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SUMMARY

This thesis is focused on Bayesian data mining techniques for non-traditional

data in the health care and biomedical fields, and comprises three main topics.

Meta-analysis of clinical trials with incomplete data set

This methodology is motivated by meta-analysis that compares the effectiveness

of glass-ionomer (GI) to resin-based (RB) sealants in preventing caries in permanent

molars of children. While GI and RB sealants are two of the most commonly used

dental sealant materials, there is strong debate regarding their comparative effective-

ness. Although GI to RB sealant meta-analyses have been performed in the past,

this research is the first to find difference by including studies that were excluded

previously solely because they failed to report data in a paired manner. The conclu-

sion is based on 12 clinical studies performed on 2,012 children, that had incomplete

information and inconsistent conclusions.

To retrieve full paired table information from studies that only reported marginal

totals, we propose a Bayesian approach based on Metropolis random walk and a

hierarchical Bayesian model. The procedure relies on Markov chain Monte Carlo

simulation, recovers a full table and reports its accuracy in terms of credible sets for

the cell counts. The performance of the model is remarkable; from 17 matched-pair

study examples, four of the estimated tables coincided exactly with the original tables

and nine tables deviated only (+1,-1) in terms of cell counts.
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Analysis of spatial repeated measures with excess zero and no covariate

information

Water fluoridation, the addition of fluoride to drinking water to prevent tooth

decay, is listed as one of ten greatest public health achievements of the 20th century

by the Centers for Disease Control and Prevention. However, fluoride is present

naturally in water in concentrations well above recommended levels, which may have

several long-term adverse effects. Therefore, describing the availability of natural

fluoride by county can inform public health efforts in prevention of tooth decay and

dental fluorosis.

This work is to estimate United States county level natural fluoride occurrence

in the ground water. To accommodate the limitations of the data, we propose a

two-step hierarchical Bayesian approach. It models spatial repeated measures with

excess zeroes and it is robust even when covariate information is not available. The

approach starts with: (i) an autologistic model that estimates the probability of zero

observations, and proceeds to (ii) an excess-zero model that describes the underlying

physical phenomena of the zero-inflated data. The proposed hierarchical Bayesian

structure produces improved discretized estimates and reflects the continuous behav-

ior of the natural fluoride occurrence better. By employing the hyper prior structure,

state level estimates can be obtained as well. Furthermore, the model can answer

pragmatic questions such as “the probability that a specific county has naturally oc-

curring fluoride above EPA recommended level”.

Image classification based on the overall image regularity in wavelet

domain

Breast cancer is one of the most common forms of cancer among women in the

United States; an estimated 1 in 8 women born today will be diagnosed during her

lifetime. Since the causes of breast cancer are not yet fully understood, early detection
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is still the best strategy for improving prognoses. Mammography is currently the most

effective method for detecting breast cancer early; however, radiological interpretation

of mammogram images is a challenging task. The appearance of even normal tissue

is highly variable and complex, and signs of early disease are often indistinct.

We propose a diagnostic based on the properties of overall image backgrounds;

this procedure currently is an unused diagnostic modality in mammograms. Generally

speaking, normal/healthy images tend to be more irregular than cancer images. The

overall regularity of the image is assessed through wavelet analysis, which is then

summarized by a few measures. These estimators are evaluated based on their ability

to classify digitized mammogram images from a clinical database, for which the true

disease status is known by biopsy. This research presents a two-fold approach: (i)

generalization of the covariance wavelet spectra to the complex domain and (ii) the

estimation of Hurst parameter and phase information as discriminatory descriptors.

The most accurate classification rates from this work achieve 86%; these rates vary

slightly with the choice of wavelet basis, levels used and size of training set.

xii



CHAPTER I

INTRODUCTION

The emerging research issues in evidence-based healthcare decision-making and ex-

plosion of comparative effectiveness research (CER) are evident proof of the effort

to thoroughly incorporate the rich data currently available within the system. How-

ever, in most cases, the data involves some challenging issues such as the required

information is not fully reported due to the lack of statistical knowledge (incomplete

or missing data issue), data itself exhibits non-traditional patterns (change of sup-

port, zero inflation) or it is highly correlated and irregular. Therefore a traditional

statistical approach is not directly applicable.

The flexibility of Bayesian data mining techniques lends its strength to handle

the challenging issues in the biomedical and health care domains. The well-known

advantages of the Bayesian approach include no requirement of closed form analyti-

cal solution, the elicitation of prior beliefs, good finite sample performance and the

ability to incorporate unknown variability. Also, the Bayesian approach integrates

different data sources from observational data to controlled experiments, and answers

pragmatic questions like that are usually of immediate interest of health practitioners.

This thesis comprises three distinct topics on Bayesian data mining techniques

for non-traditional data in the health care and biomedical fields. In the following

sections, we provide the background information on the statistical approaches used

in this thesis.
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1.1 Meta-analysis

Meta-analysis involves combining the results of several studies that address related

hypotheses. The goal of the meta-analysis is obtaining a reasonable summary measure

so that one can draw a conclusion from the independent and inconsistent individual

studies. It is often an important component of a systematic review procedure. One of

the most popular usages of meta-analysis can be found in combining several clinical

trials of a medical treatment, in an effort to obtain a better understanding of how

well the treatment works.

The procedure begins with formulating the problem, which implies identifying the

right question. Then a set of appropriate studies is identified through literature review

and systematic search and included into the meta-analysis based on selection criteria.

Once a set of studies is obtained, then it requires statistical approaches to answer two

questions: the selection of a measure to compare the treatment and control group,

and a statistical method to combine the summary measure from individual studies.

1.1.1 Selection of a summary measure

The meta-analyst usually has little or no control over the choice of summary measure,

because most of the decision is determined by what was employed in the primary stud-

ies. However, different summary measures are reported across the primary studies

and therefore it becomes the job of the analyst to create a summary statistic that is

comparable across all the studies. In some situations this task involves interpolating

missing information. Here we present three classes of study outcomes: discrete data,

continuous data and a miscellaneous set of outcome measures. For the following sec-

tions, we assume the simplest study design, a parallel study that compares control

and treatment group.

2



Discrete data: risk differences, relative risks and odds ratios

Three widely used measures for discrete data are the difference between two prob-

abilities (risk difference), the ratio of two probabilities (relative risk) and the ratio of

the odds for the treatment to the odds for the control group (odds ratio). Risk differ-

ence is easy to interpret; it is defined within [0 1] boundary, and it is approximately

normally distributed for modest sample sizes. On the other hand, relative risk and

odds ratios are typically analyzed on the logarithmic scale and transformed back to

the original scale. Each of the three measures and its variance is summarized in Table

1. In the table, ‘c’ denotes control group and ‘t’ denotes treatment group; nc and nt

are the total number of samples in the control and treatment groups, respectively;

a, b, c and d denote the number of observations in each of the cells defined by the

treatment and outcome table.

Table 1: Summary measures and their variance for discrete data meta-analysis.

Risk difference log(Relative risk) log(Odds ratio)

Parameter pt − pc log(pt/pc) log
(
pt/(1−pt)
pc/(1−pc)

)
Variance ptqt

nt
+ pcqc

nc

qt
ntpt

+ qc
ncpc

1
na

+ 1
nb

+ 1
nc

+ 1
nd

Continuous data: means and effect sizes

When the primary studies have continuous outcome measures, they usually report

means, x̄ in each treatment arm. Then the analyst may use the mean difference as a

summary measure. Let x̄c and x̄t be the study means for control group and treatment

group, respectively. Then the difference in means is

y = x̄t − x̄c

with its variance s2 equal to

s2 = sp
2

(
1

nc
+

1

nt

)
,

3



where

sp
2 =

(nc − 1)sc
2 + (nt − 1)st

2

nt + nc − 2

and sc
2, st

2 is equal to the control and treatment group sample variance, respectively.

If there is no direct common measure across all the studies, one can transform

the study-specific summary to a standardized scale-free statistic. For example the

difference of means divided by the variability of the measures (standardized mean

difference) can be used. Let us assume that each outcome follows a normal distribu-

tion:

Yc ∼ N (µc, σ
2)

Yt ∼ N (µt, σ
2)

Then the standardized mean difference is defined as

δ =
µt − µc
σ

with its variance (
1

nc
+

1

nt

)
+

δ2

2(nc + nt)

Since the results from the primary studies are transformed into unitless measures,

they can be pooled into the meta-analysis even when the ‘event’ is measured in dif-

ferent ways across the studies.

Other measures

When the test statistics are reported as summary measures across the studies,

it is possible to recover the estimated effect size if the required information is also

reported. For instance, in case the z-statistic is reported, the standardized mean

difference can be calculated as follows:

δ = z

√
1

nc
+

1

nt

4



1.1.2 Assess the variations between studies

Once a measure is given as an effect estimate, meta-analysis methods are variations

on a weighted average of them from the different studies. Therefore, variation across

studies (heterogeneity) have to be evaluated first. Let us assume that we have “k”

independent studies. Then a statistical test for homogeneity of study means is equiv-

alent to testing

H0 : θi = θj = θ

for all i, j = 1, 2, · · · , k against

H1 : θi 6= θj

for at least one pair (i, j). Under the null hypothesis, the k study-specific summary

statistics have a common mean θ. Therefore, under H0 the test statistics QW follows

chi-square distribution with degrees of freedom k − 1,

QW =
k∑
i

Wi

(
Yi − θ̂MLE

)
∼ χ2

k−1

where θ̂MLE =
∑
WiYi/

∑
Wi and Wi = 1/s2i .

If H0 is rejected, then we may conclude that the study means arose from two

or more distinct populations and proceed by either identifying covariates that could

stratify studies into the homogeneous subset or using a random-effects model. If we

fail to reject H0, then it is assumed that the between-study variation is small and the

analyst may use θMLE as an estimate for the common mean, θ. This is called the ‘chi-

squared test’ and is the most well known statistical test to evaluate the heterogeneity.

However, it has a low power when studies are few in number or have small sample
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size. Also the test has high power to detect a small amount of heterogeneity when

there are many studies in a meta-analysis.

Some argue that statistical heterogeneity is inevitable and it will always exist

whether or not we detect it using a statistical test [1]. Thus, the result of the het-

erogeneity test should be irrelevant to the choice of analysis. Methods have been

developed for quantifying inconsistency across studies to assess its impact on the

meta-analysis. A useful statistic for quantifying inconsistency is I2:

I2 =
Q− df
Q

× 100%

where Q is the chi-squared statistic and df is its degrees of freedom [1, 2]. This

measure describes the percentage of the variability in effect estimates that is due to

heterogeneity rather than sampling error.

1.1.3 Combine summary measures

There are at least three sources of variation to consider before combining summary

measures across studies: sampling error, study-level characteristics and inter-study

variation. The fixed-effects model assumes each study is measuring the same un-

derlying parameter and that there is no inter-study variation. On the other hand,

the random-effects model assumes that each study is associated with a different but

related parameter.

Two common analysis approaches in the meta-analysis are fixed-effects and random-

effects model. The difference between the two models is in the variance estimation of

the summary measure. The fixed-effects model uses the inverse-variance as a weight

for each study. The random-effects model makes an adjustment to the study weights

according to the extent of variation (heterogeneity). The two models will give identi-

cal results when there is little or no heterogeneity among the studies. However, when

the variability between studies is significant, confidence intervals for the summary

6



statistics will be wider if the random-effects method is used rather than a fixed-

effects method, and the corresponding statistical claims will be more conservative.

Fixed-effects model

When the within-study variation s2i is assumed to be known, the log-likelihood

of θ is proportional to
∑

i
(Yi−θ)2
s2i

. Then the maximum likelihood estimator (MLE) is

obtained as follows:

θ̂MLE =

∑k
i=1WiYi∑k
i=1Wi

where Wi = 1/s2i .

Random-effects model

The random-effects model assumes that the study summary measure Yi is a draw

from a normal distribution:

Yi ∼ N (θi, si
2).

And each study-specific mean θi is assumed to be sampled from a prior distribution:

θi ∼ N (θ, τ 2).

Note that θ is the average treatment effect across the studies and τ 2 is the inter-study

variation. After averaging over the study-specific effects, the posterior distribution of

each Yi is again Normal with mean θ and variance si
2 + τ 2.

If τ 2 is known, then the MLE of θ is given by:

θ̂(τ)MLE =

∑
iWi(τ)Yi∑
iWi(τ)

with Wi(τ) = 1/ (s2i + τ 2).
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However, in most cases τ 2 is unknown. The most common methods of estimating

τ 2 are the method of moments (MOM) and the Bayesian approach. The MOM

estimator is obtained from the chi-squared homogeneity test. By equating QW with its

expected value, DerSimonian and Laird [3] proposed a non-iterative MOM estimator

of τ 2,

τ̂ 2DL = max

0,
QW − (k − 1)∑
Wi −

∑
W 2

i∑
Wi

 .

Then the DerSimonian-Laird estimator becomes,

θ̂DL =

∑
iwi(τ̂DL)Yi
τ̂DL

where wi(τ̂DL) = 1/ (s2i + τ̂ 2DL).

A Bayesian approach incorporates the uncertainty in the estimates of hyperparme-

ters θ and τ 2. Let θ ∼ N (0, a2) and τ−2 ∼ Gamma(c, d). Then the joint posterior

distribution of the unknown parameters of interest is∏
i

p
(
θi|yi, s2i

)
p
(
θi|θ, τ 2

)
p(θ)p(τ 2).

By taking the integral over the nuisance parameters, the posterior distribution of the

summary statistics can be obtained as follows:

θ̂B = IE
(
θ|y, τ 2

)
=

∫
θ

θ

∫
θi,τ2

{
p(V )dθidτ

2
}
dθ

Typically the integral is analytically intractable, in which case approximation meth-

ods such as Monte Carlo approximations to the posterior may be employed.

Frequentist and Bayesian random-effects models differ in how they estimate un-

known parameters of interest. For example, in estimating the between-study variation

τ 2, the frequentist model assumes that there is one true value of τ 2 which can be es-

timated from the observed data. On the other hand, Bayesian model treats τ 2 as a

8



realization of a random variable with an underlying distribution. The unknown mean

and the variance of the distribution can be estimated from the data, while this proce-

dure incorporates more sources of variability than the frequentist approach. This is

a clear advantage of the Bayesian approach especially when there are heterogeneities

between studies are significant.

Another difference is that the Bayesian approach starts with a prior belief, and

updates it using the available data. We can estimate both the point estimate and

its uncertainty from this updated distribution. For example, in conducting the meta-

analysis to compare treatment and control group, we can assume that there is no

difference in the effectiveness a priori, by employing an appropriate prior. Conse-

quently, Bayesian model tends to have a wider confidence interval. If not only the

frequentist model but also the Bayesian meta-analysis favors one over the other, it is

a strong evidence that one is superior to the other.

1.1.4 Sensitivity Analysis

Once the studies are collected and analyzed, the meta-analyst needs to assess the

appropriateness of the assumptions that have been made. Sensitivity analysis, a

systematic approach of investigating how sensitive the results are depending on the

method of analysis or changes in the data, should be considered. First of all, an ex-

ploratory analysis of the primary data should be performed to understand important

features of the data. In case when we have enough number of studies, a box plot of

the study effects can indicate spread (skewness, multi-modal, etc) or tails (presence

of outliers).

The meta-analyst is recommended to use both a fixed-effects model and a random-

effects model and compare the results from each model. Sensitivity to the distribu-

tional assumptions can be assessed by assuming different distributions for the study
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effects and comparing subsequent inferences. Moreover, within a model, one should

determine how sensitive the pooled estimate is to any one study or a group of studies.

1.2 Spatial data analysis

Modeling of spatial data reflects the empirical regularity that neighboring areas or

observations tend to be similar, and that similarity typically diminished as distance

increases. Geostatistical data includes geochemical readings, species distribution, or

disease events in relation to a pollution source, and a continuous spatial framework is

more relevant allowing interpolation between observed point readings. On the other

hand, in discrete spatial data analysis, the data is typically aggregated with observa-

tions consisting of counts or of regional indicators.

Let s ∈ Rd be a location in d-dimensional space, and X(s) be an observed value

at s. Then the full dataset can be modeled as a multivariate random process

{X(s) : s ∈ D}

where s varies over the D ⊂ Rd. The spatial observations can be categorized into

three cases [4]:

1. Geostatistical data

X(s) is a random vector at location s that varies continuously over D. In this case D

is a fixed subset of Rd which includes a d-dimensional rectangle of positive volume.

It is also called point source data, where the locations are fixed points in space that

may occur anywhere in D.

2. Lattice data

As in the geostatistical data, D is a fixed subset of regular or irregular shape. However
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it only contains countably many sites in Rd, where each site has its neighborhood

information. It is referred to as regional summary data models where the source data

are counts or averages over geographical regions.

3. Point pattern data

The index set of D gives the locations of random events (spatial point pattern).

1.2.1 Geostatistical data modeling

Let X(si) be the spatial process associated with a particular variable (for example,

chemical concentration) observed at location {si : si ∈ D ⊂ Rd}. The simplest model

is to assume X(si) to be a second order stationary process:

IE [X(s)] = µ

Cov [X(si), X(sj)] = C(si − sj) <∞

where C(·) is the covariogram, which is analogous to the autocovariance functions in

time series analysis. Then the variogram is defined as

V ar [X(si)−X(sj)] = 2γ(si − sj)

and γ(si − sj) is called semivariogram. If the variogram can be defined as a function

of the Euclidean distance between si and sj, then the spatial process is isotropic;

in this case 2γ(si − sj) = 2γ(dij) and C(si − sj) = C(dij). The sill is defined as

limd→∞ 2γ(d) and the nugget as limd→0 2γ(d). The nugget can have non-zero value,

due to the microscale variability or measurement error.

For a second-order stationary Gaussian process, the model can be written as

X(si) = µ+W (si) + ε(si) (1.2.1)
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where µ is the global mean, W (s) is spatial correlation and ε(s) captures random

errors such as measurement error. We can use parametric covariance function for an

isotropic spatial model,

Cov (W (si),W (sj)) = σ2ρ(dij;φ).

Most common choice of ρ is

ρ(dij;φ) = exp(−φdij), φ > 0

so that the covariance decreases with respect to the distance at exponential rate φ.

The random error is usually assumed to be ε
iid∼ N (0, τ 2). Then the variogram can be

derived as follows:

2γ(τ 2, σ2, φ) = 2
[
τ 2 + σ2 (1− ρ(dij;φ))

]
(1.2.2)

where τ 2 is the nugget and τ 2 + σ2 is the sill.

In many practical applications, it is of interest to predict the unobserved value

X(t) at some target location t. Basic spatial interpolation methods include in-

verse distance weighting, which attenuates the variable with decreasing proximity

from the observed location. Kriging is another model, which is based on the min-

imum mean squared error approach. Assume that we seek predictions at target

locations (t1, · · · , tm), given response data at source locations (s1, · · · , sn). From

(1.2.1) and (1.2.2), the joint distribution of X1 = (X(s1), · · · , X(sn))′ and X2 =

(X(t1), · · ·X(tm))′ is

[
(X1,X2)′ |µ, τ 2, σ2, φ

]
∼MVNm+n

µ1m+n,

∑11

∑
12∑

21

∑
22


 (1.2.3)

where
∑

ij = Cov(Xi, Xj), i, j = 1, 2. For example, the ijth element of
∑

11 is

σ2exp(−φdij). Then the conditional distribution of the target values X2, given source
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values X1 and the model parameters is

[
X2|X1, µ, τ

2, σ2, φ
]
∼MVNm (µ2.1,

∑
2.1)

with

µ2.1 = µ1m +
∑

21

∑−1
11 (X1 − µ1n)

∑
2.1 =

∑
22−

∑
21

∑−1
11

∑
12 .

If the spatial correlation bewteen X(si) and X(sj) depends not only on the Eu-

clidean distance but on its direction as well, the process X(s) is anisotropy. A com-

mon model for anisotropy process is geometric range anisotropy, where we assume a

positive definite matrix B with variogram

2γ(hij) = 2γ
√

h′ijBhij.

Note that when B = φ2I, the term
√

h′ijBhij = φdij which is equal to an isotropy

process. Therefore, the anisotropy process is a generalization of the isotropy process

with its variogram equal to

2γ(τ 2, σ2, B) = 2
[
τ 2 + σ2

(
1− ρ

√
h′ijBhij

)]
(1.2.4)

and τ 2 is nugget and τ 2 + σ2 is sill.

1.2.2 Lattice data modeling

Within a region, suppose that counts or rates are observed for subgroups of the

population; an observation is denoted by yij where i = 1, · · · , I indexes the regions

and j = 1, · · · , J indexes the subgroups (or repeated measure in each region). The

main effect for region, say ηi, offers many possibilities. For example, we might have a

set of independent variables collected for each region. Then they can be incorporated
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into the model through a specified parametric function (typically linear). In addition

to or in the absence of covariate information, we can include regional random effects

φi to capture spatially correlated heterogeneity. One of the most common way to

model the spatial effect is a conditional autoregressive (CAR) model. In CAR model,

we assume that the conditional density of φi|φj 6=i is proportional to

exp

[
−λ

2

(
kiφi −

∑
j 6=iwijφj

)2]
where wij ≥ 0 is a weight reflecting the influence of φj on the expectation of φi, and

ki > 0 is a “sample size” associated with region i.

Two special types of modeling have been discussed in the literature. First model

requires a matrix of inter-region distances dij. Then the weight wij is equal to g(dij)

for a suitable decreasing function g(·). For example, g(·) can be based on the estimated

variogram of the observations. Since wij = wji, the symmetry of B requires ki to be

constant. The second approach defines a set δi of neighbors of region i, or as regions

within a prescribed distance of region i. Let ni be the number of neighbors of region

i and let wij = 1/ni if j ∈ δi, and 0 otherwise. Note that B is symmetric if ki = ni.

Then we obtain

φi|φj 6=i ∼ N
(
φ̄i,

1

λni

)
where φ̄i = n−1i

∑
j∈δi φj. Since the sum of all rows and the sum of all columns are

zero, B is singular, and hence the joint density is improper. This second model can

be combined with the first one, by setting wij = g(dij) for j ∈ δi. The improper CAR

model can be resolved by adding sum-to-zero constraint
∑I

i=1 φi = 0.

It is important to incorporate both spatially correlated heterogeneity (CH) and

uncorrelated heterogeneity (UH) into the model. It is because unobserved effects

within a study could take on a variety of forms. Convolution models with CAR CH

random effects have been shown to be robust under simulation to a wide range of
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underlying true risk models [5].

1.2.3 Residual Spatial Autocorrelation

After fitting the model, it needs to be addressed whether any residual spatial structure

has been left within the data. Since a good model fit should leave residuals with little

or no spatial correlation, a test for spatial correlation in the residuals from a model fit

can be a useful guide. Various statistics could be used to assess the autocorrelation,

but the most common measure is Moran’s I which is defined as a ratio of quadratic

forms,

I = e′We/e′e

where e = {e1, · · · , em} and ei = (yi − ŷi)/
√
var(ŷi). The W is the 0/1 m × m

adjacency matrix for the regions with elements wij. For a Poisson count data model,

this residual can be defined as ei = (yi − ŷi)/
√
ŷi. Positive (negative) values indicate

positive (negative) spatial autocorrelation in the residuals. Values range from −1

(indicating perfect dispersion) to +1 (perfect correlation). A zero value indicates a

random spatial pattern. Moran’s I values can be transformed to Z-scores, in which

values greater than 1.96 or smaller than −1.96 indicate statistically significant spatial

autocorrelation with level 0.05.

1.3 Wavelet analysis

A wide range of complex structures in nature is characterized by irregular behavior.

Examples of such irregular signals in both time and scale are abundant in medicine,

physics, economics, and geosciences. Although irregular, such signals can be well

modeled by multifractal processes. Multifractal behavior can be quantified by statis-

tical similarity of patterns at many different scales. The regularity index describes
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the strength of the similarity. However, the scaling is usually complex and can be

inhomogeneous in both time and scale. Multifractal formalism has been developed to

quantify the irregular scaling pattern.

1.3.1 Self-similarity and Scaling

Self-similar processes are widely used to model various real-world phenomena includ-

ing engineering, physics, medicine, biology, engineering, art, economics, astronomy

and chemistry. Multiscale methods (wavelets, wavelet-like decompositions, general

time/frequency representations) provide tools and environments to evaluate and clas-

sify high dimensional data that exhibit scaling laws and long range dependence.

A process Y (t) is self-similar with self-similarity index H > 0 (H-ss) if

Y (at)
d
= aHY (a).

Here
d
= denotes equality in all finite-dimensional distributions. An H-ss process with

stationary increments exhibits long range dependence (LRD) when H > 1/2. If the

distributional properties of a process are intrinsically invariant to changes of a scale,

the process has scaling property. The scaling behavior of a signal is closely related

to singularity of wavelet coefficients. The singularity (Hölder exponent) and the

self-similarity (Hurst exponent) are obtained through multi-scale analysis of wavelet

transforms.

To detect the phenomena of singularity and self-similarity using wavelets, let us

consider an L1-normalized orthogonal wavelet basis comprised of ψj,k(t) = 2jψ(2jt−

k). We assume that the ψ(t) has R vanishing moments:∫
trψ(t)dt = 0, r = 0, . . . ,R− 1

The coefficients of discrete wavelet transform of a process Y are defined by

dj,k =

∫ ∞
−∞

Y (t)ψj,k(t)dt
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which carries information on the local difference of the process near to the position k

on a dyadic scale j.

If Y (t) is of Hölder exponent H, then

lim
k2−j→t

|dj,k| = O(2−jH) (1.3.1)

for any wavelet with R > H [6, 7]. Therefore, the decay of the local differences of

a process is related to the singularity of the signal, provided that the decomposing

wavelet is more regular than the process.

The Equation (1.3.1) also serves as a basis for wavelet based estimation of H:

log2E|dj,k|q = −jqH + Cq

where Cq is a constant depending on q, wavelet function ψ, and the magnitude of the

signal.

We assume that the wavelet coefficients are uncorrelated, and hence independent,

as has been approximately the case in various contexts. Then the sum of squared

wavelet coefficients represents expected level-wise energies. Abry et al. [8, 9] defined

the wavelet spectra of a process with stationary increments as follows:

e2(j) = E(dj,·)
2

where dj,· stands for an arbitrary wavelet coefficient from the level j. The plot of

(j, log2 e(j)) is referred to as theoretical logscale diagram.

Let ê(j) be an estimator of e(j). Then, the plot of (j, log2 ê(j)) is called logscale

diagram or scalogram. Since the wavelet transform is linear, the wavelet spectra gives

complete second-order description of the random process. As in the case of Fourier

counterparts, energy is large at dominant scales.

Let, for some q ∈ R

eq(j) = E|dj,·|q.
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The plot of (j, log2 e(j)) is qth order theoretical logscale diagram. One way to estimate

eq(j) is to use the empirical moments of the wavelet coefficients at dyadic scale j,

êq(j) =
1

nj

∑
k

|dj,k|q

where nj is the number of dj,k available at dyadic scale j. The plot (j, log2 êq(j)) is

called qth order logscale diagram (q-LD) or qth scalogram. Straight lines in q-LDs

imply empirical evidence for monotone scaling.

1.3.2 Fractionality

Brownian motion and its families are widely used to model the complex structure of

the real-world data. Brownian motion B(t) is a random process continuous in time t

and is defined as follows:

(1) B(0) = 0

(2) B(t) is Gaussian random variable with zero mean and variance t

(3) For any choice n and 0 ≤ t1 ≤ · · · ≤ tn, the increments
[
B(t2)−B(t1)

]
, . . . ,[

B(tn)−B(tn−1)
]

are independent and stationary.

The covariance of Brownian motion is then

E
[
B(t)B(s)

]
=

1

2

(
t+ s− |t− s|

)
= min[t, s].

The difference process

Y (n) = BH(n+ 1)−BH(n)

is called fractional Gaussian noise (fGn). The covariance function of fGn is

γ(h) =
E|X(1)|2

2
[(h+ 1)2H − h2H + (h− 1)2H ].

Fractional Brownian motion (fBm) is a generalization of Brownian motion. A

zero mean Gaussian process with stationary self-similar increments is called fractional
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Brownian motion with Hurst exponent H (fBmH) if

BH(t) ∼ N (0, σ2|t|2H)

and

BH(t+ τ)−BH(t)
d
= BH(τ)−BH(0)

d
= τHBH(1).

As a zero mean Gaussian process, BH(t) could be alternatively defined via its covari-

ance structures:

E[BH(t)BH(s)] =
σ2

2

[
|t|2H + |s|2H − |t− s|2H

]
Fractional Brownian motion has been commonly used to characterize a wide range

of structures in natural phenomena that exhibit self-similarity and long-range depen-

dence. The fractal dimension captures the regularity of the signal, and it is measured

by the Hurst exponent H. Mandelbrot and Van Ness [10] extended fBm by adopting

time-varying Hurst exponent. This stochastic process is called multifractional Brow-

nian motion (mBm) and is used to model both a long-range dependence and path

regularity varying with time.

The multifractional Brownian motion
(
W (t)

)
t≥0 with Hurst function H(t) and its

scaling factor C has covariance function:

E[W (t)W (s)] =
C

2
g(H(t), H(s)){|t|H(t)+H(s) + |s|H(t)+H(s)

−|t− s|H(t)+H(s)}

for H ∈ Cη([0, 1]), s, t ∈ [0, 1], and

g(H(t), H(s)) =

√
K(2H(t))K(2H(s))

K(H(t) +H(s))
.
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The fractional Brownian motion is a non-stationary process whose sample paths ex-

hibit a homogeneous degree of smoothness or regularity. And for many applications,

this regularity may be too homogeneous. In particular, one may want the sample

paths of a process that exhibits differing degrees of regularity as a function of time.

In the following section, we introduce processes with fractal characteristics that ex-

hibit such degree of complexity, which are often referred to as multifractals.

1.3.3 Multifractality

Multifractal processes exhibit patterns of locally varying scaling behavior similar to

that encountered in real data sets. Since multifractal processes are non-stationary,

standard approaches in time series analysis such as Fourier transform are not appro-

priate because the Fourier transform is not localized in time. It was first introduced in

the context of turbulence and applied in many other contexts such as DNA patterns

research, earthquake distribution analysis, signal processing and internet data traffic

modeling.

In order to study the varying local properties of multifractal processes, tools able to

localize information both in time and frequency are appropriate. Given that wavelets

are local in both frequency/scale (via dilations) and in time (via translations), the

wavelet defined multiscale analysis is more suitable in this setting.

The distribution of the regularity indices that vary in time and scale is called the

multifractal spectrum (MFS). MFS of a process is a summary of its scaling and singu-

larity properties. Let us consider the local singularity strength of wavelet coefficients

as follows:

α(t) = lim
k2−j→t

−1

j
log2|dj,k|.
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Small values of α(t) reflect the more irregular behavior at time t. Any inhomogeneous

process has a collection of local singularity strength measures, and their distribution

f(α) forms the MFS.

Therefore, the multifractal spectrum (MFS) summarizes variable degrees of scaling

in signals. In the case of fractals, scaling refers to the propagation of energy when the

signals or images are inspected as various resolutions. The dynamics of the scaling

can be used as discriminatory descriptors, thus, multifractality provides an additional

window through which to look at the data and makes inference not possible with

standard statistical approaches.

Rather than operating with MFS as a density function, we summarize it by a small

number of meaningful descriptors. Theoretically, the MFS of fBm which represents

monofractal process, consists of three geometric parts: the vertical line, the maximum

point, and the right slope. However, it is rare to obtain such a perfect spectrum in

practice, even for a well-simulated fractional Brownian motion.

Although there are estimation errors, the MFS can be approximately summarized

by three canonical descriptors (multifractal descriptors) without loss of the discrim-

inant information. The proposed summaries are (1) the spectral mode (Hurst expo-

nent, H), (2) left slope (LS) or left tangent (LT ) and (3) width spread (broadness,

B) or right slope (RS) or right tangent (RT ).

The broadness (B) can be defined as follows [11]. Suppose that α1 and α2 are two

roots which satisfy the equation f(α) + C = 0 and α1 < α2. The broadness (B) of

MFS is then B = α2 − α1. Since α(q) is discrete, it is intractable to find the exact

root of the equation f(α) + C = 0. To get around this, we first find the two closest

points (αli, f(αli)) and (αui , f(αui )) for each i such that f(αli) < −C and f(αui ) > −C

for i = 1, 2 and then obtain the two solutions α1, α2 by interpolation.

The slopes LS and RS and tangents LT and RT can be obtained using the
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Figure 1: Geometric descriptors of MFS

interpolation technique, as computed by

LS =
C

H − α1

, RS =
−C

α2 −H

LT =
f(αu1)− f(αl1)

αu1 − αl1
, RT =

f(αu2)− f(αl2)

αu2 − αl2

1.3.4 Wavelets

Wavelet analysis decomposes signals and images into component waves of varying

durations, called wavelets. Wavelets are unconditional bases that are local and de-

compose signals and images into a hierarchy of detailed features. They can be used for

a wide variety of fundamental data processing tasks, such as compression, removing

noise, dimension reduction or classification.

Multiresolution analysis (MRA) shows how discrete signals are synthesized by

beginning with a very low resolution signal and successively adding details to create

higher resolution versions, ending with a complete synthesis of the signal at the finest

resolution. The signal f is expressed as a sum of a lower resolution (or averaged signal,
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A) added with a signal made up of fluctuations (or details, D). These fluctuations

provide the added details necessary to produce the full resolution signal f . In general,

if the number of signal values (N = 2J) is divisible K times by 2, then a K-level MRA,

f = AJ−K + DJ−K + · · ·+ DJ−2 + DJ−1

can be performed on the signal f .

Wavelet decomposition of a function f(t) can be written as follows;

f(t) =
∑
k

cj0,kφj0,k(t) +
∑
j≥j0

∑
k

dj,kψj,k(t)

with

cj0,k =

∫
f(t)φj0,k(t)dt, dj,k =

∫
f(t)ψj,k(t)dt

where
∑

k cj0,kφj0,k(t) and
∑

k dj,kψj,k(t) represent Aj0 and Dj, respectively. The

index j0 indicates the coarsest scale or lowest resolution of analysis, and smaller j

correspond to higher resolutions of the analysis.

A mother wavelet ψ(t), is an oscillatory function which decays rapidly in time.

The shifted versions of a low-pass scaling function φ(t) is called father wavelet. The

wavelet at resolution level j and location k is given by

φj0,k(t) = 2j0/2φ(2j0t− k), ψj,k(t) = 2j/2ψ(2jt− k)

The set {φj0,k, ψj,k; j ≥ j0, k ∈ Z} forms an orthonormal basis of L2(R), the space of

square integrable functions on R.

The wavelet transform are readily generalized to multidimensional case. The 2-

D wavelet basis functions are constructed via translations and dilations of a tensor

product of univariate wavelets and scaling functions:

φ(t1, t2) = φ(t1)φ(t2)

ψh(t1, t2) = φ(t1)ψ(t2)
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ψv(t1, t2) = ψ(t1)φ(t2)

ψd(t1, t2) = ψ(t1)ψ(t2)

The symbols h, v, d stand for horizontal, vertical and diagonal directions, respectively.

For technical reasons we consider L1-normalization of wavelets atom instead of stan-

dard L2-normalization:

φj0,k(t) = 2j0φ(2j0t1 − k1, 2j0t2 − k2)

ψij,k(t) = 2jψi(2jt1 − k1, 2jt2 − k2)

for i = h, v, d and where t = (t1, t2) ∈ R2 and k = (k1, k2) ∈ Z2. All the wavelets that

we consider in this paper are compactly supported, i.e., they are zero outside some

compact interval. For more technical details and overview on wavelets, see Vidakovic

[12].

1.3.5 Complex wavelets

Although the discrete real-valued wavelet transform (DWT) is a powerful tool for an-

alyzing the complex structures of the data, it has three disadvantages that undermine

its usage in many applications. First, it is not shift invariant because small input sig-

nal shifts generate changes in all DWT coefficients. Second, DWT analysis lacks the

phase information that accurately describes non-stationary signal behavior. Third,

the two-dimensional (2-D) separable DWT suffers from poor directionality because

DWT coefficients reveal only three spatial edge orientations, diagonal, horizontal and

vertical [13].

The discrete complex wavelet transform (DCWT) has been advocated to alleviate

the limitations of DWT [14, 15]. To illustrate the construction of complex wavelet fil-

ter, let us consider the Daubechies wavelets. The Daubechies wavelets are compactly
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supported orthogonal wavelets with a pre-assigned degree of smoothness, which is

specified by vanishing moments R. Increasing values of R correspond to smoother

wavelets. For a given value of R there are 2R− 1 possible solutions to the equations

that define the Daubechies wavelets, but not all are distinct. For example, when

R = 3 there are four solutions. However, only two are distinct: two solutions give

the real extremal phase wavelet; the other two are a conjugate pair, hence giving

equivalent complex-valued wavelets.

Apart from the Haar wavelet, complex wavelets with an odd number of vanishing

moments are only compactly supported wavelets which are symmetric [16]. As well as

these symmetric solutions, asymmetric complex-valued wavelets occur when there are

four or more vanishing moments. Another advantage of the complex wavelets is that

they produce the phase information as well as the spectrum modulus. It is known

that phase and spectrum are collaborating in a nontrivial way to describe the data:

phases encode most of the coherent (in space and scale) structure of the image and

the spectrum mostly encode the strength of local information that could be corrupted

with noise [15]. Due to this advantages, complex wavelet has been used in various

areas including motion estimation [17], texture image modeling [18], image denoising

[19] and NMR spectra classification [20].
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CHAPTER II

ECOLOGICAL-TYPE INFERENCE IN MATCHED-PAIR

STUDIES WITH FIXED MARGINAL TOTALS

In this chapter we propose a Bayesian approach for matched-pair studies that only

reported marginal totals to retrieve full paired table. Since traditional ecological infer-

ence that assumes parallel tables are not directly applicable, we propose an algorithm

based on Metropolis random walk and a hierarchical Bayes model. The procedure

relies on MCMC simulation, recovers a full table and reports its accuracy in terms

of credible sets for the cell counts. The performance of the model is remarkable;

from 17 matched-pair study examples, four of the estimated tables exactly coincided

with the original tables and nine tables deviated only (+1,-1) in terms of cell counts.

This methodology is motivated by meta-analysis of split-mouth designs assessing the

effectiveness of glass-ionomer (GI) to resin-based (RB) sealants in preventing caries

in juvenile permanent molars.

2.1 Introduction

Meta-analyses synthesize quantitative data, typically from randomized controlled tri-

als (RCT), to compare the effectiveness of different interventions to treat disease. In a

typical RCT, patients are randomly assigned to different treatment groups. Another

type of RCT commonly used in dental, ophthalmology, and pharmacology trials is

a matched pair design where interventions are applied to the same patient. For ex-

ample, in randomized split-mouth trials comparing the effectiveness of tooth specific

interventions to prevent decay, one tooth in a subject is randomly selected to receive
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treatment A while the contralateral tooth in the same subject receives treatment B.

Another example is cross-over trials testing the efficacy of drugs. In this design, a

patient is randomly administered treatment A or B in the first time period and then

administered the remaining treatment in the second time period. The link between

the split-mouth design and cross-over trials is apparent – the tooth location in the

split-mouth design is analogous to time in the cross-over design.

Matched pair design has statistical advantages. Because the control and test

groups are subject to the same environment, this design controls for many confounding

factors. Thus differences in outcomes between test and control groups are likely

attributable to the treatment. Moreover, since control and test groups receive both

interventions, matched pair studies usually require no more than half the number

of the subjects to produce the same precision as parallel group studies [21]. The

matched pair design for comparing control and treatment groups can be represented

as Table 2.

Table 2: Matched-pair design table

Control
Event Non-event Total

Treatment
Event y11 y12 y1·

Non-event y21 y22 y2·
Total y·1 y·2 n

The sample size n relates to the number of paired observations and cell counts yij

represent the number of pairs for which one of the four combinations of events/non-

events was observed. The results in Table 2 can be summarized as a traditional 2×2

contingency table, ignoring the pairing:

In the following discussion, we refer to Table 2 as paired and to Table 3 as parallel.

When only Table 3 is reported, the information on individual counts yij is missing

and the paired table has the form as in (2.1.1),
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Table 3: Contingency table summarizing Table 2 as if two parallel groups were
considered

Event Non-event Total
Treatment y1· y2· n

Control y·1 y·2 n

y1·

y2·

y·1 y·2 n

(2.1.1)

While the majority of matched pair studies are well conducted, reporting of results

differs. Some studies reported the full information as in Table 2, others reported

only the total number of events for each group, y1· and y·1. A major challenge in

meta-analysis of matched-pair studies is proper incorporation of those studies that

only provide the marginal totals. Meta-analyses of the effectiveness of dental sealant

materials have either excluded those studies [22] or treated them as if they were

parallel group studies [23]. However, assuming that they are parallel group studies is

the same as assuming that the cell counts y1· and y·1 in Table 3 are independent. Since

y1· and y·1 have a positive correlation, ignoring pairing inflates the variance of the risk

measures, increases the type II error [24, 25], and may lead to inaccurate statistical

conclusions. Also, meta-analyses may unnecessarily limit their statistical power by

excluding studies whose aggregate reports still contain considerable information about

the problem.

Since only marginal totals are available, as in (2.1.1), this problem can be referred

to as ecological inference. Typically, ecological inference deals with several groups

(geographical areas) in which the number of individuals and number of cases are

known. The goal is to infer the number of cases in terms of an explanatory variable,
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such as exposure. The body of research in ecological inference includes numerous

papers, monographs and edited volumes. A monograph by King [26] and edited

volume by King, Tanner and Rosen [27] provide comprehensive overviews of the

current state of research in ecological inference and a wealth of references.

Solutions to the ecological problem are based on a single binomial model with the

probability as a weighted average, convolution of two binomial distributions or its

normal approximation, conditional distribution of binomials given their sum, method

of bounds, ecological regression, and nonlinear neighborhood method, to list just a

few approaches. Bayesian solutions are discussed by Good [28], Fienberg and Holland

[29], Diaconis and Sturmfels [30], Evans, Gilula, and Guttman [31], Wakefield [32],

Jackson, Best and Richardson [33], Dobra [34], Dobra, Tebaldi and West [35], Salway

and Wakefield [36], Liu et al. [37], among others.

This chapter focuses on a Bayesian approach to ecological-type inference in the

matched pair studies because the traditional methods of ecological inference that

assume parallel tables are not directly applicable. The proposed solution builds on

work of Diaconis and Sturmfels [30], Dobra [34], and Dobra, Tebaldi and West [35],

whose Markov-basis simulation approach leads to a powerful Bayesian computational

methodology. The proposed procedure is based on a hierarchical Bayes model which

incorporates prior information about the within-pair association. This information

can be combined via the prior/hyper-prior structure, or as a separate Bayesian anal-

ysis that is conducted on studies with full information.

The proposed algorithm recovers the full table and reports its accuracy in terms of

credible sets for the cell counts. This methodology will support inclusion of more well

conducted studies into meta-analyses, increasing their statistical power even though

the table entries may not be known with certainty.
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2.2 Methods

In this section we describe a Bayesian approach for estimating individual pair counts.

It is based on a Metropolis sampling scheme that is built on work of Dobra, Tebaldi,

and West [35]. The algorithm takes the Bayesian estimator of the pivotal cell count

y11 and uses it to estimate other cell counts from the relative marginal totals. The

model can easily incorporate any prior information available.

2.2.1 Preliminaries

Assume that the table y as in (2.1.1) is partially observed, that is, all the marginal

totals y1·, y2·, y·1 and y·2 are known, while the individual entries y11, y12, y21, and y22

are unknown. If no restrictions on the cell counts are given, the likelihood is the prod-

uct of independent Poisson distributions with cell intensities λ = (λ11, λ12, λ21, λ22);

if the total count n is given, the likelihood becomes multinomial with cell probabilities

p (λ ), while when all marginals are given, the likelihood is a conditional multinomial

distribution. For 2 × 2 tables, the conditional multinomial probability involves only

the pivotal cell, the count y11,

P (y ) =

n!
y11!(y1·−y11)!(y·1−y11)!(n−y1·−y·1+y11)! exp{y11θ}∑

z
n!

z!(y1·−z)!(y·1−z)!(n−y1·−y·1+z)! exp{zθ}
(2.2.1)

with y11 and z satisfying max{0, y1· + y·1 − n} ≤ y11, z ≤ min{y1·, y·1}, and

θ = log p11 − log p12 − log p21 + log p22, (2.2.2)

where pij are the probabilities associated with the cell (i, j). Note that exp{θ} mea-

sures the association in 2×2 tables [38], and it stands for the product of probabilities

of concordant pairs divided by the product of probabilities of discordant pairs. For

parallel tables, exp{θ} is simply the odds ratio. We will see later that distributions
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on the space of tables with fixed marginals can be introduced by selecting sampling

probabilities, and that prior information can guide the distribution choice.

2.2.2 Metropolis random walk on a space of paired tables with fixed
marginal counts

Denote by Y the set of all tables with nonnegative integer entries consistent with the

observed marginal counts as in (2.1.1). Diaconis and Sturmfels [30] propose a general

algorithm that samples from the space Y according to a specified target distribution

by forming a Markov chain among the tables. The chain moves to the next state

if an element of the Markov basis is added to the table that represents the current

state. In terms of matrices, the subsequent state in the chain is simply the sum of

two matrices (tables): the current state and an element from the basis. It can be

shown that the Markov basis M for 2× 2 tables consists of two elements

M =


 1 -1

-1 1

 ,

 -1 1

1 -1




and that any two tables y ,y ′ from Y can be connected by applying finite number

of steps from M,

y ′ = y +
k∑
i=1

f i,

where f i is selected from M, and k is a finite number. It is easy to see that adding

an element fromM preserves the marginal totals. Also, if the selected move f makes

any of the cell entries negative, the move is not accepted and the chain stays in the

current state until the acceptable move is selected. Dobra, Tebaldi and West [35]

expand the methodology of Diaconis and Sturmfels [30] to tables of arbitrary size

and dimension, and with various subsets of marginal constraints.

To generate a table with a specific distribution on Y , one forms the Markov

chain with a properly designed Metropolis acceptance step. Let π be the target
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distribution function over Y and φ be the value of the parameter. Given the current

state (y ,φ ∗), a proposal table y ′ is generated by adding an element of the Markov

basis fi to the current table y . The move from y to y ′ is accepted with probability

ρ = min

{
1,
π(y ′|φ ∗)
π(y |φ ∗)

}
. (2.2.3)

This expression is quite simple since we operate with a symmetric proposal distri-

bution and thus the acceptance probability in (2.2.3) depends only on the target

probability.

At any state of the chain, the table entries are known and the likelihood on Y is

multinomial ∏
i,j

n!

y11! y12! y21! y22!
p
yij
ij . (2.2.4)

The prior on lexicographically ordered cell probabilities is Dirichlet,

p = {pij} ∼ Dirichlet(q , s), (2.2.5)

where the hyper-parameter q is vector of probabilities attracting tables from the

Markov chain, while the hyper-parameter s measures the strength of this attraction.

Parameter s is often called “prior sample size” and in applications it should be smaller

than the observed size of table, n.

The hyper-parameter q incorporates any prior information available. If there are

a number of studies that are reported in a paired manner, those studies can be used

to calibrate q . One way is performing a meta-analysis with a prior placed on the

parameter q . Taking the Bayesian estimator (for example, mean or median) of the

posterior distribution of q , we can use it as a hyper parameter of the Dirichlet prior

in (2.2.5).

For the likelihood in (2.2.4) the Metropolis acceptance probability is

ρ = min

{
1,
y11! y12! y21! y22!

y′11! y
′
12! y

′
21! y

′
22!

exp{±θ∗}
}
,
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where yij and y′ij are entries of tables y and y ′. The table y represents the current

state of the chain while y ′ is the proposal. The parameter θ∗ is as in (2.2.2), with

probabilities generated by the Dirichlet prior. The sign of θ∗ is determined by the

selected element fi from the Markov basis in the current step.

The proposal with the probability ρ is equivalent, with respect to the acceptance

criterion (2.2.3), to the suggestion by Dobra, Tebaldi and West [35] who define the

probability measure on Y as a product of independent Poisson distributions with the

goal to incorporate the log-linear model via Poisson intensities.

2.3 Examples

In this section we first demonstrate how our methodology can be used to retrieve

the full table from a randomized split mouth study examining the effectiveness of

dental sealants. We next compare the variance obtained with our methodology to

that obtained under the assumption that control and treatment groups are paral-

lel. Finally in the last section, we assess the performance by comparing the full

table obtained from our methodology to the actual full table for studies included in

two meta-analyses: one comparing the effectiveness of different sealant materials in

randomized split-mouth trials [22], and the other comparing two types of insulin in

randomized cross-over trials [39].

In this chapter, risk ratio (RR) is adopted as a measure to compare the perfor-

mance of the control and the treatment groups. The risk ratio (RR) of the matched

pair studies requires marginal totals and can be estimated from Table 2 as

RR =
y11 + y12
y11 + y21

=
y1·
y·1

(2.3.1)

which is the same as in the parallel studies. However, care needs to be taken in the

estimation of the standard error. The correct standard error of the log risk ratio for
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paired design is

SE(log(RR))paired =

√
1

y1·
+

1

y·1
− 2y11
y1·y·1

, (2.3.2)

as opposed to

SE(log(RR))parallel =

√
1

y1·
+

1

y·1
− 2

n
, (2.3.3)

for the parallel layout. The standard error in (2.3.2) is lower than the error in (2.3.3)

if y11y22 > y12y21. Details on the derivation of paired and parallel variances can be

found in the Appendix. Next, we provide four examples that illustrate the proposed

methodology.

Example 1. We start with the fully observed paired table reported by Forss [40]

t =

8 8 16

15 66 81

23 74 97

(2.3.4)

and pretend for a moment that only marginal totals (16, 81) and (23, 74) are available.

Next, we set a Metropolis random walk over Y with the acceptance probability

given as

ρ = min

{
1,

(
p11p22
p12p21

)±1∏
i,j

yij!

y′ij!

}
, (2.3.5)

where, as before, yij and y′ij are entries of tables y and y ′. The parameter p is given

Dirichlet prior with the probability vector q as (0.05, 0.1, 0.1, 0.75) and the prior

sample size s is half of the observed size of the table.

The chain can start at any element of Y , say table
0 16

23 58
. In Figure 2, the

upper panel shows the MCMC evolution of the pivot cell y11. Given the marginal

counts, y11 is sufficient to recover the full table. The bottom panel in Figure 2 gives
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the frequencies of the chain’s visits to states of y11 from which posterior measures

can be estimated. The posterior mean of y11 is 7.61, while the posterior mode and

median are 8 which coincide with the original cell count. The 95% credible set for

y11, based on 10,000 simulations, is [4, 11].
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Figure 2: Posterior samples and distribution of the pivotal cell y11

Example 2. If the Markov chain walk is generated over the space of tables with the

same marginals as Forss [40], then it is instructive to look at the behavior of log-risk-

ratio variances. When conditional multinomial sampling over space Y is applied, 98%

of tables visited by the chain have variance of the effect size smaller than the variance

obtained from the marginals only, as in (3.3).
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Figure 3: Variance of the log-risk-ratio for the tables from Y for 10,000 samples. The
log-risk-ratio variance for the parallel table (solid line) is provided for comparison.
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In the following examples, we start from a list of completely reported paired ta-

bles, and report a single table as parallel. Using the Metropolis random walk model

proposed in this chapter with relatively non-informative prior, we recover the paired

table. Performance of the method is easily assessed by comparing the recovered en-

tries with those from the original tables.

Example 3. Randomized split mouth (RSM) studies

A recent Cochrane systematic review on the effectiveness of dental sealants included

meta-analyses comparing resin-based (RB) sealants to both glass ionomer (GI) sealants

and to no sealant. The meta-analysis comparing RB and GI sealant materials found

that there were an insufficient number of studies to estimate a summary effect mea-

sure [22]. This review, however, omitted studies of randomized split-mouth design

that did not report full paired tables. We apply our methodology to the 3 studies

included in this meta-analysis and compare the resulting estimated paired tables to

the actual paired tables. For the Cochrane Review meta-analysis of RB versus no

sealant, we apply our methodology to the 9 included studies. The Cochrane Collabo-

ration conducted meta-analyses on studies of RSM design for each year of follow-up,

and the example is based on that structure. The Metropolis random walk simulation

is implemented by MATLAB with the mean of Dirichlet prior as s×q where s = n/2

and q = (q11, q12, q21, q22). The simulation is iterated 100,000 times after a burn-in

of 10,000 iterations.

Table 4: GI vs. RB sealants (3 years follow-up), q = (0.06 0.10 0.10 0.74), s = n/2

Original Data Metropolis RW
Study y11 y12 y21 y22 y11 y12 y21 y22

Poulsen 2001 7 37 6 156 7 37 6 156
Kervanto-Seppälä 2008 2 25 5 625 1 26 6 624

Arrow 1995 3 3 28 378 2 4 29 377
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Table 5: RB vs. No sealant (1 year follow-up), q = (0.02 0.06 0.06 0.86), s = n/2

Original Data Metropolis RW
Study y11 y12 y21 y22 y11 y12 y21 y22

Bojanini 1976 2 6 79 188 5 3 76 191
Charbeneau 1979 11 5 82 104 12 4 81 105

Sheykholeslam 1978 3 2 49 132 3 2 49 132

Table 6: RB vs. No sealant (2 years follow-up), q = (0.04 0.08 0.08 0.80), s = n/2

Original Data Metropolis RW
Study y11 y12 y21 y22 y11 y12 y21 y22

Brooks 1979 22 3 64 144 18 7 68 140
Charbeneau 1979 29 4 100 53 30 3 99 54

Sheykholeslam 1978 10 1 79 85 9 2 80 84

Table 7: RB vs. No sealant (3 years follow-up), q = (0.06 0.10 0.10 0.74), s = n/2

Original Data Metropolis RW
Study y11 y12 y21 y22 y11 y12 y21 y22

Brooks 1979 23 4 63 111 20 7 66 108
Charbeneau 1979 47 5 96 45 47 5 96 45

Hunter 1988 35 9 163 302 32 12 166 299

Example 4. Cross-over trials

Cross-over trial designs are widely used in many branches of medicine, such as clinical

pharmacology, pediatrics, cancer, or schizophrenia [21]. In contrast to a parallel group

trial, each individual in a cross-over trial receives two or more treatments but in a

random order. A meta-analysis conducted in 1997 comparing insulin lispro versus

regular insulin included 8 large randomized clinical trials [39]. Five of the trials were

cross-over trials and 3 were of parallel group design. The analysis treated the 5 cross-

over trials as if they were of parallel group design when they pooled the 8 studies. We

apply our methodology to the 5 cross-over trials and compare the resulting estimated

paired tables to the actual paired tables.
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Table 8: Insulin Lispro vs. Regular Insulin, q = (0.01 0.03 0.03 0.93), s = n/2

Original Data Metropolis RW
Study y11 y12 y21 y22 y11 y12 y21 y22

Anderson 1997b 7 17 26 927 6 18 27 926
Vignati 1997 3 8 9 353 2 9 10 352
Rowe 1996 1 1 4 82 1 1 4 82

Holleman 1997 2 5 12 174 3 4 11 175
Holcombe 1997 4 9 14 431 3 10 15 430

2.4 Application to meta-analysis of dental sealants effec-
tiveness

The methodology described in this chapter is applied to the meta-analysis of split-

mouth designs assessing the effectiveness of glass-ionomer (GI) to resin-based (RB)

sealants in preventing caries in juvenile permanent molars. Although GI to RB sealant

meta-analyses have been performed in the past, the evidence for the effectiveness of

GI sealants relative to RB sealants was inconclusive. In this section, we reexamine the

effectiveness of GI sealants to RB sealants using data from both split mouth studies

included in the Cochrane Review [22] and split mouth studies that were excluded

solely because they failed to report data in a paired manner.

2.4.1 Data Description

Two commonly used dental sealant materials are resin-based (RB) and glass ionomer

(GI). Resin-based sealants are recommended for use in clinical and school settings

because of strong evidence of effectiveness [41, 42]. A Cochrane Review of the ef-

fectiveness of different sealant materials in preventing caries in permanent molars (8

studies, 6 of split mouth design and 2 of parallel group design) found study results

so divergent they did not conduct a meta-analysis. And two other reviews [43, 44]

found no statistical difference between GI and RB sealants in their meta-analyses.

38



It should be noted that after the Cochrane Review stratified findings from the 6

split-mouth studies by year since sealant placement there were very few studies from

which to estimate a summary measure. For example, there were no studies 1 year

after placement and only 1 study with usable data 2 years after placement. Some

well designed split mouth studies [45, 46, 47, 48, 49, 50] were not included in the

original review because they failed to report a paired variance or full paired table

[43]. Failure to appropriately report statistical findings for paired data is not unique

to sealant studies and methods exist for estimating the paired variance from such

trials if the dependency of the data can be estimated [21, 51].

To estimate the paired variance for the split mouth studies excluded from the

Cochrane Review, we use the Metropolis random walk and a hierarchical Bayes model

described in this chapter to retrieve the full paired table from the marginal totals.

For studies where there were no caries in the control group (RB), the denominator

of the risk ratio (RR) was 0 and thus the RR was undefined. While the Cochrane

Review deemed the RR inestimable in such studies, we added 0.5 to each cell count

as recommended by Agresti [52] to estimate the RR.

2.4.2 Meta-analysis

The RR and its 95% confidence interval are calculated from the adjusted data of

each study. The variation across studies (heterogeneity) was evaluated with both

the chi-squared test statistics Q and the quantity I2. Two random effects models,

DerSimonian-Laird (DSL) which is one of the frequentist methods and full Bayesian,

are used to incorporate the heterogeneity between studies into the meta-analysis.

Frequentist (DSL) and Bayesian models differ in how they estimate between-study

variation (∆2) and in how their results are to be interpreted.

The Bayesian meta-analysis model used in this chapter differs from the traditional
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Bayesian model; we place a prior distribution on the relative cell probability instead

of the summary measure itself [53]. From Table 10, the multinomial distribution can

be used to model outcomes of RSM studies

y ∼Multinomial(n ,p ) (2.4.1)

where n = y11 + y12 + y21 + y22 is the study size and p = (p11, p12, p21, p22) is the

vector of corresponding cell probabilities.

Table 9: Randomized split mouth design

RB
Caries No Caries Total

GI
Caries y11 y12 y1·

No Caries y21 y22 y2·
Total y·1 y·2 n

As a conjugate prior for p, we use Dirichlet prior

p ∼ Dirichlet(α ) (2.4.2)

whereα = (α11, α12, α21, α22). Here, α represents the hyper-parameter of the Dirich-

let prior. We utilize non-informative gamma priors on the hyper-parameter α and

take each component to be smaller than the average study size of the corresponding

year, m; α11 to be smaller than m/10, α12 and α21 to be smaller than m/5, and

α22 to be smaller than m/2. Non-informative prior on α implies that GI and RB

sealants do not differ in their effectiveness a priori. The posterior mean of α is

used as a measure of the Bayesian meta-analysis. The pooled risk ratio is then de-

fined as α11+α12

α11+α21
. Although the conjugate prior is adopted, the posterior distribution

is not analytically tractable. We use Markov chain Monte Carlo (MCMC) method

implemented by OpenBUGS v 3.0.2. The simulation starts at an initial value of

α and is iterated 100,000 times after a burn-in of 10,000 iterations. As a result our

Bayesian model does not require the addition of 0.5 to cell counts of 0 to estimate RR.
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2.4.3 Result

Heterogeneity was present in years 2 and 3 (Table 10). Adding studies that did not

report findings for paired data did not change the direction of the pooled RR (it

was always greater than 1) but did result in the pooled RR becoming statistically

significant at year 2 (Table 10). At year 2 the DSL and Bayesian summary RR were

respectively, 2.237 (95%CI: 1.141-4.387) and 2.149 (95%CI: 1.124-3.957). The DSL

and Bayesian models yielded very similar RRs. Both found that at 2 years RB was

superior to GI and no difference in the other years. Although 2 other meta-analyses

examined the effectiveness of GI to RB sealants, this meta-analysis is the first to find

a difference. Because we have no evidence that trials were sufficiently powered and

because we did find a difference at year 2, we would argue that in settings where it

is possible to keep surfaces dry, RB should be recommended over GI sealant. The

results are summarized in Table 10, Figure 4 and 5.

2.5 Discussion

We demonstrated a Bayesian approach to the ecological-type inference in matched-

pair studies when only fixed marginal totals are available. The methodology is based

on the Metropolis random walk and hierarchical Bayes model and it incorporates

any prior information available. The performance of the model is remarkable; from

Examples 3 and 4, four of the estimated tables exactly coincided with the original

tables. Even with a fairly non-informative prior, nine of the estimated tables deviated

only ±1 from the original tables in terms of the pivotal cell size y11.

Developing a methodology to retrieve paired data from matched paired design

studies that do not report paired tables is an important issue in meta-analyses. A

study of methodological issues in cross-over trials [21] reported that presenting data as

paired tables was uncommon in the published work. This same study also searched
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Table 10: Adjusted data and the result of meta-analyses

Study
Both Both
sound GI+ GI- carious Risk Ratio Het. Chi2 I2

(+) RB- RB+ (-) (95% CI) (p-value)

1 YEAR
Ganesh 2006 100.5 0.5 0.5 0.5 1.000 (0.141, 7.099)
Mills 1993 59.5 0.5 0.5 0.5 1.000 (0.141, 7.099)
POOLED (DSL) 1.000 (0.250, 3.999) 0.000 (1.000) 0%
POOLED (Bayesian) 1.113 (0.343, 2.674)

Karlzen-Reuterv 1995 73.5 1.5 0.5 0.5 0.500 (0.070, 3.550)
Rock 1996 151 0 6 1 7.000 (1.140, 42.971)
Raadal 1996 133.5 0.5 3.5 0.5 4.000 (0.563, 28.397)
Sipahier 1995 79 1 2 4 1.200 (0.646, 2.230)
POOLED (DSL) 1.434 (0.781, 2.634) 5.642 (0.223) 11%
POOLED (Bayesian) 1.593 (0.640, 3.456)

2 YEARS
Ganesh 2006 100.5 0.5 0.5 0.5 1.000 (0.141, 7.099)
Mills 1993 59.5 0.5 0.5 0.5 1.000 (0.141, 7.099)
Poulsen 2001 191 2 9 1 3.333 (1.017, 10.922)
POOLED (DSL) 2.003 (0.813, 4.934) 1.673 (0.433) 0%
POOLED (Bayesian) 1.362 (0.404, 3.642)

Forss 1994 141 2 2 5 1.000 (0.571, 1.751)
Karlzen-Reuterv 1995 72 1 0 1 0.500 (0.125, 1.999)
Raadal 1996 131.5 0.5 0.5 0.5 6.000 (0.845, 42.596)
Rock 1996 116 0 14 2 8.000 (2.188, 29.249)
Williams 1996 273 1 16 5 3.500 (1.704, 7.190)
POOLED (DSL) 2.237 (1.141, 4.387) 20.696 (0.008) 61%
POOLED (Bayesian) 2.149 (1.124 3.957)

3 YEARS
Arrow P 1995 378 28 3 3 0.194 (0.087, 0.431)
Kervanto-Seppälä 2008 625 5 25 2 3.857 (1.767, 8.422)
Poulsen 2001 156 6 37 7 3.385 (1.978, 5.793)
POOLED (DSL) 1.379 (0.233, 8.170) 38.800 (0.000) 95%
POOLED (Bayesian) 1.300 (0.482 2.896)

Karlzen-Reuterv 1995 70 3 1 0 0.333 (0.035, 3.205)
Raadal 1996 122.5 0.5 10.5 0.5 11.000 (1.549, 78.093)
Rock 1996 105 1 21 3 6.000 (2.348, 15.333)
POOLED (DSL) 2.004 (0.590, 6.808) 49.540 (0.000) 90%
POOLED (Bayesian) 1.834 (0.824, 3.662)

≥ 4 YEARS
Forss 1994 66 8 15 8 1.438 (0.881, 2.346)
Williams 1996 189 11 17 5 1.375(0.791, 2.390)
POOLED (DSL) 1.410 (0.977, 2.034) 0.014 (0.906) 0%
POOLED (Bayesian) 1.456 (0.590, 3.093)

the Cochrane Controlled Trials Registry and found that 8% of trials included the

term “cross over” in the title or abstract. Another search of the Cochrane Database of

Systematic Reviews found that 184 reviews (18%) contained a free text term referring

to cross-over trials. Further examination of these reviews found that over 50% of
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Figure 4: DerSimonian-Laird Meta-analysis

reviews either treated cross-over trials as if they were parallel groups or only used data

from the first time period assuming that in doing so it would better approximate a

parallel group. If the Cochrane systematic review meta-analysis of resin-based versus

glass-ionomer sealants had included RSM trials that did not report data as paired

tables, the number of studies would have increased from 2 to 6 in year 1, from 3 to 9

in year 2, and from 3 to 6 in year 3.

For the Metropolis algorithm, the prior information is incorporated via the mean

of the Dirichlet prior. Two modifications of the algorithm are possible: (i) one may

consider placing the prior on the parameter θ directly; a reasonable support for such
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Figure 5: Bayesian Meta-analysis

priors is the set of non-negative θ’s since the pairing is well justified when the asso-

ciation is positive, and (ii) it is possible to introduce an additional level of hierarchy

in the model to incorporate prior information by a hyper-prior placed on the mean

of the Dirichlet prior. The Metropolis random walk from Section 2 is expanded to

paired tables of size k × k in a straightforward manner. The corresponding parallel

table in that case is of size 2 × k, the elements from the Markov basis are of size

k × k with four non-zero elements consisting of 1 and -1 arranged in such a way to

preserve marginal sums when added. The Metropolis acceptance criterion is readily

generalized as well.
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CHAPTER III

BAYESIAN AUTOLOGISTIC EXCESS-ZERO MODEL

WITH APPLICATION TO SPATIAL REPEATED

MEASURES ZERO-INFLATED DATA

3.1 Introduction

It is common to observe excessive number of zeros in count data analysis. For ex-

ample, in estimating US county level natural fluoride concentration in the ground

water, significant number of counties have no natural fluoride occurrence and there-

fore generate excessive zeros. More examples can be found in ecology[82, 55], health

[56, 57], manufacturing [58] and psychology [59, 60]. Especially, many environmen-

tal, epidemiology, disease mapping applications yield zero inflated data in a spatial

context [61, 62, 63].

Several statistical methods to model count data with a large number of zeros have

been proposed. The use of discrete mixture models is the most common approach.

For example, hurdle models [64, 65] consist of a point mass at zero and a truncated

count model for the nonzero part. Zero-inflated models [58] are a mixture of a discrete

distribution that explains excessive zeros and a regular untruncated count model. In

other words, a zero-inflated model separate zeros into ‘structural’ zeros (event does

not occur in nature) and ‘chance’ zeros (event does occur but observed to be zero by

statistical randomness). Although the distinction between ‘structural’ and ‘chance’

zeros seems reasonable in theory, how to distinguish zero observations is rather a

practical issue.

Once a model is selected, associated parameters can be estimated from indepen-

dent variables. Classical (frequentist) solutions to excess-zero models are based on
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maximum likelihood estimate (MLE) and the likelihood ratio (LR) test. However, in

the reality, models could have multiple modes [67]. Also, the large sample approx-

imation theory which serves as the basis for classical inference for non-normal data

often requires the use of nonstandard asymptotic theory. As an alternative, several

authors have proposed a Bayesian approach; it does not require closed form analytical

solutions, explicitly elicits prior beliefs, shows good finite sample performance and has

the ability to incorporate unknown variability. More on Bayesian solutions to excess

zero count models are discussed by Angers and Biswas [67], Ghosh et al. [68], Neelon

et al. [69].

Parameter estimation usually involves a set of independent variables. For instance,

the probability of structural zero π0 and the Poisson parameter λ in ZIP model can

be estimated using logit and log-log link. Lambert [58] suggested a zero-inflated(τ)

model:

log(λ) = Xβ, logit(π0) = τ(Xβ)

where X is the independent variable and β is parameters of interest. However, when

there is no explanatory variable available, the estimates become questionable. In a

spatial context, it is possible that there is no information other than the neighborhood

structure.

In this paper, we suggest a Bayesian approach to model spatial repeated measure

count data with excessive zero when there is no covariate information available. The

model comprises of two parts; we first estimate the probability of zero observation

(both structural and chance zeros) using an autologistic model and use this probability

as a basis to model the underlying spatial phenomenon of the excess zero data. To

demonstrate the proposed method and evaluate the performance, we use the natural

fluoride concentration data in the ground water of the counties in Georgia.
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3.2 Background

In this section, we briefly describe the autologistic model, hurdle and zero-inflated

model which serve as the basis of our approach. The autologistic model is commonly

used to illustrate spatial binary data on the lattice. Hurdle and zero-inflated models

are the most popular approaches in modeling count data with excessive zeros.

3.2.1 Autologistic Model

Besag [70] first suggested modeling spatially-distributed variables via a conditioning

on neighborhoods. Instead of considering the full conditional distributions within a

likelihood function, a likelihood simply based on a product of the local conditioning

within a neighborhood was proposed. The most common and widely used example is

with binary outcome {Zi}. Let θi be the parameter associated with Zi and δi be the

neighborhood of the ith small area. Then the model becomes,

P (Zi|{Zj}j∈δi) = θZi
i (1− θi)1−Zi (3.2.1)

and

θi =
exp{αi + λSδi}

1 + exp{αi + λSδi}
, Sδi =

∑
j∈δi

Zi . (3.2.2)

Since Zi is a binary variable,
∑

j∈δi Zi is the total number of ‘observations of interest’

in the neighborhood. For the lattice data, δi is usually defined as a set of lattice that

shares a borderline with the ith small area. Figure 6 shows the example of Fulton

county (Georgia) and its neighborhood counties.

The likelihood is then

L(Zi|θi) =
∏
i

[exp{αi + λSδi}]Zi

1 + exp{αi + λSδi}
(3.2.3)

In estimating the probability of zero observations, we treat Zi as follows: Zi = 1 if we

observe zero from the ith small area and Zi = 0 if we observe non-zero value. Then
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Figure 6: GA Fulton county (red) and its neighborhood counties δi (green)

θi represents the probability that the observation at ith small area is zero, which can

be estimated from (3.2.2) and (3.2.3).

3.2.2 Hurdle Model

In the hurdle model, we assume that non-zero observations (counts of one, two or

more) occur from crossing a threshold or hurdle [64]. The probability of crossing

this hurdle involves a binary sampling model, while the sampling of non-zero counts

involves a truncated count model such as truncated Poisson or truncated binomial

(sampling confined to values y above zero).

Let f1 and f2 be probability densities for binary sampling and non-zero counts

sampling, respectively. Then the probability of the two stages is given by

f(0) = f1(0) (3.2.4a)

f(k) =
1− f1(0)

1− f2(0)
f2(k), k = 1, 2, ... (3.2.4b)

In fact, 1
1−f2(0)f2(k) is a truncated distribution of f2. If f1(0) > f2(0), it is zero

inflated (excessive zeros) whereas f1(0) < f2(0) implies zero deflation.

For example, one can choose f1 to be a Bernoulli distribution with f1(0) = πH and

f2 be a Poisson distribution with mean λ. Then the likelihood of the Poisson-hurdle
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model for the count observation Y has the following form:

P (Y = 0) = πH , 0 ≤ πH ≤ 1 (3.2.5a)

P (Y = k) =
1− πH
1− e−λ

λke−λ

k!
, λ > 0, k = 1, 2, ... (3.2.5b)

Let Z be the latent random variable sampled from f2. The mean and variance of

the hurdle model is then

IE(Y ) =
1− f1(0)

1− f2(0)
IE(Z) (3.2.6)

Var(Y ) =
f1(0)− f2(0)

1− f1(0)
[IE(Y )]2 + γIE(Y ) (3.2.7)

where γ = Var(Z)
IE(Z)

denotes the coefficient of dispersion of the latent random vari-

able Z. A detailed derivation is provided in the Appendix.

3.2.3 Zero-inflated Model

Under zero-inflated densities for count data, zero counts may result from two pro-

cesses: they may be either true zeroes or result from a stochastic mechanism. Another

terminology is structural vs. random zeroes [82]. For example, in estimating the nat-

ural fluoride level, a structural zero corresponds to no natural fluoride occurrence

whereas random zero implies that the fluoride does occur in nature but observed to

be zero due to the randomness. The random mechanism could be described by a

Poisson or negative binomial density. Then the zero-inflated model can be written

as a two part mixture model consisting of a degenerate distribution at zero with an

untruncated distribution.

Let πZ be the probability of structural zero, then the likelihood for the zero-inflated

model can be written as follow:

f(0) = πZ + (1− πZ)fD(0), 0 ≤ πZ ≤ 1 (3.2.8a)
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f(k) = (1− πZ)fD(k), k = 1, 2, ... (3.2.8b)

where fD is the underlying distribution which describes the random mechanism.

For example, the zero-inflated Poisson model has the following form:

P (Y = 0) = πZ + (1− πZ)e−λ, 0 ≤ π ≤ 1 (3.2.9)

P (Y = k) = (1− πZ)
λke−λ

k!
, λ > 0, k = 1, 2, ... (3.2.10)

If the probability of structural zero, πZ , is greater than zero, then the zeros are

inflated. Unlike hurdle model, zero-inflated model does not allow zero deflation. In

this sense, we can consider zero-inflated model as a special case of hurdle model.

The mean and variance of the zero inflated variable Y are given by,

IE(Y ) = (1− πZ)IE(YD) (3.2.11)

Var(Y ) =
πZ

1− πZ
[IE(Y )]2 + γIE(Y ). (3.2.12)

Again, γ = Var(YD)
IE(YD)

is the coefficient of dispersion of the latent random variable

YD. If γ ≥ 1, i.e., the latent variable YD is not under-dispersed, then the distribution

of Y has a over-dispersed distribution. On the other hand, if γ < 1 and YD is under-

dispersed, then Y has a under-dispersed distribution if and only if IE(YD) < 1−γ
πZ

[68].

3.2.4 Example of Excess-zero Data Analysis

For the purpose of illustration, we take an excess-zero data example from Bohning et

al [71]. This paper demonstrates count data modeling from a dental epidemiological

study in Belo Horizonte that evaluated the effectiveness of school programs in reducing

caries. Six interventions were randomized to six schools, and all children of a given

school received the same treatment. 797 school children were examined both before

and after the trial, and their dental status was evaluated by the number of decayed,
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Table 11: Intervention method for Belo Horizonte study

School 1 Oral health education
School 2 All four methods together
School 3 Control group
School 4 Enrichment of the school diet with rice bran
School 5 School mouthwash with 0.2% sodium fluoride (NaF) solution
School 6 Oral hygiene

Table 12: Data description for Belo Horizonte study

Response variable DMFT index at the end of the study

Explanatory variables

DMFT index at the beginning of the study
Gender of the school child (0-female; 1-male)
Ethnic group (1-dark; 2-white; 3-black)
School index

missing and filled teeth (DMFT index). The detailed information for the intervention

method and reported data are summarized in Table 11 and Table 12.

However, excessive zeros in the response variable violate the variance-mean rela-

tionship of the Poisson distribution. Figure 7 represents the histogram of the response

variable. Its homogeneous Poisson fit (red line) clearly shows that there is a zero-

inflation, which implies that a large portion of students had zero number of decayed,

missing or filled teeth at the end of the study.

Figure 7: Histogram of the DMFT index at the end of the Belo Horizonte study
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Now let us analyze this data using two excess-zero models described in Sections

2.2 and 2.3. Under the hurdle model, the probability of crossing the hurdle (1− πH)

is the probability that an individual would have at least one decayed missing or filled

tooth at the end of the trial. Only after a child crosses this hurdle, (s)he would have

positive number of DMFT index which then will be analyzed using (3.2.2). On the

other hand, the zero-inflated model assumes that the children with zero DMFT index

can be categorized into two groups: those who have zero risk of caries/cavities and

those who have low risk and they happen to have zero DMFT index at the end of

study due to the randomness.

3.3 Model Description

This section describes the autologistic excess-zero model and its implementation in a

full Bayesian scheme. The model comprises two parts: (1) estimate the probability

of zeros using the autologistic model and (2) use the estimated probability as a basis

of a hurdle or zero-inflated model. In the following analysis we assume that no other

covariate is available except for the neighborhood information. The model can easily

be extended by including covariates as linear predictors of the corresponding link

function.

We first introduce a latent binary random variable Zi, which is equal to one if the

ith observation has value zero. We assume

Zi ∼ Bernoulli(θi) (3.3.1)

where θi is the probability of zero observation. To estimate θi, we adopt the convolu-

tion model that incorporates spatially correlated randomness and random errors [72].

Assuming a logit link function,

logit(θi) = α + ui + vi (3.3.2)
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where ui ∼ N (0, σ2
u) is the uncorrelated heterogeneity and vi is the spatially correlated

heterogeneity. If we assume vi|vj{∀j 6=i} ∼ N (
∑

j∈δi
1
Ni
vj,

σ2

Ni
) with Ni be the number

of neighborhood for ith small area, then it becomes the conditional autoregressive

(CAR) model. Once the posterior distribution of θ is obtained, we take the average

or median of the posterior distribution as an estimated probability of zero observation,

θ̂i.

For the hurdle model, θ̂i can be set equal to πHi
in (3.2.2). In case of the zero-

inflated model, the probability of zero observations is the sum of the structural zero

and random zero probabilities:

θ̂i = π̂Zi
+ (1− π̂Zi

)fD(0) (3.3.3)

Therefore, the probability of structural zeros given θ̂i is

π̂Zi
=
θ̂i − fD(0)

1− fD(0)
(3.3.4)

When the underlying distribution fD is Poisson, the estimate becomes

π̂Zi
=
θ̂i − e−λ

1− e−λ
. (3.3.5)

Once we obtain θ̂i, next part of the analysis is straightforward. More details and

actual implementation of the model with repeated measures will be described in the

following section.

3.4 Analysis of the Natural Fluoride Concentration Data

Water fluoridation, the addition of fluoride to drinking water to prevent tooth decay,

is listed as one of the ten greatest public health achievements of the 20th century

by the Centers for Disease Control and Prevention (CDC). However, fluoride can

occur naturally in water in concentrations well above recommended levels, which can
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have several long-term adverse effects including dental fluorosis, skeletal fluorosis, and

weakened bones.

Although describing the availability of natural fluoride by county can inform pub-

lic health efforts in prevention of tooth decay and dental fluorosis, the effort has been

limited to few states. The county-level estimates, however, enable policy practitioners

to assess the county-level risk of high natural fluoride occurrence and hence can im-

prove the water fluoridation policy. It is also valuable information to residents so they

can be aware of how much natural fluoride is present in their county. Furthermore,

this map can be a useful asset for future research; one of the nation’s most compre-

hensive public health databases, National Health and Nutrition Examination Survey

(NHANES) provides survey and examination results by county. Therefore, persistent

research questions in the field such as the possible correlation between high natural

fluoride occurrence vs. dental fluorosis can benefit from this county-level natural flu-

oride occurrence map.

3.4.1 Data Description

Natural fluoride level data is extracted from the Water Fluoridation Reporting System

(WFRS) on September of 2009. WFRS contains 56,702 public water system (PWS)

information across the Unites States and the information includes state and county of

each PWS’ state and county, ID and name, number of population served, water system

type and its respective fluoride level. Among 10 different types of water systems, this

analysis is limited to the ground water systems, which provides the estimate of the

natural fluoride concentration.

Although the fluoride concentration exhibits a continuous occurrence in nature,

the data is reported county level and therefore imposes a change of support issue [73].

Moreover, the fluoride level is reported only up to second decimal places. Therefore
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the analysis would be invalid if we treat the reported data as continuous. To ac-

commodate these limitations, we treat the reported data as a discrete lattice data

instead of continuous geostatistical data by the following data adjustment procedure:

each observation is multiplied by 10 and rounded up which results in a set of discrete

integer data. Then each observation is assumed to be a repeated measure for the

corresponding county (lattice).

Among 3,219 counties and county equivalents, 1,043 of them have no public ground

water system data. For counties with no reported measurement, we take observations

from neighborhood counties based on the definition in Figure 6. To reduce the effect

from outliers, we discard neighborhood observations that are outside of ±3σδi with

σδi being the standard deviation of neighborhood observations for county i.

Even after the data adjustment, there are other issues that need to be addressed.

First of all, the data have excessive zeros (5,035 out of 20,632 data points), i.e., 24.4%

of the observations are zero. Despite all the constraints, there is no covariate infor-

mation from which we can estimate parameters other than the county neighborhood

structure.
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Figure 8: (a) Histogram of the US natural fluoride concentration data. Note the
excessive zero density. (b) Histogram of the range [0 1]. See the discrete pattern of
the reported data.
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3.4.2 Implementation under fully Bayesian scheme

We apply the Bayesian autologistic excess-zero model described in this paper to the

Georgia natural fluoride concentration data. It includes 159 counties with 1,051 ob-

servations. Some counties have multiple observations (up to 71 data points) while 28

counties have no public ground water system. This analysis can easily be extended

to a larger data set that includes multiple states.

3.4.2.1 Estimating the probability of zeros using autologistic model

First we estimate the probability θi that county i has zero natural fluoride con-

centration given single or multiple continuous-type observations. This measurement

includes both ‘no natural fluoride occurrence (structural zero)’ and ‘zero observations

due to the randomness of the natural fluoride distribution (random zero)’. For ex-

ample, Decatur county has 10 public ground water systems with reported level 0, 0,

0, 0, 0, 0, 0, 0.24, 0.45 and 0.46. Although the average is 0.115 which is above zero,

seven zero measurements implies that θi is not simply zero but could be fairly high.

Also, we can borrow information from its neighboring counties to accommodate the

continuous occurrence of the natural fluoride.

To model the repeated measure for each county, we introduce a latent binary

variable Zij which is equal to 1 if the jth observation in county i is zero. We can

also extend this model by employing different threshold value other than zero, to

estimate the probability of having natural fluoride occurrence above the threshold. As

described in (3.3.1) we assume that each Zij is generated from Bernoulli distribution

with an underlying probability θij. This probability is estimated via logit link function

that maps (0, 1) interval into the real number domain:

logit(θij) = β0i + β1iXij + vi + uij (3.4.1)

where Xij is the observed value, vi is spatial effect of county i and uij is random
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error of jth observations in county i. If (3.4.1) and (3.3.2) are compared, then it is

apparent that the linear combination of actual observation β0i+β1iXij is used instead

of constant α. We assume fairly non-informative prior on β0i and β1i,

β0i ∼ N ormal(µβ0 , σ2
β0

)

with hyper prios

µβ0 ∼ N ormal(0, 100)

σβ0 ∼ Uniform(0, 100).

The same (prior - hyper prior) system is used for β1i. Note that the hyper priors

regulate the state level estimate.

Let the posterior estimate be β̂0i, β̂1i and v̂i. Then the posterior probability that

we would observe zero observation in county i can be represented as follows:

θ̂i = β̂0i + β̂1iX̄i + v̂i (3.4.2)

where X̄i is the average of the measurements in county i.

3.4.2.2 Modeling the count data using the hurdle or zero-inflated model

Once the probability of zero-observations is obtained, the count data modeling is

straightforward. For the illustration purpose, we choose general Poisson, hurdle-

Poisson and zero inflated-Poisson models together with the analogous of negative

binomial models. Poisson model is easy to interpret but the assumption of equal

mean and variance are inappropriate for over-dispersed data. On the other hand,

the negative binomial model is more flexible, although it can over-fit the data and

the parameters lack a straightforward interpretation compare to the Poisson case.

Therefore, the underlying distribution needs to be carefully chosen based on the

characteristic of the data set.
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One of the major issues in identifying mixture models using parametric densities

is the possibility of facing flat likelihoods, and this issue is especially critical in cases

where no independent variable is available. Wasserman[74] states that improper pri-

ors yield improper posteriors in mixture models. Moreover, even proper priors may

lead to poor posterior solutions, if the prior is too vague and the sample size is small.

Therefore, to specify appropriate priors that are objective and also effective in esti-

mation, Congdon[75] suggests the use of mildly informative proper priors based on

subject matter knowledge. Thus, instead of vague non-informative prior, we employ

semi-informative prior that captures the variation and range of the data set.

Poisson model has one parameter; rate λij, which is equal to the tenfold mean

occurrence of natural fluoride. Assuming log link,

log(λij) = ηij

which maps a positive number into a real number domain, we employ a normal prior

on ηij,

ηij ∼ N (µηi , σ
2
ηi

) (3.4.3)

with µηi ∼ N (0, 100)I(−5, 5) and σ2
ηi
∼ Gamma(1, 1)I(0.01, 10). The bound index

I(a, b) is to constrain each parameter to fall between a and b. Instead of allowing

parameters float freely, we constrain them to ensure the convergence of posterior

distribution.

The negative binomial model has two parameters, the positive real number rij

and the probability pij. Note that the tenfold mean occurrence of natural fluoride is

equal to
pijrij
1−pij . We assume a fairly non-informative prior on each parameter,

rij ∼ Gamma(αri , κri)

pij ∼ Beta(αpi , κpi)

58



but restrict the range of hyper-priors by imploying Gamma hyper priors

Gamma(1, 1)I(0.01, 10)

on αri , κri , αpi and κpi . This hierarchical structure allows the county level natural

fluoride concentration (prior) to be guided by a state level distribution (hyper-prior).

3.4.3 Model Checking

For complex Bayesian models, exact calculation and inference of posterior may not be

feasible. As an alternative, a Markov chain Monte Carlo (MCMC) algorithm draws

samples iteratively from the full conditional distributions of the model parameters.

Then the posterior quantities of interest can be approximated from the sample.

MCMC algorithm is implemented by the software package WinBUGS [76]. For

each model, we run two initially dispersed Markov chain for 60,000 iterations. After

discarding the first 10,000 samples as a burn-in to ensure the convergence, we only re-

tain every 50th draw to reduce autocorrelation. Therefore the summary statistics for

the parameter values are based on thinned samples of 2,000 iterations. To check the

convergence of the MCMC method, deviance from each chain is monitored. MCMC

diagnostics, such as trace plots and Brooks-Gelman-Rubin scale reduction statistics

[77] indicates that we attain rapid convergence and efficient mixing of the chains.

3.4.4 Model Comparison

Standard model selection criterion such as Akaike information criterion (AIC) and

Bayesian information criterion (BIC) comprises of model’s relative fit and penalty

for the model complexity. Since more complex models usually provide better fit, the

penalty term offset gains in model fit due solely to added complexity.

Model complexity is assessed by the number of model parameters. For fixed effect

59



models, it is easy to determine while for random effect models it is less clear. The

deviance information criterion (DIC) is proposed to estimate the number of effective

parameters in a Bayesian hierarchical model that includes both fixed and random

effects [78]. Moreover, DIC is easily calculated from the samples generated by a

MCMC simulation unlike AIC and BIC that require calculating the likelihood and

its maximum over the parameter.

Note that the deviance is defined as

D(θ) = −2 log[L(y|θ)] + C

where L(y|θ) is the likelihood function of the data y with unknown parameters θ,

and C is a constant. The posterior mean of the deviance, D̄(θ) = Eθ[D(θ)], measures

how well the model fits the data. The smaller D̄(θ) is, the better the fit. Define

D̂(θ) = D(E[θ|y]), which is the value of D(θ) evaluated at the posterior mean of the

parameter θ. Then the effective number of parameters of the model, i.e., complexity

penalty, is computed as pD = D̄(θ)− D̂(θ). The DIC is defined as

DIC = D̄(θ) + pD.

If models differ in DIC by more than three, the one with the smaller DIC is usually

considered to have the better fit [78].

We compare six models based on DIC and the result is summarized in Table 13.

Poisson models have lower DIC than negative binomial models, which implies that

Poisson underlying distribution is more adequate for this data.

3.4.5 Results and Discussion

One of the advantages with the proposed model is that it can answer pragmatic

questions like “what is the probability (risk) that a certain county would have natural

fluoride occurrence above the EPA recommended level”. On January 7th of 2011, the
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Table 13: Model Comparison

Model D̄ D̂ pD DIC
Poisson 230.445 180.086 49.638 280.083

Hurdle-Poisson 221.927 178.760 43.167 265.094
ZIP 218.929 178.712 40.216 259.144
NB 208.710 37.587 171.123 379.833

Hurdle-NB 754.589 537.726 216.862 971.451
ZINB 196.714 28.585 168.129 364.844

U.S. Department of Health and Human Services (HHS) and the U.S. Environmental

Protection Agency (EPA) announced a guideline on fluoride in drinking water. The

new recommendation is 0.7 milligrams of fluoride per liter of water that replaces the

current recommended range of 0.7 to 1.2 milligrams. Therefore it will be of interest

to the policy practitioners and the residents to have the map of the estimated risk

with the new recommendation level. In our analysis, threshold value is set to be zero

to obtain θ̂i in (3.4.2).

Since zero inflated Poisson (ZIP) model has the lowest DIC from Table 13, we

estimate Georgia county level natural fluoride concentration based on ZIP model

(Figure 9). Figure 10 shows the simple average measurement for each county.

Comparing Figure 9 and Figure 10, hierarchical Bayesian structure produces im-

proved discretized estimates. For example, Houston county (salient dark region in the

middle from Figure 10) has distinctively high natural fluoride concentration when the

estimate are obtained from simple average. It is because simple average does not fully

borrow strength from the neighborhood since it only takes the average of repeated

measures from the county of interest itself. However, when the autologistic-ZIP model

is applied, we obtain smoother estimate for Houston county that includes mid-high

level natural fluoride occurrence in neighborhood counties. This is more in lined with

the continuous occurrence of the natural fluoride.

Also, by employing the hyper prior structure, the state level estimates can be
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Figure 9: Autologistic-ZIP

Figure 10: Simple Average

obtained as well. While posterior estimates of β0i and β1i from (3.4.1) and µηi from

(3.4.3) inform us the county-level information, µβ0 and µβ1 from (3.4.1) provide the

state level information.
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3.5 Conclusion

We have described a Bayesian approach to fit the spatial repeated measure count data

with excessive zeros which is robust without any available independent variables. The

model first estimates the probability of zero observations (both structural and chance

zeros) from the autologistic model. The estimated probability is then used as a basis

of hurdle and zero-inflated model.

For the Georgia county level natural fluoride concentration data, zero-inflated

models are more adequate than the hurdle models based on the DIC measure. This

result coincides with the geographical intuition since some counties have no natural

fluoride occurrence whereas some other counties have very low occurrence with the

random chance of zero observation. Also, models with Poisson underlying distribution

have constantly lower DIC than negative binomial models.

The model suggested in this paper produce improves county level estimates that

reflect the continuous behavior of the natural fluoride occurrence better, compare

to the simple average measures. By employing the hyper-prior structure, state level

estimates can be obtained as well. The methods discussed here can be extended

to semi-continuous two-part models, which assume a continuous (e.g., log-normal

or Gamma) rather than Poisson or negative binomial distributions for the non-zero

values.

This work is motivated to improve the water fluoridation policy. Although de-

scribing the availability of natural fluoride by county can inform public health efforts

in prevention of tooth decay and dental fluorosis, the effort has been limited to few

states. The county-level estimates will not only be a valuable information to policy

practitioners and residents, but also for future research. It is well known that the

natural fluoride occurrence is closely related to the geological feature, contact time in

the aquifer, climate and chemical composition of groundwater. And it is also assumed
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that agricultural and industrial activities can cause high natural fluoride concentra-

tion [79]. In this sense, the correlation between man-made factors and high risk of

natural fluoride occurrence can be assessed using this county-level map.
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CHAPTER IV

DATA REGULARITY INDICES IN COMPLEX WAVELET

DOMAIN

Breast cancer is the second leading cause of death in women in the United States.

Mammography is currently the most effective method for detecting breast cancer

early; however, radiological interpretation of mammogram images is a challenging

task. On the other hand, many medical images demonstrate a certain degree of

self-similarity over a range of scales which can help us in their description and clas-

sification.

In this work, we generalize the scaling-mixing wavelet spectra to the complex

wavelet domain. In this domain, we estimate Hurst parameter and phase and use

them as discriminatory descriptors to classify mammographic images to benign and

malignant. The proposed methodology is tested on a set of images from the Univer-

sity of South Florida Digital Database for Screening Mammography (DDSM).

4.1 Introduction

The National Cancer Institute estimates that 1 in 8 women born today will be diag-

nosed with breast cancer during her lifetime [80]. Breast cancer is one of the most

common forms of cancer among women in the United States, second only to non-

melanoma skin cancer. A national objective has been set by the U.S Department of

Health and Human Services to reduce the female breast cancer death rate from 22.9

per 100,000 females in 2007 down to 20.6 by the year 2020 – a 10% improvement [81].

One of the most important tools toward that goal is advanced precision of screening
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technologies. Early detection is the best method for improving prognosis and also

leads to less invasive options for both specific diagnosis and treatment.

Mammography is currently the most efficient and prevalent method for detecting

a breast cancer early, before it is substantial enough to feel or cause symptoms.

However, the radiological interpretation of mammogram images is a difficult task

since the appearance of even normal tissue is highly variable and complex, and signs

of early disease are often small or indistinct. Reading a mammogram image is a

skill that physicians develop over time, and confidently stating whether findings are

cancerous or not is often quite difficult. Suspicious findings are commonly clarified

by follow-up images, ultrasound, or MRI. On the other hand, it has been estimated

that 10 − 30% of cancers which could have been detected are missed [82]. Thus,

improving both the specificity and the sensitivity of mammographic diagnoses is an

important goal in improving prognoses while also reducing the number of unnecessary

procedures or surgical operations.

In high frequency and irregular data collected in real-life settings (both naturally

occurring and human-made), a commonly occurring phenomenon is that of regular

scaling. Examples of this have been found in a variety of systems and processes

including economics (stock market, exchange rate fluctuations), telecommunications

(internet data), physics (hydrology, turbulence), geosciences (wind and rainfall pat-

terns), and several applications in biology and medicine (DNA sequences, heart rate

variability, auditory nerve-spike trains). The irregular behaviors of these complex

structures are difficult or impossible to quantify by standard modeling techniques;

but when observations are inspected at different scales, there is in fact a regular

relationship between the behavior at each scale. This phenomenon has been demon-

strated in many medical images, leading to the diagnostic use of tools capable of

quantifying statistical similarity of data patterns at various scales.

The standard measure of regular scaling is the Hurst exponent. This measure can
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also be connected to measures of long memory and fractality in signals and images

and is viewed as an informative summary. Many techniques for estimating the Hurst

exponent exist, and assessing the accuracy of these estimations can be complicated.

Wavelet transforms are powerful tool in estimating the Hurst exponent and modeling

statistical similarity at different scales. For example, Nicolis et al. [83] proposed a

method based on the wavelet spectra for extracting the self-similarity measures in an

isotropic and anisotropic spaces. Ramı́rez-Cobo et al. [84] demonstrated a wavelet-

based spectra method for estimating Hurst exponent in time-varying two-dimensional

rainfall maps.

For an efficient representation of the image or signal, the wavelet basis is desirable

to be orthogonal, symmetric and to have compact support. [85]. An orthogonal basis

has a variety of theoretical and practical advantages: it leads to more efficient algo-

rithms, and establishing properties of a representation is often easier with orthogonal

bases. Symmetry guarantees an orientation-free representation of features, preventing

distortion when the data is approximated in its basis representation. Moreover, the

computational cost of performing wavelet transforms depends heavily on the support

size of a basis. Apart from the Haar wavelet, complex wavelets with an odd number of

vanishing moments are only compactly supported wavelets which are symmetric [16].

Due to this advantages, complex wavelet has been used in various areas including

motion estimation [17], texture image modeling [18], image denoising [19] and NMR

spectra classification [20]. However, there is no literature that addresses the complex

wavelet-based spectra and its self-similarity measures.

The novelty of this chapter is to use the scale-mixing wavelet spectra based on

complex wavelet transforms for estimating the Hurst exponent. We then focus on the

estimated Hurst exponent and show its ability to differentiate cancerous from normal

tissue visible in the backgrounds of mammogram images, and compare this perfor-

mance with its counterpart obtained from real-valued wavelet transform. Moreover
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complex wavelet transform produces an additional measure, phase information. We

also demonstrate the classification power of the phase information and use it as an

additional modality in the discriminatory analysis.

A further novelty of our work is the use of the information contained in the back-

ground tissue of images. Most of the references found in literature dealing with

breast cancer detection methods are based on microcalcifications [86, 87, 106, 89].

Only recently the information contained in the background is taken into considera-

tion [83, 90]. This classifying measure based on background tissue would be a new

tool to be used in combination with existing clinical diagnostic tools, thus improving

the power of non-invasive diagnostic techniques.

4.2 The Dataset

The collection of digitized mammograms we analyzed was obtained from the Univer-

sity of South Florida’s Digital Database for Screening Mammography (DDSM)

http://marathon.csee.usf.edu/Mammography/Database.html.

The DDSM is described in detail in Heath et al [91]. Images from this database

containing suspicious areas are accompanied by pixel-level “ground truth” informa-

tion relating locations of suspicious regions to what was assessed and verified through

biopsy. We selected 105 normal (benign) cases from volumes normal-01, and 98 cancer

cases from volumes cancer-01 and cancer-02. Each case contains four mammograms

(two for each breast: the craniocaudal (CC) and mediolateral oblique (MLO) projec-

tions) from a screening exam. We considered only the CC projections, using the right

breast image for all normal cases, and the cancerous breast (right or left) image for

cancer cases. A sub-image of size 1024× 1024 was taken from each case for analysis.

An example of a sub-image is provided in Fig. 11.
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Figure 11: Left panel : right CC mammogram corresponding to a malignant case.
Right panel : sub-image of size 1024× 1024 considered for the analysis.

4.3 Discrete complex wavelets

This section discusses discrete complex wavelet transforms. Unlike the popular method

used in this context [92], the proposed method is orthogonal and minimal.

4.3.1 Complex wavelet basis

The construction of the complex wavelet basis associated with multiresolution analysis

follows the usual approach proposed by Mallat [93] and Daubechies [94]. Details on

the construction and properties of complex wavelets can be found in [16, 14, 95, 96].

In analogy to real case, the wavelet function ψ(x) for the complex wavelet is given by

ψ(x) =
1√
2

∑
k

(−1)k2h∗1−kφ(2x− k) (4.3.1)

where φ is the scaling function, h is the low pass filter and the ∗ indicates the complex

conjugate. The representation of wavelets in 2-D can be done through the tensor

product of univariate scaling functions and wavelets as follows:
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φ(x, y) = φ (x) · φ (y)

ψh(x, y) = φ (x) · ψ (y)

ψv(x, y) = ψ (x) · φ (y) (4.3.2)

ψd(x, y) = ψ (x) · ψ (y)

where symbols h, v, d in (4.3.2) stand for horizontal, vertical and diagonal directions,

respectively. The atoms capture image features in the corresponding directions.

4.3.2 The complex scale-mixing 2-D wavelet transform

The discrete complex wavelet transform (DCWT) can be considered as a complex-

valued extension of the standard discrete wavelet transform (DWT). It uses complex-

valued filtering (analytic filter) for transforming the real/complex signals. Complex

wavelet coefficients can be computed by Mallat’s algorithm [93]

cj−1,l =
∑
k

h∗k−2lcj,k (4.3.3)

and

dj−1,l =
∑
k

g∗k−2lcj,k (4.3.4)

where h is as in (4.3.1) and g is the quadrature mirror filter. The ∗ denotes the

complex conjugate.

Conversely, the reconstruction is given by

cj,k =
∑
l

cj−1,lhk−2l +
∑
l

dj−1,lgk−2l. (4.3.5)

Moreover, the real and imaginary coefficients are used to compute the modulus and

phase information. The wavelet coefficients can be written as

dj,k = Re(dj,k) + i · Im(dj,k)
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with magnitude

|dj,k| =
√
Re(dj,k)2 + Im(dj,k)2

and phase

∠dj,k = arctan

(
Im(dj,k)

Re(dj,k)

)
when |Re(dj,k)| > 0.

There are many versions of the 2-D wavelet transforms which lead to different

tessellations, or tilings [84]. Let us define the complex wavelet atoms as follows

φ(j1,j2),k(x) = 2(j1+j2)/2 φ(2j1x− k1, 2j2y − k2) (4.3.6)

ψδ,(j1,j2),k(x) = 2(j1+j2)/2 ψδ(2
j1x− k1, 2j2y − k2), (4.3.7)

where δ is one of directions h, v, or d, and (j1, j2) ∈ Z2. Then, any function f ∈ L2(R2)

can be represented as

f(x) =
∑
k

c(J0,J0),k φ(J0,J0),k(x)

+
∑
j>J0

∑
k

d(J0,j),k ψh,(J0,j),k(x)

+
∑
j>J0

∑
k

d(j,J0),k ψv,(j,J0),k(x)

+
∑

j1,j2>J0

∑
k

d(j1,j2),k ψd,(j1,j2),k(x),

and a 2-D wavelet transform, which we call the scale-mixing wavelet transform is

obtained. The scale-mixing detail coefficients are defined as

d(J0,j),k = 2(J0+j)/2

∫
f(x) ψ∗h(2

J0x− k1, 2jy − k2) dx dy,

d(j,J0),k = 2(j+J0)/2

∫
f(x) ψ∗v(2

jx− k1, 2J0y − k2) dx dy,

d(j1,j2),k = 2(j1+j2)/2

∫
f(x) ψ∗d(2

j1x− k1, 2j2y − k2) dx dy, (4.3.8)

where ψ∗ is a complex conjugate of ψ. Note that (j1, j2) in (4.3.6) and (4.3.7) can be

indexed as (j1, j1 + s) with s ∈ Z.
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Figure 12: Tessellations for 2-D wavelet transforms. (a) Traditional 2-D transform
of depth 4; (b) Scale-mixing wavelet transform of depth 4.

Similar to the traditional one- and two-dimensional cases, the complex scale-

mixing detail coefficients are linked to the original image (2-D signal) through a

matrix equation. Suppose that a 2n × 2n image (matrix) A is to be transformed into

the wavelet domain. The complex wavelet matrix W is first composed by the complex

scaling and wavelet filter coefficients hk and gk as in Vidakovic [12]. Note that the

wavelet filter is given by gk = (−1)kh∗1+N−k and N is a shift parameter which affects

the location of the wavelet. Then the rows of A are transformed by a one-dimensional

transform given by the wavelet matrix W , resulting in WA′. The same is repeated

on the rows of WA′. The result is

B = W (WA′)′ = WAW ′, (4.3.9)

the scale-mixing wavelet transform of matrix A, which will be the basis for defining

the scale-mixing spectra. It represents a finite-dimensional implementation of (4.3.8)

for signal f(x) sampled in a form of matrix A..

The tessellation induced by transform in (4.3.9) is shown in Figure 12 (b). A

more general transform can be obtained as an iterative repetition of the transform

in (4.3.9) with depth k, applied only on the “smooth part” of the previous iterative

step.

The scale-mixing 2-D transform is operationally appealing. Constructing an ap-

propriate W is computationally fast and, since W is orthogonal, the inverse transform
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is straightforward:

A = W ′BW.

By inspecting the tessellation in Figure 12, several hierarchies of detail spaces can be

identified. The diagonal hierarchy interfaces coefficients with the same component

scales and coincides with the diagonal hierarchy in the traditional 2-D spectra. One

level above and below the diagonal hierarchy are hierarchies of detail spaces that

interface the scales that differ by 1. For the hierarchy above the diagonal, the scales

along x-direction are interfaced by the next coarser scale along y-direction. For the

hierarchy below the diagonal, the roles of x and y are interchanged.

The orthogonality of W implies

trace(AA′) = trace(BB′)

for B = WAW ′, implying the total energy in the image A

E = trace(AA′)

is preserved.

50

100

150150

200

250
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Figure 13: (a) Three detail-space hierarchies generating the scale-mixing 2-D trans-
form, where (j1, j2) is indexed as (j, j + s), s ∈ Z. Circles correspond to s = 0,
triangles to s = 1, and squares to s = −1. The scales (j0, j), j0 = 7 (squares), and
(j, j0), j0 = 6 (triangles) are shown in the figure.
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4.3.3 The complex scale-mixing wavelet spectra

The scale-mixing spectra is defined in terms of the complex scale-mixing coefficients

in (4.3.8)

S(j) = log2 E
(
|d(j,j+s),k|2

)
, (4.3.10)

where j, s ∈ Z are fixed. Note that s = 0 in (4.3.8) corresponds to the diagonal 2-D

spectra.

To calibrate the scale-mixing spectra, consider now a 2-D fractional Brownian

motion, BH(u). For such a process, the scale-mixing detail coefficients are given by

d(j,j+s);k = 2j+
s
2

∫
BH(u)ψ∗

(
2ju1 − k1, 2j+su2 − k2

)
du. (4.3.11)

where ψ∗ denotes the complex conjugate of ψd, the wavelet atom in the diagonal

direction defined in (4.3.7). These coefficients are random variables with zero mean

and variance [97], which leads to

E
[
|d(j,j+s);k|2

]
= 22j+s

∫
ψ
(
2ju1 − k1, 2j+su2 − k2

)
× ψ∗

(
2jv1 − k1, 2j+sv2 − k2

)
E [BH(u)BH(v)] du dv. (4.3.12)

As in Veitch and Abry [98], it is assumed here that the coefficients within and across

the scales are uncorrelated.

From (4.3.12), it can be shown that

E
[
|d(j,j+s);k|2

]
= 2−j(2H+2) Vψ,s(H), (4.3.13)

where Vψ,s(H) is an expression depending on ψ, H and s, but not on the scale j,

Vψ,s(H) = −σ
2
H

2

∫ ∫
ψ(p + q) ψ∗(q) |ps|2H2−s dp dq. (4.3.14)

A proof of (4.3.13) is provided in the Appendix. By taking logarithms in (4.3.13)

log2 E
[
|d(j,j+s);k|2

]
= −(2H + 2)j + log2 Vψ,s(H) (4.3.15)
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for j ∈ Z, the Hurst exponent can be estimated from the slope of the linear equation

(4.3.15). Finally, the empirical counterpart of (4.3.15) is a regression defined on pairs(
j, log2

1

n

∑
j,j+s

∣∣d(j,j+s),k∣∣2) , j, s ∈ Z. (4.3.16)

The slope of the regression would estimate the Hurst exponent, i.e., H = −(slope +

2)/2. Instead of the sample mean in (4.3.16), different location measures could be

used, such as the median.

Although (4.3.16) is based on the ordinary least squares (OLS) regression, the

variance of wavelet coefficients is not constant. Therefore we can improve the esti-

mator by using more robust approach that incorporates heteroscedasticity. [98] used

weighted linear regression to improve the estimator. This method weights each level

by the inverse of the variance of that level. Hamilton et al. [90] proposed estimation

methods that are based on a weighted average of all pair-wise slopes sij between

levels i and j. Given a weight wij, the estimator of the overall slope in (4.3.16) is

then
∑

i,j wijsij/
∑

i,j wij. Different types of weights are proposed, from which we

obtain more robust estimation methods. In this work we adopted robust estimators

proposed in the literature along with the OLS regression based estimator to perform

more comprehensive comparison.

4.3.4 The complex phase information

It is known that phase and spectrum are collaborating in a nontrivial way to describe

the data. While phases encode most of the coherent (in space and scale) structure of

the image, the spectrum mostly encode the strength of local information that could

be corrupted with noise [15]. For this reason phase information has been used in

edge detection and in the reconstruction of images. A classical illustration is given in

Oppenheim and Lim [99] where the image reconstruction is more driven by the phase

of the Fourier transform rather than by the magnitude.
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Recently, many research studies have focused on using phase information from the

complex wavelet transforms [100, 101, 102, 103]. In the wavelet domain the phase of

a coefficient near an isolated feature varies linearly with its distance from the feature.

Despite of the numerous literatures focused on the usage of phase in detecting edges

and the feature orientations, the discriminatory power of phase in the complex wavelet

domain has not yet been studied and is unknown.

Although the phase of coefficients at each level does not have any scaling prop-

erty as the wavelet-based spectra, the summary statistics of the phases turn out to

be discriminatory. In the following section, we demonstrate how phase information

can be used as a classification modality.

4.4 Mammogram Classification

In this section we illustrate how the complex wavelet-based spectra and the phase

information can be used to classify digitized mammograms. We demonstrate that the

spectra slope and phase, as descriptors of digitized images, have good discriminatory

power. It is straightforward to implement the described analysis in various scientific

areas in which 2-D data are instrumental, such as geoscience or industrial applications.

For every sub-image of size 1024×1024, we performed discrete real-valued wavelet

transform (DWT) and discrete complex wavelet transform (DCWT) using Daubechies

6 tap filter. After each transform, we estimated the slope of wavelet spectra using

traditional ordinary least squares regression (OLS) along with four robust estimation

methods. The robust estimation approaches include Abry-Veitch weighted regression

(AV), modified level enhanced OLS (MEOLS), harmonic average weighted slopes

(HA) and modified HA (MHA). For more details on these robust estimators, we refer

the reader to [98, 90]. Note that the wavelet spectra slope is used as a predictor

instead of the Hurst exponent. It is because the estimated Hurst exponents H are
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empirical, and the slowly decaying spectra (with slope > −2) could cause H to be

negative.

For each classification method, we randomly selected 67% of the data as a training

set to fit the classifier and used the remaining 33% of the data to test performance.

The random selection of training and testing sets was repeated 10,000 times, so the

reported prediction errors are averaged over 10,000 runs. Performance of each model

was compared in terms of sensitivity, specificity, and overall correct classification rate.

The most parsimonious classification approach would be the logistic regression

involving only the wavelet spectra slope as a predictor. The result is summarized

in Table 14. The robust estimation methods show superior performance over OLS

estimator, with rate ranging from 0.58 to 0.86. Although the performance of DWT

and DCWT is comparable, the overall sensitivity and correct classification rates are

higher with complex wavelet transform.

Table 14: Logistic classification based on the wavelet spectra slope; five different esti-
mation methods were compared, each with real-valued (DWT) and complex (DCWT)
wavelet transform.

Method Sensitivity Specificity Correct Classification
OLS DWT 0.2472 0.7304 0.4744

DCWT 0.2912 0.7135 0.4892
AV DWT 0.7396 0.7901 0.7634

DCWT 0.7635 0.8064 0.7838
MEOLS DWT 0.5795 0.6768 0.6248

DCWT 0.6175 0.7039 0.6585
HA DWT 0.6168 0.7175 0.6651

DCWT 0.6573 0.7361 0.6958
MHA DWT 0.8599 0.8298 0.8436

DCWT 0.8627 0.8489 0.8545

One of the interesting findings is that the phase contains information to classify

normal and malignant images. Since the features and directions of background tissue

is best preserved in the level of finest detail, we focus on the phase information of
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finest detail. Figure 14 shows the estimated density of the phase average and variance

at the finest level. While the average of malignant and normal cases are similar,

the variance is quite different; the phase from normal images have higher variance,

which implies more irregularity. This finding is consistent with universal paradigm in

medical signal and image processing, that increased regularity of signals and images is

often associated with pathologies. In this case, we hypothesize control mammograms

have no clusters of consistent features and edges in the detailed wavelet space.
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Figure 14: Left panel : Estimated density of phase average at the finest level. Right
panel : Estimated density of phase variance at the finest level. Both are obtained
from 105 normal cases and 98 cancer cases. The solid line corresponds to malignant
cases and the dotted line to normal cases.

To validate the discriminatory power of the phase information, we assessed the

logistic models by using each of the three summary statistics (average, variance, Q3-

Q1) of the phases at the finest level. As Table 15 shows, the variance as a single

predictor best classifies malignant and normal images with correct classification rate

being 67%. Other measures such as kurtosis, median, coefficient of variation and

mean absolute deviation retain classification power in a range of 50-60%.

We then conducted classification analysis based on the complex wavelet spectra

slope and the phase variance. Figure 15 shows a scatter plot of cases by complex

spectra slope versus phase variance, illustrating the differentiation between benign
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Table 15: Logistic classification based on summary statistics of phase information
at the finest level.

Method Sensitivity Specificity Correct Classification
Phase Average 0.6018 0.5275 0.5533

Variance 0.7004 0.6384 0.6654
Skewness 0.5934 0.5279 0.5487
Q1 0.6218 0.5121 0.5546
Q3 0.6201 0.5080 0.5526

and malignant cases.
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Figure 15: Scatter plot of Complex spectra slope (obtained by MHA estimation
method) versus Phase variance. The symbols denote: circles for normal mammogra-
phies, crosses for malignant mammographies.

We combined complex wavelet spectra obtained from five different estimation

methods with the phase variance. For each of the five pairs, we performed logistic,

linear, quadratic and support vector machine (SVM) classification. By comparing

results in Table 16 with Tables 14 and 15, we conclude that the overall performance

improved significantly regardless of the pair combination. The improvement is es-

pecially notable for OLS; from Table 14, the OLS estimator itself had almost no

discriminatory power (correct classification rate below 0.5). However by combining
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it with the phase variance, the rates have increased up to 67%. Several wavelet bases

and level combinations have been compared but the results and the conclusion remain

the same.

Table 16: Linear, Quadratic and SVM classification based on the pair of complex
wavelet spectra and the phase variance.

Correct

Method Sensitivity Specificity Classification

(OLS; phase variance) Logistic 0.6900 0.6338 0.6578
Linear 0.7376 0.6067 0.6701
Quadratic 0.8091 0.5365 0.6687
SVM 0.4568 0.9012 0.6723

(AV; phase variance) Logistic 0.7851 0.8009 0.7919
Linear 0.8171 0.7744 0.7951
Quadratic 0.8390 0.7522 0.7943
SVM 0.7650 0.8127 0.7882

(EOLS; phase variance) Logistic 0.6857 0.6390 0.6581
Linear 0.7363 0.6069 0.6696
Quadratic 0.8076 0.5264 0.6627
SVM 0.4422 0.9087 0.6684

(MEOLS; phase variance) Logistic 0.7095 0.7265 0.7155
Linear 0.7629 0.6548 0.7072
Quadratic 0.8145 0.5630 0.6849
SVM 0.5472 0.8291 0.6839

(HA; phase variance) Logistic 0.7395 0.7589 0.7471
Linear 0.7805 0.7003 0.7392
Quadratic 0.8221 0.6155 0.7157
SVM 0.6372 0.7900 0.7113

(MHA; phase variance) Logistic 0.8561 0.8574 0.8559
Linear 0.8814 0.8320 0.8559
Quadratic 0.8827 0.8297 0.8554
SVM 0.8243 0.8826 0.8525

4.5 Conclusions

In this chapter we propose a complex scale-mixing 2-D wavelet transform in the con-

text of assessing regularities of 2-D objects. The proposed transform is implemented
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by matrix operations, and it guarantees orthogonality, low computational cost, di-

rectional insights, interplay between scales, and a straightforward inverse transform.

We then explore the spectra and self-similarity measures based on the proposed com-

plex wavelet transform. Their discriminatory power is demonstrated in the context

of mammogram image classification. The procedure is based on background tissues

of images rather than mammogram features such as microcalcification and tumor

masses, which is an unused diagnostic modality in the field. The estimated Hurst

exponent and phase information turn out to be discriminatory summaries in mam-

mogram image classification. Although phase information has been used mainly for

edge detection and image reconstructions in the literature, we identify that the sum-

mary measures of phase contribute to the correct classification of cancer and normal

images.

To obtain the estimates of Hurst exponent, we use four robust estimation methods

(AV, MEOLS, HA, MHA) along with the ordinary least squares estimator. From the

logistic classification model, we found that robust Hurst exponent estimates and the

phase variance at the finest level have enough power to differentiate between benign

and malignant cases.

It is well known that for the real wavelets there is no symmetric and compactly

supported scaling function defining an orthogonal MRA. Complex wavelets assure

symmetry, compact support and orthogonality of decomposing atoms which is desir-

able in image representations. This advantage is proved through the higher sensitivity

and correct classification rate across different representation scenarios.

Another benefit of using the proposed model is that we can combine the Hurst

exponent estimates with the phase variance to identify whether the images contained

evidence of malignancy. By combining these two measures, we obtain significantly

improved correct classification rate. Note that the most accurate classification rates

achieve 86% with (MHA; phase variance) pair. However, MHA and MEOLS employ
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weights that heavily emphasize the fine detail levels, which is in accordance with the

empirical observation that finer levels in real wavelet decompositions are critical for

correct mammogram image classification [90]. Therefore complex wavelets provide a

more robust tool in the sense that combination of an under-performing summary for

real wavelets becomes discriminatory when combined with phase information.
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CHAPTER V

CONCLUSION

This thesis deals with analyzing non-traditional data in health-care and biomedical

domains. First of all, the second chapter focuses on the meta-analysis of clinical

trials with incomplete data set. This requires a new type of ecological-type inference

in matched-pair studies when only fixed marginal totals are available. The proposed

methodology is based on the Metropolis random walk and hierarchical Bayesian model

and it incorporates any prior information available. The performance of the proposed

model is verified through 17 matched-pair study examples. This work is motivated by

meta-analysis that compares the effectiveness of two types of dental sealant materials.

By using this model, we are able to incorporate more clinical studies (that were

previously excluded solely because they failed to report data in a paired manner) and

find the difference for the first time among similar meta-analyses.

Developing a methodology to retrieve paired data from matched paired design

studies that do not report paired tables is an important issue in meta-analyses. A

study of methodological issues in cross-over trials reported that presenting data as

paired tables was uncommon in the published work. Another search of the Cochrane

Database of Systematic Reviews found that over 50% of reviews either treated cross-

over trials as if they were parallel groups or only used data from the first time period

assuming that in doing so it would better approximate a parallel group.

For the Metropolis algorithm, the prior information is incorporated via the mean

of the Dirichlet prior. Two modifications of the algorithm are possible: (i) one may

consider placing the prior on the parameter θ directly, and (ii) it is possible to intro-

duce an additional level of hierarchy in the model to incorporate prior information by
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a hyper-prior placed on the mean of the Dirichlet prior. The Metropolis random walk

algorithm is expanded to paired tables of size k × k in a straightforward manner.

This chapter demonstrates that the flexibility of Bayesian approach lends its

strength to handle the challenging issues in evidence-based healthcare decision-making.

I plan to explore more general Bayesian approaches in this field. The study ranges

from asking the right question (what works for whom, for which medical problems,

and under what circumstances) to obtaining and incorporating existing information

(pivotal trials, systematic reviews, and rigorously conducted observational studies)

to designing the study of interest (usually randomized clinical trials: RCT) to per-

forming adaptive RCT study (that allows interventions to be added and less effective

ones dropped without restarting the study) to drawing statistically valid conclusion.

Compared with the traditional frequentist methods, the Bayesian approach can re-

duce the sample size, time, and cost required to obtain decision-relevant information.

The third chapter deals with the spatial repeated measures with zero-inflation and

no covariate information. This model comprises of two steps: 1) autologistic model

that estimates the probability of zero observations and 2) excess-zero model that

describes the underlying geographical phenomenon of the zero-inflated data. This

methodology is motivated and illustrated with the example of estimating U.S. county

level natural fluoride concentration in the ground water. The proposed hierarchical

Bayesian structure produces improved discretized estimates and reflects the continu-

ous behavior of the natural fluoride occurrence better. By employing the hyper-prior

structure, state level estimates can be obtained as well.

The methods discussed here can be extended to semi-continuous two-part mod-

els, which assume a continuous (e.g., log-normal or Gamma) rather than Poisson

or negative binomial distributions for the non-zero values. This model can also be

extended to a recursive system; after the excess-zero modeling (ii), the probability
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of zero observation can be updated in the autologistic model (i), and this feedback

loop continues until it reaches an equilibrium stage. This model can be applied to

any spatial count data with excess zero, and be extended as covariate information

becomes available.

This work is motivated to improve the water fluoridation policy, the addition

of fluoride to drinking water to prevent tooth decay. However, fluoride can occur

naturally in water in concentrations well above recommended levels which imposes

several long-term adverse effects such as dental fluorosis, skeletal fluorosis, and weak-

ened bones. Although describing the availability of natural fluoride by county can

inform public health efforts in prevention of tooth decay and dental fluorosis, the

effort has been limited to a few states. The county-level estimates will not only be

a valuable information to policy makers and residents, but also for future research;

one of the nation’s most comprehensive public health database, National Health and

Nutrition Examination Survey (NHANES) provides survey and examination results

by county. Therefore, persistent research questions in the field such as possible corre-

lation between high natural fluoride occurrence vs. dental fluorosis can benefit from

this county-level natural fluoride occurrence map.

Finally, the last chapter covers image classification based on the overall image

regularity in complex wavelet domain. We first propose a complex scale-mixing 2-D

wavelet transform; the proposed transform guarantees orthogonality, low computa-

tional cost, directional insights, interplay between scales, and a straightforward in-

verse transform. We then explore the spectra and self-similarity measures based on

the proposed complex wavelet transform. Their discriminatory power is demonstrated

in the context of mammogram image classification. The procedure is based on back-

ground tissues of images rather than mammogram features such as microcalcification

and tumor masses, which is an unused diagnostic modality in the field.
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The estimated Hurst exponent and phase information turn out to be discrimi-

natory summaries in mammogram image classification. Although phase information

has been used mainly for edge detection and image reconstructions in the literature,

we identify that the summary measures of phase contribute to the correct classi-

fication of cancer and normal images. It is well known that for the real wavelets

there is no symmetric and compactly supported scaling function defining an orthogo-

nal MRA. Complex wavelets, on the other hand, assure symmetry, compact support

and orthogonality of decomposing atoms which is desirable in image representations.

This advantage is proved through the higher sensitivity and correct classification rate

across different representation scenarios.

Another benefit of using the proposed model is that we can combine the Hurst

exponent estimates with the phase variance to identify whether the images contained

evidence of malignancy. By combining these two measures, we obtain significantly

improved correct classification rate. Complex wavelets provide more robust tool in the

sense that combination of an under-performing summary for real wavelets becomes

discriminatory when combined with phase information.

Mammography devices that provide three-dimensional images of the breast for

cancer screening and diagnostics was approved by the U.S. Food and Drug Adminis-

tration in 2011. As three dimensional images become available, 3D wavelet transform

can be applied to assess the overall regularity. Thus, promising new indicators may be

added to current screening techniques that will improve the specificity and sensitivity

of breast cancer diagnoses. The implication of this research is improved prognoses

along with a reduction in the number of additional procedures for specific diagnosis.
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CHAPTER VI

APPENDIX

6.1 Derivation of paired and parallel variance

Let us assume that x is a random variable and f(x) is an arbitrary function that is

infinitely differentiable in a neighborhood of Ex. Then the 1st order Taylor expansion

around Ex is

f(x) ≈ f(Ex) + f ′(Ex)(x− Ex)

Therefore, the variance and the covariance of f(x) can be approximated as follows;

V ar
(
f(x)

)
≈
[
f ′(Ex)

]2
V ar(x) (6.1.1)

Cov
(
f(x), f(y)

)
≈ f ′(Ex)f ′(Ey)Cov(x, y) (6.1.2)

Now, let us consider the variance of the log risk ratio (RR). For pt the probability of

event for the treatment group and pc that of the control group, the log RR is

log(RR) = log
pt
pc

(6.1.3)

and the variance is

V ar
[

log(RR)
]

= V ar
[

log(pt)
]

+ V ar
[

log(pc)
]
− 2Cov

[
log(pt), log(pc)

]
(6.1.4)

For matched-pair studies in Table 2, pt and pc can be approximated as y11+y12
n

and

y11+y21
n

respectively. If we assume that each cell count (y11, y12, y21, y22) is generated

from multinomial distribution with underlying probability (p11, p12, p21, p22), then

V ar(y11) = np11(1− p11) (6.1.5)

and

Cov(y11, y12) = −np11p12 (6.1.6)
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By applying (6.1.1) and (6.1.2) to (6.1.4), we obtain

V ar
[

log(RR)
]
≈ V ar(pt)

(Ept)2
+
V ar(pc)

(Epc)2
− 2

Cov(pt, pc)

EptEpc
(6.1.7)

Also, from (6.1.5) and (6.1.6)

Ept ≈
y11 + y12

n
, Epc ≈

y11 + y21
n

,

V ar(pt) ≈
(y11 + y12)(y21 + y22)

n3
, V ar(pc) ≈

(y11 + y21)(y12 + y22)

n3

and

Cov(pt, pc) ≈
y11y22 − y12y21

n3

If we assume that pt and pc are independent (which is not correct for the matched-

pair studies), then the variance of the log risk ratio is approximately

V ar
[

log(RR)
]

=
1

y11 + y12
+

1

y11 + y21
− 2

n
(6.1.8)

which is equal to the square of (2.3.3). However, if we consider the positive correlation

between pt and pc, then the variance is

V ar
[

log(RR)
]

=
1

y11 + y12
+

1

y11 + y21
− 2y11

(y11 + y12)(y11 + y21)
(6.1.9)

which is equal to the square of (2.3.2).
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6.2 Derivation of excess zero model mean and variance

6.2.1 Hurdle Model

From Section 3.2.2, we obtain

IE(Y ) =
∑
y≥0

y · P (Y = y) =
1− f1(0)

1− f2(0)

∑
y≥1

yf2(y) =
1− f1(0)

1− f2(0)
IE(Z)

where IE(Z) is the expected value of confined samples of y greater than zero. In the

same manner,

IE(Y 2) =
1− f1(0)

1− f2(0)
IE(Z2)

and hence

Var(Y ) =
1− f1(0)

1− f2(0)
IE(Z2)−

[1− f1(0)

1− f2(0)
IE(Z)

]2
=

1− f1(0)

1− f2(0)

(
1− 1− f1(0)

1− f2(0)

)
[IE(Z)]2 +

1− f1(0)

1− f2(0)
Var(Z)

=
f1(0)− f2(0)

1− f1(0)
[IE(Y )]2 + γIE(Y ).

6.2.2 Zero-inflated Model

From Section 3.2.3, we obtain

IE(Y ) =
∑
y≥0

y · P (Y = y) = (1− πZ)
∑
y≥1

yfD(y) = (1− πZ)IE(YD).

Since

IE(Y 2) = (1− πZ)IE(Y 2
D),

the variance can be written as follows:
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Var(Y ) = (1− πZ)IE(Y 2
D)− (1− πZ)2[IE(YD)]2

= πZ(1− πZ)[IE(YD)]2 + (1− πZ)Var(YD)

=
πZ

1− πZ
[IE(Y )]2 + γIE(Y )
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6.3 Derivation of (4.3.13)

The scale-mixing detail coefficients of a 2-D fBm (4.3.11) are

d(j,j+s);k = 2j+
s
2

∫
BH(u)ψ

(
2ju1 − k1, 2j+su2 − k2

)
du.

These coefficients are random variables with zero mean and variance [97]

E
[
|d(j,j+s);k|2

]
= 22j+s

∫
ψ
(
2ju1 − k1, 2j+su2 − k2

)
× ψ∗

(
2jv1 − k1, 2j+sv2 − k2

)
E [BH(u)BH(v)] du dv. (6.3.1)

Since

E [BH(u)BH(v)] =
σ2
H

2

(
|u|2H + |v|2H − |u− v|2H

)
,

and ∫
ψ
(
2ju1 − k1, 2j+su2 − k2

)
du =

∫
ψ
(
2jv1 − k1, 2j+sv2 − k2

)
dv = 0,

it can be easily seen that (6.3.1) becomes

E
[
|d(j,j+s);k|2

]
= −σ

2
H

2
22j+s

∫ ∫
ψ
(
2ju1 − k1, 2j+su2 − k2

)
× ψ∗

(
2jv1 − k1, 2j+sv2 − k2

)
|u− v|2Hdu dv.

Next, define substitutions

p = (p1, p2) =
(
2j(u1 − v1), 2j+s(u2 − v2)

)
,

Then, if ps ≡ (p1, 2
−sp2),

E
[
|d(j,j+s);k|2

]
= −σ

2
H

2
22j+s

∫ ∫
ψ(p + q) ψ∗(q) 2−2jH |ps|2H 2−4j−2s dp dq

= −σ
2
H

2
2−j(2H+2)

∫ ∫
ψ(p + q) ψ∗(q) |ps|2H2−s dp dq

= 2−j(2H+2) Vψ,s(H),

where

Vψ,s(H) = −σ
2
H

2

∫ ∫
ψ(p + q) ψ∗(q) |ps|2H2−s dp dq, (6.3.2)

is an integral depending on ψ, H, and s, but not on the scale j.
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