with forcing amplitude at a variety of different swirl numbers.  In the 

presence of a flame, bulk pulsations of the flow buffet the entire VBB, such as can be 

seen in the OH PLIF images in Figure 9.   
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Figure 9.  Results from OH PLIF images for a harmonically excited, swirl-stabilized 

flame at f = 270 Hz and 0.21ou u  [50]. 

The response of the bubble to acoustic forcing will be highly dependent on the 

shape and strength of the bubble.  As described above, the merged bubble lacks the 

vertical degree of freedom that the lifted bubble retains.  Additionally, characteristics like 

the bubble length, internal turbulence level, recirculation strength and other quantities 

dependent on swirl number may also influence its susceptibility acoustic forcing.  Indeed, 

several investigations of harmonically forced swirl flames have attributed some 

characteristics of the unsteady heat release to the dynamics of the stagnation point and 

bubble motion [43, 50].  For example,  Figure 10 illustrates the measured relationship 

between unsteady heat release of a longitudinally forced swirl flame upon excitation 

amplitude [50].  Curve (a) represents a typical manifestation of the nonlinear 

characteristics of the flame response [114-118].  Curve (b) shows a result with a highly 

non-monotonic flame response-excitation amplitude relationship, illustrative of a few 

similar type response curves measured in swirl flames.  In this study, measurements at 

different forcing amplitudes provided strong evidence that this behavior could be directly 

attributed to the nonlinear dynamics of the VBB stagnation point that, in turn, directly 

influenced the time evolution of the central portion of the flame.  In other words, it was 

suggested that the nonlinear flame response shown in curve (b) is not due to some 
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intrinsically nonlinear characteristic of the flame itself, but the flame adjusting to the 

highly nonlinear flow field.   

 

Figure 10.  Flame CH* chemiluminescence fluctuation response as a function of 

longitudinal forcing amplitude at two frequencies for a swirl-stabilized flame [50]. 

Another effect of forcing is on the dynamics of the internal structure of the VBB 

[43, 113, 119].   Here, the absolutely unstable nature of vortex breakdown appears to be 

key to understanding the response characteristics.  Absolutely unstable systems execute 

self-excited, limit cycle motions, even in the absence of external forcing [120].  For this 

reason, low amplitude forcing has minimal impacts on the VBB.  This behavior is to be 

contrasted with that exhibited by the convectively unstable shear layers and the entire 

VBB itself, whose space/time position is influenced by the outer flow oscillations.  LES 

simulations of a forced swirl flow by Wang and Yang [49] showed periodic fluctuations 

in size of the vortex breakdown bubble under limit-cycle amplitude acoustic forcing.  In 

(a) 

(b) 
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this case, the size of the bubble fluctuated in accordance with the longitudinal acoustic 

forcing. 

Swirl flows can also display narrowband oscillations in the form of the precessing 

vortex core (PVC) [43].  Several factors influence the response of the PVC to acoustic 

forcing, including both flow and geometric parameters.  In some cases where the bubble 

has intrinsic narrowband oscillations, external excitation at that natural frequency of 

oscillation can cause further amplification of this oscillation [121].  For example, LES 

studies by Iudiciani and Duwig [122] show that low frequency forcing ( 0.6St ) resulted 

in a decrease in the strength of the PVC fluctuation amplitude, while higher frequency 

fluctuations resulted in increases in PVC fluctuation amplitude. 

As the amplitude of acoustic excitation reaches very high amplitudes, significant 

changes in the shape and natural oscillations of the vortex breakdown bubble can occur.  

This is due to a phenomenon known as lock-in or entrainment, where the system 

oscillations are entrained by the external forcing and oscillate at the forcing frequency 

rather than the unforced frequency [121].  Additionally, high amplitude acoustic forcing 

can change the time-average shape of the flow, causing the vortex breakdown bubble to 

grow in both size and strength.  Several authors [110, 122, 123] showed changes in the 

time-average shape of the vortex breakdown bubble under strong longitudinal acoustic 

forcing.  In these cases, the strength of the recirculation increases along the centerline, 

particularly near the nozzle exit.  Finally, high amplitude acoustic forcing has been 

shown to inhibit, and even reverse, vortex breakdown in flows with lower swirl numbers 

in the hysteretic region [113].  In these cases, acoustic forcing has the ability to push the 

flow across the stability boundary and inhibit a bifurcation in flow structure. 
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The presence of transverse forcing adds an additional degree of freedom to the 

forced problem because of the non-axisymmetric nature of the forcing [112, 124-126].  

Unforced swirling flows are not generally instantaneously symmetric  [74];  e.g., swirl 

biases the strength of co- and counter-signed helical instabilities.  Moreover, non axi-

symmetric forcing can preferentially excite certain non-axisymmetric modes in a 

different manner than they would otherwise naturally manifest themselves.  Some studies 

using asymmetric acoustic forcing have shown that strong forcing can lead to bifurcations 

in the structure of a non-swirling jet, leading to such phenomena as "bifurcating" and 

"blooming" jets [127].   

With this as background, the influence of these flow features on the response of 

attached flames to flow disturbances is discussed, such as shown in Figure 11.  In 

particular, we are interested in understanding the nonlinear character of the flame 

response.  To start, we note first that the flame response is controlled by both the 

unsteady and time-averaged features of the flow.  To show this, consider the following 

level-set formulation for the flame dynamics, which is valid for premixed flamelets: 

ˆ 0L

G
u n S G

t
 (7) 

Here, the flame position is given by the level 0G .  Mapping this equation into 

physical space, we use the transformation ( , , ) ( , )G r x t x r t , where  is the distance 

from the dump plane to the flame surface, as shown in Figure 11. 
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Figure 11.  Flame modeling configuration, where the solid line is the instantaneous 

flame location, the dotted line is the time-average flame location, is the flame 

location, and  is the time-average flame aspect ratio. 

Given the geometry shown in Figure 11, Equation (8) describes the motion of the 

instantaneous flame front, assuming that  is a single valued function of r , where the 

subscript r  denotes a spatial derivative [128]. 

2
1r L ru v S

t
 (8) 

Here, u  and v  are the axial and radial velocity components, and LS  is the laminar 

flame speed.  While this equation could describe the motion of flames of several shapes, 

we set the flame shape by imposing the flame attachment condition at the edge of the 

centerbody, r R , by enforcing the boundary condition , 0r R t .  The 

expressions for the time-average flame location, , and fluctuating flame location about 

the mean, , are shown in Equations (9) and (10). 

21r L ru v S  (9) 



25 

 

2

2 21

L r r
r r

r

S
u v v

t
 (10) 

The cause/effect relationship between the flow and the flame shape and dynamics 

is evident from Equations (9) and (10).  The space-time character of the disturbance field, 

particularly at the forcing frequency, plays a significant role in exciting disturbances on 

the flame.  In this regard, the earlier distinction between the absolutely unstable (AI) 

vortex breakdown bubble and convectively unstable (CI) shear layers is fundamental to 

understanding the key unsteady flow structures that disturb the flame.  The convectively 

unstable shear layers are amplifiers that respond to the external forcing.  Moreover, since 

attached flames ride directly along the shear layer, as shown in Figure 7, the instability 

characteristics of the shear layers dominate the flame forcing through the fluctuations in 

u  and v  in Equation (10).  The dynamics of the shear layers will be discussed at length 

at the end of this chapter. 

In contrast, the absolutely unstable breakdown bubble exhibits intrinsic dynamics 

that are relatively independent of low amplitudes of excitation [49, 129].   Therefore, the 

basic dynamics of this flow remains unchanged in the presence of low amplitude acoustic 

forcing.  It is postulated that the key way in which the VBB influences the flame response 

to excitation is by controlling the time-average flow field, u  and v , and by influencing 

the downstream evolution of the shear layers (e.g., they appear to lose coherence much 

quicker in the presence of vortex breakdown [130]).  It is also clear that VBB dynamics 

have a significant influence on the nonlinear dynamics of the flame.  For attached flames, 

we postulate that this influence primarily occurs through changes in the time-average 

features in the VBB [113], i.e., u  and v  are functions of disturbance amplitude, and 
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lesser so because of temporally unsteady flow features in the VBB.    Indeed, the 

motivation for this study resulted from visually obvious, abrupt changes that were 

observed in the time-average flame shape at high amplitude forcing, as detailed further in 

Chapter 4. 

The first half of this part of the study particularly focuses on the VBB dynamics 

in response to transverse forcing of varying amplitude and frequency, with particular 

emphasis on nonlinear dependencies of instantaneous and time-average flow and flame 

features.  The second portion focuses on the dynamics and response of the convectively 

unstable structures in the flow field, or the shear layers.  The response of these structures 

is particularly important during combustion instability events, as they are convectively 

unstable and will respond in-kind to the acoustic forcing imposed on the flow. 

Swirling jets, like non-swirling jets, are also convectively unstable and display 

shear layer rollup in both the spanwise and streamwise shear layers.  Shear layer 

instability has been studied extensively and characteristics of the instability, such as most 

amplified frequency and disturbance growth rate, are now predictable by theory [95, 100, 

131, 132].  As the shear layer rolls up, it forms vortices that are initially on the length 

scale of the momentum thickness of the mixing layer.  As the growth rate of the sub-

harmonic frequencies peak, vortex pairing events occur and lead to an almost step growth 

in the thickness of the shear layer [104].  In general, the stability of the shear layer does 

not change with heat release [133]. 

Shear layers are very susceptible to acoustic perturbations, which is a fact that has 

important implications during combustion instability events.  As a convectively unstable 

flow, the shear layer acts like an amplifier for flow perturbations as the disturbances 
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convect downstream and grow in space [94, 101-103, 105].  In the presence of external 

excitation at only one frequency, the response of the shear layer at sub-harmonics, which 

happens naturally in an unforced shear layer, can be suppressed in favor of vortex 

shedding at the prescribed forcing frequency.  Again, the nature of the shear layer 

response does not change in the presence of heat release, as has been seen in several 

combustion studies, which will be discussed at greater length below [9, 10, 49, 69, 134]. 

Convective instability in non-swirling jets has been studied by a variety of authors 

[106, 135-137], and theoretical, experimental, and computational work has shown that 

the coherent structures present in the jet shear layers significantly change the 

instantaneous topology of the jet.  In these cases, the shear layer, created at the nozzle 

exit, rolls up and goes through a series of vortex pairing events until the end of the 

potential core.  At this point, the two shear layers merge and the resulting coherent 

structure is quite large, on the order of the jet diameter.  The structures then quickly 

dissipate in the highly turbulent region just downstream of the end of the potential core.  

This process is clearly shown in the flow visualizations by Crow and Champagne [106]. 

Similar processes occur in annular jets, but now two shear layers, one from the 

outer jet nozzle and one from the centerbody, are formed.  Several experimental studies 

by Chan and Ko [108, 138] detail measurements of the pressure spectra of annular jets.  

From these measurements, the authors describe the structure of both the inner and outer 

shear layers, as well as interaction with the wake region behind the centerbody.  In the 

case of annular jets, three regions of coherent structures exist:  the inner shear layer, the 

outer shear layer, and the centerbody wake.  Vortex rings of the same circulation are shed 

from both the inner and outer edges of the nozzle, and these two structures can interact as 
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they travel downstream.  While issues of self-induced movement of these vortex rings 

(the inner inducing itself in the upstream direction, the outer in the downstream direction) 

is certainly a feature of these structures, it is not considered in this treatment as the mean 

flow velocity of the leads to downstream convection of both structures with very similar 

convection speeds, as is discussed in Chapter 5. 

In annular swirling jets at high swirl numbers, the vortex breakdown bubble is an 

additional structure in this flow; this is the flow geometry considered in this study.  

Figure 7 shows the structure of the flow under consideration.  In this flow, the swirl 

number is high enough that the vortex breakdown bubble has merged with the wake 

structure behind the centerbody, a process that was described by Sheen et al. [96].  

Additionally, the action of swirl results in streamwise shear layers that emanate from both 

the inner and outer edges of the annular jet.  The vorticity in these shear layers is created 

in the boundary layer formed by the swirling action inside the annular jet on the wall of 

both the centerbody and the swirler block.  As the geometry of this nozzle features a high 

aspect ratio annular jet (small annular gap width), the interaction between these 

developing boundary layers and resultant shear layers could potentially lead to a 

reduction in the actual swirl number of the flow with downstream distance. 

Several studies have focused on shear layer instabilities in swirling jets, 

particularly for combustion applications.  Shear layer instability is a point of interest for 

swirl stabilized flames as the flame is normally stabilized in one or more shear layers in 

the flow, as will be discussed in more detail below.  In a swirling flow, the shear layers 

instability often has a helical form.  This has been shown by many authors [44, 75, 139, 

140] in both simulation and experiment.  Theoretical investigations of swirling flow 
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instability [82, 83] have indicated a preference in the direction of a helical disturbance 

that is created by the additional degree of freedom that swirl introduces in the solution 

space.  This is true even when the jet is convectively unstable, indicating that the shear 

layer instability will manifest itself as a helix. 

This can change, though, in the presence of acoustic forcing.  It is well known that 

response of convectively unstable flows is dependent on the symmetry of the incident 

forcing.  A good example of this phenomenon is forcing of circular jets.  Longitudinal 

forcing, an axisymmetric forcing condition, results in an axisymmetric response as seen 

in Crow and Champagne [106].  Non-axisymmetric forcing, including transverse forcing, 

can lead to highly non-axisymmetric response in the jet, as seen in studies of bifurcating 

and blooming jets [127].  This principle also applies to swirling flows.  Several studies, 

particularly in combustion applications, have measured axisymmetric shear layer 

response in a highly swirling flow in the presence of longitudinal forcing [9, 10, 66].  In 

these cases, swirling jets are confined by a quartz cylinder, creating a cylindrical 

combustor chamber with a dump plane.  Large-scale shear layer vortices roll up in the 

outer shear layers and corner recirculation zones and convect downstream, leading to 

significant flame wrinkling.  Non-axisymmetric forcing has lead to helical response in the 

shear layer and flame wrinkling in a number of transversely forced flames [28, 69, 111, 

141]. 

For transversely forced flames, there exist several pathways of velocity 

disturbances.  These pathways have been summarized in Figure 6.  Each of the pathways 

shown represents a velocity fluctuation source that could lead to velocity coupled flame 

response.  As described above, the velocity transfer function FTL quantifies the coupling 
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between the transverse and longitudinal acoustic velocities at the nozzle.  The acoustic 

fluctuations from both the transverse and longitudinal direction excite vortical velocity 

fluctuations, and this process is quantified by the velocity transfer functions FTω and FLω.  

These two sources of fluctuating vortical velocity combine to result in flame response to 

vortical sources, described by the flame transfer function Fω.  In this type of description 

of the velocity disturbance field, the natural “transverse vs. longitudinal” decomposition 

of the velocity field has been chosen, where the flame response is attributed to one 

direction of motion verses another.  Another natural decomposition would be to 

decompose the velocity field into the acoustic and vortical components, which is one of 

the results presented in Chapter 5.  The methodology for this decomposition will be 

described there. 

The combination of these two velocity disturbance mechanisms, vortical velocity 

fluctuations stemming from the shear layer instability and the acoustic fluctuations in 

both the transverse and longitudinal direction, can lead to interesting overall velocity 

field fluctuation amplitudes.  These two disturbances have vastly different propagation 

speeds; vortical disturbances travel at a convection velocity close to the mean flow speed 

[142], while acoustic disturbance travel at the sound speed.  The superposition of these 

two waves, as one would find in a transversely forced swirling flow, can lead to a 

cancellation phenomenon [111].  Here, the fluctuation amplitude varies periodically 

throughout the field, and if the amplitudes of both waves are similar, regions of near-zero 

fluctuation amplitude can appear at the nodal points of the interference pattern.  This 

severe modulation in velocity fluctuation amplitude dictates the velocity disturbance field 
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to which the flame is subjected.  These issues, as well as others pertaining to the response 

of the convectively unstable structures in the flow, are all discussed in Chapter 5. 

The remainder of this thesis is organized as follows.  Chapter 2 provides an 

overview of the experimental facility, diagnostic techniques and corresponding 

uncertainty analyses, as well as an overview of the time-average flow field for each of the 

flow conditions considered in this study.  Next, Chapter 3 addresses the issue of global 

flame response to transverse acoustic instabilities with measurements of both the 

transverse to longitudinal velocity transfer function, FTL, as well as the flame transfer 

function.  Discussion of these results is provided there.  Chapters 4 and 5 focus on the 

details of the flow response, for both non-reacting and reacting flow fields, to a variety of 

transverse acoustic forcing frequencies, amplitudes, and symmetry conditions.  In 

Chapter 4, the response of the base flow, or vortex breakdown region, is investigated and 

the effects of acoustic forcing on both the time-average as well as the dynamical response 

of this structure are considered.  Chapter 5 contains discussion of the response of the 

shear layers and jet structure to acoustic forcing, with a particular focus on response of 

these structures at the forcing frequency.  Finally, Chapter 6 will discuss implications of 

this work to the greater field of combustion instabilities and provide several 

recommendations for future work in the area of transversely forced swirling flows and 

flames. 
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CHAPTER 2 

EXPERIMENTAL METHOD 

 

Experiments were conducted in a flow facility designed for transverse acoustic 

forcing of both non-reacting and reacting jets, as is shown in Figure 12.  The design of 

this experiment was motivated by the need to create a strong transverse acoustic mode in 

the combustor without significant contributions from modes in the other two directions.  

See Appendix A for full technical drawings of the experiment. 

 

Figure 12.  Experimental facility. 

The conceptual design of the experiment was inspired by the shape of an annular 

combustor, as is shown on the right in Figure 3.  While building a laboratory-scale 

annular combustor was not tractable for this research, the current configuration was 

decided upon by essentially “cutting” and “unwrapping” an annular combustor into a 

Cartesian framework.  The result is this high aspect ratio combustor that is long in the 
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transverse mode direction and shorter in the other two directions, inhibiting the 

appearance of non-transverse modes over a large range of frequencies.  This geometry 

also mimics the flow boundary conditions present in these annular combustors, where the 

dump ratio isn’t uniform around the circumference of the nozzle.  While in an annular 

configuration the walls surrounding each nozzle are curved, the radius of curvature is 

much larger than the characteristic length scale of the nozzle (the nozzle diameter).  This 

means that a straight-walled chamber closely mimics the boundary conditions of an 

annular chamber and differences in the flow dynamics should be minimal. 

The initial design used a finite element solver, Comsol Multiphysics, to design the 

inner dimensions, and hence acoustic mode shape, of the combustion chamber.  This 

program allows the user to either build or import geometries and uses the Helmhotlz 

equation to solve for acoustic fields with given boundary and forcing conditions on each 

face.  Example acoustic fields from this type of simulation are given in Figure 13. 

 

Figure 13.  Comsol Multiphysics acoustic simulation of combustion geometry, 

amplitude of pressure fluctuations is shown for an out-of-phase forcing case. 
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This design ensured that transverse acoustic plane waves could be produced in the 

region of the nozzle.  Purely transverse modes can be produced at frequencies up to 

approximately 1400 Hz before multi-dimension modes are formed.  Although the mode 

shapes at these higher frequencies are two dimensional, with fluctuations in the axial 

direction appearing, the acoustic fluctuations in the interrogated region of the flow are not 

significantly impacted by this longitudinal combustor mode. 

The main test section consists of a ceramic insulated stainless steel vessel with 

inner dimensions of 114.3 x 35.6 x 7.6 cm, where transverse forcing is applied in the 

longest direction (114.3 cm) and the flow direction is in the next longest direction (35.6 

cm).  The annular jet is located at the center of the test section; the outer diameter of the 

jet is douter = 3.18 cm and the inner diameter is dinner = 2.18 cm.  The exit plane of the test 

section has four circular exhaust ports, each with a diameter of 5.08 cm.  This exhaust 

design was developed to minimize distortions of the incident planar acoustic field in the 

transverse direction.  AutoCad Inventor was used for the detailed design of the 

experiment and fabrication was completed at the Aerospace Engineering Machine Shop 

and the Georgia Tech Research Institute (GTRI) Machine Shop. 

The experiment is fed with a 20 psig air supply that is regulated with an orifice 

plate/differential pressure transducer setup.  Air flows through a large settling chamber 

with a perforated plate to break up upstream flow structures before entering the nozzle 

cavity.  The nozzle cavity, shown in Figure 14, has a length of h = 9.5 cm.  It contains a 

swirler, located a distance hs = 3.8 cm from the cavity entrance, with a centerbody of 

length hCB = 5.1 cm extending downstream.  Two swirlers were tested with geometric 

swirl numbers of 0.85 and 0.5 [143]; both flows exhibited bubble-type vortex breakdown 
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[80].  The nozzle cavity also contains two Kistler 211B5 piezoelectric pressure 

transducers, spaced 2.5micl  cm apart.  Experiments were run with an average nozzle 

velocity of uo=10 m/s, corresponding to a Reynolds number based on outer jet diameter 

of 21,000.  During the reacting tests, natural gas and air were premixed to a stoichiometry 

of 0.9 three meters upstream of the settling chamber to ensure a spatio-temporally 

uniform mixture stoichiometry at the flame.  

 

Figure 14.  Specifications for the swirler nozzle cavity. 

Further specification of the swirler is in Figure 15, which shows the 30⁰ swirler.  

There are twelve non-aerodynamic blades with a straight sweep at angles 30 and 45 

degrees.  The inside is threaded to interface with the centerbody, also shown in the figure.  

The outer diameter of the swirler is 31.75 mm and the outer diameter of the centerbody is 
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22.1 mm.  The inner diameter of the centerbody and swirler, at the interface location, is 

14.6 mm wide.  See Appendix B for full technical drawings. 

a) b)  

Figure 15.  Renderings of a) 30⁰ swirler and b) centerbody. 

Time-average flow field 

Here the time-average flow fields in the absence of forcing are shown for five 

testing conditions:  non-reacting flow with a swirl number of 0.85 in the r-x plane, 

reacting flow with a swirl number of 0.85 in the r-x plane, non-reacting flow with a swirl 

number of 0.5 in the r-x plane, reacting flow with a swirl number of 0.5 in the r-x plane, 

and non-reacting flow with a swirl number of 0.85 in the r-θ plane. 

In each of the r-x views, the structure of the swirling jet is evident.  Along the 

centerline there is a central recirculation zone, a result of vortex breakdown, that has 

merged with the centerbody wake and extends to the face of the centerbody.  A cut of the 

annular jet is seen as a high-speed jet on either side of the recirculation zone.  There are 

two sets of shear layers, the inner shear layer between the jet and the vortex breakdown 

bubble, and the outer shear layer between the jet and the quiescent medium around the 
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jet.  These results are shown in Figure 16 - Figure 19.  For further details on these data 

sets, see Appendix D. 
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a)  

b)  

Figure 16.  Time-average a) normalized velocity and b) normalized vorticity for 

non-reacting flow at uo=10 m/s, S=0.85. 
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a)  

b)  

Figure 17.  Time-average a) normalized velocity and b) normalized vorticity for 

reacting flow at uo=10 m/s, S=0.85, φ=0.9. 
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a)  

b)  

Figure 18.  Time-average a) normalized velocity and b) normalized vorticity for 

non-reacting flow at uo=10 m/s, S=0.5. 
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a)  

b)  

Figure 19.  Time-average a) normalized velocity and b) normalized vorticity for 

reacting flow at uo=10 m/s, S=0.5, φ=0.9. 

Figure 20 shows the time-average velocity field in the r-θ plane at three 

downstream distances.  At 0x D , the jet is clearly axisymmetric, but at further 
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distances downstream, the asymmetry of the combustion chamber causes the jet to spread 

on a bias, creating a more elliptical profile by 1x D . 

a) b)  

c) d)  

e) f)  

Figure 20.  Time-average velocity in the r  plane at a,b) 0x D , c,d)  1x D , 

and e,f)  2x D  for the unforced, non-reacting annular swirling jet, at uo=10 m/s, 

S=0.85. 
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Acoustic forcing 

The transverse acoustic field is created using six speakers, three on either side of 

the test section.  Each speaker is placed at the end of a 1 m tube to ensure they did not 

become overheated from the hot combustor test section.  Extensive acoustic cold flow 

measurements and finite acoustic modeling of the system demonstrated that the acoustic 

field is nearly planar over the frequency range of 400 – 1200 Hz – indeed, modeling work 

done before the facility was fabricated was used to prescribe key facility dimensions to 

ensure that the evanescent, three-dimensional disturbance features excited near the 

driving tube's entrance into the system decayed before reaching the nozzle section.   

A variety of different transverse acoustic fields, ranging from traveling to 

standing waves, can be set up by varying the relative amplitude and phasing of the 

speakers on the two sides of the combustor.  In this study, the speakers were driven with 

the same excitation voltage either at 0 or 180 degrees with respect to each other to create 

a standing wave, referred to as "in-" and "out-of-phase", respectively.  In-phase driving 

results in an acoustic pressure anti-node, a symmetric velocity field, and an acoustic 

velocity node along the centerline of the jet.  Out-of-phase driving creates asymmetric 

velocity fluctuations about the centerline, an acoustic velocity anti-node and an acoustic 

pressure node along the center of the jet.  These effects are shown in Figure 21. 
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Figure 21.  Nozzle configuration, flame shape, and acoustic velocity and pressure 

perturbations for in-phase and out-of-phase acoustic forcing, from the side view 

(acoustic waves not shown to scale). 

While the acoustic wave shapes are not shown the scale in Figure 21, the issue of 

the relative length scales between the nozzle and the acoustic waves is an important 

feature of this combustor geometry.  Over the range of frequencies tested, 400 Hz – 1800 

Hz, the wavelength of the acoustic disturbances (in non-reacting conditions) is 0.85 m – 

0.19 m, while the diameter of the nozzle is 0.03 m.  While over this frequency range, the 

flow field could still be considered acoustically compact (where the characteristic length 
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scale of the flow is significantly less than that of the acoustic wavelength), the extent of 

this compactness certainly changes over the frequency range.  As the wavelength 

shortens, the gradient of the acoustic field increases, which changes the overall topology 

of the velocity disturbance field. 

Transverse acoustic forcing inevitably excites longitudinal fluctuations near the 

nozzle exit because of the oscillating pressure drop across the nozzle; this process has 

been described in the introduction.  The fluctuating pressure at the nozzle exit excites 

axial acoustic oscillations in the swirler nozzle.  These axial acoustic flow disturbances in 

and around the nozzle is a function of the nozzle geometry and upstream acoustic 

impedance.  Both transverse and longitudinal reference velocities were calculated from 

the particle image velocimetry (PIV) data, the details of which are discussed later in this 

section.  These reference velocities were calculated by spatially averaging velocity data 

over areas of interest.  This process reduces random error caused by choosing data from a 

single point in the PIV calculation.  The transverse reference velocity is a spatial average 

of the transverse velocity fluctuations along the centerline of the flow between one 

diameter and two diameters downstream.  The axial reference velocity was calculated by 

integrating the axial velocity at each point along the radial direction at a downstream 

distance of x/D=0.05, the closest location of good data to the dump plane.  This contour 

is referred to as S1, and has a length of three nozzle diameters.  The calculation of the 

spatially integrated velocity is shown in Equation (11). 
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These spatially integrated velocities were chosen as being representative of the 

acoustic fluctuations in both directions.  The spatially averaged transverse velocity 

fluctuation along the centerline seems representative of a characteristic acoustic velocity 

in that region because much of the random motion from the vortex breakdown region 

should be removed by the average.  The axial velocity fluctuations, though, may contain 

significant vortical velocity components as the measurement was taken 0.64 cm 

downstream of the dump plane. 

Figure 22 plots the measured spatially averaged transverse reference velocity 

fluctuation, 
Tu , at the forcing frequency for the range of conditions presented in this 

work.  It shows that the transverse disturbance amplitude rises almost linearly with 

excitation voltage. 

 

Figure 22.  Amplitude of the reference transverse velocity fluctuations at the forcing 

frequency as a function of speaker input voltage, at uo=10 m/s, S=0.85. 
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As expected, the out-of-phase cases shown in Figure 22 have higher transverse 

velocity amplitudes than their in-phase counterparts at the same frequency.  Additionally, 

the 400 Hz and 800 Hz cases have strong transverse velocities, while the 1200 Hz case is 

weaker due to the reduced response of the drivers at these frequencies.  The transverse 

acoustic fluctuations in the combustor also induce longitudinal velocity fluctuations in 

the nozzle cavity.  These fluctuations tend to scale with the amplitude of transverse 

velocity fluctuations.    

Diagnostics 

Several diagnostic methods were used throughout this study, including high-speed 

PIV, flame luminosity, global chemiluminescence measurements, and pressure 

measurements.  Each of these experimental techniques is described in detail here. 

Particle Image Velocimetry 

Velocity measurements in this study were made using high-speed particle image 

velocimetry (PIV).  The laser is a Litron Lasers Ltd. LDY303He Nd:YLF laser with a 

wavelength of 527nm and a 5 mJ/pulse pulse energy at the 10 kHz repetition rate used for 

these experiments.  The Photron HighSpeed Star 1.1 camera has a 640x448 pixel 

resolution with 20x20 micron pixels on the sensor at a frame rate of 10 kHz.  A LaVision 

divergent sheet optic, with a 20f  mm cylindrical lens, was used to create a 1 mm 

thick sheet.  The first set of PIV data examined the flow in the axial direction of flow.  In 

this case, the sheet entered the experiment from a window at the exit plane of the 

combustor and reached a width of approximately 12 cm at the dump plane.  This 

alignment will be referred to as the x r  alignment. 
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A second set of PIV data were taken to look at the swirling component of the 

flow.  Here, a laser sheet with a thickness of approximately 1 mm and a width of 10 cm 

entered the front window at a height of 0.7 cm above the dump plane.  An Edmunds 

Optics 45-degree first surface mirror was placed above the exit port window and the 

camera was aligned and focused on the image on this mirror.   Special care was taken to 

ensure that there was no distortion in the particle image in the mirror; mirror/camera 

alignment was checked often.  This alignment will be referred to as the r  alignment. 

Aluminum oxide seed particles with a mean diameter of 2 μm were used.  Image 

pairs were taken with a separation time, dt, of nominally 20 microseconds for the x r  

alignment and 25 microseconds for the r  alignment.  This time varied slightly with 

swirl number, between 18 and 22 microseconds, as out-of-plane loss-of-pairs increases 

with larger swirl numbers.  500 image pairs were taken at each test condition. 

Velocity field calculations were performed using DaVis 7.2 software from 

LaVision.  The velocity calculation was done using a three-pass operation:  the first pass 

at an interrogation window size of 64x64 pixels, the second two passes at an interrogation 

window size of 32x32, each with an overlap of 50%.  Each successive calculation uses 

the previously calculated velocity field to better refine the velocity vector calculation; 

standard image shifting techniques are employed in the calculation.  The correlation peak 

is found with two, three-point Gaussian fits and values of the correlation peak ranged 

from 0.4 to 1 throughout the velocity field.  There were three vector rejection criteria 

used both in the multi-pass processing steps and the final post-processing step.  First, 

velocity vectors with magnitudes greater than 25 m/s were rejected as unphysical for this 

specific flow.  Second, median filtering was used to filter points where surrounding 
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velocity vectors had an RMS value greater than three times the local point.  This filter is 

used to rid the field of spurious vectors that occur due to issues with imaging, particularly 

near boundaries.  Third, groups of vectors greater than five vectors with an RMS 

significantly different than their neighbors were removed; this operation removes errors 

caused by local issues with the original image, including window spotting, and are 

aggravated by using overlapping interrogation windows.  Finally, vector interpolation 

was used to fill the small spaces of rejected vectors. 

Uncertainty Estimation 

Uncertainty in the velocity calculation was estimate using a pseudo-synthetic 

image pair method that calculates the sensitivity of the velocity calculation to a variety of 

sources of error in the measurement and calculation [144]. Unlike purely synthetic 

images, pseudo-synthetic images use the first image from an experimental image pair as a 

baseline for the second image.  In order to create the second image in the pair, the first 

image can be shifted, its intensity changed, its particles blocked, or a variety of other 

operations to mimic PIV errors.  This new image pair is then processed using the current 

software and calculation settings, and the sensitivity of the calculation to these different 

error sources imposed on the second image can be calculated.  This methodology showed 

that the major source of uncertainty stem from loss of particles due to highly swirling 

flow.  Based on these calculations, the uncertainty in the calculated velocity is 

approximately 1 m/s. 
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Flame Luminosity 

High-speed, line-of-sight video of flame luminosity was used to characterize the 

flame position.  These images were taken using a Photron High Speed Star 1.1 camera at 

5000 frames per second.  The camera’s CMOS sensor is sensitive between 400 and 1000 

nm, with peak sensitivity in the 500 – 700 nm wavelength range.  Each data set contains 

500 images, resulting in a spectral resolution of 10 Hz. 

Smoke Visualization 

The small-scale vortices that rollup as a result of the Kelvin-Helmholtz instability 

in the cases without acoustic forcing cannot be resolved by the PIV.  For that reason, 

smoke visualization was also used for visualization of these smaller structures.  A 

diagram of the smoke injection scheme is shown in Figure 23.  This system allows for 

smoke injection in a roughly axisymmetric manner for both/either the inner and outer 

shear layers.  By varying the smoke injection points, separate or combined visualization 

of the inner shear layer, outer shear layer, and recirculation zone is possible.    Such 

visualization approaches have been used in several studies in order to track coherent 

structures in shear layers as well as the vortex breakdown region in swirling flows [109, 

127].  The system is viewed either directly with a camera to image the three dimensional 

smoke evolution, or with cuts by illumination with a laser.  This technique has been 

helpful in visualizing the shear layer dynamics close to the nozzle exit.  Farther 

downstream and inside the vortex breakdown region, though, the olive oil smoke is too 

diffuse to track.  Further details of the smoke system can be found in Appendix C. 
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Figure 23.  Smoke injection points for both inner and outer shear layer visualization 

in an annular nozzle. 

Global Chemiluminescence Measurements 

The chemiluminescence was measured with a Hamamatsu H5784-04 

photomultiplier tube (PMT).  CH* chemiluminescence was filtered using a Newport 

Physics bandpass filter centered at 430 nm with a full-width half-maximum of 10 ±2 nm.  

The data was recorded with a National Instruments NI9205 data acquisition system using 

Labview 9.  The channel on the data acquisition board was in differential mode.  Data 

were acquired at 30 kHz with sample lengths of 15,000 points.  Data were ensemble 

averaged using ten ensembles.  A schematic of the setup is shown in Figure 24. 

Outer shear layer smoke injection

Inner shear layer smoke injection

Center recirculation zone smoke injection

Outer shear layer smoke injection

Inner shear layer smoke injection

Center recirculation zone smoke injection
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Figure 24.  Experimental setup for flame transfer function measurements, with 

PMT for CH* chemiluminescence and pressure measurements. 

Pressure Measurements 

Pressure data were collected with two Kistler 211B5 piezoelectric pressure 

sensors located in the swirler nozzle, as shown in Figure 14.  The pressure sensors are 

located lmic=0.0254 meters center to center and 0.015 meters from the dump plane in the 

nozzle cavity.  The data was recorded with a National Instruments NI9205 data 

acquisition system using Labview 9.  Each channel on the data acquisition board was in 

differential mode.  Pressure data were acquired at 30 kHz with sample lengths of 15,000 

points.  Data were ensemble averaged using ten ensembles. 

Flame Transfer Function Uncertainty Estimation 

The uncertainty in the flame transfer functions was calculated using standard 

Taylor series expansion uncertainty methodology [145].  The main source of error comes 

from the two microphone method, particularly at the lower frequency range.  Given the 
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microphone spacing chosen for this experiment, the range of frequencies over which two 

microphone measurements are “good” is approximately 670 – 5350 Hz [146].  Over the 

range of frequencies tested, uncertainty in the measurements comes from two sources.  

First, there is random error from both the two microphone method and in the flame 

transfer function, and is defined using the coherence [147].  Second, and more 

importantly, bias error arises, particularly at the low frequencies, from the effective 

spacing of the two microphones being different from the physical spacing.  According to 

estimates by Bodén and Åbom [146], this error can be up to 20% of the microphone 

spacing over the range of frequencies considered.  This 20% quantity was used in our 

estimates. 
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CHAPTER 3 

FLAME TRANSFER FUNCTION RESULTS 

 

The motivating factor for the work encompassed in this thesis is to determine the 

mechanisms by which flame heat release fluctuations and acoustic fluctuations in a 

combustor couple.  This chapter describes the measurement of flame response in a 

transversely forced, swirl-stabilized flame, as well as the measurements of the transverse 

to longitudinal velocity transfer function, FTL.  As described in Chapter 1, a transfer 

function cannot be defined for a transversely forced flame before the proper reference 

velocity is identified.  The effort towards measuring and understanding FTL is a necessary 

first step towards understanding flame response during these instabilities.  The rest of the 

chapter is organized as follows.  First, an overview of the measurements of the transverse 

to longitudinal velocity transfer function is presented.  With this, relevant results 

pertaining to the velocity disturbance field and the transverse vs. longitudinal velocity 

field decomposition are also discussed.  Next, flame transfer function results are 

presented with comparisons to theoretical predictions.  Finally, these results and their 

implications are discussed. 

Transverse to longitudinal velocity transfer function 

Before discussing the transverse to longitudinal velocity transfer function, the 

fluctuating velocity field in the region of the nozzle is considered.  Figure 25 shows the 

axial velocity spectrum along the dump plane at x/D=0.05 and the transverse velocity 

spectrum along the centerline for a reacting test with no acoustic forcing. 



55 

 

a) b)  

Figure 25.  Spectra of a) axial velocity fluctuations at x/D=0.05 and b) transverse 

velocity fluctuations along the centerline for an unforced reacting flow at a bulk 

velocity of uo=10 m/s and equivalence ratio of 0.95. 

In the absence of forcing, the axial velocity fluctuations, shown in Figure 25a, are 

concentrated in the annular jet and shear layers, located at r/D=0.5 and r/D=-0.5, and are 

broadband.  Similar low frequency content is seen in the transverse velocity fluctuations 

along the centerline, in the vortex breakdown region, as seen in Figure 25b.  Very weak 

higher-frequency (>300 Hz) transverse motions exist along the centerline. 

With transverse acoustic forcing present, the spectra of both the transverse and 

axial velocity change, as will be discussed shortly.  As discussed previously, the relative 

strength of these fluctuations at the forcing frequency give us FTL, the transverse to 

longitudinal velocity transfer function.  The induced axial velocity fluctuations, as 

defined in Equation (11), are highly dependent on frequency, and this frequency 

dependence is presented in Figure 26, which shows results from both PIV and the two-

microphone method.  Comparison between the PIV and two-microphone data shows that 

these two methods yield similar velocity amplitude results across the frequency range of 

interest. 
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a)  

b)  

Figure 26.  Axial velocity fluctuation amplitude for reacting flow with a) in-phase 

and b) out-of-phase forcing at a bulk velocity of uo=10 m/s, 
,T au =1 m/s, and a forcing 

frequency of fo=400-1800 Hz. 

Figure 27 through Figure 31 show the measured transverse to longitudinal 

velocity transfer, FTL, function for the non-reacting flow case at a bulk velocity of Uo=10 

m/s and the reacting flow case at the same velocity and an equivalence ratio of 0.9.  In the 
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transfer function gain (a) and phase (b) plots, the reacting in-phase data are offset by -20 

Hz and the non-reacting out-of-phase data are offset by +20 Hz for clarity of the error 

bars in Figure 30 and Figure 31. 

a) b)  

Figure 27.  Transverse to longitudinal velocity transfer function a) gain (|FTL|), and 

b) phase (<FTL), for reacting flow with in-phase acoustic forcing, a bulk flow velocity 

of uo=10 m/s, and equivalence ratio 0.9. 

a) b)  

Figure 28.  Transverse to longitudinal velocity transfer function a) gain (|FTL|), and 

b) phase (<FTL), for reacting flow with out-of-phase acoustic forcing, a bulk flow 

velocity of uo =10 m/s, and equivalence ratio 0.9. 
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a) b)  

Figure 29.  Transverse to longitudinal velocity transfer function a) gain (|FTL|), and 

b) phase (<FTL), for non-reacting flow with out-of-phase acoustic forcing, and a bulk 

flow velocity of uo =10 m/s. 

a)  
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b)  

Figure 30.  Transverse to longitudinal velocity transfer function a) gain (|FTL |), and 

b) phase (<FTL), for all cases. 

a) b)  

Figure 31.  Transverse to longitudinal velocity transfer function a) gain (|FTL |) on a 

log scale, and b) coherence squared, for all cases. 

These transfer functions were obtained from data where the transverse velocity 

oscillation magnitude was nominally 10% of the mean axial velocity.  Five ensemble 
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averages were used to calculate these transfer function gains and to estimate the 

uncertainties [147].  As an intrinsically acoustic quantity, FTL can also be calculated using 

data from the two-microphone method as the reference axial velocity fluctuation.  These 

results track closely with those shown in Figure 27. 

The amplitude results from these transfer functions have two interesting features.  

First, the gain has high values at 400-500 Hz but drops to small values, below unity, 

between 900 Hz and 1400 Hz.  Second, the amplitude peaks again at higher frequencies, 

particularly 1800 Hz.  Although the transfer function amplitude at both the low and high 

frequencies is approximately equal, signifying non-negligible transverse to axial velocity 

coupling, the flow response in these two cases is fundamentally different.  This can also 

be seen by looking at the spectrum as a function of radial location, as shown in Figure 32. 
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a)  

b)  

Figure 32.  Axial velocity spectra at x/D=0.05 for a) 400 Hz in-phase and b) 1800 Hz 

in-phase acoustic forcing a bulk flow velocity of uo=10 m/s and equivalence ratio 0.9. 
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Interesting changes to the velocity field can be seen in both Figure 32 and Figure 

33.  In the 400 Hz case, the axial velocity fluctuations are concentrated in the annular jet, 

while in the 1800 Hz case, the motion takes place across the entire diameter of the jet, 

including the vortex breakdown region.  Further downstream, this region stretches even 

farther in the radial direction as the jet spreads.  Additionally, the coherence of the axial 

and transverse velocity fluctuations is nearly unity at 1800 Hz, as well as several other 

higher frequencies, while the coherence is very low near 400 Hz.  This trend continues 

downstream of the dump plane, as is shown in Figure 33.  Here, the magnitude of the 

axial velocity fluctuations at the forcing frequency is shown for the entire flow field.  

Like the spectra in Figure 32, these plots show that the spatial distribution of axial 

velocity fluctuations is significantly different between the low frequencies and high 

frequencies, despite the similar magnitude in FTL of the two. 
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a)  

b)  

Figure 33.  Magnitude of the normalized axial velocity fluctuations at the forcing 

frequency throughout the flow field for a) 400 Hz in-phase and b) 1800 Hz in-phase 

acoustic forcing a bulk flow velocity of uo=10 m/s and equivalence ratio 0.9. 
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This difference in response may be a manifestation of the nozzle acoustics.  A 

rough calculation of the natural frequency of the nozzle (a half-wave mode) is 1800 Hz, 

in the range of the high coherence, high amplitude response frequencies seen in Figure 

30.  This means that the external pressure fluctuation from the transverse field in the 1800 

Hz forcing case is driving the fluctuations in the nozzle near the resonant frequency, 

resulting in a large-scale axial response in and around the nozzle.  Through a series of 

short experimental tests at frequencies between 1700 Hz and 1900 Hz in 10 Hz 

increments, it was visually observed that the flow response was maximized in the 1790 – 

1810 Hz region, indicating that the maximum axial flow oscillations occur in this 

frequency range.  

The results from both measurement of FTL and flow visualization clearly show 

that the response of the nozzle and the resultant longitudinal acoustic velocity 

fluctuations are key components to understanding disturbance field physics, and in turn, 

flame response.  The pertinent flame disturbance pathways, described in Figure 6, change 

as a function of frequency.  For example, in the range of 600 to 1000 Hz, the gain of FTL 

is less than one, signaling that the transverse acoustics dominate the disturbance field.  

However, at frequencies such as 1500 Hz and 1800 Hz, the nozzle response is significant 

enough to induce significant changes in the flow field and flame, resulting in flame 

response that is driven by a longitudinal acoustic motion.  The results from this portion of 

the study will inform the choice of flame transfer function form, discussed in the next 

section. 
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Flame transfer function results 

The flame transfer function describes the response of a flame to an input velocity 

disturbance.  As discussed previously, the choice of reference velocity for this transfer 

function is of paramount importance.  The flame response has been measured for three 

different acoustic forcing conditions:  in-phase transverse forcing, out-of-phase transverse 

forcing, and longitudinal forcing.  The results of these tests, using the longitudinal 

acoustic velocity measured by the two-microphone method as the reference velocity, are 

shown in Figure 34. 
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a)  

b)  
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c)  

d)  

Figure 34.  Flame transfer function a) gain, b) phase, c) coherence, and d) 

uncertainty in gain and phase for in-phase transverse forcing, out-of-phase 

transverse forcing, and longitudinal forcing at a bulk velocity of uo=10 m/s, 

equivalence ratio of 0.9. 

The measured flame transfer function results are plotted with the results from a 

longitudinally forced G-equation model, described in Equations (7) – (10) with and 

without flame stretch correction terms included; for more details on the model, see Refs. 
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[128, 148].  The measured transfer function results follow the trends in the gain from 

these models, although the phase measurements are significantly different than the 

predicted phase.  The discrepancy in the phase stems from the very low amplitudes of the 

gain; at low levels of gain, phase measurements are typically unreliable. 

The transfer functions for the transversely forced flames shown in Figure 34 use a 

more “traditional” reference velocity and do not account for the change in reference 

velocity frequency.  To account for the system response issues described previously, 

Figure 35 shows the product of the flame transfer functions reported above and FTL, the 

transverse to longitudinal velocity transfer function.  Multiplying the flame transfer 

function by the velocity transfer function weights the flame transfer function results by 

the system response. 
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Figure 35.  Flame transfer function gain comparison between FTL weighted transfer 

function and standard flame transfer function based on a longitudinal acoustic 

reference velocity, at a bulk velocity of uo=10 m/s, equivalence ratio of 0.9. 

The gain results in Figure 35 therefore mimic the shape of the transverse to 

longitudinal velocity transfer function gain shown in Figure 27, particularly in the high 

frequency range where the nozzle response is high.  This type of transfer function more 

accurately describes the response of the flame and the combustor system as it captures 

not only the amplitude of heat release but also the frequencies at which the system 

responds the greatest to the initial transverse perturbation. 

Two issues need to be discussed with respect to these transfer function results.  

First, the magnitude of the flame transfer function gain is low compared to previously 

reported data, even with the reported uncertainty, which increases at the low frequencies 
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due to error in the two microphone method.  This is most likely due to two effects.  In the 

lower frequency range, the nozzle acoustics are not being excited and the response of the 

acoustically compact flame to purely transverse excitation is very low [149]. This is 

because the net flux of reactants through the flame over the course of the acoustic cycle, 

in the transverse direction, is negligible and so the flame heat release fluctuation sums to 

zero.  This is not the case, though, for the higher frequencies where the acoustically 

compact assumption may no longer hold.  That leads to the second point, though, that 

flame response is inherently low at high frequencies, as can be seen from the model 

results in Figure 34.  This stems from the fact that the flame acts like a low pass filter as a 

result of the action of kinematic restoration along the flame front.  Short wavelength 

wrinkles are quickly destroyed as the flame propagates into itself and contribute very 

little to the overall heat release fluctuation; this effect is even more drastic when stretch 

effects are accounted for. 

These points being made, though, the flame response does jump in the weighted 

flame transfer function results at the frequencies at which the nozzle resonates.  This 

intuitively makes sense; the flame is excited by a strongly longitudinal field that has been 

amplified by the action of the nozzle resonance.  This point may further the 

understanding of under what conditions transverse instabilities are truly detrimental in 

gas turbine combustor geometries.  The coupling between the azimuthal combustor mode 

and the longitudinal nozzle mode will be a function of combustor geometric and acoustic 

parameters, such as annular circumference, nozzle depth, and nozzle impedance, which is 

usually a function of pressure drop across the swirler.  The frequencies at which these 

two modes, the azimuthal and longitudinal, align will be the most powerful drivers of 
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self-excited transverse combustion instabilities, resulting in high amplitude flame 

response to the nozzle acoustics that feeds energy into the azimuthal acoustic mode. 

This type of coupling can be seen in the LES simulations of Staffelbach et al. 

[25], which aligns with the flame transfer function results presented here.  Examples of 

the effect of the longitudinal fluctuations are shown in Figure 36, which shows flame 

position from Staffelbach et al. [25] at several adjacent nozzles.  In this simulation, the 

flame anchoring location fluctuates in the downstream direction in phase with the mass 

flow fluctuations from the nozzle.  The correlation between the pressure from the 

transverse acoustic field, shown on the bottom of Figure 36, and the flame anchoring 

position, shown on the top of the same figure, exemplifies the coupling between the 

transverse acoustic field in the combustor and the longitudinal mode in the nozzle, as 

measured in this study. 

 

Figure 36.  Variable flame anchoring position as a result of longitudinal mass flow 

fluctuations during transverse instability of an annular combustor, reproduced 

from Staffelbach et al. [25]. 



72 

 

Understanding of this coupling and the resultant flame response can have great 

impact on the way that future gas turbine combustors are designed.  While combustion 

instabilities have always been a serious consideration during the design process [150], 

these results can provide guidelines for relative sizing of annular combustor sections and 

nozzle geometries over the range of operating conditions (nozzle pressure drops or 

impedances) predicted for field operation.  By “mistuning” the nozzle to the annular 

section, high amplitude transverse instabilities can be avoided as the transverse to 

longitudinal acoustic coupling mechanism will be weak at off-resonance frequencies.  

Simple acoustic modeling of proposed designs can be used to screen these designs for 

possible coupling and eliminate harmful transverse dynamics events during operation.  
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CHAPTER 4 

RECIRCULATION ZONE DYNAMICS 

 

In this chapter and the one following, a more detailed description of the velocity 

disturbance field is presented.  In Chapter 3, the velocity field was decomposed in terms 

of the direction of velocity oscillation, transverse vs. longitudinal velocity fluctuations, in 

order to help formulate a flame transfer function approach to transverse instability 

characterization.  In this section, the velocity is considered as having two constituents, an 

acoustic component and a vortical component, where the acoustic field perturbations 

excite fluctuations in the vortical velocity field.  As discussed in the Introduction, the 

type of the response of the flow to acoustic forcing is highly dependent on the stability 

characteristics of the flow.  As disturbance amplifiers, convectively unstable flows 

respond strongly to acoustic forcing and the frequency of response of the flow field will 

match that of the incident acoustic field.  Absolutely unstable flows, being self-excited 

oscillators, are impervious to low levels of acoustic forcing, although nonlinear processes 

can lead to coupling between acoustics and the flow field at high excitation amplitudes.  

In this chapter, the details of the base flow, dominated by vortex breakdown – a result of 

the absolute instability of the swirling jet – is discussed and the response of this structure 

to acoustic forcing is investigated for both the time-average and dynamical behavior of 

the flow. 

This section is organized as follows.  First, an overview of the analysis methods 

used in studying the base flow is provided; this includes details of a spatial mode 
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decomposition upon which much of the later discussion is based.  Second, the no forcing 

case is considered and the dynamics of the self-excited oscillations are detailed.  Next, 

the response of the time-average flow field to acoustic forcing is discussed, followed by 

results pertaining to the response of the dynamical features of the vortex breakdown 

bubble to acoustic forcing.  The last results presented in this chapter are those from 

reacting flow studies, and the influence of high amplitude acoustic forcing on the flame 

shape is detailed.  Finally, a deeper discussion of some of these issues and their 

implications concludes the chapter. 

Analysis Methods 

Several techniques were used to quantify the behavior of the vortex breakdown 

region and the effect of transverse acoustic forcing.  The use of high-speed PIV 

diagnostics allowed for spectral analysis of the data, which was used extensively in this 

study.  First, spectra of several quantities were calculated using fast Fourier transforms.  

500 images were taken at 10 kHz, resulting in a spectral resolution of 20 Hz and a 

maximum resolvable frequency of 5 kHz.  In this way, the amplitude and phase of 

fluctuations at this range of frequencies can be seen across the field of view. 

The frequency domain velocity was also used to decompose the flow field into 

spatial mode shapes in the r  cases.  This type of decomposition can be used to 

quantify the mode shapes appearing in the -direction at different radii from the center 

of the flow.  This technique has been used previously [151, 152] to calculate the mode 

shapes in jets and axisymmetric wakes.  In this analysis, the radial and azimuthal 

velocities are extracted from the instantaneous velocity fields at 8 radial locations and 21 
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points around each radius.  From there, the fast Fourier transform is performed at each 

point and a spectrum of velocity fluctuations at each point is produced.  In this way, it is 

possible to decompose the fluctuations at each frequency into a set of spatial modes in the 

-direction at each radius with the expression in Equation (12): 

0

ˆ , , , ,
N

im im

m m

m

u r A r e B r e  (12) 

Here, ˆ , ,u r  is a complex number, the Fourier transform of the velocity 

fluctuation.  ,mA r  and ,mB r  are the amplitudes of the modes in the counter-swirl 

(clockwise) and co-swirl (counter-clockwise) waves, respectively.  Finally, m  is the 

mode number describing the spatial fluctuation in the azimuthal directions that can have 

integer values between 1 2N  and 1 2N , where N is the number of points 

measured in the azimuthal direction. 

It is important to note here that the literature has a variety of conventions for the 

sign of m and what this indicates in terms of the rotation of the instability with respect to 

the flow.  In this study, the convention described by Liang and Maxworthy [75] and 

Loiseleux et al. [153] is used.  Here, the sign/direction convection for the instability 

changes for jets and wakes, and can be described in Table 1.  The “rotation” refers to the 

direction of the mode with respect to the direction of swirl, where the “winding” refers to 

the direction that the helical structure winds with respect to the swirl.  
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Table 1.  Azimuthal mode number conventions for jets and wakes after Ref. [75]. 

Flow Mode Rotation Winding 

jet m>0 co-rotating counter-winding 

jet m<0 counter-rotating co-winding 

wake m>0 counter-rotating co-winding 

wake m<0 co-rotating counter-winding 

 

In this convention, the form of the perturbation is shown in Equation (13). 

 ˆ expr i kx m t   (13) 

In this study, the flow profile most closely mimics that of a wake with 

counterflow as a result of the vortex breakdown bubble [153].  This can be seen by 

comparing flow profiles shown in Figure 16 - Figure 19 with the example profiles in Ref. 

[153].  Given that, the wake convention is adopted in this work.  As will be seen later in 

the results section of this chapter, modes m<0 do indeed rotate in the direction of swirl. 

Next, quantification of the shape of the flow was achieved by measuring the 

spreading angle of the annular jet (for the non-reacting cases) and the flame (for the 

reacting cases).  The angle of both the jet and the flame provides a useful quantification 

of the vortex breakdown size; the wider the angle (from the vertical), the larger the vortex 

breakdown bubble.  As discussed above, the vortex breakdown bubble size and shape 

controls many features of the "outer" flow field. 

To measure the jet angle, the location of the jet was first calculated by finding the 

maximum time-average axial velocity at each downstream distance.  Then, a nonlinear 

least-squares curve fit routine was used to fit a line to the jet path between 0x D  to 

0.5x D .  A similar process was used to calculate the flame angle.  First, the luminosity 

flame images were thresholded and binarized in order to find the flame edge.  Then, the 
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same nonlinear least-squares curve fit routine was applied to the flame edge from the 

binarized image between 0x D  to 0.5x D  and the flame angle calculated from the 

slope of that fit.  The angle of the jet/flame was calculated for five ensembles separately; 

the average angle is reported and the standard deviation of these angles quantifies the 

uncertainty in this measurement. 

No forcing results, non-reacting flow 

This section presents a baseline characterization of the time-average flow without 

external forcing.  Figure 16, in Chapter 2, shows the non-reacting axial velocity and 

azimuthal vorticity, normalized by the bulk velocity divided by the annular gap width.  

The axial velocity plot shows the jets on either side of the centerline with the reverse flow 

region in the center that is merged with the centerbody wake.  The two shear layers on 

each side of the annular jets are evident in the vorticity plot. 

The instantaneous flow field shows substantially more small scale structure, as 

shown in Figure 37.  Natural fluctuations in the axial velocity due to turbulence can be 

seen in the jet, and the vortex breakdown bubble has a more contorted edge and more 

complicated internal structure on an instantaneous basis.  The zero axial velocity contours 

have been plotted in these images to further emphasize this point. 
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a)  

b)  

Figure 37.  Comparison of a) time-average and b) instantaneous vorticity for the 

unforced flow, S=0.85.  Arrows in each plot indicated normalized velocity; zero 

velocity contours are plotted in light grey. 

The time-average azimuthal velocity field is shown in Figure 20, obtained at a 

measurement planes x/D= 0, 1, and 2 above the bottom of the field of view, 0.7 cm from 

the dump plane.  These time-average views show a swirling jet with a relatively uniform 

profile in the radial direction across the annular width at 0x D , but the shape of the 

combustor affects the shape of the jet further downstream.  At 1x D , the jet is slightly 
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less axisymmetric, and by 2x D , the influence of the high aspect ratio combustor 

shape is evident.  At this location, the flow is able to spread more in the r-direction, while 

it is confined in the z-direction. 

Figure 38 shows axial and transverse velocity spectra at several axial locations at 

the flow centerline and at the left and right edges of the time-average vortex breakdown 

boundary.  The velocity spectra show low frequency content in all these regions of the 

flow that oscillates at an amplitude of up to 20% of the mean flow velocity.  The content 

of the remaining spectra is very similar to those shown in the non-reacting case in Figure 

38. 

a) b)  

c) d)  
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e) f)  

Figure 38.  Spectra of normalized a,c,e) axial component and b,d,f) transverse 

component of velocity along the time-average centerline (a,b), left-hand vortex 

breakdown boundary (c,d – zoomed in), and right-hand vortex breakdown 

boundary (e,f – zoomed in) for non-reacting flow with no acoustic forcing, at uo=10 

m/s, S=0.85.  Fluctuation amplitude is normalized by the bulk velocity, uo=10. 

Figure 38 show the presence of significant amounts of self-excited low frequency 

motion throughout the flow field with little higher frequency motion.  Swirling flows are 

susceptible to a variety of self-excited motions, including shear layer rollup [110, 140], 

vortex breakdown bubble movement [92, 113], and other jet instabilities [82, 154].   In 

this case, the low frequency motion is the result of a precessing vortex core in the vortex 

breakdown region. To visualize this, filtered velocity data in the r  plane are shown in 

Figure 39 as a series of images at progressive instances in time.  Here, the velocity data 

have been low-pass filtered at 200 Hz using a second order Butterworth filter to capture 

the lower frequency motion.  Additionally, the gray regions represent the approximate 

areas of the inner and outer shear layers at this downstream location. 
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a)  

b)  

c)  
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d)  

e)  

f)  
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Figure 39.  Precessing vortex core shown through the filtered velocity field in the 

r  plane at x/D=1 and a) t=0.5 ms, b) 4.1 ms, c) 10.1 ms, d) 13.1 ms, e) 17.1 ms, f) 

20.1 ms, for a non-reacting, non-forced flow at  uo=10 m/s, S=0.85.  Gray regions 

indicate approximate location of inner and outer shear layer at x/D=1. 

Two concurrent motions are evident from this series of velocity fields in Figure 

39.  The first is a fluctuation in the overall shape of the jet, while the second is due to two 

smaller-scale coherent structures in the central recirculation zone.  Notional sketches of 

these two motions are shown in Figure 40. 

 

Figure 40.  Notional picture of self-excited motion showing both the jet deformation 

( 2m  mode) and coherent structure motion ( 1m  mode) for an unforced flow. 

First, as is seen in the time-average image in Figure 20c, the jet at 1x D  

spreads preferentially towards the top-left and bottom-right quadrants of the image.  In 

the time series of the low frequency motion, a semi-periodic stretching and contracting of 

the jet along the axis along which the jet is biased is observed.  A notional picture of this 
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motion is shown in Figure 40.  For example, this bias can be clearly seen in Figure 39b 

and Figure 39d, as is indicated with dotted lines.  This is reflected in the sketch in Figure 

40a in time-instance t=0.5 ms and t=13.1 ms.  Motion of the jet in the opposite direction 

is evident at the subsequent time, in Figure 39c and Figure 39f and shown using dotted 

lines.  This is reflected in the sketch in Figure 40 in time-instance t=10.1 ms and t=20.1, 

with a transitional time shown in time-instances t=4.1 ms and t=17.1 ms.  This motion is 

indicative of a 2m  mode in the jet, as discussed later; here the jet stretches in each 

direction twice as the motion rotates once around the center of the jet. 

The second motion is smaller scale, and involves two coherent structures that 

precess about the center of the flow field.  These can be seen in several of the images in 

Figure 39, circled with a dashed line.  While these coherent structures clearly precess 

around the center of the flow field for parts of the “cycle,” they also overlap, as is shown 

in the instances in Figure 39a-c.  This is reflected in the notional images shown in Figure 

40, where at time-instances t=13.1 – 20.1 ms, the structures are separate, but at time-

instances t=0.5 – 10.1 ms they seem to overlap.   

The periods of rotation of these two motions are not the same, but instead the 

period of one rotation is twice that of the other.  The longer period, referred to as T1, 

describes the motion of the two smaller scale coherent structures in the recirculation zone 

and is given by mode 1m .  This period is approximately T1 = 20 ms, as is shown in 

Figure 40.  The shorter period, referred to as T2, is the deformation of the jet column that 

rotates around the center axis over a period of approximately T2 = 10 ms.  This is a mode 

2m  motion. 
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The two small-scale structures follow the macro-movement of the jet described 

above, and may actually be the cause of this semi-periodic squeezing of the jet column, 

described as a 2m  motion.  Despite that, local to these two structures, the motion of 

the flow is better described by an 1m  motion.  In this case, the smaller structures 

pulse radially in two separate motions, over a time period T1, as the entire jet deforms 

over a time period of T2.  During the time span that is half of period T1 (one full rotation 

of the motion over period T2), given by Figure 40a-c, the small-scale structures are tightly 

overlapped, appearing as a single structure that just deforms as the jet does.  This can be 

seen in Figure 40b during time-instances t=0.5 – 10.1 ms and Figure 39a-c.  During the 

second rotation of the jet column deformation over the second half of time period T1, the 

two structures are clearly separated, although the shape of the jet column does not differ 

significantly between this part of the cycle and the previous.  This more separated motion 

can be seen in Figure 40 during time-instances t=13.1 – 20.1 ms and Figure 39d-f.  Given 

that these smaller structures cycle through their oscillation during two rotations of the jet 

column deformation, they appear as oscillations in the mode 1m , while the jet 

column deformation appears at oscillations of an 2m  mode.   

This motion is similar to that visualized by Huang et al. [45] in LES simulation.  

This study computed the flow in an annular swirling, reacting jet exiting into a cylindrical 

combustion chamber.  In this paper, streamlines of motion in the r  plane are shown at 

two different times for downstream distances of 1.2x D , 1.6x D , and 2.2x D .  

During part of the cycle, two rotating fluid structures move around the center of the jet 

and are evident in all three axial planes.  In other parts of the cycle, only a single structure 

can be seen.   
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To better quantify this motion, a spatial modal decomposition was used, as 

discussed with reference to Equation (12).  Figure 41 shows a detail of the low frequency 

components of the modal decomposition of the radial velocity at one radial location, 

r/D= 0.6.  Also, Figure 42 shows the distribution of energy amongst different modes 

(Figure 42a) and as a function of radius (Figure 42b). 

 

Figure 41.  Spectra of mode numbers at 0.6r D  r  plane at 1x D , for a non-

reacting, unforced flow at uo=10 m/s, S=0.85. 
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a)  

b)  

Figure 42.  Modal energy distribution of energy integrated from 0-200 Hz plotted as 

a function of a) mode number at three radii and b) radius at five mode numbers, for 

a non-reacting, unforced flow at uo=10 m/s, S=0.85.  Gray regions in b) indicate the 

approximate location of the inner and outer shear layer. 

The figures show that the main contributions to the motion of the unforced flow 

field come from the 1m  and 2m  modes at frequencies between 0 Hz and 200 Hz.  
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The 2m  mode, given by the rotation of the jet column deformation, is stronger than 

the 1m  mode at the radius shown here.  This is consistent with physical observations; 

at the smaller radius of 0.4r D , the 1m  mode is stronger as a result of the two 

coherent structures being located closer to the center of the jet.  The 2m  mode is 

stronger at larger radii, particularly 0.6r D , which is indicative of the fact that the jet 

deformation fluctuations are dominant at the outer regions of the jet.  Very little energy is 

present in the symmetric, 0m  fluctuations. 

Several additional observations are apparent from these results.  First, these 

results show that the energy in these modes changes as a function of radius.  In the very 

center of the flow, only a few modes are present, including 2m , 1m , and 1m .  

As the radius increases, the energy of every other mode varies with increasing r until 

0.7r D , after which the strength of all the modes rapidly decreases.  Most likely, this 

stems from increasing turbulence levels at the outer mixing regions of the jet.  The inner 

region of the jet is dominated by the coherent motion from the 1m  mode, while 

turbulent mixing between the jet and the quiescent medium around the jet dominates the 

motion at the outer region of the jet.  Outside the jet, or at radii greater than 0.7r D , 

motion is mostly due to entrainment and fluctuates very little, leading to very low mode 

strengths. 

Next, the distribution of energy amongst mode numbers at other downstream 

locations is similar to those at 1x D .  At 2x D , energy is similarly distributed 

between modes 1m  and 2m , with a small amount of energy in 1m .  The 

appearance of additional modes at different downstream locations is not uncommon as 
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the developing profile of the jet may change the stability characteristics or dominant 

motions at different downstream locations.  Examples of this can be found in Ref. [152].  

At 0x D , very little energy is present in any of the modes; this is most likely due to 

the fact that the central recirculation zone is bounded by the centerbody a mere 0.7 cm 

from this measurement location.  Due to the stagnation region associated with the no-slip 

condition at this boundary, velocities in the recirculation region at this location are small. 

Theoretical analyses of swirling wake profiles, which are similar in flow structure 

to this flow (see Figure 16), also predict that lower order modes (i.e., 1, 2,...m ) 

spinning in the direction of swirl are absolutely unstable.  The amplification rates of the 

resultant disturbances are highly dependent on swirl number and backflow ratio [153].  

They similarly predict that the symmetric, 0m , mode is stable and that the most 

amplified helical modes shift from negative mode numbers to positive mode numbers for 

flows with jet-like profiles. 

Effect of acoustic forcing on time-average flow, non-reacting flow 

Acoustic forcing can have either a minimal or a significant effect on the size and 

shape of the vortex breakdown bubble, depending upon acoustic forcing conditions.  In 

general, this result reflects the absolutely unstable nature of the VBB.  The range of 

motion of the VBB is constrained by the fact that it is merged with the centerbody wake, 

moving the lower stagnation point of the bubble to the centerbody face and effectively 

anchoring the structure in this location.  Nevertheless, the shape of this structure exhibits 

sensitivity to disturbance amplitude and frequency, in some cases quite dramatically, as 

discussed in this section.  Changes in the vortex breakdown bubble from acoustic forcing 
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reflect an overall change in the stability characteristics of the flow field, not just an 

influence that the acoustic forcing has on the bubble itself.  High amplitude acoustic 

forcing can alter in-flow conditions in the nozzle, warp the symmetry of the swirling jet 

and bias it towards one side, and generally change the overall flow shape such that the 

vortex breakdown bubble is influenced.  This is still a highly nonlinear process, as 

described above, though, because the overall jet is absolutely unstable, not just the vortex 

breakdown structure itself.  The changes described below describe a macroscopic change 

in jet structure and behavior that results from high amplitude acoustics. 

An important manifestation of the vortex breakdown size is in the time-average 

spreading angle of the annular jet.  Figure 43 shows the increase in the jet angle based on 

data collected from velocity fields, due to the effect of amplitude of transverse acoustic 

forcing on the time-average jet angle (measured from the vertical) across the frequencies 

and forcing configurations considered.   
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Figure 43.  Dependence of jet spreading angle upon transverse acoustic forcing 

amplitude for non-reacting flow at uo=10 m/s, S=0.85. 

A key take-away from this graph is the slight influences of forcing in most cases, 

but also the significant effects that it can have in select cases.  In the in-phase case, there 

is no discernible change in jet angle over the range of amplitudes and frequencies tested.  

Larger forcing amplitudes are achievable for the out-of-phase forcing cases, where some 

modest dependencies on forcing amplitude are observed.  However, in one case, at 800 

Hz out-of-phase forcing, a sharp change in flow angle occurs at 0.46ov u .  Figure 44 

plots the velocity field at several forcing amplitudes showing an example of the 

bifurcation. 
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a) b)  

c) d)  

Figure 44.  Flow fields for the transversely forced bifurcation case, 800 Hz out-of-

phase, at four excitation amplitudes where a) 3.3 m/s and b) 4.3 m/s transverse 

velocity cases show the velocity field before the flow bifurcation, and c) 4.6 m/s and 

d) 5.2 m/s show the velocity field after.  All flow conditions are non-reacting at uo=10 

m/s, S=0.85.  Colorbar shows axial velocity normalized by bulk flow velocity. 

Before the bifurcation point, the jet tilts slightly to the left with increased forcing 

amplitude, although the structure is fundamentally similar to that of the flow without 

acoustic forcing, seen in Figure 37.  After the bifurcation point, the vortex breakdown 

bubble enlarges to over twice its original size, forcing the annular jet to an almost wall-

jet-like configuration.  This bifurcation phenomenon was highly repeatable.    At higher 
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levels of acoustic forcing beyond the bifurcation the bubble becomes slightly bigger but 

the flow topology stays the same.  This behavior was also observed at other forcing 

frequencies and configurations at high forcing amplitudes, but often exhibited a 

stochastic character and was not repeatable. 

These results show that nonlinear effects can manifest themselves in two 

fundamentally different ways: both smoothly varying and nearly discontinuous 

dependencies of the flow field upon excitation amplitude.  However, we were not able to 

isolate the controlling parameters governing which type of behavior could occur.  For 

example, in the 800 Hz out-of-phase case, an abrupt bifurcation is observed.  However, 

the corresponding transverse velocity fluctuations are nearly the same in the 400 Hz out-

of-phase case where similar behavior was not seen.  

The dependence of several other metrics of vortex bubble size and strength upon 

forcing characteristics were also analyzed.  For example, the size of the bubble was 

measured using the distance between the edges of the recirculation zone as a function of 

downstream distance.  The results of this analysis are similar to those discussed above, 

particularly the bifurcation behavior at 800 Hz out-of-phase forcing. 

The strength of the vortex breakdown bubble was quantified in two ways.  First, 

the circulation over each half of the bubble was calculated at each acoustic frequency, 

symmetry, and amplitude.  Second, the radially-averaged recirculation strength of the 

bubble at each downstream location was calculated by integrating the axial velocity and 

normalizing it by the width of the recirculation region at that location.  Both these 

measures showed very little response to the acoustic forcing, even at very high 

amplitudes, indicating that the strength of the vortex breakdown bubble did not change 
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dramatically with acoustic forcing.  This result is not consistent with other studies 

discussed in the introduction [110, 122], as these studies considered jets without 

centerbodies.  In annular jets with large centerbodies, like the configuration considered 

here, the boundary condition that results from the centerbody most likely impedes 

significant strengthening of the recirculation.   

Dynamical response of flow to acoustic forcing, non-reacting flow 

This section discusses the dynamical response of the flow to acoustic forcing at a 

variety of frequencies and amplitudes.  Several types of responses are possible, 

particularly at high forcing amplitudes.  First, the convectively unstable structures in the 

flow, the spanwise shear layers in particular, respond to the acoustic forcing even at very 

low amplitudes.  These motions, however, are not the focus of this study, as discussed in 

the Introduction.  The motion in the vortex breakdown region can also respond to the 

acoustic forcing.  In this case, three types of response are possible:  the self-excited 

motion can be enhanced, suppressed, or be unaffected by forcing and continue to oscillate 

independently of the acoustic forcing.  In the case that it is suppressed, it is also possible 

that the instability could “lock-on” to the forcing frequency, resulting in similar motion of 

the structure, but now at the frequency of forcing.  This phenomenon has been measured 

in bluff-body wakes [121], but was not seen in the current study. 

As described above, the vortex breakdown bubble exhibits self-excited 

oscillations at low frequencies in the form of a precessing vortex core. These motions 

contain energy in several modes, but in particular the 2m  and 1m  modes, 

indicative of motion of the overall jet deformation and two coherent structures within the 
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jet recirculation zone.  In this section, we present results on the dependence of these low 

frequency fluctuations as a function of forcing amplitude. 

The presence of high amplitude acoustic forcing has a definite effect on the 

structure and modal content of the low frequency motion.  An example of this shown in 

Figure 45 and Figure 46, where velocity fields for the low forcing amplitude and high 

forcing amplitude case at 400 Hz out-of-phase are shown, respectively.  In both these 

cases, images were selected during similar parts of the cycle as those shown in the data in 

Figure 39 and the notional picture in Figure 40. 

a)  

b)  
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c)  

d)  
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e)  

f)  

Figure 45.  Precessing vortex core shown through the filtered velocity field in the 

r  plane at 1x D , for a non-reacting flow, 400 Hz out-of-phase forcing at 

0.1v u  , uo=10 m/s, S=0.85. 

a)  
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b)  

c)  

d)  
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e)  

f)  

Figure 46.  Precessing vortex core shown through the filtered velocity field in the 

r  plane at 1x D , for a non-reacting flow, 400 Hz out-of-phase forcing at 

0.7v u ,  uo=10 m/s, S=0.85. 

Figure 45 shows the cycle of the low frequency motion for the low amplitude 

forcing case at 400 Hz out-of-phase forcing.  In this case, some of the same features seen 

in the unforced case are evident.  For example, the inner coherent structures exist as a 

single structure through half the cycle (Figure 45a-c) and two structures through the 

remaining part of the cycle (Figure 45d-e).  Despite that, the transit of these structures 

away from each other is less severe than in the unforced case, particularly when the jet is 

deformed along its bias axis as it is in Figure 39d in the unforced case.  The overall jet 
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deformation still precesses around the center axis, as shown in Figure 45b-d, but the 

extent to which it deforms is less than in the unforced case.  Additionally, the periodicity 

of these fluctuations begins to drift, causing significantly more uncertainty in the period 

of the cycle with acoustic forcing than without. 

At the higher forcing amplitude, shown in Figure 46, the coherent motion of the 

fluctuation is highly altered.  In this case, the coherent structures in the center of the 

recirculation zone appear to “merge” and “separate” as before, but do so in a much less 

regular fashion.  Furthermore, the deformation of the overall jet structure is more 

irregular and aperiodic.  While not shown here, these results are consistent with those 

seen at other forcing frequencies and forcing symmetries. 

To quantify these changes, the integrated energy between 0 and 200 Hz (as shown 

in Figure 42) can be tracked as a function of forcing amplitude, mode number, radius 

from the centerline, forcing frequency, and forcing symmetry, meaning in-phase vs. out-

of-phase forcing.  Most importantly, the strength of mode 1m  steadily decreases as 

the strength of mode 2m   increases for increasing forcing amplitude for the out-of-

phase cases only.  This trend can be seen in Figure 47, which shows the strength of a 

number of modes at several forcing amplitudes for an out-of-phase forcing case. 



101 

 

 a)  

b)  
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c)  

Figure 47.  Mode strength for three forcing amplitudes at 0.6r D  for a) 400 Hz, 

b) 800 Hz, c) 1200 Hz out-of-phase forcing at uo=10 m/s, S=0.85. 

The same information is shown for an in-phase forcing case in Figure 48, where 

the amplitude of mode 2m  has a lower amplitude. 
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a)  

b)  
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c)  

Figure 48.  Mode strength for three forcing amplitudes at 0.6r D  a) 400 Hz, b) 

800 Hz, c) 1200 Hz in-phase forcing at uo=10 m/s, S=0.85.  Note:  mode 2m  and 

3m  have very similar amplitudes at 0.06ov u  in a) and the symbols overlap. 

It is evident from Figure 47 that high amplitude, asymmetric acoustic forcing can 

have a significant effect on the structure of the swirling flow and the dynamical behavior 

of the vortex breakdown region.  In the out-of-phase forcing cases, high amplitude 

acoustic forcing can suppress the mode 1m , which describes the motion of the two 

coherent structures in the recirculation region, and enhance the 2m  mode, which 

describes the motion of the overall jet deformation.  This process can be seen at radii 

between 0.4r D  and 0.9r D , where the deformation motion of the jet is dominant.  

Visualization of this highly nonlinear process can be seen in the flow fields shown in 

Figure 46, where evidence of the coherent structures is scarce, but the overall 

deformation of the jet still exists. 
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In the in-phase case, the strength of the modes does not change substantially as a 

function of forcing amplitude.  Additionally, the growth in the strength of mode 2m  

that was observed in the out-of-phase forcing case is not seen in the in-phase forcing 

cases.  This may be indicative of the influence of acoustic forcing symmetry on the 

response of the flow.  The out-of-phase forcing is asymmetric and adds energy to an 

asymmetric mode, while the in-phase, or symmetric, forcing case has less impact on the 

asymmetric mode energies. 

These results should not be taken to imply that the flowfield is not responding to 

the forcing.  In fact, the convectively unstable shear layers respond quite strongly to the 

excitation at the forcing frequency.  To illustrate, Figure 49 shows the change in the total 

mode strength over the pertinent flow structures for the low frequency content compared 

to that at the forcing frequency.  In this calculation, the energy in the low frequency 

content was integrated over both the frequency range from 0 to 200 Hz and the radii over 

which this low frequency motion dominates, 0 0.6r D .  In the case of the shear layer 

response at the forcing frequency, the energy was integrated over the range of radii 

0.2 0.6r D , the regions in which the inner and outer shear layer dominate.  The 

fluctuation amplitude is normalized by the spectral integration width because of the 

significantly different spectral widths values used in the two plots.   
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a)  

b)  

Figure 49.  Modal energy distribution (per Hertz) for radially integrated a) low 

frequency motion below 200 Hz and b) motion at the forcing frequency, 400 Hz, for 

400 Hz out-of-phase forcing at uo=10 m/s, S=0.85. 

It is evident from these two modal distributions that there is a fundamentally 

different process happening between the low frequency motion in the vortex core and the 

shear layer motions at the forcing frequency.  In the case of the forcing frequency results, 
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the shear layers are responding in kind to the amplitude of the acoustic forcing, and a 

clear, monotonic growth of the helical 1m  and 1m  modes are present for this type 

of forcing.  This is evident from the distribution of energy at the forcing frequency in 

modes 1m  and 1m  across each radial location; the energy peaks in the location so 

of the inner and outer shear layers.  In this case, the amplitude of both modes at the 

highest forcing amplitude is roughly four times higher than that at the lowest amplitude, 

just as the highest amplitude of transverse acoustic forcing is four times that of the 

lowest. 

In contrast, the precessing vortex core does not similarly respond to the acoustic 

forcing.  In the case shown in Figure 49, the overall amplitude of the 2m  mode stays 

relatively constant, while the amplitude of the 1m  decreases by a factor of a third as 

the forcing amplitude increases by a factor of four.  This behavior reflects the nature of 

the vortex breakdown region, the manifestation of an absolute instability, in that the 

response to high amplitude acoustic forcing is highly non-linear and relatively low 

amplitude.  Further details contrasting the response of the absolutely unstable and 

convectively unstable structures are discussed in Chapter 5. 

Reacting flow results 

Many of the key phenomena discussed above are also observed in the reacting 

flow field and flame behavior.  In this section, we highlight these observations and the 

important implications they have for understanding velocity-coupled flame response.  

Several reacting experimental conditions were considered, including flows with two 

geometric swirl numbers, 0.85 like the non-reacting data above, and 0.5.  PIV data was 
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not taken in the r  plane for the reacting case.  Although this data is later suggested as 

a recommendation for future work, care should be taken in its acquisition.  Errors in PIV 

could arise from the variable index of refraction over the line of sight through the hot 

combustion products. 

To start, Figure 19 shows the time-average velocity and vorticity field for the 

unforced, reacting annular swirling jet.  Like the non-reacting data shown above, a clear 

vortex breakdown region exists along the centerline of the flow.  There are two shear 

layers, an inner and an outer, and the flame is stabilized in the inner shear layer. 

Example spectra of the velocity fluctuations along the jet centerline are shown in 

Figure 50.  Like the non-reacting case, the narrowband fluctuations are found 

predominantly below 200 Hz and fluctuation amplitudes at the higher frequencies are 

quite low.  Figure 50c-d shows a comparison of the reacting and non-reacting velocity 

spectra along the centerline at the point 1x D .  Here, it is evident that the magnitude of 

low frequency fluctuation in the reacting case is lower than that in the non-reacting, 

possibly indicating that the presence of the flame damps the self-excited motion in the 

center recirculation region of the jet.  The implications of this will be discussed at the end 

of this section. 

a) b)  
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c) d)  

Figure 50.  Spectra of normalized a) axial component and b) transverse component 

of velocity along the time-average centerline for reacting flow with no acoustic 

forcing, at uo=10 m/s, S=0.5, and equivalence ratio of 0.9.  Also shown is a 

comparison of the normalized non-reacting and reacting c) axial and d) transverse 

velocity fluctuations along the centerline of the flow field at 1x D . 

Similar types of behavior are reflected in the time-average shape of the flame, 

measured as the time-average flame angle from the vertical as seen from flame 

luminescence data in Figure 51. 
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a)  

b)  

Figure 51.  Dependence of time-average flame angle upon transverse acoustic 

forcing for a) out-of-phase and b) in-phase forcing for reacting flow at uo=10 m/s, 

S=0.5, and equivalence ratio of 0.9.  

Here, increases in the jet angle occur for several cases, including 400 Hz out-of-

phase, 1200 Hz out-of-phase, and in particular, 1800 Hz in-phase.  Significant changes in 

the flame shape are evident at 1800 Hz in-phase acoustic forcing, a result shown in 
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Figure 52.  This figure shows time-average images of the flame at several forcing 

amplitudes.  The spreading angle of these data is also shown in Figure 51b. 

 

Figure 52.  Line-of-sight overlays of 500 images of the flame at several forcing 

amplitudes a) 0.1 m/s, b) 0.5 m/s, c) 0.6 m/s and d) 0.7 m/s transverse velocity.  

Acoustic forcing is in-phase at 1800 Hz, flow velocity of 10 m/s, swirl number of 0.5, 

and equivalence ratio of 0.9. 

This behavior has important implications for the amplitude of the flame heat 

release response to acoustic excitation.  As was shown in Equation (10), the time-

dependent behavior of the flame surface is a function of the time-average flame shape, 

given by the flame aspect ratio .  This stems from the fact that flames respond to 

velocity disturbances normal to their surface on an instantaneous basis, as is described in 

Equation (7).  Changes in the angle of the flame relative to incident perturbations can 

change the amplitude of that dot-product, and hence the resulting flame response.  In 

instances where the time-average flame angle can be changed significantly by acoustic 

forcing, as it is at 1800 Hz in-phase, then it is important to not only consider the unsteady 

flow field perturbing the flame, but also the sensitivity of the averaged flame position to 

the forcing.   

Thus, the key effect of forcing on the vortex breakdown flow structures appears to 

be changes in its time-average character.  The fluctuations in the vortex breakdown 
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region associated with the precessing vortex core seem to not be an important contributor 

to the flow fluctuations exciting the flame.  Rather, previous studies by the authors [111] 

show that the bulk of the flame heat release fluctuation is the result of vortex rollup in the 

shear layers.  This effect is shown in Figure 53, which shows line-of-site luminescence 

images of the flame under both out-of-phase and in-phase acoustic forcing at 400 Hz. 

a)  

b)  

Figure 53.  Flame luminescence images for 400 Hz a) out-of-phase and b) in-phase 

forcing conditions for a flow velocity of 10 m/s, swirl number of 0.5, and equivalence 

ratio of 0.9. 

Figure 54 shows an example of the vorticity field calculated overlaid with a flame 

edge, calculated from the PIV Mie scattering image.  The dark gray line indicates an 

approximate flame edge, determined using the sharp gradient in seeding density between 

high density reactants and low density products. 
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Figure 54.  Absolute value of vorticity field showing the flame wrinkling due to 

inner shear layer rollup for 900 Hz out-of-phase at a flow velocity of 10 m/s, swirl 

number of 0.5, and equivalence ratio of 0.9. 

As can be seen from these images, large-scale flame wrinkling is formed by 

motion in the inner shear layer, whose dynamics are influenced by the nature of the 

acoustic forcing.  In the out-of-phase forcing case, the shear layer rolls up in a helical 

pattern, as is evident by the staggered vortices seen on either side of the flame in Figure 

53a.  In the in-phase, symmetric, forcing condition, large ring vortices roll up and disturb 

the flame in a symmetric way, as seen in Figure 53b.  Both these motions lead to 

significant flame response at the forcing frequency, as the convectively unstable shear 

layer responds to the acoustic forcing at the forcing frequency. 

There are two reasons for this.  First, the flame lies directly in the shear layers 

and, so its motions are dominated by shear layer dynamics.  Because of the convectively 

unstable nature of the shear layers, they respond quite strongly at the forcing frequency.  

Second, as shown above, the vortex breakdown bubble and its self excited motions 
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simply do not respond strongly to external forcing.  For these reasons, it is evident that 

the precessing vortex core and other self-excited motions in the vortex breakdown region 

do not have a significant impact on overall flame response during even high amplitude 

acoustic forcing.  The flame response is the result of motion in the convectively unstable 

shear layer and is affected very little by the dynamical structure of the vortex breakdown 

bubble. 

These helical shear layer structures have been seen in LES simulation [130] in 

both the inner and outer shear layers.  A typical result is pictured in Figure 55, which 

shows both a r x  cut and a three-dimensional vorticity isocontour.  The rollup of both 

shear layers is evident in the figure, as well as the complicated vortical motions in the 

recirculation zone.   

a) b)  

Figure 55.  Vorticity in a swirling flow showing inner and outer shear layer vortex 

rollup for an a) r x  cut and b) a three-dimensional vorticity isosurface at 

175,000s  [130]. 

The results from this study show that high amplitude transverse acoustic forcing 

influences both the time-average and dynamic characteristics of the base flow of a 
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swirling annular jet.  In these cases, high amplitude forcing can change the intrinsic 

behavior of the vortex breakdown structure, the manifestation of an absolute instability in 

the swirling jet.  This result is consistent with our understanding of the characteristics of 

absolute instabilities. 

We next consider several questions raised by this study.  First, what effect does 

the symmetry of the acoustic forcing have on the response of the vortex breakdown 

region?  Second, what parameters control monotonic versus bifurcation-type change in 

the flow field with acoustic forcing amplitude?  Next, what role does frequency lock-on 

of the absolute instability play in a forced swirling flow with vortex breakdown?  And 

finally, what does the observed behavior of the vortex breakdown region mean for flame 

response to high amplitude, transverse acoustic excitation?  Each will be discussed 

further below. 

Asymmetric forcing results in asymmetric flow response; this is a trend that has 

been observed in a variety of flows and forcing configurations.  This has shown to be a 

key idea in our analysis of the response of the swirling jet shear layers, but what does it 

mean for the vortex breakdown bubble, and by extension, the base state?  In shear layers, 

the response of these structures to symmetric verses asymmetric forcing fields is quite 

different.  In the in-phase forcing case, a symmetric forcing configuration about the 

center plane of the experiment, the shear layers roll up into ring vortices on both the inner 

and outer edge of the annular jet, a symmetric response to a symmetric forcing condition.  

In the out-of-phase forcing case, the asymmetric forcing condition, the shear layers roll 

up into helical structures, an obviously asymmetric response to the asymmetric acoustic 

forcing. 
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Visual inspection of the flow field during transverse forcing experiments indicates 

that transverse forcing has a "bulk" effect on the flow, i.e., the flow sways side to side 

during out-of-phase forcing cases and stays rather stationary during in-phase forcing 

configurations.  In this study, the vortex breakdown bubble displayed inherent dynamics 

in the absence of acoustic forcing, and the characteristics of this low frequency 

fluctuation were certainly altered in the presence of high amplitude acoustic forcing.  

Results presented here indicate that asymmetric forcing has more of an effect on the 

asymmetric instability modes, in particular mode 2m .  The mechanism by which this 

change in the behavior of the intrinsic characteristics was particular to the symmetry or 

type of acoustic forcing is a question that remains a topic for further investigation.   

Second, it is important to consider the nature of the response of the vortex 

breakdown structure to high amplitude acoustics.  In general, the time-average 

characteristics of the flow changes little with acoustic forcing; the width of the 

recirculation zone increases slightly with amplitude, pushing the annular jet and flame 

outwards from the centerline.  The exception to this observation is the bifurcation case, 

800 Hz out-of-phase forcing, which could not be reproduced here by longitudinal forcing.  

This sharp transition in state at very limited conditions seems to indicate that there are 

indeed different types of flow response behavior.  This is consistent with the idea that 

absolutely unstable flows are intrinsically nonlinear because they are exhibiting limit 

cycle oscillations even in the absence of forcing.  The bifurcation parameters for this type 

of behavior include frequency, amplitude of acoustic forcing, symmetry of forcing, 

among others that are not understood.  Figure 56 summarizes the test cases that were 

analyzed and indicates where similar bifurcations in flow field were observed. 
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Figure 56.  Acoustic parameter space for non-reacting and reacting test cases.  Plus 

marks the location of reproducible bifurcation behavior, and circle marks the 

location of intermittent bifurcation behavior 

Next, an interesting facet of acoustically forced flows, lock-in of absolute 

instabilities to the forcing frequency, has not been observed in this study.  While the high 

amplitude acoustic forcing had an effect on the low frequency dynamics of the 

recirculation zone, this structure was altered but not locked-into the forcing frequency, as 

it sometimes is in other absolutely unstable flows.  For example, studies have shown that 

the wake instability of bluff body wakes can be altered in the presence of high amplitude 

acoustic forcing [121].   

Finally, the change in the "base state" of the flow will have a marked effect on the 

response of the flame during a combustion instability event.  As described above, the 

dynamic behavior of the flame is dependent on both the time-average flame angle and the 
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fluctuating velocity field.  While it is evident that several sources of fluctuating velocity 

stem from both the convectively unstable structures in the flow, such as shear layers, as 

well as the absolutely unstable structure investigated in this study, it is particularly 

interesting to see that the time-average shape of the flow, and as a result, the flame, can 

be so altered by the presence of high amplitude acoustic forcing.  As in the 1800 Hz in-

phase case, shown in Figure 52, where the flame angle flares out at high amplitudes of 

transverse acoustic forcing.  This variation of time-averaged flow field with forcing 

amplitude must be captured to correctly predict the flame response to high amplitude 

acoustics. 
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CHAPTER 5 

SHEAR LAYER DYNAMICS 

 

In the previous chapter, the response of the central recirculation zone, the result of 

the absolutely unstable swirling flow, to acoustic excitation of various frequencies, 

amplitudes, and symmetries was overviewed.  In this chapter, the response of the 

convectively unstable shear layers structures and the resulting flame response are 

discussed.  A variety of experimental techniques, including smoke visualization, flame 

visualization, and high-speed particle image velocimetry are used to describe the 

behavior of these structures.  As discussed in the Introduction, these structures play a key 

role in understanding velocity-coupled flame response during transverse instabilities, and 

as such, a thorough treatment of this behavior is presented. 

This chapter is organized as follows.  First, an overview of the behavior of the 

unforced flow is outlined to provide a baseline for the forced flow experiments.  Here, 

smoke visualization and PIV are used to describe the natural vortex rollup that results 

from the Kelvin-Helmholtz instability in the shear layers.  Next, the response of the shear 

layers to acoustic forcing is described.  In particular, an emphasis is placed on the 

differences between response of the flow to in-phase versus out-of-phase forcing.  Data 

from smoke visualizations and PIV in several planes of view are presented.  Finally, a 

discussion on the response of the flame to the shear layer motion is presented, again with 

emphasis on the role of acoustic field symmetry.  Results from high-speed planar laser 

induced fluorescence (PLIF) and flame luminosity imaging are shown. 
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Behavior of the unforced flow 

As described in the introduction, the shear layers are convectively unstable and as 

a result, display the Kelvin-Helmholtz instability.  This instability, characterized by 

rollup of the shear layer into vortices that scale with the shear layer thickness, requires a 

constant disturbance source for this manifestation to continue.  In the case of unforced 

flow, the incoming turbulence is more than enough broadband excitation to excite the 

shear layer, which then sheds vortices at a preferred frequency that scales with a Strouhal 

number of approximately 0.022oSt f u according to linear, inviscid instability 

theory [94], where f is the preferred frequency, θ is the momentum thickness of the shear 

layer, and uo is a characteristic velocity, in this case the jet bulk velocity. 

This shear layer rollup happens in unforced swirling annular jets in both the inner 

and outer shear layers.  Visualization of this effect is shown in Figure 57, which depicts a 

series of images of shear layer rollup in both the spanwise and streamwise inner shear 

layers taken 0.2 ms apart.  Images a-f in Figure 57a show the rollup event of one vortex at 

the dump plane as another two convect downstream.  In Figure 57b, images a-e show the 

rollup of a vortex in the streamwise shear layer in a series of images that were taken from 

the top of the combustor with the laser sheet placed at a distance of 6.5 mm downstream 

of the dump plane. 



121 

 

a)  
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b)  

Figure 57.  Instances of shear layer rollup in an unforced annular swirling jet in 

both the a) axial and b) azimuthal shear layers, with mean flow velocity of 10 m/s, 

swirl number of 0.85. 

Figure 57a shows the spanwise shear layer rollup on the right-hand side of the 

nozzle.  Small structures, approximately 1 mm across, roll up at the edge of the nozzle 

and convect downstream with the jet.  Based on a mean flow speed of 10 m/s and the 

spacing of the vortices, the passage frequency is approximately 2500 Hz.  Image b shows 

the beginning of the formation of a vortex in the outer shear layer.  By image d the vortex 

has rolled up and begins to convect downstream.  As it travels downstream, in images e-f, 

it also grows larger.  It is clearly possible to see these fine-scale vortex rollup events in 

the outer shear layer.  It is much more difficult to see these structures in the inner shear 
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layer as a result of the highly turbulent vortex breakdown region adjacent to the inner 

shear layer.  Just as a vortex is formed, it is quickly deformed and diffused by the inner 

recirculation zone.  

Figure 57b shows the streamwise shear layer rollup measured 6.5 mm 

downstream of the dump plane.  These structures are significantly larger than the 

spanwise structures and can be seen to roll up as the flow rotates counter-clockwise.  In 

the inner streamwise shear layer, the coherent structures are larger and more diffuse as a 

result of their interaction with the inner recirculation zone.  The images shown in Figure 

57b show the rollup of a vortex, indicated by a yellow arrow.  It can be seen rolling up 

and convecting counter-clockwise through the series of images. 

This natural shear layer rollup was also measured using high-speed PIV.  Here, 

vorticity is used to visualize these coherent structures, and shedding in both the inner and 

outer shear layers is evident.  Figure 58 shows a series of images of an unforced swirling 

jet taken 0.1 ms apart. 
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Figure 58.  Six time instances of unforced, non-reacting jet flow show natural shear 

layer rollup, for uo=10 and S=0.85.  Normalized vorticity is shown in color; images 

are 0.1 ms apart. 

These images show shedding of coherent structures in a highly turbulent flow 

field.  This turbulence induces jitter in the structures, causing a random component to the 

initial shedding of the structures as well as their downstream evolution.  This stems from 

both the random nature of the initial perturbation exciting the shear layer and the flow 

turbulence that buffets the structures as they convect downstream.  As will be seen in a 

later section, this jitter is somewhat decreased in the case of acoustic forcing because the 

perturbation signal is clearly harmonic.  The effect of flow turbulence on the downstream 

evolution of the structures is still seen, an effect that was described and quantified in 

detail for bluff-body flow fields by Shanbhogue [155]. 

 

1 2 3

4 5 6
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Effect of acoustic forcing on shear layer dynamics 

As discussed above, convectively unstable shear layers act as disturbance 

amplifiers and respond strongly to acoustic forcing.  In this section, the response of the 

shear layers to acoustic forcing is discussed.  This response was measured in two ways.  

First, a description of the velocity field in the r-x plane is described with support from 

both smoke visualization and high-speed PIV.  Second, these effects were also measured 

in the r-θ plane and modal decompositions, described in Chapter 4, were used to 

understand the response of different modes to acoustic forcing.  The results from these 

two studies, however, support a similar narrative about the behavior of these structures in 

the presence of acoustic forcing. 

To first understand the response of a shear layer to acoustic excitation, the smoke 

system was used to visualize the response of the shear layer to transverse acoustic 

forcing.  An important question is the mechanism through which the shear layer, which 

has its own most amplified frequency, responds to the excitation.  As the shear layer is 

convectively unstable, it responds to the acoustic forcing, even at low amplitudes.  Ho 

and Huang [156] have shown that forcing where fo<<fr leads to a phenomenon known as 

“collective interaction.”  As illustrated by the sketch taken from Ho and Nossier [157] in 

Figure 59, the vortices interact so that in one region they are drawn together, further 

amplifying the induced flow field that causes their rotation around each other and 

coalescence.  In the other region, they are pulled apart from each other.  Also shown is a 

flow visualization from the present experiment of apparently the same phenomenon.  

Unlike the unforced case where the structures resulting from natural vortex shedding 
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were too small and weak to survive in the midst of the vortex breakdown bubble, these 

large collective interaction structures can be seen in the inner and outer shear layers. 

 

 

Figure 59.  Collective interaction in shear layers from Ho and Nossier [157] (left) 

and from the current study (center and right) in the inner shear layer of the annular 

jet with acoustic forcing, out-of-phase forcing at 400 Hz at an amplitude of 

v’/Uo=0.35 and a bulk velocity of 10 m/s and swirl number of 0.85. 

During a collective interaction event, several Kelvin-Helmholtz vortices rapidly 

merge and roll up into a larger structure whose passage frequency equals that of the 

excitation.  In other words, an integer number of shear layer vortices with passage 

frequencies of approximately 2400 Hz merge into a larger vortex at a forcing frequency 

of 400 Hz.  An example of such an event is shown in detail in Figure 60 and with less 

magnification in Figure 61.  In Figure 60, what appears to be five smaller vortices, 

formed as a result of the Kelvin-Helmholtz instability, can be seen rolling into a larger 

structure, as described by Ho and Nossier [157] and shown in Figure 59.  The time step 

between each image is 0.1 ms.   Figure 61 shows the event with less magnification and 
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with larger time steps, 0.3 ms, and shows another collective interaction event, followed 

by the shedding of the large structure and its convection downstream, as also shown by 

Ho and Nossier [157] in Figure 59.  This process is repeated once per acoustic cycle. 

 

 

Figure 60.  Collective interaction event in the inner shear layer with a bulk velocity 

of 10 m/s, swirl number of 0.85, and out-of-phase acoustic forcing at 400 Hz at an 

amplitude of v’/Uo=0.35. 

a

b c d e
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Figure 61.  Collective interaction even showing the structure formation and 

separation at the same conditions as Figure 60.  Each image is 0.3 ms apart. 

Figure 62 shows this same event in the high-speed PIV data, circled in yellow.  

The PIV resolution is far too course to visualize the small shear layer vortices, but the 

larger merged vortical structure is evident, as shown in Figure 62.  This field shows the 

velocity vectors superimposed on the out-of-plane vorticity, shown in the color bar on the 

right.  The quantities plotted are the sum of the velocity and vorticity fluctuation at the 

forcing frequency and the mean at one instant of the acoustic cycle.  The part of the cycle 

chosen corresponds to approximately the same moment in time as is shown in Figure 

61g. 
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Figure 62.  Collective interaction as seen in a velocity field from PIV for a non-

reacting case at a bulk velocity of 10 m/s, swirl number of 0.85, and out-of-phase 

acoustic forcing at 400 Hz at an acoustic amplitude of v’/Uo=0.35.  Structure from 

collective interaction is shown in the black circle. 

The large-scale structure rotating in a clockwise direction at r/D=0.5 and x/D=0.2 

is clearly evident in the figure.  At r/D=-0.5 and x/D=0.4, an oppositely rotating structure 

is present in the inner shear layer and had been formed half a cycle before the one 

previously described.  This structure is not as visible in the smoke image due to the rapid 

diffusion of the smoke. 

The downstream evolution of these structures was not measurable using the 

smoke technique due to the quick diffusion of these structures downstream.  Despite that, 

these measurements provide a baseline qualitative description of the collective interaction 

mechanism that is key to the formation of these structures.  Next, the downstream 

evolution of these structures is addressed using data from high-speed PIV. 

An issue that is inextricably linked with the response of the flow to acoustic 

forcing is the symmetry of the acoustic forcing.  As described in the Introduction, flows 
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respond in-kind to the symmetry of the imposed acoustic field.  In-phase forcing, a 

symmetric forcing condition, results in a symmetric response in the flow, at least initially.  

The out-of-phase forcing, an asymmetric forcing condition, results in an asymmetric 

response in the flow.  This framework is overly simplistic in a swirling flow, though, 

because the base flow is inherently asymmetric due to the action of swirl.  Previous 

studies [153] have shown that the most unstable modes of these flows have mode 

numbers of 0m  and the 0m  mode is hydrodynamically stable.  This issue becomes 

integral to the understanding of the downstream evolution of the shear layer behavior, as 

will be discussed later. 

In order to discuss the response of the shear layers, we look at the response of the 

flow at the forcing frequency.  Here, a process referred to as harmonic reconstruction is 

used to quantify the motions only at one frequency.  Since the high-speed PIV system 

produces time-resolved velocity fields, spectral analysis was used in much of this study.  

First, spectra were calculated for each point in space in the velocity and vorticity fields.  

To calculate the coherent fluctuations, the amplitude and phase of the Fourier transform 

of the velocity, Â (x) and φ(x), were then used to harmonically reconstruct a time-domain 

flow field at the forcing frequency using the relation in Equation (14):  

 

 
( ( ))ˆˆ( , ) Re ( ) i t xu x t A x e  (14)  

 

“Hatted” variables, such as the velocity in Equation (14), are referred to as “harmonically 

reconstructed” quantities. 
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Two main conclusions can be drawn from the response of the flow at the forcing 

frequency.  The first, a direct result of the nature of a standing acoustic field, is that the 

in-phase and out-of-phase forcing conditions result in very different acoustic velocity 

fluctuation amplitudes.  As discussed above, in-phase, or symmetric, forcing results in an 

approximate velocity node along the centerline and hence very low amplitude acoustic 

velocity fluctuations in the region of the flow.  Conversely, the out-of-phase, or 

asymmetric, forcing condition results in an approximate velocity anti-node and high 

amplitudes of acoustic velocity fluctuations.  While these two conditions are part of the 

same acoustic field in an engine combustor geometry, the excitation amplitude they 

provide for the flow and flame are significantly different, and results in disparate flow 

response amplitudes. 

The second effect stems directly from the symmetry of the acoustic forcing.  As 

discussed above, asymmetric forcing results in asymmetric flow response; this is a trend 

that has been observed in a variety of flows and forcing configurations.  This has shown 

to be a key idea in our analysis of the response of the swirling jet shear layers.  The 

structures that most readily respond to acoustic forcing are the convectively unstable 

shear layers.  As disturbance amplifiers, these structures respond strongly to acoustic 

forcing and are highly influenced by the symmetry of the acoustic field. 

In shear layers, the response of these structures to symmetric verses asymmetric 

forcing fields is quite different.  Figure 63 shows a notional sketch of a cross-section of 

the flow field.  The figure shows three main feature of the flow field in both the reacting 

and non-reacting flow.  First, the center of the flow is dominated by the vortex 

breakdown bubble.  On either side of the bubble is the annular jet column.  The inner 
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shear layer, the region of shear between the jet column and the vortex breakdown region, 

and the outer shear layer, the region between the jet column and the ambient fluid, 

contain coherent vortices.  These structures are formed as a result of fluctuating axial 

velocity at the nozzle, and the phase of the fluctuations on one edge with respect to the 

other edges determines the symmetry of the vorticity field. 

Figure 63a shows the case of an asymmetric flow field, caused by out-of-phase 

acoustic forcing.  Here, a helical pattern is created within each shear layer, resulting in a 

staggered vortex pattern in the plane formed by the laser sheet.  Figure 63b shows an 

example of an axisymmetric flow field, where vortex rings propagate downstream from 

the inner and outer edges of the annulus.  As they convect downstream, these structures 

deform and locally bend the jet column.  In addition to the aforementioned processes, the 

transverse acoustic motion periodically shifts the flow field from side to side, shifting the 

angle of the jet column and the trajectories of the coherent structures. 
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a)  

b)  

Figure 63.  Notional picture of the flow field for a transversely forced swirling jet 

with a) out-of-phase and b) in-phase acoustic forcing.  Coherent structures in the 

inner shear layer (ISL) and outer shear layer (OSL) travel downstream, bending the 

jet column as they pass. 

In the in-phase forcing case, a symmetric forcing configuration about the center plane 

of the experiment, the shear layers roll up into ring vortices on both the inner and outer 
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edge of the annular jet, a symmetric response (the 0m  mode) at the dump plane to a 

symmetric forcing condition.  In the out-of-phase forcing case, the asymmetric forcing 

condition, the shear layers roll up into helical structures, an obviously asymmetric 

response to the asymmetric acoustic forcing.  The downstream evolution of these 

structures will be discussed later.  Examples of this response are shown in Figure 64 and 

Figure 65 for several instances in time 0.83 ms apart. 

 

Figure 64.  Comparison of instantaneous (top) and filtered (bottom) velocity at the 

forcing frequency for in-phase forcing at 400 Hz, non-reacting flow at uo=10 m/s, 

S=0.85.  White lines trace the vortex. 
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Figure 65.  Comparison of instantaneous (top) and filtered (bottom) velocity at the 

forcing frequency for out-of-phase forcing at 400 Hz, non-reacting flow at uo=10 

m/s, S=0.85.  White lines trace the vortex. 

Here, in Figure 64 and Figure 65, both the instantaneous as well as the filtered 

velocity field at the forcing frequency is shown.  This filtered velocity field is calculated 

by reconstructing the velocity field at the forcing frequency only.  The filtered velocity is 

appropriate to show in this case because the shear layers are responding directly to the 

acoustics and further inspection and comparison of the instantaneous and filtered velocity 

and vorticity fields reveals great similarity. 

 It is clearly evident from the out-of-phase forcing case in Figure 65 that the 

response of the flow is asymmetric.  Helical vortices are clearly seen in both the 

instantaneous and harmonically reconstructed flow fields.  In the in-phase forcing cases, 

however, the symmetry of the flow response changes as a function of downstream 

distance.  At the dump plane where the vortex is shed, corresponding to Image 1 in 

Figure 64, the ring vortex is clearly symmetric.  As this vortex travels downstream, 

however, it begins to tilt.  In Image 2 it tilts such that the right edge travels further 
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downstream fast, and in Image 3 it has rotated as well as convected downstream and now 

the opposite side is further downstream.  This motion would come from the action of 

swirl, which is clearly present in both the instantaneous and harmonically reconstructed 

results.  This issue will be discussed later in terms of modal decomposition results, which 

show the same behavior. 

Similar results have been seen in reacting PIV results. The plots in Figure 66 

show the filtered velocity and vorticity field by plotting the sum of the fluctuation of the 

vorticity at the forcing frequency and the mean vorticity.  This calculation involves taking 

the FFT of the instantaneous velocity and vorticity at each point and harmonically 

reconstructing the signal at the forcing frequency, as described in Equation (14).  This is 

effectively a filtering, or phase locking, process that captures only the motions at the 

forcing frequency, eliminating turbulent noise.  This process also spatially smears out the 

instantaneous vorticity, due to cycle-cycle phase jitter in axial location of the vortical 

structures.  Figure 66, like the notional pictures in Figure 63, shows the out-of-phase and 

in-phase velocity and vorticity fields for one phase of the acoustic cycle. 

a)  
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b)  

Figure 66.  Normalized instantaneous (left) and filtered (right) velocity and vorticity 

field for a) out-of-phase and b) in-phase acoustic forcing for reacting flow at a bulk 

velocity of Uo=10 m/s and a forcing frequency of fo=400Hz. 

In the out-of-phase forcing case, a pressure node is present along the centerline of 

the flow.  The pressure fluctuations on either side of the node are out of phase, creating 

out-of-phase axial velocity fluctuations on either side of the nozzle.  This asymmetry in 

the axial velocity fluctuations leads to an asymmetry in the vorticity field, which is 

evident in Figure 66a.  For example, in the outer shear layer, the structure closest to the 

dump plane is on the right-hand side at x/D=0.2.  The next shear layer structure is on the 

left-hand side at x/D=0.5.  The final structure of significant strength in the outer shear 

layer is again on the right-hand side at x/D=0.9.  This vortex structure suggests a helical 

vortex pattern in both the inner and outer shear layers, similar to LES simulations by 

García-Villalba and Frölich [158], shown in Figure 67. 



138 

 

 

Figure 67.  Snapshot of a helical shear layer instability in a swirling annular jet, 

used to visualize coherent structures from LES simulation [158] under longitudinal, 

self-excited oscillations. 

In the in-phase forcing, the formation of structures in each shear layer is 

nominally axisymmetric.  For example, the inner shear layer shows two sets of structures, 

one located at x/D=0.3 and one at x/D=0.9.  The outer shear layer structures are also 

axisymmetric, but not aligned with the structures in the inner shear layer.  Similar trends 

for both the in-phase and out-of-phase forcing are observed in the non-reacting cases as 

well. 

The local behavior and downstream evolution of the shear layer structures appear 

qualitatively similar between the non-reacting and reacting cases, further emphasizing the 

point that heat release does not affect the basic mechanisms responsible for the 

appearance of unsteady flow structures in the shear layers that distort the flame.  The 

major difference between the two is difference in dissipation rate of the vorticity.  In the 
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reacting case, significant coherent structures are seen until x/D=1, where the coherent 

structures have decayed by x/D=0.4 in the non-reacting case.  

Convection velocities of the vortex structures were estimated from the axial phase 

dependence of the vortical disturbances shown in Figure 68.  These phases were 

calculated from the phase of the FFT at the forcing frequency along the inner and outer 

shear layers.  The shear layer locations were estimated from the time-average vorticity 

magnitude maxima.   

a)  

b)  

Figure 68.  Phase of vorticity along shear layers for a) non-reacting and b) reacting 

flow at a bulk velocity of Uo=10 m/s and a forcing frequency of fo=400 Hz out-of-

phase. 
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Linear fits of the phase data were calculated as a function of downstream distance.  

The slope of this line was taken from the fit and used to calculate the convection velocity 

using the formula in Equation (15). 

  ,
12 dc v o

dx

u f  (15)   

 

The convection speeds of the vorticity along the six lines of travel were calculated 

and averaged, leading to a value of 13 and 10 m/s for the non-reacting and reacting cases, 

respectively.  Each convection speed falls within the range of convection speeds 

measured in non-swirling flows, which are ~0.5Uo<uc,v<~1.5Uo [159].  Additionally, the 

phase between the disturbances traveling in the jets is shown in Table 2.  The uncertainty 

in phase is ±15 degrees. 

Table 2.  Average phase difference between vorticity disturbances in the left and 

right jet centers at several conditions at a bulk velocity of Uo=10 m/s and a forcing 

frequency of fo=400 Hz. 

 Phase (±15º) 

Non-reacting, Out-of-phase 20 

Reacting, Out-of-phase -50 

Non-reacting, In-phase 100 

Reacting, In-phase 130 

 

These phase differences indicate the shape and symmetry of the disturbance field 

on either side of the nozzle.  For example, the phases of the in- and out-of-phase reacting 
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cases are 130 and -50 degrees, respectively.  This can be seen by looking at snapshots of 

the vorticity field at any point in time, shown in Figure 66. 

The meaning of the -50 and 130 degree phase differences are evident from the 

plots in Figure 66.  In Figure 66a, the out-of-phase forcing case, the vortical disturbances 

are non-axisymmetric.  The plot in Figure 66b depicts the in-phase forcing case, which is 

roughly axisymmetric.  Although the vortex pairs are slightly staggered, possibly because 

of the motion of the swirl, the 130 degree phase between the vorticity fluctuations on 

either side of the jet indicates that symmetric vortex rings are being formed. 

Changes in the modal structure of the swirling flow are also evident between in-

phase and out-of-phase forcing.  Figure 69 shows the modal decomposition (integrated 

over all frequencies and radii between r/D=0-1) for the unforced, out-of-phase forcing, 

and in-phase forcing cases at high amplitude forcing at a downstream location of x/D=0.  

This location was chosen to capture the vortex rollup motion in the shear layers, as 

depicted in Figure 64 and Figure 65. 

a)  
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b)  

c)  

Figure 69.  Distribution of mode amplitude at the forcing frequency integrated over 

radii r/D=0-1 plotted as a function of mode number at x/D=0 for a non-reacting, 

flow forced with a) 400 Hz, b) 800 Hz and c) 1200 Hz forcing at uo=10 m/s, S=0.85. 

Here, it is evident that different forcing configurations have different effects on 

the modal content of the flow.  For example, out-of-phase forcing significantly amplifies 

modes 1m , 2m , and 1m , two counter-swirling and a co-swirling helical modes, 
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respectively.  The amplification of these two modes asymmetrically is indicative of the 

asymmetric response of the flow and the helical vortex in the shear layers.  The strong 

1m  mode represents the helical vortex shedding evident in the inner shear layer, as 

seen in Figure 65. 

The in-phase forcing strongly amplifies the symmetric 0m  mode; this finding 

is congruent with the ring vortex shedding observed in the r-x view.  Additionally, the 

1m  and 1m  modes are present at very similar amplitudes.  In the inner shear layer 

region, between r/D=0.2-0.6, the phase between the fluctuations at these two modes is 

zero within the uncertainty in phase estimation (15 degrees).  The excitation of these two 

modes is also indicative of a symmetric response of the flow. 

Additional information can be garnered from the radial distribution of fluctuation 

amplitude of each of these modes.  Figure 70 shows the distribution of energy for in-

phase and out-of-phase forcing, at the forcing frequency, for several mode numbers. 

a)  
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b)  

Figure 70.  Distribution of mode amplitude at the forcing frequency plotted as a 

function radius for several mode numbers for a non-reacting, flow forced at 400 Hz 

a) in-phase and b) out-of-phase forcing at uo=10 m/s, S=0.85.  Gray areas 

approximate the location of the inner and outer shear layers at x/D=0, where these 

data were taken. 

In the out-of-phase forcing case, the dominant mode, 1m , is prevalent in the 

inner shear layer, as would be expected given their convectively unstable nature.  This 

response is consistent with the helical response seen in the r-x view in Figure 65.  In the 

in-phase forcing case, the response seems to focus in the inner shear layer for modes 

1m  and 1m , and in both the inner and outer shear layer for mode 0m . 

Further downstream, however, the distribution of energy amongst the modes 

changes, as is shown in Figure 71.  Here, the distribution of modal amplitude at a 

downstream location of x/D=1 is shown. 
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a)  

b)  
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c)  

Figure 71.  Distribution of mode amplitude at the forcing frequency integrated over 

radii r/D=0-1 plotted as a function of mode number at x/D=1 for a non-reacting, 

flow forced with 400 Hz forcing at uo=10 m/s, S=0.85. 

In this case, the effect of in-phase, symmetric forcing has been almost completely 

lost, manifesting as only a slight increase in the amplitude of modes 0m , 1m , and 

1m  over the unforced flow.  This may be due to two factors.  First, the action of swirl 

causes the ring vortices to tilt [75], introducing an inherent asymmetry in the flow 

structure downstream.  Additionally, the 0m  mode is stable in a swirling jet.  

Theoretical analysis by several authors [153] indicates that asymmetric modes dominate 

for these flow profiles because of the action of swirl.  Results from this analysis are 

shown in Figure 72. 
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Figure 72.  Swirling flow stability map as a function of swirl number (S) and 

backflow ratio (a) showing helical mode absolute (shaded region) and convective 

(white region) stability boundaries, from Loiseleux et al. [153].  Green lines indicate 

values of  S and a for current flow field. 

Figure 72 shows a stability calculation from Ref. [153] indicating the 

convective/absolute instability boundaries for a swirling flow; all mode numbers are 

convectively unstable.  While the convective/absolute instability transition map does not 

directly explain the asymmetries observed in the in-phase forcing cases, it illustrates the 

stability tendencies of swirling flows and the dominance of asymmetric modes.  Applying 

the formulation from Ref. [153], the location of the current flow field on this stability 

map was calculated.  Figure 73 shows axial velocity profiles for three downstream 
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stations where r-θ data is available.  In this way, the progress of the parameters a and S 

can be tracked as a function of downstream distance. 

 

Figure 73.  Time-average axial velocity profiles at three downstream stations for 

unforced flow at uo=10 m/s and S=0.85. 

Using these axial velocity profiles as well as the swirling flow profiles in Figure 

20, estimations for the values of a and S have been calculated and are shown in Table 3 

using the definitions in Equation (16). 

U
a

U

R
S

U

 (16) 

Here, U  is the mean axial flow velocity, U  is the velocity difference between 

the axial flow and the reverse flow in the vortex breakdown bubble, Ω is the solid body 
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rotation speed, and R is the radius of the core flow (in this case the reversed flow).  Note 

that the definition of swirl number in the Loiseleux et al. formulation is very different 

from the geometric swirl number used in the current work; the geometric swirl number 

will have a greater value for the current profile as it does not account for the reverse flow 

in the vortex breakdown bubble as the Loiseleux et al. swirl number does. 

Table 3.  Value of swirling flow parameters from Loiseleux et al. formulation for 

stability calculation. 

Downstream location a S 

x/D=0 -0.7 0.3 

x/D=1 -0.7 0.4 

x/D=2 -0.7 0.4 

 

As can be seen from Figure 72, marked with the values from Table 3, is that no 

symmetric mode is stable but several asymmetric modes are unstable.  This further 

supports the observation that the symmetric vortex rings shed at the nozzle exit as a result 

of the symmetric forcing condition lose their symmetry with downstream distance as a 

result of the natural stability characteristics of the swirling flow. 

In the out-of-phase forcing case, however, the amplitude of mode 1m  has 

grown significantly, while the amplitude of mode 1m  has also grown.  The phase 

between the fluctuations at these two modes is close to zero (within the uncertainty of the 

phase calculation), but because the amplitudes are different, the resulting manifestation of 

these modes is a counter-swirling helix resulting from mode 1m , as was seen at the 

x/D=0 station as well. 
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The strength of the helical shear layer instability is much higher at x/D=0, as can 

be seen in Figure 64, because the amplitude of mode 1m  is so much greater than that 

of any other mode number.  At x/D=1, however, the strength of the shear layer vortex has 

decayed, and this is reflected in the similarity of the amplitudes of modes 1m  and 

1m .  Additionally, theoretical analysis predict that the co-swirling mode, 1m , is 

most unstable in swirling flow profiles of this type [75].  In this case, the response at 

1m  may be due to the natural instability of the jet, while the 1m  response of the jet 

stems from the acoustic forcing. 

The downstream evolution of these mode strengths is shown in Figure 74. 

a)  
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b)  

c)  

Figure 74.  Amplitude of modes a) 1m , b) 0m , and c) 1m  at the forcing 

frequency and integrated over r/D=0-1 for non-reacting flow in the r-θ plane for 400 

Hz forcing at uo=10 and S=0.85. 

The downstream evolution of the three dominant modes at the forcing frequency 

can be seen in Figure 74.  The trends that were qualitatively described in the r-x plane in 

Figure 64 and Figure 65 can clearly be seen in the quantitative description of the motion 

using a spatial modal decomposition.  In the in-phase forcing case, the symmetric 0m  
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mode decays quickly downstream, as seen by the tilting of the vortex rings in the r-x 

plane.  In the out-of-phase forcing case, both the 1m  and 1m  mode grow as a 

function of downstream distance, but combined their effect leads to a decay of amplitude 

of the helical mode after x/D=1.  This is an important result that reflects the effect of the 

natural asymmetry of the swirling flow on the behavior of its hydrodynamically unstable 

structures in the presence of acoustic forcing. 

This behavior is in contrast to the response of the low frequency motion, 

described in Chapter 4, to the various acoustic forcing conditions.  Here, the response of 

the flow at the low frequency only, integrated from 0-200 Hz, is examined in order to 

capture the influence that acoustic forcing can have on the intrinsically occurring 

motions.  As described with reference to Figure 39, the swirling jet has two main 

motions, a jet column deformation that is described by the 2m  mode, and a pair of 

coherent structures described by the 1m  mode.  In this section, we use modal 

decomposition to see the effect of the symmetry of forcing.  Again, we consider motions 

at a downstream distance of x/D=1, where the most vigorous recirculation zone motion is 

located. 

First, the spectral content of several of these modes is shown in Figure 75.  Here, 

peaks at 400 Hz are evident in both the out-of-phase and in-phase high amplitude forcing 

cases, although to a much lesser extent in the in-phase forcing condition.  Modes 2m , 

1m , and for the out-of-phase forcing case, 1m , have significant low frequency 

content. 
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a)  

b)  

Figure 75.  Spectra of several mode numbers integrated over radius and frequency 

in the r  plane at x/D=1, for a non-reacting, flow forced at 400 Hz a) in-phase and 

b) out-of-phase at uo=10 m/s, S=0.85. 

Figure 76 shows the response of the low frequency content to high amplitude 

acoustic forcing.  Here, the in-phase and out-of-phase results are compared against the 
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unforced results; each mode coefficient is integrated between 0-200 Hz and radially 

between r/D=0-1. 

 

Figure 76.  Distribution of mode amplitude at the low frequencies integrated over 

radii r/D=0-1 plotted as a function of mode number at x/D=1 for a non-reacting, 

flow forced with 400 Hz forcing at uo=10 m/s, S=0.85. 

Here again, it is evident that different forcing symmetries have different effects on 

the modal content of the velocity fluctuations.  In both the in-phase and out-of-phase 

forcing cases, high amplitude forcing decreases the amplitude of the self-excited behavior 

at modes 2m  and 1m , but adds energy to the mode 1m .  The magnitude to 

which these effects take hold is dissimilar, particular in the variation in strength of mode 

2m . 

One final comment on the response of the convectively unstable shear layers to 

acoustic forcing is the relative amplitude of the acoustic velocity fluctuations and the 

resulting vortical velocity fluctuations.  The amplitude of this coupling, described by the 

FLω and FTω pathways outlined in Figure 6, has important implications for modeling and 
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the determination of which velocity-coupling pathways are necessary to include in a 

reduced order model.  This type of decomposition, an acoustic/vortical decomposition, is 

also a useful way to categorize the disturbance types in this complex velocity disturbance 

field. 

This data considers the unsteady disturbance field characteristics, as opposed to 

the total instantaneous/filtered field structure detailed earlier.  There are fundamental 

differences between the appearance of the unsteady flow structures as visualized by their 

instantaneous and fluctuating values.  For example, the location and characteristics of 

vortical structures can look fundamentally different between the two, and conclusions 

about topological flow features should probably only be drawn from the total, 

instantaneous or filtered field characteristics.  That said, the unsteady flame response is 

closely linked to these fluctuating quantities.  In this section, we look only at the 

fluctuating quantities, by subtracting the time-average behavior, to more carefully 

investigate the behavior of the different velocity disturbances in the flow field. 

Surface plots of the amplitude of both the velocity and vorticity fluctuations show 

interesting results.  Figure 77, Figure 78, and Figure 79 show the amplitude of the axial 

velocity, transverse velocity, and vorticity fluctuations at the forcing frequency, 

respectively, for both non-reacting and reacting flow.   
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a)  

b)  

Figure 77.  Normalized amplitude of axial velocity fluctuations for a) non-reacting 

and b) reacting flow at the forcing frequency at a bulk velocity of uo=10 m/s and a 

forcing frequency of fo=400 Hz out-of-phase. 



157 

 

a)  

b)  

Figure 78.  Normalized amplitude of transverse velocity fluctuations for a) non-

reacting and b) reacting flow at the forcing frequency at a bulk velocity of uo=10 m/s 

and a forcing frequency of fo=400 Hz out-of-phase. 
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a)  

b)  

Figure 79.  Normalized amplitude of vorticity fluctuations for a) non-reacting and b) 

reacting flow at the forcing frequency at a bulk velocity of uo=10 m/s and a forcing 

frequency of fo=400 Hz out-of-phase. 

One of the most prominent features of these plots is the highly non-monotonic 

characteristics of the unsteady velocity field, suggesting cancellation phenomenon.  For 

example, in Figure 78b, which shows the transverse velocity fluctuations at the forcing 
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frequency for a reacting case, the fluctuation amplitude peaks at approximately x/D=0, 

decreases to a minimum value at x/D=0.3, and then increases until a downstream distance 

of x/D=0.6 where it again peaks and decreases. 

While both the axial and transverse velocity fluctuation fields show the 

interference phenomenon, there is another important factor that differentiates these two 

types of fluctuations.  The transverse velocity fluctuation surface, shown in Figure 78, 

has a constant offset across the field.  This offset is a result of the acoustic velocity 

fluctuations, which are of nearly constant amplitude across the field of view for the out-

of-phase forcing case shown.  Conversely, there is no offset of the axial velocity surfaces, 

indicating that there are no longitudinal acoustics in the flow field downstream of the 

immediate nozzle exit.  Thus, longitudinal acoustics are important in the immediate 

vicinity of the nozzle, but these fluctuations do not contribute in any significant way 

farther into the combustor. 

It is hypothesized that the non-monotonic spatial dependence of velocity 

amplitude is due to the simultaneous presence of both acoustic and vortical velocity 

disturbances.  This can be shown by constructing a simple model of the unsteady 

transverse velocity field, with disturbances propagating at two different axial phase 

speeds.  The input parameters for this model are the initial amplitude of each wave (A1 

and A2), the decay rate (α) and convection speed (uc,v) of the vortical disturbance, and the 

phase (φ) between the two disturbance types, see Equation (17). 

 

 
,

( )

1

( )

2

x
uc v

i t

acoustic

i t x

vortical

u Ae

u A e e
  (17)   



160 

 

 

The convection velocity of the vortical wave was estimated from the mean of the 

velocities calculated from Equation (17).  The decay rate was then calculated by fitting an 

exponential to the decay of time-average vorticity as a function of downstream distance, 

the results of which can be seen in Figure 80.  This was done for both the non-reacting 

and the reacting case. 

a)  

b)  

Figure 80.  Time-average vorticity in shear layers for the a) non-reacting and b) 

reacting cases at a bulk velocity of uo=10 m/s and a forcing frequency of fo=400 Hz 
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out-of-phase.  Dotted lines indicate exponential curve fits to calculate decay rates 

with downstream distance. 

The parameters for the acoustic wave were less straightforward to extract from 

experimental data and were used as fit parameters to match the data.  The parameters 

used in the model for both the non-reacting and reacting cases are shown in Table 4 

 

Table 4.  Two-wave model conditions for non-reacting and reacting cases at 400 Hz 

out-of-phase acoustic forcing and 10 m/s bulk flow velocity. 

 Non-reacting Reacting 

A1 0.3 0.25 

φ π/6 π/4 

A2 0.3 0.25 

α [1/m] 43 27 

uc,v [m/s] 13 10 

 

The results of both the data and the model in the non-reacting and reacting cases 

are as shown in Figure 81 through Figure 83. 
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a)  

b)  

Figure 81.  Comparison of transverse velocity fluctuation amplitude in left and right 

jet of the a) non-reacting and b) reacting data and the two-wave interaction model.  

The bulk velocity was uo=10 m/s and the forcing frequency was fo=400 Hz out-of-

phase. 
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a)  

b)  

Figure 82.  Comparison of transverse velocity fluctuation amplitude in left and right 

jet of the a) non-reacting and b) reacting data and the two-wave interaction model.  

The bulk velocity was uo=10 m/s and the forcing frequency was fo=400 Hz in-phase. 
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a)  

b)  

Figure 83.  Comparison of transverse velocity fluctuation amplitude in left and right 

jet of the non-reacting data and the two-wave interaction model.  The bulk velocity 

was uo=40 m/s, non-reacting flow and the forcing frequency was fo=400 Hz in-phase.  

Here, a) shows the amplitude of transverse fluctuations over the entire flow field, 

while b) shows the cuts at the jet centers as above. 

As can be seen from Figure 81 through Figure 83, the results of the data and the 

model align reasonably well for a variety of forcing and flow conditions.  A critical 
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feature of these graphs is the peak spacing in the interference pattern, which is only a 

function of the difference in acoustic and vortical phase velocities.  This peak spacing is 

captured quite well in the model, which is significant since the fitted parameters did not 

impact this result. 

An important implication of this model is that the amplitudes of the acoustic and 

vortical wave are essentially the same.  For example, both the acoustic and vortical 

fluctuations in the reacting case, shown in Figure 81b, are 25% of the bulk flow velocity.  

This result has important implications on flame response modeling, as models often 

assume that it is the vortical disturbances that dominate the flame response [160].  These 

results show that the acoustic and vortical disturbances have comparable magnitudes.  

This result reinforces the complexity of disturbance field and while the mechanisms do 

have causal relationships, as shown in Figure 6, they co-exist and combine to create a 

complex disturbance field. 

These results also speak to the amplitude and phase of FTω, the transfer function 

that describes the relationship between the transverse acoustic motion and the vortex 

rollup at the nozzle, as shown in Figure 6.  The ratio of the amplitudes, A1 and A2, gives 

the magnitude of the transfer function at this particular forcing frequency, while the phase 

between the two disturbances, Φ, is the phase of the transfer function at the forcing 

frequency. Note that this results suggests then, that FTω  ~ 1.   

Response of the flame to shear layer motion 

As discussed in the Introduction, the motivation for this comprehensive study of 

the vortical response of the flow was to understand the mechanisms by which flame area 
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fluctuations are created.  This wrinkling can be measured in several ways, including Mie 

scattering from PIV images, as seen in Figure 54, planar laser induced fluorescence 

(PLIF), as seen in Figure 9, and high-speed imaging of flame luminescence, which was 

used extensively in this study as a qualitative method of describing flame response.  For 

reference, a series of images from high-speed PLIF is shown in Figure 84, which shows a 

complicated wrinkling of the flame that stems from both coherent as well as turbulent 

motions.  In this case, a helical shear layer response created a helical wrinkle on the flame 

that can be seen as a series of staggered wrinkles on this cut of the flame surface, which 

is located at the line between light and dark in this type of image. 

 

Figure 84.  Time series of OH PLIF images showing centerbody stabilized swirl 

flame forced at 400 Hz out-of-phase, uo=10 m/s, S=0.5, φ=0.9.  Yellow circles 

indicate locations of flame wrinkling due to vortex rollup in a helical pattern. 

As will be discussed in the suggestions for future work in Chapter 6, simultaneous 

measurement of the velocity and flame edge will help elucidate cause and effect 

1 2 3

4 5 6
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relationships between the velocity field and resulting flame response.  In this study, 

evidence of flame wrinkling, and in particular the effect of forcing symmetry, was 

investigated using high-speed flame luminescence imaging.  Here, the difference in the 

vortical response of the flow field between symmetric (in-phase) and asymmetric (out-of-

phase) forcing has been shown to have a significant effect on the character of the flame 

response.  This can be seen in flame luminescence imaging, examples of which are 

shown in Figure 85. 

a)   
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b)   

  

Figure 85.  Examples of flame response, via luminescence imaging, for a) in-phase 

(symmetric) and b) out-of-phase (asymmetric) forcing conditions for a flow velocity 

of 10 m/s, swirl number of 0.5, and equivalence ratio of 0.9.  Images are 0.6 ms apart 

in each filmstrip. 

In these images, it is evident that the flame wrinkling changes with acoustic field 

symmetry.  For asymmetric forcing, an asymmetric, helical pattern exists on the flame, 

while in the symmetric forcing case, a symmetric ring vortex creates axisymmetric 

wrinkles on the flame surface, at least near the flame base.  The differences in flow 

response that create this flame response effect are the motivating factors for this work. 

Each of these results – smoke visualization, high-speed PIV, high-speed PLIF, 

and high-speed flame luminescence imaging – have shown the importance of the 

excitation of the convectively unstable shear layer by transverse acoustic forcing.  

Additionally, the symmetry of the acoustic field plays a large role in the hydrodynamic 

response of the flow.  A symmetric forcing condition results in an initially symmetric 

flow response, while asymmetric forcing results in asymmetric flow response; these 

differences in flow response result in similarly phased flame wrinkling response.  

1 2

3 4
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However, the natural asymmetry of the swirling flow influences the downstream 

propagation and symmetry of these shear layer structures.  The once symmetric response 

of the shear layer due to in-phase forcing becomes asymmetric as the rings tilt due to the 

action of swirl. 

 

 

 

 

  



170 

 

CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

In this chapter, the overall contributions of the work presented in this thesis are 

outlined.  Here, the results of this study are placed in context of the overall field of 

combustion instability research and the applications of this work towards improvement of 

low emissions combustor operation and design.  Additionally, recommendations for 

further work are put forward for future consideration. 

Summary of contributions 

This work has provided two significant contributions to the field of combustion 

instability research.  In additional, it has provided a large archival data set that should be 

used for future analysis and comparison with modeling efforts.  This section will 

highlight the two fundamental contributions; Appendix A contains a catalog of data 

obtained over the course of this study as well as examples of each data set. 

Formulation of velocity-coupled flame response description 

The first major contribution of this work is the formulation of a velocity-coupled 

flame response description for flames undergoing transverse instability.  The velocity 

coupled pathway description is shown again in Figure 86.   
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Figure 86.  Velocity disturbance mechanisms in a transversely forced flame. 

As discussed in the Introduction, the response of flames to transverse excitation is 

fundamentally different than that to longitudinal excitation.  Several issues highlight this 

distinction.  First, the variation in acoustic mode structure between nozzles has a 

significant impact on the way transverse instabilities are understood and modeled for full 

engine configurations.  As described with reference to Figure 3, the transverse acoustic 

mode shape for both can and annular combustor systems results in a variable excitation 

amplitude and symmetry across the nozzles.  It is for this reason that a variety of acoustic 

frequencies, amplitudes, and symmetries were considered in this study.  They ranged 

across frequencies of f = 400 to 1800 Hz, transverse acoustic forcing amplitudes of 

ov u 0.01 to 0.5, and both velocity node and pressure node standing wave forcing 

conditions. 

Next, the natural asymmetry of the acoustic field produces significantly different 

flow and flame response than in the symmetric, longitudinally forced case.  This fact was 
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particularly pertinent in the shear layer response of the flow and the resulting flame sheet 

motion imposed by these structures.  It was shown that asymmetric forcing, out-of-phase 

forcing with a velocity anti-node along the centerline of the flow, resulted in asymmetric 

response of the swirling annular jet.  In this way, helical vortices were shed in both the 

inner and outer shear layers, and helical flame wrinkling was observed.  Conversely, it 

was also shown that symmetric forcing, in-phase forcing with a pressure anti-node along 

the centerline of the flow, resulted in initially symmetric response of the shear layers.  

Ring vortices were shed at the inner and outer edge of the nozzle annulus and 

corresponding flame wrinkles were observed.  As these structures travel downstream, 

however, the symmetry is lost due to the naturally asymmetric nature of the flow; this is 

manifested in two ways.  First, the swirling component of the flow adds a natural 

asymmetry and causes the vortex rings to tilt.  Additionally, the symmetric 0m  mode 

is stable for swirling flows and as such, excitation of this mode does not result in 

appreciable response downstream of the dump plane. 

Third, transverse forcing produces more pathways for flame excitation than its 

longitudinal counterpart, particularly in the coupling between the transverse acoustic field 

in the combustor and the longitudinal acoustic field in the nozzle.  While the direct 

transverse acoustic excitation of the flame is often negligible, the occurrence of coupling 

between the transverse and longitudinal acoustic modes can lead to heightened flame 

response.  The transverse acoustic mode can couple with the longitudinal mode in the 

nozzle near a nozzle natural frequency.  This coupling, however, is dependent on the 

relative geometries and resultant natural modes of the combustor and swirler nozzle, as 

well as the nozzle acoustic impedance, which is a function of nozzle blockage ratio, flow 
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velocity, and gas temperature.  It is for this reason that the response of flames to 

transverse excitation is inextricably linked to the geometry of the system.  This result is 

extremely important going forward in the application of the current results; results such 

as flame response amplitude and phase cannot necessarily be translated from one 

combustor geometry to another.  This result was the first experimental validation of this 

phenomenon for gas turbine architectures, following the LES work of Staffelbach et al. 

[25]. 

Finally, the relative contribution of these various pathways can change 

dramatically as a function of acoustic frequency, amplitude, symmetry, and flow 

structure.  Foundations of quantifying these relative contributions were made in the 

current study.  For example, measurements of FTL, the transverse to longitudinal transfer 

function, were made to show the relative contribution of the transverse versus 

longitudinal acoustic pathways in the velocity-coupled flame response mechanism.  

Additionally, trends of when this velocity transfer function would have amplitudes 

significantly above or below unity were discussed for further application to various 

combustor geometries.  Another example was the decomposition of the flow field into the 

acoustic and vortical components, resulting in approximations for the velocity transfer 

functions FTω and FLω, the acoustic to vortical velocity transfer functions describing 

relative amplitudes and phases of acoustic and vortical velocity fluctuations in the overall 

disturbance field.  Here, it was shown that the acoustic and vortical contributions from 

the shear layers have similar amplitudes and must be considered in a description of the 

overall velocity disturbance field. 
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Description of response of swirling flow to transverse forcing based on flow stability 

The second contribution of this work is a description of the response of a swirling 

flow, both reacting and non-reacting, to transverse acoustic fields by using hydrodynamic 

stability concepts as a basis for understanding the response of the flow.  This is 

particularly important in the case of swirling flows because there are several flow 

structures with different stability characteristics.  The swirling jet itself is absolutely 

unstable, which results in vortex breakdown and a large recirculation zone along the 

centerline of the flow.  This structure is the largest feature of the flow and defines the 

overall flow geometry and resultant flame shape in a reacting flow field.  There are also 

two shear layers, stemming from both the inner and outer edge of the annular jet nozzle, 

that are convectively unstable. 

Absolutely unstable flows act as self-excited oscillators, displaying intrinsic 

oscillations even in the face of low amplitude acoustic forcing.  Only at high amplitudes 

of acoustic forcing can the dynamics and overall structure of the manifestation of the 

absolute instability be altered.  This was measured in this study by investigating both the 

time-average and dynamical response of the vortex breakdown bubble to transverse 

acoustic forcing of varying amplitudes.  At low amplitudes, the overall structure of the 

bubble did not change and the dynamical behavior of the vortex core was only slightly 

altered.  At high amplitudes of excitation, though, significant changes of the both the 

time-average and dynamical behavior of the flow was measured.  The time-average 

characteristics were shown to have two types of response to high amplitude acoustics; the 

appearance of either behavior was dependent on the frequency, symmetry, and amplitude 

of the acoustic forcing.  While a gradual change in flame angle was measured at several 
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frequencies with increasing amplitude, a bifurcation-type change in the vortex breakdown 

bubble structure was measured in the non-reacting flow field at certain forcing 

conditions.  This can have a significant implication for the flame response, as the flame 

responds to velocity fluctuations normal to its surface.  As the time-average shape of the 

flame changes, the amplitude of the normal component of the velocity field can also 

change. 

Alternatively, the convectively unstable structures, in particular the shear layers, 

act as disturbance amplifiers and respond to even low levels of acoustic forcing for both 

non-reacting and reacting flow.  The symmetry of the response of these structures is 

particularly interesting and pertinent to the case of transverse instabilities in annular gas 

turbine combustor geometries.  Here, the flow response between symmetric and 

asymmetric transverse acoustic fields manifested as shedding of ring and helical vortices, 

respectively.  Despite that, the natural asymmetry of the flow plays a role in the 

downstream evolution of these structures, resulting in a baseline asymmetric response 

that cannot be altered even at high amplitudes of symmetric acoustic forcing. 

In the discussion of the shear layer dynamics, both non-reacting and reacting data 

were used to describe these dynamics with some equivalence.  While the presence of a 

flame can certainly change the shape and dynamics of the vortex breakdown bubble, the 

overall dynamics of the shear layers remain unchanged in the presence of the flame.  This 

does not mean that the results are quantitatively the same between a reacting and non-

reacting case, but instead that the fundamental coupling mechanisms and behavior of 

acoustically driven shear layers remain the same between these two cases.  
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The contribution of this portion of the work is not only the insight gained through 

these studies, but also the establishment of a methodology that first considers the 

hydrodynamic stability characteristics of different flow structures within a flow field 

when investigating its response to acoustic forcing.  Going forward, this type of 

methodology will be quite important for understanding more complex flow fields in real 

combustor architectures. 

Recommendations for future work 

Several recommendations for future work naturally follow the results of the 

current study.  These are detailed in this section. 

First, a more extensive characterization of the flow field, particularly in the r-θ 

plane, is required to complete the archival data set produced in this work.  Focus should 

be placed on comparison of the response of the flow at various downstream locations for 

longitudinal versus transverse forcing to measure the excitation of different spatial modes 

with a variety of forcing configurations.  Also, both velocity and flame data should be 

collected for the reacting case in this plane of view.  High-speed PLIF can be used to 

measure flame response at various downstream distances, although simple 

chemiluminescence imaging in the r-θ plane would help determine the response of the 

flame to various acoustic forcing conditions, as has been done by Hauser et al. [28]. 

Additionally, simultaneous measurements of the velocity field and flame could 

help establish a causal link between velocity field fluctuations and flame motion.  Both 

simultaneous PIV and PLIF, and PIV and chemiluminescence will help to further our 

understanding of the velocity-coupled response of flames to transverse acoustic fields.  
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Additionally, simultaneous PIV and PLIF can help measure the influence of the flame on 

the flow field.  In this way, changes in vortex breakdown structure due to exothermicity, 

or variation in shear layer vortex strength with flame location can be measured and 

quantified with these simultaneous measurements. These results will help the 

development of better models for reacting swirling flows. 

Next, in addition to flame imaging as described above, more thorough 

measurements of flame transfer functions should be done to both complete the current 

data set for a variety of forcing amplitudes and build a more comprehensive database for 

reduced order model development and validation.  A more thorough investigation of 

amplitude effects on flame transfer functions could be used to compare these results with 

similar measurements made on longitudinally forced flames [50]. 

Finally, the investigation of multiple flames in the current combustor geometry 

should be undertaken to further mimic the flow and flame boundary conditions in an 

annular gas turbine combustor.  As described in Chapter 2, great care was taken in 

designing the current experiment so that it would faithfully mimic the acoustic and flow 

boundary conditions in an annular combustor; the transverse acoustic mode shape and 

high aspect ratio combustor geometry help to meet this goal.  The natural next step in this 

research is to investigate the flow and flame response with multiple flames.  The current 

combustor geometry supports up to five nozzles, allowing for the investigation of five 

flames simultaneously.  The additional understand of the physics introduced by flame-

flame interactions, particularly in a transversely forced situation where acoustic particle 

velocity forces the flow side to side, would help in the development of better frameworks 

of understanding and reduced order models for these instabilities.  Extensive velocity 
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measurements would also help build an understanding of the effect that adjacent swirling 

jets have on flow structure, an effect that has been insufficiently measured by other 

authors [161].  Additionally, these data could be very useful in validating computation 

models of full combustor flow simulations. 

Overall, the goal of this study was to develop a wealth of understanding of the 

response of swirling flows and flames to transverse acoustic excitation for application to 

gas turbine combustor geometries.  It is the wish of the author that this work not only 

increases our academic understanding, but also be considered in the design and operation 

of low emissions gas turbine engines in the future.  
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APPENDIX A 

TECHNICAL DRAWINGS OF COMBUSTOR 

 

Details of combustor 

This section shows several technical drawings pertinent to the boundary 

conditions of the combustor geometry.  First, Figure 87 shows an isoview of the 

combustor without the speaker tubes.  Here, the exit boundary condition as well as the 

dump plane are evident.  The exit boundary has five 2” holes where the center one has 

been covered by a window.  This window was present for all data described in this study 

and was required to shield the PIV sheet optic located directly above from hot products 

and seeding particles. 

Details of the exit and entry boundary conditions are shown in Figure 88, Figure 

89, and Figure 90.  Below, further details of the experimental systems are outlined. 
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Figure 87.  Isoview of combustor 
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Figure 88.  Details of the swirler box at the dump plane. 

 

Figure 89.  Details of the dump plane around the swirler box.  Includes two unused 

air ports (left- and right-most holes) as well as port for hydrogen torch igniter.  

Swirler box mates with this part in the notched section detailed in the upper right of 

the figure. 
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Figure 90.  Details of the exit plane, including location of laser window and laser 

window bracket. 

 

Details of acoustic driving system 

Speaker tubes 

 6 tubes 

 Length of 1 meter 

 Constructed of 2” carbon steel pipe 

Sound system 

 Function generator 

o Tectronix AFG 3022 

 Amplifiers 

o AE Techron LVC 608 linear amp, dual channel 

 Speakers 

o Galls SK144 

o 100 W driver (120 dB of sound at 10’) 
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Details of flow system 

Flow path 

 Air line – 125 psig supply 

o 2” carbon steel, Schedule 40 pipe 

o Regulator 

 Set pressure:  20 psig 

 Max pressure: 200 psig 

o Gate valve 

o Orifice plate 

 Beta ratio – 0.27552 

 Orifice bore diameter – 0.5695” 

o Differential pressure transducers 

 Omega PX771A 

 1-5 Vdc output 

 Range: 0 – 300 inH2O 

o Static pressure transducer 

 Dwyer Series 626 

 0-5 Vdc output 

 Range:  0-30 psig 

 Gas line – 25 psig supply 

o 1.5” carbon steel, Schedule 40 pipe 

o ASCO Solenoid valve 

o ½” Swagelok needle valve 

o Orifice plate 

 Beta ratio – 0.23671 

 Orifice bore diameter – 0.1472” 

o Differential pressure transducer 

 Omega PX771A 

 1-5 Vdc output 
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 Range: 0 – 300 inH2O 

o Static pressure transducer 

 Dwyer Series 626 

 0-5 Vdc output 

 Range:  0-30 psig 
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APPENDIX B 

TECHNICAL DRAWINGS OF SWIRLER 

 

Two swirlers were used during these series of tests.  The first has a turning angle 

of 45⁰ and results in a geometric swirl number of 0.85, as is shown in Figure 91.  The 

second has a turning angle of 30⁰ and results in a geometric swirl number of 0.5, as 

shown in Figure 92. 

 

Figure 91.  Drawing of 45⁰ swirler. 
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Figure 92.  Drawing of 30⁰ swirler. 
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APPENDIX C 

DETAILS OF SMOKE SYSTEM 

 

The smoke was created by heating olive oil in a carbon steel smoker, shown in 

Figure 93.  Entering air was controlled with a gate value for optimal smoke rate.  The oil 

was heated with a propane torch placed on the side of the smoker as indicated. 

 

Figure 93.  Olive oil smoke production device with air-in port, flow exit port, and 

indications for the location of torch heating and optimal oil level. 

This configuration produced very high rates of smoke production in the inner 

shear layer, but very little in the outer.  For inner shear layer smoke delivery, smoke was 

piped through a hollow centerbody with 20 1 mm holes drilled obliquely from the 

centerbody edge into the smoke reservoir in the center.  This piece is shown in Figure 94. 

Air+smoke out

Air in

Location of 

torch heating

Oil level



188 

 

 

       

Figure 94.  Specifications on the inner shear layer smoke delivery system. 

A similar reservoir system was used for the outer shear layer.  A PVC dump plane 

was constructed with an elliptical smoke reservoir on all sides of the swirler cavity.  A 

top plate with holes drilled obliquely from the reservoir to the outer annulus edge was 

attached to the top and allowed for delivery of the smoke.  The plenum specifications are 

shown in Figure 95. 
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a)  

b)  

c)  

Figure 95.  Specifications for the outer shear layer smoke delivery with a) technical 

drawings, b) plenum configuration, and c) outer shear layer smoke delivery holes. 

Air+smoke in



190 

 

Later on, a different smoke delivery system was attempted, using woodchips 

soaked in water as the smoke-creating agent, with little success.  The smoke quality of 

the initial experiments could not be repeated and it is recommended by the author that 

both a new smoke creation and delivery system be designed for future testing if 

necessary. 
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APPENDIX D 

OVERVIEW OF EXPERIMENTAL DATA 

 

Table 5.  Overview of PIV data sets.  

  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV r-x cut Non-reacting 0.85 10         

2 PIV r-x cut Non-reacting 0.85 10   400 100 out-of-phase 

3 PIV r-x cut Non-reacting 0.85 10   400 200 out-of-phase 

4 PIV r-x cut Non-reacting 0.85 10   400 300 out-of-phase 

5 PIV r-x cut Non-reacting 0.85 10   400 400 out-of-phase 

6 PIV r-x cut Non-reacting 0.85 10   400 500 out-of-phase 

7 PIV r-x cut Non-reacting 0.85 10   400 600 out-of-phase 

8 PIV r-x cut Non-reacting 0.85 10   400 700 out-of-phase 

9 PIV r-x cut Non-reacting 0.85 10   400 800 out-of-phase 

10 PIV r-x cut Non-reacting 0.85 10   400 900 out-of-phase 

11 PIV r-x cut Non-reacting 0.85 10   400 1000 out-of-phase 

12 PIV r-x cut Non-reacting 0.85 10   400 1100 out-of-phase 

13 PIV r-x cut Non-reacting 0.85 10   400 1200 out-of-phase 

14 PIV r-x cut Non-reacting 0.85 10   400 1300 out-of-phase 

15 PIV r-x cut Non-reacting 0.85 10   400 1400 out-of-phase 

16 PIV r-x cut Non-reacting 0.85 10   400 1500 out-of-phase 

17 PIV r-x cut Non-reacting 0.85 10   400 100 in-phase 

18 PIV r-x cut Non-reacting 0.85 10   400 200 in-phase 

19 PIV r-x cut Non-reacting 0.85 10   400 300 in-phase 

20 PIV r-x cut Non-reacting 0.85 10   400 400 in-phase 

21 PIV r-x cut Non-reacting 0.85 10   400 500 in-phase 

22 PIV r-x cut Non-reacting 0.85 10   400 600 in-phase 

23 PIV r-x cut Non-reacting 0.85 10   400 700 in-phase 

24 PIV r-x cut Non-reacting 0.85 10   400 800 in-phase 

25 PIV r-x cut Non-reacting 0.85 10   400 900 in-phase 

26 PIV r-x cut Non-reacting 0.85 10   400 1000 in-phase 

27 PIV r-x cut Non-reacting 0.85 10   400 1100 in-phase 

28 PIV r-x cut Non-reacting 0.85 10   400 1200 in-phase 

29 PIV r-x cut Non-reacting 0.85 10   400 1300 in-phase 

30 PIV r-x cut Non-reacting 0.85 10   400 1400 in-phase 

31 PIV r-x cut Non-reacting 0.85 10   400 1500 in-phase 

32 PIV r-x cut Non-reacting 0.85 10   800 100 out-of-phase 

33 PIV r-x cut Non-reacting 0.85 10   800 200 out-of-phase 

34 PIV r-x cut Non-reacting 0.85 10   800 300 out-of-phase 

35 PIV r-x cut Non-reacting 0.85 10   800 400 out-of-phase 

36 PIV r-x cut Non-reacting 0.85 10   800 500 out-of-phase 

37 PIV r-x cut Non-reacting 0.85 10   800 600 out-of-phase 
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38 PIV r-x cut Non-reacting 0.85 10   800 700 out-of-phase 

39 PIV r-x cut Non-reacting 0.85 10   800 800 out-of-phase 

40 PIV r-x cut Non-reacting 0.85 10   800 900 out-of-phase 

41 PIV r-x cut Non-reacting 0.85 10   800 1000 out-of-phase 

42 PIV r-x cut Non-reacting 0.85 10   800 1100 out-of-phase 

43 PIV r-x cut Non-reacting 0.85 10   800 1200 out-of-phase 

44 PIV r-x cut Non-reacting 0.85 10   800 1300 out-of-phase 

45 PIV r-x cut Non-reacting 0.85 10   800 1400 out-of-phase 

46 PIV r-x cut Non-reacting 0.85 10   800 1500 out-of-phase 

47 PIV r-x cut Non-reacting 0.85 10   800 100 in-phase 

48 PIV r-x cut Non-reacting 0.85 10   800 200 in-phase 

49 PIV r-x cut Non-reacting 0.85 10   800 300 in-phase 

50 PIV r-x cut Non-reacting 0.85 10   800 400 in-phase 

51 PIV r-x cut Non-reacting 0.85 10   800 500 in-phase 

52 PIV r-x cut Non-reacting 0.85 10   800 600 in-phase 

53 PIV r-x cut Non-reacting 0.85 10   800 700 in-phase 

54 PIV r-x cut Non-reacting 0.85 10   800 800 in-phase 

55 PIV r-x cut Non-reacting 0.85 10   800 900 in-phase 

56 PIV r-x cut Non-reacting 0.85 10   800 1000 in-phase 

57 PIV r-x cut Non-reacting 0.85 10   800 1100 in-phase 

58 PIV r-x cut Non-reacting 0.85 10   800 1200 in-phase 

59 PIV r-x cut Non-reacting 0.85 10   800 1300 in-phase 

60 PIV r-x cut Non-reacting 0.85 10   800 1400 in-phase 

61 PIV r-x cut Non-reacting 0.85 10   800 1500 in-phase 

62 PIV r-x cut Non-reacting 0.85 10   1200 100 out-of-phase 

63 PIV r-x cut Non-reacting 0.85 10   1200 200 out-of-phase 

64 PIV r-x cut Non-reacting 0.85 10   1200 300 out-of-phase 

65 PIV r-x cut Non-reacting 0.85 10   1200 400 out-of-phase 

66 PIV r-x cut Non-reacting 0.85 10   1200 500 out-of-phase 

67 PIV r-x cut Non-reacting 0.85 10   1200 600 out-of-phase 

68 PIV r-x cut Non-reacting 0.85 10   1200 700 out-of-phase 

69 PIV r-x cut Non-reacting 0.85 10   1200 800 out-of-phase 

70 PIV r-x cut Non-reacting 0.85 10   1200 900 out-of-phase 

71 PIV r-x cut Non-reacting 0.85 10   1200 1000 out-of-phase 

72 PIV r-x cut Non-reacting 0.85 10   1200 1100 out-of-phase 

73 PIV r-x cut Non-reacting 0.85 10   1200 1200 out-of-phase 

74 PIV r-x cut Non-reacting 0.85 10   1200 1300 out-of-phase 

75 PIV r-x cut Non-reacting 0.85 10   1200 1400 out-of-phase 

76 PIV r-x cut Non-reacting 0.85 10   1200 1500 out-of-phase 

77 PIV r-x cut Non-reacting 0.85 10   1200 100 in-phase 

78 PIV r-x cut Non-reacting 0.85 10   1200 200 in-phase 

79 PIV r-x cut Non-reacting 0.85 10   1200 300 in-phase 

80 PIV r-x cut Non-reacting 0.85 10   1200 400 in-phase 

81 PIV r-x cut Non-reacting 0.85 10   1200 500 in-phase 

82 PIV r-x cut Non-reacting 0.85 10   1200 600 in-phase 

83 PIV r-x cut Non-reacting 0.85 10   1200 700 in-phase 

84 PIV r-x cut Non-reacting 0.85 10   1200 800 in-phase 

85 PIV r-x cut Non-reacting 0.85 10   1200 900 in-phase 

86 PIV r-x cut Non-reacting 0.85 10   1200 1000 in-phase 

87 PIV r-x cut Non-reacting 0.85 10   1200 1100 in-phase 
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88 PIV r-x cut Non-reacting 0.85 10   1200 1200 in-phase 

89 PIV r-x cut Non-reacting 0.85 10   1200 1300 in-phase 

90 PIV r-x cut Non-reacting 0.85 10   1200 1400 in-phase 

91 PIV r-x cut Non-reacting 0.85 10   1200 1500 in-phase 

92 PIV r-x cut Non-reacting 0.85 15   400 1000 out-of-phase 

93 PIV r-x cut Non-reacting 0.85 15   400 1000 in-phase 

94 PIV r-x cut Non-reacting 0.85 20   400 1000 out-of-phase 

95 PIV r-x cut Non-reacting 0.85 20   400 1000 in-phase 

96 PIV r-x cut Non-reacting 0.85 40   400 1000 out-of-phase 

97 PIV r-x cut Non-reacting 0.85 40   400 1000 in-phase 

98 PIV r-x cut Non-reacting 0.85 15   800 1000 out-of-phase 

99 PIV r-x cut Non-reacting 0.85 15   800 1000 in-phase 

100 PIV r-x cut Non-reacting 0.85 20   800 1000 out-of-phase 

101 PIV r-x cut Non-reacting 0.85 20   800 1000 in-phase 

102 PIV r-x cut Non-reacting 0.85 40   800 1000 out-of-phase 

103 PIV r-x cut Non-reacting 0.85 40   800 1000 in-phase 

104 PIV r-x cut Non-reacting 0.85 15   1200 1000 out-of-phase 

105 PIV r-x cut Non-reacting 0.85 15   1200 1000 in-phase 

106 PIV r-x cut Non-reacting 0.85 20   1200 1000 out-of-phase 

107 PIV r-x cut Non-reacting 0.85 20   1200 1000 in-phase 

108 PIV r-x cut Non-reacting 0.85 40   1200 1000 out-of-phase 

109 PIV r-x cut Non-reacting 0.85 40   1200 1000 in-phase 

110 PIV 

r-x cut, 

zoom Non-reacting 0.85 10         

111 PIV 

r-x cut, 

zoom Non-reacting 0.85 20         

112 PIV 

r-x cut, 

zoom Non-reacting 0.85 10   400 1000 out-of-phase 

113 PIV 

r-x cut, 

zoom Non-reacting 0.85 10   400 1000 in-phase 

114 PIV 

r-x cut, 

zoom Non-reacting 0.85 20   400 1000 out-of-phase 

115 PIV 

r-x cut, 

zoom Non-reacting 0.85 20   400 1000 in-phase 

116 PIV 

r-x cut, 

zoom Non-reacting 0.85 10   800 1000 out-of-phase 

117 PIV 

r-x cut, 

zoom Non-reacting 0.85 10   800 1000 in-phase 

118 PIV 

r-x cut, 

zoom Non-reacting 0.85 20   800 1000 out-of-phase 

119 PIV 

r-x cut, 

zoom Non-reacting 0.85 20   800 1000 in-phase 

120 PIV 

r-x cut, 

zoom Non-reacting 0.85 10   1200 1000 out-of-phase 

121 PIV 

r-x cut, 

zoom Non-reacting 0.85 10   1200 1000 in-phase 

122 PIV 

r-x cut, 

zoom Non-reacting 0.85 20   1200 1000 out-of-phase 

123 PIV 

r-x cut, 

zoom Non-reacting 0.85 20   1200 1000 in-phase 

124 PIV r-x cut Reacting 0.85 10 0.9       

125 PIV r-x cut Reacting 0.85 10 0.9 400 1000 out-of-phase 

126 PIV r-x cut Reacting 0.85 10 0.9 400 1000 in-phase 

127 PIV r-x cut Reacting 0.85 10 0.9 800 1000 out-of-phase 
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128 PIV r-x cut Reacting 0.85 10 0.9 800 1000 in-phase 

129 PIV r-x cut Reacting 0.85 10 0.9 1200 1000 out-of-phase 

130 PIV r-x cut Reacting 0.85 10 0.9 1200 1000 in-phase 

131 PIV r-x cut Non-reacting 0.5 10         

132 PIV r-x cut Non-reacting 0.5 10   100 300 out-of-phase 

133 PIV r-x cut Non-reacting 0.5 10   100 350 out-of-phase 

134 PIV r-x cut Non-reacting 0.5 10   100 400 out-of-phase 

135 PIV r-x cut Non-reacting 0.5 10   100 450 out-of-phase 

136 PIV r-x cut Non-reacting 0.5 10   200 300 out-of-phase 

137 PIV r-x cut Non-reacting 0.5 10   200 350 out-of-phase 

138 PIV r-x cut Non-reacting 0.5 10   200 400 out-of-phase 

139 PIV r-x cut Non-reacting 0.5 10   200 450 out-of-phase 

140 PIV r-x cut Non-reacting 0.5 10   300 250 out-of-phase 

141 PIV r-x cut Non-reacting 0.5 10   300 300 out-of-phase 

142 PIV r-x cut Non-reacting 0.5 10   300 350 out-of-phase 

143 PIV r-x cut Non-reacting 0.5 10   300 400 out-of-phase 

144 PIV r-x cut Non-reacting 0.5 10   400 150 out-of-phase 

145 PIV r-x cut Non-reacting 0.5 10   400 150 out-of-phase 

146 PIV r-x cut Non-reacting 0.5 10   400 200 out-of-phase 

147 PIV r-x cut Non-reacting 0.5 10   400 250 out-of-phase 

148 PIV r-x cut Non-reacting 0.5 10   500 200 out-of-phase 

149 PIV r-x cut Non-reacting 0.5 10   500 250 out-of-phase 

150 PIV r-x cut Non-reacting 0.5 10   500 300 out-of-phase 

151 PIV r-x cut Non-reacting 0.5 10   500 300 out-of-phase 

152 PIV r-x cut Non-reacting 0.5 10   500 350 out-of-phase 

153 PIV r-x cut Non-reacting 0.5 10   500 350 out-of-phase 

154 PIV r-x cut Non-reacting 0.5 10   500 400 out-of-phase 

155 PIV r-x cut Non-reacting 0.5 10   500 450 out-of-phase 

156 PIV r-x cut Non-reacting 0.5 10   500 500 out-of-phase 

157 PIV r-x cut Non-reacting 0.5 10   500 600 out-of-phase 

158 PIV r-x cut Non-reacting 0.5 10   600 250 out-of-phase 

159 PIV r-x cut Non-reacting 0.5 10   600 300 out-of-phase 

160 PIV r-x cut Non-reacting 0.5 10   600 350 out-of-phase 

161 PIV r-x cut Non-reacting 0.5 10   600 400 out-of-phase 

162 PIV r-x cut Non-reacting 0.5 10   600 500 out-of-phase 

163 PIV r-x cut Non-reacting 0.5 10   600 550 out-of-phase 

164 PIV r-x cut Non-reacting 0.5 10   600 600 out-of-phase 

165 PIV r-x cut Non-reacting 0.5 10   600 650 out-of-phase 

166 PIV r-x cut Non-reacting 0.5 10   600 700 out-of-phase 

167 PIV r-x cut Non-reacting 0.5 10   600 900 out-of-phase 

168 PIV r-x cut Non-reacting 0.5 10   700 250 out-of-phase 

169 PIV r-x cut Non-reacting 0.5 10   700 300 out-of-phase 

170 PIV r-x cut Non-reacting 0.5 10   700 400 out-of-phase 

171 PIV r-x cut Non-reacting 0.5 10   700 450 out-of-phase 

172 PIV r-x cut Non-reacting 0.5 10   700 600 out-of-phase 

173 PIV r-x cut Non-reacting 0.5 10   900 250 out-of-phase 

174 PIV r-x cut Non-reacting 0.5 10   900 300 out-of-phase 

175 PIV r-x cut Non-reacting 0.5 10   900 400 out-of-phase 

176 PIV r-x cut Non-reacting 0.5 10   900 450 out-of-phase 

177 PIV r-x cut Non-reacting 0.5 10   900 600 out-of-phase 
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178 PIV r-x cut Non-reacting 0.5 10   1000 600 out-of-phase 

179 PIV r-x cut Non-reacting 0.5 10   1000 800 out-of-phase 

180 PIV r-x cut Non-reacting 0.5 10   1000 900 out-of-phase 

181 PIV r-x cut Non-reacting 0.5 10   1000 1000 out-of-phase 

182 PIV r-x cut Non-reacting 0.5 10   1000 1100 out-of-phase 

183 PIV r-x cut Non-reacting 0.5 10   1100 200 out-of-phase 

184 PIV r-x cut Non-reacting 0.5 10   1100 300 out-of-phase 

185 PIV r-x cut Non-reacting 0.5 10   1100 400 out-of-phase 

186 PIV r-x cut Non-reacting 0.5 10   1100 400 out-of-phase 

187 PIV r-x cut Non-reacting 0.5 10   1100 450 out-of-phase 

188 PIV r-x cut Non-reacting 0.5 10   1100 500 out-of-phase 

189 PIV r-x cut Non-reacting 0.5 10   1100 800 out-of-phase 

190 PIV r-x cut Non-reacting 0.5 10   1100 900 out-of-phase 

191 PIV r-x cut Non-reacting 0.5 10   1100 1000 out-of-phase 

192 PIV r-x cut Non-reacting 0.5 10   1100 1100 out-of-phase 

193 PIV r-x cut Non-reacting 0.5 10   1200 1500 out-of-phase 

194 PIV r-x cut Non-reacting 0.5 10   1200 1600 out-of-phase 

195 PIV r-x cut Non-reacting 0.5 10   1200 1700 out-of-phase 

196 PIV r-x cut Non-reacting 0.5 10   1200 1800 out-of-phase 

197 PIV r-x cut Non-reacting 0.5 10   1200 1900 out-of-phase 

198 PIV r-x cut Non-reacting 0.5 10   1200 2000 out-of-phase 

199 PIV r-x cut Non-reacting 0.5 10   1300 200 out-of-phase 

200 PIV r-x cut Non-reacting 0.5 10   1300 300 out-of-phase 

201 PIV r-x cut Non-reacting 0.5 10   1300 400 out-of-phase 

202 PIV r-x cut Non-reacting 0.5 10   1300 500 out-of-phase 

203 PIV r-x cut Non-reacting 0.5 10   1300 550 out-of-phase 

204 PIV r-x cut Non-reacting 0.5 10   1300 600 out-of-phase 

205 PIV r-x cut Non-reacting 0.5 10   1300 700 out-of-phase 

206 PIV r-x cut Non-reacting 0.5 10   1400 200 out-of-phase 

207 PIV r-x cut Non-reacting 0.5 10   1400 300 out-of-phase 

208 PIV r-x cut Non-reacting 0.5 10   1400 350 out-of-phase 

209 PIV r-x cut Non-reacting 0.5 10   1400 400 out-of-phase 

210 PIV r-x cut Non-reacting 0.5 10   1400 400 out-of-phase 

211 PIV r-x cut Non-reacting 0.5 10   1400 450 out-of-phase 

212 PIV r-x cut Non-reacting 0.5 10   1400 500 out-of-phase 

213 PIV r-x cut Non-reacting 0.5 10   1400 600 out-of-phase 

214 PIV r-x cut Non-reacting 0.5 10   1400 650 out-of-phase 

215 PIV r-x cut Non-reacting 0.5 10   1400 700 out-of-phase 

216 PIV r-x cut Non-reacting 0.5 10   1400 800 out-of-phase 

217 PIV r-x cut Non-reacting 0.5 10   1500 700 out-of-phase 

218 PIV r-x cut Non-reacting 0.5 10   1500 750 out-of-phase 

219 PIV r-x cut Non-reacting 0.5 10   1500 800 out-of-phase 

220 PIV r-x cut Non-reacting 0.5 10   1500 900 out-of-phase 

221 PIV r-x cut Non-reacting 0.5 10   1500 1100 out-of-phase 

222 PIV r-x cut Non-reacting 0.5 10   1500 1100 out-of-phase 

223 PIV r-x cut Non-reacting 0.5 10   1500 1200 out-of-phase 

224 PIV r-x cut Non-reacting 0.5 10   1500 1200 out-of-phase 

225 PIV r-x cut Non-reacting 0.5 10   1500 1300 out-of-phase 

226 PIV r-x cut Non-reacting 0.5 10   1500 1300 out-of-phase 

227 PIV r-x cut Non-reacting 0.5 10   1600 300 out-of-phase 



196 

 

228 PIV r-x cut Non-reacting 0.5 10   1600 300 out-of-phase 

229 PIV r-x cut Non-reacting 0.5 10   1600 350 out-of-phase 

230 PIV r-x cut Non-reacting 0.5 10   1600 350 out-of-phase 

231 PIV r-x cut Non-reacting 0.5 10   1600 400 out-of-phase 

232 PIV r-x cut Non-reacting 0.5 10   1600 700 out-of-phase 

233 PIV r-x cut Non-reacting 0.5 10   1600 750 out-of-phase 

234 PIV r-x cut Non-reacting 0.5 10   1600 800 out-of-phase 

235 PIV r-x cut Non-reacting 0.5 10   1600 800 out-of-phase 

236 PIV r-x cut Non-reacting 0.5 10   1600 850 out-of-phase 

237 PIV r-x cut Non-reacting 0.5 10   1600 900 out-of-phase 

238 PIV r-x cut Non-reacting 0.5 10   1600 900 out-of-phase 

239 PIV r-x cut Non-reacting 0.5 10   1700 600 out-of-phase 

240 PIV r-x cut Non-reacting 0.5 10   1700 700 out-of-phase 

241 PIV r-x cut Non-reacting 0.5 10   1700 900 out-of-phase 

242 PIV r-x cut Non-reacting 0.5 10   1700 950 out-of-phase 

243 PIV r-x cut Non-reacting 0.5 10   1700 1000 out-of-phase 

244 PIV r-x cut Non-reacting 0.5 10   1700 1100 out-of-phase 

245 PIV r-x cut Non-reacting 0.5 10   1700 1200 out-of-phase 

246 PIV r-x cut Non-reacting 0.5 10   1700 1300 out-of-phase 

247 PIV r-x cut Non-reacting 0.5 10   1700 1400 out-of-phase 

248 PIV r-x cut Non-reacting 0.5 10   1800 700 out-of-phase 

249 PIV r-x cut Non-reacting 0.5 10   1800 700 out-of-phase 

250 PIV r-x cut Non-reacting 0.5 10   1800 750 out-of-phase 

251 PIV r-x cut Non-reacting 0.5 10   1800 750 out-of-phase 

252 PIV r-x cut Non-reacting 0.5 10   1800 800 out-of-phase 

253 PIV r-x cut Non-reacting 0.5 10   1800 900 out-of-phase 

254 PIV r-x cut Non-reacting 0.5 10   1800 950 out-of-phase 

255 PIV r-x cut Non-reacting 0.5 10   1800 1000 out-of-phase 

256 PIV r-x cut Non-reacting 0.5 10   1800 1100 out-of-phase 

257 PIV r-x cut Non-reacting 0.5 10   1800 1200 out-of-phase 

258 PIV r-x cut Non-reacting 0.5 10   1800 1300 out-of-phase 

259 PIV r-x cut Non-reacting 0.5 10   1800 1400 out-of-phase 

260 PIV r-x cut Non-reacting 0.5 10   1900 1100 out-of-phase 

261 PIV r-x cut Non-reacting 0.5 10   1900 1150 out-of-phase 

262 PIV r-x cut Non-reacting 0.5 10   1900 1200 out-of-phase 

263 PIV r-x cut Non-reacting 0.5 10   1900 1300 out-of-phase 

264 PIV r-x cut Non-reacting 0.5 10   1900 2000 out-of-phase 

265 PIV r-x cut Non-reacting 0.5 10   2000 1100 out-of-phase 

266 PIV r-x cut Non-reacting 0.5 10   2000 1150 out-of-phase 

267 PIV r-x cut Non-reacting 0.5 10   2000 1200 out-of-phase 

268 PIV r-x cut Non-reacting 0.5 10   2000 1300 out-of-phase 

269 PIV r-x cut Non-reacting 0.5 10   2000 2000 out-of-phase 

270 PIV r-x cut Reacting 0.5 10 0.9       

271 PIV r-x cut Reacting 0.5 10 0.9 400 250 out-of-phase 

272 PIV r-x cut Reacting 0.5 10 0.9 500 250 out-of-phase 

273 PIV r-x cut Reacting 0.5 10 0.9 600 400 out-of-phase 

274 PIV r-x cut Reacting 0.5 10 0.9 700 600 out-of-phase 

275 PIV r-x cut Reacting 0.5 10 0.9 800 200 out-of-phase 

276 PIV r-x cut Reacting 0.5 10 0.9 900 600 out-of-phase 

277 PIV r-x cut Reacting 0.5 10 0.9 1000 1100 out-of-phase 
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278 PIV r-x cut Reacting 0.5 10 0.9 1100 500 out-of-phase 

279 PIV r-x cut Reacting 0.5 10 0.9 1200 1800 out-of-phase 

280 PIV r-x cut Reacting 0.5 10 0.9 1300 600 out-of-phase 

281 PIV r-x cut Reacting 0.5 10 0.9 1400 500 out-of-phase 

282 PIV r-x cut Reacting 0.5 10 0.9 1500 1300 out-of-phase 

283 PIV r-x cut Reacting 0.5 10 0.9 1600 750 out-of-phase 

284 PIV r-x cut Reacting 0.5 10 0.9 1700 1100 out-of-phase 

285 PIV r-x cut Reacting 0.5 10 0.9 400 250 in-phase 

286 PIV r-x cut Reacting 0.5 10 0.9 500 250 in-phase 

287 PIV r-x cut Reacting 0.5 10 0.9 600 400 in-phase 

288 PIV r-x cut Reacting 0.5 10 0.9 700 600 in-phase 

289 PIV r-x cut Reacting 0.5 10 0.9 800 200 in-phase 

290 PIV r-x cut Reacting 0.5 10 0.9 900 600 in-phase 

291 PIV r-x cut Reacting 0.5 10 0.9 1000 1100 in-phase 

292 PIV r-x cut Reacting 0.5 10 0.9 1100 500 in-phase 

293 PIV r-x cut Reacting 0.5 10 0.9 1200 1800 in-phase 

294 PIV r-x cut Reacting 0.5 10 0.9 1300 600 in-phase 

295 PIV r-x cut Reacting 0.5 10 0.9 1400 500 in-phase 

296 PIV r-x cut Reacting 0.5 10 0.9 1500 1300 in-phase 

297 PIV r-x cut Reacting 0.5 10 0.9 1600 750 in-phase 

298 PIV r-x cut Reacting 0.5 10 0.9 1700 1100 in-phase 

299 PIV r-x cut Reacting 0.5 10 0.9 1800 1100 in-phase 

300 PIV r-x cut Non-reacting 0.5 10         

301 PIV r-x cut Non-reacting 0.5 10   400 400 longitudinal 

302 PIV r-x cut Non-reacting 0.5 10   400 600 longitudinal 

303 PIV r-x cut Non-reacting 0.5 10   400 800 longitudinal 

304 PIV r-x cut Non-reacting 0.5 10   400 1200 longitudinal 

305 PIV r-x cut Non-reacting 0.5 10   400 1000 longitudinal 

306 PIV r-x cut Non-reacting 0.5 10   400 1400 longitudinal 

307 PIV r-x cut Non-reacting 0.5 10   800 400 longitudinal 

308 PIV r-x cut Non-reacting 0.5 10   800 600 longitudinal 

309 PIV r-x cut Non-reacting 0.5 10   800 800 longitudinal 

310 PIV r-x cut Non-reacting 0.5 10   800 1200 longitudinal 

311 PIV r-x cut Non-reacting 0.5 10   800 1000 longitudinal 

312 PIV r-x cut Non-reacting 0.5 10   800 1400 longitudinal 

313 PIV r-x cut Non-reacting 0.5 10   1200 400 longitudinal 

314 PIV r-x cut Non-reacting 0.5 10   1200 600 longitudinal 

315 PIV r-x cut Non-reacting 0.5 10   1200 800 longitudinal 

316 PIV r-x cut Non-reacting 0.5 10   1200 1200 longitudinal 

317 PIV r-x cut Non-reacting 0.5 10   1200 1000 longitudinal 

318 PIV r-x cut Non-reacting 0.5 10   1200 1400 longitudinal 

319 PIV r-x cut Non-reacting 0.85 10         

320 PIV r-x cut Non-reacting 0.85 10   400 1000 longitudinal 

321 PIV r-x cut Non-reacting 0.85 10   400 2000 longitudinal 

322 PIV r-x cut Non-reacting 0.85 10   400 3000 longitudinal 

323 PIV r-x cut Non-reacting 0.85 10   400 4000 longitudinal 

324 PIV r-x cut Non-reacting 0.85 10   800 1000 longitudinal 

325 PIV r-x cut Non-reacting 0.85 10   800 2000 longitudinal 

326 PIV r-x cut Non-reacting 0.85 10   800 3000 longitudinal 

327 PIV r-x cut Non-reacting 0.85 10   800 4000 longitudinal 
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328 PIV r-x cut Non-reacting 0.85 10   800 5000 longitudinal 

329 PIV r-x cut Non-reacting 0.85 10   800 6000 longitudinal 

330 PIV r-x cut Non-reacting 0.85 10   800 7000 longitudinal 

331 PIV r-x cut Non-reacting 0.85 10   800 8000 longitudinal 

332 PIV r-x cut Non-reacting 0.85 10   800 9000 longitudinal 

333 PIV r-x cut Non-reacting 0.85 10   800 10000 longitudinal 

328 PIV r-x cut Non-reacting 0.85 10   1200 1000 longitudinal 

329 PIV r-x cut Non-reacting 0.85 10   1200 2000 longitudinal 

330 PIV r-x cut Non-reacting 0.85 10   1200 3000 longitudinal 

331 PIV r-x cut Non-reacting 0.85 10   1200 4000 longitudinal 

332 PIV r-theta, 0D Non-reacting 0.85 10         

333 PIV r-theta, 0D Non-reacting 0.85 10   400 100 out-of-phase 

334 PIV r-theta, 0D Non-reacting 0.85 10   400 200 out-of-phase 

335 PIV r-theta, 0D Non-reacting 0.85 10   400 300 out-of-phase 

336 PIV r-theta, 0D Non-reacting 0.85 10   400 400 out-of-phase 

337 PIV r-theta, 0D Non-reacting 0.85 10   400 500 out-of-phase 

338 PIV r-theta, 0D Non-reacting 0.85 10   400 600 out-of-phase 

339 PIV r-theta, 0D Non-reacting 0.85 10   400 700 out-of-phase 

340 PIV r-theta, 0D Non-reacting 0.85 10   400 800 out-of-phase 

341 PIV r-theta, 0D Non-reacting 0.85 10   400 900 out-of-phase 

342 PIV r-theta, 0D Non-reacting 0.85 10   400 1000 out-of-phase 

343 PIV r-theta, 0D Non-reacting 0.85 10   400 1100 out-of-phase 

344 PIV r-theta, 0D Non-reacting 0.85 10   400 100 in-phase 

345 PIV r-theta, 0D Non-reacting 0.85 10   400 200 in-phase 

346 PIV r-theta, 0D Non-reacting 0.85 10   400 300 in-phase 

347 PIV r-theta, 0D Non-reacting 0.85 10   400 400 in-phase 

348 PIV r-theta, 0D Non-reacting 0.85 10   400 500 in-phase 

349 PIV r-theta, 0D Non-reacting 0.85 10   400 600 in-phase 

350 PIV r-theta, 0D Non-reacting 0.85 10   400 700 in-phase 

351 PIV r-theta, 0D Non-reacting 0.85 10   400 800 in-phase 

352 PIV r-theta, 0D Non-reacting 0.85 10   400 900 in-phase 

353 PIV r-theta, 0D Non-reacting 0.85 10   400 1000 in-phase 

354 PIV r-theta, 0D Non-reacting 0.85 10   400 1100 in-phase 

355 PIV r-theta, 0D Non-reacting 0.85 10   800 200 out-of-phase 

356 PIV r-theta, 0D Non-reacting 0.85 10   800 600 out-of-phase 

357 PIV r-theta, 0D Non-reacting 0.85 10   800 1000 out-of-phase 

358 PIV r-theta, 0D Non-reacting 0.85 10   800 200 in-phase 

359 PIV r-theta, 0D Non-reacting 0.85 10   800 600 in-phase 

360 PIV r-theta, 0D Non-reacting 0.85 10   800 1000 in-phase 

361 PIV r-theta, 0D Non-reacting 0.85 10   1200 200 out-of-phase 

362 PIV r-theta, 0D Non-reacting 0.85 10   1200 600 out-of-phase 

363 PIV r-theta, 0D Non-reacting 0.85 10   1200 1000 out-of-phase 

364 PIV r-theta, 0D Non-reacting 0.85 10   1200 200 in-phase 

365 PIV r-theta, 0D Non-reacting 0.85 10   1200 600 in-phase 

366 PIV r-theta, 0D Non-reacting 0.85 10   1200 1000 in-phase 

367 PIV r-theta, 0D Non-reacting 0.85 10   1500 200 out-of-phase 

368 PIV r-theta, 0D Non-reacting 0.85 10   1500 600 out-of-phase 

369 PIV r-theta, 0D Non-reacting 0.85 10   1500 1000 out-of-phase 

370 PIV r-theta, 0D Non-reacting 0.85 10   1500 200 in-phase 

371 PIV r-theta, 0D Non-reacting 0.85 10   1500 600 in-phase 
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372 PIV r-theta, 0D Non-reacting 0.85 10   1500 1000 in-phase 

373 PIV r-theta, 0D Non-reacting 0.85 10   1800 100 out-of-phase 

374 PIV r-theta, 0D Non-reacting 0.85 10   1800 200 out-of-phase 

375 PIV r-theta, 0D Non-reacting 0.85 10   1800 300 out-of-phase 

376 PIV r-theta, 0D Non-reacting 0.85 10   1800 400 out-of-phase 

377 PIV r-theta, 0D Non-reacting 0.85 10   1800 500 out-of-phase 

378 PIV r-theta, 0D Non-reacting 0.85 10   1800 600 out-of-phase 

379 PIV r-theta, 0D Non-reacting 0.85 10   1800 700 out-of-phase 

380 PIV r-theta, 0D Non-reacting 0.85 10   1800 800 out-of-phase 

381 PIV r-theta, 0D Non-reacting 0.85 10   1800 900 out-of-phase 

382 PIV r-theta, 0D Non-reacting 0.85 10   1800 1000 out-of-phase 

383 PIV r-theta, 0D Non-reacting 0.85 10   1800 1100 out-of-phase 

384 PIV r-theta, 0D Non-reacting 0.85 10   1800 100 in-phase 

385 PIV r-theta, 0D Non-reacting 0.85 10   1800 200 in-phase 

386 PIV r-theta, 0D Non-reacting 0.85 10   1800 300 in-phase 

387 PIV r-theta, 0D Non-reacting 0.85 10   1800 400 in-phase 

388 PIV r-theta, 0D Non-reacting 0.85 10   1800 500 in-phase 

389 PIV r-theta, 0D Non-reacting 0.85 10   1800 600 in-phase 

390 PIV r-theta, 0D Non-reacting 0.85 10   1800 700 in-phase 

391 PIV r-theta, 0D Non-reacting 0.85 10   1800 800 in-phase 

392 PIV r-theta, 0D Non-reacting 0.85 10   1800 900 in-phase 

393 PIV r-theta, 0D Non-reacting 0.85 10   1800 1000 in-phase 

394 PIV r-theta, 0D Non-reacting 0.85 10   1800 1100 in-phase 

395 PIV r-theta, 1D Non-reacting 0.85 10         

396 PIV r-theta, 1D Non-reacting 0.85 10   400 200 out-of-phase 

397 PIV r-theta, 1D Non-reacting 0.85 10   400 600 out-of-phase 

398 PIV r-theta, 1D Non-reacting 0.85 10   400 1000 out-of-phase 

399 PIV r-theta, 1D Non-reacting 0.85 10   400 200 in-phase 

400 PIV r-theta, 1D Non-reacting 0.85 10   400 600 in-phase 

401 PIV r-theta, 1D Non-reacting 0.85 10   400 1000 in-phase 

402 PIV r-theta, 1D Non-reacting 0.85 10   800 200 out-of-phase 

403 PIV r-theta, 1D Non-reacting 0.85 10   800 600 out-of-phase 

404 PIV r-theta, 1D Non-reacting 0.85 10   800 1000 out-of-phase 

405 PIV r-theta, 1D Non-reacting 0.85 10   800 200 in-phase 

406 PIV r-theta, 1D Non-reacting 0.85 10   800 600 in-phase 

407 PIV r-theta, 1D Non-reacting 0.85 10   800 1000 in-phase 

408 PIV r-theta, 1D Non-reacting 0.85 10   1200 200 out-of-phase 

409 PIV r-theta, 1D Non-reacting 0.85 10   1200 600 out-of-phase 

410 PIV r-theta, 1D Non-reacting 0.85 10   1200 1000 out-of-phase 

411 PIV r-theta, 1D Non-reacting 0.85 10   1200 200 in-phase 

412 PIV r-theta, 1D Non-reacting 0.85 10   1200 600 in-phase 

413 PIV r-theta, 1D Non-reacting 0.85 10   1200 1000 in-phase 

414 PIV r-theta, 1D Non-reacting 0.85 10   1500 200 out-of-phase 

415 PIV r-theta, 1D Non-reacting 0.85 10   1500 600 out-of-phase 

416 PIV r-theta, 1D Non-reacting 0.85 10   1500 1000 out-of-phase 

417 PIV r-theta, 1D Non-reacting 0.85 10   1500 200 in-phase 

418 PIV r-theta, 1D Non-reacting 0.85 10   1500 600 in-phase 

419 PIV r-theta, 1D Non-reacting 0.85 10   1500 1000 in-phase 

420 PIV r-theta, 1D Non-reacting 0.85 10   1800 200 out-of-phase 

421 PIV r-theta, 1D Non-reacting 0.85 10   1800 600 out-of-phase 
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422 PIV r-theta, 1D Non-reacting 0.85 10   1800 1000 out-of-phase 

423 PIV r-theta, 1D Non-reacting 0.85 10   1800 200 in-phase 

424 PIV r-theta, 1D Non-reacting 0.85 10   1800 600 in-phase 

425 PIV r-theta, 1D Non-reacting 0.85 10   1800 1000 in-phase 

426 PIV r-theta, 2D Non-reacting 0.85 10         

427 PIV r-theta, 2D Non-reacting 0.85 10   400 200 out-of-phase 

428 PIV r-theta, 2D Non-reacting 0.85 10   400 600 out-of-phase 

429 PIV r-theta, 2D Non-reacting 0.85 10   400 1000 out-of-phase 

430 PIV r-theta, 2D Non-reacting 0.85 10   400 200 in-phase 

431 PIV r-theta, 2D Non-reacting 0.85 10   400 600 in-phase 

432 PIV r-theta, 2D Non-reacting 0.85 10   400 1000 in-phase 

433 PIV r-theta, 2D Non-reacting 0.85 10   800 200 out-of-phase 

434 PIV r-theta, 2D Non-reacting 0.85 10   800 600 out-of-phase 

435 PIV r-theta, 2D Non-reacting 0.85 10   800 1000 out-of-phase 

436 PIV r-theta, 2D Non-reacting 0.85 10   800 200 in-phase 

437 PIV r-theta, 2D Non-reacting 0.85 10   800 600 in-phase 

438 PIV r-theta, 2D Non-reacting 0.85 10   800 1000 in-phase 

439 PIV r-theta, 2D Non-reacting 0.85 10   1200 200 out-of-phase 

440 PIV r-theta, 2D Non-reacting 0.85 10   1200 600 out-of-phase 

441 PIV r-theta, 2D Non-reacting 0.85 10   1200 1000 out-of-phase 

442 PIV r-theta, 2D Non-reacting 0.85 10   1200 200 in-phase 

443 PIV r-theta, 2D Non-reacting 0.85 10   1200 600 in-phase 

444 PIV r-theta, 2D Non-reacting 0.85 10   1200 1000 in-phase 

445 PIV r-theta, 2D Non-reacting 0.85 10   1500 200 out-of-phase 

446 PIV r-theta, 2D Non-reacting 0.85 10   1500 600 out-of-phase 

447 PIV r-theta, 2D Non-reacting 0.85 10   1500 1000 out-of-phase 

448 PIV r-theta, 2D Non-reacting 0.85 10   1500 200 in-phase 

449 PIV r-theta, 2D Non-reacting 0.85 10   1500 600 in-phase 

450 PIV r-theta, 2D Non-reacting 0.85 10   1500 1000 in-phase 

451 PIV r-theta, 2D Non-reacting 0.85 10   1800 200 out-of-phase 

452 PIV r-theta, 2D Non-reacting 0.85 10   1800 600 out-of-phase 

453 PIV r-theta, 2D Non-reacting 0.85 10   1800 1000 out-of-phase 

454 PIV r-theta, 2D Non-reacting 0.85 10   1800 200 in-phase 

455 PIV r-theta, 2D Non-reacting 0.85 10   1800 600 in-phase 

456 PIV r-theta, 2D Non-reacting 0.85 10   1800 1000 in-phase 

 

The following pages show examples of the PIV data set that span the entire range of data 

taken.  The first three pages act as a key to explain the formatting of each of these 

examples.  The instantaneous images are taken 0.1 ms apart. 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV r-x cut 

Non-

reacting 0.5 10   400 1400 Longitudinal 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV r-x cut 

Non-

reacting 0.5 10   1800 1400 out-of-phase 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV r-x cut 

Non-

reacting 0.5 10   400 250 out-of-phase 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV r-x cut 

Non-

reacting 0.85 10   800 10000 Longitudinal 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV r-x cut 

Non-

reacting 0.85 10   800 600 out-of-phase 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV r-x cut 

Non-

reacting 0.85 10   1200 1100 in-phase 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV 

r-x cut 

zoom 

Non-

reacting 0.85 10   1200 1000 out-of-phase 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV r-x cut 

Non-

reacting 0.85 20   800 1000 in-phase 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV r-x cut 

Non-

reacting 0.85 40   400 1000 out-of-phase 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV r-x cut Reacting 0.5 10   900 600 out-of-phase 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV r-x cut Reacting 0.5 10   1500 1300 in-phase 

 

 



235 

 

 

 

 



236 

 

 

 

 
  



237 

 

  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV r-x cut Reacting 0.85 10   400 1000 in-phase 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV r-x cut Reacting 0.85 10   800 1000 out-of-phase 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV 

r-theta cut 

0D 

Non-

reacting 0.85 10   400 1000 in-phase 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV 

r-theta cut 

1D 

Non-

reacting 0.85 10   1200 1000 out-of-phase 
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  Diagnostic 

Diagnostic 

details Reacting? 

Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 PIV 

r-theta cut 

2D 

Non-

reacting 0.85 10   800 1000 out-of-phase 
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Table 6.  Overview of luminescence flame data. 

  Swirl number u_bulk [m/s] Phi Frequency [Hz] 

Amplitude 

[mV] Symmetry 

1 0.5 10 0.9 400 250 out-of-phase 

2 0.5 10 0.9 500 250 out-of-phase 

3 0.5 10 0.9 600 400 out-of-phase 

4 0.5 10 0.9 700 600 out-of-phase 

5 0.5 10 0.9 800 200 out-of-phase 

6 0.5 10 0.9 900 600 out-of-phase 

7 0.5 10 0.9 1000 1100 out-of-phase 

8 0.5 10 0.9 1100 500 out-of-phase 

9 0.5 10 0.9 1200 1800 out-of-phase 

10 0.5 10 0.9 1300 600 out-of-phase 

11 0.5 10 0.9 1400 500 out-of-phase 

12 0.5 10 0.9 1500 1300 out-of-phase 

13 0.5 10 0.9 1600 750 out-of-phase 

14 0.5 10 0.9 1700 1100 out-of-phase 

15 0.5 10 0.9 1800 1100 out-of-phase 

16 0.5 10 0.9 400 250 in-phase 

17 0.5 10 0.9 500 250 in-phase 

18 0.5 10 0.9 600 400 in-phase 

19 0.5 10 0.9 700 600 in-phase 

20 0.5 10 0.9 800 200 in-phase 

21 0.5 10 0.9 900 600 in-phase 

22 0.5 10 0.9 1000 1100 in-phase 

23 0.5 10 0.9 1100 500 in-phase 

24 0.5 10 0.9 1200 1800 in-phase 

25 0.5 10 0.9 1300 600 in-phase 

26 0.5 10 0.9 1400 500 in-phase 

27 0.5 10 0.9 1500 1300 in-phase 

28 0.5 10 0.9 1600 750 in-phase 

29 0.5 10 0.9 1700 1100 in-phase 

30 0.5 10 0.9 1800 1100 in-phase 

31 0.5 10 0.9 400 200 out-of-phase 

32 0.5 10 0.9 400 400 out-of-phase 

33 0.5 10 0.9 400 600 out-of-phase 

34 0.5 10 0.9 400 800 out-of-phase 

35 0.5 10 0.9 400 1000 out-of-phase 

36 0.5 10 0.9 400 200 in-phase 

37 0.5 10 0.9 400 400 in-phase 
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38 0.5 10 0.9 400 600 in-phase 

39 0.5 10 0.9 400 800 in-phase 

40 0.5 10 0.9 400 1000 in-phase 

41 0.5 10 0.9 800 200 out-of-phase 

42 0.5 10 0.9 800 400 out-of-phase 

43 0.5 10 0.9 800 600 out-of-phase 

44 0.5 10 0.9 800 800 out-of-phase 

45 0.5 10 0.9 800 1000 out-of-phase 

46 0.5 10 0.9 800 200 in-phase 

47 0.5 10 0.9 800 400 in-phase 

48 0.5 10 0.9 800 600 in-phase 

49 0.5 10 0.9 800 800 in-phase 

50 0.5 10 0.9 800 1000 in-phase 

51 0.5 10 0.9 1200 200 out-of-phase 

52 0.5 10 0.9 1200 400 out-of-phase 

53 0.5 10 0.9 1200 600 out-of-phase 

54 0.5 10 0.9 1200 800 out-of-phase 

55 0.5 10 0.9 1200 1000 out-of-phase 

56 0.5 10 0.9 1200 200 in-phase 

57 0.5 10 0.9 1200 400 in-phase 

58 0.5 10 0.9 1200 600 in-phase 

59 0.5 10 0.9 1200 800 in-phase 

60 0.5 10 0.9 1200 1000 in-phase 

61 0.5 10 0.9 1800 200 in-phase 

62 0.5 10 0.9 1800 400 in-phase 

63 0.5 10 0.9 1800 600 in-phase 

64 0.5 10 0.9 1800 800 in-phase 

65 0.5 10 0.9 1800 1000 in-phase 
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Table 7.  Overview of PLIF data. 

  
Swirl 

number 

u_bulk 

[m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 0.5 10 0.9       

2 0.5 10 0.9 400 500 in-phase 

3 0.5 10 0.9 400 600 in-phase 

4 0.5 10 0.9 400 700 in-phase 

5 0.5 10 0.9 400 800 in-phase 

6 0.5 10 0.9 400 900 in-phase 

7 0.5 10 0.9 400 1000 in-phase 

8 0.5 10 0.9 400 1100 in-phase 

9 0.5 10 0.9 400 1200 in-phase 

10 0.5 10 0.9 400 1220 in-phase 

11 0.5 10 0.9 400 1240 in-phase 

12 0.5 10 0.9 400 1260 in-phase 

13 0.5 10 0.9 400 1280 in-phase 

14 0.5 10 0.9 400 1300 in-phase 

15 0.5 10 0.9 400 1320 in-phase 

16 0.5 10 0.9 400 1340 in-phase 

17 0.5 10 0.9 400 1360 in-phase 

18 0.5 10 0.9 400 1380 in-phase 

19 0.5 10 0.9 400 1400 in-phase 

20 0.5 10 0.9 400 500 out-of-phase 

21 0.5 10 0.9 400 1500 out-of-phase 

22 0.5 10 0.9 400 500 in-phase 

23 0.5 10 0.9 400 1500 in-phase 

24 0.5 10 0.9 800 500 out-of-phase 

25 0.5 10 0.9 800 1500 out-of-phase 

26 0.5 10 0.9 800 500 in-phase 

27 0.5 10 0.9 800 1500 in-phase 

28 0.5 10 0.9 1200 500 out-of-phase 

29 0.5 10 0.9 1200 1500 out-of-phase 

30 0.5 10 0.9 1200 500 in-phase 

31 0.5 10 0.9 1200 1500 in-phase 

32 0.5 10 0.9 1500 500 out-of-phase 

33 0.5 10 0.9 1500 1500 out-of-phase 

34 0.5 10 0.9 1500 500 in-phase 

35 0.5 10 0.9 1500 1500 in-phase 

36 0.5 10 0.9 1800 500 out-of-phase 

37 0.5 10 0.9 1800 1500 out-of-phase 

38 0.5 10 0.9 1800 500 in-phase 

39 0.5 10 0.9 1800 1500 in-phase 
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Table 8.  Overview of global chemiluminescence and two-microphone method 

pressure data. 

  
Swirl 

number u_bulk [m/s] Phi 

Frequency 

[Hz] 

Amplitude 

[mV] Symmetry 

1 0.5 10 0.9       

2 0.5 10 0.9 200 4000 longitudinal 

3 0.5 10 0.9 220 4000 longitudinal 

4 0.5 10 0.9 240 4000 longitudinal 

5 0.5 10 0.9 260 4000 longitudinal 

6 0.5 10 0.9 280 4000 longitudinal 

7 0.5 10 0.9 300 4000 longitudinal 

8 0.5 10 0.9 320 4000 longitudinal 

9 0.5 10 0.9 340 4000 longitudinal 

10 0.5 10 0.9 360 4000 longitudinal 

11 0.5 10 0.9 380 4000 longitudinal 

12 0.5 10 0.9 400 2000 longitudinal 

13 0.5 10 0.9 420 2000 longitudinal 

14 0.5 10 0.9 440 2000 longitudinal 

15 0.5 10 0.9 460 2000 longitudinal 

16 0.5 10 0.9 480 2000 longitudinal 

17 0.5 10 0.9 500 2000 longitudinal 

18 0.5 10 0.9 520 2000 longitudinal 

19 0.5 10 0.9 540 2000 longitudinal 

20 0.5 10 0.9 560 2000 longitudinal 

21 0.5 10 0.9 580 2000 longitudinal 

22 0.5 10 0.9 600 2000 longitudinal 

23 0.5 10 0.9 620 2000 longitudinal 

24 0.5 10 0.9 640 2000 longitudinal 

25 0.5 10 0.9 660 2000 longitudinal 

26 0.5 10 0.9 680 2000 longitudinal 

27 0.5 10 0.9 700 2000 longitudinal 

28 0.5 10 0.9 720 2000 longitudinal 

29 0.5 10 0.9 740 2000 longitudinal 

30 0.5 10 0.9 760 2000 longitudinal 

31 0.5 10 0.9 780 2000 longitudinal 

32 0.5 10 0.9 800 2000 longitudinal 

33 0.5 10 0.9 820 2000 longitudinal 

34 0.5 10 0.9 840 2000 longitudinal 

35 0.5 10 0.9 860 2000 longitudinal 
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36 0.5 10 0.9 880 2000 longitudinal 

37 0.5 10 0.9 900 2000 longitudinal 

38 0.5 10 0.9 920 2000 longitudinal 

39 0.5 10 0.9 940 2000 longitudinal 

40 0.5 10 0.9 960 2000 longitudinal 

41 0.5 10 0.9 980 2000 longitudinal 

42 0.5 10 0.9 1000 2000 longitudinal 

43 0.5 10 0.9 1020 2000 longitudinal 

44 0.5 10 0.9 1040 2000 longitudinal 

45 0.5 10 0.9 1060 2000 longitudinal 

46 0.5 10 0.9 1080 2000 longitudinal 

47 0.5 10 0.9 1100 2000 longitudinal 

48 0.5 10 0.9 1120 2000 longitudinal 

49 0.5 10 0.9 1140 2000 longitudinal 

50 0.5 10 0.9 1160 2000 longitudinal 

51 0.5 10 0.9 1180 2000 longitudinal 

52 0.5 10 0.9 1200 2000 longitudinal 

53 0.5 10 0.9 1220 2000 longitudinal 

54 0.5 10 0.9 1240 2000 longitudinal 

55 0.5 10 0.9 1260 2000 longitudinal 

56 0.5 10 0.9 1280 2000 longitudinal 

57 0.5 10 0.9 1300 2000 longitudinal 

58 0.5 10 0.9 1320 2000 longitudinal 

59 0.5 10 0.9 1340 2000 longitudinal 

60 0.5 10 0.9 1360 2000 longitudinal 

61 0.5 10 0.9 1380 2000 longitudinal 

62 0.5 10 0.9 1400 2000 longitudinal 

63 0.5 10 0.9 1420 2000 longitudinal 

64 0.5 10 0.9 1440 2000 longitudinal 

65 0.5 10 0.9 1460 2000 longitudinal 

66 0.5 10 0.9 1480 2000 longitudinal 

67 0.5 10 0.9 1500 2000 longitudinal 

68 0.5 10 0.9 1520 2000 longitudinal 

69 0.5 10 0.9 1540 2000 longitudinal 

70 0.5 10 0.9 1560 2000 longitudinal 

71 0.5 10 0.9 1580 2000 longitudinal 

72 0.5 10 0.9 1600 2000 longitudinal 

73 0.5 10 0.9 1620 2000 longitudinal 

74 0.5 10 0.9 1640 2000 longitudinal 

75 0.5 10 0.9 1660 2000 longitudinal 



257 

 

76 0.5 10 0.9 1680 2000 longitudinal 

77 0.5 10 0.9 1700 2000 longitudinal 

78 0.5 10 0.9 1720 2000 longitudinal 

79 0.5 10 0.9 1740 2000 longitudinal 

80 0.5 10 0.9 1760 2000 longitudinal 

81 0.5 10 0.9 1780 2000 longitudinal 

82 0.5 10 0.9 1800 2000 longitudinal 

83 0.5 10 0.9 400 250 out-of-phase 

84 0.5 10 0.9 420 250 out-of-phase 

85 0.5 10 0.9 440 250 out-of-phase 

86 0.5 10 0.9 460 250 out-of-phase 

87 0.5 10 0.9 480 250 out-of-phase 

88 0.5 10 0.9 500 250 out-of-phase 

89 0.5 10 0.9 520 250 out-of-phase 

90 0.5 10 0.9 540 250 out-of-phase 

91 0.5 10 0.9 560 250 out-of-phase 

92 0.5 10 0.9 580 250 out-of-phase 

93 0.5 10 0.9 600 400 out-of-phase 

94 0.5 10 0.9 620 400 out-of-phase 

95 0.5 10 0.9 640 400 out-of-phase 

96 0.5 10 0.9 660 400 out-of-phase 

97 0.5 10 0.9 680 400 out-of-phase 

98 0.5 10 0.9 700 600 out-of-phase 

99 0.5 10 0.9 720 600 out-of-phase 

100 0.5 10 0.9 740 600 out-of-phase 

101 0.5 10 0.9 760 600 out-of-phase 

102 0.5 10 0.9 780 600 out-of-phase 

103 0.5 10 0.9 800 200 out-of-phase 

104 0.5 10 0.9 820 200 out-of-phase 

105 0.5 10 0.9 840 200 out-of-phase 

106 0.5 10 0.9 860 200 out-of-phase 

107 0.5 10 0.9 880 200 out-of-phase 

108 0.5 10 0.9 900 600 out-of-phase 

109 0.5 10 0.9 920 600 out-of-phase 

110 0.5 10 0.9 940 600 out-of-phase 

111 0.5 10 0.9 960 600 out-of-phase 

112 0.5 10 0.9 980 600 out-of-phase 

113 0.5 10 0.9 1000 1100 out-of-phase 

114 0.5 10 0.9 1020 1100 out-of-phase 

115 0.5 10 0.9 1040 1100 out-of-phase 
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116 0.5 10 0.9 1060 1100 out-of-phase 

117 0.5 10 0.9 1080 1100 out-of-phase 

118 0.5 10 0.9 1100 500 out-of-phase 

119 0.5 10 0.9 1120 500 out-of-phase 

120 0.5 10 0.9 1140 500 out-of-phase 

121 0.5 10 0.9 1160 500 out-of-phase 

122 0.5 10 0.9 1180 500 out-of-phase 

123 0.5 10 0.9 1200 1800 out-of-phase 

124 0.5 10 0.9 1220 1800 out-of-phase 

125 0.5 10 0.9 1240 1800 out-of-phase 

126 0.5 10 0.9 1260 1800 out-of-phase 

127 0.5 10 0.9 1280 1800 out-of-phase 

128 0.5 10 0.9 1300 600 out-of-phase 

129 0.5 10 0.9 1320 600 out-of-phase 

130 0.5 10 0.9 1340 600 out-of-phase 

131 0.5 10 0.9 1360 600 out-of-phase 

132 0.5 10 0.9 1380 600 out-of-phase 

133 0.5 10 0.9 1400 500 out-of-phase 

134 0.5 10 0.9 1420 500 out-of-phase 

135 0.5 10 0.9 1440 500 out-of-phase 

136 0.5 10 0.9 1460 500 out-of-phase 

137 0.5 10 0.9 1480 500 out-of-phase 

138 0.5 10 0.9 1500 1300 out-of-phase 

139 0.5 10 0.9 1520 1300 out-of-phase 

140 0.5 10 0.9 1540 1300 out-of-phase 

141 0.5 10 0.9 1560 1300 out-of-phase 

142 0.5 10 0.9 1580 1300 out-of-phase 

143 0.5 10 0.9 1600 750 out-of-phase 

144 0.5 10 0.9 1620 750 out-of-phase 

145 0.5 10 0.9 1640 750 out-of-phase 

146 0.5 10 0.9 1660 750 out-of-phase 

147 0.5 10 0.9 1680 750 out-of-phase 

148 0.5 10 0.9 1700 1100 out-of-phase 

149 0.5 10 0.9 1720 1100 out-of-phase 

150 0.5 10 0.9 1740 1100 out-of-phase 

151 0.5 10 0.9 1760 1100 out-of-phase 

152 0.5 10 0.9 1780 1100 out-of-phase 

153 0.5 10 0.9 1800 1100 out-of-phase 

83 0.5 10 0.9 400 250 in-phase 

84 0.5 10 0.9 420 250 in-phase 
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85 0.5 10 0.9 440 250 in-phase 

86 0.5 10 0.9 460 250 in-phase 

87 0.5 10 0.9 480 250 in-phase 

88 0.5 10 0.9 500 250 in-phase 

89 0.5 10 0.9 520 250 in-phase 

90 0.5 10 0.9 540 250 in-phase 

91 0.5 10 0.9 560 250 in-phase 

92 0.5 10 0.9 580 250 in-phase 

93 0.5 10 0.9 600 400 in-phase 

94 0.5 10 0.9 620 400 in-phase 

95 0.5 10 0.9 640 400 in-phase 

96 0.5 10 0.9 660 400 in-phase 

97 0.5 10 0.9 680 400 in-phase 

98 0.5 10 0.9 700 600 in-phase 

99 0.5 10 0.9 720 600 in-phase 

100 0.5 10 0.9 740 600 in-phase 

101 0.5 10 0.9 760 600 in-phase 

102 0.5 10 0.9 780 600 in-phase 

103 0.5 10 0.9 800 200 in-phase 

104 0.5 10 0.9 820 200 in-phase 

105 0.5 10 0.9 840 200 in-phase 

106 0.5 10 0.9 860 200 in-phase 

107 0.5 10 0.9 880 200 in-phase 

108 0.5 10 0.9 900 600 in-phase 

109 0.5 10 0.9 920 600 in-phase 

110 0.5 10 0.9 940 600 in-phase 

111 0.5 10 0.9 960 600 in-phase 

112 0.5 10 0.9 980 600 in-phase 

113 0.5 10 0.9 1000 1100 in-phase 

114 0.5 10 0.9 1020 1100 in-phase 

115 0.5 10 0.9 1040 1100 in-phase 

116 0.5 10 0.9 1060 1100 in-phase 

117 0.5 10 0.9 1080 1100 in-phase 

118 0.5 10 0.9 1100 500 in-phase 

119 0.5 10 0.9 1120 500 in-phase 

120 0.5 10 0.9 1140 500 in-phase 

121 0.5 10 0.9 1160 500 in-phase 

122 0.5 10 0.9 1180 500 in-phase 

123 0.5 10 0.9 1200 1800 in-phase 

124 0.5 10 0.9 1220 1800 in-phase 
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125 0.5 10 0.9 1240 1800 in-phase 

126 0.5 10 0.9 1260 1800 in-phase 

127 0.5 10 0.9 1280 1800 in-phase 

128 0.5 10 0.9 1300 600 in-phase 

129 0.5 10 0.9 1320 600 in-phase 

130 0.5 10 0.9 1340 600 in-phase 

131 0.5 10 0.9 1360 600 in-phase 

132 0.5 10 0.9 1380 600 in-phase 

133 0.5 10 0.9 1400 500 in-phase 

134 0.5 10 0.9 1420 500 in-phase 

135 0.5 10 0.9 1440 500 in-phase 

136 0.5 10 0.9 1460 500 in-phase 

137 0.5 10 0.9 1480 500 in-phase 

138 0.5 10 0.9 1500 1300 in-phase 

139 0.5 10 0.9 1520 1300 in-phase 

140 0.5 10 0.9 1540 1300 in-phase 

141 0.5 10 0.9 1560 1300 in-phase 

142 0.5 10 0.9 1580 1300 in-phase 

143 0.5 10 0.9 1600 750 in-phase 

144 0.5 10 0.9 1620 750 in-phase 

145 0.5 10 0.9 1640 750 in-phase 

146 0.5 10 0.9 1660 750 in-phase 

147 0.5 10 0.9 1680 750 in-phase 

148 0.5 10 0.9 1700 1100 in-phase 

149 0.5 10 0.9 1720 1100 in-phase 

150 0.5 10 0.9 1740 1100 in-phase 

151 0.5 10 0.9 1760 1100 in-phase 

152 0.5 10 0.9 1780 1100 in-phase 

153 0.5 10 0.9 1800 1100 in-phase 
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