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SUMMARY

Multinomial selection problem (MSP) procedures aim to select the best (most probable)

alternative based upon a sequence of multinomial observations. The classical formulation

of the procedure design problem is to find a decision rule for terminating sampling. The

decision rule should minimize the expected number of observations taken while achieving a

specified indifference zone requirement on the prior probability of making a correct selection

when the alternative configurations are in a particular subset of the possible probability

space called the preference zone. We study the constrained version of the design problem

in which there is a given maximum number of allowed observations.

Numerous procedures have been proposed over the past 50 years, all of them subop-

timal. In this thesis, we find the optimal selection procedure for any given probability

configuration via linear programming. The optimal procedure turns out to be necessarily

randomized in many cases. We also find the optimal non-randomized procedure via mixed

integer programming. We demonstrate the performance of the methodology on a number

of examples.

We then reformulate the mathematical programs to make them more efficient to imple-

ment, thereby significantly expanding the set of real world problems that can be modeled.

We prove that there exists an optimal policy which has at most one randomized decision

point and we develop a procedure for finding such a policy. Additionally, we show that the

formulations can be extended to replicate existing bounded procedures from the literature,

simply by altering the feasible region of the mathematical programs.

Our formulations also allow us to examine situations in which marginal observation costs

are not constant. While variable marginal observation costs are realistic, they have not been

considered in the literature, largely because the tools required did not exist. We leverage

our formulations to develop a new methodology that guarantees the optimal randomized

xiii



and non-randomized procedures for a broad class of variable observation cost functions. We

then analyze procedure performance under a representative set of observation cost functions.

We also develop two new tools for examining specific cost-related issues — one for deciding

whether or not to purchase experimental supplies in batches and one for determining the

effect on total observation cost due to changing probability requirements.

Next, we show that there is very little difference between the relative performances of

the optimal randomized and non-randomized procedures, particularly for large budgets.

Additionally, we compare existing procedures using the optimal procedure as a benchmark,

and produce updated tables for a number of those procedures. For our comparisons, we

develop a new set of metrics and employ some traditional statistical measures, such as

variance, not typically considered in the literature.

Finally, we examine some fundamental assumptions — normally taken for granted in

the literature — regarding the application of MSP procedures. In particular, we show

how the choice of the indifference zone parameter affects the size of the preference zone

when any alternative configuration is equally possible. We then define the concept of an

“acceptable selection” for alternatives in the indifference zone and discuss some Monte Carlo

sampling results. Finally, we look at issues regarding the conditional (posterior) probability

of correct selection upon procedure termination and its implications on the applicability of

MSP procedures in general.

xiv



CHAPTER I

INTRODUCTION

We consider the problem of selecting the best alternative out of k ≥ 2 competing alterna-

tives. Each time the alternatives compete, alternative i has probability pi > 0 of winning,

where
∑k

i=1 pi = 1. Let p[1] ≤ p[2] ≤ · · · ≤ p[k] denote the ordered pi’s. The alternative

associated with p[k] is denoted with i∗ and is called the most probable or best . The only

information that is known in advance is the number k of alternatives, how to conduct inde-

pendent random observations in which the k alternatives compete, and how to identify the

winning alternative in each observation. That is, the probabilities p = (p1, p2, . . . , pk) are

not known, and it is not known which alternative is more or less likely to win than another.

We want to conduct observations to identify the best alternative i∗ with high probability.

These types of problems are called multinomial selection problems (MSPs).

Given a method to choose an alternative, the probability that alternative i∗ is chosen

is called the probability of correct selection and is denoted with Pp(CS), or just P(CS).

Clearly the probability of correct selection depends on p, for example if p[k] is small, and

p[k] and p[k−1] are close to each other, then Pp(CS) can be small. Relative ratio indifference

zone MSPs specify constants (θ?, P ?) with θ? > 1 and 1/k < P ? < 1. Ideally, the objective

is to minimize the expected number of observations while requiring that

Pp(CS) ≥ P ? for all p such that p[k]/p[k−1] ≥ θ?, (1.1)

where the constant θ? can be regarded as the “smallest ratio p[k]/p[k−1] worth detecting.”

To guarantee (1.1), we require additional information. Let Ω be the set of all possi-

ble probability configurations p. The preference zone (PZ) is denoted ΩPZ ≡ {p ∈ Ω :

p[k]/p[k−1] ≥ θ?}. Its complement, ΩIZ, is the indifference zone (IZ).

Definition 1.1 Given a method to choose an alternative, the least favorable configuration

1



(LFC) is the probability configuration p ∈ ΩPZ that minimizes Pp(CS), i.e., the LFC is

argmin
p∈ΩPZ

Pp(CS).

While guaranteeing (1.1), we minimize the expected number of observations when p is in

the LFC. For some methods, the LFC has not yet been identified, so we instead attempt to

minimize the expected number of observations when p is in the slippage configuration (SC):

p =

(
θ?

θ? + k − 1
,

1

θ? + k − 1
, . . . ,

1

θ? + k − 1

)
,

which is assumed to be the LFC. In that case, our objective is to minimize the expected

number of observations while requiring that

Pp(CS) ≥ P ? when p is the SC, (1.2)

a weaker condition than condition (1.1).

When we attempt to minimize the expected number of observations, we are assuming

that the marginal cost of each observation is constant. In Chapter 5, we will change our

goal slightly to that of minimizing the expected total cost of the observations when marginal

observation costs are not constant.

Let xij = 1 if alternative i is the winner on observation j, and xij = 0 otherwise. Let

ηim ≡
∑m

j=1 xij denote the number of observations won by alternative i among the first m

observations. Let ηm ≡ (η1m, η2m, . . . , ηkm), and let η[1]m ≤ · · · ≤ η[k]m denote the ordered

ηim’s. We restrict attention to methods that, after n observations, choose an alternative i

with ηin = η[k]n. If there are multiple alternatives with ηin = η[k]n, we assume that each of

those alternatives is chosen with equal probability. Let în denote such a chosen alternative i

with ηin = η[k]n.

Note that the above MSP model can be used as non-parametric model for other types

of problems. For example, the experimenter might decide to take an observation, say, cycle

time, from each alternative under consideration and use those observations to determine

which alternative is ‘best’ for that observation. The best alternative now is “the alternative

with the highest probability of achieving the shortest cycle time.” That statement is not

the same as that of a parametric problem which seeks to select “the alternative with the
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shortest mean cycle time.” However, if the rephrased goal is appropriate, an MSP model

is a viable, but usually less efficient (in terms of the procedures), alternative to parametric

problems and may be useful when normality assumptions about the performance measure

of interest are suspect.

Problem Applicability: Before we discuss different versions of the MSP described above,

it is important to point out a number of common properties of these problems that determine

the types of applications for which these problems are appropriate.

1. The probability of correct selection Pp(CS) is the prior probability of correct selec-

tion, before any data have been observed. In fact, it is possible that a method that

satisfies condition (1.1) or condition (1.2) stops after n observations and chooses an al-

ternative în, but that the posterior probability of correct selection, given the observed

observation data, is much less than P ?. It is also possible that a method contin-

ues with more observations, even if after m observations an alternative îm can be

chosen with posterior probability of correct selection, given the observed observation

data, significantly exceeding P ?. Since the prior probability of correct selection is the

expected value of the posterior probability of correct selection, conditions (1.1) and

(1.2) just require that in expectation the sample paths with too many observations

compensate for the sample paths with too few observations. This may be a reasonable

problem formulation for an application in which many replications of the experiment

(each consisting of multiple observations and selection of a winner) will be done, and

the major concern is that the correct winner should be chosen in at least fraction P ?

of these experiments. This may not be a good problem formulation for an application

in which the experiment will be conducted only once or a small number of times, or

in which it is important to ensure that the posterior probability of correct selection is

sufficiently high.

2. The probability of correct selection Pp(CS) only gives credit for the event in which the

alternative i with the largest value of pi is chosen. For example, there is no partial

credit for choosing the alternative i with the second largest value of pi, and there is
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no difference in credit between the event in which the alternative i with the second

largest value of pi is chosen and the event in which the alternative i with the smallest

value of pi is chosen.

3. Condition (1.1) or condition (1.2) is only required to apply in the PZ, that is, for

all p ∈ ΩPZ. No distinction is made between a procedure with higher probability of

correct selection and a procedure with lower probability of correct selection if p ∈ ΩIZ.

4. Each of the k alternatives has to compete in each of the observations, that is, cost

cannot be reduced by letting only a subset of the alternatives compete in a observation.

5. In each observation we are only concerned with the winning alternative and not other

data such as a score earned by each alternative.

While many intuitively appealing MSP procedures have been developed, none can claim

optimal performance for a wide range of MSPs. However, if we view the MSP as a net-

work of probability flows, and assume a constraint on the maximum number of observations

we are willing to take, we can use mathematical programming techniques, such as linear

programming (LP) and mixed integer programming (MIP), to determine the optimal pro-

cedure for any given MSP and probability configuration p. Furthermore, we can leverage

properties of the MSP, such as symmetry, in order to reduce the size of the network, thereby

increasing the scope of the problems that we can solve.

Formulating the MSP as a mathematical program has other advantages as well. We

can add, modify, and remove constraints to model unique variations of the problem. For

example, we can create mathematical programs that replicate existing procedures or require

a minimum posterior conditional probability of correct selection. We can also alter our

objective function in order to minimize the expected total cost of the observations instead

of the expected number of observations. Such a capability is essential for realistic scenarios

in which marginal observation costs vary over time.

Knowledge of the optimal procedure for any given MSP also provides us a benchmark

against which we can compare existing procedures. Whereas previous comparisons and

evaluations of procedure performance depended upon the relative performance between
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procedures, we can now evaluate a procedure’s performance with respect to the optimal

procedure. Such a benchmark allows us to quantify a procedure’s efficiency, which is more

desirable than quantifying its relative performance versus another arbitrary procedure.

1.1 Research Objectives

The objectives of this research are to:

• Develop efficient LP and MIP formulations of the MSP in order to identify the optimal

stopping policy for any given MSP.

• Reformulate the mathematical programs to identify the optimal stopping policy under

variable observation cost functions, and develop insights into the effects of variable

observation cost functions on procedure performance.

• Examine the performance of existing procedures with respect to the optimal proce-

dures for a representative set of MSPs.

• Examine key assumptions concerning MSPs in order to develop initial insights and to

set the stage for future research.

1.2 Research Outline

This thesis is arranged as follows. Chapter 2 reviews the literature related to ranking

and selection (RS), in particular MSPs, and the integration of observation costs into RS

procedures. Chapter 3 introduces and describes our mathematical formulations of the MSP

to include some preliminary results. In Chapter 4, we improve the algorithmic efficiency of

the original formulations, prove some general results about their solutions, and formulate

existing procedures as mathematical programs. In Chapter 5, we reformulate the MSP

to integrate variable observation costs and we demonstrate results for a representative set

of marginal observation cost functions. Chapter 6 includes an analysis of existing MSP

procedures, particularly in relation to the optimal procedures. In Chapter 7, we examine

some common MSP assumptions concerning the PZ and conditional P(CS) in order to gain
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initial insights and to provide a starting point for future research. Chapter 8 is a summary

of our work.
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CHAPTER II

LITERATURE REVIEW

In general, our goal is to compare competing alternatives. An alternative can be an in-

dividual product or a process, or it can be a system — a set of interrelated products or

processes working together to achieve a common purpose. Comparisons between alterna-

tives are made based upon a single measure of performance, e.g., mean queue length, mean

cycle time, probability of success, etc. We may be interested in selecting the single best

alternative or a subset that includes the best alternative.

Classical hypothesis testing and confidence interval techniques provide ways to determine

whether one alternative is better than the other under relevant assumptions about the

distribution of the performance measure. Error can be controlled in order to limit the

probability of rejecting the null hypothesis when it is true (i.e., choosing an alternative as

best when both are the same) and the probability of accepting the null hypothesis when

one alternative is better than the other by a specified amount (i.e., concluding that the

alternatives are the same, when they are not). Common tests include the Z-test for normal

data with known variances, the t-test and paired t-test for normal data with unknown

variances, and F-tests for comparing variances. A primary disadvantage of these techniques

is that the null hypothesis (equal means) will eventually be rejected if the sample size is

large enough.

If there are more than two alternatives under comparison, simultaneous confidence in-

tervals can be used. There exist numerous methods to conduct simultaneous consideration

of multiple confidence intervals as part of a hypothesis test, such as the Bonferroni and

Tukey multiple comparison statistics. These methods also share the same disadvantage of

the single confidence interval approach — eventual rejection of the null hypothesis as the

sample size increases. Additional information on these classical techniques can be found in

several introductory statistics textbooks, such as Hines et al. (2003). For a detailed coverage
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of simultaneous inference, see Miller (1981).

Multiple comparison procedures (MCPs) are part of another body of research that treats

multiple alternative comparisons as an inference problem. These procedures are not a

departure from the classical approach, but leverage many of the classical techniques to

characterize the relationships between alternatives. The most basic of these MCPs uses

simultaneous confidence intervals for all possible k(k − 1)/2 pairwise comparisons between

k competing alternatives. Since all pairwise confidence intervals have the same test statistic

and pooled variance (under the assumption that all variances are the same), their half-

widths are identical. If there is a clear ‘winner’ among the alternatives, the best can be

identified. Unfortunately, there is no guarantee of such an outcome. For multiple compar-

isons with a control, only k − 1 intervals are required (each alternative versus the control).

These techniques, however, do not provide any additional advantage for choosing the best

alternative or a subset that includes the best alternative. Finally, there are MCPs that

compare each alternative with the best performing alternative during or after sampling.

MCPs, particularly those being applied within a simulation environment, can be used in

conjunction with variance reduction techniques, such as common random variates, in which

positive correlations are induced between the alternatives. For an example of an MCP

procedure for comparisons against the best that leverages common random numbers, see

Kolonja et al. (1993). Hsu (1996) provides a good overview of MCPs in general.

Another main body of research for multiple comparisons is the field of RS, which is a

departure from, but not unrelated to, classical statistical techniques. In fact, there is a

great deal of research that seeks to unify the fields of MCP and RS. Swisher and Jacobson

(1999) provide a good review of MCP–RS unifying research with applications to simula-

tion. Matejcik and Nelson (1995) propose a two-stage multiple comparison (with the best

alternative) procedure for the expected value of a performance measure, and show that

particular indifference zone RS procedures are a special case.

In §2.1, we describe the initial development of RS and provide an overview of the types

of procedures that have been developed. In §2.2, we review RS techniques and procedures

developed specifically for MSPs. Lastly, in §2.3, we describe research that considers various
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types of costs (e.g., sampling and opportunity costs) in RS.

2.1 Ranking and Selection

Ranking and selection has its roots in the late 1940s. Mosteller (1948) proposed a non-

parametric test for “the problem of the greatest one” in which the null hypothesis is that

of equal means and the alternative hypothesis is that one alternative has “slipped” farther

to the right than any other (i.e., has a larger mean). Paulson (1952b) expanded upon

Mosteller’s work by developing a fixed sample size parametric test for normally distributed

data with the goal of deciding whether or not the means are equal, and, if they are not,

identifying which is best. Paulson (1949, 1952a) also developed methods to divide a group

of alternatives into a “superior” group and an “inferior” group based upon the population

means (assumed to be normally distributed), as well as to identify the best alternative when

comparing k − 1 alternatives with a control.

Bechhofer (1954) is the first paper that formalized what we now call RS. In it, he

describes an experimental design to determine the ranking of k normal population means

with known (but not necessarily equal) variances. The goal of the design is to find the best

subset of the populations with or without regard to order (i.e., ranking within the subset).

This differs from the goal of previous procedures in which ranking can only be indirectly

inferred from the size of the differences between the means. He introduces a parameter,

δ?
k̂i+1,k̂i

, which represents the smallest difference between the ordered population means that

is “worth detecting”. There, k̂i and k̂i+1 are indices for the kth and (k+ 1)th ordered pop-

ulation means (or ordered subsets of population means). That type of parameter is what

we now call an indifference zone parameter. The purpose of the experimental design is to

find the smallest number of samples across the k alternatives that will guarantee a given

probability of correctly ranking the alternatives whenever their actual differences exceed

the parameters δ?
k̂i+1,k̂i

. As such, it is considered a single-stage procedure, since the total

number of samples is determined a priori. Bechhofer also introduced the concept of the

LFC — the configuration of the population means that achieves the lowest probability of

a correct ranking under his problem assumptions. He tabulates the experimental design
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parameters for varying numbers of alternatives, subsets to be ranked, and probabilities

of correct ranking. Bechhofer and Sobel (1954) quickly followed up with an experimental

design for ranking normal population variances with known means using the same formu-

lation as the previous paper. Bechhofer, Dunnett, and Sobel (1954) proposed a two-stage

procedure for ranking normal population means with common, unknown variance, in which

the first stage is used to obtain a variance estimate that is subsequently used to determine

the remaining number of samples to be taken in the second stage.

Bechhofer’s pioneering papers in 1954 led to a large number of RS indifference zone

procedures, many of those for ranking normal populations. Paulson (1964) describes a

sequential, multi-stage procedure in which inferior populations may be eliminated as sam-

pling continues. Each stage then takes a single observation from each alternative still in

contention (i.e., not yet eliminated). Bechhofer, Kiefer, and Sobel (BKS) (1968) present a

sequential procedure framework in general for Koopman–Darmois populations (e.g., normal,

exponential, Bernoulli, Poisson, and multinomial distributions). Examples of other proce-

dures for ranking normal populations include a two-stage procedure developed by Rinott

(1978) and the fully sequential procedure developed by Kim and Nelson (2001).

As mentioned above, procedures have been developed for populations other than normal.

For example, there are many procedures in the literature for Bernoulli selection problems

(BSPs). Unlike normal population ranking problems that seek to rank population means,

BSPs seek to identify the alternative with the highest probability of success (success param-

eter). Sobel and Huyett (1957) propose a single-stage procedure which uses an indifference

zone parameter similar to those discussed already, namely, the smallest difference in proba-

bility of success worth detecting. On the other hand, the sequential procedure proposed in

BKS (1968) uses an odds ratio indifference zone parameter. If we order the success prob-

abilities p[1] ≤ p[2] ≤ . . . p[k−1] ≤ p[k], then the odds ratio parameter, θ?, between the best

and second best alternatives is

θ? =
p[k](1− p[k−1])

(1− p[k])p[k−1]
.

Our discussion has focused on ranking procedures in which the goal is to choose the best
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alternative or to rank a subset of the best alternatives. These fall into the class of RS called

indifference zone procedures, since an indifference zone parameter must be specified by the

experimenter. There is another class of RS procedures called subset selection procedures.

For these, the goal is to select a subset (of a predetermined or random size) which contains

the best alternative. Most subset selection procedures, such as those reviewed for MSPs in

the next section, do not require the specification of an indifference zone parameter. However,

there have been procedures developed, such as that of Sullivan and Wilson (1989), that do

allow the experimenter to define an indifference zone.

2.2 Multinomial Selection Problems

A significant body of RS research exists for MSPs. In the introduction in Chapter 1, we

described the general setup for the selection-of-the-best MSPs, which are our primary focus.

We begin our discussion here in §2.2.1 with those types of MSPs. In §2.2.2, we will briefly

review other types of MSPs.

2.2.1 Procedures for Selecting the Best

This section will describe the relevant MSP procedures found in the literature for selecting

the best of multiple alternatives. We present, in some detail, those procedures that we will

readdress in future chapters. The format of such procedure descriptions and their examples,

as well as the notation, mirror that of Bechhofer, Santner, and Goldsman (BSG) (1995).

Other MSP procedures will be briefly described.

There are different versions of the MSP described in the introduction (Chapter 1). In

the single-stage MSP, the problem is to choose in advance the smallest number n of obser-

vations such that if în is chosen as described above, then condition (1.1) or condition (1.2)

holds. For example, the classic single-stage procedure due to Bechhofer, Elmaghraby, and

Morse (BEM) (1959) proceeds as follows.

Procedure MBEM

• For the given k, θ?, and P ?, choose the fixed sample size n from an appropriate table,

e.g., BEM (1959) or BSG (1995).
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• Take n multinomial observations in a single stage.

• Select în as the best alternative, randomizing to break ties.

Remark 2.1 Kesten and Morse (1959) prove that the SC is the LFC for ProcedureMBEM.

Thus, the parameter n in BEM (1959) and BSG (1995), chosen based upon the procedure

performance in the SC, satisfies condition (1.1) for the given k, θ?, and P ?.

Note that the version of the problem above does not consider or allow the possibility

of stopping before n observations have been completed, even if the observations up to

observation m < n seem to clearly indicate the winner. Another version of the problem

considers sequential procedures which dynamically choose the number n of observations

such that if în is chosen as described above, then condition (1.1) or condition (1.2) holds,

and the (prior) expected number of observations is minimized in the LFC or SC. Sequential

procedures can be one of three types:

• Unbounded sequential procedures for which there is no bound on the number of ob-

servations taken during an experiment.

• Bounded sequential procedures for which the chosen procedure parameters provide an

upper bound on the number of observations taken during an experiment.

• Constrained sequential procedures, the version of the problem considered in this the-

sis, for which there is a given maximum number of observations allowed, called the

budget b.

Existing sequential procedures do not necessarily minimize the expected number of obser-

vations, but are heuristics for the MSP described above.

We note that ProcedureMBEM sometimes undertakes what can be regarded as needless

sampling. For example, if k = 2 and n = 100, and we obtain η1,100 = 90 and η2,100 = 10,

then we clearly could have stopped sampling quite a bit earlier, yet still reached the conclu-

sion that alternative 1 is the most probable for the given P ?-requirement on (prior) P(CS).

The curtailed sequential procedure of Bechhofer and Kulkarni (BK) (1984) achieves efficien-

cies over Procedure MBEM by capitalizing on such favorable sample paths, that is, sample
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paths that allow the procedure to stop before taking all n multinomial observations called

for by the single-stage procedure. When otherwise ambiguous, we place a subscript on n to

indicate the appropriate procedure, for example nBEM for Procedure MBEM.

Procedure MBK

• For the given k, θ?, and P ?, specify n prior to the start of sampling. (Typically, n

will be the same value as nBEM.)

• At the mth stage of experimentation, m ≥ 1, take a random multinomial observation.

• Calculate the ordered cumulative successes η[i]m, i = 1, 2, . . . , k. Stop sampling at the

first stage when

η[k]m − η[k−1]m ≥ n−m. (2.1)

• Select îm as the best alternative, randomizing to break ties.

In other words, ProcedureMBK employs a curtailment strategy that stops sampling at

the first stage m for which the alternative currently in first place can do no worse than tie if

the remaining n−m observations were to be taken. Let N be a random variable denoting

the value of m at the termination of multinomial observations. It can be shown that the

curtailed ProcedureMBK yields the same P(CS) as the single-stage ProcedureMBEM, yet

with a smaller expected number of observations, i.e., for all p,

Pp(CS using Procedure MBK) = Pp(CS using Procedure MBEM)

and

Ep[NBK] ≤ nBEM,

where Ep[NBK] is the expectation of NBK under configuration p.

Remark 2.2 Since Pp(CS) for both procedures is identical when nBK = nBEM, the SC

for Procedure MBK must be the LFC as Kesten and Morse (1959) proved for Procedure

MBEM. Thus, the parameter nBK, chosen based upon the procedure performance in the

SC, satisfies condition (1.1) for the given k, θ?, and P ?.
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In the course of our research, we developed and implemented algorithms to calculate the

performance parameters of the primary procedures we discuss here. Appendix A.1 includes

tables for Procedure MBK with ESC[N ] and EEPC[N ] for a range of k, θ?, and n values,

where EPC is the equal probability configuration, or p = (1/k, 1/k, . . . , 1/k). Estimates for

the expected number of observations in the EPC are considered worst-case estimates.

Bechhofer and Kulkarni (1984) describe the curtailment in their procedure as strong

curtailment. An earlier bounded sequential procedure developed by Gibbons et al. (1977) is

similar, but uses a strict inequality in the curtailment stopping condition. Such curtailment

is known as weak curtailment. It also results in the same Pp(CS) but with a slightly larger

expected number of observations.

Example 2.1 For k = 3 and n = 2, stop sampling if

m x1m x2m x3m η1m η2m η3m

1 0 0 1 0 0 1

and select alternative 3, because η[k]m − η[k−1]m = 1 ≥ n−m = 2− 1 = 1. 2

Example 2.2 For k = 3 and n = 3 or 4, stop sampling if

m x1m x2m x3m η1m η2m η3m

1 0 0 1 0 0 1

2 0 0 1 0 0 2

and select alternative 3, because η[k]m − η[k−1]m = 2 ≥ n −m = n − 2 for n = 3 or n = 4.

2

Example 2.3 For k = 3 and n = 3, suppose that

m x1m x2m x3m η1m η2m η3m

1 0 1 0 0 1 0

2 1 0 0 1 1 0

3 0 0 1 1 1 1

Because n = m, we stop sampling and randomize among the three alternatives. 2
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The above examples involving ProcedureMBK suggest that sequential procedures might

prove efficacious in terms of sampling efficiency; and, in fact, a number of intuitively appeal-

ing sequential procedures have been studied in the literature. Cacoullos and Sobel (1966)

propose a bounded sequential procedure in which sampling continues until the alternative

with the greatest number of successes reaches a predetermined inverse sampling parameter t

(i.e., stops sampling when η[k]m = t). The inverse sampling parameter is chosen for a given

k and θ? to guarantee a particular P ?. The authors show that the SC is the LFC for their

procedure.

Alam (1971) recommends an unbounded sequential procedure in which sampling con-

tinues until the difference between the two best alternatives is equal to the parameter r

(i.e., η[k]m − η[k−1]m = r). He shows that the SC is the LFC for his procedure when k = 2.

He conjectures that the same is true for k > 2 and substantiates his claim via Monte Carlo

methods. Alam and Thompson (1972) develop a similar procedure for identifying the least

probable multinomial alternative. Bhandari and Ali (1994) generalize Alam’s (1971) pro-

cedure to selection of the s best cells (s ≥ 1) and prove Alam’s conjecture about the LFC

for k > 2.

Ramey and Alam (RA) (1979) propose a procedure that combines the inverse sampling

of the Cacoullos and Sobel procedure with the difference stopping rule of the Alam proce-

dure.

Procedure MRA

• For the given k, P ?, and θ?, find (r, t) from an appropriate table (e.g., Bechhofer and

Goldsman (BG) 1985a or Appendix A.3 of this thesis).

• At the mth stage of experimentation, m ≥ 1, take a random multinomial observation.

• Calculate the ordered cumulative successes η[i]m, i = 1, 2, . . . , k. Stop sampling at the

first stage when

η[k]m = t or η[k]m − η[k−1]m = r. (2.2)

• Select îm as the best alternative; ties are not possible.
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Remark 2.3 RA show that the SC is the LFC for their procedure when k = 2, and

conjecture that it is so for k > 2, based upon empirical evidence. Therefore, the (r, t)-

values in BG (1985a) and in Appendix A.3 of this thesis have been chosen to minimize the

expected number of observations taken by Procedure MRA when p is the SC, satisfying

condition (1.2), but not necessarily condition (1.1).

Remark 2.4 Empirical evidence also led RA to conclude that when there are several pairs

(r, t) that satisfy condition (1.2), the pair with the lowest value of r corresponds to the

lowest expected number of observations. While this is true in most cases, it is not true in

general. Consider k = 3, θ? = 2, and P ? = 0.75. For parameter pair (4, 5), PSC(CS) = 0.756

and ESC[N ] = 8.809, but for parameter pair (3, 6), PSC(CS) = 0.773 and ESC[N ] = 8.825.

Thus, the pair with the higher r has the lower expected number of observations in this case.

This is bad news when searching for an optimal pair across the feasible domains for r and

t because it makes the search somewhat more burdensome.

Remark 2.5 For k = 2, ProcedureMRA is a gambler’s ruin problem subject to a constraint

on the total number of wins or losses dictated by t. We discuss this further in Chapter 6.

Example 2.4 For k = 3, θ? = 3, and P ? = 0.75, the Procedure MRA table reveals that

the required (r, t)-pair is (2, 3). Suppose that

m x1m x2m x3m η1m η2m η3m

1 1 0 0 1 0 0

2 0 0 1 1 0 1

3 1 0 0 2 0 1

4 0 1 0 2 1 1

5 1 0 0 3 1 1

Because η[3]5 = 3 = t, we stop sampling due to the inverse sampling rule. We would also

stop due to the difference rule, since η[3]5 − η[2]5 = 2 = r. 2

The next procedure is from BG (1985b, 1986), and is a truncated version of an un-

bounded sequential procedure due to BKS (1968), which is itself based on a sequential
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probability ratio test. This procedure stops sampling as soon as one of several stopping

criteria are met, including curtailment.

Procedure MBG

• For the given k, P ?, and θ?, find the truncation number n from the table given in BG

(1986) or BSG (1995).

• At the mth stage of experimentation, m ≥ 1, take a random multinomial observation.

• Calculate the ordered cumulative successes η[i]m, i = 1, 2, . . . , k, and the quantity

zm =
k−1∑
i=1

( 1

θ?

)η[k]m−η[i]m
.

Stop sampling at the first stage when either

zm ≤ (1− P ?)/P ? or η[k]m − η[k−1]m ≥ n−m. (2.3)

• Select îm as the best alternative, randomizing to break ties.

Remark 2.6 For the unbounded procedure upon which Procedure MBG is based, BKS

prove that the LFC is the SC; see also Levin (1984). BG acknowledge that both the

BKS procedure and Procedure MBEM share the same LFC, but they do not prove that

combining the stopping rules of these two procedures by adding a truncation point to the

BKS procedure actually preserves the LFC in the new procedure. We have seen no evidence

to doubt that conjecture; however, we do not have a proof that it is true. Therefore,

the tabulated n-values in BG (1986) and BSG (1995) minimize the expected number of

observations taken by ProcedureMBG when p is the SC, satisfying condition (1.2), but not

necessarily condition (1.1).

Remark 2.7 Many of the procedures that have a strong curtailment stopping rule also

include the fixed sample size stopping rule. In this procedure, for example, both η[k]m −

η[k−1]m ≥ n−m and m = n are often explicitly listed as stopping criteria. We have chosen

to remove this redundancy here and for other similar procedures, since the first of the two

rules is always satisfied whenever the second is.
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Example 2.5 Suppose k = 3, θ? = 3, and P ? = 0.75. The table tells us to truncate

sampling at n = 5 observations. For the data

m x1m x2m x3m η1m η2m η3m

1 1 0 0 1 0 0

2 1 0 0 2 0 0

we stop sampling by the first criterion in (2.3) because z2 = (1/3)2 + (1/3)2 = 2/9 ≤

(1− P ?)/P ? = 1/3, and we select alternative 1. 2

Example 2.6 Again suppose k = 3, θ? = 3, and P ? = 0.75 (so that n = 5). For the data

m x1m x2m x3m η1m η2m η3m

1 0 1 0 0 1 0

2 0 0 1 0 1 1

3 0 0 1 0 1 2

4 0 1 0 0 2 2

5 0 0 1 0 2 3

we stop sampling by the second criterion in (2.3) because η[k]m − η[k−1]m = 1 ≥ m − n =

5− 5 = 0, and we select alternative 3. 2

Example 2.7 Yet again suppose k = 3, θ? = 3, and P ? = 0.75 (so that n = 5). For the

data

m x1m x2m x3m η1m η2m η3m

1 0 0 1 0 0 1

2 1 0 0 1 0 1

3 1 0 0 2 0 1

4 0 0 1 2 0 2

5 0 1 0 2 1 2

we stop according to the second criterion in (2.3) since η[k]m − η[k−1]m = 0 ≥ m − n =

5 − 5 = 0, but we now have a tie between η1,5 and η3,5, so we randomly select between

alternatives 1 and 3. 2
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Example 2.8 Suppose k = 4, θ? = 1.6, P ? = 0.75. The single-stage Procedure MBEM

requires 46 observations to guarantee (1.1), whereas Procedure MBG (with nBG = 57) has

ESC[N ] = 31.1 and EEPC[N ] = 37.65. 2

Chen (1988a) proposes a bounded sequential procedure that combines the curtailment

of Procedure MBEM with Cacoullos and Sobel’s inverse sampling procedure.

Procedure MC

• For the given k, θ?, and P ?, find (n, t) from an appropriate table (e.g., Chen 1988a).

• At the mth stage of experimentation, m ≥ 1, take a random multinomial observation.

• Calculate the ordered cumulative successes η[i]m, i = 1, 2, . . . , k. Stop sampling at the

first stage when

η[k]m = t or m = n. (2.4)

• Select îm as the best alternative, randomizing to break ties.

Remark 2.8 Chen proves that the SC is the LFC. Thus, his tabulated (n, t)-pairs, based

upon procedure performance in the SC, satisfy condition (1.1) for a given k, θ?, and P ?.

Remark 2.9 Chen states that the strong curtailment stopping rule (2.1) of Procedure

MBK could be used to reduce the expected number of observations for his procedure without

affecting P(CS), but he does not implement the change. In Chapter 6, we modify his

procedure by incorporating curtailment, renaming it Procedure MC′ , and tabulate the

results for common choices of k, θ?, and P ?, in Appendix A.2.

Example 2.9 For k = 3, θ? = 3, and P ? = 0.75, Chen’s table reveals that the required

(n, t)-pair is (5, 3). Suppose that
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m x1m x2m x3m η1m η2m η3m

1 1 0 0 1 0 0

2 0 0 1 1 0 1

3 1 0 0 2 0 1

4 0 1 0 2 1 1

5 0 0 1 2 1 2

Because m = 5 = n, we stop sampling and select the best alternative by randomizing

between alternatives 1 and 3. 2

Example 2.10 Again let k = 3, θ? = 3, and P ? = 0.75, so the required (n, t)-pair is (5, 3).

Suppose that

m x1m x2m x3m η1m η2m η3m

1 1 0 0 1 0 0

2 0 0 1 1 0 1

3 1 0 0 2 0 1

4 1 0 0 3 0 1

Because η[k]m = 3 = t = 3, we stop sampling, and choose alternative 1 as the best. 2

Chen (1992) proposes a modified ProcedureMRA′ that adds truncation at point n (with

curtailment) to Procedure MRA.

Procedure MRA′

• For the given k, θ?, and P ?, find the (n, r, t)-triplet from an appropriate table (e.g.,

Chen 1992).

• At the mth stage of experimentation, m ≥ 1, take a random multinomial observation.

• Calculate the ordered cumulative successes η[i]m, i = 1, 2, . . . , k. Stop sampling at the

first stage when

η[k]m = t or η[k]m − η[k−1]m = r or η[k]m − η[k−1]m ≥ n−m. (2.5)
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• Select îm as the best alternative, randomizing to break ties.

Chen points out that P(CS) is unchanged for all t such that t ≥ n/2 with fixed r and

n. Similarly, he shows that P(CS) is also unchanged for all r such that r ≥ t for fixed t and

n. We can then restrict our search for the optimal procedure parameter triplet (n, r, t) to

r ≤ t ≤ n/2.

Remark 2.10 Chen conjectures that the LFC of Procedure MRA′ is the SC. He then

proves a partial result to the conjecture, namely, that the LFC is of the form

p = {0, 0, . . . , 0, s, p, p, . . . , p, θ?p},

where 0 ≤ s ≤ p. Since his procedure is a generalization of Procedure MRA, this is also a

partial proof of Ramey and Alam’s (1979) conjecture concerning the LFC of their procedure.

The (n, r, t)-values in Chen (1992) have been chosen to minimize the expected number of

observations taken by Procedure MRA′ when p is the SC, satisfying condition (1.2), but

not necessarily condition (1.1).

For the sake of brevity, we will not include examples here, since the previous examples

for other procedures that use one or more of the same stopping rules have already been

discussed.

2.2.2 Other MSP Procedures

We briefly review other types of MSP procedures that have a primary goal other than

selection of the single best alternative or that use the MSP as a non-parametric approach

to RS.

A great deal of research has been carried out for subset selection problems in which

the experimenter wishes to find a subset of alternatives which includes the best (or worst).

Gupta and Nagel (1967) propose a single-stage procedure for selecting a subset contain-

ing the best or worst alternative. Bechhofer and Chen (1991) improve Gupta and Nagel’s

procedure by integrating the strong curtailment stopping rule. Panchapakesan (1971) de-

veloped a subset selection procedure based upon an inverse sampling rule. Chen and Hsu
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(1991a) create a procedure that combines four stopping rules based upon fixed sample size,

curtailment, inverse sampling, and the difference in number of successes between the best

two alternatives. Chen and Hsu (1991b) also develop a similar procedure for selecting the

subset with the least probable alternative. Chen and Sobel (1987) and Chen (1988b) present

a procedure that integrates the indifference zone and subset selection procedures by guar-

anteeing a P(CS) of the best alternative if the probability configuration is in the PZ and

a probability of selecting a subset containing the best alternative if the configuration is in

the IZ. Vieira et al. (2012) generalize Procedure MBG for application to subset selection

problems with a large number of alternatives under a restriction on the maximum subset

size.

Ramey and Alam (1980) propose a sequential procedure for selecting the most probable

alternative that is based upon a Bayesian approach when the parameters of a multinomial

distribution are known to follow a Dirichlet distribution. Bechhofer et al. (1989) extend

the single-stage Procedure MBEM, designed for single factor experiments, to a single-stage

procedure designed for a multiple factor experiment.

Aoshima and Chen (1999) and Aoshima et al. (2003) propose procedures for selecting the

best multinomial alternative in the presence of a nuisance alternative. In such a problem,

the experimenter takes observations from k alternatives, but wants only to know the best

of a particular subset of size k − 1. The remaining alternative is considered the nuisance

alternative.

Chen and Hwang (1984), with reference to Marshall and Olkin (1979), and Bhandari

and Bose (1987), address the LFC for selecting the best multinomial alternative when the

indifference zone is defined by a location parameter (i.e., p[k] ≥ p[k−1] + a, where a is the

specified indifference zone parameter) instead of a relative risk indifference zone parameter.

Bhandari and Bose (1989) address least favorable considerations for fixed sample size subset

selection procedures.

Miller et al. (1998) propose a procedure for experiments that compare alternatives via a

numerical performance measure, but formulate the problem as an MSP rather than a para-

metric selection problem. Their procedure is called All Vector Comparisons (AVC) and
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involves creating “pseudoreplications” out of all possible permutations of the k independent

vectors of observations for each alternative. They then tabulate the total number of repli-

cations required to achieve a specified P ? given k and θ?, and compare the performance

to Procedure MBEM. Procedure efficiency under varying performance measure probability

distributions is also examined. Vieira et al. (2010) report a more thorough comparison of

AVC and Procedure MBEM. One of their primary conclusions is that AVC does not work

in populations for which the best alternative has the greatest probability of achieving the

highest value of the performance measure, but does not have the largest expected value of

the measure.

2.3 Observation Cost

For all of the procedures discussed thus far, the goal of interest for procedure efficiency is the

minimization of the expected number of observations. The underlying assumption is that

each observation has constant cost (i.e., the first observation is no more expensive than the

last). None of the literature for MSP procedures addresses or considers variable observation

costs. Other papers have, however, considered particular aspects of cost in RS problems

other than MSPs. All of the examples we highlight below assume normally distributed

alternative outputs. Note that we use the term ‘cost’ as a proxy for any expenditure (e.g.,

effort, resources, penalties, opportunity cost, etc.), not just monetary.

Hong and Nelson (2005) consider the setup costs of switching between alternatives dur-

ing sampling. Their procedures minimize switching while still providing the same statistical

guarantees of traditional RS procedures. Chick and Inoue (2001) develop Bayesian proce-

dures (for both constrained and unconstrained observation budgets) that build upon earlier

Bayesian formulations of Gupta and Miescke (1996). Their procedures trade off the cost

of continued observations with expected opportunity costs, i.e., the expected loss due to

potentially choosing an inferior alternative. Their procedures also allow for a different ob-

servation cost for each alternative, but each remains constant throughout the experiment.

Chick and Gans (2009) solve a selection problem in which the goal is to maximize the net

present value of the alternative that is eventually selected, accounting for discounted cash
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flows and observation costs. They assume that all observation costs are constant (but dis-

counted based upon sampling duration). Their procedure extends that of Chick and Inoue

by using a Bayesian formulation that treats the decision take an observation as a real option.

Chen (1995) and subsequent papers by his colleagues use an alternate Bayesian formu-

lation called optimal computing budget allocation (OCBA) procedures. The goal of their

procedures is to allocate simulation lengths efficiently to the alternatives under considera-

tion in order to minimize computation time (observation costs) while still guaranteeing an

approximate confidence probability. He et al. (2007) extend Chen’s work by using OCBA

to minimize the expected opportunity cost (instead of improving confidence probabilities).

For a comparison of indifference zone, expected opportunity cost, and OCBA procedures,

see Branke et al. (2007).

We were unable to find any RS literature that considers variable observation costs for

within-alternative sampling, with the exception of the very narrow application to switching

costs in Hong and Nelson (2005). Furthermore, none of the literature considering costs

specifically addresses alternative output other than normally distributed measures.
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CHAPTER III

OPTIMAL PROCEDURES

We next formulate the selection problem in ways that allow the performance character-

istics of the procedures to be evaluated via linear programming (LP) and mixed integer

programming (MIP) techniques. In particular, we propose an LP formulation that yields

an optimal randomized sequential procedure, as well as an MIP formulation that yields a

non-randomized sequential procedure possessing certain optimality properties.

3.1 Optimal Multinomial Selection

In this section, we describe the development of our new procedures, which are based upon

mathematical programming techniques. §3.1.1 provides the motivation behind our research.

§3.1.2 describes our generalized procedure, followed by the mathematical formulation of the

problem in §3.1.3.

3.1.1 Motivation

In the constrained version of the MSP, considered in this thesis, there is a given maximum

number of observations allowed, called the budget b, and the problem is to choose dynami-

cally the number n ≤ b of observations such that if în is chosen as described in Chapter 1,

then condition (1.2) holds, and the (prior) expected number of observations is minimized.

In the most general sense, any vector of cumulative successes η is a viable stopping

vector or point. All of the reviewed procedures use stopping rules that are based on some

simple relationships between the components of the cumulative success vector and the spec-

ified procedure parameters. Therefore, those stopping rules are special cases of a general

procedure that specifies the particular cumulative success vectors that are stopping points

for the experiment. We remark that the specified set of stopping points may be infinite.

Stopping rules based upon simple relationships between components of η, such as those

reviewed in Chapter 2, are much easier to apply in practice and to describe than rules that

25



specify an entire set of enumerated stopping points; however, given the ubiquity of comput-

ing resources today, there is no reason to believe that the specification of even thousands

of stopping points is impractical to implement.

In any case, we do not need to enumerate every possible stopping point. Since our

assignment of alternative i to component ηi of the cumulative success vector is arbitrary

for all i = 1, 2, . . . , k, then our procedure must be invariant to those assignments. As an

example with k = 3, if the vector (3, 2, 1) is a stop, then so is any member of the set

of its permutations {(3, 2, 1), (3, 1, 2), . . . , (1, 2, 3)}. That symmetry means that we could

enumerate our set of stopping points in terms of only one of each set of permutations, say the

left-lexicographic permutation denoted η′ ≡ (η[k], η[k−1], . . . , η[1]), with the understanding

that if η′ is a stop, then so are all of its permutations.

The discretized nature of multinomial trials ensures that the set of potential stopping

points is countable. If our problem is bounded, then our set is also finite. As a result, we can

enumerate all of the possible subsets of stopping points, although the number of such subsets

may be prohibitively large. Not all possible subsets are feasible, however. For instance, if

(2, 0, 0) is a stopping point for k = 3, then (3, 0, 0) is infeasible, since the latter vector can

never be reached. But even the set of feasible subsets can be quite large. Fortunately, we

can use mathematical programming techniques as an alternative to complete enumeration.

Mathematical programming techniques give us an additional benefit beyond an ability to

optimize over the feasible set of stopping points. All existing MSP procedures assume that

the conditional probability of stopping at a particular cumulative success vector η given

that we have arrived there, is either zero or one. Mathematical programming, however,

allows us to consider a generalization of the problem in which the conditional probability of

stopping at η may be any value in the interval [0, 1]. We call this generalized formulation

of the problem a randomized formulation. If we require that all of the conditional stopping

probabilities equal zero or one, we call that formulation a non-randomized formulation.

Only non-randomized procedures can be considered when using enumeration, since allowing

randomized stops makes the number of possible procedures infinite.
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The following trivial example shows why we must consider randomization for true op-

timality. Consider a k = 2 problem, with θ? = 4 and P ? = 0.75. In the SC, p =

(0.8, 0.2). Taking one observation and choosing the alternative that wins is the optimal

non-randomized procedure, with ESC[N ] = 1 and PSC(CS) = 0.8. However, suppose we

stop without taking any observations with probability 1/6 and choose an alternative at

random. If we do not stop, we will take one observation and choose the alternative that

wins. Then,

ESC[N ] =

(
1

6

)
(0) +

(
5

6

)
(1) =

5

6
,

and

PSC(CS) =

(
1

6

)(
1

2

)
+

(
5

6

)(
4

5

)
=

3

4
= P ?.

Thus, randomizing stops results in a lower expected number of observations in the SC than

the non-randomized procedure, while still achieving P ?.

3.1.2 Procedure

To define our new procedures, we need some additional notation. Let the set of all

possible cumulative success vectors be denoted N ≡
{
η :

∑k
i=1 ηi ≤ b

}
. Let pη ≡

P(stop at η | arrive at η) be the conditional probability of stopping at η. We denote the

set of ordered pairs representing the potential stopping points for a randomized procedure

as SR ≡ {(η, pη) : η ∈ N and pη > 0}. For non-randomized procedures, SNR ≡ {η : η ∈

N and pη = 1} is the set of stopping points. The ordered pair notation is unnecessary for

SNR, since all potential stopping points have pη = 1.

For example, consider a k = 2 problem and a randomized procedure with eight potential

stopping points and associated conditional stopping probabilities:

SR =


(
(2, 0), 0.75

)
,
(
(3, 0), 1

)
,
(
(3, 1), 1

)
,
(
(3, 2), 1

)
,(

(0, 2), 0.75
)
,
(
(0, 3), 1

)
,
(
(1, 3), 1

)
,
(
(2, 3), 1

)
 .

According to this set, if we arrive at either (2, 0) or (0, 2), we will stop with probability

0.75. If we arrive at any of the other success vectors in SR, we will stop with probability 1.

Although all permutations of a particular stopping point are included in SR, we could have

represented the set more simply by including only the left-lexicographic vectors, as we noted
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in §3.1.1, provided it is understood that all permutations of those vectors are also stops with

the same conditional stopping probability.

The following generic ProceduresMR andMNR are the randomized and non-randomized

procedures, respectively.

Procedure MR

• For the given k, P ?, θ?, and b, derive SR.

• At the mth stage of experimentation, m ≥ 1, take a random multinomial observation.

• Calculate the cumulative success vector η. If η ∈ SR then stop sampling with proba-

bility pη (determined by randomization).

• Select îm as the best alternative, randomizing to break ties.

Procedure MNR

• For the given k, P ?, θ?, and b, derive SNR.

• At the mth stage of experimentation, m ≥ 1, take a random multinomial observation.

• Calculate the cumulative success vector η. If η ∈ SNR then stop sampling.

• Select îm as the best alternative, randomizing to break ties.

3.1.3 Formulation

Here we describe the randomized and non-randomized implementations of our formulation

— a linear program and a mixed integer program, respectively. For conciseness, we will

display the MIP and then point out which variables and constraints are not in the LP.

We will discuss our implementation for the case k = 3 because it has complexities that

are not obvious with k = 2 (due to permutations), but is still reasonably straightforward in

representation. Consider an experiment with a given P ?, θ?, and budget b. We assume that
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η1, η2, and η3 ≥ 0. Let B ≡
{
η :

∑k
i=1 ηi = b

}
be the set of possible cumulative success

vectors after the bth observation. Without loss of generality, we assume a probability

configuration, p = (p1, p2, p3), in which p1 ≥ p2 ≥ p3 and
∑3

i=1 pi = 1. We use the

parameter θi to represent the ratio of the best probability of success (alternative 1) to that

of alternative i, so θi ≡ p1/pi, for i = 1, 2, 3.

We show our MIP (non-randomized) formulation in full and then explain each compo-

nent. Our LP (randomized) formulation can be obtained from the MIP by removing the

binary variables and the constraints that involve those variables. We will point out the

differences between the MIP and the LP as they arise. Let 0 be the vector (0, 0, 0). The

full formulation, consisting of equations (3.1)–(3.10), is shown in Figure 3.1.

3.1.3.1 Variables

Our key insight is to model the MSP as a network. The flow through the network repre-

sents the flow of probability. Each node in the network is a vector η through which the

multinomial sample paths may go. Figure 3.2 is a graphical depiction of the flow variables

discussed in this section. The following is a brief description of each type of variable.

• fη are continuous, non-negative variables that represent the probability that flows

from node η out of the network through an arc to the sink. All nodes have arcs to the

sink. A nonzero value for this variable indicates that η is a potential stopping node.

Specifically,

fη = P(arrive at η and stop at η)

= P(stop at η | arrive at η) P(arrive at η)

= pη P(arrive at η). (3.11)

Deriving the values of all pη is the ultimate goal of the optimization, as they define

the procedure.

• f iη, i = 1, 2, 3, are the probabilities that flow through an outbound arc from η with∑k
i=1 ηi = m − 1 due to a success by alternative i on the next observation, m; see
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min
fη ,f

1
η ,f

2
η ,f

3
η ,Yη

∑
η∈N

(f1
η + f2

η + f3
η) (3.1)

Subject to:

(Initialization) f0 + f1
0 + f2

0 + f3
0 = 1, (3.2)

(Flow Conservation)
fη + f1

η + f2
η + f3

η − f1
(η1−1,η2,η3)

−f2
(η1,η2−1,η3) − f

3
(η1,η2,η3−1) = 0,

∀η ∈ N \ 0 (3.3)

(Balance Outflow)
f1
η − θ2f

2
η = 0,

f1
η − θ3f

3
η = 0,

∀η ∈ N \ B (3.4)

(Symmetry)

fη − θ2
η1−η2f(η2,η1,η3) = 0,

fη − θ3
η1−η3f(η3,η2,η1) = 0,

fη −
(
θ3
θ2

)η2−η3f(η1,η3,η2) = 0,

fη −
(

1
θ2

)η2−η3 θ3
η1−η3f(η2,η3,η1) = 0,

fη − θ2
η1−η2 θ3

η2−η3f(η3,η1,η2) = 0,

∀η ∈ N s.t.

η1 ≥ η2 ≥ η3

(3.5)

(Minimum P(CS)) ∑
η∈N

η1>max{η2,η3}

fη +
1

2

∑
η∈N

η1=η2>η3 or
η1=η3>η2

fη +
1

3

∑
η∈N

η1=η2=η3

fη ≥ P ?, (3.6)

(Stop) fη − Yη ≤ 0, ∀η ∈ N (3.7)

(Full Stop) f1
η + f2

η + f3
η + Yη ≤ 1, ∀η ∈ N \ B (3.8)

(Non-negativity) fη, f
1
η, f

2
η, f

3
η ≥ 0, ∀η ∈ N (3.9)

(Binary) Yη binary ∀η ∈ N (3.10)

Figure 3.1: MIP Formulation of the Constrained MSP
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Figure 3.2. Then

f iη = P(arrive at η and do not stop at η and alternative i wins)

= P(alternative i wins | arrive at η and do not stop) ·

P(arrive at η and do not stop)

= P(alternative i wins | arrive at η and do not stop) ·

P(do not stop at η | arrive at η) P(arrive at η)

= pi (1− pη) P(arrive at η). (3.12)

Since
∑k

i=1 pi = 1,

f1
η + f2

η + f3
η = (1− pη)P(arrive at η),

= P(arrive at η and do not stop).

• Yη’s are binary variables that denote whether or not node η is a stopping node and

are defined as

Yη ≡ I[
η is a stopping node

],
where I[A] is the indicator function for the occurrence of event A. In the LP (random-

ized) formulation, these variables are omitted.

3.1.3.2 Objective Function

Our goal is to choose a set of stopping points (and stopping probabilities) that minimizes the

expected number of observations subject to the P(CS) constraint (3.6). In the formulation,

that goal is reflected by the objective function (3.1), which minimizes the sum of the flows

across all of the arcs connecting one node to another (i.e., all of the arcs except those to

the sink). To see that (3.1) achieves our goal, consider the random variable, N , which

represents the total number of observations taken during a single experiment:

N =
∑
η∈N

I[
observation taken at node η

].
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Figure 3.2: Flow Variables

Thus,

E[N ] =
∑
η∈N

P(observation taken at node η)

=
∑
η∈N

P(arrive at η and do not stop)

=
∑
η∈N

(1− pη) P(arrive at η)

=
∑
η∈N

(f1
η + f2

η + f3
η).

3.1.3.3 Constraints

With the constraints for the case k = 3 in mind, we briefly describe the form of the

constraints for general k.

• Initialization: Constraint (3.2) initializes the total probability in the network by mak-

ing 0 a source node with probability flow 1. Note that the net probability flow in-

troduced into the network may be less than 1 if f0 > 0, that is, if node 0 is also a

stopping node.

• Flow Conservation: Constraints (3.3), depicted in Figure 3.2, require that the flow of

probability into any node equals the flow from that node.
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• Balanced Outflow : Constraints (3.4) maintain the probability configuration p by en-

suring that the success probability for each of the k alternatives is consistent through-

out the network. There are k− 1 such constraints per node, leaving the optimization

one degree of freedom to set the probability outflows on the k arcs. We write the

constraints in terms of θ2 and θ3 for the general configuration p = (q, qθ2 ,
q
θ3

), where

q = (1 + 1
θ2

+ 1
θ3

)−1 so that
∑3

i=1 pi = 1. For the SC, p = (q, qθ? ,
q
θ? ).

• Symmetry : Constraints (3.5) require that pη — the probability of stopping at any

permutation of a particular node η given an arrival at that node — is the same for

all permutations of the node. The necessity for this set of constraints is discussed in

§3.1.1. We note first that if η1 ≥ η2 ≥ η3, then η is equal to η′, its left-lexicographic

permutation. Therefore, we require that

pη = pη′ for all η ∈ π(η′), (3.13)

where π(η′) is the set of all permutations of η′ = (η[3], η[2], η[1]).

Note that

P(arrive at η) = Sη

3∏
i=1

pi
ηi = Sη q

∑k
i=1 ηi

3∏
i=2

1

θi
ηi
, (3.14)

where we leave out i = 1 in the product of the last term since θ1 = 1. By (3.11) and

(3.14), we can write (3.13) as

fη

Sη q
∑k
i=1 ηi

∏3
i=2

1
θi
ηi

=
fη′

Sη′ q
∑k
i=1 η[i]

∏3
i=2

1
θi
η[k−1+1]

. (3.15)

By symmetry, the number of paths to each of the permutations is the same (i.e.,

Sη = Sη′), and
∑3

i=1 ηi =
∑3

i=1 η[i], so (3.15) simplifies to

fη =
3∏
i=2

θi
η[k−i+1]−ηi fη′ . (3.16)

Substitution for the appropriate permutation indices, further simplification, and drop-

ping of the order notation leads to the form of the constraints in (3.5). In the SC, θ2

and θ3 are replaced by θ?.
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Remark 3.1 For the k = 3 case considered here, there are five constraints governing

the six possible permutations of each left-lexicographic node. In general, for each

node, we need one less constraint than the number of permutations. That leaves the

optimization one degree of freedom for determining the probability of stopping at any

permutation of the node. For nodes in which two of the three elements are equal,

we have three possible permutations, and thus the five constraints for that node will

simplify to two unique constraints. If all three elements are equal, the five symmetry

constraints for that node become the trivial constraint fη−fη = 0, which is equivalent

to having no symmetry constraints for that node, as expected.

Remark 3.2 For the MIP, we can use the binary variables to force symmetry. In

that case, we could use five constraints to represent

Yη = Yη′ for all η ∈ π(η′). (3.17)

The choice of implementation for the symmetry constraints in the MIP should be

based upon user requirements and MIP solver capabilities.

• Minimum P(CS): Constraint (3.6) ensures that our achieved P(CS) is at least P ?. It

is the only inequality constraint (besides the lower bound constraints) in the LP (ran-

domized) formulation. Nonzero P(CS) is only achieved at stopping nodes for which

η1 ≥ max{η2, η3}. If η1 = max{η2, η3}, then the selection of the best alternative is

determined by randomization (not to be confused with a randomized stop) to account

for any ties. Let t(η) be the number of alternatives with the same number of successes

as the best (including the best). The general equation then is

P(CS) =
∑
η∈N

η1≥max{η2,η3}

1

t(η)
P(arrive at η and stop) =

∑
η∈N

η1≥max{η2,η3}

fη
t(η)

.

• Stop: Constraints (3.7) only apply to the MIP (non-randomized) formulation. They

ensure that there is no stopping probability at a node unless it is a complete stop (i.e.,

fη = 0 when Yη = 0).
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• Full Stop: Constraints (3.8) only apply to the MIP formulation. They ensure that if

a node has been selected as a stopping node (i.e., Yη = 1), the stop is a full stop; i.e.,

there is no flow on the node’s outbound arcs. This set of constraints, combined with

the previous set, ensures that pη = 0 or 1.

• Non-negativity : Constraints (3.9) ensure that all continuous variables are non-negative.

• Binary : Constraints (3.10) declare the binary variables for the MIP formulation.

3.1.3.4 Solutions

We now consider the solution (assuming that it exists) to the optimization. A solution will

not exist if our budget is insufficient to achieve P ? for the given problem parameters. In

particular, if the budget b is less than the truncation parameter nBEM for ProcedureMBEM,

the problem is infeasible. Our goal is to find SR or SNR that minimizes the expected number

of observations. Pursuant to the discussion of our procedure in §3.1.2, we must extract from

our solution the pη for all η as follows:

pη = P(stop at η | arrive at η)

=
P(arrive at η and stop)

P(arrive at η and stop) + P(arrive at η and do not stop)

=
fη

fη + f1
η + f2

η + f3
η

. (3.18)

In the case that the numerator and denominator are both zero (e.g., for nodes through

which there is no inflow of probability), we arbitrarily set pη = 0. With the set {pη} in

hand, we can construct the sets required to define our procedures, which leads us to the

following theorems.

Theorem 3.1 A randomized procedure created from the solution to the LP formulation

described in §3.1.3 is an optimal solution to the constrained, indifference zone MSP for a

specified probability configuration p.

Theorem 3.2 A non-randomized procedure created from the solution to the MIP formula-

tion described in §3.1.3 is an optimal non-randomized solution to the constrained, indiffer-

ence zone MSP for a specified probability configuration p.
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The theorems acknowledge that our procedures satisfy condition (1.2) when p is the SC,

but not necessarily condition (1.1). We address that further in §3.2.1.

3.2 Results

In this section, we give preliminary results concerning the performance of our new proce-

dures. §3.2.1 briefly discusses the LFC for our procedure. In §3.2.2, we present examples

that compare our new procedures to existing procedures.

3.2.1 Least Favorable Configuration

For all of the MSP procedures that we reviewed in Chapter 2, it is either proved or conjec-

tured that the SC is the LFC. Every known proof is based on a knowledge of the structure

of the procedure’s stopping points. Unfortunately, beyond symmetry, there is no struc-

ture guaranteed by either Procedure MR or MNR. In fact, our anecdotal evidence has

demonstrated optimal sets of stopping points with no discernible pattern and which change

completely in structure given small changes to P ?. As a result, we have been unable to

apply similar tools to prove that the SC, or any other configuration, is the LFC for our

procedures. Furthermore, by Definition 1.1, the LFC is specific to the method of choosing

an alternative. Since the optimal stopping structures for Procedures MR and MNR vary

so significantly, we must consider the possibility that the LFC for our procedures is unique

to a set of optimal stopping points, not Procedures MR and MNR overall, as it is for, say,

Procedure MBEM. Nonetheless, we make the following conjecture.

Conjecture 3.1 The SC is the LFC for Procedures MR and MNR.

To substantiate our conjecture, we conducted Monte Carlo (MC) sampling in which we

randomly and uniformly drew 100,000 probability vectors p from the preference zone, ΩPZ.

For each of the sampled probability vectors, we calculated Pp(CS) for the stopping points

and compared it to PSC(CS). We conducted these MC sampling experiments for over 60

different sets of optimal stopping points for both ProceduresMR andMNR. In every case,

Pp(CS) ≥ PSC(CS). Note that the randomness of our experiments was in the drawing of
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Table 3.1: Comparative Results for k = 2, θ? = 1.6, P ? = 0.9, b = 41

Procedure Parameters ESC[N ] PSC(CS) % Increase

MR Stops = 22 16.865 0.9000
MNR Stops = 21 16.873 0.9000 0.05
MBG nBG = 41 17.001 0.9006 0.81
MRA′ nRA′ = 41, r = 5, t = 21 17.001 0.9006 0.81
MRA r = 5, t = 21 17.001 0.9006 0.81
MBK nBK = 31 25.505 0.9054 51.23
MBEM nBEM = 31 31.000 0.9054 83.81

the p, not in the calculation of Pp(CS) and PSC(CS), which are exact numerical results for

the given probability configurations.

3.2.2 Procedure Performance

We provide examples to compare our new procedures to the previously existing procedures

introduced in Chapter 2. For our examples, we set a budget constraint equal to the optimal

truncation procedure parameter nBG for Procedure MBG — an established, robust proce-

dure, which typically performs at least as well as the other previously existing procedures.

(We justify the statement about the superiority of Procedure MBG in Chapter 6.) By

setting b = nBG, we force our new procedures to perform under conditions very favorable

to the best of the existing procedures. All existing procedures are required to have a maxi-

mum possible number of observations less than or equal to b, which may affect the feasible

parameter space for a particular procedure.

For a first, illustrative example, suppose k = 2, θ? = 1.6, P ? = 0.9, and b = 41. Table 3.1

displays the expected number of observations and the achieved PSC(CS) for each procedure.

For each existing procedure, the second column includes the procedure parameter settings

that minimize ESC[N ] for the procedure while still achieving P ?. For our new procedures,

the second column identifies the total number of left-lexicographic stopping points. The

last column shows the percent increase in ESC[N ] over the optimal, randomized procedure

(Procedure MR).

For our second example, we take k = 3, θ? = 2, P ? = 0.9, and b = 34. Table 3.2
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Table 3.2: Comparative Results for k = 3, θ? = 2, P ? = 0.9, b = 34

Procedure Parameters ESC[N ] PSC(CS) % Increase

MR Stops = 114 16.857 0.9000
MNR Stops = 112 16.859 0.9000 0.01
MBG nBG = 34 17.165 0.9016 1.83
MRA′ nRA′ = 30, r = 5, t = 12 18.749 0.9001 11.22
MRA r = 5, t = 12 18.940 0.9057 12.35
MBK nBK = 29 24.242 0.9044 43.80
MBEM nBEM = 29 29.000 0.9044 72.03

shows the resulting performance of the procedures. Here, the new procedures significantly

outperform all but ProcedureMBG in terms of ESC[N ]. Note also the large number of left-

lexicographic stopping points for ProceduresMR andMNR, even for this relatively modest-

sized problem, suggesting that the new procedures need to be automated in implementation.

Neither of the examples shows a significant improvement over ProcedureMBG; this is a

result of our choice of b. Figure 3.3 is a plot of ESC[N ] as a function of b. The values for k,

θ?, and P ? remain the same as in our examples; the chart on the left [right] corresponds to

the first [second] example. We first note that for Procedures MBEM, MBK, and MBG, the

procedure parameter choices which minimize ESC[N ] while still achieving P ? do not change

as the budget is increased. For the remaining procedures, an increased budget provides

additional flexibility which may result in more efficient procedure parameter settings. For

the k = 2 example, when b = 60, use of Procedure MBG results in a 3.2% increase in

the expected number of observations over our new procedures. For the k = 3 example,

when b = 50, Procedure MBG suffers a 7.0% increase. Thus, the performance of our new

procedures versus Procedure MBG improves as b increases beyond nBG.

The relative performance between procedures is also dependent upon the particular P ?

of interest. In both of our examples, P ? = 0.9. Figure 3.4 plots ESC[N ] as a function of

P ? for the original fixed b. Procedure performance is determined for a vector of P ?-values

from 1/k to 0.99 at 0.01 increments, resulting in the step functions depicted in the figure.

In reality, the function for Procedure MR is a piecewise linear convex function, but is a

step function in the figure because of the increments at which we evaluated the LP. Indeed,
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Figure 3.3: Procedure Performance as a Function of the Observation Budget b

in both plots, the improvement in the expected number of observations obtained by our

new procedures varies by P ?. We also note that Procedure MR yields only a very small

improvement over Procedure MNR in our examples. In fact, in both plots, the separation

between the two new procedures’ expected number of observations is not even visible over

a large portion of their domains. Our empirical results indicate that for larger b, the

performance of Procedure MNR (in terms of the expected number of observations) is very

close to that of Procedure MR. We explore this further in Chapter 6.

3.3 Summary

We have developed optimal procedures for selection-of-the-best indifference zone MSPs un-

der an observation budget constraint. Our research leverages the field of mathematical

programming by modeling the characteristics of the problems as an LP and as an MIP.

By construction, our procedures always perform at least as well as existing MSP proce-

dures. Additionally, the optimality properties of our resulting procedures provide a stan-

dard against which other MSP procedures can be evaluated in terms of the expected number

of observations.
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Figure 3.4: Procedure Performance as a Function of P ?

We have also introduced a new type of procedure — the randomized procedure. Ran-

domized procedures provide the same guarantees as non-randomized procedures, but can

be more efficient when optimized for the problem of interest. When the budget is large,

the performances of the randomized and non-randomized procedures, in terms of expected

number of observations, are nearly identical. However, the LP formulations are much easier

to solve in implementation than MIP formulations. Furthermore, the concept of random-

ized stopping points has application beyond MSPs to other types of ranking and selection

procedures.
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CHAPTER IV

EFFICIENT IMPLEMENTATION

The primary contributions of the current chapter are threefold. In §4.1, we develop efficient

reformulations of the LP and MIP upon which the optimal procedures are based. These

new formulations expand the range of real world problems that we can address using the

new procedures. We then examine some key characteristics of the optimal randomized and

non-randomized procedures in §4.2. In §4.3, we extend the LP formulation in order to

replicate the classical procedures. We give conclusions in §4.4.

4.1 Efficient Reformulation of the Mathematical Programs

In this section, we reformulate our mathematical programs in order to deal with some

daunting computational issues related to problem size and numerical instability concerns.

The reformulated problem provides significant computational savings and mitigates many of

our numerical instability issues. In §4.1.1, we describe the main implementation problems,

and then provide an overview of our approach to mitigate those in §4.1.2. We then derive

the reformulation in §4.1.3. Finally, in §4.1.4, we discuss the effects of the reformulation.

4.1.1 Motivation

Our original formulation has a number of significant implementation issues.

Problem Growth The number of nodes in the network increases ‘exponentially’ in the

number of alternatives, k, and the observation budget, b. For example, the randomized

formulation of the MSP with k = 4 and b = 50 has 1.6 million variables (four variables

for each of the 316,250 nodes) and 1.5 million constraints (not including non-negativity

constraints). The non-randomized formulation for the MIP adds an additional 316,250

binary variables and nearly twice as many additional constraints. It is so large, in fact,

that we were unable to solve problems of this size. Thus, as configured, the mathematical
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program can handle only a tiny fraction of the problems of interest.

Numerical Instability The large number of equality constraints leads to stability issues,

particularly for large non-randomized problems. When running those MIPs, our software

had difficulty finding feasible solutions for problems for which we knew such solutions ex-

isted. Even when we provided the software a feasible starting point, we would often get that

point back immediately as the only feasible (and thus optimal) solution. While we cannot

be certain of the cause of these issues, we suspect that minor numerical precision errors can

lead to one or more of the equality constraints being violated, resulting in otherwise feasible

solutions being considered infeasible (or vice versa). This is especially problematic in larger

problems, since the probability flowing through the nodes later in the network, after many

observations have been taken, can be orders of magnitude lower than the flows through the

nodes at the beginning of the network.

In the next section, we discuss our approach to mitigating these significant implemen-

tation problems.

4.1.2 Approach

Our primary goal is to represent the original network using a much smaller subset of the

nodes and arcs, without losing any required information. Fortunately, two sets of equality

constraints and the concept of curtailment provide us the means to do so. A smaller network

will directly address the issue of problem growth, and the elimination of a large portion of

the equality constraints will remove much of the numerical instability.

Remark 4.1 A cumulative success vector ηm = (η1, η2, . . . , ηk) represents a point on the

particular sample path {η1,η2, . . . ,ηm,ηm+1, . . .} — a sequence of random observations

— along which an experiment proceeds. There are usually many potential sample paths

that include ηm as a point. If ηm is a stopping point, then the sample path (and the

experiment) is terminated. Viewing the cumulative success vectors in this way is helpful

for understanding the underlying probabilities in subsequent discussions.
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4.1.2.1 Arc Reduction

The balance outflow constraints, (3.4), require that the flows along arcs out of each node

(i.e., the respective probabilities of alternative success) maintain the same proportion (θi’s)

throughout the network. Setting the flow on one outbound arc completely determines

the flows on the remaining outbound arcs for that node. As a direct result of (3.4), we

can represent the flows along each arc from a particular node in terms of any one of its

outbound arcs, say f1
η, in the following manner:

f iη =
1

θi
f1
η, (4.1)

where θ1 = 1. All of the flow out of node η is then:

k∑
i=1

f iη =
k∑
i=1

1

θi
f1
η

= Θf1
η, (4.2)

where Θ ≡
∑k

i=1
1
θi

.

4.1.2.2 Node Reduction via Symmetry

As discussed in Chapter 3 for k = 3, if (η1, η2, . . . , ηk) is a stopping point, then so is

any permutation of the set {η1, η2, . . . , ηk}. That symmetry requires that any decision to

stop must be the same for all permutations of a potential stopping vector as observed by

the experimenter. The symmetry constraints, (3.5), accomplish this by requiring that the

conditional probability of stopping at a particular node, given an arrival at that node, is the

same for all of its permutations. But that implies that the flows to the sink from all of the

permutations of a particular node should be representable in terms of the flow from any one

of its permutations; we choose the left-lexicographic permutation η′ = (η[k], η[k−1], . . . , η[1]).

Let N ′ ≡ {η′ :
∑k

i=1 η[i] ≤ b}.

In developing the symmetry constraints in Chapter 3, we derive (3.16), which we gen-

eralize here for arbitrary k:

fη =

k∏
i=2

θi
η[k−i+1]−ηi fη′ . (4.3)
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We now have a relationship between the flows to the sink from a node and its left-lexicographic

permutation. We claim that we can apply this same formula to the flows along the arcs

between nodes as well, to arrive at the following relationship:

f iη =
k∏
i=2

θi
η[k−i+1]−ηi f iη′ . (4.4)

The derivation follows. Let Sη be the number of sample paths into node η, and let the

general probability configuration be p = (q, qθ2 , . . . ,
q
θk

). Then, using (3.12),

f iη = pi (1− pη) P(arrive at η)

= pi (1− pη) Sη

k∏
i=1

pηii

= pi (1− pη) Sη q
∑k
i=1 ηi

k∏
i=1

(
1

θi

)ηi
= pi (1− pη′) Sη′ q

∑k
i=1 η[i]

k∏
i=2

(
1

θi

)ηi
,

since pη = pη′ by design, Sη = Sη′ by symmetry, and
∑k

i=1 ηi =
∑k

i=1 η[i] since the terms

are permutations of the same vector. Then

f iη = pi (1− pη′) Sη′ q
∑k
i=1 η[i]

k∏
i=2

(
1

θi

)ηi ( 1

θi

)η[k−i+1]−η[k−i+1]

=

k∏
i=2

(
1

θi

)ηi−η[k−i+1]

pi (1− pη′) Sη′ q
∑k
i=1 η[k−i+1]

k∏
i=2

(
1

θi

)η[k−i+1]

=
k∏
i=2

θi
η[k−i+1]−ηi pi (1− pη′) P(arrive at η)

=
k∏
i=2

θi
η[k−i+1]−ηif iη′ . 2

The relationships in (4.3) and (4.4) allow us to reduce our network to one consisting

only of left-lexicographic nodes and their arcs.

Remark 4.2 In our current approach, we are still using the network model of Chapter 3,

but restricting our attention to the subnetwork of left-lexicographic nodes, from which all of

the information we need can be inferred. Alternatively, we could have modeled the problem

by starting with the set of information states (i.e., the left-lexicographic nodes) and deriving
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Figure 4.1: Curtailment Example with k = 3 and b = 7

the objective function and constraints directly from those. We include an example of how

to use the information state model to derive a new set of flow conservation constraints in

Appendix C.2.

4.1.2.3 Node Reduction via Curtailment

The concept of strong curtailment, introduced by BK (1984), provides us another means

of reducing the size of our network. As already discussed in Chapter 2, strong curtailment

allows us to stop when the best any alternative can do with respect to the alternative with

the most successes is tie, without affecting the P(CS) of the procedure.

For strong curtailment, we stop at stage m if

η[k]m − η[k−1]m ≥ b−m.

Stopping at a node due to curtailment may terminate some or all of the sample paths into

nodes further into the network. Figure 4.1 shows an example with k = 2 and b = 7. Each

circle represents a node in the network and each arrow represents an arc connecting two

nodes. Note that the network includes only left-lexicographic nodes. For clarity, we have

removed the arcs to the sink as well as the parentheses in the node vector notation. In

this example, the gray nodes are the nodes that are stops under strong curtailment and

the black nodes are nodes that cannot be subsequently reached. The findings of BK (1984)

allow us to eliminate curtailed nodes (i.e., the black nodes in Figure 4.1) without affecting

P(CS).

Algorithmically, we eliminate a left-lexicographic node (η[k]m, η[k−1]m, . . . , η[1]m) from
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the network if

(η[k]m − 1)− η[k−1]m ≥ b− (m− 1), or

η[k]m − η[k−1]m − 1 ≥ b−m+ 1. (4.5)

In other words, a node is culled if all of its possible origination nodes — a term we use

for nodes from which arcs come into the node under discussion — would have met the

conditions of a stopping node under strong curtailment. For example, in Figure 4.1, (5, 1) is

eliminated since both of its origination nodes, (5, 0) and (4, 1), meet the strong curtailment

stopping conditions. On the other hand, (4, 1) is not eliminated, since one of its origination

nodes, (3, 1), does not meet the curtailment stopping conditions. We only need to check

the origination node least likely to have met the strong curtailment conditions at m − 1

observations, which is the node with the first component equal to η[k]m− 1, since it has the

lowest possible value for η[k]m − η[k−1]m.

We have to be careful in one case — when η[k]m and η[k−1]m are tied. Then, (4.5)

has a –1 on the left hand side, which can never result in an elimination by our algorithm.

However, the previous difference between the best two must have been either 0 or 1. If

m = b (and η[k−2]b = 0 when k > 2), then that difference must have been 1. In that case,

sampling would have stopped at b − 1, since there would have been only one observation

left to be taken. As a result, we also eliminate the one node for which

η[k]b = η[k−1]b and η[k−2]b = 0 when k > 2, or

η[k]b = η[k−1]b =
b

2
when k = 2. (4.6)

This can only occur when b is even. For example, if k = 3 and b = 8, we eliminate node

(4, 4, 0). Note that if k = 2 and b is even, we will never take an additional observation

at m = b − 1. Thus, under curtailment, a procedure constrained by an even budget b is

equivalent to the same procedure constrained by a budget of b− 1.

We will use N ′′ ⊂ N ′ to represent the set of nodes, η′′, that remain after curtailed nodes

are eliminated (the white and gray nodes in Figure 4.1), and we define B′ to be those nodes

at the end of the directed network, but not necessarily at the budget, b (the gray nodes in

Figure 4.1).
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4.1.3 Reformulating the Mathematical Program

In §4.1.2, we derived the relationships and tools necessary to reduce the original network

to a much smaller one composed of only left-lexicographic, non-curtailed nodes. They also

allow us to use a single variable per node to represent the outbound flow to other nodes.

Remark 4.3 There is an important distinction to make here. The symmetry constraints

allow us to consider only left-lexicographic nodes, and the arcs from those nodes to other

left-lexicographic nodes and to the sink. On the other hand, the balance outflow constraints

provide us the means to represent all flows from a node via a single variable, but we still

must consider and account for all of the arcs. Without this understanding, the network is

no longer intuitive, since flows from most nodes must reach more than one left-lexicographic

node.

In the following, we describe how we apply the relationships and tools described above to

the existing mathematical programs to develop the final, efficient formulation.

Objective Function Transformation of the objective function involves two steps. First,

we represent the sum of the arc flows in terms of the flows associated with successes by

alternative 1. Starting with the original objective function, but adapted for general k, we

have

min
fη ,f

1
η ,...,f

k
η ,Yη

∑
η∈N

k∑
i=1

f iη. (4.7)

We use (4.2) to write (4.7) in terms of the alternative 1 success arcs:

min
fη ,f

1
η ,Yη

Θ
∑
η∈N

f1
η.

Using (4.4), we then eliminate all of the nodes that are not left-lexicographic and consider

only those nodes not eliminated by curtailment as follows:

min
f
η′′ ,f

1
η′′ ,Yη′′

Θ
∑

η′′∈N ′′

∑
η∈π(η′′)

k∏
i=2

θi
η[k−i+1]−ηif1

η′′ , (4.8)

where π(η′′) is the set of all permutations of η′′ within which η = (η1, η2, . . . , ηk) is con-

tained. Our new objective function is in terms of f1
η′′ alone for all η′′ ∈ N ′′.
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Initialization Constraint Reformulating the initialization constraint is straightforward.

We simply use (4.2) to write the constraint in terms of the alternative 1 success arc. The

new constraint is

f0 + Θf1
0 = 1. (4.9)

Flow Conservation Constraints We require one flow conservation constraint per node

(except the first) represented in the reformulated network, i.e., for all η′′ ∈ N ′′ \ 0. Flow

conservation for the first node, 0, is guaranteed by the initialization constraint. Rewriting

the ‘flow out’ portion of the constraint in terms of fη′′ and f1
η′′ is similar to our reformulation

of the initialization constraint.

The ‘flow in’ portion depends upon the origination nodal arcs, some of which may not

even come from left-lexicographic nodes. For example with k = 3, the node (4, 2, 2) has

origination arcs from (3, 2, 2), (4, 1, 2), and (4, 2, 1); the second origination node is not

left-lexicographic. Let ην = (ην1 , η
ν
2 , . . . , η

ν
k) be the origination node for arc ν ending at

component ν of vector η′′. Following our example with η = (4, 2, 2), η1 = (3, 2, 2), η2 =

(4, 1, 2), and η3 = (4, 2, 1). Note that if one of the alternatives has zero successes, then ην

does not exist for that component; by convention, we set f1
ην ≡ 0 in that case. Let L(ην)

be the left-lexicographic permutation of ην , or L(ην) = (ην[k], η
ν
[k−1], . . . , η

ν
[1]).

For each of the origination nodal arcs, we must determine what the origination node

is, convert its flow, f iην , to the flow along its left-lexicographic permutation, fνL(ην), (if

necessary) using (4.4), and then convert that to f1
L(ην) (if necessary) using (4.1). In general,

the reformulated flow conservation constraints can be written

k∑
ν=1

1

θν

k∏
i=2

θi
ην
[k−i+1]

−ην1 f1
L(ην) = fη′′ + Θf1

η′′ , ∀η′′ ∈ N ′′ \ 0. (4.10)

From an implementation perspective, it would desirable to have an algorithm for effi-

ciently identifying the origination nodes and calculating the coefficients of their arc variables

in (4.10). We develop such an algorithm in Appendix C.1.

P(CS) Constraint Let t(η′′) represent the number of alternatives in node η′′ that have

the same number of successes as the first alternative, including the first. Then 1 ≤ t(η′′) ≤ k
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with t(η′′) = 1 when none are tied with the first. Additionally, let π?(η′′) be the subset

of the permutations of η′′ for which the first alternative is greater than or equal to the

remaining alternatives. In other words, π?(η′′) ⊆ π(η′′) is the subset of permutations that

result in correct selections. We can rewrite the P(CS) constraint, (3.6), in terms of our new

network:

∑
η′′∈N ′′

1

t(η′′)

∑
η∈π?(η′′)

k∏
i=2

θi
η[k−i+1]−ηifη′′ ≥ P ?, (4.11)

The final representation of the P(CS) constraint is then in terms of fη′′ alone for all η′′ ∈ N ′′.

4.1.4 Final Reformulation

We combine the transformed objective function and constraints described in §4.1.3 to arrive

at our reformulated mathematical program. Note that the integration of the information

contained in the original equality constraint sets (3.4) and (3.5) allows us to eliminate those

from the reformulation. For brevity, we did not explicitly describe the reformulation of the

binary and non-negativity constraints, since their derivation is straightforward. The final

reformulated mathematical program is shown in Figure 4.2.

Table 4.1 shows some key problem characteristics for selected values of k and b, where

“K” represents thousands and “M” millions. The columns labeled “Old” are the character-

istics for the original LP; those marked “New” are the corresponding characteristics for the

reformulated LP. Note that the count for the number of constraints does not include the

lower bound constraints on the variables. Returning to our original example with k = 4 and

b = 50, we have reduced the number of variables from 1.6 million to 18 thousand — a 98.9%

reduction; the number of constraints from 1.5 million to nine thousand — a 99.4% reduc-

tion; and the number of nodes from 316 thousand to nine thousand — a 97.1% reduction.

This LP, which previously would not even run on our computing resources, now executes in

a few seconds. Not only does our reformulation greatly expand the set of solvable problems,

but the elimination of many of the equality constraints removes a significant portion of the

original source of numerical instability.
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min
f
η′′ ,f

1
η′′ ,Yη′′

Θ
∑

η′′∈N ′′

∑
η∈π(η′′)

k∏
i=2

θi
η[k−i+1]−ηif1

η′′

Subject to:

(Initialization) f0 + Θf1
0 = 1,

(Flow Conservation)

k∑
ν=1

1

θν

k∏
i=2

θi
ην
[k−i+1]

−ην1 f1
L(ην)−

fη′′ −Θf1
η′′ = 0,

∀η′′ ∈ N ′′ \ 0

(Minimum P(CS))
∑

η′′∈N ′′

1

t(η′′)

∑
η∈π?(η′′)

k∏
i=2

θi
η[k−i+1]−ηifη′′ ≥ P ?,

(Stop) fη′′ − Yη′′ ≤ 0, ∀η′′ ∈ N ′′

(Full Stop) Θf1
η′′ + Yη′′ ≤ 1, ∀η′′ ∈ N ′′ \ B′

(Non-negativity) fη′′ , f
1
η′′ ≥ 0, ∀η′′ ∈ N ′′

(Binary) Yη′′ binary ∀η′′ ∈ N ′′

Figure 4.2: MIP Reformulation of the Constrained MSP

Table 4.1: Comparison of Original and Reformulated LPs

b Characteristic
k = 2 k = 3 k = 4 k = 5

Old New Old New Old New Old New

Nodes 20 9 55 12 125 14 251 15
5 Variables 63 18 224 24 630 28 1.5K 30

Constraints 47 10 168 13 446 15 991 16

Nodes 65 21 285 43 1.0K 62 3.0K 77
10 Variables 198 42 1.1K 86 5.0K 124 18K 154

Constraints 153 22 947 44 4.1K 63 14K 78

Nodes 350 104 3.3K 370 24K 882 143K 1.6K
25 Variables 1.1K 208 13K 740 119K 1.8K 855K 3.2K

Constraints 847 105 12K 371 107K 883 757K 1.6K

Nodes 1.3K 351 23K 2.3K 316K 9.0K 3.5M 25K
50 Variables 4.0K 702 94K 4.6K 1.6M 18K 21M 51K

Constraints 3.3K 352 87K 2.3K 1.5M 9.0K 20M 25K

Nodes 5.2K 1.3K 177K 16K 4.6M 113K 97M 543K
100 Variables 15K 2.7K 707K 32K 23M 227K 579M 1.1M

Constraints 13K 1.3K 666K 16K 22M 113K 464M 543K
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4.2 Characteristics of the New Procedures

In this section, we discuss a few very important characteristics of ProceduresMR andMNR.

In §4.2.1 and §4.2.2, we derive two key properties of ProcedureMR concerning the number

of randomized stopping points and achieved P(CS), respectively.

4.2.1 Number of Randomized Stops in Procedure MR

We begin by representing the reformulated LP in standard form, which consists only of

equality and non-negativity constraints. Let m represent the number of nodes in the cur-

tailed, left-lexicographic network, i.e., m = |N ′′|. Let A denote the equality constraint

matrix, with each column representing a variable and each row representing the left hand

side of a constraint. The first row is the initialization constraint and the next m−1 rows are

the flow conservation constraints. The last row is the P(CS) constraint; however, since it

is a greater-than-or-equal-to constraint, we subtract a slack variable, fs, from the left hand

side to make it an equality constraint. We must add a column of zeros to A for the slack

variable, but place −1 in that column for the last constraint. A then is a (m+1)× (2m+1)

matrix. Let f be the (2m+ 1)× 1 vector of variables (including the new slack variable) and

b be the (m + 1) × 1 vector of constants from the right hand side of the constraints. The

(2m+1)×1 vector c is the vector of coefficients in the objective function with an additional

zero added for the slack variable.

For example, if k = 2 and b = 3, then, for general p,

c =

(
0, Θ, 0, Θ

(
1 +

1

θ2

)
, 0, Θ

(
1 +

1

θ2
2

)
, 0, Θ, 0, Θ

(
1 +

1

θ2

)
, 0

)T
,

f =
(
f0, f

1
0 , f(1,0), f

1
(1,0), f(2,0), f

1
(2,0), f(1,1), f

1
(1,1), f(2,1), f

1
(2,1), fs

)T
,

A =



1 Θ 0 0 0 0 0 0 0 0 0

0 1 −1 −Θ 0 0 0 0 0 0 0

0 0 0 1 −1 −Θ 0 0 0 0 0

0 0 0 2/θ2 0 0 −1 −Θ 0 0 0

0 0 0 0 0 0 1/θ2 0 −1 −Θ 0

1/2 0 1 0 1 0 1/2 0 1 0 −1


,
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b = (1, 0, 0, 0, 0, P ?)T ,

where Θ =
(
1 + 1

θ2

)
.

Since our non-negativity constraints are already in standard form, we can now represent

the LP in standard form:

minimize cT f

subject to: Af = b (4.12)

f ≥ 0.

With our LP in standard form, we are now in a position to introduce and prove a

sequence of lemmas that provide the foundation for our theorem regarding the optimal

randomized procedure. But first, we show a proposition that is not strictly required to

develop our theorem; however, it is an interesting result.

Proposition 4.1 The m+ 1 rows of A are linearly independent.

Proof: Let fj and f1
j be the sink and outflow arc variables, respectively, for node j. To

prove the proposition, we must show that none of the rows of A is a linear combination of

the remaining rows. Each of the first m rows represents a flow conservation constraint for a

particular node (including the initialization constraint as a special case of flow conservation).

For any such row, say row i, there is a –1 (or a 1 in the case of the initialization constraint)

in the column for fi. This is evident in the reformulation and the previous example. No

other flow conservation constraint has a nonzero entry in this column and so the remaining

m − 1 entries in the column for fi cannot be linearly combined to equal –1 or 1, which

implies that none of the remaining m− 1 rows can be linearly combined to create row i.

The P(CS) constraint (row m + 1), on the other hand, will have a nonzero entry in

the column for fi; however, it also has the only nonzero entry in the column for the slack

variable fs. Therefore, it cannot be used in any linear combination to make up one of the

remaining rows. Nor can any linear combination of the remaining rows be used to create

the P(CS) constraint, since they all have zeros in the column for the slack variable. Thus,
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none of the rows of A are a linear combination of the remaining rows, and so the m + 1

rows of A are linearly independent. 2

Lemma 4.1 If the feasible set of solutions to the LP is nonempty, then there exists an

optimal solution with, at most, m + 1 basic variables, with the remaining m (nonbasic)

variables equal to zero.

Proof: The theory of linear optimization (for example, see Bertsimas and Tsitsiklis 1997)

tells us that, for a problem in the standard form, the number of variables in an optimal

basic feasible solution, f?, is equal to the number of linearly independent rows of A, i.e., the

rank of A. The remaining variables, called nonbasic variables, must be equal to zero. While

Proposition 4.1 does in fact prove that the m + 1 rows of A are linearly independent, we

really only need the fact that there are, at most, m+ 1 basic variables since there are only

m + 1 constraints. Thus, there must exist an optimal solution with, at most, m + 1 basic

variables. Since there are a total of 2m + 1 variables, the remaining m or more variables

must be equal to zero. 2

Let f? be an optimal solution to the randomized LP formulation, LP, of a network

consisting of the m nodes in set N ′′. We use N ′′′ to represent the subset of N ′′ that

consists only of the m′ nodes through which there is nonzero flow in solution f?, i.e., nodes

j for which fj > 0 or f1
j > 0. Now consider an LP formulation similar to LP, but where we

remove the flow conservation constraints for nodes not in N ′′′, as well as all variables (and

their corresponding non-negativity constraints) associated with nodes not in N ′′′. We call

the new formulation LP ′ and make the following claim.

Lemma 4.2 If the (2m+1)×1 vector f? is an optimal solution to LP, then the (2m′+1)×1

vector f?′, formed by deleting the components associated with nodes not in set N ′′′, is an

optimal solution to LP ′.

Proof: We prove this statement by contradiction. Suppose that f?′ is not the optimal

solution to LP ′. Then one of two cases must be true. Either f?′ is infeasible or there must

be another solution that is optimal.
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We consider the former first. Clearly, solution f?′ does not violate the non-negativity

constraints in LP ′. Basic linear algebra shows us that since the (2m+1)-dimensional vector

f? satisfies Af? = b, then the (2m′ + 1)-dimensional vector f?′, created by deleting compo-

nents of f?, must satisfy A′f?′ = b′, where A′ is created by deleting columns corresponding

to the components deleted from f?, and b′ is created by deleting the components corre-

sponding to those deleted from f?. But the equality constraint set in LP ′ is just A′f?′ = b′

with additional rows removed corresponding to the deleted nodes. We know that if a solu-

tion is feasible for a set of constraints, it must still be feasible when some of those constraints

are removed. Thus, f?′ must be feasible.

Now, let us assume that there exists an optimal solution f † 6= f?′ for which c′T f † < c′T f?′,

where c′ is the cost vector in the objective function of LP ′. We create a new vector, f †′, in

the (2m + 1)-dimensional space of the original problem, LP, by adding zeros to f † for the

additional variables not in LP ′. Since we are just adding zeros, cT f †′ = c′T f †; and since

f? is just f?′ with zeros for the variables they do not have in common, then cT f? = c′T f?′.

But that implies that

cT f †′ = c′
T
f † < c′

T
f?′ = cT f?,

which is a contradiction, since f? is the optimal solution to LP. 2

Consider an MSP with a large observation budget, b, and a large number of nodes,

but a relatively modest P ? requirement. In such a problem, the maximum possible value

of random variable NR (i.e., the number of observations taken during Procedure MR at

termination) in the optimal solution may be significantly less than the budget. In such

a solution, nodes will be ‘cut off’ due to early termination and the pairs of f? entries

corresponding to those nodal variables will both be equal to zero. Lemma 4.2 is important

because it allows us to assume, for purposes of discussion and without loss of generality, that

our optimal solution contains only variables representing the nodes through which there is

nonzero flow, as well as the slack variable. If that is not the case, we could create a new

network in a variable subspace with the same optimal solution.

Now, by our assumption enabled by Lemma 4.2, at least one of each pair of variables for

a node in our optimal solution must be nonzero (and thus a basic variable). That accounts
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for m of the (at most) m + 1 basic variables which we know must exist by Lemma 4.1.

For the particular optimal solution we are considering (there may be more than one), we

know that we can have at most one other variable in the basis: the slack variable or a

second variable from a particular node pair. A randomized node is one for which both

variable entries are nonzero, i.e., there is some probability that flows to the sink and some

probability that flows to other nodes. Thus, there can only be, at most, one randomized

node. This leads us to the following theorem.

Theorem 4.1 If the feasible set of solutions to LP is nonempty, then there exists an opti-

mal solution with no more than one randomized node, that is, a node at which randomization

will determine whether sampling stops or continues.

Our theorem tells us that there exists an optimal solution with at most one randomized

node, but it does not guarantee that we will find it. Fortunately, the following procedure

guarantees that we will find, upon procedure termination, an optimal solution with no

more than one randomized node, provided that the LP is feasible and that we are using a

simplex-based method that searches for the optimal solution among the basic solutions.

Procedure

1. Solve the LP.

2. Determine the number of randomized nodes ξ in the solution.

(a) If ξ > 1, identify the set of nodes for which both variables are equal to zero in

the optimal solution. For each node in that set, eliminate its variables and its

associated flow conservation constraint. Return to the first step.

(b) If ξ ≤ 1, terminate the procedure.

Since we require a simplex-based method for solving the LP, our optimal solution must

be an optimal basic solution. Optimization theory, combined with the structure of our LP,

tells us that an optimal basic solution has at most m+ 1 basic variables. But suppose there
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is a node η† for which f
η†

= f1
η†

= 0 (i.e., no flow). In that case, both fη† and f1
η†

may

be nonbasic variables (since they are equal to zero), freeing up a basic variable to create an

additional randomized node. In general, let m′ be the number of nodes through which there

is some flow in the optimal solution (i.e., at least one variable is nonzero). We now have

the possibility that the m + 1 basic variables are distributed over the m′ nodes, resulting

in ξ ≤ m−m′ + 1 randomized nodes. By eliminating nodes through which there is no flow

after each iteration, we must either arrive eventually at an optimal solution in which there

is at most one randomized node or eliminate all of the nodes in the network. The latter is

not possible by the initialization and non-negativity constraints.

The implications of this theorem and the subsequent procedure are significant. One of

the main criticisms that could be leveled against a procedure like Procedure MR is that

having to randomize at numerous potential stopping nodes might be burdensome and diffi-

cult to justify. Theorem 4.1 shows that there exists a solution with at most one randomized

stopping node and the procedure provides us a way to find it. This simplifies implementation

significantly and is easier to justify to a decision-maker.

4.2.2 Achieved P(CS) for Procedure MR

We now let LP be our original problem formulation (i.e., no longer in standard form):

minimize cT f ,

subject to: Af = b,

aT f ≥ P ?,

f ≥ 0,

In this formulation, we have separated the P(CS) constraint from A in the standard form

and there is no longer a slack variable. Let LP ′′ be the LP formulation with the P(CS)

constraint removed. Now consider the vector f ′ = (1, 0, . . . , 0)T , in which all variables are

set to zero except for the variable representing flow along the arc from the root node, 0, to

the sink, which equals 1.

Lemma 4.3 f ′ is the unique optimal solution to LP ′′.
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Proof: We must show that f ′ is a feasible solution. First, we note that f ′ ≥ 0. Additionally,

none of the flow conservation constraints except for the initialization constraint involve the

variable for the arc from the root node to the sink (the only nonzero variable). Thus, the

left hand sides of all but the first equality constraint must equal zero and are therefore

satisfied. The initialization constraint is f ′1 + Θf ′11 = 1, which simplifies to 1 = 1. Thus f ′

is feasible.

All of our variables and our cost function are non-negative, so the value of the objective

function cannot be less than 0. Since cT f ′ = 0, f ′ is an optimal solution to LP ′′. To see that

f ′ is a unique optimal solution to LP ′′, we suppose that there exists an optimal solution,

f ‡ 6= f ′. For the new solution to be unique, we must have one of three cases. In the first

case, f ‡1j > 0 for some j ≥ 1. We know that the coefficients of all arc variables in the

objective function are nonzero, so f ‡1j > 0 implies cT f ‡ > 0, and f ‡ is not optimal — a

contradiction. In the second case, f ‡1 < 1. That implies that f ‡11 > 0 by the initialization

constraint, reducing this case to the first. In the third case, f ‡j > 0 for some j ≥ 2. Flow

conservation implies that there must be nonzero flow along at least one arc into such a node

j, which again reduces this case to the first. Therefore, f ′ is the unique optimal solution to

LP ′′. 2

Now consider the original problem, LP. Solution f ′ leads to a P(CS) = aT f ′ = 1/k. If

P ? ≤ 1/k, then f ′ is a feasible solution to LP and thus an optimal solution since cT f ′ = 0.

In that case, P(CS) = 1/k at the optimal solution. If P ? > 1/k, then f ′ is no longer feasible,

since it violates the P(CS) constraint. Optimization theory tells us that if the addition of

a constraint changes the optimal solution to an LP, then it must be an active constraint at

the optimal solution. In our problem, that means that P(CS) = P ? when P ? > 1/k. We

can now state the following theorem.

Theorem 4.2 For the optimal solution to the linear program, if it exists,

P(CS) =


1
k if P ? < 1

k

P ? otherwise.
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This theorem also has implications for our discussion in §4.2.1. A degenerate solution

is one in which one or more of the basic variables is equal to zero. Trivially, that occurs

whenever there is no flow through at least one node (i.e., both nodal variables are zero).

More interestingly, if we have an optimal solution in which there is flow into every node

(which we can reduce any problem to by Lemma 4.2), that solution is degenerate if one of

each pair of nodal variables and the slack variable equal zero.

In our discussion for Theorem 4.1, we point out that there exists an optimal basic

feasible solution in which either both variables for one node are basic or the slack variable

is basic. Theorem 4.2 tells us that if P ? < 1/k, then the slack variable, fs, in the standard

formulation must be positive. If fs > 0, then it is a basic variable, none of the nodes

are randomized, and the solution is not degenerate. If P ? ≥ 1/k, then fs = 0. In this

case, if none of the nodes are randomized in the optimal basic feasible solution, then it is a

degenerate solution; otherwise, it is not degenerate.

4.3 Replicating Existing Procedures

There is tremendous flexibility in the optimization framework, allowing us to manipulate

the objective function and constraints in order to replicate other procedures or specify

additional requirements on the solution. This section describes one such set of capabilities.

Suppose we wish to choose the optimal parameter settings for an existing procedure using

the optimization (in order to expand tables, etc.). As an example, consider ProcedureMRA,

which has an inverse sampling parameter t and a difference parameter r. In order to find the

values of the (r, t)-pair which minimize the expected number of observations for a particular

combination of k, θ?, and P ? under budget b, we must search over the two-dimensional grid

of possible (r, t)-pairs, calculating PSC(CS) and ESC[NRA] for each. We would then select

the (r, t)-pair with PSC(CS) ≥ P ? that minimizes the expected number of observations.

This technique may be reasonable for creating tables for common choices of k, θ?, P ?, and

b, but it is not at all convenient if we often need optimal settings for uncommon choices

of the parameters. We can overcome this disadvantage by adding additional constraints to

our optimization.
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4.3.1 Notation

Consider any existing non-randomized procedure, such as those discussed in Chapter 2. We

will use, as a starting point, our reformulated LP from §4.1.4, with the exception that our

network will consist of the uncurtailed set of left-lexicographic nodes, N ′, instead of N ′′,

so that we can replicate procedures that do not use curtailment. Let Γ be the set of all

stopping policies for that procedure, with γ, a single policy, being an element of Γ. The

observation budget b may be explicitly stated, or implied by procedure parameters over

which we choose to search. We use Sγ to denote the set of all nodes η′ ∈ N ′ such that η′ is

a stopping node under procedure policy γ ∈ Γ. We also define a new set of binary variables,

Zγ ≡ I[
if γ is the active policy

]. (4.13)

As an example, consider Procedure MRA. In that case,

Γ =

{
(r, t) : r ≤ t and t ≤

⌈
b

k

⌉}
,

where dxe is the ceiling function (i.e., rounds x up to the nearest integer). Suppose γ = (2, 6).

Then

Sγ =
{
η′ ∈ N ′ : η[k]m ≥ 6 or η[k]m − η[k−1]m ≥ 2

}
.

4.3.2 Formulation

The new formulation shown in Figure 4.3 has four additional sets of constraints, all involving

the new binary variables, Zγ . The first new set of constraints, labeled “Stops”, activates

stops by requiring that the outbound flow along arcs to other nodes be set to zero for all

nodes that are stops when policy γ is active. The next set of constraints, labeled “Non-

stops”, forces all flows to the sink to be set to zero for nodes that are not stops when policy

γ is active. The constraint labeled “Choose Policy” ensures that only one policy can be

active at a time. The final set of new constraints, labeled “Binary”, declares the binary

variables.

We have successfully implemented ProceduresMRA,MRA′ , andMC using this formu-

lation. Procedures MBEM, MBK, and MBG can also be modeled in this way; however,
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min
f
η′ ,f

1
η′ ,Zγ

Θ
∑
η′∈N ′

∑
η∈π(η′)

k∏
i=2

θi
η[k−i+1]−ηif1

η′

Subject to:

(Initialization) f0 + Θf1
0 = 1,

(Flow Conservation)

k∑
ν=1

1

θν

k∏
i=2

θi
ην
[k−i+1]

−ην1 f1
L(ην)−

fη′ −Θf1
η′ = 0,

∀η′ ∈ N ′ \ 0

(Minimum P(CS))
∑
η′∈N ′

1

t(η′)

∑
η∈π?(η′)

k∏
i=2

θi
η[k−i+1]−ηifη′ ≥ P ?,

(Non-negativity) fη′ , f
1
η′ ≥ 0, ∀η′ ∈ N ′

(Stops)

∑
s∈Sγ

f1
s ≤ 1− Zγ , ∀γ ∈ Γ

(Non-stops)

∑
s/∈Sγ

fs ≤ 1− Zγ , ∀γ ∈ Γ

(Choose Policy)

∑
γ∈Γ

Zγ = 1,

(Binary) Zγ binary ∀γ ∈ Γ

Figure 4.3: MIP Formulation for Replicating Existing Procedures
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since there is only one parameter, the truncation parameter n, to search over for these pro-

cedures, implementing the above MIP formulation would probably not be worth the effort

versus simply searching over n. Nonetheless, if we choose to do so, ProcedureMBG requires

special care in the above formulation. Recall that one of the ProcedureMBG stopping con-

ditions in (2.3) is a function of θ? and P ?. Such stops are fixed under all γ ∈ Γ and should

then either 1) be included in Sγ for all γ ∈ Γ, or 2) have their outbound arc, f1
η′ , set to zero

in an additional set of equality constraints. We have also successfully replicated Procedure

MBG in this way.

4.4 Summary

In this chapter, we have built upon the work of Chapter 3 by reformulating the MIP and

LP mathematical programs to overcome some of the most significant drawbacks of the

initial formulations. Problem symmetries and strong curtailment provide us the neces-

sary relationships to represent the entire network of possible stopping nodes by a smaller

network consisting only of left-lexicographic, non-curtailed nodes. Although they are less

intuitive, the reformulations significantly reduce the computational requirements for solving

the problem and have allowed us to consider substantially larger problems than could be

solved initially.

Our reformulations have also made it easier to prove some key insights about the optimal

randomized MSP procedures. First, we showed that an optimal procedure exists which has,

at most, only one randomized node, and we developed a procedure to find such a solution.

Second, we showed that P(CS) = P ? when P ? ≥ 1/k.

Last, we showed that we can extend our formulations to replicate non-randomized MSP

procedures, thereby facilitating the identification of the optimal procedure parameters for

a specific problem. This can be a significant capability if an experimenter needs to iden-

tify such parameters often for problem characteristics that do not have tabulated results.

Otherwise, for many procedures, we must conduct a detailed search of the parameter space,

which can be quite time-consuming and computationally expensive.
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CHAPTER V

INTEGRATION OF OBSERVATION COSTS

The implicit assumption of all existing MSP procedures, when developed to minimize the

expected number of observations, is that all observations have equal cost. But what if

observation costs are not constant? What if marginal observation costs increase, decrease,

or both, as the experiment proceeds? Does purchasing the required observation supplies

in batches affect procedure performance? Questions such as these are completely reason-

able, particularly when we consider non-monetary resource expenditures. Here are some

examples:

• Certain experimentation supplies can be purchased in batches of a predetermined size.

Variable costs then may be incurred for each observation and at the beginning of each

batch of observations.

• Costs are fixed for each observation; however, we wish to discount our observation

costs over our experimental horizon and evaluate our procedure based upon current

dollars.

• We wish to model the decision-maker’s preference for the timeliness of decisions using

some form of nonlinear utility or value function, instead of assuming that the decision

delays inherent in taking additional observations are of equal utility or value.

• We are concerned with ‘wear and tear’ on a mechanical system required for an experi-

ment, since it would be better to use the system for actual production than for testing.

We wish to assign ‘costs’ to each observation taken based upon a known degradation

function.

No existing MSP literature addresses such cost issues, largely because the tools required

for such analysis have not heretofore been in place. Our formulations provide us the means

to do so.
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5.1 Methodology

This section describes our methodologies for incorporating variable observation costs and

analyzing their effects on MSP procedure performance. In §5.1.1, we develop methodologies

that guarantee optimal randomized and non-randomized MSP procedures under a very

broad class of observation cost functions. We then describe the types of cost functions that

we will consider in our analysis in §5.1.2. Finally, in §5.1.3, we describe the metrics that we

will use to evaluate procedure performance.

5.1.1 Cost Integration

Consider ProceduresMR andMNR. Theorems 3.1 and 3.2, combined with the reformulated

mathematical programs in Chapter 4 guarantee that a randomized [non-randomized] proce-

dure created from the solution to LP [MIP], is an optimal randomized [non-randomized]

solution (in terms of the expected number of observations) to the constrained, indifference

zone MSP for a specified probability configuration p. We wish to modify our procedures

and the mathematical formulations in such a way that we can guarantee optimality for the

more general set of total cost functions.

Now let us consider the general set of total costs. Recall that we are using the term cost

in the broader sense to encompass any type of expenditure (e.g., effort, resources, penalties,

opportunity cost, etc.). We will refer to the cost required to take one additional observation

as the marginal cost (MC). The total cost (TC) at observation m, then, refers to the

cumulative cost of taking m observations. We denote the MC of observation j as c(j) and

the TC of all observations taken through observation m as TC(m), i.e., TC(m) =
∑m

j=1 c(j).

We assume that total cost is a non-decreasing function, i.e., c(j) ≥ 0 ∀j. We also assume

that when an observation is made, it is made for all alternatives in accordance with the

problem definition of Chapter 1.

Because all alternatives must be observed each time, there is no need to consider different

observation costs among the alternatives. Instead, we incur a single marginal cost for each

observation. In the most general case, each cumulative success vector η has a unique cost,

cη, but we require that all permutations of η have the same observation cost.
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Cost Formulations In developing the objective function for the LP and MIP formula-

tions, we showed that the expected number of observations is the sum of the flows along

all of the success arcs (i.e., arcs connecting one node to another). Here, we integrate cost

by following the same reasoning. Let C be a random variable representing the total cost

at experiment termination and N be the set of all possible cumulative success vectors η.

Then

C =
∑
η∈N

cη I[observation taken at node η
].

Thus,

E[C] =
∑
η∈N

cη P(observation taken at node η)

=
∑
η∈N

cη P(arrive at η and do not stop)

=
∑
η∈N

cη (1− pη) P(arrive at η)

=
∑
η∈N

cη

k∑
i=1

f iη. (5.1)

Using the relationships (4.2) and (4.4) derived in Chapter 4, we can rewrite (5.1) as

E[C] =
∑
η∈N

cη

k∑
i=1

f iη

= Θ
∑
η∈N

cηf
1
η

= Θ
∑
η′∈N ′

cη′
∑

η∈π(η′)

k∏
i=2

θi
η[k−i+1]−ηi , (5.2)

where π(η′) is the set of permutations of η′ within which η is contained.

The objective functions for the randomized and non-randomized formulations both min-

imize the same function E[C], with the only difference being the variables over which the

mathematical program is minimized. In fact, even the non-randomized formulation shown

in §4.3 for replicating other non-randomized procedures uses the same objective function.

We create LPC by replacing the objective function in LP with

min
f
η′ ,f

1
η′

E[C], (5.3)

64



where E[C] is defined by (5.2). Similarly, we create MIPC by replacing the objective

function in MIP with

min
f
η′ ,f

1
η′ ,Yη′

E[C]. (5.4)

Optimal Cost Procedures We now modify Procedure MR slightly by identifying the

ordered set SR based upon LPC instead of LP. This new ProcedureMRC is a more general

one, with Procedure MR being a special case when cη′ = 1 for all η′ ∈ N ′. We can now

state the following theorem.

Theorem 5.1 For a specified probability configuration p, a randomized procedure created

from the solution to the LP formulation LPC is an optimal solution, in terms of minimiz-

ing the total observation cost, to the constrained, indifference zone MSP under arbitrary

observation costs {cη′}.

Similarly, we create new ProcedureMNRC by identifying the set SNR based uponMIPC

instead of MIP. The next theorem follows.

Theorem 5.2 For a specified probability configuration p, a non-randomized procedure cre-

ated from the solution to the MIP formulation MIPC is an optimal non-randomized solu-

tion, in terms of minimizing the total observation cost, to the constrained, indifference zone

MSP under arbitrary observation costs {cη′}.

In execution, the changes to the objective functions are very simple to implement. We

merely multiply the existing coefficient of each f1
η′ by the cost cη′ of making an additional

observation at cumulative success vector η′. We point out that the same changes to the

objective function apply if we wish to modify our formulations of other MSP procedures,

as described in §4.3. These modifications follow directly from our discussion; we do not

describe them here.

5.1.2 Cost Functions

Our formulations allow us to consider unique observation costs for each possible left-

lexicographic cumulative success vector. While there may be a need for this capability,
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we focus on observation costs that are based upon the number of observations that have

already been taken. That is, the jth observation will cost c(j), regardless of ηj−1 (the

cumulative success vector just before observation j is made).

Our intent in selecting cost functions was to choose a representative set of possible

functional types and ‘shapes’. We were not as concerned with when such functions might

arise, but with capturing a reasonable set of well-behaved, non-decreasing TC functions that

would lead us to general insights concerning their effects on procedure performance. Using

cost as a proxy for non-monetary expenditures gives us great flexibility for tailoring experi-

ments to decision-maker needs; however, it also makes the selection of an all encompassing

set of real world cost functions impractical. In the discussion that follows, our focus is on

TC functions, from which we will derive the necessary MCs. Our TC functions have the

same initial total cost, TC(0) = 0, and the same total cost, TC(b) = τ , at the observation

budget b. We make this assumption in order to ensure a ‘fair’ comparison between different

cost functions that is based upon the type and shape of the function.

We consider five general types of total cost functions: linear, convex, concave, mixed,

and batch functions. We describe each below.

Linear This type of cost function is one in which the MC of each subsequent observation

is constant; therefore, it is the implicit TC function for all existing MSP procedures. The

total cost through observation m under the linear cost function is:

TCL(m) = β1m, (5.5)

where β1 ≡ τ/b is chosen to ensure TC(b) = τ .

Convex Convex costs are those for which marginal costs are monotonically increasing,

i.e., c(j + 1) − c(j) > 0 ∀j. Figure 5.1 shows the convex TC functions [left] that we

examined, as well as their associated MC functions [right]. For reference, we include the

linear function as well. We chose seven convex functions in two categories of shapes: power

and exponential. Our four convex power functions are of the following form:

TCXp(m) = β2m
d, (5.6)

66



Observations

Convex TC

T
o

ta
l C

o
st

Observations

Convex TC

M
ar

g
in

al
 C

o
st

 

 
Power Exponential

Figure 5.1: Convex Total Cost Functions

where β2 ≡ τ/bd and d ∈ {1.5, 2, 3, 4}. Note that linear costs are a special case of our power

functions with d = 1; however, we keep linear cost as a separate type.

Our three convex exponential functions are of the form:

TCXe(m) = s β3
m − s, (5.7)

where s ∈ {1, 5, 25} is a shift factor and β3 ≡ ((τ + s)/s)1/b. We use the shift factor s to

compensate for our starting cost of 0 and to create exponential curves with different degrees

of convexity.

Concave Concave costs are those for which marginal costs are monotonically decreasing,

i.e., c(j+1)−c(j) < 0 ∀j. Figure 5.2 shows the seven concave TC functions (with associated

MC functions) that we examined — one corresponding to each of our convex functions. Since

we wished to make like comparisons between functions, our concave functions are generated

directly from the convex functions as follows:

TCV (m) = τ − TCX(b−m), (5.8)

where TCX(b − m) is either the convex power TC function, TCXp(b − m) or the convex

exponential TC function, TCXe(b−m).
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Figure 5.2: Concave Total Cost Functions

Mixed Mixed functions are those for which marginal costs are monotonic over a subinter-

val of the domain, but not over the entire domain. We chose ‘s-curves’ to model these types

of costs. In particular, our convex-concave mixed functions have monotonically increasing

marginal costs for the first half of the observations and monotonically decreasing marginal

costs for the second half of the observations. The TC and MC functions are the top two

charts in Figure 5.3. We created four convex-concave TC functions using power functions:

TCXV p(m) =

 β4 m
d if m ≤ b/2

τ − β4 (b−m)d otherwise,
(5.9)

where β4 ≡ τ/2
(b/2)d

and d ∈ {1.5, 2, 3, 4}. Similarly, we created three additional convex-

concave functions using exponential functions:

TCXV e(m) =

 s β5
m − s if m ≤ b/2

τ − s β5
b−m + s otherwise,

(5.10)

where β5 ≡
(
τ/2+s
s

)(2/b)
and s ∈ {1, 5, 25}.

We also created concave-convex mixed TC functions with monotonically decreasing

marginal costs for the first half of the observations and monotonically increasing marginal

costs for the second half. They are derived in a similar manner to the functions already

described and are shown graphically in the bottom two charts of Figure 5.3.

68



Observations

Convex−Concave TC

T
ot

al
 C

os
t

Observations

Convex−Concave TC

M
ar

gi
na

l C
os

t

Observations

Concave−Convex TC

T
ot

al
 C

os
t

Observations

Concave−Convex TC

M
ar

gi
na

l C
os

t

 
 Power Exponential

Figure 5.3: Mixed Total Cost Functions

Batch Batch functions represent periodic observation costs that lead to step functions

(for TC). For such functions, there are two contributors to cost: periodic batch costs

and the underlying continuous observation costs. For our analysis, we consider only linear

underlying observation costs, so that we can focus on the effects of the periodic costs. For

consistency, we characterize the costs due to batching by the fraction ρ of the total cost at

budget b resulting from periodic costs. Let B represent the number of observations in each

batch. We created our 16 batch TC functions by:

TCB(m) = (1− ρ) β1 m+ ρ

(
τ

db/Be

)⌈m
B

⌉
, (5.11)

where β1 ≡ τ/b, ρ ∈ {0.25, 0.5, 0.75, 1} and B ∈ {2, 3, 4, 5}. The first term accounts for the

constant marginal cost of each observation; the second term accounts for the periodic batch

costs. When ρ = 1, observation costs are due entirely to batching.

Figure 5.4 shows two of the TC functions and their associated MC curves. Due to

the requirement that TC(b) be constant for all choices of B and ρ, there is significant

overlapping of the functions, making it impractical to put all, or even many, TC curves on
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Figure 5.4: Example Batch Cost Functions with B = 3

one chart.

5.1.3 Measures of Performance

In this section, we briefly describe some of the measures that we can use in comparing proce-

dure performance under different total cost functions. Our goal is to show that considering

costs is important if the assumption of linear total costs is not valid.

Expected Total Cost The most common measure in the literature is the expected num-

ber of observations in the LFC. The assumption for all existing procedures — sometimes

proven, sometimes conjectured — is that the SC is the LFC. Adapted for cost, the measure

is the expected total cost in the SC, ESC[C]. When comparing procedure performance under

different cost functions, ESC[C] alone may not be very useful. For example, if we compare

procedure performance under linear total costs to its performance under our convex TC

functions, we will always find that ESC[C] is lower for convex TC functions than for linear

functions. This is the direct result of the functions we chose — at every observation m,

TCL(m) ≥ TCX(m). We are more interested in how the procedure performs under different

cost functions relative to some benchmark.
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Procedure Inefficiency Metric We develop a new metric to supplement ESC[C] and

provide a relative measure for comparisons between cost functions and procedures. Proce-

dure MRC is the ideal benchmark for relative comparisons, since it achieves the optimal

ESC[C] for any TC function. Therefore, we use procedure inefficiency, WJ, as our primary

metric for the performance of general procedure MJ. It is defined as:

WJ ≡
ESC[CJ]− ESC[CRC]

ESC[CRC]
=

ESC[CJ]

ESC[CRC]
− 1, (5.12)

where C is the random variable representing the total cost, ESC[CJ] is the expected total

cost in the SC using general procedure MJ, and ESC[CRC] is the expected total cost using

Procedure MRC. We can think of procedure inefficiency as the fractional increase in ex-

pected total cost incurred by using general procedureMJ instead of the optimal Procedure

MRC.

For some procedures, the optimal procedure parameter settings (e.g., the (r, t)-pair

for Procedure MRA) may depend upon the TC function. However, for our analysis, we

will calculate ESC[CJ] for general procedure MJ under its optimal parameter settings for

minimizing the expected number of observations (i.e., the original case).

Remark 5.1 Procedures for which the only adjustable procedure parameter is the trunca-

tion parameter n (e.g., Procedures MBEM, MBK, and MBG) will have the same optimal

procedure parameter settings regardless of the cost function. For these procedures, the

optimal n-values are chosen to meet the P ? requirement, which is not affected by the obser-

vation costs. Decreasing n will lead to a P(CS) ≤ P ?. Increasing n cannot lead to a lower

expected cost, since it can only shift potential stops to points with equal or higher total

costs (under the assumption of non-decreasing total costs).

5.2 Results

In this section, we examine the robustness of procedure performance under variable marginal

observation costs, in order to show that considering such costs is important if the assumption

of constant costs is invalid. In §5.2.1, we narrow our focus to the effects of continuous,

nonlinear TC functions (e.g., convex, concave, and mixed). We then shift our focus to
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periodic (batch) costs in §5.2.2. In §5.2.3, we introduce a tool for informing the decision

of whether or not to purchase observations in batches. Finally, in §5.2.4, we briefly discuss

additional insights that we can gain from the LP formulation of the optimal randomized

procedure.

5.2.1 Effects of Continuous, Nonlinear Total Costs

A challenge when presenting results is that of deciding what cases to discuss. Each po-

tential MSP is parameterized by k, θ?, P ?, and b. In much of the existing literature, com-

mon choices for the first three parameters are k ∈ {2, 3, 4}, θ? ∈ {1.6, 2, 2.4, 3}, P ? ∈

{0.75, 0.9, 0.95}. Explicit consideration of a budget, however, adds too many possible vari-

ations. In our examples, for a given k, θ?, and P ?, we set b equal to the optimal truncation

procedure parameter nBG for Procedure MBG, consistent with our methodology in Chap-

ter 3.

The discussion regarding the effects of continuous, nonlinear TC functions on procedure

performance is divided into two parts: the effects on optimal procedures in §5.2.1.1 and the

effects on non-optimal procedures in §5.2.1.2.

5.2.1.1 Effects on Optimal Randomized Procedures

In this section, we examine WR — the fractional increase in expected TC in the SC when

using the optimal randomized ProcedureMR without considering the TC function. This is

a situation in which the experimenter has the capability to create the optimal randomized

procedure, but makes the incorrect assumption that MCs are constant. We analyzed 28

of the possible 36 combinations of common choices of k, θ?, and P ?; the remaining eight

combinations were not run due to the relatively large MIP solver run times for Procedure

MNRC under large b. For our discussion, we will focus on a representative subset of nine

cases with θ? = 2.4, shown in Table 5.1.

Figure 5.5 shows WR plotted for each case for the power-based functions (black squares)

and exponential-based functions (blue triangles). Plotted shapes of increasing size indicate

larger degree d [smaller shift s] for the power [exponential] TC functions. In other words,

the larger the shape, the greater the TC function deviates from linear. There are four plots,
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Table 5.1: Subset of Cases with θ? = 2.4

Case k P ? b Case k P ? b Case k P ? b

1 2 0.75 3 4 3 0.75 8 7 4 0.75 15

2 2 0.9 11 5 3 0.9 22 8 4 0.9 31

3 2 0.95 17 6 3 0.95 31 9 4 0.95 44
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Figure 5.5: Procedure MR Inefficiency for Selected Cases with θ = 2.4

one each for each type of total cost function — convex, concave, convex-concave (mixed),

and concave-convex (mixed). Note that the scaling of the vertical axis is not consistent

across the four plots.

We make a few observations based upon Figure 5.5.

1. Increasing the deviance of the TC function from linear tends to increase the inefficiency

of Procedure MR for all types and shapes of functions. In the 28 cases that we

examined, we found only one exception in which WR for a concave power function

with d = 4 was actually slightly lower than with d = 3.

2. Usually (though not always, see, for instance, Case 1), convex functions have the

largest impact on WR. For example, Case 3 has WR = 0.273 under a convex power
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function with d = 4. The largest inefficiency for any of the other three types of

functions is WR = 0.083 for Case 3 under a convex-concave power function with

d = 4.

3. The particular shape of the total cost function matters (i.e., power versus exponential

functions). Although we did not attempt to create exponential functions whose shift s

corresponds in some way to each particular power function with degree d, Figure 5.5

provides the necessary insight anyway. For example, Cases 2–4 have greater WR for

concave power functions with d = 3 than for concave exponential functions with s = 1.

On the other hand, for Cases 5–9, the reverse is true. If the particular shape did not

matter, we would expect the same relative ordering of WR for the different function

shapes. The same insight applies across function types; see, for example, Case 3 across

the four types of functions.

Thus, the type and shape of the cost function matters, as we expected. For many of

the cases shown in Figure 5.5, the price for mistakenly assuming constant MCs is a non-

negligible increase in expected total cost, up to nearly 30% for convex TC functions. The

nine cases shown in Figure 5.5 are good representations of the results for the 28 cases that

we examined for Procedure MR.

For the sake of brevity, we do not show results for ProcedureMNR; however, the results

are similar with a few minor differences. In five of the 28 cases, WNR actually decreases

with increasing deviance of the concave TC function from linear. The same behavior is

evident for four of the 28 cases under concave-convex TC functions and one case under

convex-concave TC functions. The exceptions mentioned above all occur when b < 10, i.e.,

when the observation budget is relatively low. Additionally, the magnitudes of WNR are

similar to those of WR, except in a few cases with low b.

5.2.1.2 Effects on Selected Non-optimal Procedures

The general observations that we were able to make in §5.2.1.1 do not necessarily apply

when examining the performance of the existing non-optimal procedures. The situation

now is that either the experimenter does not have the capability to identify the optimal
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Figure 5.6: Procedure MBG Inefficiency for Selected Cases with θ = 2.4

randomized procedure, or he prefers to use a non-optimal procedure. For our discussion

here, we examine two procedures: Procedure MBG and Procedure MRA′ . We choose the

latter since Procedures MRA, MC′ , and MBK are all special cases of Procedure MRA′ .

Procedure MBG Figure 5.6 shows results for eight of the nine cases in Table 5.1. We

do not include the results for Case 1 because its very high inefficiency skews the vertical

axis limits. The plots are similar to those in Figure 5.5, except that WBG is also shown

for the linear TC function as a reference. For Procedure MR this was unnecessary since

WR = WRC = 0 when the TC function is linear.

We make the following observations.

1. Convex functions usually have the largest impact on WBG. The only exception that

we saw in our 28 cases was when b = 1. In that special case, Procedure MRC

is identical to all non-randomized procedures since taking exactly one observation

achieves PSC(CS) = P ?.
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Figure 5.7: Procedure MRA′ Inefficiency for Selected Cases with θ = 2.4

2. For convex functions, increasing the deviance of the TC function from linear tends

to increase the inefficiency of Procedure MBG; such was the case for all 28 cases we

examined. This implies that using ProcedureMBG instead of the optimal randomized

procedure when total costs are convex leads to an even greater inefficiency than when

trying to minimize observations. The same is true for convex-concave mixed TC

functions with only two exceptions in the 28 we examined.

3. For concave and concave-convex mixed TC functions, we see cases in which WBG is

increasing, decreasing, or neither as deviation from linear increases.

4. The particular shape of the total cost function matters as it does for Procedure MR.

Procedure MRA′ Figure 5.7 shows results for eight of the nine cases in Table 5.1. As for

Procedure MBG, we do not include the results for Case 1. The results are similar to those

for Procedure MBG.

We make the following observations concerning Procedure MRA′ .
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1. Convex-concave mixed functions often have the largest impact on WRA′ , as is the

case for Cases 4–7 in the figure. This is in contrast to the other procedures we have

analyzed for which convex functions almost always have the largest impact.

2. For convex functions, increasing the deviance of the TC function from linear tends to

increase the inefficiency of Procedure MRA′ ; such was the case for all but one of the

28 cases we examined. The same is true for convex-concave mixed TC functions with

only one exception in the 28 we examined.

3. For concave functions, increasing the deviance of the TC function from linear actually

decreases the inefficiency of Procedure MRA′ for 19 of the 28 cases we examined.

The same is true for concave-convex mixed TC functions for 15 of the 28 cases we

examined.

4. The particular shape of the total cost function matters.

The results in this subsection again show that the costs associated with using non-

optimal procedures can be significant. The trends associated with the different types and

shapes of TC functions are often specific to the particular TC function and procedure.

The only general result that applies across all non-optimal procedures is that using those

procedures incurs unnecessary additional costs.

5.2.2 Effects of Periodic Costs

We first analyze the effect of periodic costs on Procedure MR performance. Figure 5.8

shows results for the nine cases in Table 5.1 for B = 2, 5 (the smallest and largest batch

sizes we examined). A larger marker implies a larger value of ρ. As expected, WR increases

within each case as ρ increases. The same is true for all batch sizes and all 28 cases we

examined. Figure 5.8 also indicates that the larger batch sizes have a greater effect on WR;

however, this is not necessarily the case in general.

In Figure 5.9, we plot results for ρ = 0.5, 1, and all four possible batch sizes. The figure

shows that increasing the batch size does not necessarily lead to an increase in inefficiency.

This result is likely due to the discrete nature of the periodic batch costs and when those

77



1 2 3 4 5 6 7 8 9
0

0.005

0.01

0.015

0.02

In
ef

fi
ci

en
cy

Batch Size of 2

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

In
ef

fi
ci

en
cy

Batch Size of 5

 

 
25% of Costs 50% of Costs 75% of Costs 100% of Costs

Figure 5.8: Procedure MR Inefficiency for Selected Cases with B = 2, 5 and θ = 2.4

1 2 3 4 5 6 7 8 9
0

0.01

0.02

0.03

0.04

In
ef

fi
ci

en
cy

50% of Costs

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

In
ef

fi
ci

en
cy

100% of Costs

 

 
Batch of 2 Batch of 3 Batch of 4 Batch of 5

Figure 5.9: Procedure MR Inefficiency for Selected Cases with ρ = 0.5, 1 and θ = 2.4

costs are incurred with respect to the stopping points in Procedure MR and the final

budget b. We must also keep in mind that WR is calculated with respect to the performance

of the optimal Procedure MRC. If Procedure MRC cannot achieve the same magnitude of

improvement for a larger batch size as it can for a smaller batch size, then the metric WR

may be lower for the larger batch size.

For brevity, we do not show the results for Procedures MBG and MRA′ . For neither

procedure does inefficiency increase for all cases as ρ increases, as it did for ProcedureMR;

however, at larger budgets, the inefficiency of both procedures does tend to increase as ρ

increases. Similar to Procedure MR, increasing the batch size does not necessarily lead

to an increase in inefficiency. Finally, WBG and WRA′ are typically an order-of-magnitude

larger (tenfold increase) for batches of size two than WR. This, of course, translates to

much higher increases in expected total cost.
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5.2.3 Batch Pricing

All of the results we have discussed thus far give us insights into the penalty paid for not

using ProcedureMRC when total costs are nonlinear. But for batch costs, we can gain some

practical insight about how much we should be willing to pay for batches of a particular

size. Armed with this information, decision-makers can negotiate beneficial batch prices or

decide not to purchase batches at all.

Consider an experiment for which all costs are incurred through batch costs (i.e., ρ = 1).

The experimenter has the choice to pay cB for batches of observations of size B or to pay

for each observation individually at cost c. The choice of policy must not change during

an experiment, i.e., all purchases must be in batches of the same size or they must all be

purchased individually. Initially, we let cB = B c; in other words, the cost of the batch is

equivalent to purchasing each observation individually. We also assume that B is a divisor

of the budget b. The latter assumption is reasonable since an experimenter is likely to set

a budget that is a multiple of the batch size, and is necessary to avoid penalizing batch

purchases for observations that cannot be used. Let CB be a random variable representing

the total cost under the batch cost function and CL be the random variable representing

the total cost under a linear cost function.

We use optimization to identify the optimal ProceduresMRC for both cost functions and

calculate ESC[CB
RC] and ESC[CL

RC]. Consider a new metric DB which we call the break-even

batch discount rate, for batch size B. We calculate it as follows:

DB ≡ 1−
ESC[CL

RC]

ESC[CB
RC]

. (5.13)

This is the minimum discount at which we should be willing to purchase batches of size B.

In other words, we would be willing to pay at most c′B = (1 − DB) cB for each batch of

size B.

To see that this is true, we recall that ESC[CRC] is the value of the objective function

(5.3) at the solution to the mathematical program LPC in the SC. For the linear total cost
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Figure 5.10: DB versus P ? for k = 3, θ? = 1.8, b = 120 and Selected Batch Sizes

function, cη′ = c for all η′ in (5.2). For the batch cost function,

cη′ =

 B c if B is a divisor of m− 1,

0 otherwise.

We know that the optimal solution to an LP is invariant to linear transformations of the

objective function. Therefore, if our original value of the objective function for batches is

ESC[CB
RC], then if we multiply our objective function in LPC by (1−DB), the new value of

our objective function will be

= (1−DB)ESC[CB
RC],

=

(
1−

[
1−

ESC[CL
RC]

ESC[CB
RC]

])
ESC[CB

RC],

= ESC[CL
RC],

which is what we were trying to show.

Consider an example with k = 3, b = 120, and θ? = 1.8. The value of b is chosen to

maximize the number of batch sizes we can consider for purposes of the example (i.e., the

possible divisors of b). The values of k and θ? were chosen so that the optimal solution for

the largest P ? we will consider, P ? = 0.99, will require most of the available observations.

Figure 5.10 shows plots of DB as a function of P ? for B ∈ {2, 3, 4, 5, 6} on the left and
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B ∈ {8, 10, 12, 15, 20} on the right. As expected, the larger the batch size, the larger

the discount DB required to make batching an acceptable option. There are a couple of

exceptions. At P ? = 0.75 and P ? = 0.76, DB is actually larger for B = 2 than for B = 3.

This result is likely due to the fact that lower P ?-values can be achieved with relatively low

numbers of observations. For these, it may be that stops at odd multiples of 3 give P(CS)

and E[C] flexibility when working with B = 3 but penalize B = 2 by requiring the purchase

of an extra observation.

We have shown that we can leverage our mathematical programs to determine discount

rates for batch price negotiation or to determine whether or not to purchase batches if the

prices are already set. Curves such as those in Figure 5.10 can be developed for any MSP.

Although we did not do so here, more complicated batching strategies can be examined

by manipulating the constraints in LPC and/or adding variables. Our contribution is the

development of mathematical programming formulations of MSPs that allow us to answer

real world, cost-related questions that have heretofore been unanswerable.

5.2.4 Shadow Prices

Our mathematical programming formulation LPC provides another tool that can be quite

useful for cost-related analysis. Any LP has a corresponding dual formulation that is also

an LP. Each of the variables in the dual formulation (i.e., the dual variables) correspond

to a constraint in the primal (i.e., original) formulation. A detailed discussion of the dual

formulation and its properties would be too involved to include here; the reader may refer

to any introductory linear optimization text, such as Bertsimas and Tsitsiklis (1997), for

more information. Most optimization software packages determine the dual formulation

automatically, and return the values of the dual variables (i.e., the dual solution) with the

primal solution.

The values of the dual variables at the optimal solution to the LP can provide additional

insight into cost. Let λ be the dual variable associated with the P(CS) constraint, (4.11), in

the LP. Let µη′ be the dual variable associated with the flow conservation (or initialization)
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constraint for network node η′. We know that since the P(CS) constraint is a greater-than-

or-equal-to constraint in a minimization problem, λ ≤ 0 in the dual maximization problem.

The µη′ ’s are free (unconstrained) variables in the dual problem. The dual variables are

often called shadow prices of the resource constraints. For example, we can interpret λ

as the instantaneous price that we should be willing to pay for an increase in one unit of

P(CS).

As an example, consider an MSP with k = 3, P ? = 0.9, θ? = 3, and b = 30, and linear

costs such that each observation costs $100. Then ESC[CRC] = $622.37 and PSC(CS) = 0.9.

At this solution, λ = 3967.58. Since it is unrealistic to expect a unit increase in PSC(CS),

we instead consider what the expected total cost would be if we required a 0.01 increase

in P ?, i.e., P ? = 0.91. Our shadow price tells us that our expected total cost will increase

$39.68 to $662.05. If we change the formulation slightly to P ? = 0.91, we indeed see that

ESC[CRC] = $662.04. This example is slightly misleading though. The interpretation of

shadow price that we are using only applies for values ‘close’ to the original P ?. And

‘closeness’ may vary depending upon the particular solution. For example, if we consider

the original MSP, but increase P ? to 0.98, we get ESC[CRC] = $1148.99, PSC(CS) = 0.98,

and λ = 18,529.44. This might imply that our expected total cost will increase $185.29

to $1334.28 if we increase our P ? requirement by 0.01. However, changing P ? to 0.99 and

optimizing, we get ESC[CRC] = $1517.99. Thus, we must be careful when interpreting the

implications of the dual variable, particularly when P ? is very large.

Interpretation of the dual variables associated with the equality constraints {µη′} is

less straightforward. It is difficult to conceptualize changes in the right hand side of our

flow conservation constraints. By changing the right hand side, we either allow inbound

probability flow to be greater than the outbound flow, or vice versa. Such changes violate

the assumptions upon which our MSP formulation is built. Consider the original formu-

lation but with the initialization constraint multiplied by –1. That puts the initialization

constraint in the same form as the flow conservation constraints, with inbound flow having

positive coefficients and outbound flow having negative coefficients. Thus, an increase to

the right hand side would mean that there is less flow out of the node than flowed into it.
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For all of the cases that we observed, µη′ ≥ 0. Thus, decreasing the right hand side (i.e.,

allowing more probability flow out of the node than flowed in), has the effect of decreasing

the expected total cost. This makes intuitive sense. Allowing more outbound flow than

flowed in actually creates additional probability at that node, making it a source node. In

the simplest case, that node could send all of the additional probability directly to the sink,

moving the solution closer to the required P ? without having increased total cost at all.

5.3 Summary

The main contributions in this chapter are LP and MIP formulations that, when solved,

provide the optimal randomized and non-randomized procedures, respectively, for any given

cost function. These formulations of general MSPs are built upon reasonable assumptions

with respect to the observation costs, namely, that the marginal cost of taking an additional

observation at η′ can be specified and is the same for all permutations of η′. Ours is the

first methodology that integrates variable observation costs for MSPs.

Furthermore, using these formulations, we have been able to show that the type and

shape of the total cost functions has an impact, often significant, on a procedure’s efficiency

with respect to the optimal solution. We examined a robust set of possible cost functions,

including functions affected by periodic observation costs. In some cases, there were gen-

eral insights that applied across function types. For example, the additional cost incurred

by failing to use the optimal procedure is greatly amplified under convex (and sometimes

convex-concave mixed) TC functions. Conversely, concave (and sometimes concave-convex

mixed) TC functions tend to mitigate the additional costs incurred for using a non-optimal

procedure. In many cases, procedure inefficiency due to ignoring the underlying cost func-

tion is unique to a particular total cost function. In all cases, incorrectly assuming that

total costs are linear leads to unnecessary additional costs in expectation.

Finally, we provided two additional tools for addressing particular cost-related issues.

One methodology allows the decision-maker to determine discount rates for batch price

negotiation or to determine whether or not to purchase batches if the prices are already

set. The other tool uses the information already embedded in the LP concerning the dual
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variables to estimate the cost of increasing the P ? requirement.
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CHAPTER VI

PROCEDURE COMPARISONS

In this chapter, we examine the performance of particular MSP procedures. We have already

shown some comparative results in Chapter 3 and comparisons based upon expected total

cost in Chapter 5. Here, we leverage our previous contributions to analyze the procedures

more thoroughly, in order to develop deeper insights into performance in terms of not only

the expected number of observations, but also other important metrics as well.

In §6.1, we demonstrate that for large b coupled with non-trivial P ? requirements, ESC[N ]

for Procedure MNR gets very close to that of Procedure MR. Next, in §6.2, we conduct a

detailed comparison of existing procedures. In §6.3, we look more closely at the performance

of Procedure MRA and show its relationship to the classic gambler’s ruin problem. We

summarize our results in §6.4.

6.1 Performance Comparison of Procedures MR and MNR

In this section, we examine the performance (in terms of the expected number of obser-

vations) of optimal randomized Procedure MR and optimal non-randomized Procedure

MNR. Figure 6.1 is a plot of the expected number of observations for these procedures

with k = 2, θ? = 2 (left), and θ? = 3 (right), as a function of the observation budget, b, for

selected P ? requirements. For all but one particular combination of P ? and θ?, the expected

number of observations for ProcedureMNR very quickly approaches, as a function of b, the

expected number of observations for Procedure MR.

For P ? = 0.75 and θ? = 2, the expected numbers of observations for the optimal non-

randomized and randomized procedures do not converge to each other, but remain equidis-

tant as b increases. In this case — not uncommon for lower values of P ? coupled with

larger θ? — the required P ? is achieved very ‘early’ in the nodal network. At b = 5, Proce-

dureMNR achieves a PSC(CS) of 0.7737 with 3.086 expected observations. ProcedureMR

achieves a PSC(CS) of 0.75 with 2.625 expected observations. Increasing b does not make
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Figure 6.1: Randomized and Non-randomized Procedures for k = 2 and θ? = 2, 3

available any nodes that can be taken in combination with existing nodes to improve upon

the optimal value of either procedure. We discuss the intuition behind these observations

later in the section.

Figure 6.1 also confirms the result peculiar to k = 2 that we pointed out in §4.1.2.3.

When strong curtailment is used, the optimal expected number of observations for an even

value of b is equivalent to that of b− 1.

Figure 6.2 shows similar results for k = 3. The plots for P ? = 0.75 and θ? = 3 (right

chart) demonstrate that the non-convergent “delta” between optimal values may be very

small. Additionally, both figures suggest that, for a given combination of k, θ?, and P ?,

both procedures approach a nearly constant optimal expected number of observations as b

increases. For such parameter combinations, increases to the budget reach a point beyond

which the availability of additional observations has little impact on the minimum achievable

expected number of observations.

We make the above observations without formal proofs; however, we can provide some

insight using the standard multinomial probability distribution. Consider the multinomial

distribution for three alternatives in probability configuration p = (0.5, 0.25, 0.25) after 30
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Figure 6.2: Randomized and Non-randomized Procedures for k = 3 and θ? = 2, 3

observations. There are 496 possible outcomes, in terms of cumulative success vectors; but,

due to symmetry, we are interested in the 91 unique left-lexicographic outcomes that the

original 496 outcomes represent. The contribution of each left-lexicographic outcome (and

its permutations) towards PSC(CS) ranges from 9.31 × 10−10 to 0.0567. The contribution

towards the expected number of observations ranges from 2.79× 10−8 to 1.7221. Figure 6.3

is a column graph of the contributed PSC(CS) (left) and the contributed expected number

of observations (right) of each node sorted by PSC(CS), so that the nodal order for the left

graph is the same as that of the right graph. Figure 6.3 shows us that, at a given number

of observations, nodes with lower PSC(CS) generally (but not always) also contribute the

least towards the expected number of observations.

Now consider a non-randomized procedure with b ≥ 30. In order to minimize the

expected number of observations, the optimization can ‘choose’ between many potential

stopping nodes to achieve P ? while minimizing the expected number of observations. Since

nodes with a lower contribution towards PSC(CS) generally have a lower contribution to-

wards the expected number of observations, it may choose from numerous sample paths

with incrementally small contributions to PSC(CS) to create an optimal solution. Such a
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Figure 6.3: Multinomial Contribution to PSC(CS) and ESC[N ] at the 30th Observation

large number of sample paths, with very small probabilities, gives the optimization flexibil-

ity for achieving P ? while pushing the expected number of observations very close to the

optimal value for the randomized procedure.

In contrast, for the same multinomial distribution with p = (0.5, 0.25, 0.25) after only

five observations, the PSC(CS) contributions due to the five possible left-lexicographic

outcomes, {(2,2,1), (3,1,1), (3,2,0), (4,1,0), (5,0,0)}, are {0.1172, 0.1563, 0.1563, 0.1563,

0.0313}, respectively. Here the optimization does not have much flexibility. While increas-

ing b may seem to provide such flexibility by lowering the probabilities at each added node,

the optimization must still choose intermediate points through which the probability must

flow to get to the further nodes in the network. These add relatively large expected numbers

of observations (by going further in the network), making the effort costly if PSC(CS) has

already been achieved.

Naturally, the above discussion is a simplification. In reality, any stop before 30 ob-

servations will affect the contributions at 30 observations by reducing the number of paths

to (i.e., the multinomial coefficient of) particular nodes. Also, choices of stopping nodes

across multiple numbers of observations make both the P(CS) and the expected number of

observations complex functions of the choices themselves. Nonetheless, our example does

demonstrate that the rapidly decreasing probabilities of reaching nodes as b increases give

the optimization additional flexibility to choose between stopping nodes, provided P ? is not

achieved very early in the network.
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6.2 Performance Comparison of Non-optimal Procedures

In this section, we compare existing procedures from the literature by evaluating their

performances (in terms of expected numbers of observations) relative to the optimal ran-

domized Procedure MR. In our comparisons, we do not include Procedure MNR for three

reasons:

1. As we have shown, the optimal expected number of observations for ProcedureMNR

is very close to that of Procedure MR in most cases, particularly for large b.

2. The maximum size of the MIPs that we are able to solve is much smaller than the

maximum size we are able to solve for the LPs. Considering only Procedure MR

allows us to make more meaningful comparisons across a larger set of problems than

we could if we considered Procedure MNR.

3. Most importantly, ProcedureMR is optimal. Should the decision-maker have the ca-

pability to determine the optimal randomized and non-randomized procedures, there

would be no need to consider the optimal non-randomized procedure at all.

In §6.2.1, we identify the procedures that we will include in our comparisons. We then

describe, in §6.2.2, the metrics we will use for our comparisons in §§6.2.3–6.2.5.

6.2.1 Procedures

All of the procedures that we consider are either single-stage or bounded sequential pro-

cedures, i.e., procedures that have a finite limit to the maximum number of observations.

Bounded sequential procedures, unlike our optimal procedures, do not require the specifi-

cation of a budget b; rather, their procedure parameters are chosen in order to satisfy the

P ? requirement while minimizing ESC[N ]. Thus, for our comparisons, we will choose a b for

each problem and then search only over the subset of possible procedure parameters that

ensures that the maximum number of observations is less than b. For some problems, this

may result in a particular procedure not being able to achieve P ? at all, depending upon

our choice of b.

The following are the seven procedures that we will examine.
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1. Procedure MBEM: The single-stage procedure for which the truncation parameter

nBEM ≤ b.

2. Procedure MBK: The bounded sequential procedure for which the truncation pa-

rameter nBK ≤ b. We include updated tables for this procedure in Appendix A.1.

3. Procedure MC′: A modified version of Chen’s (1988a) inverse sampling Procedure

MC. In his original paper, Chen states that the strong curtailment stopping rule

(2.1) of ProcedureMBK could be used to reduce the expected number of observations

for his procedure without affecting P(CS), but he does not implement the change.

Therefore, we create Procedure MC′ by modifying stopping rule (2.4) to include the

strong curtailment stopping rule. In Appendix A.2, we tabulate appropriate (n, t)-

pairs for the new procedure for selected choices of k, θ?, and P ?. Choices for this

procedure include all parameter combinations with the truncation parameter nC′ ≤ b

and the inverse sampling parameter t ≤ nC′ .

4. Procedure MRA: The bounded sequential procedure that includes all parameter

combinations with the inverse sampling parameter t ≤ (b − 1)/k + 1 (which ensures

that the procedure will stop at or before the budget b) and difference parameter r ≤ t.

We include updated tables for this procedure in Appendix A.3.

5. Procedure MRA′: The bounded sequential procedure that includes all parameter

combinations with the truncation parameter nRA′ ≤ b, inverse sampling parameter

t ≤ nRA′/2 (by strong curtailment), and difference parameter r ≤ t. We include

updated tables for this procedure in Appendix A.4.

6. Procedure MBG: The bounded sequential procedure with truncation parameter

nBG ≤ b.

7. Procedure MR: The optimal randomized constrained sequential procedure under

budget b.
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6.2.2 Metrics

In this section, we briefly describe some of the measures that we will use in comparing pro-

cedure performance. Some of these metrics align with those that we have already developed

in Chapter 5.

6.2.2.1 Expected Number of Observations

The most common measure in the literature is ESC[N ]. Naturally, ESC[N ] is quite important

to the decision-maker when considering a procedure to use, since his primary goal is normally

the minimization of this metric. In some cases, the decision-maker may be concerned with

minimizing the maximum possible number of observations taken; however, we assume that

in setting a budget, the decision-maker is more interested in the former than the latter. A

decision-maker might also be interested in the expected number of observations in the EPC.

This worst-case expectation, EEPC[N ], gives the decision-maker insight into the possible

impact if the alternatives are in a configuration for which it is most difficult to determine

which is best.

6.2.2.2 Procedure Inefficiency Metric

We may also be interested in the deviation of procedure performance from what the optimal

procedure can achieve, thereby using Procedure MR as a benchmark against which we

compare other procedures as we did for total cost in Chapter 5. In order to facilitate an

analysis across different problems with widely varying budgets, we use the same procedure

inefficiency metric, WJ, for the performance of general procedure MJ, as we did for cost.

The metric, redefined for expected number of observations, is:

WJ ≡
ESC[NJ]− ESC[NR]

ESC[NR]
=

ESC[NJ]

ESC[NR]
− 1, (6.1)

where ESC[NJ] is the expected number of observations using general procedure MJ in the

SC, and ESC[NR] is the expected number of observations using Procedure MR in the SC.

Recall that we can think of procedure inefficiency as the fractional increase in expected

total observations for using general procedure MJ instead of the optimal Procedure MR.
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Often, we may want to evaluate procedure performance over a range of potential prob-

lems. For that purpose, we extend our procedure inefficiency metric heuristically by calcu-

lating the mean procedure inefficiency, WJ, for a range of P ?-values, P ?J,0, P
?
J,1, . . . , P

?
J,mJ

,

where mJ is the total number of P ?-values at which we calculate ESC[NJ]. Since we only

calculate the performance at each P ? increment, EiSC[NJ] calculated at P ?J,i must be the

assumed expected observations for the entire half-open interval (P ?J,i−1, P
?
J,i]. Let I be the

overall probability interval of P ?-values we are considering. The mean procedure ineffi-

ciency, W
I
J , for procedureMJ over interval I can be calculated via Riemann sums over the

distribution of the number of observations:

W
I
J ≡

mJ∑
i=1

EiSC[NJ]
(
P ?J,i − P ?J,i−1

)
mR∑
i=1

EiSC[NR]
(
P ?R,i − P ?R,i−1

) − 1, (6.2)

where mR is the total number of P ?-values at which we calculate ESC[NR]. Note that our

definition does not require constant increment size, nor do we need to use the same increment

sizes for both procedures. It does, however, require the same overall P ?-interval I:

P ?J,mJ
= P ?R,mR

and P ?J,0 = P ?R,0.

Keep in mind that the metric is specific to a particular combination of k, θ?, P ?, and b.

We must be careful here when comparing procedures, since W
I
J compares each procedure

with the optimum, based upon the P ?-domain of the procedure, i.e., the range from 1/k

to the maximum achievable PSC(CS) for that procedure. Procedures MBEM, MBK, MC′ ,

MRA′ , MNR, and MR have the same domain. On the other hand, procedures MRA and

MBG may have different domains from each other and the remaining procedures. Using the

mean procedure inefficiency metric fails to recognize that the domains of the procedures

are different. If we want to compare two procedures, say procedures MJ and ML, over

a common domain, we create a new metric, which we call the mean relative procedure
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performance, defined as follows:

V
I
J,L ≡

mJ∑
i=1

EiSC[NJ]
(
P ?J,i − P ?J,i−1

)
mL∑
i=1

EiSC[NL]
(
P ?L,i − P ?L,i−1

) − 1, (6.3)

where I is the intersection of the domains of proceduresMJ andML. A positive value indi-

cates that procedure ML performs better than procedure MJ over the interval of interest;

a negative value indicates the opposite.

6.2.2.3 Distributional Metrics

Since we can enumerate all of the possible stopping vectors for any MSP procedure, we can

develop algorithms to determine the probability of arriving and stopping at each possible

stopping vector. All MSP procedures under a finite budget have a finite number of stopping

points; therefore, we have complete information about the probability distribution (i.e., the

discrete probability mass function) of the number of observations required by the procedure.

With this information, we can also calculate metrics such as the median, mode, variance,

and quantiles of the random variable N .

6.2.3 Performance Comparison

Comparing procedures for a particular problem of interest is straightforward; comparisons

across numerous potential problems are not. If we choose a few combinations of θ?, P ?, and

b for each k, we may not get a good snapshot of performance. A procedure may be best for

some problems but not for others. In Appendix B, we include comparison tables for the 36

possible combinations of k ∈ {2, 3, 4}, θ? ∈ {1.6, 2, 2.4, 3}, and P ? ∈ {0.75, 0.9, 0.95}, with

a single budget b for each. The rationale for our choice of b is included in the appendix.

The tables show results for both ESC[N ] and EEPC[N ]. For those 36 cases, Procedure

MBG usually performs better, in terms of ESC[N ], than Procedure MRA′ ; however, Tables

B.4 and B.12 in Appendix B show that this is not always the case. While certain trends

may be evident across the tables, it is hard to draw any completely general conclusions,

particularly since our choice of b will affect the results and the relative performance between

the procedures.
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Figure 6.4: Procedure Comparison Plots for k = 2, θ? = 1.6, b ∈ {10, 20, 40, 60}

We try to account for such issues by examining procedure performance across the 12

common combinations of k ∈ {2, 3, 4} and θ? ∈ {1.6, 2, 2.4, 3}. Within each combination,

we choose four values for the budget b and then examine all possible P ? values between 1/k

and 0.99, in increments of 0.01. We then plot our results to visualize relative procedure

performance.

Figure 6.4 shows a series of four charts, one each for b ∈ {10, 20, 40, 60}, with k = 2,

and θ? = 1.6. The expected performance, ESC[N ], of the seven procedures is plotted as a

function of P ?. Procedure MR is shown in black, always below the other procedures, as

expected.

The plotted results for k = 2 illustrate some interesting findings. First, ProceduresMBK

andMC′ perform identically when k = 2. As it turns out, for ProcedureMC′ , stops due to

t are identical to stops due to nC′ when nC′ = 2t−1. Choosing nC′ > 2t−1 or t >
⌊
nC′+1

2

⌋
,

where bxc is the floor function (i.e., rounds x down to the nearest integer), has no effect on

the procedure. In other words, when k = 2, we can represent any two parameter Procedure

MC′ equivalently as the single parameter Procedure MBK with nBK = min{nC′ , 2t− 1}.

Similarly, Procedures MRA and MRA′ also perform identically when k = 2. Again,
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stops due to t are identical to stops due to nRA′ when nRA′ = 2t − 1. Thus, when k = 2,

Procedure MRA′ with a particular (nRA′ , r
′, t′)-triplet is identical to Procedure MRA with

a corresponding (r, t)-pair in which r = r′ and t = min
{
t′,
⌊
nRA′+1

2

⌋}
.

We also see that Procedure MBG has significant overlap with Procedures MRA and

MRA′ when k = 2. For Procedure MBG, the parameter zm in the stopping criteria (2.3)

is based upon the differences between the alternative with the most successes and the

other alternatives. When k = 2, there is only one difference to consider, which makes this

parameter behave like the r parameter in Procedures MRA and MRA′ . To see this is true,

let r′ ≡ η[2]m − η[1]m. The Procedure MBG stopping condition becomes

zm =

(
1

θ?

)r′
≤ 1− P ?

P ?
. (6.4)

Taking the natural logarithm and solving for r′, we get

r′ ≥ lnP ? − ln(1− P ?)
ln θ?

(6.5)

=

⌈
lnP ? − ln(1− P ?)

ln θ?

⌉
, (6.6)

since r′ must be an integer. As with the previous discussions, the parameter nBG acts

similarly to the t parameter when k = 2. The main aspect that makes Procedure MBG

differ from ProceduresMRA andMRA′ in some cases is that parameter r can be chosen in

the latter procedures to meet problem requirements, whereas r′ is dictated by the problem

parameters for Procedure MBG.

In some cases, Procedure MBG cannot achieve a particular P ?, but can achieve a P ?

that is higher. Such an anomalous example can be seen in the chart for b = 20 in Figure 6.4.

In that case, Procedure MBG cannot achieve P ? = 0.80, but can achieve both the lower

P ? = 0.79 and the higher P ? = 0.81. For this example, b must be increased to 25 before

Procedure MBG can achieve P ? = 0.80, whereas it can achieve P ? = 0.81 in under 20

observations. This is a characteristic peculiar to Procedure MBG that is not shared by

any of the other procedures we compare here. In some cases, such as for k = 2, θ? = 3,

P ? = 0.90, Procedure MBG actually requires an infinite number of observations.

These anomalies are due to Procedure MBG’s unique stopping rule. The stopping

condition zm ≤ (1 − P ?)/P ? was originally developed by BKS (1968) for an unbounded
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stopping procedure. When BG (1985b, 1986) added the additional stopping parameter,

nBG, (thereby bounding the procedure) to save observations in expectation, the truncated

procedure lost the ability to achieve P ?-values for which the unboundedness of the observa-

tions was required. Furthermore, as our example shows, the minimum observation budget

required to achieve P ? is not a non-decreasing function of P ?. This is a result of the integer

values of the differences calculated in the exponent of zm, which make the set of possible

values of zm discrete instead of continuous.

For our example with k = 2, and θ? = 1.6,

zm =



0.625 if r′ = 1

0.391 if r′ = 2

0.244 if r′ = 3

0.153 if r′ = 4.

(6.7)

For P ? = 0.8, (1− P ?)/P ? = 0.25, and we stop at difference r′ = 3 when zm = 0.244. For

P ? = 0.79, (1 − P ?)/P ? = 0.266, and we stop at difference r′ = 2 when zm = 0.391. As it

turns out, stops from zm values that are less than, but very close to, (1 − P ?)/P ? require

more observations to achieve P ?, as is the case for P ? = 0.8 above. For the extreme example

when k = 2, θ? = 3, and P ? = 0.9, stopping condition (1− P ?)/P ? = 1/9, which is exactly

equal to zm when r′ = 2. In that case, the procedure requires an infinite observation budget

to achieve P ?.

We now examine similar plots when the number of alternatives is larger than k = 2.

Figure 6.5 shows a series of charts for b ∈ {5, 10, 25, 40} with k = 4 and θ? = 2.4. In this

figure, we see that the relationships between the procedures are more complex than they

were for k = 2. None of the procedures perform identically, as some did for k = 2, but some

do perform similarly when b is low.

We note some relationships between the procedures (regardless of k) that are reflected

in Figure 6.5.

• ProcedureMBK with parameter nBK is a special case of ProcedureMC′ with param-

eter pair (nC′ , t), where nC′ = nBK and t ≥ dnC′/2e.
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Figure 6.5: Procedure Comparison Plots for k = 4, θ? = 2.4, b ∈ {5, 10, 25, 40}

• ProcedureMC′ with parameter pair (nC′ , t) is a special case of ProcedureMRA′ with

parameter triplet (nRA′ , r
′, t′) where nRA′ = nC′ , r

′ ≥ dnC′/2e, and t′ = t.

• Procedure MRA with parameter pair (r, t) is a special case of Procedure MRA′ with

parameter triplet (nRA′ , r
′, t′) where nRA′ ≥ kt+ 1, r′ = r, and t′ = t.

• Procedure MBK will always perform better than Procedure MBEM.

These relationships guarantee a relative ordering between Procedures MRA and MRA′

and among Procedures MBEM,MBK,MC′ , and MRA′ , which are reflected in Figure 6.5,

as well as in Figure 6.4. When considering the best performing procedure (not including

the optimal procedures, of course), we need only compare Procedures MRA′ and MBG.

Figure 6.5 shows that there are regions in which Procedure MRA′ (and even Procedure

MRA) perform better than MBG and regions (seemingly more numerous) in which the

opposite is true. We will address that in more detail later in this section.

Another insight from Figure 6.5 is the seemingly counterintuitive fact that Procedure

MBK and even ProcedureMBEM perform better than ProcedureMRA for some P ?-values.

The reason for this phenomenon, which only occurs when b is low, is that the budget
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Table 6.1: Procedures MRA and MBK Parameters for k = 4, θ? = 2.4, and b = 5

Procedure MRA Procedure MBK

Parameters PSC(CS) ESC[N ] Parameters PSC(CS) ESC[N ]

(r = 1, t = 1) 0.4444 1.000 nBK = 1 0.4444 1.000
(r = 2, t = 2) 0.5690 3.080 nBK = 2 0.4444 1.000

nBK = 3 0.5085 2.700
nBK = 4 0.5559 3.012
nBK = 5 0.5849 4.104

provides a more significant constraint on ProcedureMRA than it does for ProceduresMBEM

and MBK. For a Procedure MRA parameter pair (r, t) to be possible, we must have

b ≥ k (t − 1) + 1. If k = 4 and b = 5, then we require that t ≤ 2, resulting in the

possible parameter pairs in Table 6.1. Note that when r = 1, the procedure stops after one

observation, regardless of t; therefore, there is no need to include results for (r = 1, t = 2).

Consider P ? = 0.5. Procedure MBK with nBK = 3 can achieve P ? with ESC[N ] = 2.7, but

Procedure MRA with (r = 2, t = 2), the only parameter pair that achieves P ?, requires

ESC[N ] = 3.08. Even ProcedureMBEM with nBEM = 3 achieves P ? with a lower ESC[N ] =

3. These results agree with Figure 6.5, although the results for ProcedureMBK are masked

by that of Procedure MBG at P ? = 0.5.

The anomalies that we noticed for Procedure MBG do not appear at all in Figure 6.5.

While common for k = 2, larger k allows for a greater number of possible zm-values and

thus fewer anomalies from large gaps between the discrete zm-values. Nonetheless, we saw

the phenomenon for k > 2, but much less frequently.

6.2.4 Mean Procedure Inefficiency

To supplement the visual insights provided by our charts, we also calculated our metrics,

WJ and W
I
J . The tables in Appendix B for our 36 procedure comparisons include values

for WJ in the column labeled “% Incr”, shown as a percentage (i.e., 100WJ). For the 12

common combinations of k ∈ {2, 3, 4} and θ? ∈ {1.6, 2, 2.4, 3} at four values of b, we also

calculated W
I
J . For those examples, we use a constant increment size of 0.01 for P ? (except

for the interval between 1/3 and 0.34 when k = 3). We also use the same increment sizes
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for each procedure MJ as we do for Procedure MR, against which procedure MJ is being

compared. The following are the four relevant intervals:

• W I
J is calculated from the entire interval from 1/k to the maximum achievable P ? by

procedure MJ. For example, the maximum achievable P ? for Procedure MRA with

k = 2, θ? = 2, and b = 20 is 0.9313. The interval considered in this comparison is

then (for both Procedures MRA and MR) from 0.50 to 0.93, even though Procedure

MR can achieve a higher P ? at b = 20. Thus, we should qualify the mean procedure

inefficiency metric by calling it the mean procedure inefficiency over its achievable

P ?-region when that region is shorter than that of the optimal procedure. However,

we omit the qualifier for the sake of brevity.

• W 75
J is calculated from the interval from 1/k to the maximum achievable P ? or 0.75,

whichever is less.

• W 90
J is calculated from the interval from 0.75 to the maximum achievable P ? or 0.9,

whichever is less. If procedureMJ cannot achieve a P ? above 0.75, this metric is not

defined.

• W 95
J is calculated from the interval from 0.9 to the maximum achievable P ? or 0.95,

whichever is less. If procedure MJ cannot achieve a P ? above 0.9, this metric is not

defined.

Figure 6.6 shows the mean procedure inefficiencies for each of the four P ?-regions, with

b ∈ {10, 20, 40, 60}, k = 2, and θ? = 1.6 (i.e., corresponding to the charts in Figure 6.4).

Here we see numerically what we noted in the plots of raw performance: Procedures MBK

andMC′ have the same performances, as do ProceduresMRA andMRA′ . We also see that

Procedure MBG performs similarly to Procedures MRA and MRA′ . The absence of a set

of bars for any region means that none of the procedures can achieve P ? in that interval.

Figure 6.7 shows the mean procedure inefficiencies for each of the four regions, with

b ∈ {5, 10, 25, 40}, k = 4, and θ? = 2.4. Here, due to the larger k and lower numbers of

observations, there are more regions within which none of the procedures can achieve a
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Figure 6.6: Mean Procedure Inefficiency for k = 2, θ? = 1.6, b ∈ {10, 20, 40, 60}
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Figure 6.7: Mean Procedure Inefficiency for k = 4, θ? = 2.4, b ∈ {5, 10, 25, 40}
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Figure 6.8: Mean Relative Procedure Performance: MRA′ versus MBG

particular P ?. The relative ordering of procedure performance discussed in connection with

Figure 6.5 is evident here, as is the poorer performance of Procedure MRA when b is low.

The results thus far prompted us to compare Procedures MRA′ and MBG. We have

seen that the performance of Procedure MRA′ dominates the performances of all other

procedures except Procedure MBG (and the optimal procedures, of course). Therefore, we

narrow our attention to just the two procedures by examining the metric V
I
RA′,BG.

Figure 6.8 shows the results for this comparison over the same sets of k, θ?, and b we

have analyzed thus far. Within each of the individual charts, we plot V
I
RA′,BG for each

of the four regions, grouped by the four values of b labeled on the horizontal axis. Bars
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above the center line indicate regions within which Procedure MBG performs better than

Procedure MRA′ . Bars below indicate regions within which the opposite is true. Points at

which there are no bars indicate either identical or nearly identical performance, or a region

within which the procedures cannot compete. The greater frequency of bars above versus

below shows that for the regions and problems we examined, Procedure MBG performs

better than MRA′ more often than the reverse. However, we point out again that this

comparison is over the intersection of their domains. In some cases, Procedure MRA′ can

attain a higher maximum P ? for a problem than can Procedure MBG, which may provide

a decisive advantage for particular situations.

Of course, we should not lose sight of the fact that Procedure MR (and Procedure

MNR) always perform as well as or better than all other existing procedures, and should be

used if possible when minimization of the expected number of observations (or total cost)

is the most important performance measure.

6.2.5 Distributional Comparisons

As we discussed in §6.2.2, we have complete distributional information for any procedure

given the problem parameters (k and θ?) and procedure parameters (e.g., nBK, r, t, etc.).

We can calculate the population variance of N in the SC, VarSC[N ], and thus its standard

deviation, SDSC[N ], which we include in the tables in Appendix B. To look across the

36 cases, we use the coefficient of variation, CV , as our unitless measure of variability to

compensate for the different values for b, where

CV =
SDSC[N ]

ESC[N ]]
. (6.8)

Table 6.2 shows the results for the mean CV across all of the cases considered, as well

as minimum and maximum values of CV for each procedure. We did not consider cases

when b = 1 or when there is no entry for a procedure; therefore, the number of cases

considered is less than 36. The relative ordering of the procedures, in terms of their mean

CV , generally holds for each of the cases. The following lists the procedures in increasing

order of variability for the cases we examined. This order was not necessarily intact for all

cases, but summarizes the observed trend.
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Table 6.2: Coefficient of Variation Results

Procedure Cases Mean CV Min CV Max CV

MR 34 0.47 0.34 0.59
MNR 29 0.45 0.20 0.60
MBG 34 0.48 0.20 0.61
MRA′ 34 0.43 0.15 0.61
MRA 25 0.41 0.20 0.61
MC′ 34 0.18 0.11 0.28
MBK 35 0.13 0.05 0.20
MBEM 35 0 0 0

1. Procedure MBEM

2. Procedure MBK

3. Procedure MC′

4. Procedures MRA and MRA′

5. Procedures MNR and MR

6. Procedure MBG

We may also be interested in more information about relative procedure performance.

For example, a decision-maker might care about the minimum, maximum, or median of

the observation distribution (N) as well. One tool we can use is a boxplot (or box-and-

whisker plot). Figure 6.9 displays boxplots of the distribution of N for each procedure

when k = 3, θ? = 2, P ? = 0.9, and b = 34, corresponding to Table B.6 in Appendix B.

The bottom, middle, and top of the boxes represent the 25th, 50th (median), and 75th

percentiles of the procedure distributions, respectively. The ends of the whiskers represent

the minimum and maximum of the distributions. We have also added information about

the mean and standard deviation in the blue triangular regions. The horizontal line in

the center of the triangular region represents the mean (ESC[N ]); the triangles extend one

standard deviation from the mean.

The figure confirms our relative ordering for procedure variability. We also see that

the distributions of ProceduresMR,MNR, andMBG are noticeably skewed towards lower
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Figure 6.9: Procedure Distribution Boxplots for k = 3, θ? = 2, P ? = 0.9, and b = 34

numbers of observations, since their medians are below the centers of the rectangles. Plots

such as these can provide decision-makers with the additional information necessary to

compare other aspects of procedure performance in the SC or any other probability config-

uration. We could go a step further and plot the actual probability mass functions of each

procedure; however, it would be rare that such detail would be necessary.

6.3 Procedure MRA as Gambler’s Ruin when k = 2

One interesting result particular to Procedure MRA when k = 2 is its relationship to the

gambler’s ruin problem. Consider a game in which a gambler begins with r chips. At

each turn, the gambler bets a single chip and wins with probability p (and thus loses with

probability q = 1 − p). If he wins, he gets two chips; if he loses, he gets no chips. The

gambler’s goal is to obtain a total fortune of 2r chips before he is ruined (i.e., loses all of

his original r chips). The characteristics of this game are the essence of the gambler’s ruin

problem.

Alam’s (1971) unbounded MSP procedure, when k = 2, treats the MSP as a gambler’s

ruin problem. In his procedure, sampling stops when η[2]m − η[1]m = r, which is equivalent

to the gambler either achieving his fortune of 2r chips or being ruined in the game we
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described. Let p and q be the probabilities of success for the first and second alternatives,

respectively, with p ≥ q and p+ q = 1. Known results for the gambler’s ruin problem (e.g.,

see Ross 2000) give the following:

P(CS) =
1

1 + (q/p)r
, (6.9)

where P(CS) can be interpreted as the probability that the gambler achieves his fortune,

and

E[N ] =
r

p− q

(
pr − qr

pr + qr

)
, (6.10)

where E[N ] can be interpreted as the expected number of turns it will take for the game

to end. As we mentioned in Chapter 2, Alam proved that the SC is the LFC when k = 2.

That can be easily verified by noting that p =

(
θ?

θ? + 1
,

1

θ? + 1

)
in the SC. Substituting

for the values of p and q in (6.9), we get:

PSC(CS) =
1

1 + (1/θ?)r
,

which decreases as θ? decreases.

Procedure MRA adds an additional parameter t. The modification to the game asso-

ciated with the gambler’s ruin problem is that the game can now end under one of three

conditions, whichever occurs first: 1) the gambler achieves his fortune, 2) the gambler is

ruined, or 3) the gambler has won or lost t of the turns. Figure 6.10 shows the possible

sample paths of the game when r = 3 and t = 5. Each level represents an observation [turn

in the game]. Movement along an arc to the left represents a success by alternative 1 [win

by the player]. Gray nodes represent potential stopping points and black nodes represent

those points that cannot be reached given the procedure parameters. Figure 6.10 demon-

strates that Procedure MRA will never stop when the alternatives have the same number

of successes [the game will never end with the players tied].

Initially, we consider Alam’s (1971) unbounded MSP procedure with r = 3. Let P(i, j)

be the probability of arriving at point (i, j). The first possible stops occur at the third ob-

servation (e.g., see Figure 6.10, which is equivalent to Alam’s unbounded procedure through
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Figure 6.10: Procedure MRA Stopping Points for (r = 3, t = 5) when k = 2

the seventh observation). Then

P(3, 0) = p3, P(0, 3) = q3,

P(2, 1) = 3p2q, P(1, 2) = 3pq2.

The next possible stops occur at the fifth observation, where

P(4, 1) = p2P(2, 1) = 3p4q, P(1, 4) = q2P(1, 2) = 3pq4,

P(3, 2) = 2pqP(2, 1) + p2P(1, 2) = 9p3q2, P(2, 3) = 2pqP(1, 2) + q2P(2, 1) = 9p2q3.

At the seventh observation, we get

P(5, 2) = p2P(3, 2) = 9p5q2, P(2, 5) = q2P(2, 3) = 9p2q5,

P(4, 3) = 2pqP(3, 2) + p2P(2, 3) = 27p4q3, P(3, 4) = 2pqP(2, 3) + q2P(3, 2) = 27p3q4.

These recursive equations give us

P(j + 3, j) = p3(3pq)j , P(j, j + 3) = q3(3pq)j ,

P(j + 1, j) = p(3pq)j , P(j, j + 1) = q(3pq)j ,
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for j ≥ 0. In general, the P(CS) contribution of the first ` stopping points is

P(CS) =
∑̀
j=0

P(j + 3, j)

=
∑̀
j=0

p3(3pq)j

=
p3
[
1− (3pq)`+1

]
1− 3pq

.

If we take the limit,

lim
`→∞

p3
[
1− (3pq)`+1

]
1− 3pq

=
p3

1− 3pq
,

it is equivalent to the gambler’s ruin equation (6.9) with r = 3.

We have verified that Alam’s unbounded procedure is equivalent to a gambler’s ruin

problem when k = 2. Now we return to Procedure MRA and consider the specific problem

when r = 3 and t = 5. Through the first seven observations, the stopping points coincide

with Alam’s procedure, but from that point we must consider the stopping points unique

to the parameter t. For this example,

P(CS) = P(3, 0) + P(4, 1) + P(5, 2) + P(5, 3) + P(5, 4)

= p3 1− (3pq)3

1− 3pq
+ pP(4, 3) + pqP(4, 3) + q2P(3, 4)

= p3 1− (3pq)3

1− 3pq
+ (p+ pq)[p(3pq)3] + q2[q(3pq)3]

= p3 1− (3pq)3

1− 3pq
+ (p2 + 2p2q)(3pq)3 (6.11)

In our example, if θ? = 1.6, then p = (8/13, 5/13) in the SC, and using (6.11), PSC(CS) =

0.7559, which agrees with Table A.3 in Appendix A.3.
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We now turn our attention to E[N ]. For Alam’s procedure,

E[N ] =

∞∑
j=0

(j + 3 + j)[P(j + 3, j) + P(j, j + 3)]

=
∞∑
j=0

(2j + 3)[p3(3pq)j + q3(3pq)j ]

= 2(p3 + q3)
∞∑
j=0

j(3pq)j + 3(p3 + q3)
∞∑
j=0

(3pq)j

= 2(p3 + q3)
3pq

(1− 3pq)2
+

3(p3 + q3)

1− 3pq

=
p3 + q3

1− 3pq

(
6pq

1− 3pq
+

3− 9pq

1− 3pq

)
=

3(1− pq)
1− 3pq

, (6.12)

where p3 + q3 = 1− 3pq when p+ q = 1. Equation (6.12) is equivalent to the gambler’s ruin

equation (6.10) when r = 3, although the algebra required to show that is quite involved.

For our bounded Procedure MRA in the example:

E[N ] = 3[P(3, 0) + P(0, 3)] + 5[P(4, 1) + P(1, 4)] + 7[P(5, 2) + P(2, 5)] +

8[P(5, 3) + P(3, 5)] + 9[P(5, 4) + P(4, 5)]

= 3(p3 + q3) + 5(3p4q + 3pq4) + 7(9p5q2 + 9p2q5) +

8[pP(4, 3) + qP(3, 4)] + 9[pqP(4, 3) + p2P(3, 4) + pqP(3, 4) + q2P(4, 3)]

= 3(p3 + q3) + 15pq(p3 + q3) + 63p2q2(p3 + q3) +

8(27p5q3 + 27p3q5) + 9(27p5q4 + 27p5q4 + 27p4q5 + 27p4q5)

= (3 + 15pq + 63p2q2)(p3 + q3) + 216p3q3(p2 + q2) + 243p4q4(p+ p+ q + q)

= (3 + 15pq + 63p2q2)(p3 + q3) + 216p3q3(p2 + q2) + 486p4q4. (6.13)

In our example, if θ? = 1.6 in the SC, and using (6.13), we find that ESC[N ]= 5.956, which

agrees with Table A.3 in Appendix A.3.

We have shown that Alam’s (1971) unbounded procedure is a gambler’s ruin problem

when k = 2. We have also shown that ProcedureMRA is a modified version of the gambler’s

ruin problem. It is possible to extend the gambler’s ruin problem to more than two players

(i.e., k > 2); however, the computation of the recursive equations is very burdensome. For
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example, see Sobel and Frankowski (2002). In their paper, they develop an MSP procedure

based upon the multi-player gambler’s ruin problem; however, their procedure is unbounded

and allows the elimination of individual alternatives during sampling, both of which are

violations of our problem assumptions.

6.4 Summary

In §6.1, we showed that, in many cases, the expected number of observations for Procedure

MNR rapidly approaches, as a function of b, the expected number of observations for Pro-

cedure MR. For lower values of P ? coupled with larger θ? (i.e., when few observations are

required to achieve P ?), the optimal Procedures MR and MNR do not converge to each

other, but remain equidistant as b increases. These results allow us to omit ProcedureMNR

in our subsequent comparisons.

We then developed a number of metrics in §6.2.2 to examine different aspects of pro-

cedure performance. We used those metrics and selected charts in §6.2.3 and §6.2.4 to

demonstrate some important relationships between the procedures in terms of performance,

particularly when k = 2, as well as some interesting anomalies in the performance of Pro-

cedure MBG. We also focused on a more thorough comparison of Procedures MBG and

MRA′ , showing that ProcedureMBG usually performs better in terms of ESC[N ], but that

ProcedureMRA′ can sometimes attain a higher maximum P ?. In §6.2.5, we looked at addi-

tional information provided by the distribution of N for each MSP procedure. In particular,

we were able to examine and compare procedure variability.

Finally, in §6.3, we showed that Alam’s (1971) procedure when k = 2 is identical to the

classic gambler’s ruin problem, and that Procedure MRA represents a modification to the

gambler’s ruin problem by changing the game slightly.
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CHAPTER VII

PROCEDURE IMPLICATIONS

In this chapter, we address some additional questions that arose throughout the course of

our research. Our goals are to gain initial insights into the issues, and, more importantly, to

set the stage for continued research and future work. All three of the topics discussed here

relate to fundamental assumptions regarding the application of MSP procedures normally

taken for granted in the literature.

For example, we typically accept problem inputs, in particular, the IZ parameter, as

given, without concern for their effects on the problem space. In §7.1, we show how the

choice of the IZ parameter affects the size of the PZ when all alternative configurations are

equally likely. We also examine the size of IZ subregions under the same conditions. In

§7.2, instead of concerning ourselves with probability guarantees in the PZ, we define the

concept of an “acceptable selection” for alternatives in the IZ and conduct experiments to

characterize the new metric. Finally, we shift our focus in §7.3 from the prior P(CS) to

posterior conditional P(CS) at procedure termination. In other words, what is the P(CS)

after we have garnered additional information during the course of sampling? We summarize

our results in §7.4.

7.1 Preference Zone

In this section, we wish to determine the probability that a configuration p, randomly chosen

from sample space Ω, is in the PZ. In order to do so, we must have some information

about the distribution of p. We will assume the simplest model in which all possible

probability configurations, p ∈ Ω, are equally likely (i.e., probability configurations are

uniformly distributed over the sample space). We use k-dimensional geometry to calculate

the fraction of the probability configuration sample space that is considered the PZ. Under

our model, that fraction is our desired probability.

Recall that the PZ is defined as ΩPZ ≡ {p ∈ Ω : p[k]/p[k−1] ≥ θ?}. We wish to
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calculate the ratio of the geometric volume of ΩPZ to the geometric volume of Ω. By the

uniformity assumption, all k! permutations of a particular probability vector p are equally

likely. Therefore, it is sufficient for us to consider the volume of one permutation of the

input space, say p1 ≥ p2 ≥ · · · ≥ pk. Multiplying by k! will not be necessary, since that

term will cancel in the ratio.

In §7.1.1, we identify the k vertices of the (k − 1)-dimensional polytope representing

the PZ. In §7.1.2, we apply a formula for the volume of a simplex to the PZ and the

sample space to obtain our desired probability. We then briefly discuss the implications via

numerical examples in §7.1.3. Finally, in §7.1.4 with reference to Appendix D, we apply

similar techniques to the geometries of the IZ.

7.1.1 Vertices

We begin by identifying the vertices of the general k-dimensional polytope defined by the

permutation of probability configurations in which p1 ≥ p2 ≥ · · · ≥ pk. The resulting

polytope is

Ω′PZ ≡

(p1, . . . , pk) ∈ IRk :
p1 ≥ θ? p2; pi ≥ pi+1, 2 ≤ i ≤ k − 1;

pk ≥ 0;
∑k

i=1 pi = 1

 , (7.1)

where the prime in Ω′PZ indicates the permutation of the space.

The k+1 relationships defining the polytope are the minimum required to represent the

region of interest. If we think of the region as a feasible region in the linear programming

sense (i.e., defined by a set of constraints), we can use the following definition of a basic

solution; for example, see Bertsimas and Tsitsiklis (1997). Given a bounded convex region

in k-dimensional space, a basic solution is the unique solution to a set of k independent

equations consisting of all m equalities that define its boundary and k−m binding inequal-

ities (i.e., inequalities represented as equalities). If the basic solution satisfies all of the

constraints, we will call it a vertex.

We have only one equality, and must therefore choose among the k inequalities to de-

termine the k − 1 remaining equations that will define the basic solution. Our approach is

to remove one inequality at a time, set the remaining k − 1 inequalities to equalities, solve

111



the resulting set of equations to find each basic solution, and check to see if the solution

satisfies the one inequality that we removed. If so, we will call it a vertex. Incidentally, if

we have k unique vertices at the end of this process, we have also shown that our set of

relationships defining Ω′PZ in (7.1) is the minimum set required, i.e., there are no redundant

equations.

We only need to consider three cases. In the first, we remove the first inequality, p1 ≥

θ? p2, and make the rest into equalities. We now have

pi = pi+1, 2 ≤ i ≤ k − 1,
pk = 0,∑k

i=1 pi = 1.

Then pi = 0, 2 ≤ i ≤ k, and by our total probability requirement, p1 = 1. Clearly this

satisfies p1 ≥ θ? p2, so our first vertex is

v1 = (1, 0, · · · , 0)T . (7.2)

In the second case, we remove one of the inequalities in the set pi ≥ pi+1, 2 ≤ i ≤ k− 1.

Our new set of equations is:

p1 = θ? p2,
p2 = p3,...

pi−1 = pi,
pi+1 = pi+2,...
pk−1 = pk,
pk = 0,∑k

i=1 pi = 1.

When we remove inequality i, the new equations require that pi+1 = pi+2 = · · · = pk = 0.

Solving the remaining equations we get

θ? p2 + (i− 1)p2 = 1, or p2 = 1/(θ? + i− 1).

Our ith feasible solution is then

vi =

(
θ?

θ? + i− 1
,

1

θ? + i− 1
, · · · , 1

θ? + i− 1
, 0, · · · , 0

)T
, (7.3)
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in which there are i positive terms and k − i zeros. It is a vertex because it satisfies the

inequality, pi ≥ pi+1, that we removed.

Our final case is the removal of pk ≥ 0. We now have

p1 = θ? p2,
pi = pi+1, 2 ≤ i ≤ k − 1,∑k

i=1 pi = 1.

These equations require that θ? p2 + (k − 1)p2 = 1. Solving and substituting back into our

set of equations results in the final basic solution (and vertex since pk = 1/(θ?+k−1) ≥ 0):

vk =

(
θ?

θ? + k − 1
,

1

θ? + k − 1
, · · · , 1

θ? + k − 1

)T
, (7.4)

which is the SC.

We now have k unique vertices in IRk. Our polytope is a convex hull of the vertices,

and is a (k − 1)-simplex, a fact we will use in the next section to calculate the volume of

the polytope.

7.1.2 Volume Calculations

Our objective is to calculate the ratio of the volume of the simplex for a general θ? over the

volume of the simplex with θ? = 1. That will provide the fraction of the overall volume of the

sample space that is the PZ, and thus, the probability that a randomly drawn probability

vector p is in the PZ, under the assumption that all p ∈ Ω are distributed uniformly over

the sample space.

Given its vertices, we can calculate the volume of any (k − 1)-simplex in IRk−1 via the

following formula (Büeler, Enge, and Eukuda 2000, pg 133):

V =
| det[v2 − v1 v3 − v1 · · · vk − v1] |

(k − 1)!
, (7.5)

where V is the volume of the simplex polytope with vertices v1,v2, . . . ,vk. Unfortunately,

our vertices are in IRk, since vk has a nonzero component in the kth dimension, so we

cannot apply (7.5) directly.

Let Vθ? be the volume of the (k − 1)-simplex defined by vertices v1, . . . ,vk ∈ IRk. Let

V1 be the particular value of Vθ? when θ? = 1. Now let v′i be the projection of vi onto the
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standard basis in IRk−1. Then V ′θ? is the volume of the (k − 1)-simplex defined by vertices

v′1, . . . ,v
′
k ∈ IRk−1 and V ′1 is the particular value of V ′θ? when θ? = 1. We state the following

lemma.

Lemma 7.1 The ratio Vθ?/V1 is equivalent to the ratio V ′θ?/V
′

1.

We consider the shifted polytope (i.e., the polytope represented by V = [v2 − v1 v3 −

v1 · · · vk − v1]), since shifting the polytope does not affect the volume. After shifting,

we see that

vi − v1 =

(
−(i− 1)

θ? + i− 1
,

1

θ? + i− 1
, . . . ,

1

θ? + i− 1
, 0, . . . , 0

)
=

1

θ? + i− 1

(
− (i− 1), 1, . . . , 1, 0, . . . , 0

)
, (7.6)

for i = 2, . . . , k, where there are i− 1 ones and k− i zeros. We are interested in the volume

of two different simplexes. The first, ∆1, is the (k − 1)-simplex representing region Ω′ —

the permutation of the overall sample space in which we are interested. The second, ∆θ? ,

is the (k − 1)-simplex representing the region Ω′PZ. Note that ∆1 = ∆θ? when θ? = 1. By

definition, Ω′PZ ⊂ Ω′ when θ? > 1, so ∆θ? is wholly contained within ∆1. Furthermore, by

(7.6), each vertex of ∆θ? falls along the same vector as each vertex of ∆1, but is closer to

the origin.

Let ∆′θ? be the projection of ∆θ? onto the standard basis in IRk−1, w′θ? be the vertex

vk − v1 of ∆′θ? , and wθ? be the vertex vk − v1 of ∆θ? . The only difference between ∆′θ?

and ∆θ? is that w′θ?,k = 0 and wθ?,k = 1/(θ? + k − 1), respectively. For Ω′, we use similar

notation, but with θ? replaced by 1 in the subscript. Now consider the change from w′1,k to

w1,k, leaving all of the other vertices in ∆′1 fixed. By (7.6), all of the vertices in ∆′θ? will

also remain fixed, except for component wθ?,k of wθ? . The change in the magnitude of wθ?

will maintain the same proportion as the change in the magnitude of w1 (since wθ? is a

point along vector w1). But then the changes in the respective volumes must maintain the

same proportion as well, since we are moving one vertex away from the other fixed vertices

in the same proportion, and thus

Vθ?/V1 = V ′θ?/V
′

1 ,
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concluding our proof. 2

Lemma 7.1 allows us achieve our goal by calculating V ′θ? and V ′1 via (7.5) and using

their ratio to determine the relative volume of the PZ to the sample space. We have

already numbered our vertices in the manner we wish use them to create the matrix V′ =

[v′2 − v′1 v′3 − v′1 · · · v′k − v′1],

V′ =



−1
θ?+1

−2
θ?+2

−3
θ?+3 . . . −(k−3)

θ?+k−3
−(k−2)
θ?+k−2

−(k−1)
θ?+k−1

1
θ?+1

1
θ?+2

1
θ?+3 . . . 1

θ?+k−3
1

θ?+k−2
1

θ?+k−1

0 1
θ?+2

1
θ?+3 . . . 1

θ?+k−3
1

θ?+k−2
1

θ?+k−1

0 0 1
θ?+3 . . . 1

θ?+k−3
1

θ?+k−2
1

θ?+k−1

...
...

...
...

...
...

...

0 0 0 . . . 1
θ?+k−3

1
θ?+k−2

1
θ?+k−1

0 0 0 . . . 0 1
θ?+k−2

1
θ?+k−1



,

where V′ is a (k − 1)× (k − 1) matrix.

The most straightforward way to calculate the determinant is to reduce V′ to a triangular

matrix, ensuring that the reduction methods used leave the determinant unchanged. Strang

(1988) shows that the determinant of a triangular matrix is equal to the product of the

diagonal elements of the matrix. He shows further that the operation of subtracting a

multiple of one row from another row does not change the determinant. We indicate the

jth element of the ith row by rij , with rii denoting the diagonal elements. The general form

for the ith row, i ≥ 2, is:

ri =

[
0, . . . , 0,

1

θ? + i− 1
,

1

θ? + i
, . . . ,

1

θ? + k − 1

]
,

in which there are i− 2 leading zeros.

Let r†i be ri transformed by adding the previous (i− 1)th row after transformation (i.e.,

r†i−1). Note that r†1 = r1 since the first row is already in a form required for an upper

triangular matrix.

Lemma 7.2 The general form of the ith row, 2 ≥ i ≥ k − 1, after reduction of V′ to an

upper triangular matrix, is

r†i =

[
0, . . . , 0,

−1

θ? + i
, . . . ,

−(k − i)
θ? + k − 1

]
∀i ≥ 2,
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in which there are i− 1 leading zeros.

Our proof of Lemma 7.2 is by induction. For i = 2, we add r†1 to r2, giving us

r†2 =

[
0,
−1

θ? + 2
,
−2

θ? + 3
, . . . ,

−(k − 3)

θ? + k − 2
,
−(k − 2)

θ? + k − 1

]
.

We then assume that the induction hypothesis is true for i and consider i+ 1. We first note

that

ri+1 =

[
0, . . . , 0,

1

θ? + i
,

1

θ? + i+ 1
, . . . ,

1

θ? + k − 1

]
,

in which there are i− 1 leading zeros. We then add r†i to ri+1 to get:

r†i+i =

[
0, . . . , 0, 0,

−1

θ? + i+ 1
, . . . ,

−(k − i) + 1

θ? + k − 1

]
,

=

[
0, . . . , 0, 0,

−1

θ? + (i+ 1)
, . . . ,

−(k − (i+ 1))

θ? + k − 1

]
,

in which there are (i− 1) + 1 = i leading zeros. This completes the proof. 2

We have used row reduction to transform V′ into the triangular matrix

V† =
[
r†1
T
r†2
T
r†3
T
· · · r† Tk−1

]T
,

where

r†ii =
−1

θ? + i
∀i = 1, . . . , k − 1.

Then

det V′ = det V† =

k−1∏
i=1

r†ii

=

k−1∏
i=1

−1

θ? + i

= (−1)k−1
k−1∏
i=1

1

θ? + i
. (7.7)

Substituting (7.7) into (7.5), we get

V =
1

(k − 1)!

∣∣∣∣∣ (−1)k−1
k−1∏
i=1

1

θ? + i

∣∣∣∣∣
=

1

(k − 1)!

k−1∏
i=1

1

θ? + i
. (7.8)
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We are interested in the ratio

Vθ?

V1
=
V ′θ?

V ′1

=

1

(k − 1)!

k−1∏
i=1

1

θ? + i

1

(k − 1)!

k−1∏
i=1

1

1 + i

=

k−1∏
i=1

1

θ? + i

k∏
i=2

1

i

= k!
k−1∏
i=1

1

θ? + i
. (7.9)

We now state the following theorem.

Theorem 7.1 For an indifference zone MSP involving k alternatives and a given θ?, and

assuming that all possible probability configurations p ∈ Ω are equally likely (i.e., uniformly

distributed in Ω), the probability that p ∈ ΩPZ when drawn randomly from Ω, denoted

Pu(p ∈ ΩPZ), is given by

Pu(p ∈ ΩPZ) = k!

k−1∏
i=1

1

θ? + i
.

7.1.3 Implications of PZ Size

Our assumption that all p ∈ Ω are equally likely is a reasonable one when the experimenter

has no prior knowledge concerning the relative performance of the alternatives. In such a

situation, Theorem 7.1 gives the experimenter greater information about the implications of

the choice of θ?. For a number of choices of k and P ?, Table 7.1 shows the probability that

a randomly drawn p is in the PZ under the uniformity assumption. The table also includes

the results of our Monte Carlo (MC) sampling experiment to verify our equations. For that

experiment, we generated one million realizations of p ∈ Ω under the uniformity assumption

and calculated the fraction of p ∈ ΩPZ, or p̂ ≡ P̂u(p ∈ ΩPZ), as well as the standard error,

s.e.(p̂) ≡
√

(1− p̂) p̂/106. All MC results are within two standard errors of our calculations,
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Table 7.1: MC Sampling Results for Pu(p ∈ ΩPZ)

k Result θ? = 1.6 θ? = 2 θ? = 2.4 θ? = 3

p 0.7692 0.6667 0.5882 0.5000
2 p̂ 0.7697 0.6668 0.5884 0.4998

s.e.(p̂) 0.0004 0.0005 0.0005 0.0005

p 0.6410 0.5000 0.4011 0.3000
3 p̂ 0.6412 0.5004 0.4012 0.2992

s.e.(p̂) 0.0005 0.0005 0.0005 0.0005

p 0.5574 0.4000 0.2971 0.2000
4 p̂ 0.5575 0.4002 0.2974 0.2000

s.e.(p̂) 0.0005 0.0005 0.0005 0.0004

p 0.4977 0.3333 0.2321 0.1429
5 p̂ 0.4984 0.3340 0.2317 0.1434

s.e.(p̂) 0.0005 0.0005 0.0004 0.0004

p 0.3429 0.1818 0.1013 0.0455
10 p̂ 0.3426 0.1822 0.1009 0.0451

s.e.(p̂) 0.0005 0.0004 0.0003 0.0002

except that of k = 10 and θ? = 3, the smallest PZ, which is within three standard errors.

Table 7.1 shows, for an example with just three alternatives and θ? = 2, that the probability

of being in the PZ is 1/2 — half of all possible alternative configurations. For the same

example with five alternatives, only 1/3 of the possible configurations would be in the PZ.

7.1.4 Size of the IZ Regions

Having solved for the size of the PZ for general k, it is natural to ask about the sizes

of the IZ regions as well. Now we are interested in determining the probability that a

randomly drawn configuration p is in the region of the IZ in which the decision-maker is

indifferent to selection among the m best alternatives, where m is the largest integer for

which p[k]/p[k−m+1] < θ?, m = 1, . . . , k. We denote that subregion ΩIZm, where ΩIZ1 = ΩPZ.

We make the same assumption that all probability configurations p ∈ Ω are equally likely.

Therefore, we can again use geometric volumes to calculate the probabilities we require, as

we did in §7.1. We were able to do this when m = 1 for general k in §7.1, but here the

complexities of the subregions do not allow us to generalize for k. Therefore, we derived the

volumes directly for k = 3 and k = 4 in Appendix D. Table 7.2 shows similar information
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Table 7.2: MC Sampling Results for Pu(p ∈ ΩIZ)

k Region Result θ? = 1.6 θ? = 2 θ? = 2.4 θ? = 3

3

p 0.3114 0.4000 0.4453 0.4714
ΩIZ2 p̂ 0.3113 0.3995 0.4446 0.4723

s.e.(p̂) 0.0005 0.0005 0.0005 0.0005
p 0.0476 0.1000 0.1536 0.2286

ΩIZ3 p̂ 0.0474 0.1001 0.1542 0.2284
s.e.(p̂) 0.0002 0.0003 0.0004 0.0004

p 0.3424 0.4000 0.4088 0.3857
ΩIZ2 p̂ 0.3424 0.4001 0.4087 0.3860

s.e.(p̂) 0.0005 0.0005 0.0005 0.0005
p 0.0908 0.1714 0.2395 0.3143

4 ΩIZ3 p̂ 0.0909 0.1714 0.2394 0.3147
s.e.(p̂) 0.0003 0.0004 0.0004 0.0005
p 0.0093 0.0286 0.0547 0.1000

ΩIZ4 p̂ 0.0092 0.0283 0.0545 0.0994
s.e.(p̂) 0.0001 0.0002 0.0002 0.0003

to that shown in Table 7.1; it includes the results of the same MC experiment of one million

probability configurations, but for the IZ. Note that although the IZ grows with k and θ?,

individual regions may not be monotonically increasing. For example, ΩIZ2 when k = 4

increases in θ? initially but then decreases again.

7.2 Probability of Acceptable Selection

The probability guarantees of conditions (1.1) and (1.2) apply only when p ∈ ΩPZ. They

are based upon the P(CS) for the procedures in the LFC, which by definition is really the

LFC in the PZ. Clearly, the LFC for the whole of Ω is the configuration in which the best

alternative has a probability of success very slightly greater than 1/k, i.e., a configuration

very close to the EPC. In that case, we would expect P(CS) ≈ 1/k, regardless of the

procedure.

Given the results in §7.1.3, one might ask what the probability guarantees are in general,

or at least when the probability configuration is not in the PZ. For that, we must define

a new concept. In our notation, m is the same as it was in the previous section. When

p ∈ ΩPZ, our goal has been to select the alternative associated with p[k], and we say that a
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correct selection is made if the goal is achieved. We will now say that an acceptable selection

(AS) is made if we select any alternative associated with p[k−i+1], 1 ≤ i ≤ m (i.e., if we

select among any of the m best alternatives). We use Pp(AS) to denote the probability of

making an acceptable solution given probability configuration p, or P(AS) for short. In the

PZ, P(CS) = P(AS).

Suppose we wish to extend our original requirement in (1.1) to the following. For user-

specified constants (θ?, P ?) with θ? > 1 and 1/k < P ? < 1, we require

Pp(AS) ≥ P ? for all p ∈ Ω. (7.10)

Intuitively, it would seem that (7.10) follows from (1.1); otherwise, the P(CS)-requirement

in (1.1) would be unsatisfying given no (realistic) guarantee that p ∈ ΩPZ.

To help us understand the probability guarantee, we initially considered each proce-

dure’s LFC, in terms of P(AS) in the IZ. In previous chapters, we have already discussed

the complexities of proving that the SC is the LFC for P(CS) in the PZ; nonetheless, all

procedures have either proven or conjectured that it is so. In the IZ, the SC is a vertex for

every subregion {ΩIZm : m = 2, . . . , k}. Our initial results led us to hypothesize that the

LFC, in terms of P(AS), for each subregion of the sample space, ΩIZm, m = 2, . . . , k, is the

SC.

To test our hypothesis, we conducted the following set of MC sampling experiments. For

each of the 36 cases shown in Appendix B and for each of the eight procedures compared

there, we randomly sampled 100,000 realizations of p uniformly in Ω and calculated P(AS),

P(CS), and E[N ] for each p. Thus, we conducted 268 experiments of 100,000 replications

each. (The actual number of experiments is reduced from 288 since certain procedures were

infeasible for particular problems and some problems were too large to obtain solutions.) We

separated the p-vectors into their appropriate regions, {ΩIZm : m = 2, . . . , k}, and analyzed

the results. In all but one of the 268 experiments, our hypothesis was true; however, we

discovered one case in which it was not. Further exploration and analysis led us to reject

our hypothesis. Fortunately, our experiments did confirm that Pp(AS) ≥ PSC(CS) for all

ΩIZm,m = 1, 2, . . . , k, implying that probability requirement (1.1) guarantees probability
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Table 7.3: Example of Pp(AS) < PSC(AS) for k = 3, b = 3, and θ? = 15

η Pp(arrive at η and stop) PSC(arrive at η and stop) P(AS | stop at η)

(0, 0, 3) 0.00011 0.00020 0
(0, 1, 2) 0.00162 0.00061 0
(0, 2, 1) 0.00810 0.00061 1
(0, 3, 0) 0.01350 0.00020 1
(1, 0, 2) 0.00486 0.00916 0
(1, 1, 1) 0.04859 0.01832 2/3
(1, 2, 0) 0.12148 0.00916 1
(2, 0, 1) 0.07289 0.13739 1
(2, 1, 0) 0.36443 0.13739 1
(3, 0, 0) 0.36443 0.68695 1

Pp(AS)=0.9772 PSC(AS)=0.9839

Table 7.4: MC Sampling P(AS) Results for Procedure MR

k P ?
θ? = 1.6 θ? = 2.4

P(CS) P(AS) minP(AS) P(CS) P(AS) minP(AS)

0.75 0.9408 0.9545 1.0000 0.8908 0.9356 1.0000
2 0.90 0.9881 0.9909 1.0000 0.9783 0.9873 1.0000

0.95 0.9960 0.9969 1.0000 0.9921 0.9954 1.0000

0.75 0.9610 0.9710 0.8764 0.9310 0.9604 0.8759
3 0.90 0.9901 0.9929 0.9511 0.9819 0.9902 0.9506

0.95 0.9957 0.9969 0.9754 0.9932 0.9963 0.9752

0.75 0.9648 0.9751 0.8500 0.9371 0.9666 0.8399
4 0.90 0.9904 0.9935 0.9433 0.9840 0.9920 0.9365

0.95 N/A N/A N/A 0.9934 0.9968 0.9707

requirement (7.10), at least for the configurations sampled.

Table 7.3 is an example of a situation in which the SC is not the LFC in the IZ. It

shows the results for an MSP with k = 3 and (very large) θ? = 15 for Procedure MBEM

with nBEM = 3. For that example, p = (15/21, 5/21, 1/21) ∈ ΩIZ2, and we assume that the

SC = (15/17, 1/17, 1/17) is also in ΩIZ2 (for calculation purposes). Each row in the table

represents a stopping point for the procedure. The last column, labeled ‘P(AS | stop at η)’

is the probability that an AS is made if the experiment stops at the node in the first column.

The last row has the P(AS) results, calculated as the vector product of the column above

it and the last column.
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We also examined expected P(CS) and P(AS). Such calculations require knowledge of

the distribution of p ∈ ΩPZ for the former and p ∈ Ω for the latter. To develop some

insights, we assume our model in which the p are distributed uniformly in Ω. We derive our

results from the same MC experiments previously discussed in this subsection. Table 7.4

shows results for the optimal randomized Procedure MR under selected values for k and

θ?. It includes P(CS), the mean of P(CS) across all MC samples p ∈ ΩPZ; P(AS), the mean

of P(AS) across all MC samples p ∈ Ω; and minP(AS), the minimum P(AS) across all MC

samples in the IZ, since the minimum in the PZ equals PSC(CS). Our MC experiments

also support our assumption that the expected number of observations is maximized in the

EPC, although we do not show the results here.

7.3 Conditional (Posterior) P(CS)

As we noted in Chapter 1, our research focuses on prior probability requirements, which are

also the primary concern in the MSP literature. In this section, we will examine posterior

probabilities, in particular, the conditional probability of correct selection upon termination

of the experiment.

7.3.1 Relationships

We will use P(CS |η) to denote the conditional probability of a CS given that we have

arrived at cumulative success vector η and stopped. The conditional probability is then

P(CS |η) =
P(arrive at η, stop, and make a CS)

P(arrive at η and stop)
. (7.11)

We now let y be a permutation of η. Borrowing the notation of Chapter 4, we let t(y)

represent the number of alternatives in cumulative success vector y that have the same

number of successes as the best alternative, including the best. Then 1 ≤ t(y) ≤ k with

t(y) = 1 when none are tied with the best. Additionally, let π?(y) be the subset of the

permutations of y for which the first alternative is greater than or equal to the remaining

alternatives. In other words, π?(y) ⊆ π(y) is the subset of permutations that results in

correct selections. Then

P(CS |η) =

∑
y∈π?(η)

1
t(y) py P(arrive at y)∑

y∈π(η) py P(arrive at y)
.
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where py ≡ P(stop at y | arrive at y) and y is an index into the respective set of vectors.

But py = pη for all y ∈ π(η), and t(y) = t(η) for all y ∈ π?(η), so

P(CS |η) =

1
t(η) pη

∑
y∈π?(η) P(arrive at y)

pη
∑
y∈π(η) P(arrive at y)

. (7.12)

For simplicity and without loss of generality, we assume a p in which p1 ≥ p2 ≥ · · · ≥ pk.

Now consider a general probability configuration p = (q, qθ2 ,
q
θ3
, . . . , qθk ), where θi = p1/pi,

and let Sy be the number of sample paths terminating at cumulative success vector y. After

canceling the pη and including p, (7.12) becomes:

P(CS |η) =

1

t(η)

∑
y∈π?(η)

Sy q
∑k
i=1 yi

k∏
i=1

(
1
θi

)yi
∑
y∈π(η)

Sy q
∑k
i=1 yi

k∏
i=1

(
1
θi

)yi . (7.13)

Since Sy is equivalent for all y ∈ π(η) and the term q
∑k
i=1 yi cancels from all terms,

P(CS |η) =

1

t(η)

∑
y∈π?(η)

k∏
i=1

(
1
θi

)yi
∑
y∈π(η)

k∏
i=1

(
1
θi

)yi . (7.14)

If p is the SC, then θi = θ? for all i > 1, and p = (θ? p, p, . . . , p). Then (7.12) becomes

PSC(CS |η) =

1

t(η)

∑
y∈π?(η)

Sy p
∑k
i=1 yi (θ?)y1

∑
y∈π(η)

Sy p
∑k
i=1 yi (θ?)y1

=

1

t(η)

∑
y∈π?(η)

(θ?)y1

∑
y∈π(η)

(θ?)y1
. (7.15)

In Chapter 1, we state that P(CS |η) is the expectation of the prior P(CS). We establish

that relationship here. Recall from our development of the P(CS) constraint in Chapter 3

that

P(CS) =
∑
η∈N
η is CS

1

t(η)
P(arrive at η and stop at η)

=
∑
η∈N
η is CS

1

t(η)
pη P(arrive at η),
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where N is the set of all possible η. We can use the left-lexicographic representation of η,

η′, to rewrite P(CS) as

P(CS) =
∑
η′∈N ′

1

t(η′)
pη′

∑
y∈π?(η′)

P(arrive at y).

By (7.12), the overall P(CS) of a procedure is the weighted sum of the conditional

probabilities of CS:

P(CS) =
∑
η′∈N ′

wη′ P(CS |η′),

where wη′ ≡ pη′
∑
y∈π(η′) P(arrive at y).

7.3.2 Concerns

One criticism that can be leveled against all of the bounded procedures that we have dis-

cussed is the fact that we stated in Chapter 1 — the posterior conditional P(CS) may be

less than P ?. For example, consider Procedure MRA for an MSP with k = 3, θ? = 2,

and P ? = 0.75. The parameter pair for that particular MSP is r = 4 and t = 5, which

guarantees a PSC(CS) = 0.7556. Suppose we stop at η = (5, 3, 3). In the SC, (7.15) gives

us

PSC(CS |η) =
2 (θ?)5

2 (θ?)5 + 2 (θ?)3 + 2 (θ?)3

= 2/3,

which is less than our desired P ?. While MSP procedures guarantee a prior P(CS) ≥ P ?

(when p is in the PZ), there are no guarantees on posterior P(CS |η). When presenting a

result like that in our example to a decision-maker, the prior probability guarantees may

no longer be important, and a low P(CS |η) may erode confidence in a CS.

Given these concerns, we now formally state three necessary conditions for employing

bounded MSP procedures.

1. Repeated application: The procedure should be repeatedly applied to the same

application. While some experiments may result in a P(CS |η) < P ?, in the long

term, we should make a correct selection in at least fraction P ? of the experiments.
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2. Tolerable loss: The consequences of making an incorrect selection must not be

catastrophic. In other words, the decision-maker must be willing to accept a selection

even when P(CS |η) < P ?.

3. Non-trivial observation costs: There must be a cost associated with the observa-

tions such that a reduction in the expected number of observations is desirable.

We give two examples of possible applications that satisfy the above conditions. Con-

sider a manufacturing process for which an important characteristic of product quality is

qualitative (or even non-parametric) in nature, e.g., material composition and uniformity,

impurity content, etc. Evaluation of the product for this particular characteristic is ex-

pensive because it requires the destruction of the product or use of a highly specialized

evaluation process. Suppose that we only have access to machine-tuning technicians on a

regularly scheduled interval. Their job is to tune the k machines responsible for the charac-

teristic of interest; however, they do not have the time to tune all machines. Therefore, the

quality engineer employs MSP procedures to determine which of the k machines is produc-

ing parts of the lowest quality just before the technicians’ arrival. Thus, a success in this

case is the production of the part with the lowest quality. Those experiments determine

which machine the technicians will tune. If the wrong machine is occasionally identified as

the worst, the consequences are not dire, since it will still benefit from the tuning.

Consider another example in the military domain. War gaming is a process in which

military leaders and staff evaluate and refine potential courses of action within a realistic

scenario. For the war-gaming process in a training environment, a scenario must be cho-

sen in a way that maximizes the development of the skills of the war-gaming participants

(e.g., maximizes participation, challenges participants, etc.). An overall set of k potential

scenarios may be vetted with a small group of instructors, but, from that set, a single sce-

nario must be chosen for the students. Unwilling to experiment on the class at large, the k

scenarios are war gamed via smaller focus groups, and, at the end of each evaluation, one is

chosen as best. An MSP procedure is used to minimize the number of these time-consuming

focus groups required to select the best of the k scenarios. The original set of scenarios have
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all been vetted by the instructors, so the occasional, incorrect selection of a scenario is not

catastrophic.

7.3.3 Incorporation of P(CS |η)

Any bounded MSP procedure will have P(CS |η) < P ? for a subset of its stopping vectors

for non-trivial P ?. For example, it is always possible to follow a sample path in which the

largest difference between the number of successes of the best alternative and any other

alternative is, at most, one. Since our procedures are bounded, such a sample path must

terminate at a potential stopping point. The best case P(CS |η) for such a sample path is

when the best alternative has one more success than the remaining alternatives, or when

η = (η1, η1 − 1, . . . , η1 − 1). In the SC,

P(CS |η) =
(θ?)η1

(θ?)η1 + (θ?)η1−1 + · · ·+ (θ?)η1−1

=
θ?

θ? + (k − 1)
.

Thus, at best, in the SC, such a sample path has P(CS |η) ≤ θ?/(θ? + (k − 1)) = p1. If

P ? > p1, we are guaranteed that P(CS |η) < P ? for at least one of the stopping points.

This situation is caused by bounding the procedure, but removing bounds is rarely plausible.

There must be some upper limit beyond which a decision-maker is unwilling to spend for

additional observations.

If P(CS |η) is a concern for the decision-maker, we can set a threshold on the minimum

P(CS |η) that we are willing to accept, short of the budget limit b. In other words, we can

design optimal randomized and non-randomized procedures for which stops prior to the

observation budget limit must meet a minimum P(CS |η) threshold. Implementation of the

LP and MIP formulations of such MSPs is very straightforward.

Consider the LP/MIP formulation in Chapter 4. We must start, however, with the

entire set of uncurtailed nodes, N ′, instead of the curtailed set, N ′′. Curtailment allows us

to achieve P(CS) with less observations; however, it may entail a stop at a curtailment node

for which P(CS |η′) is less than our requirement and prevent us from reaching a node at a

later observation that does meet our P(CS |η) requirement. Recall that B is the set of nodes
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at the budget, i.e., B = {η′ :
∑k

i=1 η[i] = b}, now a subset of N ′. Let P ?c be our P(CS |η)

threshold. To adapt our LP/MIP for this new requirement, we do one of the following:

1. Remove all fη′ , η
′ ∈ N ′ \ B, for which P(CS |η′) < P ?c , or

2. For each fη′ , η
′ ∈ N ′ \ B, for which P(CS |η′) < P ?c , add the constraint fη′ = 0.

Both choices are acceptable. In either case, we are removing, as potential stops, the non-

budget nodes that fail to meet our P(CS |η) threshold by removing the arc flowing from

the node to the sink.

What happens if we set P ?c = P ?? Consider any potential stop η′ in the SC, and define

a group as a set of vector η′ components that are equal. Let mi represent the number of

elements in the ith group. For example, consider η′ = (4, 4, 2, 1, 1) with k = 5. In that

case, we have three groups with m1 = 2, m2 = 1, and m3 = 2. For general k, we assume

there are n groups; note that m1 = t(η′). We incorporate this new notation for counting

permutations into (7.15), and get

P(CS |η′) =

1

t(η′)

 (k − 1)!

(t(η′)− 1)!m2! · · ·mn!

 (θ?)η[k]

n∑
j=1

 (k − 1)!

m1!m2! · · ·mn!

mj (θ?)
η
[k−

∑j
`=1

m`+1]

,

which simplifies to

P(CS |η′) =
(θ?)η[k]∑n

j=1mj (θ?)
η
[k−

∑j
`=1

m`+1]
,

=
(θ?)η[k]∑k

i=1 (θ?)η[k−i+1]
,

=
(θ?)η[k]∑k
i=1 (θ?)η[i]

, (7.16)

regardless of the number of tied alternatives, or the size of the within-vector groups. Now
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we include the P(CS |η) threshold:

(θ?)η[k]∑k
i=1 (θ?)η[i]

≥ P ?c ,

1∑k
i=1 (θ?)η[i]−η[k]

≥ P ?c ,

1 +

k−1∑
i=1

(θ?)η[i]−η[k] ≤ 1

P ?c
,

k−1∑
i=1

(θ?)η[i]−η[k] ≤ 1− P ?c
P ?c

.

If we substitute our original notation for the ordered cumulative success vector, we get

k−1∑
i=1

(
1

θ?

)η[k]m−η[i]m
≤ 1− P ?c

P ?c
, (7.17)

which is the stopping condition, zm, for Procedure MBG. In fact, we see that the original

unbounded procedure of BKS (1968) guaranteed P(CS) by ensuring that the procedure only

stops when P(CS |η′) ≥ P ?. When BG (1985b) originally truncated the procedure of BKS,

they did so without curtailment. Thus, if we set our P(CS |η) threshold to P ?, we will

get the original procedure developed by BG just prior to their addition of curtailment in

Procedure MBG.

Before we conclude this discussion, we consider the concept of curtailment applied to

P(CS |η). It is possible to consider the same MSP, but with the following provision. We

will allow stopping nodes η′ /∈ B that do not meet the P(CS |η) threshold, only if P(CS |η)

cannot be achieved even if we take the remaining observations in the budget. This P(CS |η)-

curtailment is a plausible modification to our MSP and is easily implementable in the

LP/MIP formulations. On the other hand, it is probably reasonable to assume that if

the decision-maker is concerned at all with posterior P(CS), then he will want to continue

sampling beyond such a node in order to maximize P(CS |η), or to at least have more infor-

mation about the alternatives. Therefore, we did not implement this type of curtailment.

7.4 Summary

Our initial insights here are ideal launch points for continued research that will deepen our

understanding not only of MSP procedures, but also other types of RS procedures as well.
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While we have a good understanding now about Pu(p ∈ ΩPZ) and Pu(p ∈ ΩIZ), when p are

distributed uniformly in Ω, we might have an interest in other types of distributions for p,

say, for example, the Dirichlet distribution. Furthermore, these same questions concerning

the PZ apply as well to Bernoulli selection problems that use the relative risk ratio IZ

parameter, as well as other RS problems that use IZ methods.

Our concept of P(AS) allows us to look beyond the guarantees for p in the PZ to overall

guarantees for p ∈ Ω. We have shown through MC sampling that P(AS) ≥ P ? for all

p ∈ Ω; however, it would be helpful to identify the LFC, in terms of P(AS), in each of

the IZ regions. Such knowledge would give us stronger probabilistic guarantees. We have

also given examples of the mean P(AS) based upon MC sampling under our uniformity

assumption. The concept of P(AS) applies to all IZ-based RS procedures and could be

extended to those as well.

Finally, we addressed posterior P(CS |η). Based upon concerns that P(CS |η) will be less

than P ? for particular stopping points under bounded MSP procedures, we have identified

three necessary conditions for applying the types of MSP procedures we have discussed in

this thesis. We have also developed a capability to set a minimum threshold on P(CS |η),

and identify the optimal randomized [non-randomized] procedures via a modified LP [MIP]

formulation. Concerns about P(CS |η) extend well beyond MSP procedures to the broader

field of RS procedures.
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CHAPTER VIII

CONCLUSIONS

This research has advanced the existing state of the art by leveraging LP and MIP math-

ematical programming techniques to develop optimal procedures for MSPs with a fixed

sampling budget, as we demonstrated in Chapter 3. By construction, our procedures al-

ways perform at least as well as existing MSP procedures. We also introduce a new type of

procedure — the randomized procedure. Randomized procedures provide the same guar-

antees as non-randomized procedures, but are always more efficient when optimized for the

problem of interest, and their LPs are much easier to solve than the corresponding MIP for

the non-randomized procedures.

Our reformulations of the MIP and LP mathematical programs in Chapter 4 overcome

some of the most significant drawbacks of our initial formulations. Problem symmetries and

strong curtailment provide us the necessary relationships to represent the entire network

of possible stopping nodes by a smaller network consisting only of left-lexicographic, non-

curtailed nodes. Although they are less intuitive, the reformulations significantly reduce

the computational requirements for solving the problem and have allowed us to consider

substantially larger problems than could be solved initially.

Those reformulations allowed us to prove some key results about the optimal randomized

MSP procedure, in particular, that an optimal procedure exists which has, at most, only

one randomized node, and we provided an algorithm for finding it. We then showed that,

for the optimal solution, P(CS) = P ? when P ? ≥ 1/k. We were also able to extend our

formulations to replicate existing MSP procedures, thereby facilitating the identification of

the optimal procedure parameters for a specific problem. This can be a significant capability

if an experimenter often needs to identify such parameters for problem characteristics that

do not have tabulated results.

In Chapter 5, to consider the realistic scenario of variable marginal observation costs, we
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developed LP and MIP formulations that, when solved, provide the optimal randomized and

non-randomized procedures, respectively, for a given cost function. These formulations are

built upon reasonable assumptions with respect to the observation costs. Most importantly,

ours is the first methodology in the field of RS that integrates such costs. Furthermore,

using these formulations, we have been able to show that the type and shape of the total

cost functions have an impact, often significant, on a procedure’s efficiency with respect

to the optimal solution. We examined a robust set of possible cost functions, including

functions affected by periodic observation costs. In some cases, we gave general insights

that applied across function types. Most importantly, we show that incorrectly assuming

that total costs are linear leads to unnecessary additional costs in expectation. We were

also able to provide two additional tools for addressing particular cost-related issues — one

to inform observation batching decisions and the other to estimate the cost of changing the

P ? requirement using dual variables.

In Chapter 6, we showed that, in many cases, the expected number of observations for

ProcedureMNR rapidly approaches, as a function of b, the expected number of observations

for ProcedureMR. For lower values of P ? coupled with larger θ? (i.e., when few observations

are required to achieve P ?), the optimal ProceduresMR andMNR do not converge to each

other, but remain equidistant as b increases.

We developed a number of metrics to examine select aspects of procedure performance,

and used those metrics and representative charts to demonstrate some important rela-

tionships between the procedures. We looked further at the information provided by the

distribution of N for each MSP procedure, in particular, the variability. We also demon-

strated the relationships between Alam’s (1971) procedure, ProcedureMRA, and the classic

gambler’s ruin problem.

Finally, in Chapter 7, we examined probabilities with respect to the PZ and IZ when

the possible probability configurations are distributed uniformly in the sample space Ω,

shedding light on the implications and interpretations of the indifference zone parameter,

θ?. We introduced the concept of P(AS), which allows us to consider probability guarantees

for all p ∈ Ω. We have shown, through MC sampling, that P(AS) ≥ P ? for all p ∈ Ω.
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We also examined the posterior conditional probability of correct selection upon pro-

cedure termination, P(CS |η). Based on concerns that P(CS |η) will be less than P ? for

particular stopping points in bounded MSP procedures, we have identified three necessary

conditions for applying MSP procedures when we are concerned about P(CS |η). We have

also developed a capability to set a minimum threshold on P(CS |η), and to identify the

optimal randomized [non-randomized] procedures via a modified LP [MIP] formulation.

8.1 Contribution Summary

• Developed LP and MIP formulations of the MSP that guarantee the identification

of the optimal stopping rules for any given MSP and probability configuration, and

introduced the concept of a randomized procedure.

• Leveraged the characteristics of the MSP to refine the mathematical programs, thereby

improving their algorithmic efficiency and facilitating the identification of key prop-

erties of the resulting optimal randomized procedures.

• Reformulated the mathematical programs to identify the optimal stopping rules under

variable observation cost functions, and developed insights into the effects of variable

observation cost functions on procedure performance.

• Conducted a thorough analysis of the performance of existing procedures with re-

spect to the optimal randomized procedure, as well as the relative performance of the

optimal randomized and non-randomized procedures.

• Examined key assumptions concerning the indifference zone parameter and the con-

ditional probability of correct selection, resulting in novel insights and potential di-

rections for future research.

8.2 Future Efforts

There are numerous potential extensions of our methodologies and formulations in the con-

text of MSPs. For example, modifications to our mathematical programs could be used
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to consider aspects of the subset selection problem or the nuisance alternative problem de-

scribed by Aoshima and Chen (1999). Our formulations could also be modified to model

Bernoulli selection problems; however, the problem of the rapidly increasing network size

would have to be addressed for most realistic Bernoulli applications. In general, the con-

cept of randomized stopping points has application beyond MSPs to other types of RS

procedures.

The issue of variable observation costs merits further exploration. Our formulations

provide the capability to assign unique costs to every possible cumulative success vector,

if such an application exists. Furthermore, variable observation costs are possible for any

type of experiment, not just MSPs or even RS problems. Future efforts should include

the development of realistic case studies and the adaptation of existing procedures and

experimental designs to account for such costs.

Our work in Chapter 7 concerning the PZ can be expanded to consider other types of

probability configuration distributions, such as the Dirichlet distribution. Furthermore, the

related concept of the probability of acceptable selection should be further studied to gain

a better understanding of the general probabilistic guarantees of MSP procedures. These

same questions extend beyond MSPs to other types of indifference zone RS problems as

well.

The issue of prior P(CS) guarantees versus posterior P(CS |η) results is not unique

to MSP procedures. Such concerns, though very rarely addressed, if at all, in the MSP

literature, have a significant impact on decision-maker acceptance of experimental design

plans and results in the context of RS. Such concerns must be addressed to make RS

procedures, particularly MSP procedures, more palatable for decision-makers.

Our sincere hope is that the ideas pursued in this research — formulating RS problems

as mathematical programs, considering variable observation costs, challenging fundamental

assumptions — are not just used to improve the application of MSP procedures, but are

carried beyond MSPs to the broader fields of RS and experimental design.
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APPENDIX A

UPDATED PROCEDURE TABLES

This appendix includes updated tables for Procedures MBK, MC′ , MRA, and MRA′ .

A.1 Updated Tables for Procedure MBK

Table A.1 identifies the nBK-values that minimize ESC[N ] while still achieving P ?. We

searched all nBK-values up to nBK = 400. Table entries with “>400” in the column for nBK

indicate P ? requirements that cannot be achieved within our search space for the given k

and θ?.

Bechhofer and Kulkarni (1984) focus on proving various theorems and lemmas associated

with curtailment, not on providing tables for the user. Their tables only include results for

nBK ≤ 20 and are tabulated by k, nBK, and θ?. We supplement those tables by tabulating

the data for common choices of P ?, including a greater range of θ?-values, and searching over

a much larger search space for nBK. We also provide the expected number of observations

in the EPC (i.e., EEPC[N ]).
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A.2 Updated Tables for Procedure MC′

Table A.2 identifies the (nC′ , t)-pairs that minimize ESC[N ] while still achieving P ?. We do

not include a table for k = 2, since, as shown in Chapter 6, Procedures MC′ and MBK are

identical in that case; and so we can consult the Procedure MBK table in Appendix A.1.

We searched all possible (nC′ , t)-pairs up to nC′ = 125. Rows with no entries in the

table are θ?-values for which P ? cannot be achieved within the search space. These tables

improve upon those in Chen (1988a), in which his values for ESC[N ] did not incorporate

curtailment. Also, his tables only provided performance characteristics for nC ≤ 30. We

also provide the expected number of observations in the EPC (i.e., EEPC[N ]).
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A.3 Updated Tables for Procedure MRA

Table A.3 identifies the (r, t)-pairs that minimize ESC[N ] while still achieving P ?. We

searched all possible (r, t)-pairs up to t = 150 for k = 2 and 3, and up to t = 75 for k = 4.

Rows with no entries in the table are θ?-values for which P ? cannot be achieved within the

search space.

These tables improve upon those in BG (1985a) by including a greater range of θ?-values

(theirs included θ? = 2.0, 2.4, 3.0 with some entries for θ? = 1.6), as well as a few corrections

to their original paper. In the table, the symbol † represents an entry in our table that is

different from that in BG. For that particular instance, BG allow PSC(CS) to be slightly

below P ?; in our table, we do not. The symbol ‡ represents a value that is different than

that in BG due to either our improved algorithm or our ability to calculate an exact result

when BG estimated the result using MC sampling.
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A.4 Updated Tables for Procedure MRA′

Table A.4 identifies the (nRA′ , r, t)-triplets that minimize ESC[N ] while still achieving P ?.

We do not include a table for k = 2, since, as shown in Chapter 6, Procedures MRA′

and MRA are identical in that case; and so we can consult the Procedure MRA table in

Appendix A.3 when k = 2.

We searched all possible (nRA′ , r, t)-triplets up to nRA′ = 125 for k = 3 and 4. Rows

with no entries in the table are θ?-values for which P ? cannot be achieved within the search

space. These tables improve upon those in Chen (1992) by including a greater range of

θ?-values (his included θ? = 2.0, 2.4, 3.0), as well as corrections to some numerical errors

found in his original paper. We use a † to identify entries that are corrections to values

found in Table 1 of Chen (1992).
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APPENDIX B

PROCEDURE COMPARISON TABLES

This appendix includes tables for all possible combinations of k ∈ {2, 3, 4}, P ? ∈ {0.75,

0.9, 0.95}, and θ? ∈ {1.6, 2.0, 2.4, 3.0}. As discussed in Chapter 6, we require that all

procedures be able to operate under a firm budget constraint, b, on the maximum number

of observations, which sometimes results in a procedure not being able to achieve P ?.

B.1 Explanation of Results

In all of the tables included here, the LP, or randomized, formulations solve to an optimal

value. On the other hand, the MIP, or non-randomized, formulations, often solve to an

optimal integer tolerance value, particularly for larger problems. That means that binary

variables in the solution vector are not necessarily in the set {0, 1} as we specified, but

are within a preset tolerance of those values. The ESC[N ] results for MIP integer tolerance

solutions are marked with a † in the tables. In some cases for our integer tolerance solutions,

ESC[N ] for ProcedureMNR is slightly lower than that of ProcedureMR, which should not

be possible. This phenomenon occurs because the actual PSC(CS) achieved by the former

is slightly lower than P ?. We allow these results when P′SC(CS) ≥ P ?, where P′SC(CS) is

PSC(CS) rounded to four decimal places. Such occurrences in the table are marked with

a ‡. If P′SC(CS) < P ?, we either tune the solver parameters until the condition is met or we

do not report the results.

Upon conclusion of an optimization, we transform the solution vector into a set of

stopping vectors and stopping probabilities, and input those into a numerical algorithm

to recalculate the expected number of observations and achieved PSC(CS). For all of the

randomized results reported here, the recalculated metrics were equal to the optimization

output (to four decimal places). For the non-randomized results, the integer tolerance

issues led to some deviance between the expected number of observations returned by the
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optimization and that returned by the algorithm, but the deviance never exceeded 10−4.

In all cases, the numerical results reported in the tables are from the algorithm, not the

optimization. This removes the effects of integer tolerance on the expected number of

observations and PSC(CS) and returns the actual values of those metrics for the particular

set of stopping points (i.e., procedure) returned by the optimization.

We could have tuned the parameters of the solver in order to minimize or eliminate

the deviations due to tolerance, and we did so in specific cases. However, the point here

is to introduce the optimal procedures and show the potential savings in the expected

number of observations, not necessarily to find the absolutely optimal solution for the

non-randomized procedures. Anyone requiring more accuracy for a particular case could

tune the parameters as necessary to meet their requirements. Note that the results for

ProcedureMR are optimal (under our problem assumptions) and therefore serve as a lower

bound on the minimum expected number of observations for the remaining non-randomized

procedures.

B.2 Result Verification

We generated all table entries, not just those of the optimal procedures, using our own

algorithms. Thus, none of the entries are taken from published data. To verify our results,

our first check was to compare our output with previously published data, when available.

In all such cases, our values for ESC[N ] and PSC(CS) are identical to published data when

those data were calculated via numerical algorithms. When published data were estimated

via Monte Carlo (MC) sampling, our results did differ slightly but within a few standard

errors, as expected.

Our second check was to conduct MC sampling of all table entries. For each entry,

we conducted 100,000 independent replications of the procedure. We then determined the

distance, in number of standard errors, between our table entries and the sampling results.

Of the 268 MC results, all but nine were within two standard errors of the tabulated

expected number of observations and all but ten were within two standard errors of the

tabulated PSC(CS). None exceeded two standard errors for both PSC(CS) and the expected
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number of observations, and in no cases were the results three or more standard errors from

the tabulated entries.

For any MC result outside of two standard errors of the tabulated data, we first de-

termined if the tabulated data could be verified via a published source. If so, we did not

pursue those any further. If not, we took 100,000 more MC samples. In all ten of those

cases, the MC results were within two standard errors of our tabulated data.

Thus, we have reasonable confidence that our results are accurate.

B.3 Tabulated Results

For all existing procedures, we report the parameters of the procedure that minimize ESC[N ],

while achieving the required P ? and remaining under the observation budget, b. Those

parameters provide all that is necessary to implement the procedure. For Procedures MR

andMNR, we only report the number of left-lexicographic stopping points, not the stopping

points and stopping probabilities themselves. In addition to ESC[N ] and PSC(CS), we

also report EEPC[N ], SDSC(N), and WJ (as a percentage and labeled “% Incr”), i.e., the

percent increase in the expected number of observations of general procedure MJ over

Procedure MR.

Blank rows for a particular procedure in a table indicate one of two situations. First,

the procedure may not be able to achieve the given P ? under the budget constraint. These

are marked by an “N/A” in the Parameters column. Second, the computational time or

requirements for calculating ESC[N ] and PSC(CS) for a particular procedure may be beyond

our current capabilities. These are marked by “??” in the Parameters column. The tables

follow.
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APPENDIX C

FLOW CONSERVATION CONSTRAINTS

C.1 Flow Conservation Reformulation Algorithm

This appendix describes an algorithmic approach for efficiently identifying the origination

left-lexicographic nodes and determining the required coefficients for the flow conservation

constraints. To develop such a method, we need to introduce a slightly different notation

for our node representation, one that accounts for groupings in our left-lexicographic node

vectors. A group is simply a set of vector components that are equal. Since all of our

nodal vectors are left-lexicographic, groups must consist of adjacent vector components.

Let G = {g1,g2, . . . ,gG} be the set of groups in a particular node and G = |G|, the number

of distinct groups, with 1 ≤ G ≤ k. Within group gi, let gij represent the jth element of

the ith group. For example, consider the node (4, 4, 2, 1, 1) with k = 5. Then

g1 = (4, 4), g2 = (2), g3 = (1, 1),

with G = 3 and g1
1 = 4 = g1

2, etc.

Then we can use the following to describe a node:

(g1
1, . . . , g

1
m1
, g2

1, . . . , g
2
m2
, . . . , gG1 , . . . , g

G
mG

),

where the commas still separate components of the vector (i.e., the number of successes for

each alternative), and gi1, . . . , g
i
mi are the mi members of group gi for which gi1 = · · · = gimi .

The last equality allows us to identify with any group gi an integer, gi, that represents

the number of successes for each of the members of the group. Since the node is left-

lexicographic and the groups are distinct, g1 > g2 > · · · > gG. Note that
∑G

i=1mi = k, the

total number of alternatives.

Definition C.1 When we use the terms coming into and terminating at at group member

gij , when referring to an arc, we mean an arc representing the success of an alternative that

previously had gij − 1 successes and now has gij successes.
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Thus, an arc coming into group member g2
2 corresponds to the arc representing a success

of the (m1 + 2)th alternative of the origination node, where m1 is the number of members

of the first group of the terminating node. Continuing the previous example with node

(4, 4, 2, 1, 1), an arc coming into group member g3
1 = 1 corresponds to the arc representing

a success of alternative m1 + m2 + 1 = 2 + 1 + 1 = 4 of (4, 4, 2, 0, 1). This distinction is

important because the grouping structures of the origination nodes will not be the same as

that in the terminating nodes, so we are using the group structure of the terminating node

as our frame of reference.

We are now in a position to introduce and prove a sequence of statements that will lead

to our expression for the coefficients of the origination nodes.

For a left-lexicographic node, an incoming arc to a singleton group originates from a

left-lexicographic node. To see that this is true, consider a singleton group, gi, in the

left-lexicographic node under consideration. Assume that gi > 0; otherwise, there is no

origination node into group gi. Only one arc terminates at gi, and it originated at a node

of the form (. . . , gi−1
mi−1

, gi − 1, gi+1
1 , . . .). Since group elements are integers, and groups are

distinct, then gi−1 > gi−1 ≥ gi+1. Thus, the originating node is left-lexicographic, although

its group structure may be different from the terminating node. It is also clear that if gi is

the first or last group, this result still holds. Since gi is a singleton, it cannot be the only

group, as k ≥ 2. 2

A direct result of this statement is that, for a left-lexicographic node in which all groups

are singletons, all of its incoming arcs originate at left-lexicographic nodes.

For a left-lexicographic node, all arcs coming into the same non-singleton group in the

node originated from a permutation of the same left-lexicographic node. To see that this is

true, consider node (. . . , gi−1
mi−1

, gi1, g
i
2, . . . , g

i
mi , g

i+1
1 , . . .). We again assume that gi > 0. Any

arc coming into group gi must originate from a node with the same vector as the terminal

node except for one component being decremented by one in a position corresponding to

some gij ∈ gi in the terminal node. That implies that all origination nodes to group gi have

members from the set {gi, ..., gi, gi − 1} of cardinality mi in the same positions as group

gi in the terminal node (but with mi different orderings or permutations). Similar to the
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reasoning for the previous statement, gi − 1 ≥ gi+1. Therefore, all such origination nodes

are permutations of the same left-lexicographic node,

(. . . , gi−1
mi−1

, gi1, . . . , g
i
mi−1, g

i − 1, gi+1
1 , . . . , gi+1

mi+1
, . . .).

Again, it is clear that if gi is the first, last, or only group, this result still applies. 2

Let η′ be a left-lexicographic node and π(η′) be the set of permutations of η′. Then,

for a left-lexicographic node η′, only the arc terminating at the last member of a particular

group originated at a left-lexicographic node. Arcs terminating at any other member of that

group originated from a member of π(η′), with no two arcs sharing the same origination

node. This statement is a direct result of the previous statements. Given the incoming arcs

to group gi, the originating nodes must be from the ordered set:

{ (. . . , gi−1
mi−1

, gi1 − 1, gi2, . . . , g
i
mi , g

i+1
1 , . . .),

(. . . , gi−1
mi−1

, gi1, g
i
2 − 1, . . . , gimi , g

i+1
1 , . . .),

...

(. . . , gi−1
mi−1

, gi1, g
i
2, . . . , g

i
mi − 1, gi+1

1 , . . .) }.

Only the last node is left-lexicographic, since gij − 1 < gi`, j 6= `, and it corresponds to the

arc terminating at gimi . This reduces to our first statement when the group is a singleton.

2

We are interested in the inbound flow along the arcs, f iην , 1 ≤ ν ≤ k. Our previous

discussion gives us a method to identify the incoming nodes, but we must still represent

all incoming flow from each left-lexicographic node in terms of the alternative 1 success arc

only.

Let us again consider the incoming arcs to a particular group gi within node

(. . . , gi−1
mi−1

, gi1, . . . , g
i
j , . . . , g

i
mi , g

i+1
1 , . . .).

Specifically, consider group member gij . We will call the position in the nodal vector rep-

resented by this group member by its arc index, νij , with the indexing determined by the
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terminal node, not the origination node. We can calculate this index as follows:

νij = j +

i−1∑
`=1

m`.

The node from which this arc originates has the following form:

(. . . , gi−1
mi−1

, gi1, . . . , g
i
j − 1, . . . , gimi , g

i+1
1 , . . .).

From (4.4), we calculate the flow along this arc by:

f
νij
ην = θνij

gimi−(gij−1) θνimi
gij−1−gimif

νij
L(ην),

=
θνij
θνimi

f
νij
L(ην), (C.1)

since the only components being ‘swapped’ to make the node left-lexicographic are gij − 1

and gimi , and since gij = gimi . Note that we are slightly simplifying notation by replacing

ην
i
j by ην .

Now, we need the inbound flow to be converted to ν = 1. Using (4.1), we get:

f
νij
L(ην) =

1

θνij
f1
L(η′ν),

which we substitute into (C.1) to get

f
νij
ην =

(
θνij
θνimi

)(
1

θνij

)
f1
L(ην),

=
1

θνimi

f1
L(ην). (C.2)

Note that if group member gij is the last member of the group (i.e., if its originating node

is already left-lexicographic), (C.2) still applies. Then, for any group gi, all mi originating

nodal arc variables will have the same coefficient so that the total incoming flow into group

gi is

mi

θνimi

f1
L(ην). (C.3)

Across the groups, the overall flow into the left-lexicographic node η′ is

G∑
i=1

mi

θνimi

f1

L(η
νimi )

. (C.4)
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While the notation is admittedly (but necessarily) complicated, the final equation is not

difficult to understand. The index νimi is merely an integer representing the position of the

last member of the ith group. Then L(ην
i
mi ) is the left-lexicographic permutation of the ith

(of G) origination node, which is created by subtracting 1 from vector component νimi of

node η′. This completes the identification of the origination nodes. The coefficient in the

summation is simply the number of members in the ith group divided by the probability

ratio (a constant) of the last member of that group, i.e., alternative νimi .

We have shown that the knowledge of the grouping structure of a node allows us to

identify all of the G ≤ k incoming left-lexicographic nodes rapidly and to calculate the co-

efficients of the G incoming arc variables efficiently. This result leads to a greatly simplified

algorithm for constructing the flow conservation constraint matrix.

C.2 Information State Model

As we noted in Remark 4.2, we could have approached the problem of representing our

network with only left-lexicographic nodes in a different way — this one involving infor-

mation states. In this section, we show that alternate method applied to the derivation of

the flow conservation constraints. These techniques can be similarly applied to the objec-

tive function and the other constraints to derive the complete LP and MIP reformulations.

We will use the same notation as the main paper, with exceptions noted. Also, we show

the derivations in terms of the pi, i = 1, . . . , k. Conversion to a form with θi = p1/pi,

i = 1, . . . , k, like that in the main portion of this thesis, is straightforward.

Let η = (η1, . . . , ηk) ∈ N ′ be an information state, a nonnegative integer vector such

that ηi ≥ ηi+1 and
∑k

i=1 ηi ≤ b where b is the budget limit. To be in state η means that the

components of η are the numbers of successes of the alternatives, ordered from largest to

smallest. Corresponding to an information state η is a set of actual state vectors v, each a

permutation of η. The component vi is the number of alternative i successes. (Aside: Unless

ηi > ηi+1 ∀i there are fewer than k! actual state vectors associated with the information

vector η. The number is actually k!/
∏
j∈J Gj ! where Gj is the cardinality of group j of

vector η.) Denote the set of state vectors associated with η as V (η).
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Symmetry dictates that given that we are in information state η, the conditional prob-

ability of being in state v is proportional to
∏k
i=1 pi

vi . All v ∈ V (η) have the same propor-

tionality constant. Hence the conditional probability of being in actual state v given that

we are in information state η is

k∏
i=1

pi
vi/

∑
v∈V (η)

k∏
i=1

pi
vi .

The flow conservation equation at node η is written with variables fη and f1
η.

• fη is the flow to the sink from η, i.e. the absolute probability of terminating sampling

at η.

• f1
η is the flow to actual state η+e1 from actual state η (in the network from Chapter 3),

where e1 is the first unit vector (1, 0, 0, . . . , 0).

Therefore the flow to actual state η+ej from actual state η is f1
ηpj/p1, by the definition

of p. The flow to actual state v + e1 from actual state v is

f1
η

k∏
i=1

pi
vi/

k∏
i=1

pi
ηi

because you must multiply by the ratio of the conditional probability of being in actual

state v to the conditional probability of being in actual state η.

The flow to actual state v + ej from actual state v is therefore

pj
p1
f1
η

k∏
i=1

pi
vi/

k∏
i=1

pi
ηi .

The flow conservation equation at information node η requires that flow in equals flow

out. Flow out is

fη +
1

p1
f1
η

 ∑
v∈V (η)

k∑
j=1

pj

k∏
i=1

pi
vi−ηi

 .

To write the flow in we need a little more notation. For any actual state vector v let

L(v) denote the left-lexicographic permutation of v. For any actual state vector v and

integer j : 1 ≤ j ≤ k let d(v, j) be the ordinate at which L(v) and L(v − ej) differ. Then
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flow in

=
∑

v∈V (η)

k∑
j=1

flow to actual state v from actual state v − ej

=
∑

v∈V (η)

k∑
j=1

f1
L(v−ej)

pj
p1

k∏
i=1

pi
(v−ej)i−L(v−ej)i

=
∑

v∈V (η)

k∑
j=1

f1
L(v−ej)

pd(v,j)

p1

k∏
i=1

pi
vi−L(v)i .
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APPENDIX D

IZ REGION PROBABILITIES

In §D.1 and §D.2, we calculate the probability that p ∈ ΩIZ3 and p ∈ ΩIZ2, respectively.

In §D.3, we briefly describe (but do not show) the corresponding derivations for k = 4 and

present the resulting equations.

D.1 Pu(p ∈ ΩIZ3) for k = 3

Our process for finding the volume of each ΩIZm polytope is similar to the methodology we

followed for the volume of the PZ in §7.1, in that we begin by identifying the vertices of the

polytope and concern ourselves with only the volume of one permutation of the input space,

p1 ≥ p2 ≥ p3. In that permutation of the space, the Ω′IZ3 polytope is defined as follows:

Ω′IZ3 ≡
{

(p1, p2, p3) ∈ IR3 : p1 ≤ θ? p3, p1 ≥ p2, p2 ≥ p3, p3 ≥ 0,
∑3

i=1pi = 1
}
, (D.1)

where the prime in Ω′IZ3 indicates the permutation of the space.

We have only one equality and must therefore choose among the four inequalities to

determine the two remaining equations that will define the feasible solution. We remove

two inequalities at a time, set the remaining two inequalities to equalities, solve the resulting

set of equations to find each basic solution, and check to see if the solution satisfies the two

inequalities that we removed. Following that procedure for the
(

4
2

)
possible sets of equations,

we identify three vertices:

v1 =

(
1

3
,

1

3
,

1

3

)
,

v2 =

(
θ?

2θ? + 1
,

θ?

2θ? + 1
,

1

2θ? + 1

)
,

v3 =

(
θ?

θ? + 2
,

1

θ? + 2
,

1

θ? + 2

)
.

The three vertices define a two-dimensional triangle, or simplex, in IR3. Therefore, we

can use the following relationship to determine the volume (a term we use generally even

164



when dealing with area) of the simplex:

V =
1

2

√√√√√√√√√
∣∣∣∣∣∣∣∣∣∣
v1,1 v1,2 1

v2,1 v2,2 1

v3,1 v3,2 1

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
v1,2 v1,3 1

v2,2 v2,3 1

v3,2 v3,3 1

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
v1,3 v1,1 1

v2,3 v2,1 1

v3,3 v3,1 1

∣∣∣∣∣∣∣∣∣∣
, (D.2)

where v1,i is the ith component of vertex v1 and |A| is the determinant of matrix A.

Application of (D.2) to Ω′IZ3 gives us

VIZ3′ =
1

2

√√√√√√√√√√√√

∣∣∣∣∣∣∣∣∣∣∣∣

1

3

1

3
1

θ?

2θ? + 1

θ?

2θ? + 1
1

θ?

θ? + 2

1

θ? + 2
1

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

1

3

1

3
1

θ?

2θ? + 1

1

2θ? + 1
1

1

θ? + 2

1

θ? + 2
1

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

1

3

1

3
1

1

2θ? + 1

θ?

2θ? + 1
1

1

θ? + 2

θ?

θ? + 2
1

∣∣∣∣∣∣∣∣∣∣∣∣
,

which reduces to

VIZ3′ =
(θ? − 1)2

2
√

3(2θ? + 1)(θ? + 2)
. (D.3)

In order to calculate the required probability under our assumptions, we need the volume

of the permutation of Ω in which p1 ≥ p2 ≥ p3. In that permutation of the space, the Ω′

polytope is defined as follows:

Ω′ ≡
{

(p1, p2, p3) ∈ IR3 : p1 ≥ p2, p2 ≥ p3, p3 ≥ 0,
∑3

i=1pi = 1
}
, (D.4)

which has the following three vertices:

v1 = (1 , 0 , 0),

v2 = (1/2 , 1/2 , 0),

v3 = (1/3 , 1/3 , 1/3).

We use (D.2) to solve for the volume of Ω′ (but omit the algebra for brevity):

VΩ′ =

√
3

12
. (D.5)

We now have the volumes necessary to calculate the desire probability under our uniformity

assumption:

Pu(p ∈ ΩIZ3) =
VIZ3′

VΩ′

=
2(θ? − 1)2

(2θ? + 1)(θ? + 2)
. (D.6)
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D.2 Pu(p ∈ ΩIZ2) for k = 3

For this probability, we could simply use the information we already have and the law of

total probability:

Pu(p ∈ ΩIZ2) = 1− Pu(p ∈ ΩIZ3)− Pu(p ∈ ΩPZ)

= 1− 2(θ? − 1)2

(2θ? + 1)(θ? + 2)
− 3!

1

(θ? + 1)(θ? + 2)

=
3(3θ? + 2)(θ? − 1)

(θ? + 1)(θ? + 2)(2θ? + 1)
. (D.7)

However, we derive (D.7) using the same procedure as we did in §D.1, in order to show

a unique aspect of the volumes involved in this space. We are interested in the following

permutation of ΩIZ2:

Ω′IZ2 ≡

(p1, p2, p3) ∈ IR3 :
p1 ≥ θ? p3, p1 ≤ θ? p2, p1 ≥ p2,

p3 ≥ 0,
∑3

i=1pi = 1

 . (D.8)

Since we have one equality, we must choose among the four inequalities to determine the

two remaining equations that will define each feasible solution. Following that procedure

for the
(

4
2

)
possible sets of equations, we identify four vertices:

v1 =

(
1

2
,

1

2
, 0

)
,

v2 =

(
θ?

θ? + 1
,

1

θ? + 1
, 0

)
,

v3 =

(
θ?

θ? + 2
,

1

θ? + 2
,

1

θ? + 2

)
,

v4 =

(
θ?

2θ? + 1
,

θ?

2θ? + 1
,

1

2θ? + 1

)
.

Unlike our volume for ΩIZ3, we have four vertices, so we must divide the region into two

simplices to calculate the volume. We use visual methods to determine appropriate sim-

plices.

The first simplex is defined by vertices v1, v2, and v3. Using (D.2), we get

V 1
IZ2′ =

√
3(θ? − 1)

4(θ? + 1)(θ? + 2)
. (D.9)

The second simplex is defined by vertices v1, v3, and v4. Using (D.2), we get

V 2
IZ2′ =

√
3(θ? − 1)

4(2θ? + 1)(θ? + 2)
. (D.10)
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We combine the volumes (D.9) and (D.10) of the two simplices to get the total volume:

VIZ2′ = V 1
IZ2′ + V 2

IZ2′

=

√
3(θ? − 1)

4(θ? + 1)(θ? + 2)
+

√
3(θ? − 1)

4(2θ? + 1)(θ? + 2)

=

√
3(3θ? + 2)(θ? − 1)

4(θ? + 1)(θ? + 2)(2θ? + 1)
.

We now have the volumes necessary to calculate the desire probability under our uni-

formity assumption:

Pu(p ∈ ΩIZ2) =
VIZ2′

VΩ′

=
3(3θ? + 2)(θ? − 1)

(θ? + 1)(θ? + 2)(2θ? + 1)
, (D.11)

which is equivalent to what we calculated in (D.7).

D.3 Pu(p ∈ ΩIZm) for k = 4

The derivations for k = 4 follow the same methodology as that of §D.1 and §D.2. In this

section, we will show the results of each major step for the volumes, but leave out a majority

of the algebra and relationships that we have already shown previously.

First, (D.2) is not appropriate for the three-dimensional volumes in IR4 that we must

work with here. That equation, adapted for four-dimensional vertices, is:

V =
1

6

√√√√√√√√√√√√√√√√√√√√√√√√√√√√

∣∣∣∣∣∣∣∣∣∣∣∣∣

v1,1 v1,2 v1,3 1

v2,1 v2,2 v2,3 1

v3,1 v3,2 v3,3 1

v4,1 v4,2 v4,3 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣

v1,2 v1,3 v1,4 1

v2,2 v2,3 v2,4 1

v3,2 v3,3 v3,4 1

v4,2 v4,3 v4,4 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

v1,3 v1,4 v1,1 1

v2,3 v2,4 v2,1 1

v3,3 v3,4 v3,1 1

v4,3 v4,4 v4,1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣

v1,4 v1,1 v1,2 1

v2,4 v2,1 v2,2 1

v3,4 v3,1 v3,2 1

v4,4 v4,1 v4,2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

, (D.12)
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D.3.1 Volume of Ω′ for k = 4

This space Ω′ in IR4 is defined by:

Ω′ ≡

(p1, p2, p3, p4) ∈ IR4 :
p1 ≥ p2, p2 ≥ p3, p3 ≥ p4,

p4 ≥ 0,
∑4

i=1pi = 1

 ,

with the following vertices:

v1 = (1 , 0 , 0 , 0) ,

v1 = (1/2 , 1/2 , 0 , 0) ,

v1 = (1/3 , 1/3 , 1/3 , 0) ,

v1 = (1/4 , 1/4 , 1/4 , 1/4) .

The volume of the simplex defined by the vertices is

VΩ′ =
1

72
. (D.13)

D.3.2 Pu(p ∈ ΩIZ4) for k = 4

This space is defined by:

Ω′IZ4 ≡

(p1, p2, p3, p4) ∈ IR4 :
p1 ≤ θ? p4, p1 ≥ p2, p2 ≥ p3,

p3 ≥ p4, p4 ≥ 0,
∑4

i=1pi = 1

 ,

with the following vertices:

v1 =

(
1

4
,

1

4
,

1

4
,

1

4

)
,

v2 =

(
θ?

θ? + 3
,

1

θ? + 3
,

1

θ? + 3
,

1

θ? + 3

)
,

v3 =

(
θ?

2θ? + 2
,

θ?

2θ? + 2
,

1

2θ? + 2
,

1

2θ? + 2

)
,

v4 =

(
θ?

3θ? + 1
,

θ?

3θ? + 1
,

θ?

3θ? + 1
,

1

3θ? + 1

)
.

The volume of the simplex defined by the vertices is

VIZ4′ =
(θ? − 1)3

12(3θ? + 1)(2θ? + 2)(θ? + 3)
. (D.14)
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We now have the volumes necessary to calculate the desire probability under our uniformity

assumption:

Pu(p ∈ ΩIZ4) =
VIZ4′

VΩ′

=
6(θ? − 1)3

(3θ? + 1)(2θ? + 2)(θ? + 3)
. (D.15)

D.3.3 Pu(p ∈ ΩIZ3) for k = 4

This space is defined by:

Ω′IZ3 ≡

(p1, p2, p3, p4) ∈ IR4 :
p1 ≥ θ? p4, p1 ≤ θ?p3, p1 ≥ p2,

p2 ≥ p3, p4 ≥ 0,
∑4

i=1pi = 1

 ,

with the following vertices:

v1 =

(
θ?

3θ? + 1
,

θ?

3θ? + 1
,

θ?

3θ? + 1
,

1

3θ? + 1

)
,

v2 =

(
θ?

2θ? + 2
,

θ?

2θ? + 2
,

1

2θ? + 2
,

1

2θ? + 2

)
,

v3 =

(
θ?

2θ? + 1
,

θ?

2θ? + 1
,

1

2θ? + 1
, 0

)
,

v4 =

(
1

3
,

1

3
,

1

3
, 0

)
,

v5 =

(
θ?

θ? + 3
,

1

θ? + 3
,

1

θ? + 3
,

1

θ? + 3

)
,

v6 =

(
θ?

θ? + 2
,

1

θ? + 2
,

1

θ? + 2
, 0

)
.

The polygon defined by the vertices is not a simplex, but can be divided into three three-

dimensional simplices. The first is defined by vertices v1,v2,v4, and v5. Its volume is

V 1
IZ3′ =

(θ? − 1)2

9(3θ? + 1)(2θ? + 2)(θ? + 3)
. (D.16)

The next is defined by vertices v2,v3,v4, and v5. Its volume is

V 2
IZ3′ =

(θ? − 1)2

9(2θ? + 2)(2θ? + 1)(θ? + 3)
. (D.17)

The last is defined by vertices v3,v4,v5, and v6. Its volume is

V 3
IZ3′ =

(θ? − 1)2

9(2θ? + 1)(θ? + 3)(θ? + 2)
. (D.18)

169



The total volume is the sum of volumes (D.16), (D.17), and (D.18):

VIZ3′ = V 1
IZ3′ + V 2

IZ3′ + V 3
IZ3′

=
(11θ?2 + 20θ? + 6)(θ? − 1)2

9(3θ? + 1)(2θ? + 2)(2θ? + 1)(θ? + 3)(θ? + 2)
.

We now have the volumes necessary to calculate the desire probability under our uni-

formity assumption:

Pu(p ∈ ΩIZ3) =
VIZ3′

VΩ′

=
8(11θ?2 + 20θ? + 6)(θ? − 1)2

(3θ? + 1)(2θ? + 2)(2θ? + 1)(θ? + 3)(θ? + 2)
. (D.19)

D.3.4 Pu(p ∈ ΩIZ2) for k = 4

This space is defined by:

Ω′IZ2 ≡

(p1, p2, p3, p4) ∈ IR4 :
p1 ≥ θ? p3, p1 ≤ θ?p2, p1 ≥ p2,

p3 ≥ p4, p4 ≥ 0,
∑4

i=1pi = 1

 ,

with the following vertices:

v1 =

(
θ?

2θ? + 2
,

θ?

2θ? + 2
,

1

2θ? + 2
,

1

2θ? + 2

)
,

v2 =

(
θ?

2θ? + 1
,

θ?

2θ? + 1
,

1

2θ? + 1
, 0

)
,

v3 =

(
1

2
,

1

2
, 0 , 0

)
,

v4 =

(
θ?

θ? + 3
,

1

θ? + 3
,

1

θ? + 3
,

1

θ? + 3

)
,

v5 =

(
θ?

θ? + 2
,

1

θ? + 2
,

1

θ? + 2
, 0

)
,

v6 =

(
θ?

θ? + 1
,

1

θ? + 1
, 0 , 0

)
.

The polygon defined by the vertices is not a simplex, but can be divided into three three-

dimensional simplices. The first is defined by vertices v1,v2,v3, and v4. Its volume is

V 1
IZ2′ =

(θ? − 1)

6(2θ? + 2)(2θ? + 1)(θ? + 3)
. (D.20)

The next is defined by vertices v2,v3,v4, and v5. Its volume is

V 2
IZ2′ =

(θ? − 1)

6(2θ? + 1)(θ? + 3)(θ? + 2)
. (D.21)
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The last is defined by vertices v3,v4,v5, and v6. Its volume is

V 3
IZ2′ =

(θ? − 1)

6(θ? + 3)(θ? + 2)(θ? + 1)
. (D.22)

The total volume is the sum of volumes (D.20), (D.21), and (D.22):

VIZ2′ = V 1
IZ2′ + V 2

IZ2′ + V 3
IZ2′

=
(7θ?2 + 13θ? + 6)(θ? − 1)

6(2θ? + 2)(2θ? + 1)(θ? + 3)(θ? + 2)(θ? + 1)
.

We now have the volumes necessary to calculate the desire probability under our uni-

formity assumption:

Pu(p ∈ ΩIZ2) =
VIZ2′

VΩ′

=
12(7θ?2 + 13θ? + 6)(θ? − 1)

(2θ? + 2)(2θ? + 1)(θ? + 3)(θ? + 2)(θ? + 1)
. (D.23)
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