
3D RECONFIGURATION USING GRAPH GRAMMARS
FOR MODULAR ROBOTICS

A Thesis
Presented to

The Academic Faculty

by

Daniel Pickem

In Partial Fulfillment
of the Requirements for the Degree

Masters of Science in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2012

3D RECONFIGURATION USING GRAPH GRAMMARS
FOR MODULAR ROBOTICS

Approved by:

Professor Magnus Egerstedt, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Jeff Shamma
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Patricio Antonio Vela
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 1 July 2010

ACKNOWLEDGEMENTS

I want to thank my adviser, Dr. Magnus Egerstedt, who spurred my interest in

graph grammars and modular robotics through his course on networked control. His

feedback and guidance throughout my thesis research were invaluable. I also want to

thank my family for their continuous support and encouragement in my pursuit of

my Master’s degree.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

SUMMARY . ix

I INTRODUCTION . 1

1.1 Self-Reconfigurable Robots . 1

1.2 Problem Description . 4

1.3 Goal of this Thesis . 5

II BACKGROUND AND PREVIOUS WORK 6

2.1 Graph Theory . 6

2.1.1 Graphs . 7

2.1.2 Representation of a Graph 8

2.1.3 Connectivity of a Graph . 9

2.2 Graph Grammars . 10

2.3 Self-Reconfiguration Approaches . 13

2.3.1 Hierarchical Planning and Reconfiguration 13

2.3.2 Rule-based Reconfiguration 14

2.3.3 Various Approaches . 15

2.3.4 Implementations . 16

III SELF-RECONFIGURATION . 17

3.1 System Representation . 17

3.1.1 Sliding Cube Model . 17

3.1.2 Adjacency Matrix Notation 19

3.1.3 Graph Notation . 20

3.2 Assignment . 22

3.2.1 The Overlapping Set . 23

iv

3.2.2 The Movable Set . 23

3.2.3 The Immediate Target Successor Set 24

3.2.4 Assignment . 25

3.3 Path Planning . 25

3.3.1 Planning space . 26

3.3.2 Constraints . 27

3.3.3 Implementation . 30

3.4 Rule Generation . 31

3.4.1 Rule Structure . 31

3.4.2 Rule Generation . 33

3.4.3 Ruleset Execution . 37

3.5 Summary . 38

IV SIMULATION AND EXPERIMENTS 41

4.1 Self-Reconfigurable Furniture . 41

4.2 Bucket of Stuff . 43

4.3 Pack and Go . 45

4.4 Locomotion . 47

4.5 Reconfiguration in Obstacle-Constrained Space 51

4.6 Ruleset switching for dynamic reconfiguration 53

V RESULTS . 55

5.1 Planning Results . 55

5.1.1 Box and random reconfiguration 56

5.1.2 Random initial configuration to box 56

5.2 Ruleset Execution . 63

VI CONCLUSION . 68

VII OUTLOOK AND FUTURE WORK 69

REFERENCES . 71

v

LIST OF TABLES

1 Reconfiguration planning results for the self-reconfigurable furniture
scenario . 43

2 Reconfiguration planning results for the “Bucket of Stuff” scenario . . 46

3 Reconfiguration planning results for the “Pack and Go” scenario . . . 48

4 Reconfiguration planning results for the locomotion scenario 49

5 Reconfiguration planning results for the obstacle-constrained scenario. 51

6 Reconfiguration planning results for the dynamic reconfiguration scenario 53

7 Reconfiguration planning results for overlapping box configurations . 57

8 Reconfiguration planning results for overlapping random configurations 57

9 Reconfiguration results from the ruleset execution stage of the recon-
figuration shown in Fig. 30 . 67

vi

LIST OF FIGURES

1 Example of a labeled graph. Vertex labels are represented by integers,
edge labels by letters. 8

2 Example of a path from node 1 to 5 (shown in red) 9

3 Example of a rule. Shown are the left-hand side and the right-hand
side. Note how the rule changes vertex labels, edge labels, and the
edge structure. 11

4 Example of a rule application. The subgraph matching the left-hand
side of the rule shown in Fig. 3 is highlighted. 12

5 Graphical representation of the overlapping, the movable, and the im-
mediate target successor set in the simulator 18

6 Adjacency matrices for the configuration in Fig. 7(a) 20

7 Graphical representation of the adjacency matrices in Fig. 6 and the
corresponding graph. 20

8 Graph G = (V,E, l) represented by the adjacency matrices in Fig. 6 . 21

9 Configuration representation in the simulator 22

10 Example showing the planning space for a random configuration. No-
tice how certain positions adjacent to Node 1 are not part of the plan-
ning space. 27

11 Example showing possible primitive motions for Node 1. 28

12 Example showing a blocking position (highlighted) for a hollow cube. 29

13 Visual representation of a rule that shows a convex motion of cube 1. 32

14 Flowchart describing the reconfiguration process 40

15 Reconfiguration sequence from a chair configuration to a table config-
uration in free space . 44

16 Reconfiguration sequence from a random two-dimensional configura-
tion to a chair configuration . 46

17 Reconfiguration sequence from a house configuration to a truck config-
uration . 48

18 Reconfiguration sequence for locomotion 50

19 Reconfiguration sequence from a chair configuration to a table config-
uration in obstacle-constrained space. Obstacles are shown in black. . 52

vii

20 Reconfiguration sequence for dynamic ruleset switching 54

21 Number of generated rules and required runtime for ruleset generation
of box configurations . 57

22 Number of generated rules and required runtime for ruleset generation
of random configurations . 58

23 Ruleset size and total planning time for reconfigurations of sizes 20 to
500 . 59

24 Ruleset size and total path length for configurations of sizes 20 to 500.
The initial overlap of the initial and target configuration is shown in
green. 60

25 Average diameter, path length, and planning time for reconfigurations
of sizes 20 to 500 . 61

26 Timing results for reconfigurations of sizes 20 to 500 61

27 Cubeset sizes break down for a single reconfiguration of size 500 re-
quiring 462 paths to be planned. 63

28 Cubeset sizes break down for reconfigurations of size 20 to 500. Shown
are average values for each reconfiguration size. 64

29 Multiple propagation rules being active simultaneously in the current
configuration. 65

30 Initial (opaque) and target (wireframe) configuration for the ruleset
execution stage . 67

viii

SUMMARY

The objective of this thesis is to develop a method for the reconfiguration of

three-dimensional modular robots. A modular robot is composed of simple individ-

ual building blocks or modules. Each of these modules needs to be controlled and

actuated individually in order to make the robot perform useful tasks. The presented

method allows us to reconfigure arbitrary initial configurations of modules into any

pre-specified target configuration by using graph grammar rules that rely on local

information only. Local in a sense that each module needs just information from

neighboring modules in order to decide its next reconfiguration step. The advan-

tage of this approach is that the modules do not need global knowledge about the

whole configuration. We propose a two stage reconfiguration process composed of a

centralized planning stage and a decentralized, rule-based reconfiguration stage. In

the first stage, paths are planned for each module and then rewritten into a ruleset,

also called a graph grammar. Global knowledge about the configuration is available

to the planner. In stage two, these rules are applied in a decentralized fashion by

each node individually and with local knowledge only. Each module can check the

ruleset for applicable rules in parallel. This approach has been implemented in Mat-

lab and currently, we are able to generate rulesets for arbitrary homogeneous input

configurations.

ix

CHAPTER I

INTRODUCTION

Modular or self-reconfigurable robotics describes the assembly of simple individual,

independent modules into larger, functional robots that can perform tasks such as

locomotion or reconfiguration. The benefit of constructing such modular robots out

of smaller building blocks is that they can be rearranged into different configurations

that can perform different functions and have different capabilities. A modular robot

can, therefore, adapt to changing environments and task specifications. With ever

increasing computational power to control such high-dimension-of-freedom-robots and

the decreasing cost of producing a large number of modules, modular robots are

becoming a viable alternative to fixed morphology robots.

This thesis addresses the problem of how to efficiently control a large number of

modules in a distributed, decentralized fashion. Our goal is to develop a rule-based

reconfiguration approach, where each module can locally check the applicability of

rules and apply them. In this sense the presented system is a massively distributed

robot. This chapter introduces self-reconfigurable robotic systems, gives a brief de-

scription of the problem, presents previously used approaches to address the problem,

and outlines a proposed solution.

1.1 Self-Reconfigurable Robots

Self-reconfigurable systems were first proposed by Toshio Fukuda in the late 1980s (see

[20]). His platform, the CEBOT, was able to reconfigure itself to fit the environment

and the task it had to fulfill. This robot already featured most of the characteristics

of a modern self-reconfigurable robot. It consisted of separable, autonomous units

1

that were able to communicate, connect, and separate. Broken modules could be re-

placed by functional ones and the robot was able to maintain system function. Over

the course of the last two decades, self-reconfigurable robots have been scaled up to

contain thousands of modules (see for example [18]).

Also called metamorphic robots, self-reconfigurable robots can change their aggregate

geometric structure without outside assistance or control. They are composed of in-

dependently controlled modules that are capable of approximating arbitrary shapes.

Each module has the ability to connect and disconnect from and move over a substrate

of other modules. Therefore, the robot can dynamically and autonomously reconfig-

ure to adapt to the terrain, environment, and task. A self-reconfigurable robot can

support multiple modes of locomotion and manipulation by changing its morphology.

For example, a robot can enter a collapsed building for search and rescue in snake-

from and explore the building in a configuration featuring legs or wheels.

Self-reconfigurable robots can be categorized according to a number of criteria, two

of which are the architecture of the robot and the type of modules it is composed

of. The two most often used architectures in the literature are the lattice-type and

the chain-type architecture (see [65]). Lattice-type robots contain modules that are

arranged and connected in a regular pattern or grid (see for example [19]). Cubic

grids are a popular choice due to their high symmetry (see [10], [59], [38], or [18]),

but other lattice types such as hexagonal grids are also used in the literature (see

[5]). A lattice-type robot moves by relocating individual modules on the surface of

the robot thus creating the impression that the robot flows. Control and motion

can be executed in parallel. Lattice-type robots usually offer simpler reconfiguration

than chain-type ones since modules can only move to a discrete set of neighborhood

locations. Therefore, this type of robots can be scaled up to contain a higher number

of robots more easily. On the other hand, chain-type robots contain modules that

are connected in a tree or string topology and move by articulating their powered

2

joints (see for example [42], [61], or [1]). Such a chain can fold up to fill the space

but the underlying architecture is serial. A chain-type robot can reach any point or

orientation in the configuration space (i.e. continuous reconfiguration). It is there-

fore more versatile than lattice-type robots, but also more difficult to represent and

control. The second distinction that can be made about self-reconfigurable robots

pertains to homogeneity and heterogeneity, i.e. whether all modules of a robot have

the same properties or differ in one or more property. A variety of algorithms have

been proposed for homogeneous systems (for example [9], [68], or [18]) and in recent

years heterogeneous systems have enjoyed the same attention (see [19]). One last

criterion that is relevant in this thesis is the distinction between static and dynamic

reconfiguration. According to [12], static refers to reconfiguring a given shape at the

current location while dynamic reconfiguration uses the shape-changing ability to lo-

comote through the environment.

Modular robots offer a variety of advantages over fixed-morphology robots. In fact,

the key advantages of modular robots is their versatility, but also their potential for

robustness and low cost (see [65]). Broken modules can be replaced by functional

ones or new modules can be added without changing the general functionality of the

structure. The low cost of producing modular robots stems from the fact that they

are built of identical, relatively simple modules that can be mass-produced cheaply.

This only seems to be true for homogeneous robots, but even for heterogeneous robots

the number of specialized modules is small. So the majority of a heterogeneous robot

is made of identical modules as well. One major drawback of modular robots is their

lack of specialization and as a result their inferior performance compared to robots

tailored to a specific task or mode of locomotion. Additionally, the versatility of mod-

ular robots and their high number of degrees of freedom come at the cost of increased

mechanical and computational complexity of controlling them.

The possible tasks for self-reconfigurable robots are manifold. To name just a few

3

examples, they can be employed for exploration ([65]), self-assembly and self-repair

of tools ([31]), self-reconfigurable furniture ([18]), or larger structures ([7]). Their

shape-shifting capabilities can be used for locomotion in unstructured environments

(as in [18]), flexible manipulation ([7]), or three-dimensional visualization. In general,

self-reconfigurable robots are well-suited for working in environments and on tasks

with incomplete a-priori knowledge.

1.2 Problem Description

Self-reconfiguration can be done in a centralized or decentralized way. While central-

ized self-reconfiguration suffers from a lack of scalability due to limited parallelism,

decentralized self-reconfiguration lacks in efficiency during the planning stage mainly

because of the communication overhead due to message passing. Additionally self-

reconfiguration has to address the question of how to create a desired global behavior

and shapes based on local information and interactions. While this is straightforward

for centralized approaches that have global knowledge during the planning, decen-

tralized approaches run the risk of getting stuck in local minima (and therefore a

suboptimal reconfiguration) during planning due to limited local knowledge. A de-

sirable solution to the reconfiguration problem would e to use a hybrid approach

merging both centralized and decentralized concepts. Rule-based self-reconfiguration

with manually (for example [31], [8], [10], [12], or [66]) and automatically generated

rules (for example [25] or [7])have been used in the literature to achieve just that.

None of the existing approaches fulfills all of the following criteria though: arbitrary

three-dimensional input and output configurations, automatic generation of rulesets,

unambiguity of the reconfiguration, guaranteed reaching of the target configuration,

4

straightforward extensibility to heterogeneous systems. To address all of these re-

quirements, we propose a centralized planning approach that encodes all the neces-

sary information in locally applicable rules and a decentralized, distributed execution

stage.

1.3 Goal of this Thesis

The goal of this thesis is to present a novel approach for the automatic self-reconfiguration

of three-dimensional modular robots from an initial configuration CI into a desired

target configuration CT . In other words, we want our system to automatically plan

and execute CI Φ−→ CT , where Φ is a graph grammar or ruleset that is automatically

generated. This process is completed in two stages, the planning and the execution

stage. In stage one, paths are planned for every module from its initial position to

its target position. This planning is done in a centralized fashion with global knowl-

edge. The resulting paths are then rewritten into a graph grammar Φ composed of

production rules. After generating the rules in stage one, these rules can be checked

for applicability and applied in stage two. During this rule execution stage, modules

can only access local information about neighboring modules and apply the rules in

a decentralized fashion.

The main contribution of this thesis is the automatic generation of graph gram-

mars for the self-reconfiguration of three-dimensional structures. Any arbitrary ini-

tially connected configuration composed of cubic modules can be reconfigured into

any prespecified, connected target configuration. The only constraints of our method

are that both configurations are not allowed to contain any enclosures and have to

feature an overlapping region that contains at least one module. Our approach yields

a unique reconfiguration sequence and we prove that the target configuration is the

only possible outcome of the reconfiguration sequence.

5

CHAPTER II

BACKGROUND AND PREVIOUS WORK

Modular robots with their large number of individual components require novel, scal-

able control strategies and tools for describing the structure and dynamics of the

system. In recent years, decentralized, distributed approaches to self-reconfiguration

have been shown to scale better than centralized ones. One way of dealing with these

distributed robotic systems is to employ graph theory and graph grammar theory. In

networked and distributed robotics, graph theory has been established as a reliable

tool for describing the topology of large teams of individual agents. It also allows us

to formally describe how local interactions affect the global system behavior. Graph

grammars, on the other hand, provide the means to formally represent these local

interactions with rules. Combining both graph theory and graph grammars allows us

to create a distributed, scalable system whose actions are based on local information

and decisions only. In this chapter we present an introduction to graph theory, graph

grammars, as well as previously introduced approaches to self-reconfiguration. Note,

however, that this chapter is not meant to be a thorough review on graph theory

and graph grammars. Only concepts that are required to represent the structure of

our system and interactions between individual agents are covered. Additionally, we

present an in-depth treatment of previous work in the area of self-reconfiguration and

various approaches research teams have tried to solve this problem.

2.1 Graph Theory

Graph theory is the study of graphs, which can be thought of mathematical abstrac-

tions of networks. We present our system as a labeled graph so that we can apply

graph grammatical concepts such as the notion of connectivity to it. This section

6

explains the concepts of graph theory required for the representation of our system.

2.1.1 Graphs

A graph is an abstraction of a networked system that contains no information about

the details of interactions between agents. All a graph specifies is the structure and

topology of a system. Its two main components are vertices and edges. Vertices rep-

resent agents or modules of a system and store data about them and their internal

states. Edges describe communication links or physical connections between modules.

In a graph, an edge represents a connection between two vertices that can communi-

cate with each other. Edges can either be directed or undirected, meaning that the

flow of information is unidirectional or bidirectional. In our system, we will utilize

bidirectional edges. Therefore, if agent i can communicate with agent j, j can com-

municate with i as well. Another important characterization of a graph is whether it

is static or dynamic. In a static graph, the edge set will not change over time and the

topology is fixed. In a dynamic system like our representation of a self-reconfigurable

robot, however, edges are disappearing and reappearing because modules are moving

around and the topology of the corresponding graph is constantly changing. So, while

the vertex set of our system is time-invariant (unless modules fail), the edge set and

therefore the topology of our network of agents changes over time. A graph can be

formally defined as follows.

Definition 1. A labeled graph G is defined as a set of labeled vertices and edges of

the form G = (V,E, l), where V is a finite or infinite set of vertices, E is a set of

unordered pairs connecting two elements of V and l is a labeling function l : V −→ Σ

that assigns labels to vertices. Σ is the alphabet that labels can consist of. More

formally, V = {v1, . . . , vN}, where N is the total number of nodes in the graph and E

is the edge set defined as E ⊆ V ×V , with ei,j ∈ E if there exists a connection between

vi and vj. For a static graph, E and l are time-invariant, for a dynamic graph, E(t)

7

Figure 1: Example of a labeled graph. Vertex labels are represented by integers,
edge labels by letters.

and l(t) are time-varying. An example of a labeled graph is shown in Fig. 1.

In this work, a graph is a model of the network topology of an interconnected set

of cubic modules. Each cube is represented by a labeled vertex in the graph and an

edge exists in the graph where a cube is adjacent to a neighboring cube. A detailed

description of this adjacency notion is given in Section 3.1.

2.1.2 Representation of a Graph

The previous section showed the representation of a graph as a vertex set V and an

edge set E. Another useful representation employs matrices, specifically adjacency

matrices A(G), degree matrices ∆(G), and the graph Laplacian L(G).

For an undirected graph, the adjacency matrix A(G) is symmetric and encodes

the adjacency information of the network. A(G) is defined as follows:

[A(G)]ij =

 1 if ei,j ∈ E

0 otherwise

The degree matrix ∆(G) is a diagonal matrix that contains the vertex-degrees of

G along its diagonal. The vertex-degree is the cardinality of the neighborhood N (vi)

of vertex vi, i.e. the number of neighbors adjacent to vertex vi.

The graph Laplacion L(G) is another representation of a graph and is defined

as L(G) = ∆(G) − A(G). This matrix is the basis of algebraic and spectral graph

theory. It allows us to calculate the connectivity of a graph as well as the number of

8

Figure 2: Example of a path from node 1 to 5 (shown in red)

connected components, two concepts that we use extensively in this work and that

will be explained next.

2.1.3 Connectivity of a Graph

A graph is said to be connected, if a path exists between any two vertices in the

graph. A path in this context refers to a set of vertices {v1, v2, . . . , vm}, such that

for k = 0, 1, . . . ,m− 1 the vertices vk and vk+1 are adjacent. The vertices v0 and vm

are said to be the endpoints of the path (see Fig. 2). To describe connectivity in

mathematical terms, the connectivity c(G) of a graph G = (V,E, l) has been defined

as the number of connected components of the graph G. A connected component is

a subgraph GS of G that is connected, but not connected to other subgraphs of G.

A connected graph features a connectivity of c(G) = 1. In other words there is only

one connected component in a connected graph.

This property can be shown by analyzing the eigenvalues of L(G), specifically

the number of zero eigenvalues of L(G). Every zero eigenvalue corresponds to one

connected component of the graph. In other words, a connected graph has only one

zero eigenvalue, i.e. λi > 0 for i > 1 and c(G) = 1. For our system, we need

to maintain connectivity at all times, which is why G is only allowed to have one

connected component, c(G) = 1, and λi > 0 for i > 1.

9

2.2 Graph Grammars

Graph grammars were first introduced in the late 1970s and are a generalization of

the standard linear grammars used in automata theory and linguistics (see [16] or

[58]). They offer a tool for manipulating multidimensional data in graph form and

can be seen as a graph-rewriting tool since they enable the parsing, generation, and

manipulation of graphs. Graph grammars can be used to describe and control changes

in the network topology through rules. Each rule r in a graph grammar or ruleset Φ

is composed of two labeled graphs gl and gr and is of the form gl
r−→ gr. If the local

topology of a module, i.e. its neighborhood structure, in the system matches gl, then

the module rewrite its states and updates its local topology to match gr. Because

graph grammar rules require local information only and can be applied by multiple

modules concurrently, they allow the manipulation and coordination of a large number

of objects (see [32] and [31]). Depending on the ruleset design, the dynamics resulting

from the application of a graph grammar can be nondeterministic or deterministic and

concurrent or sequential. The graph grammars we generate as outlined in Section 3.4

are designed in such a way that interactions happen sequentially and deterministically.

Graph grammars have been applied to a wide range of problems such as term graph

rewriting, DNA computing, distributed algorithms and scheduling problems, software

architectures and evolution, or visual modeling of behavior and programming. Most

recently, graph grammars have also been applied to self-reconfigurable robotics for

example in [32] or [31].

This section introduces graph grammar theory and presents the concepts and

definitions used in this thesis. An in-depth treatment of graph grammars can be

found in [16], [64], and [17]. Previous work on graph grammars is presented in Section

2.3.2. The following definitions are based on [32].

Definition 2. A production rule or simply a rule consists of two labeled graphs (as

10

Figure 3: Example of a rule. Shown are the left-hand side and the right-hand side.
Note how the rule changes vertex labels, edge labels, and the edge structure.

defined in Def. 1), a left-hand side gl and a right-hand side gr. It describes a trans-

formation of a graph GS that is isomorphic to gl from GS to gr. An example of a rule

is shown in Fig. 3.

Basically, a rule describes how the states and local topology of a subset of vertices

S ⊂ V changes. The size of the rule is a measure of “how local” the rule is. A graph

grammar is a set of production rules that operate on a graph G0. Therefore, we call

the pair (G0,Φ) a system, where G0 is an initial labeled graph and Φ is a graph

grammar. A rule r ∈ Φ can be applied to G0 only when it is applicable:

Definition 3. A rule is applicable to G if there exists a subgraph GS of G that

is isomorphic to gl, which is also denoted as GS
∼= gl. A graph GS is said to be

isomorphic to gl if both the labels and the edge structure are equivalent.

Note that the applicability of rules only depends on the labels of the vertices

vi ∈ V and not on the underlying vertex IDs in the graph.

Definition 4. The application of a rule r yields a new graph Gk+1 that results from

Gk by replacing a subgraph of Gk
∼= gl with gr. gl and gr are the left-hand side and the

right-hand side of the rule r, respectively. Given a graph Gk(V,E, l), the application

of a rule r to Gk yields a new graph Gk+1(V,E ′, l′), i.e. Gk
r−→ Gk+1.

Fig. 4 shows a graphical representation of a rule application on a host graph.

The identified subgraph matching the left-hand side of the rule shown in Fig. 3 is

highlighted. In other words, the rule shown in Fig. 3 is applicable to the highlighted

11

Figure 4: Example of a rule application. The subgraph matching the left-hand side
of the rule shown in Fig. 3 is highlighted.

subgraph according to Def. 3. In the above definition, the vertex set V remains the

same upon the application of a rule. Only the edge structure and the labels of the

vertices change. For the purpose of self-reconfiguration, each step in the reconfigu-

ration process yields a graph Gi that is part of a trajectory, i.e. a finite or infinite

sequence σ = {Gi}ki=0 s.t. there exists a sequence of applicable rules {ri}k−1
i=0 where

ri ∈ Φ and Gi
ri−→ Gi+1. The set of all trajectories is denoted as T (G0,Φ) and the

ith graph of σ ∈ T as Gi. An example of a valid trajectory can be seen in Chapter

4, e.g. in Fig. 15. Each graph Gi as part of a trajectory is called reachable by the

system (G0,Φ).

Definition 5. A graph G is reachable by the system (G0,Φ) if there exists a finite

trajectory σ ∈ T (G0,Φ) such that G ∼= σk for some k. A reachable graph can be

temporary, i.e. some rule in Φ operates on part of it, or stable.

Definition 6. A graph G is stable, if no rule in Φ can alter it. Note, however,

that this doesn’t mean that no more rules are applicable to G, merely that it is left

unchanged by the application of any further rules.

The goal of this thesis is to generate a graph grammar Φ in such a way that,

starting with a system (G0,Φ), the reconfiguration leads to a stable graph via a valid

trajectory obeying given constraints (see Section 3.3). We designed our algorithms

such that the stable set only contains the graph derived from the target configuration

CT . The rule generation and a proof that this goal is indeed achieved by our generated

12

graph grammars is given in Section 3.4.2.

2.3 Self-Reconfiguration Approaches

Self-reconfiguration of modular robots is not a new field. Researchers have been

working in this area for over three decades and came up with a variety of approaches

to solve the self-reconfiguration problem. A lot of work has been done on the planning

aspect of self-reconfiguration. Available planning strategies include hierarchical or

layered planning, rule-based planning, Markov decision process-based planning, and

graph signatures-based planning. This section provides a brief overview of the state

of the art in self-reconfigurable robotics.

2.3.1 Hierarchical Planning and Reconfiguration

Hierarchical planning for self-reconfiguration decomposes the problem into multiple

layers. [36] introduced a planner that operates on three levels: trajectory planning

for individual modules, configuration planning to reconfigure the whole structure,

and task-level planning. Similar to our work, their algorithms compute the movable

and reachable set. Additionally, they employ a scaffold planning approach to match

module positions in the initial to those in the target configuration. [68] presents a

two-layered planning approach. The upper layer decomposes the planning problem

into smaller subproblems. The lower layer then solves these subproblems using a rule

database whose rules are based on connectivity information and do not use labels.

[57] uses a similar layered approach, in which the top layer calculates paths for blocks

of cubes, another layer calculates paths for individual cubes, and the lowest layer

determines link actions. [69] and [68] also introduced hierarchical reconfiguration

planning and use rules for their lowest level of motion selection.

13

2.3.2 Rule-based Reconfiguration

As opposed to hierarchical planners, which almost exclusively plan module paths in a

centralized way with global knowledge, rule-based reconfiguration is a decentralized

and distributed approach to self-reconfiguration. Previous work on rule-based self-

reconfiguration can be broadly grouped into two categories: manually defined rulesets

and automatically generated rulesets.

[19] accomplished self-reconfiguration with a manually defined ruleset and shows

how an intermediate configuration can be used in the reconfiguration process. [10] and

[12] describe a rule-based system inspired by cellular automata. Their rulesets are de-

signed manually and enable groups of modules to split and merge, climb over or move

around obstacles, or move through tunnels. Their approach allows the instantiation

of their algorithms to a wide range of systems, for example the M-TRAN system (see

[42]). Other work on manually defined rulesets includes [10], [12], and [68], which

have demonstrated the feasibility and scalability of rule-based self-reconfiguration.

Contrary to our automatically generated rulesets, the rulesets in these papers do not

contain graph grammar rules, since no labels are used.

The second category of automatically generated rulesets is represented by [25] and [8].

[25] applies the rules to a simulated two-dimensional structure The rules are automat-

ically generated and only use connectivity information to check for rule applicability.

Since no additional labels are used to control the reconfiguration, multiple rules can

potentially be applicable at the same time. [8] introduces a rule-based control strat-

egy for the ATRON system (see [7]). The rules are automatically generated and take

connectivity information into account. They introduce wild card rules to reduce the

size of the ruleset. This paper tries to solve two main problems with rule-based re-

configuration. On one hand, the complexity of defining rules increases faster than the

complexity of the desired behavior. And on the other hand, with an increasing num-

ber of rules, the probability of conflicting rules increases. Our approach solves both

14

of these problems by automatically generating graph grammar-based rules instead of

rules based on connectivity information only.

Graph grammars, as a tool for manipulating multidimensional data, have also

been applied to modular robotics. [31] and [6] show the feasibility of graph grammars

by reconfiguring programmable parts, a triangle shaped hardware implementation.

The authors use a manually defined ruleset that is designed to form specific struc-

tures out of the triangular modules. As opposed to our system, [31] allows multiple

rules to be applicable to the whole system at the same time. This means that unlike

for our system, the approach shown in this paper does not guarantee a unikely deter-

mined reconfiguration sequence or the reaching of the target configuration

A compact overview of graph grammatical concepts and definitions is given in [17].

Graph grammars provide a tool for achieving fine-grained control of the reconfigu-

ration process by using labeled graphs to describe local states. Additionally, graph

grammars allow to avoid problems such as multiple applicable rules. To the best of

our knowledge automatically generated graph grammars for self-reconfiguring modu-

lar robots is a novel approach to self-reconfiguration.

2.3.3 Various Approaches

Many other approaches have been presented in the literature, some of which include

the following: [66] shows reconfiguration algorithms for the Proteo system. This paper

describes a distributed control system, in which each module acts as an independent

agent and determines whether it can move toward the target position or not based on

local criteria and information about the initial and the target configuration. Paths are

not pre-computed but planned online. The approach presented in this paper assumes

that the order, in which the modules are moved, is known a-priori and that agents have

incomplete and delayed information about the global configuration. Additionally,

this approach does not guarantee the reaching of the desired target configuration.

15

[18] formulates the reconfiguration problem as Markov decision process to reconfigure

a lattice-based robot. According to the paper a solution is obtained in sublinear

time. Their algorithms can handle three-dimensional homogeneous configurations

of modules up to size 753 and map actions to lattice positions instead of modules.

Because an optimal action is associated with each lattice position, the same action

is applied to every module at a certain position. Therefore, this approach can only

handle homogeneous systems. Furthermore, this approach is specifically designed for

the locomotion of self-reconfigurable systems. The approach presented in this thesis,

on the other hand, can compute arbitrary reconfiguration sequences, which includes

locomotion as a special case.

2.3.4 Implementations

Several hardware platforms have been designed for algorithm verification and feasi-

bility studies, for example the SuperBot [61], the Ubot [63], the YAMOR [52], the

ATRON [7], or the M-TRAN platform [42]. On the other hand, various simulators

have been designed to facilitate modular robotics research. Examples include the

USSR (Unified Simulator for Self-Reconfigurable Robots) [15], Gazebo [34], Play-

er/Stage [21], [22], and URBI [3].

16

CHAPTER III

SELF-RECONFIGURATION

This chapter describes the representation of our system and the reconfiguration plan-

ning approach in detail. We outline the sliding cube model as the basis for our

system representation and present the mathematical description of our system. Next,

we give an overview of the reconfiguration process and the individual components of

our algorithm. That is followed by a discussion of the assignment and path planning

stage, as well as a description of constraints that apply to the reconfiguration. Lastly,

the automatic rule generation as the main contribution of this thesis is presented in

depth.

3.1 System Representation

In this thesis we investigate a modular robotic system whose basic building blocks

are visually represented by cubes (see Fig. 5). Moreover, no physical constraints such

as gravity, module masses, or forces are taken into account. Additionally, the entire

reconfiguration process happens in free space and is not restrained by walls, floors, or

any other obstacles. These assumptions are made in order to focus the contribution

on the self-reconfiguration process rather than on implementation-specific details. In

chapter 4 we present one reconfiguration in obstacle-constrained space to show the

straightforward extensibility of our approach.

3.1.1 Sliding Cube Model

Following the taxonomy in [65], modular robots can generally be categorized into

lattice-type and chain-type architectures. We present a lattice-based system that is

17

(a) Initial (transparent) and tar-
get (transparent) configuration and
overlapping nodes (opaque)

(b) Movable nodes (opaque) as
part of the initial configuration
(transparent)

(c) Immediate target successor po-
sitions (opaque) as neighboring po-
sitions of the initial configuration
(transparent)

Figure 5: Graphical representation of the overlapping, the movable, and the imme-
diate target successor set in the simulator

embedded in a discrete coordinate system using the sliding cube model (see [19]). The

sliding cube model is an abstraction that greatly simplifies development of algorithms

and can be instantiated to various platforms. Every module (also referred to as node)

is represented as a cube with dimension δ (w.l.o.g. we use unit cubes, i.e. δ = 1),

an origin xi ∈ Z3, a globally unique integer identifier, and labels. A cube features

connectors on each surface and is capable of executing motions. A motion can be

generally described as a function f(xi,m) = xi + m where xi ∈ Z3 and m ∈ Z3.

Therefore, a motion moves a cube to a new position in Z3. In particular, the cubes

in our system are capable of two primitive motions - sliding along a surface made of

other cubes as well as convex transitions to orthogonal surfaces (see [38]).

Definition 7. A sliding motion is defined as a function f(xi,ms) = xi + ms where

xi ∈ Z3 and ms ∈ Z3 ∧ms ∈Ms. Ms is the set of all possible sliding motions and is

defined as Ms = {m ∈ Z3|mx = δ ∨my = δ ∨mz = δ ∧mx +my +mz = δ}.

An example of a sliding motion would be f(xi,ms) : (xi,x, xi,y, xi,z)
ms−→ (xi,x +

δ, xi,y, xi,z).

18

Definition 8. A convex motion is defined as a function f(xi,mc) = xi + mc where

xi ∈ Z3 and mc ∈ Z3 ∧mc ∈Mc. Mc is the set of all possible convex motions and is

defined as Mc = {m ∈ Z3|mx < 2δ ∧my < 2δ ∧mz < 2δ ∧mx +my +mz = 2δ}.

An example of a convex motion would be f(xi,mc) : (xi,x, xi,y, xi,z)
mc−→ (xi,x +

δ, xi,y + δ, xi,z). Note, however, that we will not allow the application of sliding or

convex motions unless they are feasible. In fact, the movement of individual cubes

requires a connected substrate of other cubes. Such a connected arrangement is

referred to as a configuration, i.e. a configuration describes a geometric arrangement

of cubes. The representable space of our system is Z3N and any configuration C is a

subset of the representable space, C ⊂ Z3N .

3.1.2 Adjacency Matrix Notation

One way in which a configuration can be described is through three adjacency matrices

and a labelset. Every adjacency matrix describes the adjacency of cubes along one

dimension. Its entries are given by g(C) = (Ak, l), where

Ak = [ai,j,k] =

1 if (xi − xj)T · bk = 1

−1 if (xi − xj)T · bk = −1

0 otherwise

l(i) = l(ci), ci ∈ C, i, j ∈ {1, . . . , N}

Here, k represents one dimension of the configuration space Z3N spanned by the

three orthogonal base vectors bk, ci stands for a cube of the configuration C, and the

labels l(i) of node i are the same as the labels of cube ci. One adjacency matrix for

every dimension of the configuration space is required to encode the three-dimensional

geometry of the configuration. The advantage of our adjacency representation is that

we can encode the vertex set as well as the edge set of the represented graph in

one data structure. Just the labels of each vertex have to be stored separately. An

example of the adjacency representation is shown in Fig. 7(a) and Fig. 6.

19

A1 =

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

A2 =

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

A3 =

0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

Figure 6: Adjacency matrices for the configuration in Fig. 7(a)

(a) Representation of the
adjacency matrices shown
in Fig. 6

1

2 3 4

−b
1

+b
2
−b

2

+b
1 −b

3

+b
3

(b) Graph G = (V,E, l) repre-
sented by the adjacency matrices in
Fig. 6

1

2 3 4

(c) Connectivity graph
of the configuration in
Fig. 7(a) with articulation
points (highlighted)

Figure 7: Graphical representation of the adjacency matrices in Fig. 6 and the
corresponding graph.

3.1.3 Graph Notation

Alternatively, a configuration can be represented as a labeled graph G = (V,E, lG)

where G is composed of a vertex set V , an edge set E, and a label set lG. This

representation is required for the rule generation presented in Section 3.4.

Definition 9. The represented graph G = (V,E, lG) is composed of the vertex set

V , the edge set E, and edge and vertex label set lG and is derived from (Ak, l) via

the adjacency-to-graph mapping h(Ak, l) = (V,E, lG). V is a finite set of integers

corresponding to the cube IDs, i.e. V = {1, . . . , N}, where N is the total number of

cubes. E is derived from the three adjacency matrices Ak as E ⊆ V ×V , with ei,j ∈ E

if Ai,j,k 6= 0 for some k ∈ {1, 2, 3}. lG contains edge labels and vertex labels and is

derived from Ak and l as follows:

lG(vi) = l(ci) with vi ∈ V, ci ∈ C

lG(ei,j) = sign(Ai,j,k)bk with ei,j ∈ E and Ai,j,k 6= 0

20

Here, i, j ∈ {1, . . . , N}, l(ci) ∈ l, and bk is a base vector. The vertex labels of vi ∈ G

are the same as the labels for the cubes ci ∈ C.

A graphical representation of a graph G is shown in Fig. 8. G is a directed, labeled

graph that preserves the three-dimensional structural information of the configura-

tion. Whereas this representation is required for rule generation and application,

most other functions do not need three-dimensional information. Therefore, we use

a reduced version of G that only store the connectivity information.

Definition 10. The connectivity graph Gc = (V,E, lGc) contains a vertex set V and

an edge set E, which are the same as before and the labels lGc, which are defined as

follows: l(vi) = l(ci) for vi ∈ V and ci ∈ C, i.e. the labels of nodes vi ∈ Gc are the

same as the labels of cubes ci ∈ C. The connectivity graph does not contain any edge

labels and stores connectivity information in only one adjacency matrix A, which is

defined as

Ai,j = |sign(
3∑

k=1

|Ai,j,k|)| i, j ∈ {1, . . . , N}

An example of a connectivity graph is shown in Fig. 9(b).

We assume that the initial configuration CI and the target configuration CT are

known and contain the same number of modules. We employ a two-stage planning

process. In stage one, our algorithm finds the initially overlapping region O〉\〉t of

both CI and CT and then calculates a path for every node ci ∈ CI \O〉\〉t to a position

1

2 3 4

−b
1

+b
2
−b

2

+b
1 −b

3

+b
3

Figure 8: Graph G = (V,E, l) represented by the adjacency matrices in Fig. 6

21

(a) Randomly generated configu-
ration

1

2

3 4

5

6

7 89

(b) Connectivity graph of the configuration in Fig.
9(a) with articulation points (highlighted)

Figure 9: Configuration representation in the simulator

cj ∈ CT . Furthermore, a ruleset or graph grammar is generated from these paths. In

stage two, each node then executes rules that can be checked locally for applicability.

Local in this context means that each rule describes a neighborhood of the current

cube and can only manipulate cubes in that neighborhood. The rule execution is

done in a decentralized way during which each cube can just access neighborhood

information and the ruleset.

3.2 Assignment

The reconfiguration process requires us to move cubes from their initial positions to

their target positions. Therefore, we have to calculate paths for cubes ci ∈ CI to their

desired positions in cj ∈ CT . This section describes the assignment of a ci ∈ CI to a

position cj ∈ CT , which includes the computation of the overlapping set, the movable

set, the immediate target successor set, as well as the actual assignment.

22

3.2.1 The Overlapping Set

To reduce planning time, we first determine cubes ci ∈ CI that already occupy po-

sitions cj ∈ CT . These cubes are said to be in the overlapping region of CI and CT

and do not have to be moved to the target configurations. Cubes ci in the initially

overlapping region Oinit = CI ∩ CT (see Fig. 5(a)) are therefore excluded from the

planning process.

Definition 11. The overlapping set of cubes O is defined as O = C ∩ CT . In other

words, every cube ci that is both part of the current and the target configuration is in

the set of overlapping cubes (see Fig. 5(a)).

Note that O is the overlap of the current configuration C and the target configu-

ration CT . Therefore, it has to be recalculated after every reconfiguration step. The

initial overlapping region is furthermore denoted as Oinit.

3.2.2 The Movable Set

The movable set M contains all cubes ci of the current configuration C that can be

relocated without disconnecting the configuration. Before we can define the movable

set, we need to introduce the notion of articulation points.

Definition 12. An articulation point in a graph is a node v ∈ V whose removal

would disconnect the graph and reduce the rank of the associated graph Laplacian (see

Fig. 9(b)). In other words, the removal of an articulation point from the graph would

increase the number of connected components c(G), i.e. c(G− v) > c(G).

A connected graph G has only one connected component, c(G) = 1. Our self-

reconfigurable system has to remain connected at all times to guarantee a successful

reconfiguration. In order to enforce this requirement, we have to ensure that a node

that is an articulation point of the connectivity graph is never moved. The movable

set is therefore defined as follows:

23

Definition 13. The movable set M is a set of cubes that can be moved without

disconnecting the configuration and is defined as M = {ci ∈ C|ci ∈ CI \ O ∧

ci /∈ A(C) ∧ |N1(ci, C)| ≤ 5}. N1(ci, C) is the one-hop neighborhood and defined

as N1(ci, C) = {cj ∈ C|dist(ci, cj) = 1}. A(C) is the set of articulation points of the

graph representing the current configuration C (see Fig. 7(c)).

This definition is based on the sliding cube model (see [19]) and only allows mod-

ules on the surface of the configuration to be relocated. This is because Def. 13

excludes immobile cubes within the configuration (i.e. cubes that have six neighbors)

from the movable set. While M is a set of movable cubes, we need to find potential

target positions for cubes ci ∈M - the immediate target successor set R.

3.2.3 The Immediate Target Successor Set

The immediate target successor set R contains all positions cj in the neighborhood

of the current configuration C that cubes can be relocated to without disconnecting

the configuration or violating other constraints (see Section 3.3.2). According to the

sliding cube model (see [19]) and to the following definition, R contains only positions

cj on the surface of C.

Definition 14. The immediate target successor set R is defined as positions cj ∈ CT

that are adjacent to the current configuration, i.e. lie in the one-hop neighborhood

N1(C) of the current configuration C as well as in the target configuration CT . R =

(CT ∩N1(C))\C, where N1(C) = {cj|cj /∈ C ∧ ci ∈ C ∧dist(ci, cj) = 1} (see Fig. 5(c)).

Therefore, R is a subset of N1(C).

Note that N1(C) is the one-hop hull of the current configuration C and at the

same time the planning space for the path planner. We know by assumption that

R is nonempty unless the target configuration has already been assembled. The

immediate target successor set R consists of reachable positions cj, which refer to

24

individual cube positions and not to a reachable, stable graph as defined for graph

grammars in Def. 6.

3.2.4 Assignment

Both M and R define a set of cubes. Before we can plan a path for a cube ci ∈

M ∧ ci ∈ CI to a position cj ∈ R ∧ cj ∈ CT , we need to define an assignment.

Therefore, we calculate the pairwise costs between any two cubes ci ∈M and cj ∈ R

and pick the pair ci and cj with the smallest cost. In a case where two or more

assignments have the same cost, we pick an assignment randomly. This approach is

also called a greedy approach and has been used in the literature for homogeneous

reconfiguration before (see [19]). A path is then calculated between cube ci ∈M and

its assigned target position cj ∈ R.

3.3 Path Planning

This section describes the path planning approach we have used to compute paths

for the assigned pair of cubes ci ∈ CI ∩ M and cj ∈ CT ∩ R. We also formally

define paths, the planning space, and describe constraints on the path planning. The

input for the path planning stage is the assignment of the previous assignment stage

that determines which cube ci ∈ CI should be moved to which position cj ∈ CT .

The output of the planning stage is a path that is then used as input for the ruleset

generation discussed in Section 3.4.2.

We plan a path pi for a single cube at a time, i.e. from ci ∈ M to cj ∈ R. The

path pi is only allowed to contain positions in the planning space and use primitive

motions to move the current cube ci.

Definition 15. A path is a concatenation of motions m ∈ {mc,ms} (see Def. 7 and

Def. 8) that move cube ci ∈ (CI \O)∩M to position cj ∈ CT ∩R. The length of the

path pi, or the total number of motions it contains, is denoted as |pi|.

25

Path planning requires the completion of two steps: the computation of the plan-

ning space and the actual search. The computation of the planning space is described

in detail in the following section. The search through the planning space uses com-

mon A*, a best-first search employing the Manhattan distance as heuristics to guide

the search to a solution. A heuristic representative of the search problem makes A*

faster than uninformed search strategies such as depth-first or breadth-first search

(see Section 3.3.3).

3.3.1 Planning space

The planning space P(C) available to the path planner is defined as P(C) = {ci ∈

C|cj /∈ C ∧ dist(ci, cj) = δ}. In other words, P(C) is the search space for the path

planner and represents the space a cube ci can move through during relocation from

its initial position to the target position. Since P(C) is calculated as the one-hop

neighborhood it includes the hull around C as well as any tunnels through the con-

figuration. Tunneling is also allowed in [12], but in this paper tunnels have to be

accounted for explicitly in the ruleset whereas in our approach tunnels are implicitly

included in the planning space.

P(C) depends on the current configuration C, and therefore needs to be updated

whenever C changes, i.e. after each path is computed. This approach also allows for

the straightforward inclusion of obstacles into the path planning. Obstacles CObstacles

are represented the same way as a configuration - as a set of cubes. Therefore, to

make our system aware of obstacles, we remove every cj ∈ P(C) that is occupied

by an obstacle, i.e. cj ∈ P(C) ∩ CObstacles. In other words, we redefine P(C) as

Pr(C) = {cj|ci ∈ C ∧ cj /∈ (C ∪ CObstacles) ∧ dist(ci, cj) = δ}. If an assignment

a = {cinit, ctarget} is given, the planning space has to be modified to exclude certain

positions in the neighborhood N1(cinit, C). These are the positions, which cinit could

reach via primitive motions, but which would disconnect the structure if cinit actually

26

Figure 10: Example showing the planning space for a random configuration. Notice
how certain positions adjacent to Node 1 are not part of the planning space.

moved there. The planning space can therefore be redefined as follows Pr(C) =

{cj|ci ∈ C ∧ ci 6= cinit ∧ cj /∈ (C ∪ CObstacles) ∧ dist(ci, cj) = δ} (see Fig. 10).

3.3.2 Constraints

This section outlines the constraints, which apply to the path planner and which

guarantee that the configuration remains connected at all times. A path that obeys

all constraints is called a feasible paths.

Motion constraints This constraint states that the path planner is only allowed

to use the two primitive motions defined in Def. 7 and Def. 8 to move cubes from

ci ∈ C through the planning space P(C) to its target position cj ∈ CT . Any other

motion would violate the motion constraints and result in an infeasible path. An

example of possible primitive motions for a cube is shown in Fig. 11.

Connectivity constraints This constraint assures that the configuration remains

connected at all times, i.e. that the connectivity c(G) = 1. In other words, we need

to make sure that no motion of any cube disconnects the configuration.

27

Figure 11: Example showing possible primitive motions for Node 1.

Theorem 1. The configuration C remains connected at all times during reconfigura-

tion if the initial configuration CI is connected.

Proof. A configuration C can only become disconnected if a cube ci executes a primi-

tive motion that violates the connectivity constraint. Cubes always move along paths,

which are planned in the planning space P(C). By construction of the planning space

P(C) (see Section 3.3.1) and the fact that every position cj ∈ pi, where pi is path i, is

also cj ∈ P(C), no path will contain a motion violating the connectivity constraint.

Additionally, the assignment a = {cinit, ctarget} is chosen such that moving cinit does

not disconnect the configuration and such that ctarget ∈ (P(C) ∩ R (see Section 3.2.

Therefore, the configuration C will remain connected during reconfiguration, if CI is

connected.

Local blocking constraints This constraint ensures that no holes or enclosures

are formed during the reconfiguration of the structure. Any position cj ∈ R (as

defined in Def. 14) that is a blocking position is removed from R, where blocking

positions are defined as follows.

28

Figure 12: Example showing a blocking position (highlighted) for a hollow cube.

Definition 16. A position cb ∈ (CT ∩ R) is said to be a blocking position if any of

its neighbors ck ∈ N1(cb, C) violate the following conditions.

|N1(ck, C)| < 5 if ck ∈ N1,occupied(cb, C)

|N1(ck, C)| < 5 if ck ∈ N1,unoccupied(cb, C) \ CT
.

where N1,occupied(cb, C) = {cj ∈ C|dist(cb, cj) = δ} and N1,unoccupied(cb, C) = {cj /∈

C|dist(cb, cj) = δ}.

In other words, this definition ensures that moving a cube to position cb does not

cause the neighborhood set of any of the neighboring positions to grow larger than 4.

This allows us to avoid local blocking of positions. An example of a blocking position

is shown in Fig. 12).

Note, however, that this is a local check. It is not equivalent to hole detection

as used in graph theory since it checks only the local neighborhood, i.e. N1(cj, C)

of a position cj. Such restricted local knowledge can result in overlooked holes or

enclosures in the configuration. For homogeneous reconfiguration with greedy assign-

ment as done in this thesis, local blocking constraints were avoided the generation of

29

enclosures during reconfiguration experiments.

Planning space constraints Planning space constraints restrict P(C) as men-

tioned in Section 3.3.1 and are used to incorporate obstacles into the path planning.

Therefore, any position cj ∈ (P(C)∩CObstacles) is removed from P(C) so that positions

occupied by obstacles can not be used for path planning.

3.3.3 Implementation

The path planner uses a best-first search, namely A*, and the Manhattan distance

as heuristic. This metric was used because it most accurately represents the discrete

lattice structure of our system and the possible movements of the cubes. The input for

the path planner is the current configuration C, the planning space P(C), and a valid

assignment pair a = {cinit, ctarget} containing an initial cube cinit and a target position

ctarget. The output is a set of cube positions describing the path from cinit to ctarget. In

this thesis, we use A* for path planning together with the Manhattan distance as cost

metric as it most accurately represents the discrete lattice structure of our system

and the possible movements of the nodes. Other planners can of course be used, but

we made this choice due to A*’s properties of optimality and completeness, which

ensure us to find the optimal paths in polynomial time assuming that the heuristic

meets the requirements defined in [60]. The Manhattan distance we use as heuristic

does fulfill these criteria. Optimality can be traded for path length, i.e. there exists

a trade-off between planning time and path length. Since for reconfigurable robots,

computation is less expensive than motion from an energy consumption perspective,

we chose optimality of paths over planning time. The result of the path planning

stage is a set of paths that describe the complete reconfiguration from CI to CT . This

set of paths is then rewritten into a ruleset as discussed in the next section.

30

3.4 Rule Generation

In this thesis, we employ graph grammatical concepts to bridge the gap between global

information that is available during planning and local information that is available to

the cubes during reconfiguration. The centralized path planning results are rewritten

into rules that can be checked locally for applicability. Contrary to rules only based

on connectivity information, graph grammars offer fine-grained control over the ap-

plicability of rules and allow the encoding of additional information into the labels

of the rules. In this work, the initial graph is derived from the start configuration

CI and the reachable stable graph is derived from the target configuration CT . The

production rules of the graph grammar are generated from the calculated paths as

shown in Section 3.4.2. This section explains the structure of the automatically gen-

erated rules, defines a mapping from cubesets to the graphs we work with, describes

the rule generation algorithm, and illustrates the ruleset execution.

3.4.1 Rule Structure

For the purpose of self-reconfiguration, a production rule for our system uses the rule

structure shown in Def. 2 and its two labeled graphs gl and gr are defined as follows:

gl = f(N2(ci, C))

gr = f(N2(ci +m, C)),

f is given below but essentially maps from cubesets to graphs. N2(ci, C) is the imme-

diate motion successor set of the current cube ci in the configuration C and is given

by N2(ci, C) = {cj ∈ C|ci ∈ C ∧ dist(ci, cj) ≤
√

2}. N2(ci, C) contains all cubes at a

distance of one primitive motion from cube ci. Both graphs, gl and gr, are derived

from the sets N2(ci, C) and N2(ci +m, C) of ci and its current motion m (given by the

path planner) via the cubeset-to-graph mapping f .

31

(a) Left-hand side of a rule (b) Right-hand side of a rule

Figure 13: Visual representation of a rule that shows a convex motion of cube 1.

ID : 130
g l s t r u c t : [1 x1 s t r u c t]
g l l a b e l s : ’ 114 ,130 ,1 ,25 ’
g r s t r u c t : [1 x1 s t r u c t]
g r l a b e l s : ’ 114 ,131 ,1 ,25 ’
update ne ighbors : []

Listing 3.1: Rule data structure

Definition 17. The relationship between a cubeset C and a graph G = (V,E, lG)

is given by the cubeset-to-graph mapping f, which is defined as f = h ◦ g such that

f(C) = (V,E, lG) with mappings g and h defined in Section 3.1. The inverse graph-

to-cubeset mapping f−1 is given by f−1 = g−1 ◦ h−1 such that f−1(V,E, lG) 3 C.

The application of a rule r to a subgraph GS, i.e. r(GS
∼= gl) = gr, yields a

new graph G′. The changes in the edge and label set described by G = (V,E, lG)
r−→

(V,E ′, l′G) = G′ represent the motion in the configuration space, i.e. C = f−1(G) and

C ′ = f−1(G′), where ci has been moved from ci ∈ C to ci + m ∈ C ′. Fig. 13 shows a

graphical representation of N2(ci, C) = f−1(gl) and N2(ci + m, C) = f−1(gr) of some

rule. The highlighted cube is the currently active cube ci.

As part of gl and gr, each rule contains information about how the labels of the

current node change through the application of the rule as well as optional label

updates for the neighbors (see example in Listing 3.1). Since the labels of gl and gr in

the rules we generate are essential in guaranteeing the properties of our reconfiguration

approach, we will present a detailed description of their structure. Listing 3.1 shows

32

that each label is composed of multiple, comma-separated data fields. These data

fields include the node ID, the rule ID, a flooding flag indicating the start and the

end of the flooding process, and a field storing the latest finished path (see fields

gl labels and gr labels in Listing 3.1). The node ID and the rule ID are globally

unique integers and ensure the uniqueness of each rule and the unambiguity of the

whole reconfiguration. The flooding flag controls the start and end of the propagation

process to update every node’s knowledge about the latest finished path. The field

last path concludes a label and stores the most recently finished path locally at every

node. This field also controls the execution sequence of all individual paths, since

the execution of path pi depends on the conclusion of path pi−1. The initial labeling

of all nodes of the graph G0 = (V,E, lG) = f(CI) and the label update mechanism

through rules are designed so that only one rule is applicable to any cube vi ∈ V at

any given time. Therefore, the reconfiguration is unambiguous and deterministic.

3.4.2 Rule Generation

The main contribution of this thesis is the automatic generation of a graph grammar Φ

that describes the unambiguous reconfiguration CI Φ−→ CT . The path planning and the

rule generation are interleaved, which means that once a path pi (i ∈ {1..|P |} where

|P | = |CI \ Oinit| = |CT \ Oinit|) has been computed, the ruleset Rpi that represents

pi is generated. Rpi consists of |pi| motion rules, one flooding activation rule, and one

propagation rule. More formally Rpi is defined as Rpi = {{rmi
}|pi|i=1, rp, rf}. The entire

ruleset Φ is composed of all sub-rulesets Rpi , i.e. Φ = {{Rpi}
|P |
i=1}. The three types of

generated rules are defined as follows:

Definition 18. A motion rule rm changes the edge set and the label set of the graph

G = (V,E, lG), specifically those edges whose end point is the current node vi. There-

fore, the application of a motion rule results in the motion of a cube ci (represented

by node vi ∈ G) in the configuration space C. More formally, rm rewrites the graph

33

G = (V,E, lG) the following way:

(V,E, lG(vi))
rm−→ (V,E ′, l′G(vi))

The labels change from lG(vi) to l′G(vi) as follows:

l′G(vi) −→ rule id = lG(vi) −→ rule id+ 1

Definition 19. A flooding activation rule rf updates the last path field of the current

node vi and sets the flooding flag from 1 to 0, which activates the corresponding

propagation rule. A flooding rule only affects the labels of the current node vi and

does change the edge set. Therefore, it does not result in a cube movement in the

configuration space. More formally, rf rewrites the graph G = (V,E, lG) the following

way:

(V,E, lG(vi))
rf−→ (V,E, l′G(vi))

The labels change from lG(vi) to l′G(vi) as follows:

l′G(vi) −→ rule id = lG(vi) −→ rule id+ 1

l′G(vi) −→ flooding = 0

Definition 20. A propagation rule rp updates the current node vi’s labels by setting

the flooding flag from 0 to 1 and incrementing the last path field of all its neighbors

vj ∈ f(N2(ci, C)). It also sets the flooding flag of its neighbors vj to 0 so that the

same rule rp is applicable to them. This type of rule is a wildcard rule w.r.t. the node

ID, i.e. it applies to every node independent of the node ID if all other label fields

agree. A propagation rule does not change the edge set and therefore does not result

in a cube movement in the configuration space. More formally, rp rewrites the graph

G = (V,E, lG) the following way:

(V,E, lG(vi, vj))
rp−→ (V,E, l′G(vi, vj))

34

The labels change from lG(vi, vj) to l′G(vi, vj) as follows:

l′G(vi) −→ rule id = lG(vi) −→ rule id+ 1

l′G(vi) −→ path = lG(vi) −→ path+ 1

l′G(vi) −→ flooding = 1

l′G(vj) −→ flooding = 0

For each motion mj in the path pi, the neighborhood structure of two consecutive

positions of the active cube is calculated and stored in a rule. Additionally, each rule

stores the labels before and after the application of the rule (see example in Listing

3.1, fields gl labels and gr labels). More formally, for each motion mj (j ∈ {1..|pi|} as

defined in Def. 15) of path pi, our algorithm generates a motion rule ri,j composed

of gl and gr:

gl = f(N2(ci + (

j∑
k=1

mk)−mj, C)

gr = f(N2(ci +

j∑
k=1

mk, C)

Here, ci is the currently moved cube and the starting point of path pi and N2(ci, C)

is the immediate motion successor set as defined in Section 3.4.1. The labels of gl are

defined as follows:

lG(gli,j) =

lG(gri,j−1

) if j > 1

lG(gri−1,length(pi−1)
) if j = 1, i > 1

lG,init otherwise

The labels of gr are derived from the labels of gl via the label update mechanism

defined for motion rules, flooding rules, and propagation rules and can be summarized

as follows.

lG(gri,j) =

lG(gli,j)

rm−→ lG(gri,j) for motion rules

lG(gli,j)
rf−→ lG(gri,j) for flooding rules

lG(gli,j)
rp−→ lG(gri,j) for propagation rules

35

The labels are created with a strictly monotonically increasing global rule ID ensuring

that each rule is globally unique and describes exactly one step in the complete

reconfiguration sequence. Such a step is exemplified in Listing 3.1. The application

of the shown rule with ID 130 changes the edge set of the immediate motion successor

set of node 114 (specified by gl struct and gr struct) and updates its labels such that

the next applicable rule is rule number 131 (see field gl labels and gr labels).

This process is repeated for every motion mj of path pi. After the end of the

current path pi is reached a flooding activation rule and a propagation rule are gen-

erated, resulting in a ruleset Rpi = {{rmi
}|pi|i=1, rp, rf}. The rule generation process

is repeated for every path pi (i ∈ {1..|P |}) until the reconfiguration is completed,

i.e. until the target configuration CT has been assembled. This means that the only

reachable, stable graph as defined in Def. 6 is the graph representing the desired

target configuration CT .

Theorem 2. The graph G = (V,E, lG) = f(CT) representing the target configuration

CT is the only reachable, stable graph to the ruleset Φ.

Proof. This proof is based on Theorem 1 in [59] and the definition and properties of a

unit-modular self-reconfiguring system. Our system is composed of unit cubes, which

can be assembled into arbitrarily shaped configurations. Thus our system satisfies

property one. Property two states that in a configuration composed of unit modules,

there always exists a module that can be relocated to any position on the surface S.

In our system, S is defined as S = N1(C) = {ci|ci /∈ C ∧ cj ∈ C ∧ dist(ci, cj) = 1} and

R is a subset of S, R ⊂ S. The movable set M, on the other hand, is a subset of

the boundary ∂C of C, where ∂C = {ci|ci ∈ C ∧ |N (ci, C)| ≤ 5}. |M| ≥ 2 according

to Lemma 6 in [59] and only contains cubes ci ∈ ∂C. Therefore, our system fulfills

property two of Theorem 1 as well. As a result, our system is self-reconfigurable and

CT can be assembled incrementally from CI . Therefore, every cube ci ∈ CI \ Oinit

will be moved to its target position cj ∈ CT . Since the current configuration C always

36

remains connected (by construction of M and R), i.e. c(G) = c(f(C)) = 1, a path

always exists between ci and cj. The individual module paths are planned sequentially,

which means that path pi+1 is planned after path pi was planned and executed. This

approach implicitly determines a unique reconfiguration sequence, i.e. the order in

which all cubes are relocated. The outcome of the planning stage, i.e. the execution

of paths pi for i ∈ {1, . . . , N} with N = |CI \ Oinit|, therefore, unambiguously yields

CT .

The rule and path generation are interleaved. After each path pi has been planned,

each motion mj of pi is rewritten into a rule ri,j with a globally unique rule number.

These rule numbers are unique, strictly monotonically increasing, and are encoded in

the labelsets of ri,j. As a result, the applicability of rule ri,j depends on the successful

execution of rule ri,j−1. Therefore, the same sequence of reconfiguration steps is

achieved as in the planning stage and the execution of the ruleset can only result

in the target configuration CT . Therefore, we can conclude that the only reachable,

stable graph is (V,E, lG) = f(CT).

3.4.3 Ruleset Execution

The goal of the ruleset execution is the reconfiguration of CI into CT . In other words,

given a system (G0,Φ) we want to execute the assembly sequence G0
r1−→ G1

r2−→ G2
r3−→

. . .
rn−→ Gstable, where G0 = f(CI), Gstable = f(CT), and n is the total number of rules.

To accomplish this reconfiguration, every node vi ∈ G periodically checks the ruleset

for applicable rules r ∈ Φ. If the graph represented by the current neighborhood

N2(ci, C), i.e. GS = f(N2(ci, C)) is isomorphic to the left-hand side gl of some rule

r ∈ Φ, an applicable rule has been found and is applied to the current node vi. Here,

ci ∈ C is the cube represented by node vi ∈ V . The application of a rule r rewrites

the subgraph GS into gr, i.e. GS
r−→ gr. If the application of a rule changes the

edge structure of GS, which is the case only for motion rules, the cube ci is moved

37

in the configuration space. The execution of the last motion rule rmi,|pi|
of a path pi

triggers a flooding activation rule rfi . This rule in turn triggers a propagation rule

rpi . Through the repeated application of rpi to every node vi ∈ V every node’s local

state is updated about the completion of the latest path through directed flooding.

This process is repeated until every path pi is completed and no more rules in Φ are

applicable to any node vi ∈ V , i.e. until a stable graph is reached. Examples of

reconfiguration sequences are shown in Section 4.

3.5 Summary

In this section, we summarize the reconfiguration planning stage of our algorithm

and present a complexity analysis of its components. Fig. 14 visualizes the planning

process as a flow-chart.

The planning stage can be divided into three substages - preparation for path plan-

ning, the path planning itself, and the ruleset generation. The preparation stage con-

sists of the computation of the adjacency matrices, the movable setM, the immediate

target successor set R, the overlapping set O, and the assignment a = {cinit, ctarget}.

Since a configuration is represented as cubeset C, the first step is rewriting it into

adjacency matrices. The necessary cubesets M, R, and O as well as the assignment

a are then computed. The computation ofM, R, and the adjacency matrices feature

a time complexity of O(N2) while the overlapping region O and the assignment a can

be computed in O(N) time. The path planning stage consists of the computation

of the planning space P(C) and the actual path planning, both of which feature a

time complexity of O(N2). The final stage of the reconfiguration planning process

is the ruleset generation. After each path has been calculated it is rewritten into a

ruleset. The rule generation features a time complexity of O(pN), where N is the

total number of cubes in the configuration and p is the average path length. This is

a sub-quadratic complexity, since p is approximately proportional to the diameter of

38

the graph and not to the total number of nodes.

Fig. 14 shows one iteration of the planning process, i.e. one individual cube is moved

and rules are generated for this one path. The time complexity for one iteration of

the algorithm shown in Fig. 14 is O(N2) and for the complete reconfiguration process

O(N3).

39

Figure 14: Flowchart describing the reconfiguration process

40

CHAPTER IV

SIMULATION AND EXPERIMENTS

This section presents experimental results obtained in simulation. Our test system

was equipped with an Intel Core i5-540M dual core processor running at 2.53 GHz,

4GB of DDR3 memory, and an NVIDIA NVS3100M graphics chip. We used Ubuntu

11.04 as operating system and a Linux version of Matlab R2010a for the implemen-

tation and testing of our simulator. In principle, this version of Matlab does support

multithreaded and multicore computation, but activates parallel computation only if

the problem sizes are large enough. According to [47] this requires several thousand

elements in the input arrays. The configurations we work with do not trigger Matlab’s

multithreading, which is why all the results presented in this section run on a single

core and a single thread. We present several reconfigurations sequences and showcase

the capabilities of our simulator to handle obstacle-constrained reconfiguration and

ruleset switching for dynamic reconfiguration.

4.1 Self-Reconfigurable Furniture

This experiment shows the automatic reconfiguration of furniture. Using furniture

composed of modular robots gives the user the possibility to change the shape of

a collection of modules by issuing a single command and uploading a new ruleset.

As an example of self-reconfigurable furniture, we present the reconfiguration of an

office chair into a table. No locomotion is achieved during the reconfiguration process.

Such reconfiguration on the spot without any locomotion is also referred to as static

reconfiguration (see [12]). We will refer to the initial chair configuration as CI and

the table configuration as CT .

41

Both CI and CT are composed of 127 modules with 12 overlapping modules. The

configurations were manually generated to fulfill two requirements. First, the number

of cubes in both configurations has to be the same and second, the configuration has to

be connected. The parameters of the configurations and results of the reconfiguration

planning are summarized in Table 1. The data given in the table are the configuration

size of both the inital and the target configuration CI and CT and the initial overlap of

CI and CT . The average diameter represents an approximation of the graph diameter,

which is defined as the “longest shortest path between any two vertices”. More

accurately the diameter of a graph G is defined as maxvi,vj∈G d(vi, vj), where d(vi, vj)

is the minimum length path between vertex vi and vj. Since the computation of

the graph diameter requires the expensive computation of a path between any two

vertices vi and vj of the graph G, we approximated the diameter as follows.

diam(G) ≈ max
ci,cj∈C

dist(ci, cj)

With this definition, we estimate the diameter of the graph G as the distance between

the two cubes of the represented configuration C that are furthest apart. This is a

coarse numeric representation of the shape of the configuration and an indicator of the

average path length. We used the Manhattan distance as distance metric and reduced

the complexity of computing the graph diameter from planning a path between any

two vertices vi, vj ∈ V to computing the Manhattan distance between ci, cj ∈ C. In the

experiments conducted in this Section, we have found that the average path length is

correlated to the diameter approximation. Other data in Table 1 include the average

path length of all calculated paths, the total path length as the sum of the length of all

paths, the total number of generated rules, and the required time for the completion

of the reconfiguration planning stage. The reconfiguration of 127 cubes from their

initial chair configuration to the target table configuration took approximately 6.85

minutes to plan and features an average path length of about 6.58. This means that a

42

Table 1: Reconfiguration planning results for the self-reconfigurable furniture sce-
nario

Self-reconfigurable furniture

Configuration Size 127

Initial Overlap total/percent 12 / 9.45%

Average Diameter 21.6957

Average Path Length 6.5826

Total Length of all Paths 757

Number of Generated Rules 987

Runtime [min] 6.8565

cube had to move on average 6.58 lattice positions to relocate from its initial position

ci ∈ CI to its target position cj ∈ CT . A total number of 757 primitive motions were

executed during the reconfiguration and a total number of 987 rules were generated

to represent this reconfiguration sequence.

Fig. 15 shows the reconfigurations sequence of this scenario. It can be seen

that the greedy approach always picks the two closest nodes in the initial and the

target configuration. This approach disassembles the chair while it builds the table

incrementally and creates a flow-like behavior. Both configurations feature an overlap

that is not necessarily optimal in a sense of a maximal number of overlapping cubes.

An optimization approach based on gradient descent or simulated annealing could

translate CT with respect to CI to increase the number of overlapping cubes and thus

decrease the number of planned paths and planning time.

4.2 Bucket of Stuff

This experiment demonstrates how a random two-dimensional configuration of cubes

can self-assemble into a piece of furniture, for example an office chair. [65] calls this

scenario Bucket of Stuff, where a number of modules are tossed onto the floor and

self-assemble into the desired target shape. This reconfiguration scenario can be used

43

Figure 15: Reconfiguration sequence from a chair configuration to a table configura-
tion in free space

44

for self-assembling furniture, tools, or on a larger scale even vehicles and buildings.

Both CI and CT are composed of 127 modules with 7 initially overlapping cubes.

The initial configuration was randomly generated, while the target configuration was

manually designed. Both configurations consist of the same number of cubes and are

connected. The parameters of the configurations and results of the reconfiguration

planning are summarized in Table 2. The parameters are similar to those in Section

4.1. The number of initially overlapping cubes is slightly smaller than in Section 4.1

and the average diameter of the configuration increased about 36% compared to the

scenario shown in Section 4.1. Yet the average path length, total path length, and

ruleset size nearly doubled. This behavior can be attributed to the greedy assign-

ment approach, where cubes close to their target position are relocated first. Greedy

assignment creates tree-like arrangement of cubes (see Fig. 16) where farther cubes

are moved later during the reconfiguration. These paths are significantly longer and

dominate the average path length. Additionally, CI and CT exhibit less geometric

similarity than in Section 4.1 because we reconfigure a two-dimensional configuration

into a three-dimensional instead of reconfiguring a three-dimensional configuration

into a three-dimensional.

Fig. 16 shows the reconfigurations sequence of this scenario. Note that in this

experiment, the greedy assignment approach creates tree-like arrangements of cubes

emanating from the base of the chair creating the impression that the cubes flow to

and up the base of the chair. As can be seen in Fig. 16, the chair is built incrementally

bottom-up as a result of the greedy assignment approach.

4.3 Pack and Go

Similar to the self-reconfigurable furniture scenario, this experiment shows how the

result of reconfiguring one configuration into another can serve completely different

45

Table 2: Reconfiguration planning results for the “Bucket of Stuff” scenario

Bucket of Stuff

Configuration Size 127

Initial Overlap total/percent 7 / 5.51%

Average Diameter 29.5583

Average Path Length 14.35

Total Length of all Paths 1722

Number of Generated Rules 1952

Runtime [min] 10.9557

Figure 16: Reconfiguration sequence from a random two-dimensional configuration
to a chair configuration

46

purposes. We reconfigure a house-shaped configuration CI into a truck-shaped config-

uration CT and demonstrate a possible use of self-reconfigurable robots in tomorrow’s

housing and transportation sector.

This experiment uses configurations containing 332 modules with 75 initially overlap-

ping modules. Both configurations were manually designed such that they consist of

the same number of cubes and are connected. The parameters of the configurations

and results of the reconfiguration planning are summarized in Table 3. Even though

the percentage of initially overlapping cubes is higher than in Table 1 and Table 2,

the average path length is lower, and the total ruleset size is smaller, the runtime is

significantly higher than in both experiments shown in Section 4.1 and Section 4.2.

This can be explained by the higher number of paths that have to be calculated.

Even though the average path length and time required for path planning is lower,

the preparation stage for path planning (see Section 3.5) still has to be completed for

every path. In this case, the total runtime is not dominated by the path planning,

but by the preparation stage for path planning.

Fig. 17 shows the reconfiguration sequence of this scenario. In this experiment the

overlapping region features a higher number of cubes, since the initial and the target

configuration align better. Our assignment approach gives preference to positions in

CT that are close to CI , which can be seen in Fig. 17. The truck’s cabin is assembled

before all farther extension parts of the truck, such as the exhausts, the wheels, or

the truck bed, are.

4.4 Locomotion

This experiment shows the reuse of rulesets, which is a requirement for locomotion.

Locomotion or the use of self-reconfiguration for the purpose of moving a structure in

space is also referred to as dynamic reconfiguration (see [12]). One ruleset is computed

for the first reconfiguration step and then reused for consequent reconfiguration steps,

47

Table 3: Reconfiguration planning results for the “Pack and Go” scenario

Pack and Go

Configuration Size 332

Initial Overlap total/percent 75 / 22.59%

Average Diameter 22.9105

Average Path Length 5.7432

Total Length of all Paths 1476

Number of Generated Rules 1733

Runtime [min] 73.8896

Figure 17: Reconfiguration sequence from a house configuration to a truck configu-
ration

48

Table 4: Reconfiguration planning results for the locomotion scenario

Locomotion

Configuration Size 125

Initial Overlap total/percent 25 / 20%

Average Diameter 14.2300

Average Path Length 6.0200

Total Length of all Paths 602

Number of Generated Rules 802

Runtime [min] 4.1411

thus reducing the planning effort. After every reconfiguration step, the labels of all

cubes ci ∈ CT are reset to their initial labels, which transforms CT into a spatially

shifted version of CI , denoted as CIshifted. Therefore, the same rules are applicable

to CIshifted as were applicable to CI . The reason for this is the fact that rules only

contain relative information, i.e. information about the the neighborhood of a cube,

and not any absolute position information of cubes and their neighbors.

Both configurations in this experiment are cubic configurations containing 125

individual cubes. 25 cubes initially overlap for each reconfiguration step, i.e. are in

CI∩CIshifted and CIshifted∩CT , respectively. The parameters of the configurations and

the results of a single step in the reconfiguration planning are summarized in Table

3. Note that the ruleset only has to be created once and can be reused for arbitrarily

many reconfiguration steps. The results are similar to those in Section 4.1 with respect

to configuration size and runtime. The average diameter is slightly smaller (14.23

compared to 21.69), which results in a lower average path length (6.02 compared to

6.58) and ruleset size (802 compared to 987). Fig. 18 shows two reconfiguration steps

with the initial and the final target configuration shown as wireframes.

49

Figure 18: Reconfiguration sequence for locomotion

50

Table 5: Reconfiguration planning results for the obstacle-constrained scenario.

Obstacle-constrained

Configuration Size 127

Obstacle Size 225

Initial Overlap total/percent 12 / 9.45%

Average Diameter 21.6957

Average Path Length 6.5826

Total Length of all Paths 757

Number of Generated Rules 987

Runtime [min] 7.1952

4.5 Reconfiguration in Obstacle-Constrained Space

This experiment shows the reconfiguration of a chair configuration into a table con-

figuration in an obstacle-constrained space. More precisely, the obstacles in this

reconfiguration sequence represent the ground plane. Obstacles are shown as black

cubes and constrain the planning space of the reconfiguration. The overhead for the

inclusion of obstacles into the reconfiguration planning is negligible, since it is done

during the calculation of the planning space P(C) and features a time complexity of

O(N). Any cube position cj ∈ Cobstacles is removed from P(C) and will not be used

for path planning.

The parameters of the configurations and results of the reconfiguration planning are

summarized in Table 5 and are equivalent to those in Section 4.1. The key difference

is the inclusion of the obstacle set, which increases the runtime by only 4.93% of the

runtime given in Table 1. Fig. 19 shows the reconfiguration sequence of this scenario.

Both the initial chair configuration CI and the target table configuration CT contain

127 modules, which are represented by blue cubes. The obstacle cubeset contains 225

modules and is represented by black cubes.

51

Figure 19: Reconfiguration sequence from a chair configuration to a table configura-
tion in obstacle-constrained space. Obstacles are shown in black.

52

Table 6: Reconfiguration planning results for the dynamic reconfiguration scenario

Random/Box Box/Line Line/Target

Configuration Size 125 125 125

Initial Overlap total/percent 1 / 0.8% 25 / 20% 11 / 8.8%

Average Diameter 17.9758 22.4500 31.8596

Average Path Length 7.4758 13.6 16.3333

Total Length of all Paths 927 1360 1862

Number of Generated Rules 1175 1560 2090

Runtime [min] 5.7488 5.2081 9.2103

4.6 Ruleset switching for dynamic reconfiguration

The term dynamic reconfiguration refers to a self-reconfiguration sequence that changes

shape and uses the shape changing ability to move in space (see [12]). In other words,

self-reconfiguration and locomotion are achieved at the same time or sequentially.

This experiment shows how multiple rulesets can be used to achieve multiple recon-

figuration and locomotion steps by switching between rulesets. One ruleset has been

computed for each of the following steps: reconfiguration of a random initial config-

uration CI to an intermediate box configuration CInt1 , reconfiguration of CInt1 to a

two-dimensional line configuration CInt2 , and reconfiguration of CInt2 to the target

chair configuration CT . Every module can access all rulesets and can switch between

them. Switching is accomplished with propagation rules similar to those notifying

each module of the latest finished path. The switching to a different ruleset is acti-

vated once the last path of a reconfiguration step is completed.

Fig. 20 shows the reconfiguration sequence of this scenario. All four configura-

tions CI , CInt1 , CInt2 , and CT contain 125 modules, which are represented by blue

cubes. The parameters of the configurations and results of the reconfiguration plan-

ning are summarized in Table 6. This table also shows that with an increasing average

diameter, the average path length and the total ruleset size increase.

53

Figure 20: Reconfiguration sequence for dynamic ruleset switching

54

CHAPTER V

RESULTS

This section presents experimental results obtained with our simulator. We will show

results for both the planning stage and the rule execution stage. As in Section 4, our

test system was equipped with an Intel Core i5-540M dual core processor clocked at

2.53 GHz and 4GB of DDR3 memory. The test system was running Linux Ubunutu

11.04 as the operating system and Matlab version 2010a. All the presented execution

times were measured on this system. Whereas the results from the centralized plan-

ning stage are representative of our approach, the timing results for the decentralized

execution stage do not fully showcase the strengths of our approach. This is because

graph grammars are inherently distributed tools that need to be executed in parallel

to unfold their full potential. To be more precise, the generated rulesets have to be

checked for applicable rules by every individual cube in parallel. Since we simulate

these cubes on a conventional single processor machine this parallelism can not be ex-

ploited. Our algorithms check for applicable rules for every cube sequentially, which

is why the runtime even for small configurations is high (see Section 5.2).

5.1 Planning Results

We conducted three series of experiments, namely the reconfiguration of box-shaped

configurations of various sizes, the reconfiguration of randomly generated configura-

tions of various sizes, and the reconfiguration of randomly generated configurations

into box-shaped configurations of various sizes. The first two experiments show the

scalability of our algorithm with coarse datasets whereas data collected from our third

experiment is the basis for a detailed analysis of our algorithms.

55

5.1.1 Box and random reconfiguration

Two experiments were conducted, namely the reconfiguration of two overlapping con-

figurations in the form of rectangular prisms (see Table 7) and the reconfiguration of

two overlapping random configurations (see Table 8). The configurations ranged in

size from 100 to 500 cubes in increments of 100 cubes. The runtimes are shown in

Table 7 and Table 8, respectively.

In these tables, the field Size refers to the number of modules in the configuration,

Planned Paths is the total number of planned paths, Overlap is the number of initially

overlapping modules, Steps is the total number of motions of all modules to achieve

the desired reconfiguration, Rules is the total number of rules in the ruleset, and

Runtime is the time it took to generate the ruleset and complete the planning stage.

No obstacles were used for both experiments, i.e. the reconfiguration was done in

free space. As can be seen in Table 7, Table 8, Fig. 21, and Fig. 22, the size of the

ruleset increases approximately linearly with the number of nodes, while the runtime

of our algorithm increases approximately cubically for both the box and the random

configurations. The runtime is primarily determined by the planning approach, which

necessitates planning a path for every individual node. Our algorithm features a

time complexity of O(N2) for the relocation of an individual cube and a total time

complexity of O(N3) for a complete reconfiguration. The experimental results shown

in Fig. 21 and Fig. 22 confirm the expected time complexity of O(N3) that we

derived in Section 3.5.

5.1.2 Random initial configuration to box

This section presents results obtained from reconfiguring random configurations into

box-shaped configurations of sizes 20 to 500. We determined the dimensions of these

three-dimensional boxes based on a prime factorization of the configuration size. This

approach can potentially introduce an additional source of variation in the results,

56

Table 7: Reconfiguration planning results for overlapping box configurations

Size Planned Paths Overlap [N] / [%] Steps Rules Runtime [min]

100 70 30 / 30% 837 907 3.70

200 140 60 / 30% 1543 1683 16.65

300 210 90 / 30% 2426 2636 63.26

400 280 120 / 30% 3279 3559 135.64

500 350 150 / 30% 4275 4625 246.93

100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

Configuration size [N]

R
u

n
ti

m
e
 [

m
in

]

100 150 200 250 300 350 400 450 500

1000

2000

3000

4000

R
u

le
s
e
t

s
iz

e
 [

N
]

100 150 200 250 300 350 400 450 500

1000

2000

3000

4000

R
u

le
s
e
t

s
iz

e
 [

N
]

Runtime [min]

Ruleset size [N]

Cubic approximation for runtime

Linear approximation for ruleset size

Figure 21: Number of generated rules and required runtime for ruleset generation of
box configurations

Table 8: Reconfiguration planning results for overlapping random configurations

Size Planned Paths Overlap [N] / [%] Steps Rules Runtime [min]

100 64 36 / 36% 352 416 2.25

200 86 114 / 57% 403 489 10.97

300 143 157 / 47.66% 893 1036 40.52

400 218 182 / 45.5% 1674 1890 120.84

500 269 231 / 46.2% 2327 2590 272.68

57

100 150 200 250 300 350 400 450 500
0

100

200

300

Configuration size [N]

R
u

n
ti

m
e
 [

m
in

]

100 150 200 250 300 350 400 450 500

500

1000

1500

2000

2500

R
u

le
s
e
t

s
iz

e
 [

N
]

100 150 200 250 300 350 400 450 500

1000

2000

R
u

le
s
e
t

s
iz

e
 [

N
]

Runtime [min]

Ruleset size [N]

Cubic approximation for runtime

Linear approximation for ruleset size

Figure 22: Number of generated rules and required runtime for ruleset generation of
random configurations

since the planning effort can vary significantly based on the shape of the box. Typ-

ically, planning a reconfiguration from a random configuration to a near cubic box-

shaped configuration requires a lot less planning effort than if the box was elongated

along one dimension. The reason for this is that the average path length and there-

fore the path planning time differs greatly. This effect can be seen in Fig. 25, where

spikes in the planning time and average diameter and path length are clearly visible.

Fig. 26 also shows this effect.

Fig. 23 shows the results for a series of reconfigurations ranging in size from 20

to 500. Both the ruleset sizes as well as the planning times are shown. The spikes

in the planning time and to a lesser extent in the ruleset size can be attributed to

mainly two factors: the size of the initial overlap and the dimensions of the target

box configuration. A large initial overlap reduces the number of paths that have to be

planned and thus reduces planning time and total path length, which is proportional

to the ruleset size. The dimensions of the box on the other hand can significantly

58

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Configuration Size [N]

S
iz

e
 [

N
]

0 100 200 300 400 500
0

40

80

120

160

200

240

280

320

360

400

T
im

e
 [

m
in

]

Ruleset Size [N]

Total Planning Time [min]

Figure 23: Ruleset size and total planning time for reconfigurations of sizes 20 to
500

increase the average and the total path length if the box is not approximately cubic

but elongated along one dimension. Both factors can add their positive influence as

for the reconfiguration of size 440, where planning time is significantly reduced (see

Fig. 23 and Fig. 24). But it can also cancel each other out as for the reconfiguration

of size 180 (see Fig. 23 and Fig. 24). The total planning time (as can be seen in Fig.

23) is correlated to the ruleset size and the total path length.

Fig. 25 shows the progression of the average path length and an approximation of

the average diameter of reconfigurations of sizes 20 to 500. Additionally the average

planning time for a single path for each configuration size is plotted as well. The aver-

age path length increases approximately linearly with the configuration size, as does

the average diameter (see Fig. 25). As expected, the path planning time increases

as the average path length increases. Generally speaking, larger configurations (both

in the number of cubes and their geometrical dimensions) require longer paths to

be planned. This implies longer average path planning time since A* has to expand

59

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Configuration Size [N]

R
u

le
s
e
t

S
iz

e
 /
 P

a
th

 L
e
n

g
th

 [
N

]

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45

50

In
it

ia
l
O

v
e
rl

a
p

 [
C

u
b

e
s
]

Ruleset Size [N]

Total Path Length [N]

Initial Overlap [Cubes]

Figure 24: Ruleset size and total path length for configurations of sizes 20 to 500.
The initial overlap of the initial and target configuration is shown in green.

more nodes before it finds the target node.

Fig. 26 shows the timing results from a total of 25 experiments with configurations

ranging in size from 20 to 500. The primary components of our algorithm (according

to Fig. 14) are shown in this plot. The time required to compute the movable set

M, the immediate target successor set R, the planning space P(C), as well as the

path planning time show similar behavior and suggest a quadratic dependency on the

configuration size. This is consistent with the results achieved in Section 3.5. The

time required to compute the overlapping set O, the ruleset Φ, and the assignment

show linear dependencies on the configuration size, which is also consistent with the

results in Section 3.5. Note that the timing results shown in Fig. 26 are average

values for the computation of a single path of a reconfiguration and do not represent

the time required for an entire reconfiguration.

Fig. 27 shows the change in the size of various cubesets during a reconfiguration of

size 500. Specifically, the size change of the overlapping set O, the movable setM, the

60

0 100 200 300 400 500
0

10

20

30

Configuration Size [N]

A
v
g

.
D

ia
m

e
te

r
/
A

v
g

.
P

a
th

 L
e
n

g
th

 [
N

]

0 100 200 300 400 500
0

2.5

5

7.5

10

P
la

n
n

in
g

 T
im

e
 [

s
e
c
]

Avg. Diameter [N]

Avg. Path Length [N]

A* Planning Time [sec]

Figure 25: Average diameter, path length, and planning time for reconfigurations of
sizes 20 to 500

0 100 200 300 400 500
0

2

4

6

8

10

12

14

Configuration Size [N]

A
v
e
ra

g
e
 T

im
e
 p

e
r

It
e
ra

ti
o

n
[s

e
c
]

Calculate Adjacency Matrices [sec]

Calculate Movable Set [sec]

Calculate Overlapping Set [sec]

Calculate Immediate Target Successor Set [sec]

Calculate Assignment [sec]

Calculate Planning Space [sec]

Calculate Path with A* [sec]

Calculate Ruleset [sec]

Figure 26: Timing results for reconfigurations of sizes 20 to 500

61

immediate target successor set R, and the planning space P are shown. Additionally,

the path length and an approximation of the current configuration’s diameter are

shown. Fig. 27 shows data of a reconfiguration of size 500, but the progression of sizes

of the cubesets is consistent for all configuration sizes given similarly shaped initial and

target configurations CI and CT . In fact, Fig. 27 shows a graphical signature of our

reconfiguration approach and our choice of CI and CT . P ,M, and R are proportional

to the number of cubes on the surface of the structure. This fact is illustrated best

by the progression of P . Initially, P is calculated for a random configuration. As

the overlapping region O grows linearly in size, the current configuration elongates

(see for example the second reconfiguration step in Fig. 20) and the surface and

therefore P grows. As the reconfiguration progresses and the current configuration

increasingly resembles the target box configuration, the surface-to-volume-ratio drops,

i.e. the number of cubes contained within the structure increases, while the number of

surface cubes decreases. As a result, the size of P decreases as well. A similar outcome

of the decreasing surface-to-volume-ratio is the decreasing size of the movable set and

the immediate target successor set. The size of R goes to 0 as C becomes isomorphic

to CT and all available positions cj ∈ CT are filled. The size of M on the other

hand does not, since even in the target configuration CT there are movable cubes,

i.e. surface cubes. O shows a very typical progression that is a basic assumption

in our reconfiguration approach. It grows linearly, one cube at a time, because we

move cubes sequentially one at a time. In every reconfiguration step, one cube ci is

moved from CI to CT . The gradual increase in the path length can be attributed

to our greedy reconfiguration approach, in which the priority of relocating a cube is

proportional to the cube’s distance to its target position. In other words, cubes close

to their respective target positions are moved first.

Fig. 28 shows the dependence of the sizes ofM, O, R, and P on the configuration

size. The plot suggests approximately linear growth forM, R, and P and a random

62

0 100 200 300 400 500
0

100

200

300

400

500

600

700

Reconfiguration Step [i]

C
u

b
e

s
e

t
S

iz
e

 /
 L

e
n

g
th

 [
N

]

Overlapping Set [N]

Movable Set [N]

Immediate Target Successor Set [N]

Planning Space [N]

Path Length [N]

Diameter [N]

Figure 27: Cubeset sizes break down for a single reconfiguration of size 500 requiring
462 paths to be planned.

behavior for O. This can be explained by the fact that the sizes ofM, R, and P are

directly proportional to the surface area of the configuration. The size of the initial

overlapping set, however, depends on the relative positions of both configurations in

the configuration space and the shape of those configurations. Since we have used

randomly generated initial configurations for the experiments shown in this section,

the size of the initial overlapping set is random as well. The spikes shown in the size

progression of O in Fig. 28 are manifestations of that randomness.

5.2 Ruleset Execution

In this section, we present the results of the ruleset execution stage for the reconfig-

uration from the initial and target configuration shown in Fig. 30. Due to the high

computational effort necessary to reconfigure even relatively small configurations se-

quentially on a single processor machine as mentioned in the introduction of this

63

0 100 200 300 400 500
0

100

200

300

400

500

600

700

Configuration Size [N]

C
u

b
e

s
e

t
S

iz
e

 [
N

]

Overlapping Set [N]

Planning Space [N]

Movable Set [N]

Immediate Target Successor Set [N]

Figure 28: Cubeset sizes break down for reconfigurations of size 20 to 500. Shown
are average values for each reconfiguration size.

chapter, we show only one rule-based reconfiguration.

In the current execution scheme, the algorithm checks for applicable rules sequen-

tially, i.e. after the rule applicability check for cube ci is completed, the algorithm

proceeds to check for rules for cube ci+1. If an applicable motion rule is found for

cube ci, ci checks the ruleset again for additional applicable motion rules until no

more applicable motion rules are found for and ci’s path is therefore completed. If

an applicable propagation rule is found for cube ci, the rule is applied and all the

labels of ci’s neighbors are updated. Multiple cycles of ruleset checks are required to

propagate a certain propagation rule through the entire configuration. Also, multiple

propagation rules can be active throughout the configuration at the same time. This

is shown in Fig. 29, where different active propagation rules are shown by cubes col-

ored in blue an red. Each alternating color shows a different active propagation rule.

Even though different propagation rules are active at the same time throughout the

64

Figure 29: Multiple propagation rules being active simultaneously in the current
configuration.

configuration, there is still just one single rule applicable to any cube at any given

time. Therefore, the rule-based reconfiguration is unambiguous and deterministic.

Unlike our work, [6] and [32] allow multiple rules to be applicable to the modules of

their configurations at the same time. The outcome of their algorithms is therefore

not uniquely determined.

As mentioned earlier, the simulation of the distributed ruleset execution stage

happens sequentially. So even though graph grammars are designed in such a way

that every cube can check the ruleset for applicable rules and execute them in paral-

lel, the architecture of the test system lacks the necessary parallelism. A significant

speedup can be achieved for the parallel execution. Assuming that just one cube

moves at a time, the most significant speedup could be achieved for the propaga-

tion of information through the configuration. In our simulations, the time required

for propagation is proportional to the configuration size. After a cube ci executes a

propagation rule and updates all its neighbors, the ruleset check is done for all other

cubes cj ∈ C where j > i. If any of ci’s neighbors fulfills this requirement the prop-

agation proceeds with cubes cj, otherwise the ruleset check cycles through all cubes

and restarts at i = 0.

In the worst case, i.e. for a line configuration, each execution of a propagation rule

65

requires every cube to check the ruleset once. In the best case, i.e. a spheric con-

figuration with the propagating cube being in the center, the information can be

propagated in every direction at the same time making the propagation time roughly

proportional to half the diameter of the configuration.

Generally speaking, the number of executed propagation rules can be computed as

follows. Given the number of calculated paths p and the number of cubes ci in the

configuration N , the number of executed propagation rules is upper bounded by pN .

This stems from the fact that for every completed path, every cube ci in the configura-

tion has to execute a propagation rule until the whole configuration is updated. The

total number of executed motion rules is equal to the total path length. The results

of the reconfiguration planning and ruleset execution stage for the reconfiguration

shown in Fig. 30 are shown in Table 9. Note that the planning stage is completed in

9.21 minutes whereas the sequential ruleset execution on our test system took 33.31

hours to complete. Of those 33.31 hours, just a total of 1.11 minutes are spent for the

execution of motion and 4.31 minutes for the execution of propagation rules or 0.06

% and 0.22 % of the total ruleset execution time, respectively. The remaining time

is spent for checking the ruleset for applicable rules for every cube ci ∈ C. A total

of 1951 ruleset checks are done for each cube ci ∈ C or almost one check per cube

per rule. These results suggest that the ruleset execution stage could be significantly

sped up by a parallelization of the ruleset checking.

For parallel execution, the time required would be proportional to the size of the

ruleset and the time each cube takes to check the ruleset for applicable rules. As-

suming the time required to check the ruleset is negligible, the propagation through

the whole configuration would be executed near instantaneously. In this case, the

reconfiguration time would be determined by the time required to execute the motion

rules.

66

Table 9: Reconfiguration results from the ruleset execution stage of the reconfigura-
tion shown in Fig. 30

Ruleset Execution

Configuration Size 125

Initial Overlap total/percent 11 / 8.8%

Number of Calculated Paths 114

Average Diameter 31.8596

Average Path Length 16.3333

Total Length of all Paths 1862

Number of Generated Rules 2090

Runtime Planning [min] 9.2103

Number of Ruleset Checks per Node 1951

Number of Propagation Rule Executions 14375

Number of Motion Rule Executions 1862

Total Number of Executed Rules 16237

Average Propagation Execution Time [sec] 0.0180

Average Motion Execution Time [sec] 0.0359

Runtime Ruleset Execution [h] 33.3149

Figure 30: Initial (opaque) and target (wireframe) configuration for the ruleset exe-
cution stage

67

CHAPTER VI

CONCLUSION

In this thesis, we have introduced an approach to automate reconfiguration planning

and to generate graph grammar-based rulesets. We have shown that our approach

can reconfigure arbitrary connected configurations CI into any other arbitrary con-

nected configurationCT . We treat the reconfiguration problem as a two-stage process

containing planning and execution. The centralized planning stage of our approach

necessitates global knowledge of the configuration to generate the ruleset, while the

decentralized execution stage works with local neighborhood information only. This is

also the main advantage of our approach. While the generation of the ruleset features

a time complexity of O(N3), the ruleset can be executed in a highly parallel fashion

with each node checking simultaneously for applicable rules, given a hardware system

with the required parallel computing capabilities. Since the size of the ruleset grows

approximately linearly in N, this approach scales well.

Contrary to other approaches presented in the literature, our method of reconfiguring

modular robots combines several approaches and offers multiple advantages. Our al-

gorithms can handle arbitrary connected input configurations, can compute rulesets

for both static and dynamic reconfiguration, and can automatically generate these

rulesets. Rulesets can be reused for further reconfiguration steps and our system

allows the switching between rulesets to enable a modular robot to perform different

functions. Additionally we can guarantee that the self-reconfiguration process will

reach the target configuration and provide an unambiguous and deterministic recon-

figuration. Lastly, one major advantage of our graph grammar-based approach to

self-reconfiguration is the straightforward extensibility to heterogeneous systems.

68

CHAPTER VII

OUTLOOK AND FUTURE WORK

We are currently investigating the possibility of parallely executable paths. Multiple

modules of the movable set could then be moved to their respective target positions

in parallel. While approaches to the parallel planning problem already exist, it still

remains an open question how these parallel paths can be automatically rewritten

into a ruleset and how we can still guarantee a unique reconfiguration sequence.

Currently, our algorithm generates one rule for every movement of every individual

module. We plan on implementing a mechanism to reduce the number of rules by

summarizing rules that describe the same movement into a single rule. This ruleset

trimming mechanism could significantly reduce the number of generated rules and

speed up execution.

Another way to reduce the total number of generated rules and the total path length

is the improvement of the assignment algorithm. Currently we employ a greedy ap-

proach, which always picks the two closest cubes in the current configuration with

respect to the target configuration. A more efficient approach would be to mini-

mize the total distance traveled of all cubes during the reconfiguration. Solving this

optimization problem would require to compute the actual path length, which is com-

putationally very expensive. Alternatively, we could optimize with respect to a path

length approximation. We assume that the Manhattan distance between two cube

positions could serve as a valid approximation.

Future work also includes dealing with physical constraints such as the weight of

cubes, forces exerted on cubes by gravity or the weight of other connected cubes, as

well as their inertia. We also plan on including the effects of mechanical and electrical

69

constraints of cubes into our simulator. Interesting questions arise when we deal with

the available rotational and translational power of joint motors, available battery life

of the individual cubes, energy transfer between cubes, or the optimization of the

reconfiguration process with respect to energy consumption.

Lastly, one major advantage of our approach is that it allows for the easy incorpo-

ration of heterogeneous modules. Heterogeneous module capabilities can be easily

handled in the centralized path planning by changing the assignments of ci ∈M and

cj ∈ R accordingly and then encoding the various node capabilities in the labels of

the rules. Therefore, our next steps includes the definition of the theoretical basis for

heterogeneous reconfiguration planning and the implementation of a self-reconfiguring

heterogeneous system based on graph grammars.

70

REFERENCES

[1] Asadpour, M., Ashtiani, M., Sproewitz, A., and Ijspeert, A., “Graph
signature for self-reconfiguration planning of modules with symmetry,” in Intelli-
gent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference
on, pp. 5295 –5300, Oct. 2009.

[2] Asadpour, M., Sproewitz, A., Billard, A., Dillenbourg, P., and
Ijspeert, A., “Graph signature for self-reconfiguration planning,” in Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on,
pp. 863 –869, Sept. 2008.

[3] Baillie, J., Demaille, A., Hocquet, Q., Nottale, M., and Tardieu, S.,
“The urbi universal platform for robotics,” Workshop Proceedings of SIMPAR
2008, pp. 580–591, 2008.

[4] Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., and
Pappas, G., “Symbolic planning and control of robot motion [grand challenges
of robotics],” Robotics Automation Magazine, IEEE, vol. 14, pp. 61 –70, march
2007.

[5] Bhat, P., Kuffner, J., Goldstein, S., and Srinivasa, S., “Hierarchical
motion planning for self-reconfigurable modular robots,” in Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, pp. 886 –891, oct.
2006.

[6] Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., and
Nguyen, T., “Programmable parts: A demonstration of the grammatical ap-
proach to self-organization,” in In Proc. of the 2005 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pp. 2644–2651, IEEE Computer Society Press,
2005.

[7] Brandt, D., Christensen, D. J., and Lund, H. H., “Atron robots: Versa-
tility from self-reconfigurable modules.,” in In Proceedings of the IEEE Interna-
tional Conference on Mechatronics and Automation (ICMA), (Harbin, China),
pp. 2254–2260, Aug. 2007.

[8] Brandt, D. and Ostergaard, E. H., “Behaviour subdivision and generaliza-
tion of rules in rule-based control of the atron self-reconfigurable robot,” 2004.

[9] Butler, Z., Murata, S., and Rus, D., “Distributed replication algorithms
for self-reconfiguring modular robots,” Proceedings of DARS, 2002.

71

[10] Butler, Z., Kotay, K., Rus, D., and Tomita, K., “Cellular automata for de-
centralized control of self-reconfigurable robots,” in In Proc. IEEE ICRA Work-
shop on Modular Robots, pp. 21–26, 2001.

[11] Butler, Z., Kotay, K., Rus, D., and Tomita, K., “Generic decentralized
control for a class of self-reconfigurable robots,” in In Proc of IEEE ICRA,
pp. 809–816, 2002.

[12] Butler, Z., Kotay, K., Rus, D., and Tomita, K., “Generic decentralized
control for lattice-based self-reconfigurable robots,” The International Journal
of Robotics Research, vol. 23, no. 9, pp. 919–937, 2004.

[13] Casal, A. and B, M. Y., “Self-reconfiguration planning for a class of modular
robots,” 1999.

[14] Chatzigeorgiou, D., Loizou, S., and Kyriakopoulos, K., “R-cell: A mod-
ule for a self-reconfigurable robotic system,” in Intelligent Robots and Systems,
2008. IROS 2008. IEEE/RSJ International Conference on, pp. 895 –900, Sept.
2008.

[15] Christensen, D., Brandt, D., Stoy, K., and Schultz, U., “A unified
simulator for self-reconfigurable robots,” in Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on, pp. 870 –876, Sept. 2008.

[16] Ehrig, H., “Introduction to the algebraic theory of graph grammars (a survey),”
in Graph-Grammars and Their Application to Computer Science and Biology,
Lecture Notes in Computer Science, ch. 1, pp. 1–69, 1979.

[17] Fahmy, H. and Blostein, D., “A survey of graph grammars: theory and appli-
cations,” in Pattern Recognition, 1992. Vol.II. Conference B: Pattern Recognition
Methodology and Systems, Proceedings., 11th IAPR International Conference on,
pp. 294 –298, Aug. 1992.

[18] Fitch, R. and Butler, Z., “Scalable locomotion for large self-reconfiguring
robots,” in Robotics and Automation, 2007 IEEE International Conference on,
pp. 2248 –2253, April 2007.

[19] Fitch, R., Butler, Z., and Rus, D., “Reconfiguration planning for het-
erogeneous self-reconfiguring robots,” in Intelligent Robots and Systems, 2003.
(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, vol. 3,
pp. 2460 – 2467, Oct. 2003.

[20] Fukuda, T., Nakagawa, S., Kawauchi, Y., and Buss, M., “Self organiz-
ing robots based on cell structures - ckbot,” in Intelligent Robots, 1988., IEEE
International Workshop on, pp. 145 –150, oct-2 nov 1988.

[21] Gerkey, B. P., Vaughan, R. T., and Howard, A., “The player/stage
project: Tools for multi-robot and distributed sensor systems,” in In Proceedings
of the 11th International Conference on Advanced Robotics, pp. 317–323, 2003.

72

[22] Gerkey, B. P., Vaughan, R. T., Sukhatme, G. S., Stoy, K., Howard,
A., and Mataric, M. J., “Most valuable player: A robot device server for
distributed control,” 2001.

[23] Hsu, D., Kindel, R., claude Latombe, J., and Rock, S., “Randomized
kinodynamic motion planning with moving obstacles,” 2000.

[24] Huang, Y. and Gupta, K., “Rrt-slam for motion planning with motion and
map uncertainty for robot exploration,” in Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on, pp. 1077 –1082, sept. 2008.

[25] Jones, C. and Mataric, M. J., “From local to global behavior in intelligent
self-assembly,” in Proceedings of the 2003 IEEE International Conference on
Robotics and Automation, ICRA 2003, September 14-19, 2003, Taipei, Taiwan,
pp. 721–726, IEEE, 2003.

[26] Jr., J. J. K. and Lavalle, S. M., “Rrt-connect: An efficient approach to
single-query path planning,” in Proc. IEEE Intl Conf. on Robotics and Automa-
tion, pp. 995–1001, 2000.

[27] Karaman, S. and Frazzoli, E., “Incremental sampling-based algorithms for
optimal motion planning,” CoRR, vol. abs/1005.0416, 2010.

[28] Karaman, S., Walter, M. R., Perez, A., Frazzoli, E., and Teller, S.,
“Anytime motion planning using the rrt*,” in In Proc. IEEE Intl Conference on
Robotics and Automation (ICRA), 2011.

[29] Klavins, E., “Automatic synthesis of controllers for distributed assembly and
formation forming,” in Robotics and Automation, 2002. Proceedings. ICRA ’02.
IEEE International Conference on, vol. 3, pp. 3296 –3302, 2002.

[30] Klavins, E., “Self-assembly from the point of view of its pieces,” American
Control Conference, 2006.

[31] Klavins, E., “Programmable self-assembly,” Control Systems, IEEE, vol. 27,
pp. 43 –56, Aug. 2007.

[32] Klavins, E., Ghrist, R., and Lipsky, D., “A grammatical approach to self-
organizing robotic systems,” Automatic Control, IEEE Transactions on, vol. 51
Issue: 6, pp. 949 – 962, 2006.

[33] Klavins, E., “Universal self-replication using graph grammars,” MEMS,
NANO, and Smart Systems, International Conference on, vol. 0, pp. 198–204,
2004.

[34] Koenig, N. and Howard, A., “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 2149–2154, 2004.

73

[35] Koenig, S. and Likhachev., M., “D* lite.,” In Proceedings of the AAAI Con-
ference of Artificial Intelligence (AAAI), pp. 476–483, 2002.

[36] Kotay, K. and Rus, D., “Algorithms for self-reconfiguring molecule motion
planning,” in Intelligent Robots and Systems, 2000. (IROS 2000). Proceedings.
2000 IEEE/RSJ International Conference on, vol. 3, pp. 2184 –2193 vol.3, 2000.

[37] Kotay, K. and Rus, D., “Generic distributed assembly and repair algorithms
for self-reconfiguring robots,” in International Conference on Intelligent Robots
and Systems, vol. Vol.3, pp. 2362 – 2369, 2004.

[38] Kotay, K. and Rus, D., “Efficient locomotion for a self-reconfiguring robot,” in
In Proc. of Int. Conference on Robotics and Automation (ICRA, pp. 2963–2969,
2005.

[39] Kurokawa, H., Murata, S., Yoshida, E., Tomita, K., and Kokaji, S., “A
3-d self-reconfigurable structure and experiments,” in Intelligent Robots and Sys-
tems, 1998. Proceedings., 1998 IEEE/RSJ International Conference on, vol. 2,
pp. 860 –865 vol.2, oct 1998.

[40] Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., and Kokaji,
S., “M-tran ii: Metamorphosis from a four-legged walker to a caterpillar,” in
in Proc. 2003 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, 2003,
pp. 2454–2459, 2003.

[41] Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., Murata, S.,
and Kokaji, S., “Self-reconfigurable modular robot (m-tran) and its motion de-
sign,” in In Seventh International Conference on Control, Automation, Robotics
And Vision (ICARCV02), pp. 51–56, 2002.

[42] Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., and
Murata, S., “Distributed self-reconfiguration of m-tran iii modular robotic sys-
tem,” The International Journal of Robotics Research, vol. 27, no. 3-4, pp. 373–
386, 2008.

[43] Larkworthy, T. and Ramamoorthy, S., “An efficient algorithm for self-
reconfiguration planning in a modular robot,” in IEEE International Conference
on Robotics and Automation, ICRA 2010, Anchorage, Alaska, USA, 3-7 May
2010, pp. 5139–5146, IEEE, 2010.

[44] Lavalle, S. M., “Rapidly-exploring random trees: A new tool for path plan-
ning,” tech. rep., 1998.

[45] Mackay, D. and Suffield, D., “Path planning with d*lite implementation
and adaptation of the d*lite algorithm,” 2005.

[46] Martelli, A., “On the complexity of admissible search algorithms,” Artificial
Intelligence, vol. 8, no. 1, pp. 1 – 13, 1977.

74

[47] Mathworks, “Which matlab functions benefit from multithreaded computa-
tion?.” Online Article, Nov. 2009.

[48] McNew, J. M. and Klavins, E., “A grammatical approach to cooperative
control,” 2005.

[49] McNew, J. M. and Klavins, E., “Locally interacting hybrid systems with
embedded graph grammars,” 45th IEEE Conference on Decision and Control,
pp. pp. 6080–87, 2006.

[50] McNew, J. M., Klavins, E., and Egerstedt, M., “Solving coverage prob-
lems with embedded graph grammars. hybrid systems: Computation and con-
trol,” 2007.

[51] Mesbahi, M. and Egerstedt, M., Graph Theoretic Methods in Multiagent
Networks. Princeton University Press, July 2010.

[52] Moeckel, R., Jaquier, C., Drapel, K., Dittrich, E., Upegui, A., and
Ijspeert, A. J., “Exploring adaptive locomotion with yamor, a novel au-
tonomous modular robot with bluetooth interface,” Industrial Robot, vol. 33,
no. 4, pp. 285–290, 2006.

[53] Muhammad, A. and Egerstedt, M., “Connectivity graphs as models of lo-
cal interactions,” Decision and Control, 2004. CDC. 43rd IEEE Conference on,
vol. 1, pp. 124 – 129 Vol.1, dec. 2004.

[54] Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., and Kokaji, S.,
“A 3-d self-reconfigurable structure,” in Robotics and Automation, 1998. Pro-
ceedings. 1998 IEEE International Conference on, vol. 1, pp. 432 –439 vol.1,
may 1998.

[55] Ostergaard, E. H. and Lund, H. H., “Distributed cluster walk for the atron
self-reconfigurable robot,” in In Proceedings of the The 8th Conference on Intelli-
gent Autonomous Systems (IAS-8), (Amsterdam, Holland), pp. 291–298, March
10-13, 2004.

[56] Ostergaard, E. H., Kassow, K., Beck, R., and Lund, H. H., “Design of
the atron lattice-based self-reconfigurable robot,” Autonomous Robots, vol. 21,
pp. 165–183, Sept. 2006.

[57] Prevas, K. C., Ünsal, C., Önder Efe, M., and Khosla, P. K., “A hi-
erarchical motion planning strategy for a uniform self-reconfigurable modular
robotic system,” in In Proceedings, IEEE International Conference on Robotics
and Automation, pp. 787–792, 2002.

[58] Rozenberg, G., ed., Handbook of graph grammars and computing by graph
transformation: volume I. foundations. River Edge, NJ, USA: World Scientific
Publishing Co., Inc., 1997.

75

[59] Rus, D. and Vona, M., “Crystalline robots: Self-reconfiguration with com-
pressible unit modules,” Autonomous Robots, vol. 10, pp. 107–124, Jan. 2001.

[60] Russell, S. J. and Norvig, P., Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

[61] Shen, W.-M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M.,
and Venkatesh, J., “Multimode locomotion via superbot robots,” in In Pro-
ceedings, IEEE International Conference on Robotics and Automation, pp. 2552–
2557, 2006.

[62] Stoy, K., Shen, W.-M., and Will, P., “Using role-based control to
produce locomotion in chain-type self-reconfigurable robots,” Mechatronics,
IEEE/ASME Transactions on, vol. 7, pp. 410 –417, dec. 2002.

[63] Tang, S., Zhu, Y., Zhao, J., and Cui, X., “The ubot modules for self-
reconfigurable robot,” in Reconfigurable Mechanisms and Robots, 2009. ReMAR
2009. ASME/IFToMM International Conference on, pp. 529 –535, June 2009.

[64] van Leeuwen, J., Handbook of Theoretical Computer Science, Volume B: For-
mal Models and Semantics. Elsevier and MIT Press, 1990.

[65] Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H.,
Klavins, E., and Chirikjian, G. S., “Modular self-reconfigurable robot sys-
tems – challenges and opportunities for the future,” IEEE Robotics and Autono-
mation Magazine, vol. March, pp. 43–53, 2007.

[66] Yim, M., Zhang, Y., Lamping, J., and Mao, E., “Distributed control for 3d
metamorphosis,” Autonomous Robots, vol. 10, pp. 41–56, Jan. 2001.

[67] Yoshida, E., Murata, S., Kurokawa, H., Tomita, K., and Kokaji, S.,
“A distributed reconfiguration method for 3d homogeneous structure,” in In-
telligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International
Conference on, vol. 2, pp. 852 –859 vol.2, oct 1998.

[68] Yoshida, E., Matura, S., Kamimura, A., Tomita, K., Kurokawa, H.,
and Kokaji, S., “A self-reconfigurable modular robot: Reconfiguration plan-
ning and experiments,” The International Journal of Robotics Research, vol. 21,
no. 10-11, pp. 903–915, 2002.

[69] Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H.,
and Kokaji, S., “A motion planning method for a self-reconfigurable modular
robot,” 2001.

[70] Zucker, M., Kuffner, J., and Branicky, M., “Multipartite rrts for rapid
replanning in dynamic environments,” in in IEEE ICRA, pp. 1603–1609, 2007.

76

	Titlepage
	Signatures
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Self-Reconfigurable Robots
	Problem Description
	Goal of this Thesis

	Chapter 2 — Background and Previous Work
	Graph Theory
	Graphs
	Representation of a Graph
	Connectivity of a Graph

	Graph Grammars
	Self-Reconfiguration Approaches
	Hierarchical Planning and Reconfiguration
	Rule-based Reconfiguration
	Various Approaches
	Implementations

	Chapter 3 — Self-Reconfiguration
	System Representation
	Sliding Cube Model
	Adjacency Matrix Notation
	Graph Notation

	Assignment
	The Overlapping Set
	The Movable Set
	The Immediate Target Successor Set
	Assignment

	Path Planning
	Planning space
	Constraints
	Implementation

	Rule Generation
	Rule Structure
	Rule Generation
	Ruleset Execution

	Summary

	Chapter 4 — Simulation and Experiments
	Self-Reconfigurable Furniture
	Bucket of Stuff
	Pack and Go
	Locomotion
	Reconfiguration in Obstacle-Constrained Space
	Ruleset switching for dynamic reconfiguration

	Chapter 5 — Results
	Planning Results
	Box and random reconfiguration
	Random initial configuration to box

	Ruleset Execution

	Chapter 6 — Conclusion
	Chapter 7 — Outlook and Future Work
	References

