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SUMMARY 

 

A challenging application space exists for high-aspect-ratio, high-fidelity 

dielectrics in micro-electro-mechanical system (MEMS), microelectronic, and photonic 

applications.  Photosensitive polymers are widely used in these fields because they are 

relatively easy to process and pattern, and have good mechanical properties. 

Photosensitive polynorbornene (PNB)-based dielectrics have been shown to have high 

sensitivity, excellent photodefinition properties, and high mechanical strength making 

them suitable for MEMS, microelectronic packaging, and photonic applications. PNB-

based dielectrics can be functionalized with epoxide, carboxylic acid, or fluorinated 

alcohol groups. Epoxy or carboxylic acid groups can be used to provide cross-linkable 

sites, resulting in improved chemical and thermal properties while fluorinated alcohol 

groups can provide solubility in aqueous base. The focus of this study has been on the 

epoxy-based cross-linking of ultraviolet and electron beam (e-beam) sensitive negative-

tone PNB-based dielectrics.   

The impact of multifunctional epoxy-based additives on the cross-linking, 

photolithographic properties, and adhesion properties of the photosensitive PNB 

dielectric was investigated.  High aspect ratio features of 13:1 (height:width) were 

produced in 40 µm  thick films (a single coat) with straight side-wall profiles and high 

fidelity. Contrast values as high as 33.4 were obtained at doses below 15 mJ/cm
2
. To 

evaluate the polymer’s suitability to MEMS and microelectronics applications, epoxy 

cross-linking reactions were studied as a function of processing condition through Fourier 

transform infrared spectroscopy (FTIR), nanoindentation, swelling and dielectric 



 xx 

measurements. The fully cross-linked films had an elastic modulus of 2.9 GPa and 

hardness of 0.18 GPa which can improve the mechanical compliance of the packaging 

device. 

To explore the feasibility of the PNB dielectric as a highly sensitive e-beam resist 

for nano scale fabrication, the e-beam initiated reaction between PNB cross-linking sites 

and the multifunctional epoxy cross-linkers was investigated.  In this study, the 

interaction of an e-beam with the PNB mixture and its compounds was investigated. The 

contrast, photodefinability, and e-beam activation of the components in the PNB 

formulations were studied. The PNB polymer had very high e-beam sensitivity and 

contrast.  It was shown that the addition of a photoacid generator (PAG) to the polymer-

epoxy mixture enhanced the contrast and sensitivity.  Formulations with the additional 

cross-linker showed improved contrast, sensitivity, and substrate adhesion.  100 nm 

structures with 13.5 nm line edge roughness (LER) were fabricated.  The influence of the 

developing time, the developer concentration, PEB, and film thickness on the contrast 

and sensitivity were studied.  Structures with contrast values as high as approximately 8 

were fabricated at doses as low as 0.38 µC/cm
2
.  

The acid-catalyzed epoxy ring opening reaction of the PNB dielectric was studied 

using FTIR spectroscopy.  The photo and thermal acid generation initiated epoxy ring 

opening reactions and subsequent cross-linking of polymer.  Additionally, polymer 

properties were characterized as a function of processing conditions for this polymer 

system.  It was shown that thermal cure conditions have a substantial impact on the 

mechanical and electrical properties of the polymer. The rate and ultimate conversion of 

the epoxy ring opening reaction increased with increasing cure temperature, resulting in a 



 xxi 

higher degree of cross-linking at cure temperatures above 140°C.  Degradation reactions 

occurred at temperatures above 160°C, indicating loss of epoxide cross-linking groups 

and linkages.  These hypotheses were supported by electrical and mechanical property 

studies.  It was shown that curing the PNB polymer at 160°C for 1 h after develop 

resulted in full epoxy ring opening and highest cross-link density.  This sample showed 

lower dielectric constant (3.9), residual stress (20 MPa), and solvent swelling (3.1%). 

Variable frequency microwave (VFM) processing of the PNB dielectric was 

studied to investigate the rapid curing of the polymer at lower temperatures. The FTIR 

results showed that the microwave reaction rates were higher at each isothermal cure 

temperature compared to convective heating, indicating that the rapid VFM curing of 

PNB at low temperatures is feasible. The PNB film was fully cross-linked after 15 min 

VFM cure at the low temperature of 150˚C.  The shortest time to fully cure the polymer 

was found to be 5 min at 160°C.  Also, the feasibility of rapid VFM curing of PNB in air 

was studied.  All samples VFM-cured (140˚C-180˚C) in air showed no signs of oxidation. 

The electrical and mechanical properties of VFM-cured films were characterized and 

compared with thermally cured films to determine the effectiveness of the VFM 

processing.  VFM-cured samples showed higher degree of cross-linking than thermally-

cured samples, which was congruent with the FTIR results.  Improved or equivalent 

properties were obtained for VFM-cured samples at shorter cure cycles and lower cure 

temperatures compared to thermally-cured films.  

The PNB dielectric was also used as an overcoat material to make micro and nano 

fluidic channels.  In this work, incorporation of advanced micro/nano fluidics with high-

sensitivity photonic sensors was demonstrated.  500 nm to 50 µm channels were 



 xxii 

fabricated by thermal decomposition of epoxy-based PNB polymers.  Microdisks with 

quality factors of over 10
6
 were presented in CMOS (complementary metal–xide–

semiconductor) compatible SiN on oxide technology.   These ultra-high quality factor 

SiN resonators were demonstrated in the visible range for the first time.  The fluidic 

structures were interfaced with photonics for index and florescence sensing.  This study 

was a collaboration with Dr. Ehsan Shahhosseini from the Photonics Group at Georgia 

Tech.



 

1 

CHAPTER 1 

INTRODUCTION 

  

1.1  Dielectrics in Electronics 

 Advances in the semiconductor industry can benefit from increases in device 

speed, level of functionality, packing density, and shrinkage in component size as seen in 

high-performance, portable electronic devices.  Bandwidth needs for future systems are 

expected to increase because of the large data requirements of such high-performance 

systems. As the frequency of I/O connections increases, the need for high-speed 

connections increases [1, 2].  

 Both optical and electrical connections are used for high-speed connections. 

However, optical links are preferred for long transmission lengths because they result in 

lower loss [1].  An optical fiber can transmit multiple data sets and therefore attain higher 

aggregate bandwidth than electrical connections. The limitation of applying optical links 

for short transmission lengths is due to the rigorous alignment tolerances and losses at 

sharp routing angles, resulting in challenging integration of optical connections [3].  

 On the other hand, electrical connections are simpler to integrate into electronic 

packages and can be improved by lowering the signal loss. The speed of an electrical 

signal through metal lines is a function of both the conductive metal and the surrounding 

dielectric material used in the connection [4, 5].  Enabling high-performance electronic 

systems require high density and high speed interconnects. To achieve these goals in 

electronic interconnects, losses in the metal line and dielectric material, and crosstalk 

noise need to be minimized.   

 The total delay in metal lines is a function of lumped resistance of interconnects 

and the capacitance coupling the line and its return path.  One way to improve the chip 
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speed and decrease the loss is to improve the conductive properties of the metal.  

Replacing aluminum with a lower resistivity metal, such as copper, increases the signal 

speed.  This increase in the signal speed is a direct consequence of decreasing the metal 

resistivity from 3.0 µΩ.cm for aluminum to 1.7 µΩ.cm for copper, which has been 

implemented in advanced processors [4, 6, 7].   

  The capacitive coupling between the lines (lateral or vertical) can be reduced by 

improving the dielectric properties of the surrounding dielectric material.  The dielectric 

constant is a complex number which measures the ability of the material to store charge 

and its unrecoverable loss [4].  Decreasing the dielectric constant of the insulating layers 

can improve both the speed and density of electronic devices.  The density can increase 

due to ability to place signal lines closer together without suffering undue current leakage 

(i.e. loss) and cross-talk.  Incorporating low-dielectric constant materials into electronic 

devices is a major activity.   

 The transition from aluminum to copper for on-chip metal interconnects has 

reduced the delay.  Improvements in process and properties of dielectric materials are key 

enablers in further reducing this delay and achieving high-speed, high-density electronic 

connections. 

 Many organic and inorganic dielectrics have been developed for various 

applications in electronic devices.  Polymer dielectrics are of special interest because of 

their superior properties in certain applications.  The dielectric constant for most 

polymers ranges from 2 to 4 fulfilling the electrical requirements.  Also, polymers can 

more easily form planar structures compared to inorganic materials, which generally tend 

to coat features conformally [4].  Non-planarity is an important factor which causes 

difficulties in processing due to the propagation of any non-planar feature through 

subsequent layers as multiple layers of interconnect and insulators are deposited.  

Planarization effect is evaluated by degree of planarization (DOP) which is defined by 

Equation (1.1) [8, 9]: 
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DOP =  1 −
𝑇2 − 𝑇1

𝑇0
 × 100%          (1.1) 

 

 

 The requirements for the dielectric properties depend on its applications.  The 

mechanical properties and thermal stability are also important properties for dielectric 

materials which can be achieved by polymer dielectrics.  

 Polymer dielectrics are divided into two main categories; thermosets and 

thermoplastics.  Thermoset materials are polymers that are cured to produce a highly 

cross-linked polymer network.  Thermoplastics soften at high temperatures and do not 

undergo a curing process [1].  Thermoset materials are common in electronic applications 

and undergo a chemical cross-linking reaction.   

 The most common polymer dielectrics are epoxies.  The epoxy group is a three-

member ring with two carbons and one oxygen as shown in Figure 1.1.  Epoxies provide 

many advantages including their excellent adhesion to various materials, good 

mechanical properties, and good thermal stability. They also possess good solvent 

resistivity, which is created by cationic reactions.  However, epoxies suffer from high 

dielectric constants (εr = 3.5 to 5) and high moisture uptake [1, 2].  Epoxies can be made 

photodefinable by incorporation of a photoacid generator that catalyzes epoxy ring 

opening and subsequent cross-linking leading to a negative-tone resist.   

 

 

Figure 1.1 Chemical structure of epoxy. 

  

 Polyimides, which can be used as interlevel dielectrics, are typically derived from 

the reaction of dianhydride and diamine forming polyamic acid.  Subsequently,  
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cyclodehydration is carried out either at a high temperature or by a dehydration agent [1].  

The chemical structure of polyimide and the general structure of aromatic polyimide are 

shown in Figure 1.2 and 1.3 [1], respectively. The rigidity of polyimide is due to the large 

number of aromatic groups, which results in high glass transition temperature (Tg) and 

good mechanical properties.  This polymer class possesses excellent solvent resistance, 

low loss, and good adhesion, making it a good dielectric candidate.  However, the 

dielectric constant of polyimide changes with moisture uptake and ranges from 2.8 to 3.9.  

Additionally, photosensitive polyimides require high temperature cures to complete the 

imidization reactions and become insoluble [4].   

 

 

Figure 1.2 Chemical structure of polyimide. 

 

 

 

Figure 1.3 Chemical structure of aromatic polyimide. 

 

 Benzocyclobutene (BCB), which used in high-frequency applications, was 

developed by Dow Chemical under the trade name Cyclotene.  The chemical structure of 
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BCB is shown in Figure 1.4.  BCB provides many advantages including low dielectric 

constant (εr = 2.5 to 2.7), low loss factor, high Tg, and low moisture uptake.  This 

polymer also has a high DOP with values greater than 90%.  Additionally, BCB has a low 

cure temperature which results in a highly cross-linked network with high chemical 

resistance.  However, a high degree of cross-linking in cured BCB results in high-stress 

in the films, which tends to crack the film if applied in layers thicker than 15 to 20 µm.  

The polymer is also costly and can have poor adhesion to substrates.  An azide cross-

linker is added to photodefinable formulations of BCB to provide cross-linking the 

irradiated regions of the polymer film [10, 11].  

 

 

Figure 1.4 Chemical structure of BCB. 

 

 Polynorbornene (PNB) is a class of thermoset dielectric polymers, offering 

improved properties for MEMS and microelectronics applications.   Norbornene is a 

bridged cyclic hydrocarbon, as shown in Figure 1.5 and 1.6.  The polymer can be 

prepared by variety of processes including vinyl-addition polymerization of norbornene 

and ring opening metathesis polymerization [1]. The resulting polymer is different in 

each case.  The polymer obtained from the vinyl-addition process is marketed under the 

trade name Avatrel Dielectric Material.  PNB has many advantages including low 

moisture uptake and good thermal stability, and excellent electrical properties: low 

dielectric constant (2.5) and low loss.  However, this polymer itself suffers from poor 

adhesion to surfaces, high cost, and high coefficient of thermal expansion (CTE).  The 

undesirable properties of PNB can be controlled by the addition of side groups.  This 

class of polymer is discussed in more details later in this chapter.  
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Figure 1.5 Chemical structure of norbornene molecule. 

 

 

Figure 1.6 Chemical structure of functionalized norbornene molecule. 

 

 

1.2  Photosensitive Dielectrics  

1.2.1   Photodefinition and Photolithography  

 Photodefinition consists of two distinct steps: formation of  a latent image in the 

polymer film by exposure to radiation and development of the image to give a three-

dimensional structure for the next process step [12].  Both the material properties and 

process conditions affect the photodefinition.  In most cases, material properties are hard 

to change for certain polymers.  To get the optimum photodefinition, the process 

conditions of various steps need to vary.  The key variables involved in processing steps 

of photolithography and their effects on the final image are discussed here.  

 Photolithography is a process used in micro-fabrication to transfer geometric 

shapes on a mask to photoresist material covering the surface of a semiconductor wafer  

[13, 14].  It uses light to transfer a pattern from a photo mask to a photoresist (light-

sensitive chemical). The optical exposure tools use either visible, UV, deep ultraviolet 

(DUP), or extreme ultraviolet (EUV) light as the exposing radiation [15].  The light is 
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produced across a broad spectrum and it is filtered to select a single spectral line. A 

single iteration of photolithography combines the following steps in sequence: wafer 

cleaning; photoresist application (spin-coating); soft bake (SB); UV exposure; post-

exposure bake (PEB); developing; and curing [16].   

 Wafer Cleaning: Substrate surfaces in semiconductor fabrication are normally 

metallic, semiconducting, or insulating.  Organic, inorganic, and particulate 

contaminations are found on surfaces which may cause poor adhesion and defects.   

These defects raise issues such as non-uniform polymer coating, striation in coated films, 

and loss of line width control.  Solvent treatment, plasma treatment, polishing, and 

thermal treatment are normally employed for surface cleaning.  Main variables associated 

with the cleaning steps are the type of reagent and surface, time, temperature, and choice 

of cleaning equipment. 

 Spin Coating: In this step, the wafer is first mounted on the vacuum chuck of the 

spin coater.  Then, a predetermined amount of polymer solution is dispensed on the wafer 

surface.  The wafer is rapidly rotated to obtain a uniform, defect-free, adherent polymer 

film over the entire wafer.  The acceleration stage is crucial to obtaining good uniformity 

since solvents begin evaporating from the polymer as soon as it is dispensed.  The film 

uniformity across the substrate is essential to ensure good contact between the polymer 

film and the mask used in contact printing which is a pre-requirement for uniform and 

reproducible pattern and development time.  The key variables that affect the spin coating 

process are the viscosity, molecular weight, boiling point, and composition of the 

polymer solution and the spin speed and acceleration of the spin-coater.  

 SB: After spinning , the wafers must undergo a SB on a hotplate or in an oven to 

dry off most of the solvent in the polymer, establish exposure characteristics, and release 

built-in stress due to the shear forces generated during the spin coating process [12, 15].  

The dissolution rate in the developer is highly dependent on the solvent concentration in 

the final polymer film.  Choosing the right bake time and temperature is important to 
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avoid excessive baking temperatures that could degrade or include undesired and 

premature chemical reactions in the polymer film.  High-temperature soft bakes can 

actually begin to drive the photochemistry of the PAG, resulting in polymer dissolution 

of un-exposed regions during development.  Typical soft-bake temperatures are 90-

100°C.  SB times range from 30 sec on a hotplate to 30 min in an oven [15].   It has been 

shown that varying the SB temperature, affecting the solvent concentration in the film, 

can improve the photodefinition for some polymers [12].  The solvent concentration 

remaining after SB is usually about 5% of the original concentration. 

 Exposure: After SB, the wafer is exposed.  Here, the focus is on contact or 

proximity printing, which simply entailed flood-exposing a wafer with UV light through 

a mask as shown in Figure 1.7.  The quality of the image is limited by many physical and 

chemical phenomena during the exposure step.  The theoretical resolution capacity of 

contact printing for a mask consisting of equal lines and spaces is given by Equation 

(1.2): 

 

2𝑏𝑚𝑖𝑛  = 3 𝜆(𝑠 +  1/2 𝑧           (1.2) 

 

 

where 2b is the grating period, λ the wavelength of the exposing radiation, s the gap 

width between the mask and the surface of the polymer film, and z the polymer film 

thickness. 
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Figure 1.7 Schematic of contact printing [17]. 

 

 The fundamental resolution limitation of contact printing is diffraction of light at 

the edge of an opaque feature on the mask as the light passes through an adjacent clear 

area.  Even though the mask should transfer a sharp pattern to polymer film in contact 

printing according to geometrical optics, light may be diffracted or scattered at the edge 

of mask, introducing irradiation into unexposed areas. Light diffraction and scattering 

effects are shown in Figure 1.8.  

 Another important factor affecting the image profile of the polymer is the 

distribution of the light intensity in the polymer film, which is determined by both the 

absorption characteristics of the polymer and the material composition of the substrate.  

Light incident is absorbed by the polymer as it passes through the film.  When incident 

light reaches the polymer-substrate interface, it partially reflects back to the polymer and 

is further absorbed.  This process continues until it is fully absorbed.  Standing waves are 

produced as these reflected beams interfere with each other.  Light reflection in the 
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polymer film is shown in Figure 1.9.  (Note that the light intensity of the beams in this 

figure is not scaled.)  In summary, the distance between the mask and the polymer film, 

the light intensity, the exposure time, and the dose rate need to be controlled to improve 

the image quality. 

 

 

Figure 1.8 Illustration of light scattering and difraction during exposure. 

  

 

 

Figure 1.9 Multiple reflections occuring at the polymer-to-substrate inteface. 

 

 PEB: This is another important processing step which can affect the polymer 

cross-linking and pattern quality, specially in case of negative-tone systems.  After 

exposure, the chemical raections are initiated in the exposed areas of the polymer film.  

As the cure temperature increased, the cure rate increases for the polymer having the 
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same concentration of cross-linking groups, resulting in a shorter cure time to reach the 

same degree of cross-linking [12, 18].  PEB is, therefore, essential to allow the desired 

reactions to continue after exposure.  The PEB temperature must be controled to avoid 

thermal decomposition photoactive compounds (PAC) and undesired reactions. For acid-

catalyzed reactive systems, cross-linking reaction rate is a function of PEB time and 

temperature, acid concentration, and acid diffusion rate in the polymer film.  Therefore, 

optimization of these parameters is critical for improving the pattern quality, the line edge 

roughness and the pattern size.     

 Develop:  After PEB, the wafer must be developed wich results in removal of 

unexposed areas of a negative-tone resist and dissolution of exposed regions of a 

positive-tone resist.  This step has great influence on the polymer profile and is very 

temperature sensitive.  Therefore, it is important to control the develop temperature to 

maintain an accurate control of the pattern linewidth. 

 Cure: High temperature cures are done after develop to fully cross-link the 

polymer and achieve the optimum mechanical stability and also to harden the polymer 

against furthur energetic processes such as ion implantation and plasma etching.  Curing 

is only required for thermosest materials [1, 2].  The cure temperature and time can 

greatly affect the cross-link density in the polymer matrix, varrying the chemical, 

mechanical, electrical, and physical properties of the polymer.  The cure temperature 

must be lower than the decomposition temperature of the polymer to avoid degredation 

reactions in the polymer.  Traditional thermal cure and variable-frequency microwave 

(VFM) cure are two techniqes used for thermosets, which are discussed here. 

 Traditional thermal cure involves subjecting the polymer to a curing cycle in a 

conventional oven, which results in cross-linking of the polymer.  However, some high-

performance polymers require high thermal cure temperatures that are well above the 

degredation temperature of the substrates.  Also, this method is usually lengthy.  To 
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address theses issues of throughput and high temperature, low temperature processes such 

as microwave curing have been developed [1]. 

 VFM processing of high-performance polymers has been studied as a low-

temperature curign alternative to the traditional thermal cure process [19-22].  VFM 

processing provides the ability of quikly and repeatedly step through a range of 

frequencies.  Irradiation of a polymer dielectric with microwave energy results in energy 

transfer due to the dielectric loss mechanisms.  The principal mechanism of coupling 

microwave radiation to polymer dielectrics is through dipole orientation by the oscillating 

electric field [21, 23, 24].  The efficiency of coupling microwave energy into a material is 

dependent on a number of factors, including the dipole strength, mass, and mobility [21]. 

The amount of microwave energy per unit volume converted into heat is given by 

Equation (1.3) [21, 23].  

 

𝑃𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 = 2𝜋𝑓𝐸𝑟𝑚𝑠
2 𝜀0𝜀

"          (1.3) 

 

 

Where Pabsorbed is the dissipated or absorbed power per unit volume, f is the frequency, 

Erms is the root mean square electric field strength, ε0 is the permittivity of free space, and 

ε” is the relative loss factor.  VFM offers significant advantages over traditional fixed 

frequency system by providing uniform heat distribution and allowing processing of 

conducting materials. Previous studies have shown that VFM processing reduces the cure 

time and temperature without negative effect on the desirable properties of cured polymer 

[23]. 

 In the cure process, therefore, the cure time, temperature, and tecnique can affect 

the polymer cross-linking and should be controlled to obtain the optimum chemical, 

mechanical, and electrical properties of the polymer.  
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 Obviously, photolithography is a multidimensional process and its optimation is 

an important and challenging task. 

1.2.2  Advantages of Photosensitive Polymers 

 Photosensitive polymers offer additional advantages over non-photosensitive 

polymers since they can be directly patterned by photolithography techniques, which 

simplifies the process steps and eases the integration [2, 23].  The patterning process for 

photosensitive and non-photosensitive, negative-tone polymers are compared in Figure 

1.10.  For photosensitive polymers, the coated polymer film is baked and exposed to UV 

radiation, which results in cross-linking in the exposed areas.  The pattern is simply 

formed by developing after PEB, which dissolves the uncross-linked areas of the 

negative-tone polymer.  On the other hand, non-photosensitive polymers require 

additional steps after SB: a layer of photoresist is applied on the polymer and baked. The 

photoresist is then patterned by exposure and developing.  The pattern formed on the 

photoresist, which depends on whether a positive or negative resist is used, forms an 

etching mask.  Then, wet or dry etching is used to pattern the polymer film.   Finally, 

after removal of the photoresist, the patterned polymer is obtained.  This patterning 

process in very complex and the pattern design is not reproducible due to the etching 

process which affects the polymer side-walls.  Therefore, photosensitive polymers reduce 

process steps and improve the pattern quality 

.
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Figure 1.10 Schematic diagram comparing patterning of photosensitive and non-

photosensitive, negative-tone polymers. 
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1.3  Electron-Beam Lithography and Resists 

 Electron-beam lithography (EBL) refers to a lithographic process that uses a 

focused beam of electrons to form the circuit patterns needed for material deposition on 

the resist, in contrast with optical lithography which uses light for the same purpose. The 

system is used to fabricate device components in semiconductor or insulator materials. 

EBL is an important patterning method for nanosystems and devices, such as molecular 

electronics [25, 26], high-precision mask making [27], and mold making for nanoimprint 

lithography [28] due to its high spatial resolution and versatile processing [29].  EBL is 

an established technique for the fabrication of small electronic device structures [30].  

 The purpose of EBL, as with photolithography, is to create very small structures 

in the resist, but EBL offers higher spatial resolution than optical photolithography 

because of the short wavelength of the e-beam possessed by the 10-50 keV electrons that 

it employs [14].  Therefore, the primary advantage of EBL is that it is one of the ways to 

beat the diffraction limit of light and make features in the nanometer regime. On the other 

hand, the key limitation of EBL is throughput due to the sequential nature of the 

exposure.  

 All e-beam systems require an electron source with high intensity (brightness) and 

uniformity, small spot size, good stability, and long-life [15].  The beam brightness is 

measured in units of amperes per unit volume per steradian.  Electron removal from the 

cathode of the gun requires heating of the cathode (thermionic emission), applying 

electric field (field aided emission), a combination of the two (thermal field aided 

emission), or with light (photoemission).  A typical electron gun for an EBL system is 

shown in Figure 1.11.  The emitted electron current density is one of the primary figures 

of merit for the gun, which is given by Equation (1.4) [15]: 
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𝐽𝑐 = 𝐴𝑇2𝑒
−𝐸𝑤

𝑘𝑇            (1.4) 

 

 

Where Jc is the electron current density, A is the Richardson’s constant for the material, 

and Ew is the effective metal work function.  The measure of the collected electron is the 

brightness.  Although an increase in the emitted current density also generally increases 

the brightness, the percentage increase in the brightness is not as large as the percentage 

increase in the current density if the increase in brightness decreases the efficiency of 

electron collection [15].  
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Figure 1.11 Simplified cross section schematics of field and thermoionic emission 

electron guns [15]. 
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 Image production in the e-beam resists is very different than in photoresists.  In an 

optical process such as EBL, the energy of the absorbing photon is well defined.  The 

energy of a photon depends only on its frequency (ν) or inversely, its wavelength (λ) as 

shown in Equation (1.5): 

 

𝐸 = ℎ𝜈 =
ℎ 𝑐

𝜆
           (1.5) 

 

 

The photon energy for an i-line source is 3.4 eV.  In contrast, exposure to e-beam 

produces high concentration of secondary electrons with a wide range of energies. E-

beam resists must be designed so that the desired reaction occurs preferentially rather 

than designing it so that a single chemical reaction is driven by exposure.  However, all 

the reactions that occur in this case should be considered.  Additionally because the 

energetic beams penetrate the e-beam resist into the substrate, undesirable reactions must 

also be considered [15]. 

 Some of the most common e-beam resists are ZEP (a copolymer of a-

chloromethacrylate and a-methylstyrene) [31], hydrogen silsesquioxane (HSQ) [32, 33], 

and polymethylmethacrylate (PMMA) [29, 34], maN-2403 (a phenolic resin) [35].  These 

e-beam resists and their characteristics are explained below.  

  ZEP is a high-resolution positive-tone resist with better sensitivity compared to 

the other three resists and it also has excellent etch resistance. Due to its sensitivity and 

etch resistivity, ZEP can be used in both metal lift-off processes (slight overexposure 

results in an excellent undercut profile) and various dry-etch processes for pattern transfer 

to the underlying substrate.  ZEP utilizes an inert solvent developer (100% n-amyl 

acetate).    
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 HSQ shows high resolution [36-40], minimal LER [37] high etch resistivity [37-

40], and high stability under scanning electron microscope (SEM) inspection [40, 41]. 

HSQ, which is sensitive to the time between coating and exposure, is best to expose 

immediately after coating samples. Two different schemes have been proposed for the 

description of the chemical structure of HSQ [32, 42-44]. In the first scheme a siloxane-

based polymer is assumed where terminal silicon (Si) atoms is bond to two oxygen (O) 

atoms, one hydrogen (H) atom, and one OH bond and every other Si atom is bound to 

three oxygen (O) atoms and one hydrogen (H) atom. During cure, HSQ cross-links by 

condensation of Si–OH groups to Si–O–Si bonds. As a consequence, a three-dimensional 

network of the ladder structures is formed [43].  The second scheme describes the HSQ 

as caged oligomer structures with the general formula (HSiO3/2)2n [32].  The caged 

oligomers are opened during a cure and form a network structure [42-44].  If the network 

formation proceeds via conversion to silica [45] or via rearrangement reaction without a 

change in stoichiometry [46] depends on the process conditions. 

 PMMA is a very high-resolution positive-tone resist with relatively poor 

sensitivity (resolution scales directly and sensitivity scales inversely with molecular 

weight of the polymer).  PMMA shows very poor plasma-etch resistance, hence it is used 

primarily to fabricate metal lines via liftoff processes; It offers ease of processing and 

utilizes an inert solvent developer. Improved pattern quality in micron and nano scale has 

been reported for PMMA [29, 47, 48]. 

    ma-N 2403 is a negative-tone resist composed of a phenolic resin (novolak) as 

polymeric binder and a bisazide as PAC and is developed in aqueous-alkaline developers 

[49]. This resist works without chemical amplification consequently its processing does 

not comprise any critical steps.  Ma-N 2403 with excellent dry-etch resistance, exhibits 

very good resolution (sub-100 nm) and moderate sensitivity.  

 These commonly used e-beam resists have high spatial resolution but relatively 

low sensitivity.  The base dose of these e-beam resists with 100 kV accelerating voltage 
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is listed in Table 1.1.  The low sensitivity of these resist requires them to have excessive 

exposure time which can result in long write times for which beam drift or instability can 

occur, and it tremendously increases the lithography process cost.  Therefore, e-beam 

imageable materials with high sensitivity are of special interest. 

 

Table 1.1 Base dose of some commonly used electron-beam resists with 100 kV 

accelerating voltage. 

E-beam Resist Base Dose (µC/cm
2
) 

ZEP 200 

HSQ 450 

PMMA 650 

maN-2403 1200 

  

 

1.4  Dielectric Property Requirements 

 The important properties of a dielectric material are electrical, mechanical, 

thermal, chemical, and processability. Each of these properties, which are essential to 

successful application of a dielectric, is discussed below. For photoresists and e-beam 

resists, patteranability is also a critical property.  Since the focus of the work presented in 

this thesis is on photoresists and e-beam resists, this property is also discussed below.  

The relative importance of each of these properties depends on the application of the 

dielectric material. 

 Electrical properties: The primary role of a dielectric is electrical isolation.  

Under alternating electric field, charge may be carried through the dielectric media.  

Signal speed through the dielectric media is inversely proportional to the square root of 

the dielectric constant as given by Equation (1.6)  [1].   
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𝜈𝑝 = 𝑐
 𝜀𝑟

           (1.6) 

 

 

Where νp is the signal propagation velocity, c is the speed of the light, and εr is the 

dielectric constant of the material.  Thus, a lower dielectric constant material has higher 

signal speed and superior electrical performance. Additionally, a dielectric must have a 

maximum value of resistance to be useful and provide sufficient insulation.  If a dielectric 

has poor electrical resistivity, electrical performance would be severely affected [1]. 

 A dielectric must also have a low dielectric loss.  Dielectric loss is a measure of 

electrical energy dissipated during one polarization cycle in a dielectric material.  These 

energy losses are important in high-frequency signal transmission for radiofrequency 

(RF) and digital functions because they degrade the efficiency and change the impedance 

of the circuit. Another electrical property of interest for dielectric materials is the 

breakdown voltage.  A dielectric, which is exposed to high magnitude of electrical field, 

must have a high breakdown voltage.  That is, it must withstand high voltages without 

breaking down (bond breaking within the dielectric) [1]. 

 Mechanical Properties: In addition to electrical isolation, mechanical stability of 

a dielectric can also be very important depending on the dielectric application.  Elastic 

modulus, CTE, residual stress, elongation to break, and adhesion are the critical 

mechanical properties for dielectrics.  Dielectrics with lower stress result in higher 

reliability.  Thus, it is desirable to have a low-elastic modulus dielectric.  Also, a lower 

CTE will result in lower stress on interconnects and the substrate.  The elongation to 

break, which is the strain that can be applied to the film before it breaks, is also an 

important property and a lower elongation to break is desirable.  

 Adhesion is an important property for these materials.   Regardless of the 

mechanical stability and strength, a dielectric must have good adhesion to the 
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surrounding materials.  Multiple layers of wiring exist in electronics devices and good 

adhesion between the dielectric and the conductor, the substrate, and the overcoat 

material is necessary for the reliability of the device.  Failure of adhesion between these 

layers creates stresses and results in delamination of the dielectric film after deposition of 

additional layers.  Thus, dielectrics with good adhesion are desirable.   

 Thermal Properties: Dielectrics are required to have good thermal stability at all 

the processing temperatures the device may encounter, including all deposition, cure, and 

etch stages for each layer.  If a dielectric is not thermally stable, it irreversibly 

mechanically or chemically changes over the temperature range of a process.  One 

measure of thermal stability is Tg, the temperature at which the polymer gains segmental 

mobility and glassy regions of the polymer become amorphous [50].  Therefore, 

dielectrics must have a high Tg and a decomposition temperature to withstand high 

processing temperatures.  Ideally, the device should not operate at temperatures 

substantially above the Tg of the polymers used in the processing for extended periods of 

time because the chemical and mechanical properties of the polymer can drastically 

change and also because cross-linked polymers are more susceptible to degradation than 

deformation at temperatures above their Tg [4]. 

  Processability:  A dielectric with a high DOP creates flat surface, which is 

essential for formation of fine lines and spaces.  High DOP of a dielectric is required both 

for lithography and metallization. Additionally, ease of deposition and thickness control 

are important in the process of a dielectric material.  It is desirable to deposit the 

dielectric quickly and at moderate temperature either as a liquid or dry film. It should 

have good flow behavior to allow for planar layers [1].  Also, precise control of the 

dielectric thickness is needed.  If vias are formed in a dielectric, etching, laser ablation, 

and drilling for photo-processing is needed.  Patterning can be affected by the fillers in 

the dielectric.  Dielectric fillers must be carefully evaluated for their effect on the 

drillability of the dielectric before incorporation.   
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 Patternability and Resolution: The three most useful metrics of the performance 

of a resist (photoresist or e-beam resist) are sensitivity, resolution, and contrast.  The 

sensitivity of a resist is the minimum exposure dose to obtain photodefinition at a fixed 

developing condition. The process for a resist with higher sensitivity is faster since a 

shorter exposure time will be necessary for a given exposure intensity.  Resolution refers 

to the smallest feature size that can be produced in a resist.  It depends on the ability of 

the resist to reconstruct a pattern from the areal image. Very small features may be 

patterned with a resist using a particular exposure tool, but they cannot be reliably used 

due to poor control of the dimensions of the feature.  Therefore, resolution is a minimum 

feature size resolved that maintain a certain feature tolerance.  A typical number is a three 

standard deviation (3σ) distribution of line-widths with no less than 10% variation [15].  

Resolution strongly depends both on the exposure tool and the photoresist process.  This 

characteristic of resists is not a fix number and carries with a considerable uncertainty 

even in a fixed exposure tool [15].   

 As resolution is highly dependent on the exposure tool, a function known as 

contrast is used to characterize the resist more directly.  The contrast is obtained by 

measuring the resist thickness after developing, normalizing and plotting it versus the 

logarithm of the incident dose.  Contrast curves for positive-tone and negative-tone 

resists are shown in Figure 1.12.  Assuming the resist in a negative tone, the curve has 

three regions: low exposure dose where all the resist is removed, high exposure where 

almost all the resist remains, and the transition region between the two extremes.  

Contrast, , is the slope of the line connecting the maximum exposure dose in the low 

exposure dose region (D0) and the minimum exposure dose in the high exposure dose 

region (D100) and is described by Equation (1.7) [13]: 
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𝛾 =
1

𝑙𝑜𝑔10
𝐷100

𝐷0

                  (1.7) 

 

 

Contrast is the measure of the resist to distinguish between the dark and light portions of 

the mask [15].  It depends on several factors including the exposing radiation, baking 

temperatures and times, the developing process, and surface reflectivity of the substrate.  

Resists with higher contrast are able to fabricate features with sharper lined edge and 

straight side walls.  Contrast for typical photoresists is 2 to 4 [15].   
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Figure 1.12 Contrast curves for positive-tone and negative-tone resists. 
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1.5  Polynorbornene-Based Dielectrics 

 Thin film polymer dielectrics are used in MEMS and microelectronics industry 

for a variety of applications [2, 51, 52] such as inter-level dielectrics, passivation layers, 

encapsulants, and underfills due to their superior mechanical, chemical, and electrical 

properties[21, 23, 53].  Photosensitive polymers offer additional advantages by reducing 

the processing steps. There has been extensive research and development focused on 

photosensitive polymers for MEMS and microelectronics applications [2, 54]. PNBs are 

attractive for these applications because they possess excellent electrical properties, good 

thermal stability, and low moisture uptake [55-57].  The bulky rigid nature of the PNB 

backbone has a Tg greater than 350°C and a decomposition temperature above 400°C [4].  

Additionally, the hydrocarbon backbone of PNB has limited sites for moisture to 

hydrogen bond and therefore exhibits low moisture absorption [4].    

 Although PNB has suitable properties for MEMS and microelectronics 

applications, it suffers from poor mechanical properties and weak adhesion [1, 58].  PNB 

films, cast from solution, are brittle and possess low elongation to break due to the rigid 

polymer backbone.  Also, these films, which are purely hydrocarbon chains, exhibit poor 

adhesion due to no direct chemical bond to substrates.  However, the undesired properties 

of PNB can be improved by the addition of side groups that are substituted directly to the 

polymer backbone [59, 60].  The chemical structure of functionalized PNB is shown in 

Figure 1.3.  The addition of any side group to PNB backbone increases chain flexibility 

and free volume, which can result in more mechanical stability [61].  Also, PNB film 

adhesion and reactivity can be improved by incorporation of appropriate adhesives as 

side groups and additives. 
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Figure 1.13 Chemical structure of polynorbornene. 

 

 To improve the mechanical properties, alkyl side chains can be substituted to the 

PNB backbone.   The alkyl groups can increase the elongation to break of the PNB.  The 

elongation to break has been shown to increase as the length of alkyl chain increase [4].  

To improve the adhesion characteristics of PNB polymers epoxy polymers can be added 

the polymer.  Epoxy polymers have excellent adhesion to various substrates and modest 

cure temperatures [53].  The acid catalyzed activation of epoxy groups is an efficient way 

to achieve cross-linking and enhance the polymer properties, especially adhesion and 
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[55].  Additionally, epoxide systems are known to form highly cross-linked systems, 

which can improve the mechanical stability of PNBs.   

 In the work presented in this dissertation, a photosensitive epoxy-added PNB 

polymer, Avatrel 8000P, was studied.   The polymer formulation is a mixture of the PNB 

polymer, multifunctional epoxy cross-linkers, a PAG, and an adhesion promoter.  The 

PNB polymer is functionalized with alkyl groups with carboxylic and alcohol ending 

groups.  Carboxylic acid functionalized side chains on the PNB backbone provide 

reactive sites for cross-linking with multifunctional epoxy additives.  Fluorinated alcohol 

and carboxylic acid groups provide solubility in aqueous base for environmentally 

friendly developing process.  The chemical structure of the aqueous base-developable 

PNB-based dielectric polymer, Avatrel 8000P, is shown in Figure 1.14. 

 

 

Figure 1.14 The chemical structure of Avatrel 8000P. 

 

 The epoxy-based cross-linking of the epoxy-functionalized PNB can be initiated 

by acid catalysis leading to a negative-tone, photodefinable dielectric material.  This 

reaction has been studied for numerous epoxy systems [62-65].  The photoinitiated 

reaction is one which leads to the formation of a three dimensional cross-linked network 

[58, 66, 67].  During exposure to ultraviolet (UV) radiation or elevated temperature, the 

PAG decomposes to form a protic acid (HX) [68, 69].  The acidic proton (H+) reacts with 
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a lone pair of electrons on the epoxide oxygen, leading to epoxy ring opening and the 

formation of a hydroxyl group and a carbocation (C+).  Cross-linking occurs when the 

carbocation reacts with either a pendant carboxylic acid group of a neighboring polymer 

chain to form a carboxylic ester linkage or with a second epoxy ring to form a polyether 

linkage.  The cross-linking reaction between a PNB-based polymer and epoxy-based 

cross-linkers are shown in Figure 1.15. 
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Figure 1.15 The cross-linking reaction between a PNB-based polymer and epoxy-based 

cross-linkers. 

  

 Previously, Rajarathinam et al. have shown that an epoxy cross-linked 

polynorbornene polymer formulation has straightforward processing parameters [53].  

The polymer was characterized in terms of contrast and optical properties.[1]  Their work 

showed that Avatrel 8000P can be exposed to UV radiation and can form high-aspect-

ratio structures.   High contrast formulations (contrast = 12.2) were developed in 

aqueous-base.  High-fidelity features with aspect ratios of 7:1, and vertical side-walls 

were fabricated in thick films.  The PNB formulation with a high epoxy content exhibited 
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appealing mechanical strength and residual stress.  The elastic modulus and hardness 

were reported as 2.9 GPa and 0.18 GPa, respectively, for the fully cross-linked films [53].   

 In this work, the ultraviolet and e-beam induced cross-linking of the epoxy-based 

PNB formulations were studied.  The effect of epoxy-based cross-linking additives with 

different functionalities on the PNB cross-linking, photolithographic properties, and 

adhesion characteristics was also investigated.   Thermal and variable-frequency 

microwave cross-linking of the PNB were studied and their effect on the mechanical, 

electrical, and chemical properties of the polymer was evaluated.  The properties of the 

PNB polymer formulations were characterized for various processing conditions, and the 

application of the PNB polymers for MEMS, microelectronics and photonics was 

investigated.   
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CHAPTER 2 

EXPERIMENTAL TECHNIQUES 

  

2.1  Materials 

 The materials used in this study are epoxy-functionalized PNB polymers. The 

PNB polymer (Avatrel 8000P), shown in Figure 1.14, was obtained from Promerus LLC 

(Brecksville, OH).   The photosensitive PNB, Avatrel 8000P, is a mixture of the PNB 

polymer with a PAG, a UV absorbing sensitizer, multifunctional epoxy cross-linkers, and 

an adhesion promoter in propylene glycol monomethyl ether acetate (PGMEA).  

4(methylphenyl)-4’-(1-methylethylphenyl) iodonium tetrakis (pentafluorophenyl) borate 

(Rhodorsil PI 2074), shown in Figure 2.1, was used as a PAG in this study, as described 

previously.[55, 58, 70]  1-chloro-4-propoxy-9H-thioxanthen-9-one (CPTX) was used as 

the UV absorbing sensitizer in the PNB formulations [55, 58].  The chemical structure of 

CPTX is shown in Figure 2.2.   

 

 

Figure 2.1 The chemical structure of Rhodorsil PI 2074. 
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Figure 2.2 The chemical structure of 1-chloro-4-propoxy-9H-thioxanthen-9-one. 

 

 Avatrel 8000P is mixed with different ratios of two multifunctional epoxy cross-

linkers: polypropylene glycol diglycidyl ether (Figure 2.3) and trimethylolpropane 

triglycidyl ether (Figure 2.4), which are readily soluble in PGMEA.  Tetraphenylol 

ethane tetraglycidyl ether (TPEGE) was used as a tetra-functional epoxy cross-linker in 

this study and its chemical structure is shown in Figure 2.5.  Triphenylol methane 

triglycidyl ether (3-EP) and bisphenol-F diglycidyl ether (2-EP) were used as additional 

tri-functioanl and di-functioanl epoxy cross-linkers and their chemical structures are 

shown in Figure 2.6 and 2.7, respectively.  PGMEA, CPTX and all epoxy-based cross-

linkers were purchased from Aldrich Chemical Co.Shipley MF-319 0.26N tetramethyl 

ammonium hydroxide (TMAH), purchased from MicroChem Co. was used as the developer 

for PNB formulations.   

 

 

 

Figure 2.3 The chemical structure of polypropylene glycol diglycidyl ether. 
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Figure 2.4 The chemical structure of trimethylolpropane triglycidyl ether. 

 

 

Figure 2.5 The chemical structure of TPEGE. 
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Figure 2.6 The chemical structure of 3-EP. 

 

 

 

Figure 2.7 The chemical structure of 2-EP. 

 

 

2.2  Polymer Film Preparation 

 For thick-film samples of Avatral 8000P, the polymers were spin-coated on 

<100> silicon wafers using a CEE 100CB Spinner at 1000 rpm for 30 s producing ca. 40 

µm thick films.  The spin speed curve for Avatrel 8000P is shown in Figure 2.8.   The 

films were soft-baked at 100°C for 10 min in an oven (air ambient) to remove residual 

solvent.  The effect of exposure dose was studied using a variable-density optical mask 

(Opto-line International Inc.).  Contact printing was used to evaluate the aspect-ratio of 

the photodefined structures.  UV exposures were performed using a Karl Suss MA-6 

Mask Aligner with a 365-nm filter.  The operating parameters for a Karl Suss MA-6 

Mask Aligner are listed in Table 2.1.  EBL was performed using a JEOl JBX-9300FS tool 

at 100 kV acceleration voltage and 50 pA beam current.  The operating parameters for a 
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JEOl JBX-9300FS is listed in Table 2.2.  The samples were post-exposure baked in an 

oven at 100°C for 8 min. The thin-film samples (25 µm) were spin-coated on 100 mm 

diameter <100> silicon wafers using a CEE 100CB Spinner at 1500 rpm for 30 s.  

Polymers were soft-baked and hard-baked at the same conditions, which was 100°C for 5 

min in an air ambient atmosphere oven.  ALL polymer films were developed for 3 min at 

room temperature using the TMAH developer.  After developing, the films were cured in 

either in a furnace or with a microwave system. Thermal cures were performed in a 

nitrogen-ambient furnace at the desired temperature.  The temperature was ramped at 

5°C/min and held at temperature for 1 hr.  The furnace was allowed to cool slowly to 

ambient temperature by natural convection. The film thickness was measured after the 

PEB with a Veeco Detak profilometer.   

 

 

Figure 2.8 The spin speed curve for Avatrel 8000P. 
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Table 2.1 Karl Suss Ma6 mask aligner operating parameters. [71] 

Maximum Substrate Size 6
" 

Maximum Mask Size 7
"
 

Exposure Modes 
Soft, Hard, Low Vacuum, 

Vacuum, Flood Exposure 

Wavelength Range UV400, UV300, UV200 

Proximity Exposure gap 1-300 µm 

Resolution Down to 0.4 µm 

Intensity Uniformity ±5% 

 

 

Table 2.2 JBX-9300SF E-beam lithography operating parameters. [72] 

 

Maximum Wafer Size 12
"
 

Maximum writing area 9
"
 

E-beam Diameter 4 nm 

Accelerating Voltage 50 kV/100kV 

Current Range 50 pA-100 pA 

Scan Speed 50 MHz 

 

2.3  Chemical Properties  

2.3.1  Fourier Transform Infrared Spectroscopy (FTIR) 

 FTIR spectroscopy was used to follow the epoxy ring-opening reactions using a 

Magna 560 spectrometer (Nicolet Instruments).  Scans were collected in transmission 

mode on potassium bromide (KBr) substrates with 512 scans being averaged for each 

measurement at a resolution of 2.00 cm
-1

.  Samples were prepared by coating each KBr 
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plate at 1500 rpm for 30 sec producing ca. 25 µm thick films.  Samples were soft-baked 

and post-exposure baked at 100˚C for 5 min.  After exposure to UV light, the edge and 

back of KBr disk were covered by Parafilm to prevent film delamination and dissolution 

of the KBr disc in the TMAH developer.  Samples were developed in TMAH developer 

for 3 min.  To monitor conversion, the epoxy ring opening reaction was monitored by 

following the disappearance of the 844 cm
-1

 peak, associated with the oxirane ring C-O-C 

stretch.  

 In the study presented in Chapter 7, VFM curing of the PNB dielectric, films 

prepared for FTIR analysis were spun on 50 mm diameter, double side polished silicon 

wafers using a CEE 100CB Spinner at 1500 rpm for 30 sec resulting in ca. 30 µm thick 

films.  Samples were soft-baked and post-exposure baked at 100°C for 5 minutes on a 

hotplate in air.  UV exposures were performed at a dose of 450 mJ/cm
2
 using a Karl Suss 

MA-6 Mask Aligner with a 365 nm filter.  Polymer films were developed for 3 min using 

the TMAH developer. 

2.3.2  Cross-Link Density 

 Swelling experiments were performed by soaking in PGMEA on the samples used 

for nanoindentation.  The swelling of cured polymer films was evaluated by measuring 

the increased sample weight versus the exposure time in the PGMEA solvent.  The 

measurements were taken using an Ohaus Voyager Pro balance with readability of 

0.0001 g and linearity of ± 0.0002.  The mass of each sample was measured at least 6 

different times during the 24 h swelling period.  The percent increase in weight was 

calculated using Equation (2.1).  Each data point is the average of four measurements.  

The average of standard deviation was less than 0.0003. 
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Where S is the swelling, and Wt is the weight of sample swollen with solvent at time t, 

and Wo is the sample weight in dry state [73, 74].
 

2.4 Mechanical Properties  

2.4.1  Reduced Modulus and Hardness 

 To characterize mechanical properties of samples such as reduced modulus and 

hardness, nanoindentation was used as a depth sensing technique.  Researchers have used 

this technique to characterize materials such as metallic alloys [75] and ceramics [76].  

However, the nanoindentation of polymeric materials is challenging due to their 

viscoelastic and viscoplastic response [77], low hardness [78], and resulting strain-rate 

dependence of deformation [79].  In this work, quasi-static nanoindentation was 

performed on PNB samples using a Tribo indenter nano-indenter (Hysitron Inc. 

Minneapolis, MN) with a Berkovich tip.  The hardness (H) was defined as the applied 

load per unit area of indentation, as given by Equation (2.2) [80].  

  

 

 

 Where Pmax is the maximum load and the projected contact area, A(hc), for an indenter 

where the tip imperfection is defined by Equation (2.3). 
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Where hc was estimated for a geometrical constant (ε) by using the Oliver and Pharr 

model, Equation (2.4). 

 

 

 

Where S is the stiffness of the contact. The indenter was located on an anti-vibration table 

and enclosed in an acoustic housing.  The peak load was varied between 250 µN and 

6250 µN.  The tip was loaded to maximum load within 10 sec, held for 10 sec, and 

unloaded in 2 sec.  In order to minimize the impact of the substrate on the indentation 

results, the maximum force was chosen such that less than 5% of the total polymer film 

thickness, 25 µm, was indented [54].  Additionally, a 5×5 array of points was indented in 

the center of the samples to exclude edge effects.  The maximum drift rate of the 

experiments was set at 0.1 nm/s over a period of 40 sec.  The curvature of the Berkovich 

tip was between 250 nm and 970 nm.  The Oliver-Pharr model was used to analyze the 

load-depth curves [53].  The reduced modulus was extracted from the 20% to 95% 

portion of the unloading curve [4].  To eliminate the impact of thermal drift, the first data 

points were discarded so that the average hardness and modulus only included indents 

above 500 nm.   

Each nanoindentation data point shown in the results sections is the average of all 

measurements performed on all samples at each processing condition [54].  In each set of 
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experiments, multiple calibrations were performed to minimize drift in the calibration and 

ensure the precision of the data collected [81].  It is necessary to calibrate the tip with a 

standard having a modulus similar to the sample to obtain a valid area function over the 

indentation depths of the film [53]. Fused silica (quartz) is a commonly used standard 

because its elastic modulus does not change significantly with indentation depth and it 

does not have a surface oxide as metals.[81]  However, it has been shown that it is 

necessary to calibrate the tip with a standard having a modulus similar to the sample to 

obtain an area function valid over the indentation depths of the sample [53].  In this work, 

a Hysitron polycarbonate calibration standard with a modulus of 3.1 GPa was used to 

calculate the area function. 

2.4.2  Residual Stress 

 The residual film stress was measured at room temperature using a He—Ne laser-

based Flexus Tencor stress analyzer (Model F2320) [82].  Residual stress levels for 25 

µm thick films were determined by measuring changes in the curvature of <100> silicon 

wafers as a result of the deposition and subsequent curing of the polymer film. The 

residual stress, σ, was calculated using Stoney’s equation, which relates the residual 

stress of a film to the change in the radius of curvature of the supporting substrate, 

Equation (2.5). 
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Where is E⁄(1-ν) is the biaxial elastic modulus of the substrate (1.805 × 1011 Pa for 

<100>-oriented silicon), h is the substrate thickness, and t is the thickness of the film in 

meters. R is the reduced change in radius, given by Equation (2.6). 

 

 

 

Where R1 is the radius of curvature of the uncoated substrate and R2 is the radius of 

curvature of the substrate after film coating and processing.  Stoney’s equation represents 

the average biaxial stress acting within a film deposited on a substrate for film thickness 

less than 10% of the substrate thickness [83]. The polymer film thickness was measured 

after cure with a Veeco Detak profilometer. 

2.5 Electrical Properties 

 Dielectric measurements were conducted by the fabrication of parallel-plate 

capacitors on <100> silicon wafers.  The bottom plate of the capacitor was a full surface 

film of sputtered aluminum (400 nm thick) deposited on the silicon surface by DC 

sputtering.  The polymer was spin-coated on the aluminum layer at 1000 rpm for 30 sec 

producing a ca. 10 µm thick film.  The sample was soft-baked and post-exposure baked at 

100˚C for 5 min, and exposed at 450 mJ/cm
2
.  The edge of the sample was covered with 

Parafilm to prevent delamination during developing.  The sample was developed in 

TMAH developer for 3 min, and then cured at the desired temperature.  The top electrode 

consisted of 400 nm aluminum and was deposited on top of the polymer film with a DC 

sputterer. The aluminum was patterned with photoresist and wet etched to form the top 

plate of the parallel plate capacitor, Equation (2.7). 
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Where C is the capacitance, εr is the relative dielectric constant, ε0 is the permittivity of 

free space, A is the area, and t is the thickness of the dielectric.  Conductance and 

capacitance were measured at 10 kHz using a Hewlett Packard 4236 LCR meter on a 

Karl Suss probe station.  The ASTM correction, D 150, for fringing fields was performed, 

Equation (2.8) [84].  

 

 

 

Where κχ' is the approximate value of the dielectric constant and P is the perimeter of the 

top measuring electrode. 

2.6 Thermal Properties 

2.6.1  Thermogravimetric Analysis (TGA) 

 To track the weight loss of the polymer films during a thermal excursion a TA 

Instruments Q50 thermogravimetric analyzer was used. The samples were prepared for 

analysis by placing about 4 g of dry polymer in an aluminum TGA test pan.  A nitrogen 

purged convective heating unit completely surrounds the test pan.  The system was 

calibrated with an empty test pan and the experiments were performed in a dynamic 

mode. The temperature inside the sample chamber was increased at a rate of 5°C/min 

from 27°C to 500°C under nitrogen atmosphere.  This technique is very sensitive to 
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subtle changes in the sample weight.  The polymer weight loss is monitored as a function 

of time and temperature.   

2.6.2  Differential Scanning Calorimetry (DSC) 

 The glass temperature of the polymer films was measured using a TA Instruments 

Q20 differential scanning calorimeter.  This technique monitors the heat flux in a sample 

relative to an inert reference as the sample is heated.  The difference in the heat flux 

between the sample and the reference is recorded as a function of time and temperature.  

The samples were prepared for analysis by placing about 4 g of dry polymer in an 

aluminum DSC test pan.   The DSC chamber was purged with nitrogen to reduce the 

oxygen content to less than 50 ppm after the sample was placed in the DSC chamber on 

the sample heater.  This technique was only used for fully cured samples to avoid 

pressure built up in the chamber and melting the aluminum test pan at high temperatures 

due to the cross-linking reactions and solvent evaporation.  

2.7 Patternability 

 Scanning electron micrographs (SEM) were obtained using a Zeiss Ultra 60 to 

observe the morphology of patterns in polymer films.  For SEM imaging, polymer films 

were coated with titanium metal to prevent charging and increase the conductivity of the 

polymer sample using EFFA Sputter Coater at 25 watts.  The thickness of the titanium 

was around 60 nm, which will not affect the surface morphology.  The wafers were cut 

into small pieces using a diamond scribe. For side-profile observation, the wafer was cut 

at the center of the pattern to avoid geometry effects.  The sample pieces were then 

mounted on a sample holder using silver adhesive.   
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CHAPTER 3 

PHOTO-CROSS-LINKING OF POLYNORBORNENE DIELECTRIC 

 

 Numerous photosensitive and non-photosensitive polymers have been developed 

for MEMS and microelectronics applications [55, 58, 77, 85-89].  Furthermore, several 

studies of photodefinable, high-aspect-ratio materials have recently been reported [53, 55, 

90-92].  Among the most desirable attributes for photosensitive polymers is the ability to 

achieve high-aspect-ratio (depth-to-width) structures with excellent adhesion and high 

sensitivity.  In this work, the effect of different epoxy-based cross-linkers on the physical 

and photochemical properties of the PNB-based dielectric, Avatrel 8000P, was 

investigated, in an effort to enhance the resolution, aspect ratio, adhesion, and photo-

speed.  The base polymer formulation used in this study was the same as that of 

Rajarathinam et al., and the results were compared with the results reported previously 

[53]. 

3.1   Experimental  

 The epoxy-based cross-linkers used in this study are TPEGE, polypropylene 

glycol diglycidyl ether, and trimethylolpropane triglycidyl ether, which will be identified 

as I, II and III, respectively, hereafter. The base polymer used in Avatrel 8000P, shown in 

Figure 1.14 was used as the base polymer formulation used in this study.  The PNB 

polymer was mixed with different ratios of II and III to form a base polymer formulation 

(BF) which replicates the formulation of Rajarathinam et al [53].   A summary of the 

formulations made with compounds I, II, and III are listed in Table 3.1.  X is defined as 

the mole fraction of epoxy moieties in each formulation, where X=1 in the case of BF, as 

was used previously [53].  In the base formulation, the value of X for compounds II, III, 
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and adhesion promoter are 0.86, 0.09, and 0.05, respectively.  The epoxy cross-linkers 

were dissolved in PGMEA and ball-milled with the PNB resin for 72 h. 

 

Table 3.1 PNB polymer formulations. 

Polymer Formulation X Title 

Base polymer 1 BF 

BF with 1 wt% supplementary I 1.07 A 

BF with supplementary II, III, and CPTX 1.07 B 

BF with supplementary II 1.07 C 

BF with supplementary III 1.07 D 

BF with supplementary II and CPTX 1.07 E 

BF with supplementary III and CPTX 1.07 F 

 

 

 A 1 wt% solution of 3-aminopropytriethoxy silane (3-APS) in ethanol (90% 

ethanol) was applied on the substrate surface in all experiments to enhance the film-to-

substrate adhesion.  The solution was spin-coated at 300 RPM for 10 sec followed by a 

higher-speed spin at 1500 RPM for 20 s.  To remove excess ethanol, the samples were 

baked at 130°C for 15 min on a hotplate. A 15 s ethanol rinse was performed to remove 

excess materials. All films were cured in a nitrogen-purged furnace at 225°C for 1 h after 

developing. 

High-aspect ratio structures were fabricated on metalized silicon wafers 

composed of sputtered Ti/Cu/Ti (300Ǻ, 3000Ǻ, 300Ǻ). The metal was deposited on 

silicon wafers with a Unifilm sputterer.  SiO2 (1.5 µm thick) was deposited on the final 

titanium layer using a Unaxis PECVD to improve the film-to-substrate interface.  The 
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epoxy polymers formulations were also spin-coated using the same procedure as 

described earlier.  After the samples were developed, the samples underwent a descum 

step using a Plasma-Therm-RIE. The final polymer thickness was 38 to 40 µm.  The SiO2 

and top surface of titanium were etched using buffered oxide etch (BOE) for 7 min.  The 

exposed copper surface was then suitable for electroplating copper metal in the regions 

where the polymer was developed away.  An acid copper sulfate plating bath was used.  

The copper electroplating bath contained 120 g of copper sulfate (CuSO4.5H2O) and 139 

ml of sulfuric acid in 1500 ml of deionized water.  The bath also contained 0.189 g of 

hydrochloric acid to reduce anode polarization and eliminate striated deposits and 1.134 g 

of polyethylene glycol (PEG) as a carrier, lever, and brightener.  The current density was 

10 to 15 mA/cm
2
 yielding a plating rate of 20 µm/h. 

3.2   Results and Discussion 

The behavior of the three epoxy cross-linkers, I, II, and III, were studied and their 

effect on the physical and photochemical properties of the base polymer formulation was 

investigated.  The photosensitivity and contrast of the BF was first evaluated.  Generally, 

high contrast is needed to make vertical-walled, high-aspect-ratio features.  High contrast 

is achieved when an incremental increase in cross-linking leads to insolubility of the 

polymer film [13].  High contrast can lead to high aspect-ratio, vertical-walled structures, 

if adhesion of the resist to the substrate can be maintained during development of the 

latent image.  To evaluate the impact of compound I on the sensitivity, contrast, and 

aspect ratio of BF, the contrast of formulation A (Table 3.1) was compared to the contrast 

of BF.  The mole fraction of epoxy moieties in formulation A was increased to X=1.07, 

compared to the normalized value of X=1.00 for the base formulation, by addition of 1 

wt% of epoxy compound I.  That is, 1 wt% of compound I (weight percent solids in the 

formulated solution) corresponds to 7 mole% of total epoxy in BF, making X=1.07 for 

the final solution.  Front-side, normal incident exposure was conducted and the contrast 
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curves are shown in Figure 3.1.  The resulting 25-µm tall structures using formulation A 

and BF are shown in Figure 3.2.  Structures patterned with formulation A had higher 

contrast, vertical side-walls, and same line and spacing. 

 

 

 

Figure 3.1 (a) Contrast curve for Avatrel 8000P (b) Contrast curve for Avatrel 8000P 

with supplementary I. The dashed line shows the slope used to obtain the contrast. 
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Figure 3.2 SEM image of (a) formulation A; (b) Avatrel 8000P photopatterned with an 

exposure dose of 400 mJ/cm
2
. 
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The contrast values were calculated from the slope of the line in the contrast curve 

where there is a transition from essentially full development (film removal) to no 

development (full or partial film remaining).  Using the slope of the line in the contrast 

curve, and interpolation of the values of D0 and D100, avoids possible errors in having to 

pick a single value for D0 and D100.  Formulation A yielded a contrast of 24.2, which is 

exceptionally high, even compared to that for BF (γ=7.4).  This 3.3 fold improvement in 

contrast compared to that for BF, was solely due to the 1 wt% addition of the tetra-

functional epoxy.  As can be discerned from Fig. 3.1B, the contrast value obtained for 

formulation A is an accurate value as a result of multiple data points defining the slope of 

the contract curve between D0 and D100.  It should be noted that the contrast value for BF, 

Fig. 3.1A, is a minimum contrast value due to the fact that only D0 and D100 were 

observed.  Thus, the true slope is at least as great as the value obtained by connecting D0 

and D100.  

In the case of BF, the value of D100 is at a thickness value greater than one and the 

resulting contrast is somewhat misleading because the films exposed at doses near D100 

suffered from poor adhesion to the substrate.  The value of thickness was greater than one 

in Fig. 3.1A because the film delaminated from the surface at the edge of the exposed 

region.  Rajarathinam showed that epoxy activation at the polymer-to-substrate interface 

is critical for adhesion [53].  In front-side, normal incident exposures, the UV intensity at 

the surface of the film is high.  However, the optical intensity at the polymer-substrate 

interface is attenuated by UV absorption within the film resulting in a lower exposure 

dose at depths within the film.  Rajarathinam showed this by comparing front-side and 

back-side exposures [53].  If the top surface is exposed to doses at or near D100, then the 

exposure dose at the polymer-substrate interface will be below D100, especially for thick-

film samples.  

The absorption of UV radiation results in activation of the PAG and creation of an 

acid which initiates epoxy ring opening and polymer cross-linking.  The lower exposure 



 50 

dose at the polymer-substrate interface results in fewer epoxy units being activated at the 

wafer surface and can lead to poor adhesion and delamination.  The addition of 

compound I to the BF, as in formulation A, increases the optical density (OD) of the film 

at 365 nm.  The OD of the incident UV radiation for formulation A at the polymer-

substrate interface was less than that of BF, due to the increased absorption of compound 

I within the film.  Thus, the superior adhesion of formulation A must be due to the 

presence of the tetra-functional epoxy, compound I, (within the film and at the polymer-

substrate interface) and its higher efficacy for producing adhesion, compared to the other 

epoxy compounds used in BF.   

The addition of the tetra-functional epoxy, compound I, affected the solubility of 

the unexposed film in the aqueous-base developer.  The developing time for formulation 

A was 4.50 minutes compared to 3.00 minutes for BF.  The increased adhesion and 

longer developing time with formulation A could have been due to fractional epoxy ring 

opening after spin-coating and baking (SB and PEB).  This was investigated in 

unexposed samples using FTIR spectroscopy.  The FTIR peak corresponding to the 

epoxy rings (844 cm
-1

) showed a 12% decrease after PEB (with no exposure) compared 

to the same film after spin coating (no exposure or baking steps) showing that some the 

epoxide rings had reacted resulting in some degree of cross-linking in the unexposed 

regions after the 100
°
C bake. Epoxy ring opening can occur during thermal treatments or 

can be acid activated, if some of the PAG was thermally activated.  It was also noted that 

the less swelling occurred in the exposed regions of formulation A, compared to BF, 

which will be discussed in more detail later in the paper when swelling is discussed.  

Enhanced epoxy ring opening and polymer cross-linking was also seen, as shown later in 

the FTIR data. 

The sensitivity or photospeed of the polymer is a critical attribute of each 

formulation.  The absorption of ultraviolet radiation within the polymer film results in 

activation of the PAG producing an acid within the polymer film.  The photogenerated 
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acid catalyzes epoxy ring opening reaction, which leads to polynorbornene cross-linking.  

The absorption of UV radiation can be increased by adding a sensitizer to the polymer 

formulation, as was done with BF.  Energy transfer occurs between the sensitizer and the 

PAG, creating the acid catalyst.  However, the sensitizer does not participate in polymer 

cross-linking and remains in the polymer film as a low molecular weight additive.  The 

D100 value, obtained from the contrast curves, was improved from 66 mJ/cm
2
 for BF to 

18 mJ/cm
2
 for formulation A. Thus, UV radiation is significantly more effective at 

activating the PAG and initiating cross-linking after PEB, when the tetra-functional 

epoxy, I, is present.    

To evaluate the impact of compound I on the polymer sensitivity at 365 nm, a 

series of UV absorption experiments were conducted.  The absorbance of PGMEA, BF, 

and dilute solutions of I, II, and III in PGMEA were measured in the ultraviolet and 

visible regions.  PGMEA, II, and III had very low absorbance at wavelengths from 300 

nm to 400 nm.  Compound I was found to have high molar absorptivity in the UV.  The 

absorptivity of compound I in PGMEA was compared to the absorptivity of a dilute 

solution of the sensitizer used in BF, CPTX, in PGMEA, as shown in Figure 3.3.  The 

molar absorbance of I and CPTX are 172,287 L.mol
-1

.m
-1

 and 395,779  L.mol
-1

.m
-1

, 

respectively. 
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Figure 3.3 Changes in UV-vis spectrum of dilute solution of I in PGMEA from 200 nm to 

600 nm (b) Changes in UV-vis spectrum of dilute solution of CPTX in PGMEA from 200 

nm to 600 nm. 
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The higher absorbance of formulation A, compared to BF, by itself does not 

account for the improved adhesion and sensitivity of the tetra-functional epoxy.  In the 

case of a partially cross-linked polymer, a higher degree of functionality within the cross-

linker will lead to a higher degree of cross-linking in the polymer film.  That is, the 

overall cross-link density using compound I, will be higher than that of compound II or 

III, for a given mole fraction of epoxy moieties, when the films are partially cured (same 

degree of curing) because compound I has a higher degree of functionality.  Thus, the 

higher cross-link density of the tetra-functional epoxy is an asset when the film is 

partially cross-linked, as in the case of soft baked or post exposure baked films.  This 

point will be revisited in greater detail later in the paper.   

These results show that the increase in the sensitivity of formulation A, compared 

to BF, is at least partly due to the higher absorbance of compound I at 365 nm, and 

subsequent activation of the PAG and creation of the acid catalyst, compared to the other 

epoxy compounds.  To compare the effect of simply adding more epoxy to BF, polymer 

formulations containing an identical quantity of epoxy moieties, using II and III, were 

studied.  Formulation B was prepared so as to contain the exact number of equivalents of 

epoxy as formulation A.  Since compound I has a higher molar absorptivity than 

compounds II or III, CPTX was added to formulation B so the new mixture had the same 

absorbance at 365 nm as A.  Thus, B had the same mole ratio of epoxy as A and identical 

absorbance at 365 nm due to the additional CPTX.  As shown in Figure 3.4, the 

sensitivity of B was evaluated by measuring D100, which was 18 mJ/cm
2
, essentially the 

same as formulation A.  Thus, the improved sensitivity of formulation A, compared to 

BF, was due to the higher OD of the tetra-functional epoxy, and subsequent energy 

transfer with the PAG creating the acid catalyst.  The relative efficiency for energy 

transfer between compound I and PAG vs CPTX and PAG could have been different but 

was beyond the scope of this study. 
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Figure 3.4. (a) Contrast curve for Avatrel 8000P (b) Contrast curve for Avatrel 8000P 

with supplemented CPTX, II and III. 

 

The contrast for formulation B was measured to be γ=9.96, which is higher than 

BF, due to the added epoxy and CPTX, however, it is lower than that of formulation A, 

γ=24.2.  This result is congruent with the previous observation that the higher contrast 

obtained with formulation A is not simply due to a higher epoxy content or higher 

absorbance of the tetra-functional epoxy.  The addition of compound I did provide greater 

surface adhesion and swelling resistance in the cross-linked regions of the film.  The 

improved adhesion is critical to extending the developing time and allowing full 

development of the features, especially at exposure doses at or just greater than D100.  For 

example, the developing time needed for formulation A was 4.50 min, compared to 3.33 

min for formulation B, and 3.00 min for BF.  The longer develop time for formulation B, 

compared to BF, is attributed to a modest degree of cross-linking from the addition of II 

and III.  Also, it improves the adhesion at the film-to-substrate interface in the exposed 

regions.  The poor adhesion at doses just above D100 was visually observed in the films 

and is reflected in Figures 3.1 A and 3.4.  In Fig. 3.4, the thickness values greater than 
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100% thickness at doses just above D100 correspond to delaminated films.  The poor 

adhesion at D100 observed with the BF formulation was slightly improved in formulation 

B by addition of epoxy compounds II and III. 

The ability to make high aspect ratio features is a function of the contrast, 

adhesion characteristics, and sensitivity of a photodefinable material.  Since the addition 

of 1 wt% of compound I had a significant effect on these parameters in formulation A, 

the ability to form high-aspect-ratio features was investigated.  Hollow-core structures, 

Figure 3.5, were chosen for this work since they are the difficult to fabricate because the 

transport of developer into the core of the structure is restricted, compared to the 

transport of developer to the outside of the structure.  Films were spin-coated at 1000 rpm 

and photopatterned at an exposure dose of 200 mJ/cm
2
 at 365 nm resulting in 38.7 m 

tall, hollow-core, triangular shaped structures.  Dissolving the unexposed polymer from 

the region at the center of the structure before delamination occurred at the outside edge 

of the polymer structure is a critical test of adhesion.  To confirm complete development 

of the center core region, copper was electroplated in the hollow core portions of the film 

after a 2 min plasma (RIE) descum.  If the polymer was not fully developed from the 

center core, electroplating would not occur.  Hollow-core features, 38.7 µm thick with 3 

µm diameter (length of a side) opening, were fabricated using formulation A, as shown in 

Figure 3.6.  The resulting aspect ratio was 13:1.   
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Figure 3.5 High -aspect- ratio annular structure with hollow center. 

 

 

Figure 3.6 Microscopic image of a 13:1 (height:width) hollow-core 

structure photopatterned with Avatrel 8000P with supplementray I. 

 

The center core of the structures was fully developed since copper electroplating 

was observed in the center region after development.  The electroplated copper filled the 

center region of the cavity.  The polymer shell around the copper was removed and the 

sidewall of the copper features was examined.  The sidewalls were relatively straight-
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walled in comparison with the results reported previously by Rajarathinam et al [53].  For 

comparison, 13:1 aspect-ratio structures were formed with BF at a higher exposure dose 

of 400 mJ/cm
2
 and 11:1 aspect-ratio hollow structures were made with formulation B at 

an exposure dose of 200 mJ/cm
2
.  The same process as above was performed, however 

incomplete developing occurred in the cavities of both BF and formulation B, as shown 

by a lack of copper plating.  In both cases, longer developing time was needed to fully 

develop the center core, which led to film delamination and lifting due to the lack of film-

to-substrate adhesion.  Thus, only formulation A had sufficient adhesion and contrast to 

produce features with aspect ratio greater than 13:1.  It can be concluded that 1 wt% of 

compound I improved the contrast, sensitivity, and film-to-substrate adhesion of 

formulation A and led to higher aspect-ratio features with straight side-walls and high 

fidelity.  The properties investigated for BF, formulation A, and formulation B are 

summarized in Table 3.2. 

 

Table 3.2  Properties of PNB formulations. 

Polymer 

Formulation 

Sensitivity  

(D100, mJ/cm
2
) 

Contrast 

(𝛾) 

DT 

(min) 
Aspect Ratio 

BF 66 7.37 3 5:1 

A 18 24.2 4.5 13:1 

B 66 9.96 3.3 5:1 

 

 

The reduced modulus and hardness of BF and formulations A and B were 

compared using nanoindentation.  All samples were tested after a 225°C cure for 1h.  

Formulations A, BF, and B had a reduced modulus of 2.80 GPa, 2.82 GPa, and 2.83 GPa, 
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respectively.  The hardness values for A, BF, and B were 0.17 GPa, 0.16 GPa, 0.18 GPa, 

respectively.  This shows that no significant change in mechanical properties occurred 

due to the additional epoxy-based cross-linkers in formulations A and B.  

The extent of cross-linking can play an important role in the properties of the 

polymer [93, 94].  To evaluate the effect of compounds I, II, and III on the cross-link 

density of the cured polymer, the average molecular weight between cross-links (Mc) and 

effect of cross-link functionality (fc) were calculated and compared assuming fully 

reacted and cross-linked films.  In addition, two formulations were made to 

experimentally compare the effect of cross-linking (Table 3.1).  In one case, formulation 

C, compound II was added to BF to provide an equivalent number of epoxide groups as 

in formulation A.  In the second case, formulation D, compound III was added so that the 

total molar epoxy content was the same as formulation A.  The values of Mc and fc were 

calculated using Equations (3.1) and  (3.2), which assumes that all the epoxy moieties 

have reacted, and each has resulted in backbone cross-linking. 

 

 

 

 

 

Where Me is the epoxide equivalent weight of the resin, f is the functionality of the cross-

linker, Mf is the molecular weight of the f-th functional cross-linker, and Φf is the mole 

fraction of epoxy moles provided by the f-th functional cross-linker [95, 96].  With full 

conversion of the cross-linkers, Mc and fc were calculated. The calculated network 

parameters are summarized in Table 3.3.  In the work of Crawford et al. [95], full 
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conversion was achieved.  That is, the calculation assumes that all polymer sites were 

reacted with epoxy groups, and no cross-linking occurred between epoxy groups.   

 

Table 3.3 Network properties. 

Polymer Formulation  (gr/mol) fc 

BF 446 3 

A 449 3 

C 491 3 

D 441 3 

 

 

The results show that there is little difference between the Mc and fc values for the 

various formulations.  This implies that compounds I, II, III could each result in nearly 

the same cross-link density.  This result is consistent with the mechanical property 

measurements shown above where the properties for the formulations with compounds I, 

II, III are essentially identical.  As shown in Table 3.2, the model predicts a similar 

average molecular weight between cross-links for BF, and the other formulations with 

slightly higher epoxy content.  In the films this occurs because there are enough sites on 

the polymer backbone for complete cross-linking for all the epoxy units in each 

formulation.  Thus, the addition of a small amount of epoxy does not change Mc by very 

much.  This will be confirmed in the next section where it is shown that the solvent 

swelling within the polymer is a function of the mole fraction of epoxy only, and not the 

functionality of the epoxy different epoxy additives.  The Mc value obtained for 

formulation C is slightly higher than the other formulations due to the higher molecular 

weight per epoxy moiety for compound II compared to compounds I and III.  The same 
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Mc value would be obtained for all formulations with the same mole fraction of epoxy, if 

the molecular weight per epoxy functionality for the different cross-linkers was identical. 

Swelling experiments were performed to investigate the actual degree of cross-

linking.  A larger value of Mc (lower degree of cross-linking) will result in greater solvent 

swelling [94].  Swelling tests were performed in PGMEA.  Formulations were made so 

that the molar content of epoxide and OD were constant for the different experiments.  

The optical absorbance of epoxies II and III was less than that of compound I.  Thus, 

CPTX was added to formulations with II and III so that the formulations had the same 

OD.  Formulations E and F, Table 3.1, have the same molar quantities of epoxy and OD 

as formulation A.  The swellings of BF, A, E, and F were measured after the PEB and the 

final cure.  Figure 3.7 shows an increase in weight with swelling time for the cured 

samples.   
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Figure 3.7 Influence of di-functional, tri-functional and tetra-functional cross-linker on 

swelling of fully cross-linked cured polymer. 
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No significant difference was found between the various formulations when the 

epoxy content was identical.  This agrees with the calculation of Mc for the different 

formulations.  That is, each epoxy compound resulted in a similar degree of cross-linking.  

The degree of swelling was greater for BF because it has a slightly lower molar epoxy 

content than the other formulations.  In the model calculations above, it was assumed that 

all the polymer reaction sites were fully reacted through an epoxy reaction with the cross-

linkers.  However, there is an excess of reactive sites on the polymer so that after reaction 

with the epoxy, unreacted sites will remain on the polymer.  The addition of a cross-

linker to the polymer increases the degree of cross-linking between the epoxy and the 

polymer reaction sites, regardless of the functionality of the cross-linker.    

The swelling tests were replicated after PEB, as shown in Figure 3.8. As in Fig. 

3.7, there was no swelling dependence on cross-linker functionality.  However, a high 

degree of film lifting and delamination occurred across the film for formulation F.  A 

lower degree of delamination around the corners of the film was observed for formulation 

E.  Due to the adhesion improvement with compound I, no delamination of formulation A 

was observed anywhere on the silicon surface.  The diversity in the degree of 

delamination observed for compounds I, II, and III shows the complex nature of adhesion 

caused by the epoxy reaction for PNB and epoxy cross-linkers.  
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Figure 3.8 Influence of di-functional, tri-functional and tetra-functional cross-linker on 

swelling of cross-linked baked polymer. 

 

To study the reactivity of the cross-linkers, the degree of epoxy ring opening for 

formulations BF, A, and E after PEB was investigated using FTIR spectroscopy.  All 

formulations show epoxy ring-opening after PEB suggesting that some cross-linking has 

occurred.  The IR spectra for the thin-film BF from 700 cm
-1

 to 950 cm
-1

 are shown in 

Figure 3.9.  The FTIR peak corresponding to epoxy was not observed after curing at 

225°C in all cases showing that the epoxide rings had reacted resulting in adequate 

adhesion after curing for all formulations.  The exact nature of the improved adhesion for 

compound I, beyond its higher epoxy functionality and absorbance, was not investigated 

and may be the subject of future publication.  Even though the cross-linkers show the 

same degree of swelling resulting in the same cross-link density, they result in a 

significantly different degree of adhesion.  These observations confirm the results 

obtained from previous experiments; excellent film-substrate adhesion can be obtained by 

the addition of small amount of tetra-functional epoxy at the 1 wt% level.  
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Figure 3.9 Change in FTIR spectrum of the thin-film Avatrel 8000P from 700 cm
-1

 to 950 

cm
-1

 as a function of processing steps (SB: 100°C for 5 min; exposure: 250 mJ/cm
2
; PEB: 

100°C for 5 min; Cure: 1 h at 225°C). 

 

3.3  Conclusions 

The tetra-functional epoxy-based cross-linker, TPEGE, showed a significantly 

different behavior compared to the di-functional and tri-functional cross-linkers studied.  

TPEGE showed a high UV absorption between 250 nm and 400 nm and the sensitivity of 

the polymer with 1 wt% supplementary TPEGE was enhanced by a factor of 3.7.  A 

minor increase in the contrast of the base polymer was observed by addition of di-

functional and tri-functional cross-linkers while the contrast value of the base polymer, 

7.36, was increased to 24.2 by 1 wt% addition of TPEGE.  The base polymer with 
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supplementary TPEGE shows excellent adhesion at the film-substrate interface enabling 

the fabrication high-aspect ratio structures (13:1 aspect ratio) with high-fidelity and 

straight side-walled photo-defined structures.  The addition of TPEGE to the base 

polymer resulted in high contrast, high sensitivity, excellent adhesion, and the ability to 

make high-aspect- ratio features, making the polymer films suitable for MEMS and 

microelectronics applications.   
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CHAPTER 4 

ADVANCED PHOTO-PATTERNING OF POLYNORBORNENE 

DIELECTRIC  

 

 It was shown in Chapter 3 that the addition of as little as 1wt% of TPEGE 

significantly improved the photodefinition properties of Avatrel 8000P.  The contrast 

improved from 7.37 for Avatrel 8000P (identified as the base formulation (BF)) to 24.2 

for the formulation with the addition of 1 wt% TPEGE (formulation A). Additionally, 

TPEGE showed high UV absorbtivity at 365 nm. The sensitivity of the polymer was 

enhanced by a factor of 3.7 by the addition of 1wt% TPEGE.  In BF, CPTX, a non-cross-

linking UV absorber, was used as the photosensitizer. Additives such as CPTX, which do 

not become a part of the final polymer matrix, reside within the final polymer structure 

and can result in property degradation compared to purer formulations.  In this work, the 

feasibility of using TPEGE, which is a tetra-functional cross-linker with a high UV 

absorbtivity, was investigated as the only UV absorber in the polymer mixture. New 

formulations with 1 wt% TPEGE (formulation B) and 3 wt% TPEGE (formulation C) (no 

CPTX) were investigated.  The sensitivity and photodefinability of the polymers were 

compared to those of BF and formulation A. The mechanical properties and the degree of 

moister uptake of the formulations were studied to determine the effectiveness of using 

TPEGE as the photosensitizer and cross-linker on the properties of the cured films  

4.1  Experimental 

 All epoxy-based cross-linkers were purchased from Aldrich Chemical Co.  A 

summary of the formulations made with the multifunctional epoxy cross-linkers TPEGE, 

3-EP, and 2-EP are listed in Table 4.1.  The epoxy cross-linkers were dissolved in 
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PGMEA and ball-milled with the PNB resin for 72 h.   After developing, the films were 

cured in a nitrogen-purged furnace at 160°C for 1 h [54].    

 

Table 4.1 Polynorbornene formulations. 

Polymer Formulation Title 

Base polymer (Avatrel 8000P) BF 

BF with no CPTX BC 

BF with supplementary 1 wt% TPEGE A 

BC with supplementary 1 wt% TPEGE B 

BC with supplementary 3 wt% TPEGE C 

BF with supplementary 1 wt% 2EP D 

BF with supplementary 1 wt% 3EP E 

   

4.2  Results and Discussion 

Contrast experiments were performed to compare the contrast and sensitivity of 

the formulations.  The contrast curves for formulation B and C are shown in Figure 4.1.  

The addition of TPEGE increased the developing time for the polymer.  The developing 

time for BF was 3.00 min, while the developing time for formulation B and C were 

higher at 4.30 and 4.50 min, respectively. These results show that, TPEGE improved the 

polymer-to-substrate adhesion and also affected the solubility of the unexposed film in 

the aqueous-base developer. The increased adhesion and longer developing time with 

formulation B and C is due to higher degree of epoxy ring opening and resulting reaction 

with the surface. That is, in the presence of TPEGE, epoxy rings are fully reacted, 

improving the polymer-to-substrate adhesion.  Additionally, TPEGE resulted in fractional 
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epoxy ring opening after spincoating and baking (SB and PEB). This effect was 

investigated previously in unexposed samples using FTIR spectroscopy where it was 

shown that some of the epoxide rings had reacted, resulting in some degree of cross-

linking in the unexposed regions after the 100˚C PEB [97].  These effects were only 

observed in the presence of TPEGE, showing that TPEGE significantly improved the 

polymer adhesion characteristics and affected the polymer dissolution behavior. 
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Figure 4.1 Contrast curve for (a) formulation B, (b) formulation C. 

 

Photosensitivity is one of the critical characteristics of a photoresist or permanent 

dielectric.  Upon the absorption of UV radiation within the polymer film, PAG activates 

and produces an acid within the polymer film, catalyzing the epoxy ring opening 

reaction, which leads to polymer cross-linking.  In BF, the UV absorption was increased 

by adding CPTX as the sensitizer to the polymer formulation.  In this case, energy 

transfer occurred between the sensitizer and the PAG, creating the acid catalyst.  As 

shown in Fig. 4.1a, structures were patterned with formulation B at doses as low as 16 

mJ/cm
2
, which is an extremely low value compared to the D100 value for BF, 66 mJ/cm

2
.  

This improvement in the sensitivity for the mixture containing TPEGE, compared to BF, 

is attributed to greater interaction between the UV sensitizer and the acid catalyst. That is, 

although TPEGE has less UV absorbtivity compared to CPTX (used in BF), it is more 

effective than CPTX because once it absorbs UV radiation and activates the PAG (via 

energy transfer), the epoxy functionalities are guaranteed to be within close proximity of 

the photogenerated acid. 
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Formulation B showed slightly higher sensitivity compared to formulation A (16 

mJ/cm
2
 for formulation C compared to 18 mJ/cm

2
 for formulation A).  One reason could 

be the more effective energy transfer between TPEGE and PAG (compared to that of 

CPTX and PAG) since CPTX does not participate in polymer cross-linking and remains 

in the polymer film as a low molecular weight additive. The same effect was observed in 

formulation C (Fig. 4.1b).  The sensitivity of formulation C improved compared to that of 

BF and the D100 value deceased from 66 mJ/cm
2
 for BF to 14  mJ/cm

2
 for formulation C.  

It can be concluded that the addition of TPEGE to the polymer in the absence of CPTX 

results in more efficient energy transfer and creation of the acid catalyst (compared to the 

use of CPTX as a sensitizer), which results in greater cross-linking.    

To further investigate the effect of TPEGE on the photodefinability of the 

polymer, contrast values were calculated from the slope of the line connecting D0 to D100.  

As it can be seen from Fig. 4.1a, the addition of 1 wt% TPEGE to BF in the absence of 

CPTX significantly improved the contrast. The contrast value increased from 7.37 for BF 

to 26.5 for formulation B. Commonly used photoresists have been reported to have a 

contrast of 2 to 3 [21, 98, 99].  This improvement in contrast of the polymer is due to the 

addition of 1 wt% TPEGE and omission of CPTX.  The addition of TPEGE resulted in 

more effective cross-linking within the polymer due to its higher functionality (four 

epoxy units per molecule) compared to the di-functional and tri-functional cross-linkers 

in BF.  TPEGE has a greater chance of cross-linking two or more PNB polymer strands. 

This should result in greater cross-linking and lower solubility at low exposure doses 

(closed to D0 where the not all the epoxy has reacted), and improved contrast.  We also 

note that photosensitive materials with higher sensitivity, e.g. TPEGE formulations, also 

generally have higher contrast.  

Contrast experiments were also performed for formulation C which had a higher 

TPEGE concentration.  As shown in Figure 4.1b, the addition of 3wt% of TPEGE further 

improved the polymer contrast resulting in an extremely high value of 33.4.  This contrast 
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value is one of the highest contrast values reported for photosensitive materials in the 

literature.  This improvement in contrast is due to the same reasons mentioned above: 

achieving a critical degree of cross-linking at lower doses, higher epoxy functionality for 

the cross-linker, and higher sensitivity of the polymer due to the addition of TPEGE.  

These results show that the addition of TPEGE to BF as the UV sensitizer significantly 

improved the polymer cross-linking, contrast, and photosensitivity.   

The ability to fabricate high aspect ratio features is a function of the contrast, 

sensitivity, and adhesion characteristics of the photosensitive material.  Since 

formulations B and C showed significant improvement in these parameters compared to 

BF, the ability to fabricate high-aspect-ratio features was investigated and compared to 

that of BF.  For this work, hollow-core structures were chosen since they are difficult to 

fabricate due to the restricted transport of the developer into the spatially restricted core 

of the structure compared to the transport of the developer to the outside of the structure.  

Thick films were photopatterned at an exposure dose of 100 mJ/cm
2
, at 365 nm, with 

formulation B resulting in 39-µm tall, hollow-core, triangular-shaped structures.  Double 

coating was performed for formulation C which resulted in 97 µm thick films.  Due to the 

improved polymer-to-substrate adhesion with TPEGE, the unexposed polymer film at the 

center of the structure were fully dissolved before delamination occurred at the outside 

edge of the polymer structure.  Hollow-core features with 3 µm diameter openings were 

fabricated in 39 µm thick films using formulations B.  Hollow-core features with 7 µm 

diameter openings were fabricated in double-coated, 97 µm thick films using 

formulations C.  The resulting aspect ratio for formulation B was 13:1, while that of 

formulation C was 14:1.  As shown previously, the highest aspect ratio achieved for BF 

in 39-µm films was 5:1.  Fabrication of higher aspect ratio structures with BF required 

longer developing time to fully develop the center core, which led to film delamination 

and lifting.  Thus, only formulations with the additional TPEGE cross-linker had 

sufficient adhesion, contrast, and sensitivity to produce features with an aspect ratio of 
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greater than 13:1.  It can be concluded that the use 3wt% TPEGE with no CPTX resulted 

in higher contrast, sensitivity, film-to-substrate adhesion, and aspect ratio (formulation 

C).  

To study the effect of TPEGE on the cross-link density and mechanical properties 

of formulations B and C, the reduced modulus and hardness of these formulations were 

compared with those of BF using nanoindentation.  All samples were tested after a 160°C 

cure for 1h.  BF, formulations B, and formulation C had a reduced modulus of 2.80, 2.84, 

and 2.86 GPa, respectively.  The hardness values for BF, formulation B and formulation 

C were 0.13, 0.14, and 0.14 GPa, respectively.  These results show that TPEGE resulted 

in a slight improvement in the mechanical properties. 

In order to investigate the actual degree of cross-linking, swelling experiments 

were performed.  A lower degree of cross-linking will result in greater solvent absorption 

and swelling [94].  Swelling tests were performed in PGMEA after a final cure at 160°C 

for 1 h.  The mass of each sample was measured at eight different times during a 24 h 

swelling period.  The percent increase in weight are shown in Figure 4.2.  Each data point 

is the average of four measurements, and the standard deviation was less than 0.0003. 

As shown in Fig. 4.2, the sample weight increased with the swelling time.  The 

sample weight of BF significantly increased compared to that of the formulations with 

additional TPEGE. These observations agree with the previous results discussed above.  

The degree of swelling decreased from 2.1 for BF to 1.2 and 1.0 for formulations B and 

C, respectively.  The degree of swelling was greater for BF because it had a lower molar 

epoxy content than the other formulations, resulting in a lower cross-link density and 

higher water uptake.  The addition of the TPEGE cross-linker to the polymer increased 

the degree of cross-linking between the epoxy and the polymer reaction sites, especially 

in the case of formulation C. 
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Figure 4.2 Influence of TPEGE on swelling of a fully cross-linked cured polymer. 

 

It was shown that the addition of TPEGE to BF improved the polymer 

photosensitivity and photodefinability.  To study the effect of having the UV absorbing 

moiety within the epoxy cross-linker (compared to non-UV absorbing epoxy with added 

sensitizer), new formulations were made with 2-EP and 3-EP which have negligible UV 

absorption compared to TPEGE.  2-EP and 3-EP compounds have similar structures to 

TPEGE, except for the number of pendant epoxy rings.  The organization of the TPEGE 

pendant groups leads to high UV absorbance, not found in 2-EP and 3-EP. Formulation D 

and E were prepared (with 2-EP and 3-EP compounds, respectively) so as to contain the 

exact number of equivalents of epoxy as formulation A, Table 4.1.  To evaluate the 

impact of 2-EP and 3-EP on the polymer photosensitivity at 365 nm, a series of UV 

absorption experiments were conducted. The absorbance of dilute solutions of 2-EP, and 

3-EP were measured in PGMEA, which were transparent in the wavelength range of 

interest [97].  2-EP had very low absorbance at wavelengths from 300 to 400 nm while 3-

EP had higher molar absorptivity in the UV, Figure 4.3.  However, the absorptivity of 3-

EP in PGMEA was low compared to the absorptivity of a dilute solution of TPEGE and 
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CPTX in PGMEA.  The molar absorbance of 3-EP, TPEGE and CPTX are 113, 172,287 , 

and 395,779 (L/mol.m), respectively. The high UV absorptivity of TPEGE from 300 to 

400 nm is due to the conjugation of the double bonds because of the chemical structure of 

the TPEGE molecule. 

 

 

Figure 4.3 Changes in UV-vis spectrum of dilute solution of 3-EP in PGMEA from 200 

to 600 nm. 

 

Contrast experiments were performed to compare the sensitivity and the contrast 

of the formulations.  As shown in Figure 4.4, contrast values of 11.4 and 11.5 were 

obtained for formulation D and E, respectively.  The contrast values for formulations D 

and E were higher than that for BF (𝛾=7.4), because of the added epoxy; however, it is 

lower than that of formulation A (𝛾=24.2).  The developing time also increased from 3.00 

min to 3.40 min for formulations B and C, respectively, due to the higher epoxy content 

of these formulations.  This shows that additional epoxy cross-linker affected the 

solubility of the unexposed polymer and somewhat improved the polymer-to-substrate 

adhesion.  The D100 value of these formulations was similar to that of BF, Table 4.2, 
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showing that 2-EP and 3-EP did not affect the polymer sensitivity. This result is 

congruent with the previous observation that 2-EP and 3-EP have very low UV 

absorbtivity at the wavelength of interest.   

 

 

 



 75 

 

 

Figure 4.4 Contrast curve for (a) formulation D, (b) formulation E. 

 

The ability to fabricate high-aspect-ratio structures is one of the most desirable 

attributes of a photosensitive polymer.  The effect of 2-EP and 3-EP cross-linkers on the 

patternability of high-aspect-ratio features was evaluated.  Hollow-core features with 3 

µm diameter opening were fabricated in 39-µm thick films using formulation D and E.  

Both formulations resulted in 5:1 aspect-ratio structures, and the development of higher-

aspect-ratio structures resulted in film delamination.    Previously, an aspect-ratio of 5:1 

and 13:1 were obtained for BF and formulation A, respectively [97].   This shows that 

only TPEGE improved the polymer ability to pattern high-aspect-ratio structures because 

of the improved sensitivity, contrast and adhesion. 
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Table 4.2 Properties of PNB formulations. 

Formulation 

Contrast 

(𝛾) 

D100 

(mJ/cm
2
) 

DT 

(min) 

Aspect 

Ratio  

Modulus 

(GPa) 

Hardness 

(GPa) 

BF 7.37 66 3 5:1 2.80 2.13 

A 24.2 18 4:30 13:1 2.84 2.14 

B 26.5 16 4:15 13:1 2.84 2.14 

C 33.4 14 4:50 14:1 2.86 2.14 

D 11.4 65 3:40 5:1 2.85 2.14 

E 11.5 65 3:40 5:1 2.84 2.14 

 

Nanoindentation was used to evaluate the reduced modulus and hardness of 

formulation A, D, and E, compared to BF.  The reduced modulus of formulations A, D, 

and E (160°C cure for 1 h) was 2.84, 2.85, and 2.84 GPa, respectively.  All formulations 

resulted in a hardness value of 0.14 GPa.  The results show that there was no significant 

difference between the mechanical properties of the various formulations with additional 

epoxy cross-linker, which implies a similar cross-link density.  The lower modulus value 

for BF is simply due to the lower epoxy content, resulting in a lower number of cross-

links. 

Swelling experiments were performed to investigate the relative degree of cross-

linking.  The mass of each sample was measured at six different times during a 26-hour 

swelling period.  Each data point is the average of four measurements and the average of 

standard deviation for each point was less than 0.0003.  Figure 4.5 shows an increase in 

weight with swelling time. No significant difference was found between formulation A, 

D, and E when the epoxy content was identical.  This shows that the addition of a cross-
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linker to the polymer increases the degree of cross-linking between the epoxy and the 

polymer reaction sites, regardless of the functionality of the cross-linker.  This agrees 

with the nanoindentation results, showing that each epoxy compound resulted in a similar 

degree of cross-linking.  The degree of swelling was greater for BF because it has a lower 

molar epoxy content than the other formulations. 

 

 

Figure 4.5 Influence of 2-EP, 3-EP, and TPEGE crosslinker on swelling of crosslinked 

cured polymer. 

4.3  Conclusions 

 The tetra-functional epoxy-based crosslinker with high UV absorbtivity at 365 

nm, TPEGE, was used as the photosensitizer in the polymer.  TPEGE was used to replace 

the non-crosslinking UV sensitizer in the polymer resulting in improved 

photolithographic characteristics and sensitivity. TPEGE resulted in a more effective 

acid-catalyzed route to epoxy cross-linking within the polymer compared to the non-

crosslinking photosensitizer.  The addition of a small quantity of TPEGE (3 wt% of 

solution) resulted in improved UV sensitivity of the polymer at 365 nm.  The di-
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functional and tri-functional crosslinkers (with similar chemical structures) showed no 

significant effect on the polymer sensitivity. The contrast value of the polymer, 7.4, 

increased to 33.4 by the addition of 3wt% of TPEGE. A minor increase in the contrast of 

the base polymer was observed through the addition of the di-functional and tri-

functional crosslinkers.  The polymer with additional TPEGE crosslinker showed 

excellent polymer-to-substrate adhesion enabling the fabrication of 14:1 high-aspect ratio 

structures with high-fidelity and straight side-walls.  It can be concluded that TPEGE can 

replace the photosensitizer in the polymer formulation and improve the polymer 

patternability and photosensitivity.  The addition of TPEGE to the polymer resulted in 

high contrast, high sensitivity, excellent adhesion, and the ability to make high-aspect- 

ratio structures, making this polymer suitable for MEMS and microelectronics packaging 

applications. 
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CHAPTER 5 

CROSS-LINKING OF POLYNORBORNENE DIELECTRIC BY 

ELECTRON-BEAM LITHOGRAPHY 

 

 Electron beam lithography (EBL) is an important patterning method for 

nanosystems and devices due to its high spatial resolution and versatile processing [29].  

However, EBL has low throughput due to the sequential nature of the exposure, which 

can be mitigated to some extent by increasing the sensitively of the material to be 

imaged.  Epoxy-based polymers have been e-beam cross-linked [100-103].  They possess 

high sensitivity but the resolution can be limited by swelling during developing [104].  

Recently, chemically amplified, epoxy-based resists have been reported to have high 

sensitivity for nano-scale EBL [104-106].  The high sensitivity of these materials comes 

from the chemical amplification mechanism where the e-beam generated acid catalyzes 

the epoxy cross-linking [104].  Molecular e-beam resists have been shown to somewhat 

mitigate excess LER problems caused by diffusion of the acid catalyst into unexposed 

regions [105, 107-109]. 

 In this study, the lithographic characteristics of e-beam induced cross-linking of 

Avatrel 8000P were studied in a effort to explore the feasibility of using this material as a 

high contrast, high sensitivity electron-beam imageable dielectric material.   The e-beam 

initiated reaction between PNB cross-linking sites and the epoxy cross-linkers was 

investigated and the spatial resolution of the PNB dielectric material was evaluated.  The 

relationship between sensitivity and processing conditions were investigated as a function 

of mixture formulation.  The process parameters were optimized for forming lithographic 

patterns in the 100 nm regime.  
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5.1  Experimental 

 The polymer mixture was formulated using PGMEA as the solvent with PNB, 

Rhodorsil PI 2074, multifunctional epoxy cross-linkers (polypropylene glycol diglycidyl 

ether and trimethylolpropane triglycidyl ether), CPTX, and an adhesion promoter.  This 

formulation, with all components present, will be identified as the base formulation (BF) 

hereafter.  The formulation containing only PNB and adhesion promoter in PGMEA 

solvent is identified as the base polymer, BP.  PNB mixtures were diluted with PGMEA 

to different degrees to produce different thickness films by spin coating.  The solutions 

were each rolled on a ball-mill for 72 h.  The polymer films were spin-coated on 100 mm 

diameter <100> silicon wafers using a CEE 100CB Spinner at 2000 rpm for 30 s to 

produce 200 nm and 1100 nm thick films.   The polymers were soft-baked and post-

exposure baked at 100°C for 2 min on a hotplate.  The polymers were e-beam irradiated 

using a JEOl JBX-9300FS tool at 100 kV acceleration voltage and 50 pA beam current.  

5.2  Results and Discussion 

Thin films of PNB and its mixtures are highly soluble in aqueous base (0.26N 

TMAH).  A 202 nm BF film dissolved in the TMAH developer in less than 10 s after 

soft-bake to remove the PGMEA casting solvent.  This corresponds to the development 

step of the unexposed Avatrel 8000P film.  The addition of 1 wt% of supplementary 

TPEGE to the BF did not change the dissolution time, as shown in Figure 5.1.  This 

establishes that a 10 s immersion in 0.26N TMAH is an adequate developing time for the 

formulations used here.  Hereafter, all samples in this study were developed for 10 s, 

unless otherwise stated. 
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Figure 5.1 The developing profile for (a) BF; (b) BF with additional 1 wt% TPEGE. 

 

 Previously, TPEGE was shown to significantly improve the photo-patterning and 

sensitivity of Avatrel 8000P [110].  To evaluate the impact of TPEGE on the e-beam 

sensitivity and contrast of Avatrel 8000P, different concentrations of TPEGE were added 

to the PNB BF.  The contrast curves for thin-films of the BF with varying concentration 

of TPEGE are compared to PNB (identified as BP) in Figure 5.2.  This shows that PNB 

by itself (i.e. BP) is e-beam patternable.  E-beam exposure causes random bond breaking 

and formation resulting in PNB cross-linking and insolubility in TMAH (10 s develop 

time) at doses greater than 1000 µC/cm
2
.  E-50, the dose at which 50% of the resist film 

is retained after development, for this formulation is 290 µC/cm
2
. This dose is 

comparable to the E-50 values reported for known e-beam resists [111-115].  Hereafter, 

the contrast sensitivity of the formulations is defined by E-50.   
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Figure 5.2 E-beam contrast curves for PNB formulations (a) BP with no additives; (b) 

BF; (c) BF with additional 1 wt% TPEGE; (d) BF with additional 3 wt% TPEGE. 

 

To investigate the effect of the tetra-functional epoxy cross-linker and other 

components in the BF mixture, the contrast for BF and BF with TPEGE is also shown in 

Fig. 5.2.  The contrast curve for BF in Fig. 5.2 shows that it has a very high sensitivity to 

e-beam radiation.  The E-50 dose for this formulation decreased to 7 µC/cm
2
.  That is, the 

addition of the PAG, epoxy-based cross-linkers, and the sensitizer to the PNB polymer 

(BF) significantly improved the e-beam activation and cross-linking of the PNB polymer.  

The contribution of each of the components in the BF to the e-beam activation process 

will be examined later in this chapter. 

The contrast value for each of the films in Fig. 5.2 was calculated from the slope of 

the line in the contrast curve where there is a transition from full development (film 

removal) to 50% normalized film thickness [105].  A similar slope was observed for BF 

and BP, resulting in similar contrast values for the two formulations.  As shown in Fig. 
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5.2, E-50 decreased to 5.4 µC/cm
2
 by the addition of 1 wt% TPEGE to BF, and the 

contrast increased from 0.8 to 1.1.  The addition of 3 wt% TPEGE to BF increased the 

sensitivity and further improved the contrast of BF.  The contrast increased to 2.1 for BF 

with 3 wt% TPEGE, andE-50 decreased to 2.3 µC/cm
2
.  These results show that the 

addition of TPEGE to BF decreased its solubility in aqueous base after e-beam exposure 

as a result of polymer cross-linking and interconnectivity.  TPEGE has also been used in 

other negative-tone systems to improve the cross-link density of the polymer [103, 105].    

 The formulated PNB mixture, BF, was significantly more sensitive than the PNB 

base polymer, BP (without epoxy, PAG, or sensitizer), as shown in Fig. 5.2.  The effect 

of CPTX on the sensitivity of the PNB material was examined first.  As CPTX is used in 

optical photoresists to increase the absorption coefficient in the UV regions of the 

spectrum, it was not expected that its inclusion in the formulated PNB mixture had any 

effect on the mixture’s sensitivity. Two new formulations of BP were made with different 

concentrations of the sensitizer.  An amount equal to half the concentration of that 

contained in BF and an amount equal to the concentration of that contained in BF were 

added to BP.  Contrast experiments were performed and are shown in Figure 5.3.  As 

expected, the addition of sensitizer to the base polymer had no effect on the e-beam 

activation of the cross-linking reaction. 
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Figure 5.3 Effect of CPTX on e-beam contrast and sensitivity of PNB formulations (a) 

BP; (b) BP with 0.5X CPTX; (c) BP with 1X CPTX; BF. 

 

 The enhanced sensitivity of the formulations containing epoxy cross-linkers, 

shown in Fig. 5.2, is due to a higher degree of epoxy ring opening and cross-linking.  

Ring opening of the epoxide structures can occur through thermal treatment, acid 

activation, or direct e-beam irradiation.  Thermal activation is unlikely here since the 

samples did not experience high temperature.  Thus, it is important to understand the 

contribution of direct electron bombardment and ring opening vs. PAG activation by e-

beam exposure and subsequent acid generation, followed by epoxide ring opening.  The 

activated epoxy quickly leads to cross-linking between PNB molecules or between epoxy 

molecules themselves.  In either case, the higher molecular weight products inhibit the 

rate of dissolution in aqueous base.  

 To study the affect of PAG, new formulations were made with different amounts 

of PAG and/or epoxy. Figure 5.4 shows the contrast curves for 200 nm thick films.  The 

contrast and sensitivity of the base polymer, BP, was compared to the BP with 0.2X, 
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0.5X and 1X PAG, where X is the concentration of PAG in BF (i.e. X=1 in the case of 

BF).  As shown in Fig. 5.4, base polymer formulations with different PAG concentrations 

(0.2X, 0.5X, and 1X PAG) resulted in the same contrast and sensitivity as BP. That is, 

PAG had no effect on the sensitivity and contrast of the base polymer.    This result 

shows that cross-linking of PNB by itself, as occurred in Fig. 5.2, is not acid activated. 

The creation of an acid by e-beam activation of PAG did not result in cross-linking. 

 When epoxy was added to the base polymer with different amounts of PAG, the 

sensitivity of the mixture to e-beam irradiation increased.  Mixtures of base polymer, BP, 

with epoxy cross-linkers and no PAG showed higher sensitivity and similar contrast 

compared to BP with no epoxy.  The E-50 value of 67 µC/cm
2
 was obtained for BP in the 

presence of the epoxy cross-linkers compared to 290 µC/cm
2
 for BP with no epoxy.  This 

result shows that the epoxy cross-linkers are activated by e-beam exposure and results in 

polymer network formation even in the absence of the PAG.  Adding a small amount of 

PAG to the base polymer with epoxy (0.2X total PAG) slightly increased the sensitivity.  

E-50 decreased from 67 µC/cm
2
 for BP with epoxy and no PAG to 55 µC/cm

2
 for BP 

with epoxy and 0.2X of PAG.  Further additions of PAG (i.e. 0.75X, 0.9X, and 1X) 

substantially increased the sensitivity, and E-50 decreased to the low dose of 7 µC/cm
2
.  

The increase in the PAG concentration from 0.75X to 0.9X or 1X did not affect the 

contrast.   

 These results show that a certain amount of PAG is effective in initiating epoxy 

cross-linking within the polymer.  That is, the irradiated PAG affects the e-beam 

activation and the rate of epoxy ring opening within the polymer mixture but does not 

affect the random PNB cross-linking (epoxy free cross-linking).  A higher concentration 

of PAG results in a higher degree of cross-linking.  However, there is an optimum range 

of PAG concentrations which can initiate the cross-linking reactions and provide the 

required degree of epoxy activation to obtain adequate cross-linking.  
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 To investigate the effect of even higher concentrations of PAG on the cross-

linking and sensitivity of the polymer, an additional mixture was made with higher 

concentration of PAG: 3.4X (PAG concentration was 3.4 times that in BF).  The 

sensitizer was not added to the polymer mixture since it was shown to have no e-beam 

activation.  BF with PAG showed significantly higher contrast and sensitivity, Fig. 5.4.  

The contrast was 4.4, which is high compared to known e-beam resists.  This high 

sensitivity formulation was used to pattern 50 µm square patterns at the low E-50 dose of 

0.48 µC/cm
2
.  Higher concentrations of PAG result in greater quantities of acid 

generation and epoxy ring opening, increasing the polymer cross-linking. 

 The experiments presented thus far were performed on thin-films, 200 nm to 300 

nm thick.  To evaluate the effect of film thickness on imaging characteristics of the 

polymer, the electron-beam contrast experiments were replicated on thicker samples, 

1025 nm thick.  The contrast curves for 200 nm and 1025 nm thick films of the base 

formulation, BF, are shown in Figure 5.5.  Thin-film and thick-film samples were 

developed in the TMAH developer for 10 s and 12 s, respectively, to create a 50 µm 

square pattern.  No residue was observed in the developed images.  As shown in Fig. 5.5, 

the thicker film resulted in a higher contrast (γ=1.9) compared to the thin-film sample, 

whose contrast was 0.8.  However, the minimum dose required to induce patterning (a 50 

µm square) of the thicker film increased from 2 µC/cm
2
 for the 200 nm thick sample to 4 

µC/cm
2
 for the 1025 nm thick sample.  
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Figure 5.5 E-beam contrast curves for Avatrel 8000P with two different film thicknesses 

(a) 200 nm; (b) 1025 nm. 

  

 The effect of developing time on the sensitivity and contrast of 1025 nm thick BF 

was investigated.  BF samples, 1025 nm thick, were developed in 0.26N TMAH yielding 

features with sharp corners and edges with no residue.  Figure 5.6 shows the contrast 

curves for three developing processes.  First, a sample was developed in 0.26N TMAH 

for 12 s.  A 50 µm square was observed at doses as low as 4 µC/cm
2
, and E-50 of 7 

µC/cm
2
 was obtained.  The second sample was developed in TMAH developer for 7 s, 

rinsed with deionized (DI) water for 30 s, and immersed in the developer for an 

additional 5 s.  The DI rinse allowed time for dissolution of the soluble products which 

had been neutralized by base.  50 µm squares were observed at a dose of 1 µC/cm
2
 and a 

E-50 of 1.1 µC/cm
2
 was obtained.   The contrast increased from 1.9, for the first sample, 

to 3.7 for the second sample. TMAH which penetrates into the film results in 
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neutralization of the acidic protons and the development process becomes dissolution 

limited creating an opportunity for enhanced development in DI water without 

degradation in base during the water soak.  The dissolution limited aspect (after 

penetration of base) was further demonstrated by developing a film in diluted TMAH 

developer, diluted 2:1 by weight with DI water, for 19 s.  As shown in Fig. 5.6, the 

sample had the same contrast and sensitivity as the second sample (with DI soak), 

confirming the developing process is limited by the dissolution of the neutralized PNB 

and not the penetration of the TMAH.  
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Figure 5.6 Effect of developing on e-beam contrast and sensitivity of Avatrel 8000P (a) 

developed in TMAH for 12 s; (b) developed in TMAH for 7 s, rinsed with DI water for 

30 s, and immersed in TMAH for an additional 5 s; (c) developed in diluted TMAH (2:1 

by weight with DI water) for 19 s. 
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 The effect of the developer concentration was also evaluated on thin-film BF 

samples with and without additional TPEGE (1wt% and 3wt% TPEGE).  300 nm thick 

films were developed in diluted TMAH developer (2:1 by weight with DI water) for 15 s 

and compared to those developed in 0.26N TMAH for 10 s.  The samples developed in 

the diluted developer resulted in poorer LER at low doses.  The longer developing time, 

which was required to fully remove polymer residue in the unexposed regions, degraded 

the sharpness of the exposed edges.  Thus, in next experiments the contrast and 

sensitivity of thick-film samples were compared to the thin-film samples developed in 

0.26N TMAH developer for 10 s.  

 The film thickness and the developing time affected the sensitivity and the pattern 

quality of the developed polymer.  The affect of thickness and developing time on BF 

with additional TPEGE was also evaluated (1wt% and 3 wt% additional TPEGE).  The 

contrast and sensitivity of thick-film samples, 1100 nm thick, were compared to values 

obtained for 300 nm-thick samples.  As shown in Figure 5.7, the thin-film BF sample 

with 1 wt% TPEGE developed in 0.26N TMAH for 10 s had a contrast of 1 and E-50 of 

5.4 µC/cm
2
 (results are not shown here).  The thick-film sample developed in the TMAH 

developer for 16 s showed improved contrast and sensitivity compared to the thin-film 

sample.  The contrast was 2.5 and the E-50 was 1.27 µC/cm
2
.  The effect of developing a 

1100 nm thick BF film containing an additional 1 wt% TPEGE in diluted TMAH (2:1 by 

weight with DI water) for 25 s resulted in similar contrast and sensitivity to the film 

developed in TMAH developer for 16 s.  The addition of the tetra-functional epoxy 

allowed the develop time to be extended to longer values because the film had enhanced 

film-to-substrate adhesion.  The longer develop time resulted in higher contrast and 

sensitivity.  It has been shown previously that enhanced adhesion of TPEGE is due to 

epoxy ring opening and polymer cross-linking [110]. 
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Figure 5.7 Effect of film thickness and developing on e-beam contrast and sensitivity of 

Avatrel 8000P with 1wt% TPEGE (a) 300 nm film developed in TMAH for 5 s; (b) 1100 

nm film developed in TMAH for 16 s; (c) 1100 nm film developed in diluted TMAH for 

25 s. 

 

 The contrast and sensitivity of BF with 3wt% TPEGE was investigated as a 

function of thicknesses and developing conditions, Figure 5.8.  Nearly the same contrast 

(𝛾=2.1) and sensitively (E-50 of 2.3 µC/cm
2
) can be obtained by changing the developer 

concentration and time over a limited range of values.  The thick-film sample was 

developed in 0.26N TMAH developer for 16 s.  Developing the thick-film sample in 

diluted TMAH developer (2:1 with DI water) for 30 s showed no significant change in 

the sensitivity and contrast.  The longer developing time could be used in these 

experiments because the films had greater adhesion from the inclusion of 3wt% TPEGE. 
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Figure 5.8 Effect of film thickness and developing on e-beam contrast and sensitivity of 

Avatrel 8000P with 3wt% TPEGE (a) 300 nm film developed in TMAH for 10 s; (b) 

1100 nm film developed in TMAH for 16 s; (c) 1100 nm film developed in diluted 

TMAH for 30 s. 

   

 In the results discussed above, It was shown that the develop time affected the 

sensitivity of thick-film BF samples.  PEB is another important processing step which can 

affect the polymer cross-linking and pattern quality.  Three different PEB times (100°C) 

were used to investigate the impact of PEB on the sensitivity and contrast of thick-film 

samples.  Figure 5.9 shows the e-beam contrast curves for BF samples post-exposure 

baked for 2, 4, and 6 min.  All samples were developed in 0.26N TMAH developer for 12 

s and the developed features had sharp edges and no residue.  The sample with shorter 

PEB time had lower sensitivity but similar contrast to the samples with shorter PEB.  The 

longer PEB time resulted in a higher degree of epoxy reaction (higher cross-linking), 

improved substrate adhesion, and lower residual solvent in the film. 
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Figure 5.9 Electron-beam contrast curves for Avatrel 8000P at three different 100˚C PEB 

times (a) 2 min; (b) 4 min; (c) 6 min. 

    

 The impact of PEB time on the minimum exposure dose of the most sensitive 

formulation, BF with 3.4X PAG and no CPTX, was investigated.  Two PEB times 

(100°C PEB) were investigated on 950 µm thick films.   As shown in Figure 5.10, the 

longer PEB time did not affect the sensitivity of the polymer, and the contrast was 

slightly improved.  The sample post-exposure baked for 6 min yielded a contrast of 7.9. 
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Figure 5.10 Electron-beam contrast curves for base formulation with 3.4 X PAG and no 

CPTX at two different 100˚C PEB times (a) 2 min; (b) 4 min. 

     

 Based on the results presented above, the exposure process was optimized for the 

BF samples.  Lines 100 nm to 500 nm in width were fabricated using e-beam dose from 5 

µC/cm
2
 to 50 µC/cm

2
.  The resolution and LER of the 200 nm thick lines were compared.  

The optimum dose needed to resolve the 200 nm, 300 nm, 400 nm, and 500 nm wide 

lines was 40 µC/cm
2
, 20 µC/cm

2
, 15 µC/cm

2
, and 10 µC/cm

2
, respectively.  Patterns 

produced at lower exposure dose suffered an unacceptable degree of swelling resulting in 

excessive LER.  Figure 5.11 shows four of the exposure doses for the 200 nm wide lines: 

5 µC/cm
2
, 10 µC/cm

2
, 25 µC/cm

2
, and 40 µC/cm

2
.  The lines exposed at low doses were 

distorted (not straight) due to a high degree of swelling along with inadequate surface 

adhesion caused by low cross-link density in the films.  The highest resolution was 

obtained at doses greater than 40 µC/cm
2
.  The 100 nm lines were not printed without 

excessive distortion.  

 



 95 

 

Figure 5.11 SEM images of Avatrel 8000P demonstrating 200 nm resolution at different 

exposure doses (a) 5 µC/cm
2
; (b) 10 µC/cm

2
; (c) 25 µC/cm

2
; (d) 40 µC/cm

2
. 

 

 

 The addition of TPEGE to the BF improved the cross-link density of the polymer 

and substrate adhesion.  The exposure process was optimized for BF samples with 1wt% 

TPEGE to investigate the effect of the additional cross-linker on the resolution and 

pattern quality of the patterns.  200 nm thick films were exposed to doses from 5 µC/cm
2
 

to 50 µC/cm
2
.  A similar trend to the BF samples was observed, and the minimum 

exposure dose increased with the line width.  However, a lower dose was required to 

pattern the 200 nm (35 µC/cm
2
) and 300 nm (15 µC/cm

2
) wide lines compared to the BF 

samples.  In addition, it was possible to pattern 100 nm wide lines when TPEGE was 

added to BF, whereas these lines could not be resolved without TPEGE.  The optimum 

dose for the 100 nm wide lines was 45 µC/cm
2
.  As shown in Figure 5.12, the 100 nm 
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wide lines at doses below 45 µC/cm
2
 suffered from poor adhesion and curling.  They 

showed a high degree of swelling, especially at doses below 20 µC/cm
2
.  It can be 

concluded that the addition of the tetra-functional epoxy cross-linker improved the 

polymer cross-linking density and substrate adhesion as measured during the develop 

cycle. 

 

 

Figure 5.12 SEM images of Avatrel 8000P with 1 wt% TPEGE demonstrating 100 nm 

resolution at different exposure doses (a) 10 µC/cm
2
; (b) 20 µC/cm

2
; (c) 35 µC/cm

2
; (d) 

45 µC/cm
2
. 

 

 In addition to improved resolution, the LER also improved by adding the tetra-

functional cross-linker to the polymer mixture.  The LER values were calculated by the 

method described by Leunissen et al using an inspection length of 500 nm and 

magnification of 300k [116].  The LER (3σ) was 17.9 nm for 200 nm BF lines and 13.5 

nm for 100 nm BF lines with 1 wt% additional TPEGE.  Formulations with higher 
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concentrations of TPEGE (3 wt% and 5 wt% TPEGE) resulted in larger LER for the 100 

nm lines, which could be the result of higher cross-linking within the polymer.  At high 

TPEGE concentrations, the mole ratio of TPEGE to PNB increased resulting in greater 

interconnectivity and cross-linking, increasing the LER. 

 Overall, the PNB formulations with the epoxy and PAG showed extremely high 

sensitivity compared to known e-beam resists.[111-115]  The contrast, sensitivity and 

processing conditions of the PNB formulations are summarized in Table 5.1.  Previously 

described chemically amplified e-beam resists have also been shown to have high e-beam 

sensitivity.[117, 118]  PNB formulations with PAG and epoxy have higher sensitivity 

than and comparable contrast to other e-beam sensitive materials.[32, 119]  The 

minimum resolution for isolated lines found for PNB formulations was 100 nm with a 

LER of 13.5 nm.  Molecular e-beam resists have been shown to have high resolution and 

lower LER values due to the lower average molecular weight of the cross-linked 

materials.[29, 102, 105, 120]  The PNB used in this study was significantly higher in 

molecular weight than the molecular resists used in the past.  Improvements in minimum 

feature size and LER may be expected with lower molecular weight PNB formulations. 

The optimum cross-linking to produce the highest resolution and lowest LER was not 

investigated here and may be subject of future reports. 
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Table 5.1 The list of processing conditions, contrast, and sensitivity of PNB formulations. 

Formulations 
Thickness 

(nm) 

PEB 

(min) 
DT (s) Developer 

Contrast 

(γ) 

E-50 

(µC/cm
2
) 

BF 200 2 10 TMAH 0.8 7 

BF 1025 2 12 TMAH 1.9 7 

BF 1025 4 12 TMAH 1.9 1.2 

BF 1025 6 12 TMAH 1.9 1.2 

BF 1025 2 
7/DI 

rinse/5 
TMAH 3.7 1.1 

BF 1025 2 19 
diluted 

TMAH 
3.7 1.1 

BF with 1 

wt% TPEGE 
300 2 10 TMAH 1.1 5.4 

BF with 1 

wt% TPEGE 
1100 2 16 TMAH 2.5 1.27 

BF with 1 

wt% TPEGE 
1100 2 25 

diluted 

TMAH 
2.5 1.27 

BF with 3 

wt% TPEGE 
300 2 10 TMAH 2.1 2.3 

BF with 3 

wt% TPEGE 
1025 2 16 TMAH 2.1 2.3 

BF with 3 

wt% TPEGE 
1025 2 30 

diluted 

TMAH 
2.1 2 

BP (no 

additives) 
200 2 10 TMAH 0.8 290 
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Table 5.1 Continued. 

Formulations 
Thickness 

(nm) 

PEB 

(min) 
DT (s) Developer 

Contrast 

(γ) 

E-50 

(µC/cm
2
) 

BP with 0.2X 

PAG 
200 2 10 TMAH 0.8 230 

BP with 0.5X 

PAG 
200 2 10 TMAH 0.8 230 

BP with 1X 

PAG 
200 2 10 TMAH 0.8 230 

BP with 

epoxy and no 

PAG 

200 2 10 TMAH 0.8 67 

BP with 

epoxy and 

0.2X PAG 

200 2 10 TMAH 0.7 55 

BP with 

epoxy and 

0.5X PAG 

200 2 10 TMAH 0.7 55 

BP with 

epoxy and 

0.75X PAG 

200 2 10 TMAH 0.8 7 

BP with 

epoxy and 

0.9X PAG 

200 2 10 TMAH 0.8 7 

BF 200 2 10 TMAH 0.8 7 

BF with 3.4X 

PAG (no 

CPTX) 

200 2 10 TMAH 4.4 0.48 

BF with 3.4X 

PAG (no 

CPTX) 

950 2 12 TMAH 4.4 0.48 

BF with 3.4X 

PAG (no 

CPTX) 

950 6 12 TMAH 7.9 0.43 
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5.3  Conclusions 

 Avatrel 8000P, a negative tone epoxy-based polynorbornene dielectric, has been 

shown to have very high e-beam sensitivity and acceptable resolution for 100 nm size 

features.  The e-beam interaction with the components in the polymer formulation was 

studied.  It was shown that the addition of a PAG to the polymer-epoxy mixture enhanced 

the contrast and sensitivity.  Formulations with the additional tetra-functional cross-

linker, TPEGE, showed improved contrast, sensitivity, and substrate adhesion.  100 nm 

structures with 13.5 nm LER were fabricated.  The influence of the developing time, the 

developer concentration, PEB, and film thickness on the contrast and sensitivity were 

studied.  Structures with contrast values as high as approximately 8 were fabricated at 

doses as low as 0.38 µC/cm
2
.    
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CHAPTER 6 

THERMAL CROSS-LINKING OF POLYNORBORNENE 

DIELECTRIC 

 

 In epoxy resins, degradation of the polyether type linkages is known to occur at 

temperatures in excess of 250C [19].  Previously, Chiniwalla, et al. proposed a similar 

degradation scheme for polyether cross-linking degradation in cationically cured epoxy 

cross-linked PNB polymers at temperatures approaching 160C based on the observation 

of changes in the mechanical properties of the cross-linked network with increasing cure 

temperature [66, 67].  In the study, the PNB is linked to a three dimensional cross-linked 

epoxy network through carboxylic ester bonds which prevent severing the PNB polymer 

backbone from the cross-linked epoxy network during degradation. Such degradation 

must, therefore, occur in the multifunctional epoxy additives included in the formulation.  

The proposed degradation mechanism results in cleavage of the polyether linkages 

reducing the density of cross-links in the developing a three dimensional cross-linked 

network.  Similar decomposition mechanisms have been proposed for diglycidyl ethers of 

bisphenol A (DGEBA) type epoxies at temperatures in excess of 250C [66, 67, 121]. 

 In this report, the reactions that occur during epoxide ring opening, cross-linking, 

and degradation of Avatrel 8000P were tracked by FTIR.  Film properties were a function 

of the degree of cross-linking in the polymer [93, 94].  The impact of cure conditions and 

degree of cross-linking on the electrical and mechanical properties of Avatrel 8000P were 

evaluated.  The dielectric constant, reduced modulus, film residual stress, and solvent 

absorption in polymer films cured at different temperatures were studied.  The 

relationship between the cure conditions and material properties were optimized to obtain 

high-quality Avatrel 8000P films.  
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6.1  Results 

 The multifunctional epoxide cross-linking and post-cure degradation reactions 

determine the overall degree of cross-linking in Avatrel 8000P and affect the electrical 

and mechanical properties of the polymer film [53].  In this work, the cure temperature of 

Avatrel 8000P was varied so as to optimize the dielectric and mechanical properties in 

the cured polymer film.  The extent of epoxide ring opening was studied using FTIR to 

help determine the degree of cure.  A 25 µm thick film of Avatrel 8000P was spin-coated 

onto a KBr disk and taken through a process sequence consisting of SB, exposure, PEB, 

and three successive cure cycles, each for 1 h at 160
o
C.  The infrared spectra from 700 

cm
-1

 to 950 cm
-1

 was obtained after each process step in roughly the same location on the 

KBr disk, Figure 6.1. Three peaks corresponding to asymmetric and symmetric epoxide 

ring stretches were observed at 913 cm
-1

, 844 cm
-1

, and 760 cm
-1

.  A significant degree of 

epoxy ring opening occurs as a result of the UV exposure and PEB processes, resulting in 

some degree of cross-linking before the final cure step.  
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Figure 6.1 Changes in infrared spectrum of thin film Avatrel 8000P on KBr disc from 
700 cm

-1
 to 950 cm

-1
 as a function of processing steps (SB: 100°C for 5 min; exposure 

dose: 170 mJ/cm
2
; PEB: KBr plate inverted onto the hotplate, 100°C for 5 min; cure at 

160°C for 1 h). 

 

In this experiment, the PEB steps were performed using a KBr disk inverted onto 

a silicon wafer when placed on the hotplate.  The inverted structure was needed because 

the 4 mm thick KBr disk has a lower thermal conductivity than the 0.525 mm thick 

silicon wafer, which was used as the substrate in all other experiments. When the KBr 

disk was PEB in the right-side up configuration, the film on the top surface of the KBr 

disk did not reach the desired temperature during the soft-bake and PEB.  Inversion of the 

KBr disk onto a silicon wafer during hotplate bake brings the polymer film into thermal 

contact with the hotplate in a way that more closely replicates that of an Avatrel 8000P 

film directly on a silicon wafer baked in the right side up configuration.   

After curing at 160°C for 1 h, the magnitude of the FTIR epoxy peaks decreased.  

When the cured sample was heated again to 160°C for 1 h, there was a small decrease in 

the peaks, suggesting that the epoxy ring opening reaction had not been taken to 
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completion after the first one hour cure.  The third cure cycle at 160°C, Fig. 6.1, showed 

no significant change in the FTIR spectra, indicating that complete epoxide ring opening 

of the Avatrel 8000P had occurred after two hours at 160C.  

 A significant reduction in the magnitude of the epoxide ring peak height was 

observed in Fig. 6.1 after the UV exposure and PEB.  The absorbance after PEB was 

further investigated by repeating the experiment with the KBr disk placed on the hotplate 

in the face-up condition, rather than in the face-down configuration, as in Fig. 6.1.  Figure 

6.2 shows the epoxide absorbance after PEB in the face-up condition, where the lower 

conductivity of the KBr disk affected the polymer heating.  As shown in Fig. 6.2, there is 

no significant change in the IR spectra between the SB and PEB steps.  This confirms 

that the thermal insulation of the KBr disk indeed mitigates the effect of the PEB heat 

treatment.   
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Figure 6.2 Effect of PEB method on Avatrel 8000P cross-linking (SB: 100°C for 5 min; 

exposure dose: 170 mJ/cm
2
; PEB: KBr disc in up-right configuration on the hotplate, 

100°C for 5 min; cure at 160°C for 1 h). 

 

 The peak height and area corresponding to the epoxide ring after the first cure at 

160°C for 1 h were similar (relative to the background) to the corresponding ones in Fig. 

6.1.  To quantify the chemical changes in the cured film, the relative absorbance of the 

two samples were compared after the first cure step by using the height of the SB peak 

(hsoft bake) at 844 cm
-1

 as a spectral reference.  The infrared absorbance corresponding to 

the epoxy group was compared using Equation (6.1).  

 

normalized absorbance=
hcure @ 844 cm-1 

 hsoft bake @ 844 cm-1
                  (6.1) 

 

 

Where h is peak height using a background drawn by connecting the points at 800 cm
-1

 

and 870 cm
-1

 of the spectrum.  The peak height of the cured spectrum (hcure) is used to 
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quantify changes in absorbance.  The normalized absorbance after cure for the Avatrel 

8000P film inverted on the hotplate (Fig. 6.1) and the sample baked in the face-up 

position (Fig. 6.2) were 0.18 and 0.27, respectively.  The results show that the sample 

baked in the inverted PEB condition had a higher degree of epoxy ring opening after cure 

at 160°C for 1 h than the one which was post-exposure baked in the film-up 

configuration. Thus, not only does the PEB assist in creating a latent image for later 

development (the usual benefit of PEB), it also has an effect on how rapidly the film is 

cured at the final cure temperature.  Hereafter, all FTIR samples on KBr in this study 

were post-exposure baked in the inverted configuration. The silicon substrates were all 

post-exposure baked in the up-right configuration. 

 To examine the effect of exposure of the Avatrel 8000P polymer film to 

developer (e.g. TMAH) on the extent of the epoxy ring opening reaction, new samples 

were prepared and were exposed to TMAH developer for 3 min after exposure to 170 

mJ/cm
2
 of 365nm UV radiation.  As described above, all samples were post-exposure 

baked. This exposure dose was chosen because it represents full exposure of the Avatrel 

8000P, which will be shown later.  Figure 6.3 shows that there is very little change in the 

magnitude of the FTIR epoxy peak after the PEB and develop steps.  However, a notable 

difference was observed between the sample cured after it was developed, Fig. 6.3, and 

the sample cured without being developed, Fig. 6.1.  The normalized absorbance after 

cure was 0.18 for the undeveloped sample (Fig. 6.1), and was 0.12 for the developed 

sample (Fig. 6.3). This shows that a higher degree of epoxy ring opening occurred when 

the sample was exposed to the aqueous base developer prior to the first cure for 1 h. 

Further, there was no significant change in the FTIR after multiple cure cycles (each for 

1h) when the sample had been developed, Fig. 6.3, showing that complete epoxy ring 

opening occurred after the first cure at 160°C for 1 h.  Previous studies ignored the 

develop step during their cure studies assuming that it has no effect on curing [53].  

However, the corresponding sample cured without having been developed, Fig. 6.1, did 
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eventually come to the fully cured state after multiple cure cycles at 160°C for 1 h in each 

cure cycle.  This result shows that developing in TMAH assists in the epoxy ring opening 

and final cure.  

 

 

Figure 6.3 Effect of developing on epoxide ring opening of Avatrel 8000P (soft bake: 
100°C for 5 min; exposure dose: 170 mJ/cm

2
; post-exposure bake: KBr disc inverted onto 

the hotplate, 100°C for 5 min; develop for 3 min; cure at 160°C for 1 h). 

 

There are several possible reasons for an exposure to TMAH assisting in the final 

cure.  Exposure of the Avatrel 8000P film to aqueous base could cause some degree of 

neutralization and dissolution of the photogenerated acid created during exposure. The 

PAG itself and byproducts (e.g. conjugate base) may also dissolve during developing.  

While leaching out the acid from the polymer film decreases the amount of acid catalyst, 

it may provide more free volume and thus higher mobility for the activated epoxy 

moieties within the film to move.  Alternatively, incorporation of the TMAH base in the 



 108 

PNB can plasticize the film.  This observation is congruent with the fact that the residual 

stress in the film decreases after developing in the TMAH, as shown later in this paper.  

Additionally, the TMAH developer can act as a catalyst for the reaction of the carboxylic 

acid pendant on the polymer with the epoxy groups contained in the multifunctional 

cross-linkers.  This would improve the cross-linking within the polymer.  In any event, 

the beneficial effects of the developing step are clear.  The exact nature of the improved 

cross-linking with development may be subject of a future publication.  

 The cross-linking of Avatrel 8000P films can be activated either photolytically or 

thermally.  In the photocross-linking of the polymer, the PAG is activated by UV 

radiation creating a proton which can catalytically activate epoxy ring opening on the 

multifunctional additive cross-linkers. The activated epoxy can react with the carboxylic 

acid groups pendent from the PNB backbone. In the thermal cross-linking of Avatrel 

8000P, the PAG can be thermally activated followed by acid catalyzed epoxy activation.     

Figure 6.4 shows the contribution of the thermal activation of the PAG on the epoxy ring 

opening reaction.  The sample was not exposed to UV radiation and was cured at the 

same condition as in Fig. 6.1 (160°C for 1 h).  The 100°C, 5 min bake, which was 

identified as PEB in Fig. 6.1, resulted in no ring opening in Fig. 6.4, where no exposure 

occurred.  That is, the PEB results in ring opening only when the sample is photolytically 

activated (exposed to UV radiation).  However, the 1 h, 160°C cure does result in epoxy 

ring opening regardless of UV exposure, although the UV exposure increases the percent 

of epoxy ring opening.  The normalized absorbance of the epoxy groups after cure was 

0.29 in Fig. 6.4, compared to 0.18 for the exposed sample in Fig. 6.1.  This results show 

that to achieve complete cross-linking of Avatrel 8000P at low cure temperature of 

160°C, both photo and thermal activation of epoxide rings are required. 
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Figure 6.4 Effect of thermal cure on cross-linking of unexposed Avatrel 8000P (SB: 
100°C for 5 min;  PEB: KBr disc inverted onto the hotplate, 100°C for 5 min; cure at 

160°C for 1 h). 

 

 Since UV exposure is critical to developing and curing of the polymer, the effect 

of UV exposure dose on the degree of conversion of the epoxy ring opening reaction in 

the polymer film was studied.  A UV exposure dose sufficient to fully activate the PAG is 

desired after which higher doses have little or no effect on cure. An Avatrel 8000P film 

was exposed to a 450 mJ/cm
2
 UV dose (compared to the 170 mJ/cm

2
 used in Fig. 6.1) 

and the FTIR spectrum was obtained, Figure 6.5. After the PEB step, it can be seen that 

the 450 mJ/cm
2
 exposure dose caused more epoxy conversion compared to the 170 

mJ/cm
2
 dose.  After PEB, the peak at 844 cm

-1
 decreased by 55% for the 450 mJ/cm

2
 

exposure dose, compared to a 38% decrease for the 170 mJ/cm
2
 exposure dose, Fig. 6.1.  
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Additionally, there is essentially no change in the epoxy absorbance between the first 

cure at 160°C for 1 h and the second and third cure at 160°C (1 h each) because the film 

was fully cured after the first cure cycle, whereas there was a slight decrease in the epoxy 

peak after first cure in Fig. 6.1. This shows that there is a slight difference in the cure 

time when a higher UV dose was used. This change in epoxy absorbance between the 

first and second cure, Fig. 6.1, was not viewed as a significant change since 170 mJ/cm
2
 

was a sufficient dose for full development of the latent image.  

 

 

Figure 6.5 Effect of exposure dose on cross-linking degree of Avatrel 8000P (SB: 100°C 

for 5 min; exposure dose: 450 mJ/cm
2
; PEB: KBr disc inverted onto the hotplate, 100°C 

for 5 min; cure at 160°C for 1 h). 

  

 The effect of exposure dose on the mechanical properties of cured Avatrel 8000P 

was investigated for UV doses ranging from 100 mJ/cm
2
 to 1728 mJ/cm

2
.  The 

mechanical properties were measured by nanoindentation as a function of exposure dose 
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for a set of samples cured at 160°C for 1 h, and for a set of samples cured at 200°C for 1 

h.  Nanoindentation was performed on the samples, and the reduced modulus was 

calculated.  Higher values of reduced modulus indicate a higher cross-link density for the 

cured films.  The reduced modulus values increased nearly 45% for the samples exposed 

at doses from 100 mJ/cm
2
 to 200 mJ/cm

2
, as shown in Figure 6.6a.   The increase in 

modulus is attributed to a higher cross-link density due to UV exposure, all other 

variables held constant.  At exposure doses above 400 mJ/cm
2
, the reduced modulus was 

essentially constant at 2.8 GPa (the standard deviation was 0.02).  This suggests that at 

doses above 400 mJ/cm
2
, the maximum PAG activation was achieved and doses higher 

than 400 mJ/cm
2
 resulted in no further increase in acid catalyst concentration.  These 

results were consistent with the results obtained from the samples cured at 200°C for 1 h, 

as shown in Fig. 6.6b.  The average modulus for films cured at 200°C was 2.6 GPa with a 

range of 3.8% for all values from 200 mJ/cm
2
 to 1575 mJ/cm

2
.  The decrease in modulus 

for films cured at 200°C, compared to the values at 160°C, is attributed to the slight 

degradation of the polyether crosslinking linkages between multifunctional epoxy 

additives at 200C.  It should be noted that at 200°C, the minimum dose required for 

PAG activation to obtain full cross-linking is lower than that for samples cured at 160°C.  

This is due to thermal activation of the PAG.  
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Figure 6.6 Reduced modulus dependence of cured Avatrel 8000P on exposure dose (a) 
cure at 160°C for 1 h; (b) cure at 200°C for 1. 

 

 Thus far, it has been shown that the method of the PEB, exposure to the TMAH 

developer, and concentration of the acid catalyst result in a higher degree of epoxide ring 

opening and cross-linking.  FTIR spectra were taken after each step for an Avatrel 8000P 
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sample exposed to a 450 mJ/cm
2
 (365 nm) UV dose, post-exposure baked on an inverted 

KBr disk on a hotplate, and cured at 160°C for 1 h after development for 3 min.  As 

shown in Figure 6.7, full epoxide ring opening was achieved after cure.  The samples 

cured for extended periods of time at 160°C showed no detectable change in the height of 

the epoxy peaks in the IR spectra.  This confirms that the epoxy ring opening reaction 

was complete after curing at 160C for 1 hour.  Compared to Fig. 6.1, which showed a 

small change in epoxide ring opening (normalized absorbance of 0.18) after the first cure 

at 160°C for 1 h, Fig. 6.7 shows a fully cured polymer (normalized absorbance of 0.11) 

after the first 1 h cure.   

 

 

Figure 6.7 Changes in  spectrum of Avatrel 8000P from 700 cm
-1

 to 950
-1

 as a 
function of processing conditions (SB: 100°C for 5 min; exposure dose: 450 mJ/cm

2
;  

PEB: KBr disc inverted onto the hotplate, 100°C for 5 min; develop for 3 min; cure at 

160°C for 1 h). 

Lowering the cure temperature is important in some packaging applications due to 

the presence of temperature sensitive materials and as a way to lower the overall thermal 
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profile of the process.  To investigate the lowest cure temperature to achieve full cross-

linking of Avatrel 8000P after 1 h cure, samples cured at 140°C and 150°C for 1 h were 

prepared.  All other processing variables were held constant.  The FTIR analysis of the 

samples cured at 140°C for 1 h showed incomplete epoxy ring opening, suggesting a 

reduced degree of cross-linking. Thus, a higher cure temperature or longer cure time at 

140C is required for full curing of Avatrel 8000P.  A sample cured at 150°C, Figure 6.8, 

showed that very little epoxy remained after being cured for 1 h suggesting that a 150°C 

cure for 1 h may too be adequate.   There was only a slight change in the epoxy peak after 

the second cure at 150°C.   

 The extent of cross-linking plays an important role in establishing the properties 

of the cured polymer [93, 94].  To evaluate the effect the cure temperature on the 

mechanical stability of the cured Avatrel 8000P, films cured at temperatures between 

140°C to 240°C were evaluated using nanoindentation.  Nanoindentation was performed 

on 2 to 4 samples prepared at each cure temperature.  The nanoindentation results were 

repeated on each sample 2 or 3 times.  Table 6.1 shows the number of samples for each 

cure temperature and the number of indentation measurements performed on each 

sample.  It was found that it is especially important to calibrate the nanoindentation tool 

before, during and after a set of experiments to make sure no drift occurred in the 

calibration.  In each set of experiments, multiple calibrations were performed to ensure 

accuracy.  In addition, each set of measurements were performed during a single 96 h 

period. 
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Figure 6.8 Changes in  spectrum of Avatrel 8000P from 700 cm
-1

 to 950
-1

 as a 
function of processing conditions (SB: 100°C for 5 min; exposure dose: 450 mJ/cm

2
;  

PEB: KBr disc inverted onto the hotplate, 100°C for 5 min; develop for 3 min; cure at 

150°C for 1 h). 

   

Table 6.1 Summary of nano-indentation samples. 

Cure Temperature. (°C) # Sample # meas./sample 

140 2 3 

160 4 3 

180 3 2 

200 4 2 

220 4 3 

240 2 2 
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 Figure 6.9 shows the reduced modulus of developed Avatrel 8000P as a function 

of cure temperature using a 1 h cure.  Each data point is the average of all measurements 

performed on all samples cured at each temperature.  The reduced modulus value 

increased nearly 10% for the samples cured between 140°C and 160°C.   The modulus 

reached the maximum value of 2.8 GPa.  The increase in modulus is likely due to a 

higher cross-link density as the cure temperature increased.  When the cure temperature 

was increased from 160°C to 240°C, the reduced modulus decreased from 2.8 GPa to 2.4 

GPa due to a higher degree of degradation of the polyether cross-links between the 

multifunctional epoxy additives at the higher cure temperature.  The maximum reduced 

modulus value, 2.8 GPa, was obtained after curing at 160°C for 1 h.   

 

 

Figure 6.9 The reduced modulus of developed Avatrel 8000P films as a function of cure 

temperature from 140°C to 240°C. 

 

 The same trend was observed for the samples that were not exposed to the TMAH 

developer, Figure 6.10.  The maximum reduced modulus value, 2.8 GPa, was obtained 
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for the sample cured at 160˚C for 1 h.  However, the reduced modulus dropped 15% 

when the temperature was increased from 160 ˚C to 240 ˚C compared to 12% drop for the 

developed samples.  The difference between the developed and non-developed samples 

could be linked to the contribution of the TMAH developer to curing, as noted above. 

The hardness values showed the same trend and the highest hardness value, 0.13 GPa, 

was achieved after cure at 160°C for both developed and non-developed samples (results 

are not shown here).  

 

 

Figure 6.10 The reduced modulus of Avatrel 8000P films without developing as a 

function of cure temperature from 140°C to 240°C. 

 

Swelling experiments were performed to investigate the degree of Avatrel 8000P 

cross-linking.  The solvent swelling in a polymer film is inversely related to the degree of 

cross-linking between polymer chains, other factors remaining constant [50, 94, 122, 

123].  25 µm thick polymer films made by spin-coating on silicon wafers were UV 

exposed at 450 mJ/cm
2
 and cured for 1 h.  The mass of each sample was measured at 7 
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different times during the 25 h swelling period and each data point is the average of four 

measurements.  Figure 6.11 shows an increase in weight with swelling time.  The 

swelling ratio was less for samples cured at 160°C compared to those cured at 140°C.  

This shows that curing at 160°C for 1 h leads to higher cross-link density than samples 

cured at 140°C.  Raising the cure temperature from 160°C to 240°C increased the 

swelling from 3.1% to 4.1%.  The decrease in the cross-link density, as noted above, for 

films cured at higher temperature is likely due to degradation of polyether cross-links 

between the multifunctional epoxy additives at higher cure temperatures.  This data is 

consistent with the hardness and reduced modulus results.  

 

 

Figure 6.11 Effect of cure temperature on swelling ratio of Avatrel 8000P. 

 

  



 119 

 The cure temperature and quality of the three-dimensional cross-link network can 

have a dramatic effect on the residual stress of the polymer film.  Residual stress in a 

polymer-coated substrate is generated as a result of solvent evaporation, shrinkage during 

the cross-linking of the polymer film, and mismatch of the thermal expansion coefficient 

between the polymer film and the substrate.  The magnitude of the film stress is related to 

the CTE, Poisson’s ratio, biaxial modulus of the polymer film, and stress neutral 

temperature of the polymer film, all of which can change with cure temperature, 

especially the stress neutral temperature [124].  

To evaluate the effect of cure temperature, the residual stress of Avatrel 8000P 

films was characterized for samples after each process step and cure temperature.  The 

measurements were repeated on four different samples (10 measurements each) for each 

processing step and the standard deviation for all measurements was 0.78.  As shown in 

Figure 6.12, the residual stress of a 45 µm thick Avatrel 8000P films ranged from 13 

MPa after soft-bake to 20 MPa after cure at 160°C for 1 h.  The creation of residual stress 

in the soft-baked film was primarily because of solvent removal and subsequent 

shrinkage of the polymer film.  The CTE mismatch during the thermal process also 

contributes to the stress build-up in the soft-baked film.  After PEB, the modulus of the 

polymer film increased due to the acid-catalyzed cross-linking within the film, resulting 

in an increase in stress of the post-exposure baked film. The decrease in the Avatrel 

8000P film stress after developing can be the result of film softening and swelling.  The 

high residual stress of 20 MPa after cure was due to the high cross-link density of the 

polymer and the CTE mismatch.   
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Figure 6.12 Changes in internal film stress of Avatrel 8000P as a function of processing 
conditions (SB: 100°C for 5 min; PEB: 100°C for 5 min; develop for 3 min; cure at 

160°C for 1 h). 

 

The residual stress of Avatrel 8000P was investigated for cure temperatures 

ranging from 140°C to 220°C.  The measurements were performed on two different 

samples at each cure temperature and 10 values were taken on each sample.  The results 

are presented in Figure 6.13, where each data point is the average of all measurements 

performed on all samples at each cure temperature.  The residual stress of the polymer 

ranged from 18 MPa to 25 MPa with increasing cure temperature (each for 1 h), as shown 

in Fig. 6.13.  The increase of residual stress values for samples cured from 140°C to 

160°C is likely due to higher cross-link density and increased rigidity of the polymer.  

The drop in the film stress for the film cured at 180°C, compared to those cured at 

slightly lower temperatures, can be attributed to degradation of polymer at high cure 

temperature.  The increase in stress at even higher temperatures may be due to a higher 

stress neutral temperature, although the trend is not as obvious as the other physical 

properties discussed above. Overall, the film stress increased about 30% from the lowest 
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to highest value for cures from 180°C to 220°C. The individual contributions of the 

different factors (i.e. stress neutral point, CTE mismatch, modulus of the film, and rate of 

the degradation reaction) was not resolved. 

 

 

Figure 6.13 Residual stress of Avatrel 8000P as a function of cure temperature from 
140°C to 240°C. 

 

 In addition to mechanical integrity, a polymer film must also have a high level of 

thermal stability for successful implementation of polymer microstructures in MEMS, 

microelectronics, and photonics applications. To evaluate the thermal stability of Avatrel 

8000P, decomposition versus temperature of Avatrel 8000P was characterized through 

TGA.  Figure 6.14 shows the TGA scans of Avatrel 8000P cured at 160°C for 1 h which 

resulted in the decomposition temperature of 328°C.  To obtain the Tg for the cured film, 

DSC was performed which resulted in the Tg of 268°C. 
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Figure 6.14 TGA scans for cure Avatrel 8000P (SB: 100°C for 5 min; exposure dose: 450 

mJ/cm
2
;  PEB: 100°C for 5 min; develop for 3 min; cure at 150°C for 1 h). 

 

 The extent of cross-linking can change the dielectric properties of Avatrel 8000P 

due to the polarizability of the structures and products.  The impact of cure temperature 

on dielectric constant of polymer films cured at temperatures from 160°C to 220°C was 

evaluated.  Parallel plate capacitors were fabricated, as described in Chapter 2.  

Measurements were repeated four times for each cure temperature.  The standard 

deviation for all cure temperatures was 0.072.  The dielectric constant values for the 

samples cured from 160°C to 220°C are shown in Figure 6.15.  The dielectric constant of 

the cured Avatrel 8000P increased from 3.9 to 4.4 with increasing cure temperature.  The 

increase in the dielectric constant with cure temperature is due to the higher polarizability 

of the structures in the cured film at each temperature. For example, the degradation 

reaction at high cure temperature could result in C=O bond production with a dipole 

moment of 2.3, which is higher than the dipole moment of the C-O (0.7) bonds [125].  As 

a result, degradation of the fully cross-linked polymer results in higher electron and 
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induced dipole polarization.  In summary, curing Avatrel 8000P at 160°C for 1 h resulted 

in the lowest relative dielectric constant, εr = 3.9. This cure temperature agrees well with 

the cross-linking and modulus results shown above.  

 

 

Figure 6.15 Dielectric constant of Avatrel 8000P at cure temperatures of 160°C, 180°C, 

200°C, and 220°C. 

 

6.2  Discussion 

 The cure temperature for optimal mechanical and electrical properties of Avatrel 

8000P was experimentally identified.  The optimal cure temperature is a compromise 

between formation of cross-links within the polymer and degradation of structures.  The 

highest cross-link density and optimum properties were achieved for samples exposed to 

365 nm radiation, exposed to TMAH developer, and cured at the relatively low 

temperature of 160°C for 1 h.  Several important results were found. The optimal cure 

temperature for this polymer was found to be lower than other PNB-based systems 
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studied previously [53, 66, 67, 110].  The addition of multifunctional cross-linkers to this 

polymer mixture results in higher mobility and easier access of the cross-linkable sites to 

each other, compared to epoxy-functionalized PNB polymers (i.e. PNB with pendant 

epoxy moieties).  The high cross-link density of Avatrel 8000P at low cure temperatures 

is also attributed to the efficient activation of the multi-functional epoxy additive.  As 

discussed earlier, cross-linking can be achieved by both photo and thermally activation of 

the PAG.  However, as shown in Fig. 6.4, if one were to rely only upon the thermal 

activation of the PAG to initiate crosslinking of the epoxy compounds, a higher 

temperature and/or longer curing cycle would be required to achieve full epoxy ring 

opening and cross-linking within the polymer.   

It was also found that thermal activation of the acid catalyst during PEB, which 

assists in development of the latent image, also assists in achieving full epoxy ring 

opening during thermal curing at low temperature, as shown in Fig. 6.2.  The extent of 

photo-crosslinking can be improved by excess UV exposure, resulting in a higher degree 

of PAG activation and greater epoxy conversion, Fig. 6.5.   

 The increase in the rate of the epoxy ring opening reaction as a result of TMAH 

exposure prior to curing is an unexpected benefit of developing in aqueous base. This 

could be due to an increase in mobility of the multifunctional cross-linkers, or catalysis of 

the crosslinking reaction due to absorbed TMAH, resulting in improved network 

interconnectivity.  This corroborates with the reduced modulus measurements presented 

in Fig. 6.9 and Fig. 6.10.  The reduced modulus of the developed samples decreased less 

(12%) when the cure temperature increased from 180°C to 240°C compared to the reduce 

modulus of the undeveloped sample which decreased 15%.  The action of the developer 

also results in a lower residual stress value for the developed sample, shown in Fig. 6.12, 

possibly due to plactization of film by the TMAH.  These factors contribute to full cross-

linking of the polymer at a relatively low cure temperature of 160°C, resulting in the 
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highest measured hardness and modulus, and lowest dielectric constant and residual 

stress. 

6.3  Conclusions 

 The acid-catalyzed epoxy ring opening reaction of a photodefinable 

polynorbornene-based dielectric formulation was studied using FTIR spectroscopy.  The 

photo and thermal acid generation initiates epoxy ring opening reactions and subsequent 

cross-linking of polymer.  This reaction is limited by the diffusive mobility of reactive 

groups (epoxy ring opening and acid catalyst).   The rate and ultimate conversion of the 

epoxy ring opening reaction increases with increasing cure temperature, resulting in a 

higher degree of cross-linking at cure temperatures above 140°C.  Degradation reactions 

likely occur at temperatures above 160°C, indicating loss of epoxide cross-linking groups 

and linkages.  These hypotheses were supported by electrical and mechanical property 

studies.  It was shown that curing Avatrel 8000P at 160°C for 1 h after develop resulted 

in full epoxy ring opening and highest cross-link density.  This sample showed lower 

dielectric constant (3.9), residual stress (20 MPa), and solvent swelling (3.1%). 
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CHAPTER 7 

CROSS-LINKING OF POLYNORBORNENE DIELECTRICS BY 

VARIABLE FREQUENCY MICROWAVE 

 

 Fully curing polymer dielectrics can require lengthy cure cycles. VFM processing 

has been shown to be an effective rapid-curing technique for dielectric polymers [24, 

126, 127]. Microwave irradiation of a polymer dielectric results in energy transfer due to 

the dielectric loss mechanism.  The principal mechanism of coupling microwave 

radiation to polymer dielectrics is through dipole orientation by the oscillating electric 

field [21, 23, 24].  Microwave-induced reactions and curing can occur at temperatures 

lower than convective heating systems due to localized energy absorption, resulting in 

faster thermal curing of polymer dielectrics. 

 The extent of cross-linking plays an important role in establishing the mechanical 

properties of the cured polymer [54, 93, 94], and is a function of the reaction time and 

temperature.  In Chapter 6, processing conditions for Avatrel 8000P were optimized and 

it was shown that the dielectric can be fully cured at 160˚C for 1 h in a conventional, 

conventional oven [54]. Curing of epoxy-based materials via VFM processing has also 

been previously investigated [128-131].  In addition, the cure ovens were purged with 

nitrogen to minimize the extent of  oxidation of the PNB or other polymer during the 

extended cure time at high temperature, which degrades the polymer properties [4, 53, 

54, 66, 67, 97].   

 In this study, VFM curing of the PNB dielectric was investigated and three 

specific questions were addressed: (i) can equivalent or better properties of the PNB 

dielectric be obtained at a lower temperature cure using VFM processing compared to 

thermal curing, (ii) can equivalent or better polymer properties be obtained in shorter 

time through the use of VFM curing compared to thermal curing, and (iii) can the 
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shortened cure cycle of VFM processing allow curing in air rather than an inert 

atmosphere.  The effect from VFM curing on the chemical, electrical, and mechanical 

properties of the epoxy-functionalized PNB was studied under different processing 

conditions and compared to conventional thermal curing. 

 

7.1  Experimental 

 All VFM samples were processed in a Microcure 2100 system from Lambda 

Technologies Inc. The five most important parameters that were controlled in the VFM 

system include the central frequency, frequency bandwidth, sweep rate, power, and 

temperature ramp rate [19]. The VFM oven maintains the desired temperature by 

adjusting the power level, thus permitting the control of the film temperature and ramp 

rate.  In this work, an infrared pyrometer was used to monitor the temperature in the 

VFM furnace cavity.  The central frequency of the VFM sweep was 6.425 GHz. The 

sweeping bandwidth was 1.15 GHz and the sweep rate was 0.1 s.  This variable 

frequency process eliminates the non-uniformity in temperature that occurs in traditional 

single frequency microwave systems [131-134]. 

 To evaluate the effect of VFM cure on the PNB polymer, the material was also 

cured according to standard thermal cure process studied previously [54].  The 

preparation of the thermally-cured films, including spin coating, bakes, UV exposure, and 

developing, was identical to that for VFM-cured films. Thermal curing was performed in 

a furnace with the same ramp rate as calculated for the VFM process for each cure 

temperature.  Samples were allowed to cool for the same amount of time as used for the 

VFM cured films for each cure temperature.  All VFM-cured and thermally-cured 

samples were exposed at dose of 450 mJ/cm
2
. 

 The UV absorbance of polymer films was measured using an ultraviolet-visible 

spectrometer (Hewlett Packard 8543 UV) with 100 mm diameter <100> glass wafers to 
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investigate the oxidation effects of curing the polymer in air.  PNB films were spin-

coated at 1500 rpm for 30 sec on a glass wafer and baked at 100°C for 10 min on a 

hotplate in air.  Nanoindentation was performed on 2 to 4 samples prepared at each cure 

temperature and time.  The nanoindentation results were repeated three times on each 

sample.  Each set of measurements were performed during a single 48 h period.  Each 

nanoindentation data point shown in the results section is the average of all 

measurements performed on all samples cured at each temperature [54].   

7.2  Results 

 Prior to investigating the effects of VFM curing on PNB, the VFM system was 

characterized by studying the effect of substrate temperature as a function of VFM power 

and time.  Then, the effect of cure temperature and environment were investigated to 

evaluate the effectiveness of VFM curing.  The cure temperature was varied from 140 to 

180°C in both an air-filled VFM cavity and a nitrogen-purged VFM cavity.  Cure times 

ranging from 1 to 30 min were used.  The chemical, mechanical, and electrical properties 

of these samples were measured and compared to those of thermally-cured films. 

 The heating rate during exposure to VFM radiation is an important parameter for 

polymer films because the polymer reaction begins before the final cure temperature is 

reached. The wafer temperature was studied as a function of time during exposure to 100 

W VFM power. The temperature profile for a bare silicon wafer, a bare silicon wafer 

with 1 µm thermally-grown silicon dioxide, and an oxide coated silicon wafer with 10 

µm PNB coated on one side were compared. All three samples reached the set 

temperature within 100 s.  However, the PNB-coated silicon wafer showed a more rapid 

rise in temperature due to the high absorptivity of the PNB at the microwave frequencies 

used. In the first 100 s of microwave exposure at 100 W, the bare wafer, the oxide coated 

wafer, and the oxide coated wafer with PNB reached 90, 95, and 110°C, respectively. 

 At higher VFM power, the temperature rise was more rapid and a higher steady-
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state temperature could be reached.  To quantify this effect, the PNB-coated wafer was 

irradiated at constant power ranging from 100 to 500 W.  The samples irradiated at 100, 

300, and 500 W reached the maximum temperature of 110, 150, and 250°C, respectively. 

This shows that rapid heating of the PNB was possible. In each of the cure experiments, a 

constant heating rate (degrees per minute) was achieved by controlling the VFM power. 

 The degree of epoxide ring opening and resulting cross-linking for Avatrel 8000P 

affect the electrical and mechanical properties of the polymer film [54]. In addition, 

excessive time at higher temperature can result is a slight degradation of the film 

properties due to deterioration of the polyether linkages between multifunctional epoxy 

moieties. In this study, Avatrel 8000P curing was studies as a function of time and 

temperature in an attempt to shorten the cure time VFM, and to optimize the dielectric 

and mechanical properties for VFM cured films.  The epoxy ring opening reaction and 

chemical changes occurring in the PNB films were monitored using FTIR spectroscopy. 

A 30-µm thick PNB film was spin-coated on an oxide coated silicon wafer. The sample 

was taken through the normal lithographic sequence consisting of SB, exposure, PEB, 

and cure.  The infrared region from 700 cm
-1

 to 950 cm
-1

 was examined after each 

process step to determine the extent of ring opening, as shown in Figure 5.1.  
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Figure 7.1 Changes in infrared spectrum of thin film Avatrel 8000P from 700 cm
-1

 to 950 

cm
-1

 as a function of processing steps (SB: 100°C for 5 min; exposure dose: 170 mJ/cm
2
; 

PEB: 100°C for 5 min; cure at 150°C for 15 min). 

 

Three peaks corresponding to the asymmetric and symmetric epoxide ring stretches were 

observed at 913 cm
-1

, 844 cm
-1

, and 760 cm
-1

.  As seen in Fig. 7.1, a significant degree of 

epoxy ring opening occurred as a result of the UV exposure and PEB. This results in 

cross-linking allowing the latent image to be developed before the final cure step.  The 

magnitude of the FTIR epoxy peaks decreased further after curing at 150°C for 15 min.  

To quantify the chemical changes in the processed films, the absorbance of the samples 

after each step were compared by measuring the decrease in peak height compared to a 

fully cured sample where no epoxy rings exist. The extent of epoxy ring opening after 

each process step was evaluated by measuring the epoxy absorbance at 844 cm
-1

. The 

epoxy content after, hsoft bake, was assumed to have no ring-opening and peak height after 

extensive curing, hfinal-cure, was taken as no epoxy remaining, Equation (7.1). After SB is 

the first instance where the film exists. 
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The background for the 844 cm
-1

peak from 800 cm
-1

 and 870 cm
-1

 was used as the basis 

for calculating the absorbance in Equation (7.1).  The epoxy peak height after different 

processing steps (hi) was used to quantify the extent of reaction.  The extent of reaction 

for the fully cured sample by definition is 100%.   

 A series of experiments were performed at constant temperature from 140˚C to 

180˚C in a traditional, thermal oven and in the VFM system at different cure conditions. 

Figure 7.2 summarizes the extent of cure data from the FTIR results for the processed 

films as a function of cure temperature, time, and atmosphere. The average extent of 

epoxy ring opening for the exposed and post-exposure baked samples were 14% and 

82%, respectively, with a standard deviation of 4%.  The first issue addressed is to 

determine if PNB can be cured at lower temperature by VFM. Samples were VFM-cured 

for 30 min in air at 140˚C to 180˚C.  The extent of reaction for VFM cured films for 30 

min in air are shown in Fig. 7.2. The extent of reaction increased with the cure 

temperature, as expected.  The sample cured at 140˚C for 30 min showed 92.5% epoxy 

ring opening, while samples cured at higher temperatures showed 100% conversion (fully 

reacted).  This FTIR result shows that full epoxy ring-opening was achieved after 30 min 

at 150°C by VFM curing. 
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Figure 7.2 Extent of cure of Avatrel 8000P, cured in VFM and convectively heated oven 

at different processing conditions, as a function of cure temperature from 140˚C to 

180˚C. 

 

 To investigate the feasibility of shorter cure times, samples were VFM cured for 

15 min in air. As shown in Fig. 7.2, the lowest temperature that resulted in full epoxy 

ring-opening was 150˚C for the 15 min cure cycle in air. These results show that full 

epoxy ring-opening can be achieved at the relatively low cure temperature of 150˚C for 

periods as short as 15 min by VFM processing. Previously, it was shown that full 

conversion (100% extent of reaction) of the PNB can be achieved after a 1 h thermal cure 

at 160˚C. For comparison, a 60 min thermal cure at 150°C gave only 95% reaction [54]. 

This means that a 15-min VFM cure at 150°C gave the same extent of cure as the thermal 

oven treated sample 160°C for 1 h [54]. 

 To further investigate the effectiveness of VFM processing, the PNB films were 

cured under identical conditions in a traditional, thermal oven for 15 min as the control. 

The cure temperature was varied from140˚C to 180˚C, and the extent of reaction was 

measured by FTIR.  The spectra for the VFM and thermally cured films were essentially 

identical.  As shown in Fig. 7.2, the extent of reaction for the thermally cured samples for 
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15 min was about 87% showing that for each cure condition, a higher degree of epoxy 

ring-opening and cross-linking was achieved by VFM processing. This demonstrates the 

efficacy of VFM processing in driving reactions to completion. That is, a higher extent of 

cure could be achieved at lower temperature for the same cure time for the VFM samples. 

 To investigate the feasibility of VFM-curing the polymer in air, the experiments 

were repeated with the cavity purged with nitrogen. The temperature was varied from 

140˚C to 180˚C. A PNB film cured in nitrogen for 15 min was used as a control. The 

extent of reaction at each cure temperature is shown in Fig. 7.2. Samples cured in a 

nitrogen-purged cavity and in air resulted in essentially identical extent of reaction, 

showing that rapid, VFM-curing of PNB at low temperatures in air has no effect on the 

epoxy ring-opening reaction. This is reasonable because air or nitrogen are not consumed 

in the epoxy ring opening reaction. Other properties, such as modulus and degree of 

oxidation may be affected by curing in air. These properties will be investigated later in 

this section.  

 To investigate the minimum VFM processing time, PNB films were cured at 

160˚C for 1, 5, 15, and 30 min. The progress of the cure reaction was studied by FTIR 

and the results are shown in Figure 7.3.  The extent of reaction for the sample cured for 1 

min was 92.5%, showing that 1 min at 160°C is not sufficient for full reaction of the 

polymer. However, the extent of cure increased with the cure time and the full epoxy 

ring-opening was achieved at times as short as 5 min which is considerably faster than 

the 60 min cure at 160˚C in a traditional, thermal oven [54].  
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Figure 7.3 The extent of cure of Avatrel 8000P films, VFM cured at 160˚C, as function of 

cure time. 

 

 While the FTIR results show epoxy ring opening, the FTIR technique has a 

degree of uncertainty, as indicated by the 4% standard deviation obtained here. Although 

FTIR indicates full ring opening, mechanical properties are a better indicator of cross-

linking.  Nano-indentation was used to determine the mechanical properties indicative of 

full cross-linking. Samples cured for 15 min at 140 to 180°C were examined. Figure 7.4 

shows the reduced modulus of the PNB films as a function of cure temperature using a 15 

min VFM cure in air.  The reduced modulus increased nearly 12% for cure temperatures 

from 140°C to 150°C.   The modulus reached a maximum value of 3.3 GPa, indicative of 

a higher cross-link density as the cure temperature was increased.  When the cure 

temperature was further increased to 180°C, the reduced modulus decreased from 3.3 

GPa to 2.7 GPa. The decrease in modulus at higher than the optimum cure temperature 

was previous shown to be due to a slight degradation of the cross-links, such as the 

polyether linkages between the multifunctional epoxy additives.  The maximum reduced 

modulus value, 3.3 GPa, was obtained after curing at 150°C for 15 min.  As shown in 
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Table 7.1, the same trend with temperature was observed for the film hardness. The 

maximum hardness was obtained for the sample cured at 150˚C for 15 min in VFM.  The 

hardness increased from 0.13 GPa to 0.18 GPa with increasing temperature from 140°C 

to 150˚C followed by a drop to 0.13 GPa when the cure temperature was further 

increased to 180˚C. The average standard deviation for the hardness values reported in 

Table 7.1 was 0.005 GPa.  These results show that the optimum hardness and modulus 

can be achieved at a relatively low temperature of 150°C for a 15 min VFM cure.  
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Figure 7.4 The reduced modulus of VFM-cured Avatrel 8000P in air ambient as a 

function of cure temperature (SB: 100°C for 5 min; exposure dose: 170 mJ/cm
2
; PEB: 

100°C for 5 min; VFM cure for 15 min in air). 
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Table 7.1 Summary of hardness measurements for cured Avatrel 8000P films in a VFM 

system and a thermal oven at different cure conditions 

Cure 

Condition 
15 min VFM-cure 

in air 

15 min VFM-cure 

in N2 

15 min Thermal-Cure 

in Air 

Cure Temp. 

(°C) 
Hardness 

(GPa) 

Hardness 

(GPa) 

Hardness 

(GPa) 

140 0.13 0.13 0.12 

150 0.18 0.18 0.13 

160 0.17 0.17 0.13 

170 0.15 0.14 0.14 

180 0.13 0.13 0.13 

 

  

 An identical set of samples were cured in nitrogen in order to evaluate the 

difference between air and nitrogen environments during curing. The reduced modulus 

and hardness for the VFM-cured samples in nitrogen for 15 min at 140˚C to 180°C are 

shown in Figure 7.5 and Table 7.1, repectively. The nano-indentation results for the 

nitrogen cured samples are nearly identical to the air cured ones at each cure temperature.  

The maximum reduced modulus and hardness values were once again 3.3 GPa and 0.18 

GPa, respectively, when cured at 150˚C for 15 min. The results indicate that 15 min 

curing ambient did not affect the properties. 
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Figure 7.5 The reduced modulus of VFM-cured Avatrel 8000P in nitrogen ambient as a 

function of cure temperature (SB: 100°C for 5 min; exposure dose: 170 mJ/cm
2
; PEB: 

100°C for 5 min; VFM cure for 15 min in nitrogen). 

 

 Nano-indentation was also performed on samples cured in a thermal furnace for 

15 min in air to show that the lower degree of epoxy ring opening results in a lower 

degree of cross-linking. As shown in Figure 7.6 and Table 7.1, both the modulus and 

hardness of thermally-cured samples for 15 min were lower than the VFM samples at the 

same conditions.  The modulus and hardness for the thermally-cured samples were 

approximately 2.7 and 0.13 GPa, respectively.  These values are much lower than the 

values obtained for the VFM-cured film at 150°C for 15 min confirming that a lower 

degree of epoxy ring opening results in a lower degree of cross-linking. 
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Figure 7.6 The reduced modulus of thermally-cured Avatrel 8000P as a function of cure 

time (SB: 100°C for 5 min; exposure dose: 170 mJ/cm
2
; PEB: 100°C for 5 min; thermal 

cure for 15 min in air). 

 

 The nano-indentation results for the VFM-cured samples also shows that the 5 

min exposure at 160°C was the shortest cure time tested where maximum values were 

obtained.  Figure 7.7 shows the values for the 160˚C cures for 1, 5, 15, and 30 min.  The 

reduced modulus of the film cured at 160˚C for 1 min was 2.3 GPa which increased to 

3.1 GPa for the samples cured for 5 min and longer. The same trend was observed for 

hardness where the value increased from 0.13 GPa for the 1 min cure to its maximum 

value of 0.17 for the 5 min cure, Table 7.2.  The lower values confirm that the 1 min 

VFM cure is not adequate to fully react within the film.  However, full curing appears to 

be achieved after 5 min. 
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Figure 7.7 The reduced modulus of VFM-cure Avatrel 8000P at 160˚C as a function of 

cure time (SB: 100°C for 5 min; exposure dose: 170 mJ/cm
2
; PEB: 100°C for 5 min; 

VFM cure at 160 °C in air). 

 

Table 7.2 Summary of measured hardness for VFM-cured Avatrel 8000P films at 160°C 

in air. 

Cure Time 

(min) 

Hardness 

(GPa) 

1 0.13 

5 0.17 

15 0.17 

30 0.17 

 

 

 The solvent swelling in a polymer film is inversely related to the degree of cross-

linking between polymer chains, other factors remaining constant [50, 94, 122, 123]. The 

swelling results for the VFM cured samples for 15 min in air are shown in Figure 7.8. 

Lower swelling values were found for samples cured at 150°C compared to those cured at 

140°C confirming that a higher degree of cross-linking occurred for the 150°C sample.  
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The swelling ratio then increased about 18% by raising the cure temperature from 150°C 

to 180°C.  This increase in swelling is consistent with the degradation of cross-link 

density at elevated temperatures. 
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Figure 7.8 Effect of cure temperature on swelling ratio of VFM-cured Avatrel 8000P in 

air ambient. 

 

 The swelling experiments were repeated on the VFM samples cured in nitrogen 

for 15 min.  The same trend in swelling was observed for the nitrogen cured samples as 

those cured in air. As shown in Figure 7.9, the swelling ratio decreased when the 

temperature increased from 140˚C to 150˚C followed by a 15% increase in swelling when 

the cure temperature was raised to 180˚C. The swelling ratio for the samples cured in 

nitrogen were nearly the same as the air cured samples at each cure temperature, showing 

there was no significant effect of air curing, in terms of cross-linking, as measured by 

solvent swelling or nano-indentation.  The VFM swelling results were then compared to 

the swelling results for thermally cured samples. Figure 7.10 shows that the samples 

cured in a thermal oven for 15 min showed greater swelling (i.e. lower degree of cross-

linking) than the VFM-cured samples. This is congruent with the FTIR and nano-
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indentation results.  Figure 7.11 shows the swelling results for the VFM-cured films at 

160˚C for different cure times.  The sample cured for 1 min resulted in a higher swelling 

ratio than samples cured for 5 and 15 min due to lower degree of cross-linking.  Samples 

cured for 5 min and 15 min resulted in similar swelling ratios indicating that 5 min cure 

at 160˚C is sufficient for fully cross-linking the PNB polymer in VFM, which agrees with 

the FTIR and nano-indentation results. 

 

 

Figure 7.9 Effect of cure temperature on swelling ratio of VFM-curd Avatrel 8000P in 

nitrogen ambient. 
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Figure 7.10 Effect of cure temperature on swelling ratio of thermally-cured Avatrel 

8000P in air ambient. 
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Figure 7.11 Swelling ratio of VFM-cured Avatrel 8000P at 160˚C in air as a function of 

VFM cure time. 

 

The residual stress of the polymer films was evaluated for the different cure 

conditions. The residual stress can be caused by CTE mismatch between the substrate and 
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the polymer film, or shrinkage during the cross-linking of the polymer film or solvent 

evaporation.  The magnitude of the film stress is affected by Poisson’s ratio, the biaxial 

modulus of the polymer film, CTE of the polymer, and the magnitude of the departure 

from the stress neutral temperature of the polymer film. These properties can be affected 

by the cure temperature through the type of three-dimensional cross-link network 

produced in the film [54].  The residual stress of the PNB films was characterized after 

each process step in the lithographic sequence and for samples VFM cured at 

temperatures from 140°C to 180°C. The measurements were repeated on six different 

samples (10 measurements each) for each processing step. The standard deviation of each 

set of samples was 1.1MPa.   

 The residual stress of a PNB film at different points in the lithographic process 

ranged from 13 MPa after SB to 24MPa after VFM curing at 150°C for 15 min in air, as 

shown in Figure 7.12.  The creation of residual stress in the soft-baked film was primarily 

due to film shrinkage due to solvent evaporation. The modulus of the polymer film 

increased during PEB due to the acid-catalyzed cross-linking of the film at high 

temperature creating a zero stress state at high temperature. The residual stress resulted 

from cooling the sample back to room temperature due to the CTE mismatch between the 

polymer film and the substrate. The decrease in the polymer film stress after developing 

was the result of film softening and swelling from incorporation of the developer.  The 

highest stress state, 24MPa, occurred after cure, again due to film shrinkage and deviation 

from the stress-neutral temperature during sample cool down.   
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Figure 7.12 Changes in internal film stress of Avatrel 8000P as a function of processing 
conditions (SB: 100°C for 5 min; PEB: 100°C for 5 min; develop for 3 min; VFM cure at 

150°C for 15 min in air). 

  

 The residual stress of the PNB films was also measured for VFM-cured samples 

for 15 min at temperatures from 140°C to 180°C.  The measurements were performed on 

two different samples at each cure temperature with each data point being the average of 

10 measurements on each sample.  The standard deviation was 0.4 MPa.  The residual 

stress increased with increasing cure temperature from 140°C to 150°C, as shown in 

Figure 7.13.  This increase of residual stress is likely due to higher cross-link density and 

resulting increase in film rigidity along with a higher stress neutral temperature.  The 

decrease in the film stress with temperature for films cured at temperatures from 150°C to 

180°C can be attributed to the slight degradation of cross-linkages in the polymer at 

higher cure temperatures. The film stress decreased about 14% from the lowest to highest 

value for cures from 150°C to 180°C. The change in the individual factors contributing to 

the stress (i.e. degradation of cross-links, change in stress neutral point, CTE mismatch, 

and changing modulus of the film) contributed to total stress change.  In addition, the 

stress values obtained for the VFM-cured samples are higher than the corresponding ones 
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for the thermally-cured samples reported by Raeis-Zadehet. al. [54].  It is known that 

different processing methods can impact the evolution of intrinsic stress in the film [135, 

136].  For example, the rate of solvent and photoproduct evolution relative to the rate of 

epoxy ring-opening reaction could be different in VFM-cured films as compared to 

thermally-cured films. 

 

 

Figure 7.13 Residual stress of Avatrel 8000P as a function of cure temperature from 
140°C to 180°C, 15 min VFM cure in air. 

 

 The extent of cross-linking can also change the dielectric properties of the PNB 

polymer due to the polarizability of the structures and products.  The impact of cure 

temperature on the dielectric constant of VFM-cured films at temperatures from 140°C to 

180°C was evaluated.  Samples were cured for 15 min in air and parallel plate capacitors 

were fabricated, as described in the Experimental Section.  Measurements were repeated 

four times for each cure temperature.  The standard deviation was 0.04.  The dielectric 

constant values for the samples cured from 140°C to 180°C are shown in Figure 7.14.  

The dielectric constant for the VFM-cured samples decreased from 5.2 to 4.3 with 

increasing cure temperature from 140°C to 150°C due to a decrease in film polarizability 

(electron and dipole polarization) when the epoxy is cross-linked. Since the C-O bond in 
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the epoxy ring has a dipole moment of 0.7 is higher than the dipole moment of the C-C 

(0.0) and C-H (0.4) bonds, the reaction of the epoxy rings lowers the dipole polarization.  

The dielectric constant increased from 4.3 to 4.7 with increasing the cure temperature 

from 150°C to 180°C as the cross-link density decreased due to thermal degradation.   
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Figure 7.14 Dielectric constant of Avatrel 8000P at cure temperatures of 140°C, 150°C, 

160°C, and 180°C. 

 

The formation of species such as C=O (dipole moment of 2.3) with higher dipole 

moments than C-O (0.7) bonds [125] results in higher electron and induced dipole 

polarization.  Curing the PNB polymer at 150°C for 15 min resulted in the lowest relative 

dielectric constant, εr = 3.9. This cure temperature is congruent with the cross-linking and 

modulus results shown above. The dielectric constant measured at each cure temperature 

was higher than that of samples thermally cured at the same temperature in a one hour 

cure[54].  At shorter cure times, trapped residual solvent and photoproducts may be 

responsible for the higher dielectric constant values [23].  This observation is consistent 
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with previous studies reporting somewhat higher values of dielectric constant for rapid 

cured photosensitive dielectric films [19]. 

TGA of VFM cured Avatrel 8000P which is shown in Figure 7.15 was compared 

to the TGA of the thermally cured films, shown in Figure 7.16.  Both samples were cured 

at 150°C for 15 min in a nitrogen atmosphere. The results indicate that degradation in the 

VFM cured films began around 319°C which was similar to the decomposition 

temperature obtained for the thermally cured films, 329°C. However, the thermally cured 

sample showed additional weight loss especially above 200°C.  The thermally cured 

sample and the VFM cured sample lost 26% and 22% up to 300°C, respectively.  This 

additional weight loss in the thermally cured film ( 4%) may be due to the removal of the 

solvent which was not entirely removed during the low-temperature thermal cure.  
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Figure 7.15 TGA scans for VFM cured Avatrel 8000P. 
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Figure 7.16 TGA scans for thermally cured Avatrel 8000P. 

 

 Polymer films are often cured in nitrogen to decrease the extent of oxidation, 

which can degrade the film properties and cause yellowing of an otherwise colorless 

material. Although the physical properties measured above do not show negative effects 

from curing in air vs. nitrogen, the yellowing effect in films can be a sensitive measure of 

oxidation.  The absorbance of the polymer film in the visible range of the spectrum was 

measured under different cure conditions to monitor any change in color and the results 

are shown in Table 7.3. To quantify the yellowing effect, the absorbance at 400 nm and 

650 nm wavelength was compared for each cure condition. Yellowing of a film would 

exhibit an increase in absorbance at 400 nm with respect to the value at 650 nm, 

( ).   

 



 149 

Table 7.3 Yellowing effect on the base polymer (PNB polymer only) at different cure 

conditions (bake: 100°C for 10 min; no UV exposure; VFM cure in air and nitrogen). 

VFM-Cure Condition 
𝑨𝒃𝒔𝒐𝒓𝒃𝒂𝒏𝒄𝒆 𝒂𝒕 𝟒𝟎𝟎 𝒏𝒎

𝑨𝒃𝒔𝒐𝒓𝒃𝒂𝒏𝒄𝒆 𝒂𝒕 𝟔𝟓𝟎 𝒏𝒎
 
 

180°C, 15 min in N2 1.06 

180°C, 15 min in air 1.07 

180°C, 60 min in air 1.06 

220°C, 60 min in air 7.75 

 

The PAG was not added to the polymer mixture so as not to distort the absorbance at 400 

nm.  The PNB film was first VFM cured for 15 min in nitrogen at 180°C as a control.  

This sample resulted in the normalized absorbance, ( ), of 1.06.  The 

sample was taken through a second VFM cure at 180°C for 15 min in air, and a third cure 

cycle at the same temperature for 1 h, which did not affect the normalized absorbance at 

400 nm.   To show the effect of oxidation, the sample was then VFM-cured in air at 

220°C for 60 min, which resulted in significant increase in the absorbance at 400 nm, 

showing high degree of oxidation and yellowing.  The results show that oxidation of the 

polymer occurs at temperature above 180°C and there is little or no detectable effect of 

oxidation during the cure cycle at temperatures below 180°C, especially for the short 

times used in VFM processing. 

7.3  Discussion 

 PNB-based dielectric resins are known for their attractive physical properties and 

low moisture uptake.  VFM processing has been shown to provide a significant reduction 

in cure time and temperature for several thin films polymers [137].  Previously, the 

thermal processing of Avatrel 8000P was optimized and full cross-linking of the polymer 
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was observed at 160˚C for 1 h cure.  The objective of this study was to investigate 

whether VFM processing of PNB could (i) produce equivalent or better PNB properties 

at a lower temperature, (ii) be carried out in air rather than nitrogen, and (iii) the overall 

processing time be shortened. To address these issues, the chemical, electrical, and 

mechanical properties of the VFM cured films were compared to thermally cured films. 

 The PNB-coated wafers had higher heating rates, compared to uncoated wafers 

showing that the polymer absorbed microwave energy even through the mass of the 

polymer was less than 2% of the mass of the silicon. That is, energy is directly absorbed 

by the polymer and is not simply convectively heated by the wafer. Furthermore, an 

increase in the polarizability of the film results in higher absorbance of microwave 

energy. 

 The local heating effect in VFM processing results in more rapid reactions even 

though the apparent temperature is the same as in a convection oven [19]. As seen in Fig. 

7.2, the FTIR results clearly show a higher conversion rate at lower temperature by 

microwave processing.  This result was confirmed by characterizing the mechanical 

properties for VFM cured temperatures. The maximum value of hardness and modulus, 

and lowest degree of solvent swelling was achieved at 150˚C indicating that this is the 

cure temperature for the highest degree of crosslinking.  The hardness, modulus and 

swelling properties also show that the VFM-cured samples were more highly cross linked 

than the thermally-cured ones.  This also resulted in the highest residual stress, as shown 

in Fig. 7.13.  The stress values obtained for VFM-cured samples were higher than those 

of thermally-cured at each cure temperature, which could be due to a number of factors 

including a different stress-neutral temperature, or mechanical properties. Additionally, 

the minimum dielectric constant was obtained at 150˚C, shown in Fig. 7.14.  However, 

the dielectric values obtained for VFM-cured samples at each cure temperature were 

higher than those of thermally-cured films, which could be due to retention of solvent or 

photoproducts since the time at high temperature was minimized.  These observations are 



 151 

consistent with other studies in literature that report increased dielectric constant for rapid 

cured photosensitive dielectric films [19, 23].  These results show that the physical 

properties for VFM cured films were generally similar to thermally cured ones, with most 

properties being better, even though the processing time was shorter. 

 The VFM curing in air was also studied, which would allow simpler and lower 

cost processing.  Samples cured in nitrogen were compared with the samples cured in air.  

The FTIR results showed the same degree of reaction as those cured in nitrogen.  

Additionally, the mechanical properties and moisture uptake of the samples air-cured 

were almost identical in reduced modulus, hardness, and swelling ratio to the nitrogen 

cured samples and showed no oxidation effect.  There was no indication of film 

yellowing which is important for optical applications. 

 Samples cured at 160˚C in VFM were examined to investigate the minimum cure 

time.  As shown in Fig. 7.3, full conversion was achieved at times as short as 5 min.  This 

observation was supported by monitoring the nano-indentation and swelling results.  A 

highest degree of crosslinking, which resulted in the maximum hardness and reduced 

modulus, was achieved for the sample cured for 5 min at 160˚C, Fig. 7.7 and Table 7.2.  

This corresponded to the lowest degree of swelling which supports the claim of the 

highest degree of cross-linking.  The values were also more favorable than the 

corresponding ones for thermally-cured films.   

 Thus, it can be concluded that the PNB can be cured by VFM in shorter times and 

lower temperature, compared to traditional oven curing, resulting in similar or improved 

properties. 

7.4  Conclusions 

 VFM processing of Avatrel 8000P was investigated. The results showed that the 

microwave reaction rates were higher at each isothermal cure temperature compared to 

convective heating, indicating that the rapid VFM curing of the PNB at low temperatures 
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is feasible. The PNB film was fully cross-linked after 15 min VFM cure at low 

temperature of 150˚C.  The shortest cured time to fully cure the polymer was found to be 

5 min at 160°C.  Also, the feasibility of rapid VFM curing of PNB in air was studied.  All 

air cured VFM samples (140˚C-180˚C) showed no effect of oxidation. The degree of 

cross-linking in PNB films were studied by FTIR spectroscopy. The FTIR studies 

showed no significant difference in chemical structure between VFM and thermally cured 

samples. A higher degree of epoxy ring-opening and cross-linking was observed in VFM-

cured samples than thermally-cured samples. The chemical, electrical, and mechanical, 

properties of VFM-cured films were characterized and compared with thermally cured 

films to determine the effectiveness of VFM processing. VFM-cured films showed 

equivalent or improved properties compared to thermally-cured films. 
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CHAPTER 8 

APPLICATION OF POLYNORBORNENE DIELECTRICS IN 

MICROFLUIDIC DEVICES 

 

The research undertaken in this chapter was a collaboration with the Photonics 

Group at the Georgia Institute of Technology, where Ehsan Shah Hosseini carried out the 

photonic device fabrication and characterization aspects and Mehrsa Raeisazdeh carried 

out the fluidic-channels fabrication aspects.  Epoxy-functionalized polymers, such as 

PNB, are valuable for forming micrometer-size structures, such as in permanent 

dielectrics.  However, high spatial resolution features are not feasible through optical 

lithography due to wavelength and chemical reactivity restrictions. Nanometer size 

features made from inherently patternable, epoxy-based polymers are of interest and 

beyond the capabilities of conventional, photosensitive epoxy systems. 

Micro/Nanochannels have applications in various new technologies such as 

micro/nanofluidic devices.  Some key application areas for micro/nanofluidics are 

molecular biology, cellular biophysics, fuel cells, and photonics.  Specially, applications 

in micro/nanofluidics in biosensing are of interest.   Micro/nanofluidics technology 

allows for novel developments such as integration and multimode sensing.  Microfluidic 

circuitry can be mass-produced, making it inexpensive and accessible.  Moreover, the 

reduction of size greatly reduces the analysis time.  Another benefit of 

micro/nanosystems is the reduction in sample size needed.  

Incorporating advanced micro/nano fluidics with high-sensitivity photonic sensors 

will provide compact, effective sensors for lab-on-a-chip tools [138].  Thus, optofluidic 

sensors are gaining widespread use in biosensing and chemical analysis applications 

[139].  Some potential applications of optofluidic sensors are clinical screening, medical 
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diagnostics, screening of chemical compounds in drug discovery and development, and 

toxic detection [140]. 

The microfluidic integration of optical chips with the usually aqueous solutions 

can be done by three major methods.  One common method is SU-8 photolithography 

with glass/polymer/polydimethylsiloxane (PDMS) capping [141].  SU-8 (Micro-Chem 

Corp. MCC, Newton MA) is a negative-tone, solvent-developable epoxy-based 

formulation, first developed at IBM, which has been used extensively for making high 

aspect-ratio MEMS device structures and packaging components with high thermal 

stability [87, 90, 142-145].  PDMS replica-molding process is also used for such 

integrations [146]. Decomposable polymers can also be used for channel fabrication in 

microfluidic devices [147, 148].  The first method uses SU-8 as the channel material. 

After the channels are designed using photolithography (with a dark-field mask), the 

liquid can be dropped on top of the reaction area or flown into the channels. If pressure 

driven flow (PDF) is required, channels can be covered either by a PDMS layer or a glass 

cover. In the latter case, access holes need to be etched through the glass cover. In the 

second method, a clear field mask is used to define the channel molds in SU-8.  SU-8 

mold is made hydrophobic with a layer of Au evaporated and PDMS is poured over the 

mold. The cured PDMS can then be peeled off the mold. The PDMS piece should be 

made hydrophilic if a permanent and watertight structure is needed. To achieve this, the 

sample is exposed to oxygen plasma in a reactive ion plasma machine [149].  After the 

oxygen treatment, the PDMS surface retains its hydrophilic property for 15 minutes, 

which is enough for a proper alignment and integration with the optical devices. 

The two aforementioned approaches, despite being commonly used in glass-based 

fluidic devices, lack several essential capabilities necessary for successful post-CMOS 

integration. The PDMS molding technique most often relies on rough alignment of the 

large channels with sensing devices, requires manual tubing, and relies on the degradable 

hydrophilic bonding of the bulky PDMS mold to the substrate. The SU-8-based devices, 
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despite having micrometer-scale alignment accuracies, require a capping layer making 

them unsuitable for compact CMOS integrated optofluidic lab-on-a-chip solutions. 

Moreover, both of these polymers are subject to chemical degradation and swelling when 

exposed to different chemical solvents. 

In this work, an alternative approach was demonstrated based on channels formed 

by thermally decomposable polymers at relatively low and CMOS-compatible 

temperatures.  A negative-tone PNB-based sacrificial material, Unity 4698P, was used to 

make micro/nanochannels.  Avatrel 8000P and silicon dioxide were used as the overcoat 

materials.  In this processing, no etchant is necessary to remove the polymer, thus the 

underlying sensing devices are not affected.  The channels are then integrated with 

integrated photonic devices fabricated in silicon nitride and operating in the visible 

wavelength range.  

The design of the proposed optofluidic sensor is shown in Figure 8.1. The device 

consists of a silicon nitride (SiN) microdisk resonator covered by a microfluidic channel. 

The device is designed in a way that the evanescent light traveling in the ring resonator 

interacts with the upper fluidic cladding. At resonance, light circulates many times within 

the ring, which leads to a large enhancement in the interaction length between the 

evanescent field and the cladding liquid (with micro/nanochannels, the interaction with 

the cladding fluid will be maximized [150].)   
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Figure 8.1 Optofluidic sensor design with a waveguide coupled to a microdisk resonator 

and a microfluidic channel on top. The waveguide and resonator in this work are 

fabricated in silicon nitride. The channel is created by thermal decomposition of the 

polymer through the Avatrel 8000P or oxide cladding. 

 

There are several possible schemes for the sensing operation. For example, in the 

refractive index sensing scheme, by injection of each refractive index fluid, the resonance 

spectrum of the microring resonator will vary [151].  Figure 8.2 shows the variation of 

the resonance wavelength of the microring resonator when the refractive index of the 

fluid on top of the resonator is changed.  High quality optical resonators can demonstrate 

very sharp resonances, which can be the core of very sensitive and accurate integrated 

sensing devices [115].  Epoxy-functionalized polymers, such as PNB, are valuable for 

forming micrometer-size structures due to their ease of reaction. Epoxy-based polymers 

can also be used as sacrificial polymers. PNB-based epoxy-containing decomposable 

polymers can be exposed with UV or e-beam radiation and subsequently solvent-

developed to form free-standing structures. In this work, a negative-tone, PNB-based 

sacrificial material, identified as Unity 4698P, has been used to make microchannels. 

Unity 4698P has a simple process flow which can be accomplished in five process steps 

to form arbitrary microfluidic shapes and channel structures. The developed sacrificial-



 157 

polymer patterns can be encapsulated with a thick layer of Avatrel 8000P or silicon 

dioxide, which will not affect the optical performance of the photonic device (e.g., 

resonators) underneath [151].  The thermal decomposition products of Unity 4698P are 

able to diffuse through the encapsulating silicon dioxide/ Avatrel 8000P to leave clean 

channels with exact shapes.  In this chapter, the methods utilized in photonic and fluidic 

microfabrication of this device are explained.  The sample flow schemes and optofluidic 

integration strategies are also reviewed. 

 

 

Figure 8.2 Change of the resonant frequency of the optical cavity due to the change in the 

refractive index of the ambient or selective attachment of the biomolecules to the 

resonator surface. 
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8.1  Experimental   

8.1.1  Fabrication of the Photonic Device 

 The Fabrication process starts with a silicon substrate.  The first step of 

fabrication is to grow a thick isolating oxide layer on prime silicon wafers. As the dry 

oxidation rate is very low, the majority of the oxidation process is done in a hydrogen-

rich environment (wet oxidation).  The temperature during the oxidation is limited to 

1100°C.  The required time for the production of 3 µm oxide is 32 h.  During this 

process, 1.76 µm of the silicon is consumed.   

 The light guiding SiN layer can be deposited by either plasma enhanced chemical 

vapor deposition (PECVD) or low-pressure chemical vapor deposition (LPCVD).  The 

films deposited by LPCVD are of higher quality than the PECVD films [152]. PECVD 

SiN is etched approximately twice as fast as the LPCVD material by dry etching (e.g., by 

inductively coupled plasma (ICP) or reactive ion etching (RIE)), somewhat reducing the 

difficulty of the fabrication. However the much higher impurity density (primarily 

hydrogen) and higher optical absorption of the PECVD material makes it inappropriate 

for high quality devices [152]. Nevertheless, the initial devices fabricated using PECVD 

films demonstrated a moderate quality factor (Q~10
5
 for a microdisk with 20 µm radius 

and 200 nm SiN film thickness).  To achieve high Q's and low loss waveguides, LPCVD 

to deposit the SiN device layer for all structures reported here.   

 The photonic patterns are e-beam written with MaN 2403 resist provided by 

Micro Resist Technology GmbH. MaN requires significantly lower dosage than HSQ, a 

more common negative resist, which results in a writing time almost a quarter of that of 

the HSQ. A major issue with the MaN resist is its weak adhesion to the substrate.  The 

delamination failure, often happening in aqueous developers (e.g., 0.26N TMAH used in 

the MaN case), can be partially alleviated by hexamethyldisilazane (HMDS) priming. 
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Nevertheless, the results with this method are not repeatable. Instead, a SurPass 3000 

(provided by DisChem Inc.) is used as a primer [153]. The wafers are submerged in 

SurPass 3000 for 30 seconds, rinsed with deionized (DI) water and covered with MaN 

immediately. After the development of the exposed patterns, an optional reflow of the 

resist at 145°C for 3 minutes can significantly lower the sidewall roughness of the final 

device. This step, although very beneficial for ultra-high quality photonics, can lead to 

feature size changes or sticking of patterns if the MaN resist does not perfectly adhere to 

the substrate. 

 After developing the patterns in the 0.26N TMAH developer, the samples are 

etched in a CF4 ICP etcher with better than 1:1 selectivity [115]. The resist is stripped 

away, and the samples are then cleaned in a piranha solution for 5 min. After 

dehydration, samples are ready for fluidic integration described in subsection 8.1.2.  

8.1.2  Fabrication of the Fluidic Channels 

 Unity 4698P sacrificial material contains a PNB backbone with functional groups 

dissolved in 2-heptanone. (Promerus LLC, Brecksville, OH).  The chemical structure of 

Unity 4698P is shown in Figure 8.3. When Unity 4698P is irradiated with UV radiation 

or an e-beam, an acid catalyst is produced.  Once reacted, the acid catalyst initiates epoxy 

ring opening and polymer cross-linking. An unstable carbocation from the epoxy, which 

forms a covalent bond with other PNB chains, results in cross-linking between chains. 

After the polymer has been cross-linked, Unity 4698P can be thermally decomposed at 

temperatures above 350°C.  The fabrication sequence of the microchannels is shown in 

Figure 8.4.  For microchannel fabrication, Unity 4698P films were spin coated on the 

processed wafer described in subsection 8.1.1 using a Brewer Science CEE 100 spinner. 

An 8-9 mm thick film was obtained at a spin speed of 500 rpm for 10 sec followed by 

900 rpm for 60 s. The films were soft baked at 110°C for 5 min on a hotplate (air 

ambient) to remove most of the residual solvent.  In this work, EBL has been used to 
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achieve very high spatial resolution. EBL was performed with a JEOL JBX-9300FS tool 

at 100 kV accelerating voltage and 50 pA beam current.  After exposure, the samples 

were baked at 90°C for 4 min on a hotplate followed by a four-minute delay. 

 

 

Figure 8.3 The chemical structure of Unity 4698P. 

 

 

Figure 8.4 Fabrication sequence of air channels. 
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 The samples were then developed with cyclopentanone for 5 min and spray rinsed 

with isopropanol (IPA) for 1 minute. Removal of any polymer residue from the 

developed patterns was accomplished with a PlasmaTherm RIE system using the 

following conditions: 45 sccm O2, 250 mTorr, and 300 W at 25°C. The etch rate of the 

polymer under these conditions was approximately 700 nm/min. Deposition of the SiO2 

overcoat was performed with a PlasmaTherm PECVD tool using the following 

conditions: 380 kHz RF, 50Wpower, 300°C, 550 mTorr, and a gas mixture of N2O 

1400 sccm and 2% SiH4 diluted in N2 400 sccm. The SiO2 deposition rate was 

approximately 35 nm/min. The encapsulated sacrificial polymer structures were 

thermally decomposed in a Lindberg tube furnace purged with nitrogen. It was found that 

a fast ramp rate, 20°C/min, resulted in cavities with lower residue. The heating cycle used 

for Unity 4698P decomposition is shown in Figure 8.5.  The heating cycle was designed 

based on the decomposition profile of the polymer.  Figure 8.6 shows the TGA scans for 

Unity 4698P which resulted in the decomposition temperature of 317°C.  The final unity 

nanochannel structures are shown in Figure 8.7.  

 

Figure 8.5 The heating program for the decomposition of Unity 4698P. 
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Figure 8.6 TGA scans for Unity 4698 (620 nm film; SB: 100°C for 5 min; exposure dose: 

300 mJ/cm
2
; PEB: 90°C for 30 s; develop for 45 s in toluene; 1 min isoproponal rinse). 
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Figure 8.7 Nanochannels fabricated with Unity 4698P: (a) a nanochannel with vertical 

sidewalls; (b) a sub-100 nm thin channel. 

 

 One of the pertinent processing issues with SiO2-covered air-channels was found 

to be the temperature for the deposition of the encapsulating layers. The oxide PECVD 

deposition temperature was limited to 300°C.  Above these temperatures, the overcoat 

material severely cracked.  The most important factor limiting the deposition temperature 

of the films is the mismatch between the CTE of PNB (CTE =127 ppm/°C) and SiO2 

(CTE = 0.6 to 0.9 ppm/°C). Due to this mismatch, the overcoat films crack from stress 

developed between the substrate and the film during cooling from the deposition 

temperature as shown in Figure 8.8. To address this issue, Avatrel 8000P was used as an 

alternative overcoat material which has a similar CTE to that of Unity 4698P due to the 

similar polymer structure of the PNB polymers.  For the SiO2-coated samples, the oxide 

cap was optimized and the decomposition model shown in Fig. 8.5 was developed which 

prevented the films from cracking.  The resulting structures can be seen in Figure 8.9, 

which shows the microchannels with a width of 1, 5, 10, 15, and 20 µm and a 7.5 µm 
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pitch after decomposition. The AutoCAD patterns used for fabrication of the 1-20 µm 

width patterns are shown in Figure 8.10.  Figure 8.11a and 8.11b show the cross-section 

image of the thermally treated samples with a width of 5 µm and 10 µm, respectively.  As 

it can be seen in Fig. 8.11, there is no residue inside the channels, which is promising for 

optofluidic integration, as otherwise the performance of the optical devices would be 

highly degraded. 

 

 

Figure 8.8  Cracking in channel fabricated with Unity 4698P and oxide capping due to 

the thermal stress built up in the film. 
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Figure 8.9 Microchannels with 1, 5 µm,10 µm, 15 µm, 20 µm width fabricated with 

Unity 4698P after decomposition. 
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Figure 8.10 AutoCAD Patterns used for EBL of Unity 4698P. 
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Figure 8.11  Channels fabricated with Unity 4698P using oxide cladding and EBL: (a) a 

high aspect ratio and (b) a wide channel. 

8.2  Results 

 After the channel fabrication is optimized, integration with optical devices and the 

specimen flow is investigated.  Several issues of this process needed to be addressed. The 

first challenge was that the very first devices would not pass the fluid. Further 

investigation showed that the decomposition process leaves the inside surfaces of the 

channels hydrophobic. It is virtually impossible to flow a liquid through a narrow 

hydrophobic channel. A high temperature oxygen plasma in an asher makes the channels 

hydrophilic, and the fluid flows inside the channels (as can be seen from Figure 8.12 ). 
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Figure 8.12 Flow of water inside the channel. The picture is taken using an optical 

microscope while water was flowing inside the channel due to the capillary effect. The 

channel opening was 5 µm wide.  

 

 The next challenge was to make sure no residue is left inside the channels 

(otherwise, the performance of the optical devices would be degraded). Usually, for 

conventional photonic devices a piranha clean (a mixture of sulfuric acid and hydrogen 

peroxide) removes the residues effectively.  Because the mixture is a strong oxidizer, it 

will remove most organic materials, and it will also hydroxylate (add OH groups) most 

surfaces making them extremely hydrophilic.  Unfortunately, due to the bubbles 

generated during the piranha etch, this process is not compatible with these channels.  

Instead, we used a solution of chromic acid made by adding concentrated sulfuric acid to 

a dichromate (which may contain a variety of compounds, including solid chromium 

trioxide). After establishing a reliable and scalable mico/nanochannels fabrication and a 

post processing method, a specimen flow (appropriate for the target channel size) is 

required. 

 To flow the liquids into the channels there are two common methods. The first 

method, i.e. PDF, utilizes a pressure build-up between two reservoirs.  The other major 

method is the electro-osmotic flow (EOF). As a measure for the type of flow inside the 

channel, the dimensionless Reynolds number, Equation 8.1, is used [154]. 
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Where w[m/s] is the characteristic flow velocity, b[m] is the characteristic dimension and 

n[m2/s] is kinematic viscosity of the fluid. The n parameter for water is 1.01; b is 

typically the smallest dimension along the channel. The typical properties of pressure-

driven microfluidic systems, namely small channel size, small velocity, and large 

viscosity combine in devices to result in generally small values of the Reynolds number. 

Re is usually much less than 100, often less than 1. In this Reynolds number regime, flow 

is completely laminar and no turbulence occurs. The transition to turbulent flow generally 

occurs when Re is around 2000 [154]. Laminar flow provides a means by which 

molecules can be transported in a relatively predictable manner through micro-channels. 

One of the basic laws of fluid mechanics for pressure driven laminar flow, the so called 

no-slip boundary condition, states that the fluid velocity at the walls must be zero. This 

produces a parabolic velocity profile within the channel. 

 Despite the simplicity of the pressure driven approach, which only needs a 

syringe pump or a vacuum line, the drawback is non-scalability of the devices.  As for a 

typical rectangular channel with a characteristic dimension of d or a circular shaped tube 

with a radius r, the pressure needed for a certain velocity (∆P) scales with α 1/wd
3
 for the 

rectangular shape, and ∆P α 1/r
4
 for the tube. This imposes a limit on the size of the 

channels and makes nanofluidic with manageable pressures impossible. Therefore, if the 

channel sizes are smaller than roughly 10 mm, the electro-osmotic flow is the preferred 

method. EOF is the motion of liquid induced by an applied potential across a porous 

material, capillary tube, membrane, micro-channel, or any other fluid conduit. Because 

electro-osmotic velocities are independent of conduit size, as long as the double layer is 

much smaller than the characteristic length scale of the channel, EOF is most significant 

for channels. Therefore, in the smaller channels described in this work the flow is 
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achievable by applying a high voltage (200 V) through a pair of platinum electrodes 

across the LB conductive medium obtained from Faster Better Media LLC. 

 Another issue to be considered is the scattering of light from the waveguide-

channel interface. As the index mismatch between the oxide-covered sections and the 

channel is large (especially if no fluid is flowing inside the channel), a large portion of 

the optical guided wave is scattered at the boundary (Figure 8.13). To alleviate this 

problem, large multi-mode waveguides were used at the intersection and the waveguide 

was tapered down to a single mode profile inside the channels (as schematically shown in 

Fig. 8.13).  Considering this issue, it is undesirable to cover a ring resonator with the 

channels only partially, as this would lead to very low quality factors due to the 

scattering. 

 As we need to cover the resonators with the channel, the width of the channel 

should be larger than the diameter of the resonators used (20-40 µm). This leads to fragile 

overcoats (Fig. 8.8) unless a thick oxide layer is used, which in turn leads to longer and 

higher temperature decomposition conditions.  Here, at least 5 µm of oxide coating and 6 

hours of decomposition were used to achieve mechanically robust overcoats while 

maintaining 

residue-free channels. 

 To characterize the fabricated structures, the output light of a tunable laser diode 

source (New Focus™TLB-6305) is coupled to the cleaved facet of the waveguide using 

a Mitutoyo 20x long distance objective lens. A quarter-wave plate and a polarizer ensure 

the light energy is in the TE mode. The wavelength of the laser is swept across the 

652-660 nm wavelength range in 0.25 pm steps, and the transmission is measured as a 

function of wavelength by a Si detector at the waveguide output. The data is then 

transferred to the computer through a data acquisition (DAQ) card. One long distance 

working lens and one regular objective lens are used to collect the light from the top and 

the output of the waveguide respectively. 
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  A custom-built microscope in the z direction is used for most of the analysis. 

Using 50/50 polarizing beam splitters to deliver the collected light to the measurement 

devices, a spectrometer, a detector, and a camera are integrated in the microscope. For all 

the set-up structures a Thorlabs 30 mm cage system was used. The cage system is very 

versatile and stable and allows fast and easy reconfiguration in the set-up without 

requiring an extensive alignment readjustment. As a test of the capabilities of our system 

to measure fluorescence, the output of a waveguide covered with 60 mg/lit Oxazine dye 

(Abs/Em at 646/670 nm) is measured with a spectrometer (Ocean Optics USB-2000). A 

sharp edge filter with an OD of over 70 is used to filter out the pump.  The unfiltered and 

filtered spectra are shown in Figure 8.14a and 8.14b, respectively. Fig. 8.14 clearly 

suggests that the waveguide-channel structure is a reliable platform for a variety of 

sensing applications. 
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Figure 8.13 Scattering of the guided optical wave by the interface between the oxide 

cladding and the fluidic channel.  The size of the disk puts an upper limit on the width of 

the channel. Using a multimode waveguide at the interface can reduce the scattering from 

the waveguide-channel interface. 
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Figure 8.14 (a) Fluorescence from Oxazine pumped and collected with SiN waveguides. 

(b) The pump signal is filtered out. 
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8.3  Conclusions  

 In this study, it was shown that it is possible to integrate micro/nanochannels, 

fabricated using Avatrel 8000P and thermally decomposable PNB polymers, with 

integrated photonics in a lab- on-a-chip platform.  Low loss silicon nitride photonic 

structures, functioning in a broad optical range (visible through infra-red), were created 

with conventional micro-fabrication techniques by Dr. E. Shah Hosseini. The photonic 

structures were then covered with a decomposable PNB polymer, which can be patterned 

with UV or e-beam exposure. The channels then were formed by decomposition of the 

decomposable PNB polymer through the cladding layer of Aquatrel 8000P or SiO2.  The 

channels made with low-temperature decomposability are the most promising for future 

applications, especially considering the possibility of integration with CMOS processes 

without potential chemical or thermal damage to the CMOS circuitry. The robust and 

residue-free channels, demonstrated here, can be varied in size in accordance with the 

photonic design and the specimen flow procedure. If very compact photonics are utilized, 

the channels can be fabricated with sub-micrometer EBL, and EOF can be used for the 

sample delivery. On the other hand, microring/microdisk resonators fabricated in SiN 

require large channels and are suitable for pressure driven flows. The high resolution and 

compact channels will enable multi-mode sensing functionalities through refractive 

index, florescence and Raman sensors. The potential small size of the channels and 

sensors can pave the way for single molecule sensing schemes using ultra-small sample 

sizes. 
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CHAPTER 9 

PERSPECTIVES AND SUGGESTIONS FOR FUTURE WORK 

 

 A challenging application space exists for high-sensitivity, high-fidelity 

dielectrics in MEMS, microelectronic, and photonics.  Polymers are widely used in these 

fields because of their superior properties. The scope of this work was to study the cross-

linking of a PNB-based polymer as a dielectric for these applications.  The PNB 

dielectric must meet the needs in terms of patternability, mechanical stability, and 

dielectric properties as well as easy processing.  Both the UV and e-beam induced cross-

linking of the PNB dielectric were studied and the effect of epoxy additives, a PAG, a 

UV sensitizer on the polymer cross-linking, patternability, sensitivity, and resolution was 

investigated.  In addition, the processing of the PNB dielectric was optimized to achieve 

the optimum mechanical and electrical properties at low thermal cure temperatures.  The 

final goal of this wok was to develop a rapid, low-temperature cure process for the PNB 

dielectric using VFM to avoid the degradation of the polymer properties and the increase 

in the processing cost.  

 The addition of the tetra-functional epoxy cross-linker, TPEGE, showed 

significant improvement in the sensitivity and photo-patternability of the PNB dielectric. 

While this improvement was expected, the magnitude of the effect was unforeseen.  

Coupling the epoxy cross-linker with the UV absorber resulted in effective energy 

transfer between the epoxy cross-linker and PAG and improved the polymer cross-

linking.  The origin of the effect of TPEGE on the polymer sensitivity and patternability 

is unclear and could be the subject of future work. Additionally, the tetra-functional 

epoxy cross-linker significantly improved the polymer to substrate adhesion as shown in 

the contrast curves and by the longer DT.  The exact nature of the improved adhesion for 



 176 

this compound, beyond its higher epoxy functionality and absorbance, was not 

investigated and could also be the subject of future studies.   

 In addition, PNB formulations with additional PAG and epoxy cross-linkers 

showed extremely high e-beam sensitivity and high contrast.  In order to understand these 

effects, the cross-linking and bond breaking reactions occurring due to the e-beam 

radiation must be studied which opens avenues for future investigations.  Also, the 

reactions in other polymer systems with lower sensitivity need to be studied to 

understand why they require higher e-beam energy for cross-linking and/or bond 

breaking reactions involved in pattering the polymers.  Additionally, Avatrel 8000P 

showed satisfying resolution and LER for the structures patterned with EBL. The PNB 

used in this study has a relatively high molecular weight.  Improvements in minimum 

feature size and LER may be expected with lowering the molecular weight of the PNB 

formulations.     

 Developing also showed an interesting effect on the polymer cross-linking 

reactions.   A higher degree of cross-linking and epoxy ring opening was observed for the 

samples developed in the TMAH developer prior to the cure process compared to the 

undeveloped samples.  This effect was unexpected since TMAH is an aqueous base 

developer which could cause some degree of neutralization and dissolution of the 

photogenerated acids created during exposure, decreasing the amount of acid catalyst.  

However, this may provide more free volume and thus higher mobility for the activated 

epoxy moieties within the film to move, improving the polymer cross-linking.  

Alternatively, incorporation of the TMAH base in the PNB can plasticize the film.  

However, the exact nature of the effect of the TMAH developer on the polymer cross-

linking is unclear and could be the subject of further studies.  

 It was also observed that the PNB dielectric was fully cross-linked at a low 

temperature of 150˚C for the very short time of 15 min by VFM.  This shows the high 

energy absorptivity of the PNB polymer at the microwave frequencies used in the study 
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and the effective cross-linking within the polymer when cured by VFM.  To further 

investigate the effective cross-linking of PNB by VFM, the kinetics of the cross-linking 

reactions of the VFM-cured PNB films can be studied and compared to those of the 

thermally-cured PNB films.  

 Lastly, to further improve the polymer dielectric properties, the concentration of 

the epoxy cross-linkers in the polymer can be lowered.  Epoxies suffer from high 

dielectric constants (εr = 3.5 to 5) and the addition of epoxy-based compounds can 

degrade the dielectric properties of the polymer.  As mentioned previously, Avatrel 

8000P is a mixture of a di-functional and a tri-functional epoxy cross-linker, which make 

about 17% of the polymer solution.  On the other hand, the addition of a small amount (1 

wt% or 3 wt%) of the tetra-functional epoxy cross-linker, TPEGE, showed significant 

improvement in the polymer cross-linking and patternability.  Replacing the already 

existing epoxy cross-linkers in Avatrel 8000P with small amount of TPEGE can lower 

the overall dielectric constant of the dielectric. 
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