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SUMMARY

Accelerated by on-demand computing, the number and diversity of the Internet

services is increasing. Such online services often have unique requirements for the un-

derlying wide-area network: For instance, online gaming service might benefit from low

delay and jitter paths to client, while online data backup service might benefit from cheaper

paths. Unfortunately, today’s Internet does not accommodate fine-grained, service-specific

wide-area route control. In this dissertation, I achieve the following goals: 1) improve the

access to the routes, 2) quantify the benefits of fine-grained route control, and 3) evaluate

the efficiency of current payment schemes for the wide-area routes.

• Improving access to wide-area route control. Online services face significant tech-

nological and procedural hurdles in accessing the routes: Each service in need to con-

trol the Internet routes, has to obtain own equipment, Internet numbered resources,

and establish contracts with upstream ISPs. In this dissertation, I propose and de-

scribe implementation and deployment of a secure and scalable system which pro-

vides on-demand access to the Internet routes. In setting such as cloud data center, the

system can support multiple online services, providing each service with an illusion

of direct connectivity to the neighboring Internet networks, which, for all practical

purposes, allows services to participate fully in the Internet routing.

• Quantifying the benefits of fine-grained route control. Even if online services are

presented with wide-area route choice, it is not clear how much tangible benefit such

choice provides. Most modern Online Service Providers (OSP) rely primarily on the

content routing to improve network performance between the clients and the replicas.

In this dissertation, I quantify the potential benefit the OSPs can gain if they perform

a joint network and content routing. Among other findings, I find that by performing
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joint content and network routing, OSPs can achieve 22% larger latency reduction

than can be obtained by content routing alone.

• Modeling and evaluating the efficiency of the current payment schemes for wide-

area routes. Finally, increasing diversity and sophistication of the online services

participating in the Internet routing poses a challenge to payment models used in

today’s Internet. Service providers today charge business customers a blended rate:

a single, “average” price for unit of bandwidth, without regard to cost or value of

individual customer’s flows. In my dissertation, I set to understand how efficient this

payment model is and if more granular payment model, accounting for the cost and

value of different flows could increase the ISP profit and the consumer surplus. I

develop an econometric demand and cost model and map three real-world ISP data

sets to it. I find that ISPs can indeed improve the economic efficiency with just a few

pricing tiers.
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CHAPTER I

INTRODUCTION

The Internet has grown in many ways over the past couple of decades. From early 90’s to

today, the number of people with an access to the Internet grew from a few thousands to

almost two billion [10], while data consumed by these Internet users increased from a few

hundreds kilobytes to a hard-to-comprehend exabyte a day [38]. Internet usage patterns

also evolved as consumers use the Internet for everyday activities, such as entertainment

and banking. The number of different Internet uses is further accelerated by new service

delivery technologies, such as “cloud computing” [21, 49, 113], which enables on-demand

provisioning of computing and storage resources for new uses. The underlying theme of

this change is that Internet, as a platform, carries ever increassing diversity of services,

each with unique requirements for network performance and cost. For instance, bandwidth

intensive services might prefer cheaper paths in the network, financial online services might

favor reliable paths, while interactive online service might value performance the most.

Despite the growing number and diversity of supported online services, the basic wide-

area routing technology and the prevailing Internet business models remaine stagnant. The

Internet comprises of approximately 30,000 networks of various sizes, who control routing

using a reliable yet arcane Border Gateway Protocol (BGP) [95]. The BGP allows partic-

ipating networks to choose paths the traffic will take. Unfortunately, due to historical and

practical reasons, access to such wide-area route control is only available to larger networks

with significant resources — such as service providers, university campuses, or content

providers. New and emerging online services, such as operating from cloud computing

platforms, cannot exploit the Internet route diversity. For instance, a cloud computing

provider, such as Amazon EC2, can run thousands of hosted services in a data center and
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all such hosted services use identical wide-area routes, even if the network requirements of

such services varies greatly.

Even if an online service attains access to the Internet route control, it is not at all clear

how much benefit it could attain. Services today primarily use replication and content rout-

ing to reduce latency and increase throughput. Allowing services to also perform granular

network routing is not trivial and thus operators need to assess potential benefits before

performing joint network and content routing.

Finally, Internet business models are challenged by changing requirements of the on-

line services. Historically, networks in the Internet priced connectivity indiscriminately,

without regard to the value the services gain from the network or the cost which individual

services incur on the network. While this model worked fine with few types of services,

it is unclear if such indiscriminate pricing is optimal with a new reality of multiple online

services with diverse demands.

The clash between the growing diversity of the Internet services and the rigidity of the

wide-area routing technology and business models outlined above is the underlying theme

of this dissertation. Most of the current work in this area deals with online services and

Internet route control separately. For example, large body of work focus on enhancing

wide-area route control for networks [51, 103, 115], but stops short of explaining how

networked services could access such control without fundamental changes to the Internet

routing infrastructure. In the other side of the spectrum is the work that explores how mod-

ern networked services, such as search engines, video streaming sites, online games, and

social networks can adapt the the realities of the Internet [14, 114, 117]. In this dissertation

I explore and bridge this gap. At a high-level, I raise the following questions:

1. How can new online services attain access to the Internet route control at a level

similar to one enjoyed currently by large ISPs and enterprises?

2. How much benefit a fine-grained network routing adds when used in conjunction

with a conventional content routing?
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3. Are the current Internet business models adequate to support the increasing diversity

of online services?

1.1 Thesis Contributions

In this dissertation I raise the following hypothesis: Online services can obtain access to

and gain benefit from wide-area routing in a scalable and secure manner. Such access can

be accomplished using using commodity software and hardware components, and without

major changes to the Internet infrastructure or business models. More specifically, I raise

three claims with distinct contributions as presented below:

1. Route control. I claim that it is possible to provide, granular wide-area route control

to online services in a scalable and secure fashion. In Section 2.2, I detail the require-

ments for such routing and describe the system that can meet these requirements.

Specifically, I have implemented a Transit Portal system [12], which consists of five

Transit Portal nodes in locations across the United States. The system allows re-

searchers to access full-fledged wide-area route control. The system is currently used

by Georgia Tech and University of Washington researchers to conduct inter-domain

routing research.

The original work addressing this hypothesis was published in CoNEXT’07 [107]

and USENIX ATC’10 [109] conferences. Primary contribution of this work is show-

ing that it is possible to access full wide-area route control on-demand and that it

scales well.

2. Quantifying performance gains. I claim that online services can and should em-

ploy fine-grained network routing in conjunction with a conventional content routing.

In Chapter 3, I show why online services should perform joint network and content

routing. Specifically, I collect extensive round-trip-time, bandwidth, jitter, and out-

of-order packet delivery measurements between a number of service replicas, hun-

dreds of clients and across hundreds of wide-area paths. The measurement study is
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the first of its kind and contains millions of records. Data analysis shows that, for

example, OSPs can achieve 22% larger latency reduction than can be obtained by

content routing alone.

3. Route pricing. I claim that current connectivity pricing models in the Internet are

sufficient to provide efficient routing even for a diverse set of online services. In

Chapter 4 I describe: 1) current pricing models between the ISPs, 2) outline the

models for studying the efficciency of such pricing, and 3) evaluate the effectiveness

of current payment system between ISPs.

Specifically, I find that just by using 2-3 pricing tiers for their transit pricing, ISPs

can attain about 80-90% if the gain they would attain if they were to price transit at

inifinite granularity. I also find that consumer surplus follows closely the trends set

by ISP profit gains.

The original work addressing this hypothesis was published in ReArch’08 [108] and

SIGCOMM’11 [110] conferences. Primary contributions of this work are: 1) a novel

way to model Internet bandwidth market, and 2) observation that 2-3 bandwidth pric-

ing tiers can capture 80-90% of profit and consumer surplus obtainable with infinite

number of pricing tiers.

1.2 Roadmap

The rest of the thesis is organized as follows:

• Chapter 2 presents the implementation of Transit Portal platform that enables access

to fine-grained wide-area routing for researchers and serves as a proof-of-concept

that such access is possible for online services as well. The focus in this chapter is

on the design and implementation of such system.

• Chapter 3 presents a measurement study of the benefits the fine-grained route control

can give to OSPs that only use conventional content routing. In this chapter I collect

and analyse an extensive wide-area route performance measurement set.
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• Chapter 4 presents models for studying the efficiency of current business relations

between the Internet Service Providers and the Online Service Providers. The focus

in this chapter is on the modeling Internet transit market and estimating ISP profit

and consumer surplus for different transit pricing strategies.

• Chapter 5 presents concluding remarks and lists a few directions for future research.

How to read this thesis? The best way to read this thesis would be to read chapters

in serial order as outlined. Another way is to read Chapters 2 and 3 as implementation

and evaluation of Transit Portal platform, and then read Chapter 4 separately as a study of

overall Internet transit market.
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CHAPTER II

CONTROLLING WIDE-AREA ROUTES WITH TRANSIT PORTAL

Cloud-based hosting platforms make computational resources a basic utility that can be

expanded and contracted as needed [21, 113]. However, some distributed services need

more than just computing and bandwidth resources—they need control over the network,

particularly over the wide-area routes to and from their users. More flexible route control

helps improve performance [17, 18, 37] and reduce operating costs [53]. For example,

interactive applications like online gaming want to select low-latency paths to users, even if

cheaper or higher-bandwidth paths are available. As another example, a service replicated

in multiple locations may want to use IP anycast to receive traffic from clients and adjust

where the address block is announced in response to server failures or shifts in load.

Although flexible route control is commonplace for both content providers and transit

networks, today’s cloud-based services do not enjoy the same level of control over routing.

Today, the people offering these kinds of distributed services have two equally unappealing

options. On the one hand, they could build their own network footprint, including acquiring

address space, negotiating contracts with ISPs, and installing routers. That is, they could

essentially become network operators, at great expense and with little ability to expand

their footprint on demand. On the other hand, they could contract with a hosting company

and settle for whatever “one size fits all” routing decisions this company’s routers make.

This missed opportunity is not for a lack of routing diversity at the data centers: for

example, RouteViews shows that Amazon’s Elastic Cloud Computing (EC2) has at least

58 upstream BGP peers for its Virginia data center and at least 17 peers at its Seattle data

center [87]. Rather, cloud services are stuck with a “one size fits all” model because cloud

providers select a single best route for all services, preventing cloud-based applications
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Figure 2.1: Connecting services though the Transit Portal.

from having any control over wide-area routing.

To give hosted services control over wide-area routing, we propose the Transit Por-

tal (TP), as shown in Figure 2.1. Each data center has a TP that gives each service the

appearance of direct connectivity to the ISPs of its choice. Each service has a dedicated

virtual router that acts as a gateway for the traffic flowing to and from its servers. The ser-

vice configures its virtual router with its own policies for selecting paths to its clients and

announcing routes that influence inbound traffic from its clients. By offering the abstrac-

tion of BGP sessions with each upstream ISP, the TP allows each service to capitalize on

existing open-source software routers (including simple lightweight BGP daemons) with-

out modifying its application software. That said, we believe extending TP to offer new,

programmatic interfaces to distributed services is a promising avenue for future work.

Using the TP to control routing provides a hosted service significantly more control

over the flow of its traffic than in today’s data centers. In addition, the services enjoy these

benefits without building their own network footprint, acquiring routeable address space,

and negotiating with ISPs. These are hurdles that we ourselves faced in deploying TPs at

several locations; the TP obviates the need for the services that it hosts to do the same. In

addition, the TP simplifies operations for the ISPs by offloading the separate connections

and relationships with each application and by applying packet and route filters to protect
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them (and the rest of the Internet) from misconfigured or malicious services.

The design and implementation of the TP introduces several challenges. In the control

plane, the TP must provide each virtual router the appearance of direct BGP sessions to its

upstream ISPs. The TP must also forward outgoing packets to the right ISP and demul-

tiplex incoming packets to the right virtual router. Our solutions to these problems must

scale as the number of services increases. To solve these problems, we introduce a variety

of techniques for providing layer-two connectivity, amortizing memory and message over-

head, and filtering packets and routes. Our prototype implementation composes and ex-

tends open-source routing software—the Quagga software router for the control plane and

the Linux kernel for the data plane—resulting in a system that is easy to deploy, maintain,

and evolve. We also built a management system based on the GENI control framework [50]

that automates the provisioning of new customers. The TP is deployed and operational at

several locations.

This chapter makes the following contributions:

• We explain how flexible wide-area route control can extend the capabilities of exist-

ing hosting platforms.

• We present the design and implementation of Transit Portal and demonstrate that the

system scales to many ISPs and clients.

• We quantify the benefits of TP by evaluating a DNS service that uses IP anycast and

inbound traffic engineering on our existing TP deployment.

• We present the design and implementation of a management framework that allows

hosted services to dynamically establish wide-area connectivity.

• We describe how to extend the TP to provide better forwarding performance and

support a wider variety of applications (e.g., virtual machine migration).

The remainder of the chapter is organized as follows. Section 2.1 explains how dis-

tributed services can make use of wide-area route control. Section 2.2 presents the design

and implementation of the Transit Portal. Section 2.3 evaluates our three-site deployment
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supporting an example service, and Section 2.4 evaluates the scalability and performance of

our prototype. Section 2.5 presents our management framework, and Section 2.6 describes

possible extensions to the TP. Section 2.8 compares TP to related work; we conclude in

Section 2.9.

2.1 A Case for Wide-Area Route Control

We aim to give each hosted service the same level of routing control that existing networks

have. Each service has its own virtual router that connects to the Internet through the

Transit Portal, as shown in Figure 2.1. The Transit Portal allows each service to make

a different decision about the best way to exchange traffic with its users. The Transit

Portal also allows each service to announce prefixes selectively to different ISPs or send

different announcements for the same IP prefix to control how inbound traffic reaches the

announcing network.

2.1.1 How Route Control Helps Applications

This section describes three services that can benefit from having more control over wide-

area routing and the ability to rapidly provision connectivity. Section 2.3 evaluates the

first service we discuss—improving the reliability, latency, and load balacing traffic for

distributed services—through a real deployment on Amazon’s EC2. We do not evaluate

the remaining applications, but we explain how they might be deployed in practice.

Reliable, low-latency distributed services. The Domain Name System (DNS) directs

users to wide-area services by mapping a domain name to the appropriate IP address for that

service. Service providers often use DNS for tasks like load balancing. Previous studies

have shown that DNS lookup latency is a significant contributor to the overall latency for

short sessions (e.g., short HTTP requests). Thus, achieving reliability and low latency for

DNS lookups is important. One approach to reducing DNS lookup latency is to move the

authoritative DNS servers for a domain closer to clients using anycast. Anycast is a method
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Figure 2.2: Reliable, low-latency distributed services: A service provider that hosts au-
thoritative DNS for some domain may wish to provision both hosting and anycast connec-
tivity in locations that are close to the clients for that domain.

where multiple distinct networks advertise the same IP prefix; client traffic then goes to one

of these networks. Hosting authoritative name servers on an anycasted IP prefix can reduce

the round-trip time to an authoritative name server for a domain, thus reducing overall name

lookup time.

Although anycast is a common practice for DNS root servers, setting up anycast is a

tall order for an individual domain: each domain that wants to host its own authoritative

servers would need to establish colocation and BGP peering at multiple sites and make

arrangements. Although a DNS hosting provider (e.g., GoDaddy) could host the authori-

tative DNS for many domains and anycast prefixes for those servers, the domains would

still not be able directly control their own DNS load-balancing and replication. Wide-area

route control allows a domain to establish DNS-server replicas and peering in multiple

locations and to change those locations and peering arrangements when load changes. Fig-

ure 2.2 shows such a deployment. We have deployed this service [99] and will evaluate it

in Section 2.3.

Using routing to migrate services. Service providers such as Google commonly balance

client requests across multiple locations and data centers to keep the latency for their ser-

vices as low as possible. To do so, they commonly use the DNS to re-map a service name

to a new IP address. Unfortunately, relying on DNS to migrate client requests requires the
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Figure 2.3: Using routing to migrate services: A service provider migrates a service from
a data center in North America to one in Asia, to cope with fluctuations in demand. Today,
service providers must use DNS for such migration, which can hurt user performance and
does not permit the migration of a running service. A provider can use route control to
migrate a service and re-route traffic on the fly, taking DNS out of the loop and enable
migration of running services.

service provider to set low time-to-live (TTL) values on DNS replies. These low TTL val-

ues help a service provider quickly re-map a DNS name to a new IP address, but they also

prevent the client from caching these records and can introduce significant additional la-

tency; this latency is especially troublesome for short-lived sessions like Web search, where

the DNS lookup comprises a large fraction of overall response time. Second, DNS-based

re-mapping cannot migrate ongoing connections, which is important for certain services

that maintain long-lived connections with clients (e.g., VPN-based services). Direct wide-

area route control allows the application provider to instead migrate services using routing:

providers can migrate their services without changing server IP addresses by dynamically

acquiring wide-area connections and announcing the associated IP prefix at the new data

center while withdrawing it at the old one. Figure 2.3 shows how this type of migration can

be implemented. This approach improves user-perceived performance by allowing the use

of larger DNS TTL values and supporting live migration of long-lived connections.

Flexible peering & hosting for interactive applications. To minimize round-trip times,

providers of interactive applications like gaming [5] and video conferencing [6, 7] aim to

place servers close to their customers to users and, when possible, selecting the route cor-

responding to the lowest-latency path. When traffic patterns change due to flash-crowds,

11



Figure 2.4: Flexible peering and hosting for interactive applications: Direct control
over routing allows services to expand hosting and upstream connectivity in response to
changing demands. In this example, a service experiences an increase in users in a single
geographic area. In response, it adds hosting and peering at that location to allow customers
at that location to easily reach the service.

diurnal fluctuations, or other effects, the application provider may need to rapidly reprovi-

sion both the locations of servers and the connectivity between those servers and its clients.

Figure 2.4 shows an example of an interactive service that suddenly experiences a surge in

users in a particular region. In this case, the hosting facility will not only need to provision

additional servers for the interactive service provider, but it will also need to provision ad-

ditional connectivity at that location to ensure that traffic to local clients enter and leave at

that facility.

2.1.2 Deployment Scenarios

Cloud providers can provide direct control over routing and traffic to hosted appli-

cations. A cloud service such as Amazon’s EC2 can use direct wide-area route control

to allow each application provider to control inbound and outbound traffic according to its

specific requirements. Suppose that two applications are hosted in the same data center.

One application may be focused on maintaining low-cost connectivity, while the other may

want to achieve low latency and good performance at any cost. Today’s cloud services offer

only “one size fits all” transit and do not provide routing control to each hosted service or

application; the Transit Portal provides this additional control.
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An OSP can re-provision resources and peering as demands change. Online service

providers such as Google and Microsoft share a common infrastructure across multiple ap-

plications (e.g., search, calendar, mail, video) and continually re-provision these resources

as client demand shifts. Today, making application-specific routing decisions in a data cen-

ter (as shown in Figure 2.1) is challenging, and re-routing clients to services in different

data centers when demands change is even more difficult. The Transit Portal can provide

each application in a data center control over routing and peering, allowing it to estab-

lish connectivity and select paths independently of the other properties. This function also

makes service migration easier, as we describe in further detail below.

A researcher can perform experiments using wide-area routing. Although existing

testbeds such as Emulab [42] allow researchers to operate their own wide-area networks,

they generally do not offer flexible control over connectivity to the rest of the Internet.

Different experiments will, of course, have different requirements for the nature of their

connectivity and routing, and researchers may even want to experiment with the effects of

different peering arrangements on experimental services.

2.2 Design and Implementation

This section describes the design and implementation of a Transit Portal (TP); Section 2.5

completes the picture by describing the management framework for a network of TPs. The

TP extends and synthesizes existing software systems—specifically, the Linux kernel for

the data plane and the Quagga routing protocol suite for the control plane. The rest of

this section describes how our design helps the TP achieve three goals: (1) transparent

connectivity between hosted services and upstream ISPs; (2) scalability to many hosted

services and upstream ISPs; and (3) the ability to protect the rest of the Internet from

accidental or malicious disruptions. Table 2.1 summarizes our design and implementation

decisions and how they allow us to achieve the goals of transparent connectivity, scalability,

and protection.
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Table 2.1: TP design and implementation decisions.
Requirement Decision Implementation

Transparent Connectivity (Section 2.2.1)
Different layer-two connections Tunnels between TP and virtual router Tunneling technologies supported by the Linux

kernel
Transparent traffic forwarding Isolated forwarding tables for ISPs Virtual forwarding tables and policy routing in

Linux
Scalability (Section 2.2.2)

Scalable routing with the # of ISPs Isolated routing tables for ISPs BGP views feature in Quagga bgpd daemon
Scalable updates with # of clients Shared route update computation Peer-group feature in Quagga bgpd daemon
Scalable forwarding with # of ISPs Policy/default routing Modifications to the Quagga bgpd daemon

Protection (Section 2.2.3)
Preventing IP address spoofing Packet filtering on source IP address Linux iptables

Preventing prefix hijacking Route filtering on IP prefix Quagga prefix filters
Limiting routing instability Rate-limiting of BGP update messages Route-flap damping in Quagga bgpd daemon
Controlling bandwidth usage Traffic shaping on virtual interfaces Linux tc

2.2.1 Transparent Connectivity

The TP gives client networks the appearance of direct data- and control-plane connectivity

to one or more upstream ISPs. This transparency requires each client network to have a

layer-two link and a BGP session for each upstream ISP that it connects to, even though

the link and session for that client network actually terminate at the TP. The client’s virtual

routers are configured exactly as they would be if they connected directly to the upstream

ISPs without traversing the Transit Portal. The TP has one layer-two connection and BGP

session to each upstream ISP; this connection multiplexes both data packets and BGP mes-

sages for the client networks.

Different layer-two connections for different clients. Connecting to an upstream ISP

normally requires the client to have a direct layer-two link to the ISP for carrying both

BGP messages and data traffic. To support this abstraction, the TP forms a separate layer-

two connection to the client for each upstream ISP. Our implementation uses the Linux 2.6

kernel support for IP-IP tunnels, GRE tunnels, EGRE tunnels, and VLANs, as well as UDP

tunnels through a user-space OpenVPN daemon.

Transparent forwarding between clients and ISPs. The TP can use simple policy rout-

ing to direct traffic from each client tunnel to the corresponding ISP. Forwarding traffic

from ISPs to clients, however, is more challenging. A conventional router with a single
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Figure 2.5: Forwarding incoming traffic with TP: When a packet arrives at the Transit
Portal (Step 1), the TP uses the source MAC address (S-MAC) to demultiplex the packet to
the appropriate IP forwarding table (Step 2). The lookup in that table (Step 3) determines
the appropriate tunnel to the client network (Step 4).

1 # arp -a

2 r o u t e r 1 . i s p . com ( 1 . 1 . 1 . 1 ) a t 0 : 0 : 0 : 0 : 0 : 1 1 on e t h 0
3 # iptables -A PREROUTING -t mangle -i eth0 -m mac\

4 −−mac−source 0 : 0 : 0 : 0 : 0 : 1 1 −j MARK −−set−mark 1
5 # ip rule add fwmark 1 table 1

Figure 2.6: Linux policy routing in TP de-multiplexes traffic into the appropriate for-
warding table based on the packet’s source MAC address. In this example, source address
0:0:0:0:0:11 de-multiplexes the packet into forwarding table 1.

forwarding table would direct the traffic to the client prefix over a single link (or use sev-

eral links in a round robin fashion if multipath routing is enabled.) As shown in Figure 2.5,

though, the TP must ensure the packets are directed to the appropriate layer-two link—

the one the client’s virtual router associates with the upstream ISP. To allow this, the TP

maintains a virtual forwarding table for each upstream ISP. Our implementation uses the

Linux 2.6 kernel’s support for up to 252 such tables, allowing the TP to support up to 252

upstream ISPs.

The TP can connect to an upstream ISP over a point-to-point link using a variety of

physical media or tunneling technologies. We also intend to support deployment of Transit

Portals at exchange points, where the TP may connect with multiple ISPs over a local

area network via a single interface. Each ISP in such shared media setup sends layer-

two frames using a distinct source MAC address; the TP can use this address to correctly

identify the sending ISP. Figure 2.6 shows how such traffic de-multiplexing is configured
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using policy routing rules. The ISP router has an IP address 1.1.1.1 with a MAC address

0:0:0:0:0:11 and a dedicated forwarding table, 1. Line 1 shows the TP learning the

MAC address of an upstream ISP when a new session is established. Then, lines 3–4

establish a policy-routing rule that redirects all the packets with this MAC address to a

virtual forwarding table serving a new upstream ISP.

Transparency is another important goal for connectivity between client networks and

the Transit Portal. In other words, a client network’s connection to the TP should appear as

though it were directly connected to the respective upstream networks. In the control plane,

achieving this goal involves (1) removing the appearance of an extra AS hop along the AS

path; and (2) passing BGP updates between client networks and upstreams as quickly as

possible. The first task is achieved with the remove-private-as rewrite configuration

(line 10 in Figure 2.7), and the second task is achieved by setting the advertisement interval

to a low value (line 18 in Figure 2.7).

The Transit Portal supports clients regardless of whether they have a public or private

AS number. To ensure transparency for the clients with a public AS number, the TP for-

wards the updates from such clients unmodified. Updates from clients with private AS

numbers require rewriting.

2.2.2 Scalability

The TP maintains many BGP sessions, stores and disseminates many BGP routes, and

forwards packets between many pairs of clients and ISPs. Scaling to a large number of

ISPs and clients is challenging because each upstream ISP announces routes for many

prefixes (i.e., 300,000 routes); each client may receive routes from many (and possibly all)

of these ISPs; and each client selects and uses routes independently. We describe three

design decisions that we used to scale routing and forwarding at the TP: BGP views, peer

groups, and default routing.
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Scalable routing tables using BGP views. Rather than selecting a single best route for

each destination prefix, the TP allows each service to select from the routes learned from

all the upstream ISPs. This function requires the Transit Portal to disseminate routes from

each ISP to the downstream clients, rather than selecting a single best route and could be

achieved by having the TP run a separate instance of BGP for each upstream ISP, with BGP

sessions with the ISP and each of the clients. Unfortunately, running multiple instances of

BGP, each with its own process and associated state, would be expensive. Instead, the

TP runs a single BGP instance with multiple “BGP views”, each with its own routing

table and decision process, for each upstream ISP. Using BGP views prevents the TP from

comparing routes learned from different ISPs, while still capitalizing on opportunities to

store redundant route information efficiently. Any downstream client that wants to receive

routing messages from a specific upstream ISP need only establish a BGP session to the

associated view. Our implementation uses the BGP view feature in Quagga; in particular,

Figure 2.7 shows the configuration of a single “view” (starting in line 3) for upstream ISP 1.

Section 2.4.2 shows that using BGP views in Quagga allows us to support approximately

30% more upstream ISPs with the same memory resources compared to the number of

supported ISPs using conventional BGP processes.

Scalable updates to clients with BGP peer groups. Upon receiving a BGP update mes-

sage from an upstream ISP, the TP must send an update message to each client that “con-

nects” to that ISP. Rather than creating, storing, and sending that message separately for

each client, the TP maintains a single BGP table and constructs a common message to send

to all clients. Our implementation achieves this goal by using the peer-group feature in

Quagga, as shown in Figure 2.7; in particular, line 14 associates Client A (CA) with the

peer-group View1 for upstream ISP 1, as defined in lines 17–20. Note that although this

example shows only one peer-group member, the real benefit of peer groups is achieved

when multiple clients belong to the same group. Section 2.4.3 shows that peer-groups
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1 bgp m u l t i p l e− i n s t a n c e
2 !
3 r o u t e r bgp 47065 view Upstream1
4 bgp r o u t e r− i d 4 7 . 0 . 0 . 6 5
5 bgp f o r w a r d i n g− t a b l e 1
6 bgp dampening
7
8 ! Connection to Upstream ISP
9 n e i g h b o r 1 . 1 . 1 . 1 remote−as 1

10 n e i g h b o r 1 . 1 . 1 . 1 remove−private−AS r e w r i t e
11 n e i g h b o r 1 . 1 . 1 . 1 attr ibute−unchanged as−path med
12
13 ! Connection to Downstream Cl ient
14 n e i g h b o r 2 . 2 . 2 . 2 peer−group View1
15 n e i g h b o r 2 . 2 . 2 . 2 remote−as 2
16 n e i g h b o r 2 . 2 . 2 . 2 route−map CA−IN i n
17 n e i g h b o r View1 peer−group
18 n e i g h b o r View1 a d v e r t i s e m e n t− i n t e r v a l 2
19 n e i g h b o r View1 attr ibute−unchanged as−path med
20 n e i g h b o r View1 l o c a l−a s 1 no−prepend
21 !
22 i p p r e f i x− l i s t CA seq 5 permit 2 . 2 . 2 . 0 / 2 4
23 !
24 route−map CA−IN permit 10
25 match i p a d d r e s s p r e f i x− l i s t CA
26 !

Figure 2.7: Quagga configuration.

Transit Portal

BGP AS 47065

BGP View 

for AS1

Forwarding Table 1

Upstream

AS1

Client

AS2
Network
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1.1.1.12.2.2.2

Figure 2.8: Control-plane setup.

reduce CPU consumption threefold.

Smaller forwarding tables with default routes and policy routing. Despite storing and

exchanging many BGP routes in the control plane, the Transit Portal should try to limit the

amount of data-plane state for fast packet forwarding. To minimize data-plane state, the

TP does not install all of the BGP routes from each BGP view in the kernel forwarding

tables. Instead, the TP installs the smallest amount of state necessary for custom packet

forwarding to and from each client. On each virtual forwarding table, the TP stores only
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a default route to an upstream ISP associated with that table (to direct clients’ outbound

traffic through the ISP) and the BGP routes announced by the clients themselves (to direct

inbound traffic from the ISP to the appropriate client). As shown in Section 2.4.2, this

arrangement allows us to save about one gigabyte of memory for every 20 upstream ISPs.

To selectively install only the routes learned from clients, rather than all routes in the BGP

view, we make modifications to Quagga.

2.2.3 Protection

The TP must protect other networks on the Internet from misbehavior such as IP address

spoofing, route hijacking or instability, or disproportionate bandwidth usage.

Preventing spoofing and hijacking with filters. The TP should prevent clients from

sending IP packets or BGP route announcements for IP addresses they do not own. The

TP performs ingress packet filtering on the source IP address and route filtering on the

IP prefix, based on the client’s address block(s). Our implementation filters packets using

the standard iptables tool in Linux and filters routes using the prefix-list feature, as

shown in lines 16 and 22-26 of Figure 2.7. In addition to filtering prefixes the clients do

not own, the TP also prevents clients from announcing smaller subnets (i.e., smaller than

a /24) of their address blocks. Smaller subnets are also filtered by default by most of the

Internet carriers. Section 2.6 describes how TP can overcome this limitation.

Limiting routing instability with route-flap damping. The TP should also protect the

upstream ISPs and the Internet as a whole from unstable or poorly managed clients. These

clients may frequently reset their BGP sessions with the TP, or repeatedly announce and

withdraw their IP prefixes. The TP uses route-flap damping to prevent such instability

from affecting other networks. Our implementation enables route-flap damping (as shown

in line 6 of Figure 2.7) with the following parameters: a half-life of 15 minutes, a 500-point

penalty, a 750-point reuse threshold, and a maximum damping time of 60 minutes. These
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settings allow client to send the original update, followed by an extra withdrawal and an

update, which will incur penalty of 500 points. Additional withdrawals or updates in a short

timeframe will increase the penalty above reuse threshold and the route will be suppressed

until the penalty shrinks to 750 points (the penalty halves every 15 minutes). There is no

danger that one client’s flapping will affect other clients, as route damping on the Internet

operates separately for each announced route.

Controlling bandwidth usage with rate-limiting. The TP should prevent clients from

consuming excessive bandwidth, to ensure that all clients have sufficient resources to ex-

change traffic with each upstream ISP. The TP prevents bandwidth hoarding by imposing

rate limits on the traffic on each client connection. In our implementation, we use the stan-

dard tc (traffic control) features in Linux to impose a maximum bit rate on each connection

to clients.

2.3 Deployment

We have deployed Transit Portals in five locations. The TPs are deployed in Atlanta GA,

Clemson NC, Madison WI, Princeton NH, and Seattle WA. All Transit Portals are deployed

in universities and research labs, whose networks act as a sole ISP in each location. Each

ISP also provides full transit for our prefix and AS number. We are actively expanding

this deployment: We are engaging with operators at two European research institutions

and with one commercial operator in the U.S. to deploy more Transit Portals, and we are

planning to expand our Seattle installation to connect to more ISPs.

The TPs advertise BGP routes using origin AS 47065 and IP prefix 168.62.16.0/21.

Clients currently use a private AS number that the TP translates to the public AS number,

47065, before forwarding an update. Clients can also obtain their own AS number, in which

case the TP re-advertises the updates without modification.

This section presents the deployment of a distributed, anycasted DNS service, as we

20



Figure 2.9: The TP IP anycast experiment setup.

described in Section 2.1, that uses the TP for traffic control, similar to the service we de-

scribed in Section 2.1 (Figure 2.2). In our evaluation of this deployment, we demonstrate

two distinct functions: (1) the ability to load balance inbound and outbound traffic to and

from the DNS service (including the ability to control the number of clients that communi-

cate with each replica); and (2) the ability to reduce latency for specific subsets of clients

with direct route control.

2.3.1 DNS With IP Anycast

In this section, we show how the TP delivers control and performance improvements for

applications that can support IP anycast, such as anycast DNS resolution. The TP allows

an IP anycast service to: (1) react to failures more quickly than using DNS re-mapping

mechanisms, (2) load-balance inbound traffic, and (3) reduce the service response time.

We explain the experiment setup and the measurements that show that adding IP anycast to

services running on Amazon EC2 servers can improve latency, failover, and load-balance.

We deploy two DNS servers in Amazon EC2 data centers: one in the US-East region

(Virginia) and another in the US-West region (Northern California). The servers are con-

nected to two different TP sites and announce the same IP prefix to enable IP anycast rout-

ing as shown in Figure 2.9. The US-East region is connected to AS 2637 as an upstream

provider, while the US-West region is connected to AS 2381 as its upstream provider. We

21



Figure 2.10: AS-level paths to an EC2 service sitting behind the Transit Portal
(AS 47065), as seen in RouteViews.

measure the reachability and delay to these DNS servers by observing the response time to

the IP anycast address from approximately 600 clients on different PlanetLab [91] nodes.

Because our goal is to evaluate the scenario where the TP is collocated with a cloud com-

puting facility, we adjust the measurements to discount the round-trip delay between the

TP and the Amazon EC2 data centers.

The main provider of both upstreams is Cogent (AS 174), which by default prefers

a downstream link to AS 2381. Cogent publishes a set of rules that allows Cogent’s

clients (e.g., AS 2381, AS 2637, and their respective clients) to affect Cogent’s routing

choices [39]. The DNS service hosted on an Amazon host runs a virtual router and thus

can apply these rules and control how incoming traffic ultimately reaches the service.

Figure 2.10 shows a capture from the BGPlay tool [1], which shows the initial routing

state with the original BGP configuration. Most of the Internet paths to AS 47065 traverse

Cogent (AS 174), which in turn prefers AS 2381 to forward the traffic to the client. Note

that the client is configured with private AS number, but the TPs rewrite the updates before

re-advertising them to the Internet. This rewriting causes the routers on the Internet to

observe prefixes from as if they were announced by AS 47065.

Failover. Today’s Internet applications use DNS name re-mapping to shift services to

active data centers in the case of a data center or network failure. DNS name re-mapping is
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Figure 2.11: Failover behavior with two IP anycast servers using the TP.

a relatively slow process because it requires the DNS entries to expire in DNS caches across

the Internet. Applications that support IP anycast can rely on the routing infrastructure to

route traffic to active data centers. In our experiment, we fail the server deployed in the

US-West region and observe how quickly the clients converge to the US-East region.

Figure 2.11 shows how the load changes as we introduce failure. After twelve seconds,

we fail the US-West deployment and stop receiving requests at that site. After approxi-

mately 30 seconds, the routing infrastructure reroutes the traffic to the US-East site. The

reaction to failure was automatic, requiring no monitoring or intervention from either the

application or the TP operators.

Inbound traffic control. Assume that the DNS service would prefer most of its traffic to

be served via AS 2637, rather than AS 2381. (The client network might prefer an alternate

route as a result of cost, security, reliability, delay, or any other metric.) The Transit Portal

clients can apply BGP communities to affect how upstream ISPs routes to its customers. On

August 14, we changed the client configuration as shown in Figure 12(a) to add the BGP

community 174:10 to a route, which indicates to one of the upstream providers, Cogent

(AS 174), to prefer this route less than other routes to the client network.

To see how quickly the Internet converges to a new route, we analyze the route infor-

mation provided by RouteViews. Figure 12(b) shows the convergence of the Internet routes
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1 r o u t e r bgp 65000
2 n e i g h b o r 1 0 . 1 . 0 . 1 route−map OUT−2381 o u t
3 !
4 route−map OUT−2381 permit 10
5 match i p a d d r e s s p r e f i x− l i s t OUR
6 s e t community 174 :10

(a) Route map.
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(b) Route convergence after applying the route map.

Figure 2.12: Load balance: Applying a route map to outbound advertisements to affect
incoming traffic.

to a new upstream. The dashed line shows the number of networks on the Internet that use

the AS 2381 link, while the plain line shows the number of networks that use the AS 2637

link to reach the client hosted in the Amazon data center. (Note that the number of routes

corresponds only to the routes that we collected from RouteViews.)

IP anycast application performance. We evaluate three DNS service scenarios: (1) US-

East only, (2) US-West only, and (3) both servers using IP anycast routing. We measure

the delay the PlanetLab clients observe to the IP anycast address in each of these scenarios.

Using IP anycast should route each client to the closest active data center.

Table 2.2 shows the results of these experiments. Serving DNS using IP anycast im-

proves response time by 4-8 milliseconds compared to serving from either of the sites

separately. The improvement is not significant in our setup, since the Midwest and East

Coast TP deployments are not far from each other. We expect more improvement when IP
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Table 2.2: DNS anycast deployment with the TP. Average round trip time to the service
and fraction of the load to each of the sites.

Avg. Delay US-East US-West
US-East 102.09ms 100% 0%

US-West 98.62ms 0% 100%
Anycast 94.68ms 42% 58%

Figure 2.13: Outbound TE experiment setup with the TP.

anycast is used from more diverse locations.

2.3.2 Outbound Traffic Control

We now show how two different services in a single data center can apply different out-

bound routing policies to choose different exit paths from the data center. Figure 2.13

shows the demonstration setup. DNS and FTP services run virtual routers configured as

AS 65001 and AS 65002 respectively; both services and the Transit Portal are hosted at the

same site as the ISP with an AS 2637. The ISP with an AS 2381 is in a different location

and, for the sake of this experiment, the TP routes connections to it via a tunnel.

Without a special configuration, the services would choose the upstream ISP based on

the shortest AS path. In our setup, we use the route-map command combined with a set

local-preference setting to configure AS 65001 (DNS service) to prefer AS 2637 as

an upstream and AS 65002 (FTP service) to prefer AS 2381 as an upstream. Figure 2.14

shows how the traceroutes to a remote host differ because of this configuration. The first
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1 AS65001−node : ˜ # traceroute -n -q 1 -A 133.69.37.5

2 t r a c e r o u t e t o 1 3 3 . 6 9 . 3 7 . 5
3 1 1 0 . 0 . 0 . 1 [ ∗ ] 0 ms
4 2 1 4 3 . 2 1 5 . 2 5 4 . 2 5 [ AS2637 ] 0 ms
5 [ s k i p p e d ]
6 8 2 0 3 . 1 8 1 . 2 4 8 . 1 1 0 [ AS7660 ] 187 ms
7 9 1 3 3 . 6 9 . 3 7 . 5 [ AS7660 ] 182 ms

(a) Traceroute from AS 65001 client.

1 AS65002−node : ˜ # traceroute -n -q 1 -A 133.69.37.5

2 t r a c e r o u t e t o 1 3 3 . 6 9 . 3 7 . 5
3 1 1 0 . 1 . 0 . 1 [ ∗ ] 23 ms
4 2 2 1 6 . 5 6 . 6 0 . 1 6 9 [ AS2381 ] 23 ms
5 [ s k i p p e d ]
6 9 1 9 2 . 2 0 3 . 1 1 6 . 1 4 6 [ ∗ ] 200 ms
7 10 1 3 3 . 6 9 . 3 7 . 5 [ AS7660 ] 205 ms

(b) Traceroute from AS 65002 client.

Figure 2.14: Traceroute from services co-located with TP East and AS 2637.

hop in AS 65001 is a local service provider and is less than one millisecond away. The

AS 65002 tunnels are transparently switched through a local TP and terminated at the

remote AS 2381, which introduces additional delay.

2.3.3 Performance Optimization

The TP can be used to optimize the Internet service access performance. We simulate a

video content provider with video streaming services running in cloud sites at the Princeton
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Figure 2.15: Average access speed from U.S. North East as packet loss is introduced in
TP at Princeton site.

26



and the Atlanta locations. Bandwidth measurements show that the Princeton site offers

better speed for clients in the northeast U.S., while the Atlanta site is preferred for the

southeast U.S.

Assume that, due to periodic congestion, Princeton experiences intermittent packet loss

every day around noon. Because the packet loss is intermittent, the application operator

may be reluctant to use DNS to re-map the clients. Instead of DNS, the operator can

use TP for rerouting when packet loss is detected. Figure 2.15 shows the average service

access speed from the clients in the northeast as the loss at the Princeton site is increasing.

As Princeton reaches a 1.1% packet loss rate, the Atlanta site, with its baseline speed of

1140 Kbps, becomes a better choice. Application operators then can use the methods

described in Section 2.3.1 and 2.3.2 to reroute their applications when they observe losses

in Princeton higher than 1.1%.

2.4 Scalability Evaluation

This section performs micro-benchmarks to evaluate how the Transit Portal scales with the

number of upstream ISPs and client networks. Our goal is to demonstrate the feasibility of

our design by showing that a TP that is implemented in commodity hardware can support

a large number of upstream ISPs and downstream clients. Our evaluation quantifies the

number of upstream and client sessions that the TP can support and shows how various

design decisions from Section 2.2 help improve scalability. We first describe our evaluation

setup; we then explore how the number of upstream ISPs and downstream client networks

affect the TP’s performance for realistic routing workload. Our findings are unsurprising

but comforting: A single TP node can support tens of upstream ISPs and hundreds of client

networks using today’s commodity hardware, and we observe it scaling linearly to the load.

2.4.1 Setup

Data. To perform repeatable experiments, we constructed a BGP update dataset, which

we used for all of our scenarios. We used BGP route information provided by RIPE Route
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Table 2.3: RIPE BGP data set for September 1, 2009.
AS Prefixes Updates Withdrawals
RCCN (1930) 291,996 267,207 15,917
Tinet (3257) 289,077 205,541 22,809
RIPE NCC (3333) 293,059 16,036,246 7,067
Global Crossing (3549) 288,096 883,290 68,185
APNIC NCC (4608) 298,508 589,234 9,147
APNIC NCC (4777) 294,387 127,240 12,233
NIX.CZ (6881) 290,480 150,304 11,247
AT&T (7018) 288,640 1,116,576 904,051
Hutchison (9304) 296,070 300,606 21,551
IP Group (16186) 288,384 273,410 47,776

Information Service (RIS) [96]. RIPE RIS provides two types of BGP update data: 1) BGP

table dumps, and 2) BGP update traces. Each BGP table dump represents a full BGP route

table snapshot. A BGP update trace represents a time-stamped arrival of BGP updates

from BGP neighbors. We combine the dumps with the updates: Each combined trace starts

with the stream of the updates that fill in the BGP routing table to reflect a BGP dump. The

trace continues with the time-stamped updates as recorded by the BGP update trace. When

we replayed this trace, we honored the inter-arrival intervals of the update trace.

Table 2.3 shows our dataset, which has BGP updates from 10 ISPs. The initial BGP

table dump is taken on September 1, 2009. The updates are recorded in 24-hour period

starting on midnight September 2 and ending at midnight September 3 (UTC). The average

BGP table size is 291,869.1 prefixes. The average number of updates during a 24-hour

period is 1,894,474.3, and the average number of withdrawals is 111,998.3. There are

more announcements than withdrawals (a withdrawal occurs only if there is no alternate

route to the prefix).

The data set contains two upstream ISPs with an unusually high number of updates:

AS 3333 with more than 16 million updates, and AS 7018 with more than 900,000 with-

drawals. It is likely that AS 3333 or its clients use reactive BGP load-balancing. In

AS 7018, the likely explanation for a large number of withdrawals is a misconfiguration,

or a flapping link. In any case, these outliers can stress the Transit Portal against extreme
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load conditions.

Test environment. We replayed the BGP updates using the bgp simpleBGP player [25].

The bgp simple player is implemented using Perl Net::BGP libraries. We modified the

player to honor the time intervals between the updates.

Unless otherwise noted, the test setup consists of five nodes: Two nodes for emulating

clients, two nodes for emulating upstream ISPs, and one node under test, running the Tran-

sit Portal. The test node has two 1 Gbps Ethernet interfaces, which are connected to two

LANs: one LAN hosts client-emulating nodes, the other LAN hosts upstream-emulating

nodes. Each node runs on a Dell PowerEdge 2850, with a 3 Ghz dual-core 64-bit Xeon

CPU and 2 GB of RAM. The machines run Fedora 8 Linux.

When we measured CPU usage for a specific process, we used the statistics provided

by /proc. Each process has a jiffies counter, which records the number of system ticks

the process used so far. For each test, we collect jiffies at five-second intervals over three

minutes and the compute average CPU usage in percent. The vmstat utility provides the

overall memory and CPU usage.

2.4.2 Memory Usage

Upstream sessions. Using a commodity platform with 2 GB of memory, TP scales to a

few dozen of upstream ISPs. Figure 2.16 shows how the memory increases as we add more

upstream ISPs. When TP utilizes separate BGP processes, each upstream ISP utilizes ap-

proximately 90MB of memory; using BGP views each upstream ISP utilizes approximately

60MB of memory. Data plane memory usage, as shown in Figure 2.17, is insignificant

when using our forwarding optimization.

Downstream sessions. Each session to a downstream application consumes approxi-

mately 10MB of memory. For example, given 20 upstream ISPs, a client “subscribing” to

all of them will consume 200MB. Upgrading the TP machine to 16GB of memory would
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Figure 2.16: The TP control plane memory use.
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Figure 2.17: The TP data plane memory use.

easily support 20 upstream ISPs with more than a hundred clients subscribing to an aver-

age of 10 ISPs. The clients use only a small amount of memory in the data plane. The TP

ensures forwarding only to the prefixes clients own or lease.

2.4.3 CPU Usage and Propagation Time

The main users of TP CPU are a BGP scan process, which scans the routes for the changes

in reachability information, and BGP update parsing process, which parses the updates

which arrive intermittently at a rate of approximately 2 million updates per day.
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Figure 2.18: The TP CPU usage over time (average taken every 3 seconds).
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Figure 2.19: The TP CPU usage while adding client sessions.

Figure 2.18 shows the timeseries of the CPU usage of two BGP processes as they per-

form routine tasks. Routing updates for both processes arrive from five different ISPs

according to their traces. The baseline uses a default Quagga configuration with one rout-

ing table, and one client. The Transit Portal configuration terminates each ISP at a different

virtual routing table and connects 12 clients (which amounts to a total of 60 client sessions).

The TP configuration, on average consumes 20% more CPU than a baseline configuration;

most of this load overhead comes from maintaining more client sessions. The spikes in

both plots correspond to a BGP scan that occurs every 60 seconds.

The TP can easily support hundreds of client BGP sessions. Figure 2.19 shows CPU

31



0 2 4 6 8 10
Update propagation delay (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n

Baseline: 1 ISP, 1 client session
5 ISPs, 10 sessions
5 ISPs, 25 sessions
5 ISPs, 50 sessions

Figure 2.20: Update propagation delay through the TP.

usage as more client sessions are added. Two plots shows CPU usage using the default

client configuration and CPU usage using a client configuration with a peer-group feature

enabled. While conducting this experiment, we add 50 client sessions at a time and measure

CPU load. We observe fluctuations in CPU use since at each measurement the number of

updates passing the TP is slightly different. Nevertheless the trend is visible and each one

hundred of client sessions increase CPU utilization by approximately a half of a percent.

Figure 2.20 shows the update propagation delays though the TP. The baseline configu-

ration uses minimal configuration of Quagga with advertisement interval set to 2 seconds.

Other configurations reflect the setup of five upstream providers with 10, 25, and 50 ses-

sions. Approximately 40% of updates in the setup with 10 sessions are delivered within

1.6 seconds, while the baseline configuration seems to start deliver updates only at around

1.7 seconds due to the grouping of updates at the TP. A single upstream ISP sends updates

in batches and each batch is subject to the configured two-second advertisement interval.

When multiple upstream ISPs are configured, more updates arrive at the middle of adver-

tisement interval and can be delivered as soon as it expires.

2.5 Framework for Provisioning Resources

The TP service provides an interface to the clients of existing hosting facilities to provi-

sion wide-area connectivity. In this section, we describe the design and implementation of
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1 <r spec t y p e =” adver t i s ement ” >
2
3 <node v i r t u a l i d =” tp1 ”>
4 <node type type name =” tp ”>
5 < f i e l d key=” e n c a p s u l a t i o n ” v a l u e =” gre ” />
6 < f i e l d key=” e n c a p s u l a t i o n ” v a l u e =” egre ” />
7 < f i e l d key=” upstream as ” v a l u e =”1” />
8 < f i e l d key=” upstream as ” v a l u e =”2” />
9 < f i e l d key=” p r e f i x ” c o u n t =”3” l e n g t h =”24” />

10 < / node type>
11 < / node>

Figure 2.21: Resource advertisement: In Step 0 of resource allocation (Figure 2.22), the
TP’s component manager advertises available resources. This example advertisement says
that the TP supports both GRE and EGRE encapsulation, has connections to two upstream
ASes, and has three /24 prefixes available to allocate.

this management plane. We first discuss the available resources and how they are speci-

fied. Next, we describe the process for clients to discover and request resources. Then,

we discuss how we have implemented the management plane in the context of the GENI

control framework [50]. In the future, the management plane will also control the hosting

resources, and provide clients a single interface for resource provisioning.

2.5.1 Resources and Their Specification

The current resource allocation framework tracks numbered and network resources. The

numbered resources include the available IP address space, the IP prefixes assigned to each

client network, the AS number (or numbers) that each client is using to connect to the TPs,

and which IP prefix will be advertised from each location. The framework must also keep

track of whether a client network has its own IP prefix or AS number. Network resources

include the underlying physical bandwidth for connecting to clients, and bandwidth avail-

able to and from each upstream ISP. Management of hosting resources, at this stage, is left

for the client networks to handle.

The available resources should be specified in a consistent, machine-readable format.
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Figure 2.22: TP resource allocation process.
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Figure 2.23: TP topology resulting from the resource request.

Our implementation represents resources using XML. Figure 2.21 shows an example ad-

vertisement, which denotes the resources available at one TP that offers two upstream con-

nections, as indicated by lines 7–8 in the advertisement. The advertisement also indicates

that this TP has three prefixes available for clients (line 9) and can support both GRE and

EGRE tunneling (lines 5–6).

2.5.2 Discovering and Requesting Resources

Each Transit Portal runs a component manager (CM) that tracks available resources on

the node. To track available capacity between TPs, or on links between virtual hosting

facilities, the service uses an aggregate manager (AM). The aggregate manager maintains

inventory over global resources by aggregating the available resources reported by the com-

ponent managers. It also brokers client requests by contacting individual CMs, as shown

in Figure 2.22.

Clients can discover and request resources using a supplied command line tool en-client.py.

The tool can issue resource discovery and resource reservation requests to a hard-coded AM

address as shown in Section 2.3.2.
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1 <r spec t y p e =” r e q u e s t ” >
2 <node v i r t u a l i d =” tp1 ”>
3 <node type type name =” tp ”>
4 < f i e l d key=” upstream as ” v a l u e =”1” />
5 < f i e l d key=” p r e f i x ” c o u n t =”1”>
6 < / node type>
7 < / node>
8 < l i n k v i r t u a l i d =” l i n k 0 ”>
9 < l i n k t y p e name=” egre ”>

10 < f i e l d key=” t t l ” v a l u e =”255”>
11 < / l i n k t y p e>
12 < i n t e r f a c e r e f v i r t u a l n o d e i d =” tp1 ” />
13 < i n t e r f a c e r e f v i r t u a l n o d e i d =”pc1”
14 t u n n e l e n d p o i n t =” 1 0 . 0 . 0 . 1 ” />
15 < / l i n k>
16 < / r spec>

(a) The resource request specifies the client’s tunnel endpoint, 10.0.0.1, and
asks for an EGRE tunnel, as well as an IP prefix and upstream connectivity to
AS 1.

1 <r spec t y p e =” m a n i f e s t ” >
2 <node v i r t u a l i d =” tp1 ”>
3 <node type type name =” tp ”>
4 < f i e l d key=” upstream as ” v a l u e =”1” />
5 < f i e l d key=” p r e f i x ” c o u n t =”1” v a l u e =” 2 . 2 . 2 . 0 / 2 4 ” />
6 < / node type>
7 < / node>
8 < l i n k v i r t u a l i d =” l i n k 0 ”>
9 < l i n k t y p e name=” egre ”>

10 < f i e l d key=” t t l ” v a l u e =”255” />
11 < / l i n k t y p e>
12 < i n t e r f a c e r e f v i r t u a l n o d e i d =” tp1 ”\
13 t u n n e l e n d p o i n t =” 1 0 . 1 . 0 . 1 ”\
14 t u n n e l i p =” 2 . 2 . 2 . 2 / 3 0 ” />
15 < i n t e r f a c e r e f v i r t u a l n o d e i d =”pc1”\
16 t u n n e l e n d p o i n t =” 1 0 . 0 . 0 . 1 ”\
17 t u n n e l i p =” 2 . 2 . 2 . 1 / 3 0 ” />
18 < / l i n k>
19 < / r spec>

(b) The manifest assigns an IP prefix to the network, 2.2.2.0/24, and speci-
fies the parameters for the tunnel between PC1 and TP1.

Figure 2.24: The resource request (Step 3) and manifest (Step 5) of the resource allocation
process, for an example topology.
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Before clients can request resources, the AM must know about resources in all TP

installations. Each component manager registers with the AM and provides the list of the

available resources, such as the list of upstream ISPs and available IP prefixes (Step 0 in

Figure 2.22). To request resources, a client first issues a discovery call to an AM (Step 1).

The AM replies with advertisement, which describes resources available for reservation

(Step 1), such as the example in Figure 2.21. After receiving the resource advertisement,

a client can issue a resource request (Step 3), such as the example in Figure 24(a). If the

resources are available, the AM issues the reservation request to TP1 (Step 4) and responds

with a manifest (Step 5), which is annotated version of the request providing the missing

information necessary to establish the requested topology, as shown in Figure 24(b). The

AM also provides sample client configuration excerpts with the manifest to streamline

client configuration setup. The client uses the manifest to configure its end of the links and

sessions, such as the configuration of PC1 in Figure 2.23.

2.5.3 Implementation

We implement the provisioning framework in the spirit of the Slice-based Facility Archi-

tecture (SFA) [8]. This management plane approach is actively developed by projects in the

GENI [50] initiative, such as ProtoGENI [93]. SFA is a natural choice because our interme-

diate goal is to integrate the TP with testbeds like ProtoGENI [93] and VINI [111]. We use

the Twisted event-driven engine libraries written in Python to implement the management

plane components.

The primary components of the SFA are the Component Manager (CM) and Aggregate

Manager (AM) as introduced before. The interface between the AM and CM is imple-

mented using XML-RPC calls. The client interacts with the AM though a front-end, such

as the Emulab or PlanetLab Web site, which in turn contacts the AM using XML-RPC or

through the supplied client script.
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Currently, access control to the AM is controlled with static access rules that authenti-

cate clients and authorize or prevent a client from instantiating resources. To support more

dynamic access control, we plan to expand the AM and CM to support security creden-

tials, which will enable us to inter-operate with existing facilities (e.g., PlanetLab, VINI,

GENI) without using static access rules. We also plan to extend the resource management

to include slice-based resource allocation and accounting.

2.6 Extensions to the Transit Portal

The TP is extensible. In the future, we plan to add support for lightweight clients who don’t

want to run BGP, support for smaller IP prefixes, support for backhaul between different

TP sites, extensions for better scalability using hardware platforms for the data plane, and

extensions for better routing stability in the face of transient client networks.

Support for lightweight clients. Some client networks primarily need to control traffic

but do not necessarily need to run BGP between their own networks and the transit portal.

In these cases, a client could use the existence or absence of a tunnel to the TP to signal

to the TP whether it wanted traffic to enter over a particular ingress point. When the client

network brings up a tunnel, the TP could announce the prefix over the appropriate ISP.

When the client brings the tunnel down, the TP withdraws the prefix. As long as the

tunnels are up, the client is free to choose an outgoing tunnel to route its traffic.

Support for small IP prefixes. Many client networks may not need IP addresses for

more than a few hosts; unfortunately, these client networks would not be able to advertise

their own IP prefix on the network, as ISPs typically filter IP prefixes that are longer than

a /24 (i.e., subnetworks with less than 256 addresses). The TP could allow client networks

with fewer hosts to have BGP-like route control without having to advertise a complete /24

network. Clients for such networks would have full control of outgoing route selection and

limited control for influencing incoming routes.
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Better scalability. The scalability of the TP data plane can be further improved in two

ways: (1) running multiple TPs in an Internet exchange, each serving subset of upstream

ISPs, and (2) running the data and control plane of a TP on separate platforms. The first

approach is easier to implement. The second approach offers the convenience of a single IP

address for BGP sessions from ISPs and follows the best practices of data plane and control

plane separation in modern routers. A data plane running on a separate platform could be

implemented using OpenFlow or NetFPGA technologies.

Better routing stability in the face of transient client networks. The Transit Portal can

support transient client networks that need BGP-based route control but do not need to use

network resources all of the time. For example, suppose that a client network is instantiated

every day for three hours to facilitate a video conference, or bulk transfer for backups. In

these cases, the TP can simply leave the BGP prefix advertised to the global network, even

when the client network is “swapped out”. In this way, TPs could support transient client

networks without introducing global routing instability.

Backhaul between sites. Today’s cloud applications in different data centers, performing

tasks such as backup or synchronization, must traverse the public Internet. For instance,

Amazon EC2 platform offers sites in U.S. East coast, U.S. West coast and in Ireland. Un-

fortunately, the platform offers little transparency or flexibility for application operators

seeking to connect the applications in different sites into a common network. TP platform,

on the other hand, is well suited to support sophisticated backhaul between applications in

different sites. Each TP site can choose among multiple paths to other TP sites and appli-

cation operator could exercise control on what path applications are routed to reach other

sites. In addition, TP could facilitate private networking between the applications in differ-

ent sites by using tunnels between TPs. The TP could also improve connectivity between

the sites through overlay routing, two TP sites exchange traffic through a third intermediate

TP site.
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2.7 Limitations

In this chapter we have presented and evaluated TP platform. The concept of TP and the

evaluation are not without caveats. There are three distinct questions we haven’t fully

addressed in this chapter:

1. Does TP provide the best way to communicate route choice to hosted services?

Transit Portal delegates all wide-area routing decisions to the hosted online services.

While some services might benefit from such fine grained control, not all online

services have resources and know-how to leverage available routes. What is the right

level of wide-area route control is still an open research question. Some of the online

services might benefit from coarser route choices. For example, a cloud provider

might offer to its clients different route packages: value routes, low latency routes,

and high throughput routes.

2. How can a hosted online service choose among routes provided by TP? When a

hosted online service takes on to decide which wide-area routes to utilize, it has to be

able to compare the performance of different routes. In one scenario, all of the ser-

vices would evaluate the routes presented to them and make independent decisions.

This scenario, however, poses significant overhead to each of the hosted online ser-

vices. It is possible that in the future we will see cloud service providers providing

information about wide-area route performance — akin to a network weather report.

In such a setup, the measurements will be done by a could provider once and shared

with the clients, thus eliminating the need for individual measurements from each

client.

3. How would upstream ISPs (and the Internet as a whole) react to an increase

in routing churn? Many industry practitioners believe that the current growth rate

of the BGP routing table and the BGP update churn are unsustainable in long term.

If cloud service providers addpt TP-like platform, it will likely increase both the
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Figure 2.25: Transit Portals allow cloud providers to offer wide-area route control to
hosted services

BGP routing table size and the update churn due to increased number of distinct

participants in the Internet routing. On one hand, one could see that as a drawback

of TP-like platform. On the other hand, this issue indicates that more research and

industry efforts should be dedicated to improve the Internet scalability.

2.8 Related Work

The Transit Portal resembles several existing technologies, including content distribution

networks, route servers, cloud hosting providers, and even exchange point operators. We

describe how these existing technologies differ from TP, with respect to their support for

the applications from Section 2.1.

Content distribution networks and cloud hosting providers do not provide control

over inbound and outbound traffic. Content distribution networks like Akamai [15]

and Amazon Cloud Front host content across a network of caching proxies, in an attempt

to place content close to users to improve performance and save bandwidth. Each of these

caching proxies may be located in some colocation facility with its own upstream connec-

tivity. Some content providers may care more about throughput, others may care about

low delay, others may care about reliability, and still others might care about minimizing

costs. In a CDN, however, the content provider has no control over how traffic enters or
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leaves these colocation facilities; it is essentially at the mercy of the decisions that the CDN

provider makes about upstream connectivity. The Transit Portal, on the other hand, allows

each content provider to control traffic independently.

Exchange points do not provide flexible hosting. Providers like Equinix Direct [43]

allow services to change their upstream connectivity on short timescales and connect on

demand with ISPs in an Internet exchange. Equinix Direct operates only at the control plane

and expects clients and ISPs to be able to share a common LAN. Unlike Equinix Direct, the

Transit Portal allows services to establish connectivity to transit ISPs without renting rack

space in the exchange point, acquiring numbered resources, or procuring dedicated routing

equipment.

Route servers do not allow each downstream client network to make independent

routing decisions. Route servers reduce the number of sessions between the peers in an

exchange point: instead of maintaining a clique of connections, peers connect to a central

route server. Route servers aggregate the routes and select only the best route to a destina-

tion to each of the peers [54]. This function differs from the TP, which provides transparent

access to all of the routes from upstream ISPs.

DNS-based load balancing cannot migrate live connections. Hosting providers some-

times use DNS-based load balancing to redirect clients to different servers—for example,

a content distribution network (e.g., Akamai [15]) or service host (e.g., Google) can use

DNS to re-map clients to machines hosting the same service but which have a different IP

address. DNS-based load balancing, however, does not allow the service provider to mi-

grate a long-running connection, and it requires the service provider to use low DNS TTLs,

which may also introduce longer lookup times. The Transit Portal, on the other hand, can

move a service by re-routing the IP prefix or IP address associated with that service, thereby

allowing for longer DNS TTLs or connection migration.
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Overlay networks do not allow direct control over inbound or outbound traffic, and

may not scale. Some control over traffic might be possible with an overlay network (e.g.,

RON [20], SOSR [56]). Unfortunately, overlay networks can only indirectly control traffic,

and they require traffic to be sent through overlay nodes, which can result in longer paths.

2.9 Summary

This dissertation chapter has presented the design, implementation, evaluation, and deploy-

ment of the Transit Portal, which offers flexible wide-area route control to for distributed

services. The TP prototype is operating at several geographically diverse locations with a

/21 address block, AS number, and BGP sessions to upstream providers. We have used

Transit Portal in both our research and in projects for a graduate course [83], and we

plan to deploy and evaluate additional services, including offering our platform to other

researchers, and to offer new, more lightweight interfaces to the Transit Portal.

42



CHAPTER III

QUANTIFYING THE BENEFITS OF WIDE-AREA ROUTE

CONTROL

Online service providers (OSP) such as Google and Amazon are offering an increasingly

diverse set of online services, from content streaming to interactive applications, includ-

ing social networks and online productivity tools. Consumers expect these online services

to be responsive; as a result, OSPs are continually implementing various optimizations

to improve the performance of these services. Recent years have witnessed a plethora of

optimizations to accelerate the delivery of online services, ranging from better transport

protocols [4, 52] to browser enhancements [2, 64] to new compression algorithms [11]

and site placement optimizations [31], to name a few. On shorter timescales, operators

of online services continually manage client-perceived performance using algorithms for

directing clients to different replicas (often termed content routing). In parallel network

operators monitor the health of the current paths between the clients and the OSP repli-

cas and, at longer timescales, perform various forms of traffic engineering to impact the

network routing process. In particular, network backbone operators seek to optimize the

performance of network paths between clients and individual server replicas.

The operational teams that manage content routing often have only limited coordina-

tion with teams adjusting the network routing [68]. The operators of major OSPs that we

surveyed stated that their replica operators and network operators have only limited co-

operation, and they do not attempt to reap the benefits of jointly optimizing content and

network routing. Client performance suffers from this lack of coordination: operators of

service replicas currently have no visibility into the performance or cost of alternate net-

work paths between a service replica and its clients, so they optimize replica mapping
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based upon the default network paths that have been exposed as a result of network op-

erators’ traffic engineering optimizations. On the other hand, network operators, who do

have access to alternate wide-area paths, have little insight into the management of online

services, or the application-level performance these alternate paths might provide.

Despite this technical and operational divide, past work on detour routing [98], overlay

routing [20], and multi-homing [17, 18, 19] suggests that exploiting a range of alternate

paths can offer significant performance gains over default wide-area Internet paths. These

well-known results motivate us to explore jointly performing both content and network

routing to improve the perceived client performance of online services. In particular, we

consider whether the potential performance gains of both content and network routing can

be combined in practice.

In this chapter, we design and evaluate PECAN (Performance Enhancements with Con-

tent And Network routing), a system that performs joint content and network routing for

online services. PECAN enables joint content and network routing for online services by

augmenting an OSP’s existing content routing framework to provide a diverse set of wide-

area routes between each replica and its clients. To ensure that PECAN does not harm

the performance of any existing service, it explores alternate wide-area route choices us-

ing separate IP prefixes; clients can always reach the online service either via the default

wide-area Internet routes or via the routes that PECAN exposes.

We evaluate a prototype deployment of PECAN to quantify the performance benefits

joint content and network routing can achieve in practice. To deploy PECAN, we emulate

an online service provider’s infrastructure by placing replicas at the Transit Portal system

(described in previous chapter of this dissertation) and clients at nodes in the PlanetLab

testbed. TP allows us to emulate an OSP with a five geographically diverse, U.S.-based

points-of-presence (PoPs), each of which provides access to many alternate wide-area paths

to clients. There are many ways to measure a client’s perceived performance; one popular

metric is page load time, but accurately measuring page load time is challenging as it
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requires instrumenting each client with browser software—a difficult task for a large-scale

measurement study. Instead, we focus on network latency (i.e., round trip time), as many

online service providers have identified latency reduction as a key factor governing an

end user’s experience [33, 34]. Moreover, our results indicate that latency is a reasonably

good predictor for small-object download time in our deployment. We find that round-trip

time and the time to download a median-size (400-byte [31]) Web object has a Pearson

correlation coefficient of approximately 0.83. In addition to latency, we also report how

PECAN improves both throughput and jitter.

Our results suggest that PECAN can provide significant performance benefits for to-

day’s online services. Using three months’ of data from our globally distributed testbed,

we show that, compared to content routing alone, PECAN improves the average client’s

latency to our online service by 22% more than content routing alone. Further, these gains

are realizable in practice: exploring just five alternate routes at each replica can yield 60%

of the average improvement possible when each client is free to choose among the hundreds

of alternate routes that we tested in our experiments.

This chapter makes three contributions. First, we present the design and implementa-

tion of PECAN, a system for performing joint content and network routing in online ser-

vice provider networks. Second, using millions of performance measurements over three

months on a globally distributed testbed that emulates an online service provider network,

we show that performing joint network and content routing can offer significant perfor-

mance benefits to online services in practice. Although we focus on the resulting reduc-

tions in latency, we quantify PECAN’s benefits for throughput and jitter as well. Finally,

we decompose the performance results by studying how content routing and network rout-

ing alone reduce network latency on our testbed, which provides insight into why PECAN

works, and provides confidence that our results are likely to apply to OSPs in general.
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Figure 3.1: Global Traffic Management (GTM). Some services rely only on DNS; other
services can use proxies for HTTP redirects and client-specific HTML rewriting.

3.1 State of the Art Overview

We begin by providing an overview of both content routing and network routing as em-

ployed by online service providers today. We attempt to describe the state of the art, as

best as we can determine through discussions with network operators and online service

providers. Because network and content routing typically occur independently in today’s

OSP networks, we describe each independently. PECAN effectively integrates both routing

processes into one.

3.1.1 Global Traffic Management: Overview

Operators often refer to the system that controls how clients interact with their replicated

online service as a Global Traffic Management (GTM) system. State-of-the-art GTM sys-

tems can perform both content and network routing, but independently. Content routing

refers to the process of selecting which data center replica (among a set of geographically

distributed points-of-presence) should service a particular request. Network routing, in

contrast, refers to the process of selecting both the wide-area, interdomain paths and the

intra-domain paths within an OSP backbone that each replica will use to communicate with

remote clients.

Figure 3.1 shows an example GTM system which has several components involved in

directing traffic. The example shows a system that can perform content routing with both
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DNS-based direction and proxy-based redirection (e.g., with URL rewriting). In this dis-

sertation chapter, we do not distinguish between the different ways that a network operator

might perform content routing; we merely assume that an OSP can map clients to replicas

in at least one of these ways. If the OSP operates its own backbone network with interdo-

main routing connections to the wide-area Internet, it can also perform network routing to

adjust the paths that client traffic takes to reach each replica. For example, An OSP opera-

tor might perform network routing by adjusting intra-domain routes on the OSP backbone,

or by performing interdomain traffic engineering at the border routers between the OSP

backbone and the OSP’s peers.

Despite the flexibility that these GTM systems provide, OSPs may still have trouble

achieving good performance for their clients, since content routing and network routing

remain disjoint. On the one hand, content routing systems have limited visibility into (and

control over) the alternate paths that are available to network routing systems. On the

other, network routing systems often have relatively poor visibility into the end-to-end

performance that clients experience and how changes in network routing could improve

performance. The goal of PECAN is to bridge this gap.

3.1.2 Content Routing

Content routing systems have been heavily influenced by academic research, which we

overview in Section 3.6. Today’s content routing systems perform three major functions:

(1) collecting performance information, (2) mapping clients to replicas, and (3) directing

clients to replicas according to the client-replica map. We describe these steps below.

Step 1: Collecting performance information. OSPs use many technologies to measure

performance between online service replicas and their clients. Such measurements can be

classified into active, passive, and indirect. Active measurements usually involve send-

ing probes from replicas to clients (or v.v.), which provides direct information about the

network performance to the client. Active measurements are problematic in at least two
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ways: (1) the probes might not be handled by network in the same way the actual traffic

is handled, and (2) active measurements do not scale to a large number of replicas and

customers [60]. For these reasons, in practice OSPs typically use a combination of passive

and indirect measurements.

Passive measurements record the performance of the actual online service traffic be-

tween the replica and the clients to estimate the performance that clients are receiving.

Passive measurements scale well and can provide direct insight into the performance of a

service over the network, recording information such as TCP round-trip times and packet

loss. To measure performance for all <client, replica> pairs, OSPs occasionally randomly

redirect a small fraction of their clients’ requests to alternate replicas, as suggested by Se-

shan et al. [100].

Step 2: Mapping clients to replicas. OSPs use a variety of proprietary algorithms to

map clients to replicas. Client-to-replica performance is important, but there are other

inputs to the algorithms that produce these mappings as well, including service availability,

servicing costs, desired load, and regulatory restrictions [114].

To map clients to replicas when no active or passive measurements are available to in-

form selection, OSPs often resort to indirect inference of the likely performance between

replicas and clients. Commercial IP geo-location databases [75] are often augmented with

historical information to estimate performance between replicas and clients. As new clients

begin to use the system, the OSP can update its performance estimates with passive mea-

surements.

Step 3: Directing clients to replicas. OSPs use three main techniques to implement their

client-to-replica mapping: (1) DNS-based redirection, 2) HTTP redirection, and (3) client-

tailored HTML rewriting. DNS mapping uses DNS servers to respond to clients with IP

addresses of best replicas. (“Clients” in this case most often are the DNS resolvers re-

solving names on behalf of the end-systems.) DNS mapping is most useful to improve
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the performance of initial resource requests. HTTP redirection can further redirect clients

to a better replica (at a cost of initial request latency.) When the requested resource has

multiple sub-components (e.g., a Web page with images), the OSP can use client-tailored

HTML rewriting to direct clients to retrieve sub-components from disparate replicas.

Taken together, these methods allow online service operators to achieve good client

performance while spreading load across their infrastructure. Yet, these content routing

mechanisms operate only on the paths that are already chosen by the network operators.

Next, we describe a set of popular methods that network operators use to select the paths

between clients and replicas.

3.1.3 Network Routing

Industry has taken two main approaches towards network routing: (1) deploying commer-

cial platforms and services for multi-homed enterprises; and (2) performing in-house traffic

engineering by adjusting network configurations in the OSP backbone network. We discuss

each of these approaches below.

Commercial platforms and services. Avaya and Cisco offer the PathControl [97] and

Optimized Edge Routing (OER) [37] route management platforms, respectively. These

platforms perform continual performance measurements to online services and adjust in-

terdomain routes between the services and their clients based on these performance mea-

surements. Similarly, Internap provides route optimization services for their clients [62]

by performing measurements along alternate paths and redirecting traffic between services

and clients by adjusting interdomain routing policy. These platforms and services primarily

target large enterprises with multiple upstream providers. PECAN applies similar types of

interdomain route control to adjust routes between clients and replicas, and it is possible

that some variant of these systems could be used to implement aspects of PECAN’s net-

work routing subsystem. Our evaluation also hints at how these services might scale to

large OSPs who have have millions of clients and many replicas.
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Conventional traffic engineering. Large OSPs primarily improve the performance of

their connectivity by deploying their own networks and increasing the richness of their

peering connections to improve wide-area network performance. Peering significantly re-

duces transit costs for large ISPs, but it can sometimes harm performance. For example,

Zhang et al. showed that by preferring peering connections, Microsoft’s users on average

would experience an RTT of 66 ms—more than twice the default routing policy which

gives an average RTT of 29 ms [117]. This anomaly indicates that peering alone is not

always effective as performance enhancing strategy.

Despite the benefits of Internet route control as highlighted in many research stud-

ies (see Section 3.6), the network operators that we interviewed at large OSPs rarely

use anything more sophisticated than general routing policies (e.g., setting per-link BGP

localpref parameters or export policies). In 2003, Feamster et al. found that wide-area

routing heuristics used in ISP backbones were primitive and ad hoc [47], eschewing avail-

able granular routing techniques like per-prefix localpref or export policies. Our conver-

sations indicate that the state of affairs is largely the same today: While network operators

do occasionally use granular routing, they do it only in exceptional cases, when service

degradation is noticeable and content routing alone cannot provide satisfactory resolution.

For example, the “WhyHigh?” system proposed by Krishnan et al. [68] (and deployed in

Google) identifies corner cases of prefixes exhibiting higher delay than expected. Systems

like “WhyHigh?” can alleviate occasional problems with network routing, but they are re-

active. In contrast, PECAN aims to systematically and proactively look for best performing

network paths and optimize them jointly with content routing.

3.2 Case for Joint Content & Network Routing

To quantify potential gains of a joint content and network routing we emulate an OSP

setup using a globally distributed testbed that allows us both to replicate services across

sites and control inbound routes to these sites. This testbed, which we describe in detail
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Table 3.1: Average improvement to latency (RTT), throughput (BW), and jitter. The base-
line, over which improvement is measured for each technique, is the average performance
to the single best replica.

Routing type RTT BW Jitter
Best replica 107.35 ms 212.47 Mbps 5.95 ms

Network 4.35% 0.87% 9.32%
Content 16.75% 8.11% 11.82%

Joint 20.44% 11.29% 17.57%

in Section 3.4, allowed us to emulate an OSP with replicas in a diversity of geographic

locations and a diversity of wide-area network routes at each location.

Overview of measurements. The testbed has five replicas distributed across the United

States; from each replica, we explore about 250 alternate routing choices to about 200

globally distributed clients. For six months (from July to December 2011), we collected

a comprehensive <client, replica, route> performance map consisting of millions of mea-

surements. We have released this dataset to the reviewers at an anonymous site [3] and we

plan to make that data set public with publication of this work. Section 3.4 explains our

experimental setup in more detail.

Improvement over the best replica. When OSPs roll out a new online service, it often

starts at a single replica and then expands to more sites. It is interesting to know how

expanding the set of replicas and/or adding joint content and network routing improves

the service performance. Table 3.1 shows how network routing, content routing and joint

routing improves over a single best replica.

The “network” routing row in Table 3.1 shows improvement gains if the OSP chooses

to explore alternate routes only for that single best replica. Conversely, the “content” rout-

ing line shows improvement gains if the OSP chooses to replicate the service to all five

locations available in our testbed. Content routing provides greater performance gains than

simply applying network routing for one site. Finally, the “joint” routing row shows the

gains attained when the OSP chooses to both replicate the service to all five locations and
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Figure 3.2: Latency reduction as a function of the number of replicas.

Table 3.2: Marginal gains of joint routing over content routing. Clients in each percentile
improve by at least the amount indicated.

Client percentile RTT (%) BW (%) Jitter (%)
Most-improved 5% 16.94 10.25 41.20
Most-improved 10% 13.43 1.42 29.24
Most-improved 20% 9.91 0.47 13.48

perform joint content and network routing.

In practice, in addition to network level performance, both replica and network path

selection depend on traffic acquisition costs, replica loads, and other variables. Unfortu-

nately, it is hard to obtain data to model the effect of such variables. Hence, we optimize

only for latency, throughput, and jitter. While this might bias our results, it would affect

both content routing and joint routing and thus we can still compare the two.

Figure 3.2 shows that the benefits from joint routing are largely independent of the size

of the replica set in our testbed: adding more replicas to an OSP yields latency improve-

ments for both content and joint routing. Hence, an OSP can improve its performance using

joint routing regardless of the number of replicas it currently employs. The numbers in the

figure show the 80th, 90th and 95th percentile gains over the performance of a single best

replica (as defined in Section 3.5.)
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Improvement over content routing. While joint routing unquestionably provides greater

gains than network or content routing alone, most OSPs already deploy content routing.

Hence, its practical impact is governed by the marginal gain over content routing. Ta-

ble 3.2 provides a breakdown of joint routing performance gains over content routing alone

for various client percentiles. For example, when compared to content routing, the most-

improved 10% of clients see their latency reduced by 13.43% or more, an increase of 1.42%

or greater in throughput, and at least a 29.24% reduction in jitter. For online services such

as search or online gaming, such latency savings are significant.

Improvement with limited route diversity. It may not be practical to support all pos-

sible alternate routes to each replica. Fortunately, Figure 3.15 (Section 3.5) shows that

exploiting just five alternate routes for each of the replicas can yield 60% of the possible

improvement across the hundreds of alternate routes that we tested in our experiments.

Taken together, these results suggest that an OSP can provide a tangible improvement over

the state of the art by employing joint content and network routing. In the next section,

we will describe the design of PECAN, a joint route and replica selection system that can

realize these gains in practice.

3.3 PECAN: Performance Enhancements with Content and Network
Routing

As we described in Section 3.1, modern OSPs use sophisticated content routing systems to

load balance requests between replicated data centers in an attempt to improve client per-

formance. In this section, we will describe how operators can extend their existing content

routing systems to support network routing as well. In particular, we present the design of

PECAN (Performance Enhancements with Content And Network routing), a system that

enables seamless integration of content and network routing.
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Figure 3.3: Content and network routing subsystems have to allocate isolated resources
for exploration of new network routes.

3.3.1 Exposing Routing Choices

The basic idea behind PECAN is to extend an OSP’s current <client, replica> mapping

infrastructure to instead map clients to <replica, route> pairs. To do so, PECAN breaks

each replica into a set of virtual replicas, where each virtual replica corresponds to a differ-

ent choice of routes to the replica (i.e., a single <replica, route> tuple). Figure 3.3 shows

how PECAN allows a content routing system to tap into network route diversity. The router

in the figure has a separate routing slice dedicated to each set of alternate routes (virtual

replica). For example, in today’s routers such a slice can be implemented using Virtual

Routing and Forwarding instances (VRF), but a variety of alternative technologies can be

employed as we discuss below.

3.3.1.1 Egress routes

There are a wide variety of mechanisms available to employ alternate egress routes from

a given virtual replica. For example, conventional BGP multihoming can increase route

diversity; operators can use BGP’s local preference setting to adjust the choice of egress

routes to each client prefix. PECAN could also benefit from protocols such as Detour [98],
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RON [20], Platypus [94], Deflections [116], and Path Splicing [80], all of which increase

an end-systems choice of (and control over) egress paths. Similarly, considering industry

proposals, many practitioners see Locator/ID Separation Protocol (LISP) [45] as a feasible

improvement to BGP. LISP separates the Endpoint Identifier (EID) (i.e., a host IP address)

information from Routing Locator (RLOC) (i.e., the information that encodes the location

of the EID in the wide-area Internet.) LISP could allow an OSP to explore potential egress

routes by selecting the entry points to a remote network as encoded with RLOCs.

3.3.1.2 Ingress routes

Affecting a virtual replica’s ingress routes is more challenging since it requires changing

the way other networks forward packets. The key to enabling distinct route sets for each

virtual replica is to separate these routing decisions. In PECAN, an OSP allocates a distinct

IP address prefix to each virtual replica. Hence, to map clients to a particular virtual replica,

PECAN need only point them to an IP address within the virtual replica’s prefix.

Today’s Internet supports a number of ways to impact route selection, including selec-

tive prefix announcement (i.e., announcing a prefix only to a subset of neighbors), prepend-

ing AS PATH attributes, setting BGP communities or MED attributes, and BGP AS PATH

poisoning; we evaluate employing AS path poisoning in PECAN extensively in the next

section. Future technologies, such as LISP, might provide even more elegant alternatives.

Critically, by maintaining one virtual replica (address prefix) at each physical replica

that always uses the default network paths, PECAN ensures that it can do no harm: clients

can always obtain the performance provided by content routing alone if none of the joint

routing options provide superior performance.

3.3.2 Selecting a Virtual Replica

We now describe how PECAN’s virtual replicas enable the process of joint content and

network routing. The joint optimization could happen in many ways; we take an iterative

approach, as shown in in Figure 3.4. First, PECAN optimizes network routing between
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1. Enumerate the route options.
  - Provision ingress/egress routing
  - Create virtual replicas

2. Select best virtual replicas.
  - Collect performance metrics
  - Compute <client, virtual replica> map

3. Direct clients to virtual replicas.
  - DNS and HTTP redirects
  - Client-tailored HTML re-writing

Remove under-performing virtual replicas

Update performance metrics

Figure 3.4: Joint network and content routing selection with PECAN.

each client/replica pair: for each replica, PECAN identifies the network path to each client

that yields the best performance, and establishes a virtual replica with that path preference.

Then, for each client, PECAN selects the virtual replica that offers the best performance

among the available options at each physical replica.

This process proceeds in three steps, which could be either automated or manually

performed by the operators of the network and online service.

1. Enumerate the route options. OSP network operators must enumerate the alternate

routes from each replica to clients that the system should explore. Depending on the

route selection technique employed, the operator may wish to enumerate egress (e.g.,

a choice of a next-hop neighbor) routes and ingress (e.g., selective route announce-

ment) routes separately, or jointly. Evaluating all possible alternate routes to each

client is unlikely to scale, but our evaluation (Section 3.5) shows considering just

five virtual replicas (i.e., sets of alternate ingress routes) at each replica can realize

performance improvements that are 60% of the maximum possible improvement.

2. Select the best virtual replica for each client. PECAN evaluates the performance of

each virtual replica for each client. To evaluate a new virtual replica (route selection)

for a given client and physical replica, PECAN redirects a small fraction of client
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Table 3.3: The Transit Portal deployments that we use to emulate a replicated online
service with route control. At each Transit Portal location, we host a replica of an online
service; from each of these locations, we explore more than two hundred alternate routes
between each replica and the set of clients that it could reach.

Service
Replica Location # of routes # of measurements (RTT) # of measurements (BW)

Default route Alternate routes Default route Alternate routes
1 Atlanta, GA 259 292,806 1,453,137 9,535 14,679
2 Clemson, SC 253 19,401 1,442,832 14,853 22,021
3 Princeton, NJ 261 224,457 1,438,588 5,595 6,243
4 Seattle, WA 247 366,357 347,302 14,844 9,651
5 Wisconsin, WI 247 67,473 1,389,266 7,321 14,032

requests to the virtual replicas and evaluates the performance that the client sees.

PECAN gradually increases the number of clients mapped to a virtual replica to avoid

overloading any network path or physical replica. Isolating test measurements from

the bulk of the traffic requires a set of dedicated load-balancing proxies, as shown in

Figure 3.3, As long as the evaluated route offers improved performance for enough

clients and is reliable over the test period, PECAN maintains the virtual replica in the

set of virtual replicas that can be used for joint routing.

3. Direct clients to virtual replicas. Once PECAN has selected the best virtual replica

for each client, it implements the mapping. To implement this mapping, PECAN uses

DNS load balancing to map each client to a virtual replica IP address, where the BGP

prefix for that IP address corresponds to the route that the PECAN has selected for

that client and replica using the previous steps. Because PECAN maps each virtual

replica to its own prefix, a client always has the option of using either default content

routing (i.e., the route it would receive in today’s CDN) or the PECAN-provided

route.

3.4 Evaluation Setup

This section describes our evaluation methodology. We first describe the testbed infrastruc-

ture, followed by our measurement procedure.
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3.4.1 Infrastructure

We use PlanetLab to emulate a set of clients, from which we perform measurements to the

replicas over many different sets of routes, and the Transit Portal to attain both replica and

route diversity.

3.4.1.1 Clients: PlanetLab

We use 200 PlanetLab nodes as our client set. From the full list of PlanetLab nodes, we

select nodes with which we can establish sessions. We further filter the list of these “alive”

nodes to include only a single node per PlanetLab site. In the end, we have a client pool

with 38% of the nodes in North America, 36% in Europe, 21% in Asia, and the last 5% in

South America.

It is well known that PlanetLab nodes are not the best representation of the Internet. It

is hard to quantify how much PlanetLab biases our measurements. On one hand, Planet-

Lab nodes are better provisioned and have better “last mile” connection to the immediate

provider than their residential counterparts. On the other hand, we focus our measurements

on the performance we can gain by exploiting replica and route diversity in network core

and not on the network edge. In other words, what matters more is how well a Planet-

Lab node’s provider is connected to the Internet as compared to an average Internet user.

Most PlanetLab node’s access providers are academic institutions, whose connectivity to

the Internet is often comparable to the connectivity of smaller ISPs or medium enterprises.

3.4.1.2 Replicas: Transit Portal

Transit Portal (TP) is a research platform for realistic experimentation with wide-area route

control, which we described in previous chapter of this dissertation. TP consists of several

nodes, each of which is a functional Internet router, connecting to an upstream ISP, re-

ceiving a full Internet routing table and able to participate in BGP routing by issuing BGP

updates from the IP address space and AS numbers allocated to Transit Portal. TP nodes
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Figure 3.5: Obtaining alternate paths between ISP A and ISP B with poisoning.

allow multiple researchers to use these routing resources concurrently. We used access to

the five TP nodes described in Table 3.3; each of which acts as a replica in our testbed.

3.4.2 Experiment Procedure

We describe how we use our testbed to explore alternate routes between clients and replicas

measure the performance improvements that result from these alternate routes.

3.4.2.1 Obtaining route diversity: poisoning

We explore wide-area route diversity by using BGP AS PATH poisoning [30]. BGP AS PATH

poisoning is an unconventional technique: it finds alternate, policy-compliant wide-area

ingress routes to the network that advertises the poisoned route (in our case, the replicas).

In practice, a real OSP could control both ingress and egress routes in a variety of ways.

For example, OSPs could also use BGP AS PATH prepending, BGP community attributes,

and selective advertisements; to control egress traffic, OSPs can often select among mul-

tiple neighbors to send traffic. Among these options, BGP AS PATH poisoning is the only

feasible choice to obtain wide-area route diversity because we do not have access to the

BGP routers that control inbound and outbound traffic to our replica sites. Given a wider

variety of techniques at their disposal, it is plausible that OSP operators might see even
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greater performance gains than our experiments reflect.

BGP AS PATH poisoning leverages the BGP-loop prevention algorithm to explore al-

ternate routes on the Internet. Each router in the Internet attaches its own AS number to

AS PATH attribute. BGP’s loop prevention algorithm, which is implemented on all BGP-

speaking routers, says that a router must drop a BGP route update if the AS PATH attribute

of the route contains the AS number of said router. Dropping these updates prevents the

router from accepting updates that the router has already received, thus preventing loops.

As shown in Figure 3.5, BGP AS PATH poisoning exploits this algorithm by inserting a tar-

get AS number in the AS PATH attribute before the update is originated. The target AS, in

turn, will drop the update and its clients will choose alternate routes to the route originator.

We use the traceroute tool to identify the networks (and their AS numbers) on the

default paths from our clients to each replica. We then poison these AS numbers one by one

to uncover alternate paths from clients to replicas. Not every client moves to an alternate

path after we issue a poisoned update: some updates affect just a few clients, while some

affect a great many. To determine how often the AS path changes as a result of a poisoned

update, we traceroute the resulting path to the updated IP prefix. When measured from

an average client, approximately 20% of all poisoned announcements produce paths differ-

ent from a default. On average, we find 3.4 different AS paths per <client, replica> pair

(not counting the default path) in our testbed. There is a possibility that a small fraction of

these alternate paths are because of network topology changes not under our control—i.e.,

not because of our poisoning. We perform extensive measurements over the default paths

to see how often the AS path changes, or in other words, to determine the “noise floor” of

the Internet topology churn. We find that an average <client, replica> pair observes ap-

proximately 0.35 paths in addition to the default path during our study period of 3 months.

This low churn estimate gives us confidence that most of 3.4 alternate paths (not counting

the default) are indeed due to poisoning.
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3.4.2.2 Measuring performance improvements

There are many ways to measure network performance improvement. We do not measure

page load times due to the complexity of such measurements. Instead, we considered

measuring median and average HTTP object download times, but find that latency is a

reliable predictor for such times. During preliminary testing we discovered that round-trip-

time correlates to download time for a median-sized (400-byte [31]) object with a Pearson

correlation coefficient of approximately 0.83, for both a default path as well as a poisoned

path that affected 30% of the replica clients. Instead, we measure three basic network

performance primitives: latency, throughput, and jitter.

Each of our replicas maintains an un-poisoned prefix announcement at all times. This

un-poisoned prefix can always be reached to perform a measurement over the default path

that rarely changes. For poisoned routes, we use the following sequence for each replica to

collect a client/replica path performance map:

1. Announce a prefix with a poisoned update. The poison will propagate the prefix

to some client networks over the alternate paths.

2. Perform measurements to the poisoned prefix. From every client in our client set,

collect measurements to the replica using the poisoned prefix. Clients for which poi-

son did not affect the end-to-end path will see no improvement. Clients for which the

prefix affected the end-to-end path will see either improved or reduced performance.

3. Perform measurements to an un-poisoned prefix. Conduct the same set of mea-

surements over the default path (i.e., using the un-poisoned prefix) to the replica to

collect a contemporaneous baseline to which we will compare our poisoned path.

As shown in Table 3.3, the dataset resulting from these measurements has many more

measurements over the default path than over poisoned paths. (Note the number of mea-

surements reported for each metric in Table 3.3 corresponds to the total over all alternate

routes; the average alternate route has roughly 250× fewer measurements.) The abundance
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Figure 3.6: Minimum latency over the default path.

of default path measurements allows us to set a firm baseline. We consider a poisoned

path between a client and a replica to improve latency over the client’s default path only if

the poisoned path shows latency smaller than the minimum latency ever recorded over the

default path between the client and the replica. We apply a similar litmus test for jitter mea-

surements. For throughput, we record an improvement only if a poisoned path produced

higher throughput than any throughput measurement we ever observe on a default path.

3.5 Evaluation

We evaluate the benefits of joint routing with respect to latency, throughput and jitter. We

also compare how well joint routing performs compared to traditional content routing.

3.5.1 Baseline

When considering the performance improvements that different routing approaches induce,

we must establish a baseline to compare them against. In this section, we use two base-

lines for comparison: 1) a best replica baseline, and 2) a content routing baseline. Before

defining these baseline metrics in detail, we describe the measurements we perform.
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Figure 3.7: Maximum throughput over the default path.
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Figure 3.8: Minimum jitter over the default path.

Measurements. Figure 3.6 shows the CDF of minimum latencies clients experience to

each replica over a default path. The minimum latency for each client is obtained from a

large set of measurements: On average, each client measures the default path to a replica

6,692 times. The figure shows two major groups of clients: About 40% of the clients have

latencies between 0–50 ms, and about 60% of the clients see latencies of 90 ms or larger,

with just a few in between. These modalities reflect the geographic distribution of our client

dataset: About 38% of clients are in the U.S and Canada and see lower latencies, while the

rest of the clients are overseas.
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Table 3.4: Percentage of clients for which a replica is the best choice.
Replica Latency Throughput Jitter

1 6.93% 7.77% 12.62%
2 1.15% 35.92% 35.92%
3 56.64% 6.77% 8.74%
4 22.54% 48.54% 18.45%
5 12.71% 0.97% 24.27%

Similarly, Figures 3.7 and 3.8 show the CDFs of maximum throughput and the minimum

jitter, respectively, as observed by clients to each replica. As with latencies, the maximums

and minimums are computed over a set of measurements for the default path between

each <client, replica> tuple. For each such tuple, we have, on average, 189 jitter and

throughput measurements. Figure 3.7 highlights why it is difficult to measure capacity

using the PlanetLab nodes as clients. The clients in the figure form three distinct groups:

1) those with 10 Mbps links, 2) those with 100 Mbps links, and 3) those with speeds above

100Mbps. The 10 Mbps and 100 Mbps groups identify cases where the PlanetLab nodes

are directly connected to a bottleneck link; in the first two cases the bottleneck is at the

client itself and neither joint routing nor network routing can improve throughput.

Best replica baseline. When a new online service is launched, it often starts with a single

replica. We want to know how much the network performance improves over that single

replica when the OSPs start adding more replicas and implement content routing or joint

routing. We define the best replica for some performance metric as the replica that the

largest fraction of clients would select, given that each client can select its own best replica

based on that performance metric. Table 3.4 shows the breakdown of popularity of different

replicas when each client selects a replica based on the performance of the default paths

for each <client, replica> tuple. The average performance to the best replica across all

clients yields the average best replica performance. For example, as shown in Table 3.1,

the average latency that clients experience to the best replica (which, from Table 3.4, is

replica 3) is 107.35 milliseconds.
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Content routing baseline. In some ways, PECAN extends content routing to also incor-

porate the benefits of network routing; to quantify the additional benefit of PECAN relative

to content routing, we also compare the performance of PECAN against the performance

that content routing provides. Recall that, a content routing system maps each client to its

own best replica. Formally, for a client i, the content routing latency RT Tcontent,i is:

RT Tcontent,i = min
j∈(1...M)

R̂T T i j0 (3.1)

where M is number of replicas and R̂T T i j0 is the minimum latency that we measured be-

tween client i and replica j over the default path (noted as path 0). Taking the average across

all clients yields average content routing performance. In addition to showing the perfor-

mance of clients to each replica Figures 3.6–3.8 also show the performance of a content

routing system when each client is directed to its own best replica. Note that the content

routing system we implement accounts only for the performance data; in practice, OSPs

also use replica loads and costs to perform content routing, but we do not have access to

such metrics.

3.5.2 How Well Does Joint Routing Work?

We quantify the benefit that PECAN provides when compared to content routing. When

PECAN is in use, we formally define client’s i latency as:

RT TPECAN,i = min
j∈(1...M)

min
l∈(0...Ki j)

R̂T T i jl, (3.2)

M is the number of replicas, Ki j is the number of paths between client i and replica j, and

R̂T T i jl is the minimum latency we recorded over the path l between client i and replica

j. Path j = 0 represents the default path. With measurements of both content routing and

PECAN performance, we can compute the percentage improvement as 100(RT Tcontent,i−

RT TPECAN,i)/RT Tcontent,i. We use the same approach for jitter; for throughput, we take

maximums instead of minimums. Below we provide a breakdown of the average perfor-

mance improvements that we presented in Table 3.1 from Section 3.2.
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Figure 3.9: Latency reduction when using joint routing.

Latency. Figure 3.9 shows the percentage improvement in latency over the content rout-

ing baseline. The solid line in the figure shows improvement for all the clients, while the

dashed line shows shows latency reduction for clients that had a baseline latency of 0–

50 ms. We find that 20% of our clients see a reduction in latency of at least 10%. We

also observe that clients with baseline latencies of 0–50 ms see similar improvements, with

82% of these clients improving by 10% or more. This result is significant, since content

replication can only reduce latency by placing content closer to the users. At some point

however, placing replicas close to all clients might become prohibitively expensive; in such

cases, an OSP might rely on PECAN to improve routing between the closest replica and

the clients nearby.

Figure 3.2 plots content and joint routing benefit over the best replica baseline as we

increase the number of replicas. Adding replicas provides higher improvements with joint

routing, but with decreasing marginal improvement at every addition. Content routing

behaves similarly, albeit with a lower improvement at each step.

Throughput. Figure 10(a) shows the throughput gains that result from joint routing.

When compared to the baseline of content routing, about 5% of clients that use joint rout-

ing experience performance improvements of 20% or more. As expected, the improvement

66



20 40 60 80 100
Throughput improvement (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 
(c
lie
nt
s)

Base BW <= 100Mbps
All nodes
Base BW > 100Mbps

(a) Throughput.

10 20 30 40 50 60 70
Throughput improvement (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 
(c
lie
nt
s)

(b) Jitter.

Figure 3.10: Joint routing vs. the content routing baseline.

is greater for clients whose baseline throughput values are greater than 100 Mbps. For such

clients, it is more likely that the bottleneck is in the wide-area network.

Figure 11(a) shows how both content routing and joint routing improve performance

as we increase the number of replicas. We see that the replica with the best throughput

for most clients sees little improvement from joint routing. When we add the second best

replica, the 85th percentile performance of content routing and joint routing increases to

8.5% and 13%, respectively. Adding more than three replicas, however, provides no addi-

tional gains to either content or joint routing. This, again, highlights the limitation of the
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Figure 3.11: Joint and content routing vs. the best replica baseline when increasing the
number of replicas.

throughput measurements from the network edge: in most cases either the end clients or

the replicas themselves are the bottleneck, so changing network paths or adding replicas

with low-speed interfaces will not improve performance.

Jitter. Figure 10(b) shows how joint routing can reduce jitter, as compared to the baseline

of content routing. For 10% of the clients, joint routing provides gains by approximately

30%. Figure 11(b) shows how both content and joint routing reduce jitter as we increase

number of replicas. Jitter gains with increasing number of replicas exhibit similar patterns

of marginally decreasing gains (Figure 3.2).
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Figure 3.12: Latency reduction with network routing.
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Figure 3.13: Throughput increase with network routing.

3.5.3 Why Does Joint Routing Work?

Joint routing improves performance over content routing because it provides multiple al-

ternate network paths for each replica. As explained in Section 3.4, PECAN finds about

3.4 alternate paths on average for each <client, replica> tuple. Even when a client cannot

improve its performance by switching replicas, network routing can often improve per-

formance to one of the replicas. Figure 3.12 shows latency improvements from network

routing alone for each replica and its clients. For each replica, the baseline over which we

compute the latency reduction is the minimum latency over the default path to that replica.

We find that 20% of the clients experience improvements of 5–20%, depending on which

replica we choose to evaluate.
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Figure 3.14: Jitter reduction with network routing.

Similarly, Figure 3.13 shows how network routing can improve the throughput between

a client and its assigned replica. With our setup, where in many cases throughput has a

bottleneck in the network edge, we find only between 10 to 20% of the nodes see throughput

improvements at all. When network routing does achieve an improvement, however, it can

improve throughput by as much as a factor of five. Finally, Figure 3.14 shows the reduction

in jitter when replicas apply network routing; we find that most of the replicas can find

paths with lower jitter for about 40% of clients.

3.5.4 Scalability and Stability

To be practical, PECAN must judiciously limit the number of route changes it broadcasts to

the Internet; it also should limit oscillations by causing large numbers of clients to change

replicas. In this section we seek to assess these requirements by analyzing two questions:

1) How many routes must the OSP explore to achieve the benefits of joint routing?; and

2) How many clients change their preferred replica after joint routing is applied?

3.5.4.1 Scaling route selection

How many routes must the OSP explore to achieve the benefits of joint routing? OSPs that

tweak egress routes can do so without affecting the Internet routing system. To explore the

alternate ingress routes, the OSPs have to issue additional routing updates. To this point
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Figure 3.15: Average latency reduction with increasing number of route announcements
per replica.

in this chapter, our experiments have evaluated the improvements that PECAN can provide

by using 250 ingress routes at each geographic location. Over time, OSPs might be able

to evaluate all of these 250 configurations, but doing so all at once is not practical. This

warrants the question of how many routes an OSP needs to explore to achieve reasonable

improvements from joint content and network routing.

When an OSP uses a limited set of routes to feed traffic to virtual replicas, it must

decide which routes to use, but selecting the optimal subset of routes for each replica is

computationally intractable. To avoid exploring all possible route combinations of route

advertisements from each replica, we devise a simple heuristic: for each replica, we order

the routes based on the average improvement they provide when compared to the perfor-

mance over the default path. We then take the routes sequentially form that ordering and

announce them from the replica. For example, if OSP decides to announce three of the al-

ternate routes, it will pick three top routes from the ordered list. We compare this heuristic

against selecting sets of routes at random.

Figure 3.15 shows how performance gains as we increase the number of announced

routes. The gains in the figure are shown over the best replica baseline. The figure contains

four plots: “maximum”, “ordered”, “random”, and “content”. The “Maximum” line repre-

sents the maximum gain that an OSP can get with joint routing. The “Ordered” line shows
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the gains as we increase number of announced routes from zero to 16. The routes here

are picked using the heuristic described above. The “Random” line shows the gains when

we add additional routes at random. To generate the “random” plot, we run 10 iterations

and report average and standard error values. Finally, the “content” line shows the content

routing gains over the best replica. In most cases, the ordered heuristic outperforms the

random route selection. It is also encouraging that only five additional virtual replicas per

physical replica can obtain the approximately 60% of the gains one that are possible with

the full set of routes.

3.5.4.2 Stability of replica selection

How many clients change their preferred replica after joint routing is added to content

routed system? Content providers typically assign clients to replicas, taking into account

loads at each replica. With PECAN, however, clients that previously had a suboptimal

replica can shift their traffic to other replicas; this shifting might adversely affect loads on

replicas, causing overloads. In fact, such imbalances could even increase latency.

If deploying PECAN on an existing content routing system creates such imbalances, its

usage would not be practical: a provider would have to entirely reconfigure a replica setup

to account for the change in traffic and load. The effect of joint routing on the stability

of current replica choices is thus a genuine concern. Fortunately, we find that, when opti-

mizing for latency, for 93% of the clients the choice of replica due to content routing does

not change during joint routing. This suggests that PECAN is stable enough for practical

deployment, since the loads on on each replica will not change significantly with a small

number of moves.

3.6 Related Work

Content and network routing have been studied independently. In this section, we will

review related work in improving content routing and network routing separately.

72



3.6.1 Content Routing

The late 1990s witnessed the first efforts in optimizing mapping of end-users to con-

tent or service replicas. Bhattacharjee et al. [26] presented a seminal paper describing a

client-to-replica mapping system. This system used IP anycast to reach a directory service

(e.g., DNS) which then routed the clients to the best service replica based on the <client,

replica> performance map. Seshan et al. [100] invented a new way to collect a compre-

hensive <client, replica> performance map: a small fraction of clients would be directed

to randomly selected replicas to estimate the performance. Andrews et al. [29] presented a

system called Webmapper that collected a <client, replica> performance map showcased

algorithms for performing approximate client-to-best-replica matching.

The initial step in actual client to replica mapping is usually performed using Domain

Name system (DNS). Pang et al. [89] evaluated the responsiveness of DNS to changes in

client-to-replica mapping. Although the authors found that in many cases DNS is slug-

gish to respond, DNS, in most cases, is still the primary method for directing initial client

requests to the best replicas. Huang et al. [60]introduced a DNS reflection method for

client-to-replica performance map generation. Instead of usual actual client traffic, DNS

reflection forces Local DNS (LDNS) servers to use iterative queries to remote replicas to

estimate the delay between the LDNS servers and the replicas. The LDNS performance in-

formation is then used as a proxy metric for client-to-replica performance. Most recently,

Wendell et al. [114] described a system called DONAR, which allows authoritative DNS

servers to make client-to-replica mapping decisions with only partial global information.

3.6.2 Network Routing

We first discuss content routing techniques that require changes either in the end-systems

or in significant parts of the Internet routers. Despite the benefits of such systems, they are

still to see universal deployment. Then, we describe proposals that can operate within the

constraints of today’s networks and protocols.
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Overlay Routing and Clean-Slate Network Routing Proposals. In the late 1990s, the

overlay networks were a popular research topic. Informed Internet Routing and Transport

Savage et al. [98] explored the benefits of an overlay routing system that selects best per-

forming alternative paths. In addition to a conventional routing system underneath, the

system requires an active network of overlay nodes to improve user experience. Ander-

sen et al. [20] deployed and evaluated a similar overlay system across diverse locations in

the Internet; commercial content distribution networks ultimately applied many of these

techniques for finding the best paths to pre-cached content [78].

In mid 2000’s, there were a number of proposals to improve routing in unconventional

ways. Yang et al. [116] presented a system that can increase path diversity with routing

deflections. End hosts in such systems can set bits that instructs routers on the path to

perform deflections over better paths. In a similar spirit, Xu and Rexford [115] introduced

MIRO: a system that provides increased diversity of paths choices for interdomain routing.

Likewise, Motiwala et al. [80] presented a routing algorithm for Internet routers that en-

ables scalable exploration of Internet path diversity. Unfortunately, utilizing such systems

requires changes in Internet routers and in end-hosts.

Improvements to Conventional Internet Routing. In the last decade there has been a lot

of research on wide-area routing, most of it focusing on the effectiveness of multi-homing

enterprise networks. Our work builds upon these efforts and extends them to include sce-

narios where an OSP has a choice not only of diverse network paths (network routing) but

also a choice of replicas (content routing). For example, Akella et al. [16, 17, 18, 19] ex-

plored the effects of multi-homing on the performance of a site that either sends or receives

Internet traffic. The authors study 68 Akamai nodes in 17 cities as a testbed: Same city of-

ten contains multiple nodes, each with a different upstream ISP; the authors connect to all

the Akamai nodes in one city to estimate performance of each ISP in that city, effectively
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emulating a multi-homing setup in that city. The authors found that route optimization pro-

duces greater benefits in peak time intervals. Unfortunately, the study was limited in the

number of alternative Internet paths (only upstreams) and it did not extend network routing

to a logical conclusion of joint network and content routing.

Goldenberg et al. [53] assessed the benefit of single-site multihoming and also consid-

ered cost in the analysis. Guo et al. [57] analyzed a commercial solution for multihomed

enterprises, which focused on possible performance gain with two upstream ISPs. Lee et

al. [72] explored ways to scale active measurements for multihomed enterprises. Uhlig et

al. [106] and Wang et al. [112] proposed formalizing upstream ISP selection as an opti-

mization problem. Most of the efforts mentioned above focus on the enterprise setting and

do not compare content routing with network routing.

3.7 Limitations and Future Work

In this section, we discuss some limitations of our current study and directions for future

work. We focus in particular on how our dataset might be made more representative.

One of the most serious challenges in evaluating the performance gains than an OSPs

can attain is to have a replica set that matches that of real OSPs. This equivalence entails

two primary components: (1) diversity of replica locations and (2) diversity of route choice

in each location. In terms of geographic diversity, our set of replicas is comparable to a

set of North American Amazon EC2 data centers, although it is much smaller than the

infrastructure that a large commercial OSP such as Google or Microsoft. In future work,

we plan to perform similar experiments with replicas hosted across a tier-1 ISP backbone

network; we are in the process of deploying this measurement infrastructure to allow for

more comprehensive studies.

We were limited to exploring the routing diversity at each of our replicas that BGP
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AS PATH poisoning could provide. This method for exploring alternate routes could intro-

duce unnecessary routing churn, but, in practice OSPs have a much wider variety of tech-

niques at their disposal for controlling both ingress and egress routes. On the other hand,

large OSPs might have many more ways to control their routing, both in egress and ingress

directions. Most OSPs can choose among multiple egress routes to destinations and control

ingress routing by selective announcements, BGP community attributes, or BGP AS PATH

prepending. The fact that real OSPs may have more route control mean that they may be

able to realize even greater performance gains than we witnessed in our study of PECAN.

Another challenge in emulating real-world OSP performance is obtaining a represen-

tative client set. In our case the clients were PlanetLab nodes, which are hardly a represen-

tative set of the Internet users. Many of the nodes we used are housed in well connected

university campuses. It does bias our client set, but it is not clear whether performance

improvements— especially latency improvements—would differ with a more representa-

tive set of clients. On one hand, PlanetLab nodes might be more connected than average

Internet nodes, this giving more route diversity to and from such nodes. On the other

hand, one the routes PlanetLab nodes might be already well-provisioned and thus hard to

improve on, while less connected and more remote networks might see more significant

performance improvements from network routing.

A future study might also attempt to measure or approximate the overall user experi-

ence of using a particular replica and network route; user experience could possibly approx-

imated by page load times, as has been done in previous work on Web performance [104].

Because our clients are run from PlanetLab nodes, it was not practical to instrument a

browser and record the performance from each client. A promising direction for future

work would be to conduct a more comprehensive study of how systems such as PECAN

can improve user-perceived performance.
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3.8 Summary

Online service providers today perform replica selection (content routing) and route selec-

tion (network routing) independently. We presented the design and evaluation of PECAN

(Performance Enhancements with Content And Network routing), which performs joint

content and network routing for a modern OSP. We design PECAN as an extension to

content routing systems currently used by OSPs.

We evaluate the performance of PECAN on a globally distributed testbed emulating a

modern OSP. We ran the replicated online service on five Transit Portal (TP) sites, each

offering a large choice of network paths to our clients. We used 200 PlanetLab nodes as

clients to estimate network performance to our replicated service. We find that PECAN

achieves 22% more latency reduction than can be obtained by a modern content routing

system alone, and that the gains remain significant as we increase the number of replicas.

Finally, we find that PECAN can provide its benefit with only a few judiciously selected

network paths: exploring just five sets of alternate network routes between clients and

replicas in our testbed can yield 60% of the maximum possible benefit of joint routing to

an online service provider.
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CHAPTER IV

TIERED PRICING OF WIDE-AREA ROUTES

The increasing commoditization of Internet transit is changing the landscape of the Inter-

net bandwidth market. Although residential Internet Service Providers (ISPs) and content

providers are connecting directly to one another more often, they must still use major Inter-

net transit providers to reach most destinations. These Internet transit customers can often

select from among dozens of possible providers [90]. As major ISPs compete with one

another, the price of Internet transit continues to plummet: on average, transit prices are

falling by about 30% per year [84].

As a result of such competition, ISPs are evolving their business models and selling

transit to their customers in many ways to try to retain profits. In particular, many transit

ISPs implement pricing strategies where traffic is priced by volume or destination [55]. For

example, most transit ISPs offer volume discounts for higher commit levels (e.g., customer

networks committing to a lower minimum bandwidth receive a higher per-bit price quote

than customers committing to a higher minimum bandwidth [84]). Such a market is said to

implement tiered pricing [67]. Through private communication with network operators, we

identified many other instances of tiered pricing already being implemented by ISPs. These

pricing instruments involve charging prices on traffic bundles based on various factors,

such as how far the traffic is traveling, and whether the traffic is “on net” (i.e., to that

ISP’s customers) or “off net”. Still, we understand very little about the extent to which

tiered pricing benefits both ISPs and their customers, or if there might be better ways to

structure the tiers. In this chapter, we study destination-based tiered pricing, with the goal

of understanding how ISPs should bundle and price connectivity to maximize their profit.

In this study, we grapple with the balance between the prescriptions of economic theory
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and a variety of practical constraints and realities. On one hand, economic theory says that

higher market granularity leads to increased efficiency [74]. Intuitively, an Internet transit

market that prices individual flows is more efficient than one that sells transit in bulk, since

customers pay only for the traffic they send, and since ISPs can price those flows according

to their cost. On the other hand, various practical constraints prevent Internet transit from

being sold in arbitrarily fine granularities. Technical hurdles and additional overhead can

make it difficult to implement tiered pricing in current routing protocols and equipment.

Additionally, tiered pricing can be more difficult for wholesale customers to understand

if there are too many tiers. Transit ISPs would ideally like to come close to maximizing

their profit with only a few pricing tiers, since implementing more pricing tiers introduces

additional overhead and complexity. Our analysis shows that, indeed, in many cases, an

ISP reaps most of the profit possible with infinitesimally fine-grained tiers using only two

or three tiers, assuming that those two or three tiers are structured properly.

Although understanding the benefits of different pricing structures is important, model-

ing them is quite difficult. The model must take as an input existing customer demand and

predict how traffic (and, hence, ISP profit) would change in response to pricing strategies.

Such a model must capture how customers would respond to any pricing change—for any

particular traffic flow—as well as the change in cost of forwarding traffic on various paths

in an ISP’s network. Of course, many of these input values are difficult to come by even

for network operators, but they are especially elusive for researchers; additionally, even if

certain values such as costs are known, they change quickly and differ widely across ISPs.

The model we develop allows us to estimate the relative effects of pricing and bundling

scenarios, despite the lack of availability of precise values for many of these parameters.

The general approach, which we describe in Section 4.2, is to start with a demand and cost

model and assume both that ISPs are already profit-maximizing and that the current prices

reflects both customer demand and the underlying network costs. These assumptions allow

us to either fix or solve for many of the unknown parameters and run counterfactuals to
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evaluate the relative effects of dividing the customer demand into pricing tiers. To drive

this model, we use traffic data from three real-world networks: a major international content

distribution network with its own network infrastructure; an European transit ISP; and an

academic research network. We map the demand and topology data from these networks

to a model that reflects the service offerings that real-world ISPs use.

Using our model, we evaluate three scenarios:

• What happens if an ISP increases the number of tiers for which it sells transit? We

find that profit increases, but the returns diminish as the number of tiers increases:

with 3–4 tiers, it is possible to capture 90–95% of the profit that could be captured

with an infinite number of granularities, assuming that these tiers are divided in the

right way.

• How do strategies for dividing capacity into distinct bundles and pricing those bun-

dles affect an ISP’s profit? Our analysis shows that ISPs must judiciously choose how

they divide traffic into pricing tiers. A naı̈ve approach (e.g., based only on traffic cost

or on demand) might require dozens of pricing tiers to capture most of the possible

profit. We find that dividing traffic into tiers in a way that accounts for both traffic

demand and the cost of carrying traffic yields more profit than the current practice

that is based only on cost, and is nearly as effective as an optimal division.

• How do the benefits of various pricing strategies depend on the network topology

and traffic demands? We find that networks with high variability in cost of delivering

traffic obtain greater benefit from bundling. We also observe that networks with high

variability in demand require more bundles to capture maximum profit.

We evaluate these and other questions across two customer demand models, four network

cost models, and a range of input parameters, such as price sensitivity. Although each of

the models might not be perfectly accurate, they yield results that are consistent both across

models and with our intuition about markets.

We make three contributions. First, we taxonomize the state of the art and trends in
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pricing instruments for Internet transit (Section 4.1). Second, to analyze the effects of

tiered pricing, we develop a model that captures demands and costs in the transit market.

One of the challenges in developing such a model is applying it to real traffic data, given

many unknown parameters (e.g., the cost of various resources, or how users respond to

price). Hence, we develop methods for fitting empirical traffic demands to theoretical cost

and demand models. We use this approach to evaluate ISP profit for pricing strategies

under a range of possible cost models and network topologies (Section 4.2). Third, we

apply our model to real-world traffic matrices and network topologies to characterize a

range of simple bundling strategies that are close to optimal (Section 4.3); we also suggest

how these strategies could be implemented in practice (Section 4.4).

4.1 Background

In this section, we describe the current state of affairs in the Internet transit market. We

first taxonomize what services (bundles) ISPs are selling. We then provide intuition on why

ISPs are moving towards tiered wholesale Internet transit service.

4.1.1 Current Transit Market Offerings

Unfortunately, there is not much public information about the wholesale Internet transit

market. ISPs are reluctant to reveal specifics about their business models and pricing strate-

gies to their competitors. Therefore, to obtain most of the information in this section, we

engaged in many discussions and email exchanges with network operators. Below, we clas-

sify the types of Internet transit service we identified during these conversations. Although

much of the information in this section is widely known in the network operations commu-

nity, it is difficult to find a concise taxonomy of product offerings in the wholesale transit

market. The taxonomy below serves as a point of reference for our discussions of tiered

pricing in this chapter, but it may also be useful for anyone who wishes to better understand

the state of the art in pricing strategies in the wholesale transit market.
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Peering business relationships (or, more formally, settlement-free peering relationships)

have been extensively studied by networking researchers [32, 41, 46, 48, 66] and well-

documented in the industry white papers [84]. Most peering connections are established

through public Internet eXchange Points (IXP), while higher bandwidth peering often re-

quires private peering sessions. A network engaging in a settlement free peering allows

its peer to reach on-net destinations—destinations in its own network, and destinations in

customer networks. For the peering to be settlement-free, most ISPs pose a set of require-

ments to prospective peers, such as number of interconnection points, geographic coverage,

or ingress/egress traffic ratios. If an ISP cannot meet peering requirements, it is forced to

buy Internet transit or paid peering [28, 71, 92].

Transit. Most ISPs offer conventional Internet transit service. Internet transit is sold at a

blended rate—a single price (usually expressed in $/Mbps/month)—charged for traffic to

all destinations. Historically, blended rates have been decreasing by 30% each year [84].

Blended rate is the simplest and yet the most crude way to charge for traffic. If network

costs are highly variable, less costly flows in the blended-rate bundle subsidize other, more

expensive flows. ISPs often innovate by offering more than one rate: We summarize three

pricing models that require two or more rates: (1) paid peering, (2) backplane peering, and

(3) regional pricing.

Paid peering is similar to settlement-free peering, except that one network pays to reach

the other. A major ISP might separately sell off-net routes (wholesale transit) at one rate

and on-net routes (to reach destinations inside its own network) at another (usually lower)

rate. For example, national ISPs in Eastern Europe, Australia, and in other regions may sell

local connectivity at a discount to increase demand for local traffic, which is is significantly

cheaper than transit to outside global destinations [13]. The on-net routes are also offered

at a discount by some major transit ISPs to large content providers, because such transit

ISPs can recoup part of the costs from their customers, who congest paid upstream links
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to transit ISPs by downloading the content. Some instances of paid peering have spawned

significant controversy: most recently, Comcast—primarily a network serving end-users—

was accused of a network neutrality violation when it forced one tier-1 provider to pay to

reach Comcast’s customers [73].

Backplane peering occurs when an ISP, in addition to selling global transit through its

own backbone, charges a discount rate for the traffic it can offload to its peers at the same

Internet exchange. Smaller ISPs buy such a service because they might not meet all the

settlement-free peering requirements to peer directly with the ISPs in the exchange. Al-

though many large ISPs discourage this practice, some ISPs deviate by offering backplane

peering to retain customers or to maintain traffic ratios with their peers. As with paid peer-

ing, the ISP selling backplane peering has to account and charge for at least two traffic

flows: one to peers and another to its backbone.

Regional pricing occurs when transit service providers offer different rates to reach dif-

ferent geographic regions. The regions can be defined at different levels of granularity,

such as PoP, metro area, regional area, nation, or continent. In some instances, the transit

ISP offers access to all regions with different prices; in other instances, the downstream

network purchases access only to a specific geographic region (e.g., access only to South

America or Australia). In practice, due to the overhead of provisioning and maintaining

many sessions to the same customer, ISPs rarely use more than one or two extra price

levels for different regions.

We speculate that the bundling strategies described above arose primarily from oper-

ational and cost considerations. For example, it is relatively easy for a transit ISP to tag

which routes are coming from customers and which routes are coming from peers and then

in turn sell them separately to its customers. Similarly, it is relatively easy to sell local (i.e.,

less costly) routes separately. We show that these naı̈ve bundling strategies might not be as

effective as bundling strategies that account for both cost and demand.
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4.1.2 The Trend Towards Tiered Pricing

Conventional blended rate pricing is simple to implement, but it may be inefficient. ISPs

can lose profit as a result of blended-rate pricing, and customers can lose surplus. This

is an example of market failure, where goods are not being efficiently allocated between

participants of the market. Another outcome of blended-rate pricing is the increase in direct

peering to circumvent “one-size-fits-all” transit. Both phenomena provide incentives for

ISPs to improve their business models to retain revenue. We now explain each of these

outcomes.

4.1.2.1 Profit and surplus loss

Selling transit at a blended rate could reduce profit for transit ISPs and surplus for cus-

tomers. We define an ISP’s profit as its revenue minus its costs, and customer surplus as

customer utility minus the amount it pays to the ISP. Unrealized profit and surplus can

occur when ISPs charge a single price per bandwidth unit while incurring different costs

when delivering traffic to destinations.

Figure 4.1 illustrates how tiered pricing can increase both the profit for an ISP and the

surplus for a customer. The downward-sloping curves represent consumer demand1 to two

destinations. Since the demand slope D2 is higher than demand slope D1, the customer

has higher demand for the second destination in the ISP’s network. Assume that the ISP

cost of serving demand D1 is $1, while the cost of serving demand D2 is $0.5. Modeling

demand with constant elasticity (Section 4.2), the profit maximizing price can be shown

to be P0 = $1.2/Mbps. If, however, the ISP is able to offer two bundles, then the profit

maximizing prices for such bundles would be P1 = $2.7 and P2 = $1. Figure 1(b) shows

that this price setup not only increases ISP profit but also increases consumer surplus and

thus social welfare.

1We model consumer demand as residual demand. Residual demand accounts for consumption change
both due to inherent consumer demand and due to some consumers shifting consumption to substitutes, such
as other ISPs (See Section 4.2.2.1.)
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(a) Blended-rate pricing. ISP charges a single blended rate P0.
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(b) Tiered pricing. ISP charges rates P1 and P2 for flows.

Figure 4.1: Market efficiency loss due to coarse bundling.

The market achieves higher efficiency because customers adjust their consumption lev-

els of the ISP network according to their demand and to the prices that the ISP exposes,

which directly depend on its costs. Without the ISP’s indirect exposure of its costs, the

customer consumes less of the cheaper capacity and more of the expensive capacity than it

would otherwise. In Section 4.2, we formalize the market that we have used in this example

and propose more complex demand and cost models.

4.1.2.2 Increase in direct peering

Charging for traffic at a blended rate also provides incentives for client networks to connect

directly to georgraphically close Internet Exchange Points (IXPs). For instance, if a transit

ISP charges only blended rate, client network might find geographically close IXPs cheaper
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Figure 4.2: The customer procures a direct link if the cost for such a link is lower than
the blended rate cdirect < R.

to reach by leasing or purchasing private links. While direct peering is generally perceived

as a positive phenomenon, for transit ISPs it means less revenue. Direct peering efforts can

also diminish economies of scale: instead of using shared ISP infrastructure, customers

provision their own connectivity to IXPs.

Figure 4.2 illustrates an interaction between an upstream ISP and a CDN client (e.g.,

Google, Microsoft) with its own backbone, which extends to the NYC PoP. The CDN

might, or might not, have a content cache at the Boston IXP, but since it does not have

its own backbone presence at the IXP, the CDN must pay the upstream ISP to reach it.

The ISP offers a blended rate R at the the NYC PoP for all the traffic, including the traffic

to the Boston IXP. The blended rate R is set to compensate the upstream provider for the

overall traffic mix and, therefore, is higher than the amortized cost of most of the cheaper

(more localized) flows that ISP is serving (i.e., the flows between the NYC and Boston

PoPs). The CDN eventually will procure a direct link to the Boston IXP, if it finds that it

can procure such a direct link at an amortized cost cdirect < R. Assuming the ISP’s profit

margin is M and flow accounting overhead is A (discussed in Section 4.4.2), such a direct

link presents a market failure if cdirect > (M + 1)cISP +A, because the customer deploys

additional capacity at a higher cost than the ISP could have charged in a tiered market.

Some operators we interviewed confirm that they periodically re-evaluate transit bills

and expand their backbone coverage if they find that having own presence in an IXP pays

off. In today’s transit market, many customers increasingly opt for direct peering [69];
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transit service providers are absorbing losses as a result of competitive pressure [84]. Natu-

rally, this pressure increases the incentive for ISPs to adopt a tiered pricing model for local

traffic. The central question, then, is how they should go about structuring these tiers. The

rest of the chapter focuses on this question.

4.2 Modeling Profits, Costs, and
Demands

We develop demand and cost models that capture ISP profit under various pricing strategies.

Although we doubt there is a perfect model for demand in the Internet transit market, we

perform our evaluation with two common demand models. Because cost is also difficult to

model, we devise four network cost models. We first define ISP profit and then describe

demand and cost models.

4.2.1 ISP Profit

We consider a transit market with multiple ISPs and customers. Each ISP is rational and

maximizes its profit, which we express as the difference between its revenue and costs:

Π(~P) = ∑
pi∈~P

(
piQi(~P)− ciQi(~P)

)
(4.1)

where pi is the price an ISP sets to deliver flow i, ci is the unit cost for i, and Qi(~P) is the

demand for i given a vector of prices ~P = (p1, p2, . . . , pn). An ISP chooses the price vector

~P that maximizes its profit. Having a price for each flow allows us to explore different

pricing strategies by bundling flows in different ways. For example, blended rate pricing

requires pi to be equal for all i; we can explore different tiered pricing approaches by

requiring various subsets of all flows to have the same price.

Given knowledge of both the traffic demand of customers and the costs associated with

delivering each flow, we can compute ISP profit. Unfortunately, it is difficult to validate

any particular demand function or cost model; even if validation were possible, it is likely

that cost structures and customer demand could change or evolve over time. Accordingly,
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we evaluate ISP profit for various tiered pricing approaches under a variety of demand

functions and cost models. Section 4.2.2 describes the demand functions that we explore,

and Section 4.2.3 describes the cost models that we consider.

4.2.2 Customer Demand

To compute ISP profit for each pricing scenario, we must understand how customers adjust

their traffic demand in response to price changes. We consider two families of demand

functions: constant elasticity and logit.

Constant elasticity demand. The constant elasticity demand (CED) is derived from the

well-known alpha-fair utility model [79], which is often used to model user utility on the

Internet. The alpha-fair utility takes the form of a concave increasing utility function, which

emulates a decreasing marginal benefit to additional bandwidth for a user. In this model

flow demands are separable (i.e., changes in demand or prices for one flow have no effect

on demand and prices of other flows). The CED model is most appropriate for scenarios

when consumers have no alternatives (e.g., when the content that a customer is trying to

reach is not replicated, or the customer needs to communicate with a specific endpoint on

the network).

Logit demand. To capture the fact that customers might sometimes have a choice be-

tween flows (e.g., sending traffic to alternative destination if the current one becomes too

expensive), we also perform our analysis using the logit model, where demands are not

separable: the price and demand for any flow depend on prices and demands for the other

flows. The logit model is frequently used for this purpose in econometric demand estima-

tion [76]. In the logit model, each consumer nominally prefers the flows that offers the

highest utility. This matches well with scenarios when consumers have several alternatives

(e.g., when requested content is replicated in multiple places).
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Figure 4.3: Feasible CED demand functions for v = 1.

4.2.2.1 Constant elasticity demand

The CED demand function is as follows:

Qi(pi) =

(
vi

pi

)α

(4.2)

where pi is the unit price (e.g., $/Mbit/s), α ∈ (1,∞) is the price sensitivity, and vi > 0 is

the valuation coefficient of flow i. The demand function can be interpreted to represent

either inherent consumer demand or residual consumer demand, which reflects not only

the inherent demand but also the availability of substitutes.

Figure 4.3 presents example CED demand functions for v = 1 and two values of α , 3.3

and 1.4. Higher values of α indicate high elasticity (users reduce use even due to small

changes in price). For example, the demand with elasticity α = 3.3 might represent the

traffic from residential ISPs, who are more sensitive to wholesale Internet prices and who

respond to price changes in a more dramatic way. Similarly, the demand with elasticity

α = 1.4 might represent the traffic from enterprise customers, who are less sensitive to the

Internet transit price changes. Although our model does not capture full dynamic interac-

tion between competing ISPs (e.g., price wars), modeling demand as residual allows us to

account for the existing competitive environment and switching costs. As discussed above,

high elasticity can also indicate that competitors are offering more affordable substitutes,

and that switching costs for customers are low. In our evaluation, we use a range of price
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cost.

sensitivity values to measure how ISP profit changes for different values of the elasticity

of user demand. The gray area in Figure 4.3 shows that we can cover all feasible demand

functions simply by varying the sensitivity parameter.

CED profit. Using the expressions for ISP profit (Equation 4.1) and demand (Equa-

tion 4.2), and assuming separability of demand of different flows, the ISP profit is:

Π(~P) = ∑
pi∈~P

(
vi

pi

)α

(pi− ci) . (4.3)

CED profit-maximizing price. By differentiating the profit, we find the profit-maximizing

price for each flow i:

p∗i =
αci

α−1
. (4.4)

CED consumer surplus. Consumer surplus is the difference between consumer utility

and the price paid. Price at the equilibrium is equal to the marginal utility, and thus we

can find utility by integrating price as a function of demand (pi = vi/q1/α

i , Equation 4.2) in

terms of qi. Substituting in the resulting equation quantity with price and substracting the

price paid, we get consumer surplus expression as function of price:
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CS(~P) = ∑
n
i=1

(
αvα

i p1−α

i
α−1 − pi

)
(4.5)

Figure 4.4 illustrates profit maximization for two flows that have identical demand func-

tions but different costs. For example, the first flow costs c1 = $1.0 per unit to deliver and

mandates optimal price p∗ = $2.0 which results in $0.25 profit. The second flow is more

costly thus the profit maximizing price is higher. In this case, the first plot might represent

profit for local traffic, while the second plot represents national traffic: ISPs must price

national traffic higher than local-area traffic to maximize profit.

CED price for bundled flows. In our evaluation, we test various pricing strategies that

bundle multiple flows under the same profit-maximizing price. To find the price for each

bundle, we first map real world demands to our model to obtain the valuation vi and cost

ci for each flow. Then, we differentiate the profit (Equation 4.3) with respect to the price

of each bundle. For example, when we have a single bundle for all flows, we obtain the

following profit-maximizing price:

P∗ =
α ∑

n
i=1 civα

i
(α−1)∑

n
i=1 vα

i
(4.6)

where n is the number of flows. Section 4.3 details this approach.

4.2.2.2 Logit demand

The logit demand model assumes that each consumer faces a discrete choice among a set

of available goods or services. In the context of data transit, the choice is between different

destinations or flows. Following Besanko et al. [24], a consumer j using flow i will obtain

the net utility (surplus):

ui j = α(vi− pi)+ εi j
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Figure 4.5: Logit demand function.

where α ∈ (0,∞) is the elasticity parameter, vi is the “average” consumer’s maximum will-

ingness to pay for flow i, pi is a price of using i, and εi j represents consumer j’s idiosyn-

cratic preference for i (where εi j has a Gumbel distribution.) The logit model defines the

probability that any given consumer will use flow i as a function of the price vector of all

flows:

si(~P) =
eα(vi−pi)

∑ j eα(v j−p j)+1
(4.7)

where ∑i si(~P) = 1. The demand for flow i equals the product of si(~P) and the total number

of consumers (K):

Qi(~P) = Ksi(~P). (4.8)

Here, si is also called the market share of flow i. The model also accounts for the possibility

that some customers elect not to send traffic to any destination. The market share for traffic

not sent is:

s0(~P) =
1

∑ j eα(v j−p j)+1
.

Figure 4.5 shows examples of logit demand functions. We assume a setting with two

flows, with two values for the valuation vi, 1.6 and 1. We fix the price for the first flow to
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1, and we vary the price for the second flow between 0 and 4. The figure shows demand

curves for the second flow, for two values of α . Similar to the constant elasticity demand

model, lower values of α indicate low elasticity of demand, where users need bigger price

variations to modify their usage.

Logit profit. Using the expressions for ISP profit (Equation 4.1) and logit demand (Equa-

tion 4.8), the ISP profit is:

Π(~P) = K ∑
pi∈~P

si(~P)(pi− ci). (4.9)

Logit profit-maximizing prices. To find the profit maximizing price for flow i, we find

the first-order conditions for Equation 4.9:

p∗i = ci +
1

αs0
. (4.10)

Due to the presence of s0, p∗i recursively depends on itself and on profit-maximizing prices

of other flows. To obtain maximum profit, we develop an iterative heuristic based on gra-

dient descent that starts from a fixed set of prices (pi = P0,∀i) and greedily updates them

towards the optimum.

Logit consumer surplus. After ISP sets profit-maximizing prices ~P, we can compute

consumer surplus. We find consumer surplus expression by taking the expectation of the

sum of all the consumer utilities:

CS(~P) = K
γ+ln(∑

n
i=1 eα(vi−pi)+1)

α
(4.11)

Valuation and cost of bundled flows. To test pricing strategies, we first map real traffic

demands to the model to find the valuation vi and cost ci for each flow i. We then bundle
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the flows as described in Section 4.3.2.1. Knowing that ∑i si = 1 and applying Equation 4.7

allows us to compute valuations for any bundle of flows as:

vbundle =
ln(∑n

i=1 eαvi)

α
(4.12)

where vi are valuations of the flows in the bundle. Similarly we can find the average unit

cost of combined flows in each bundle:

cbundle =
∑

n
i=1 cieαvi

∑
n
i=1 eαvi

. (4.13)

4.2.3 ISP Cost

Modeling cost is difficult: ISPs typically do not publish the details of operational costs;

even if they did, many of these figures change rapidly and are specific to the ISP, the re-

gion, and other factors. To account for these uncertainties, we evaluate our results in the

context of several cost models. We also make the following assumptions. First, we as-

sume the more traffic the ISP carries, the higher cost it incurs. Although on a small scale

the bandwidth cost is a step function (the capacity is added at discrete increments), on a

larger scale we model cost as a linear function of bandwidth. Second, we assume that

ISP transit cost changes with distance. Both assumptions are motivated by practice: look-

ing only at specific instances of connectivity, the cost is a step function of distance (e.g.,

equipment manufacturers sell several classes of optical transceivers, where each more pow-

erful transceiver able to reach longer distances costs progressively more than less powerful

transceivers [36]). Over a large set of links, however, we can model cost as a smooth

function of distance.

The cost models below offer only relative flow-cost valuations (e.g., flow A is twice

as costly as flow B); they do not operate on absolute costs. These relative costs must

be reconciled with the blended prices used to derive customer valuations. We describe

methods for reconciling these values in Section 4.3.1. Each cost model has a generic tuning
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parameter, denoted as θ , which we use in the evaluation.

Linear function of distance. The most straightforward way to model ISP’s costs as a

function of distance is to assume cost increases linearly with distance. Although, in some

cases, this model does not hold (e.g., crossing a mountain range is more expensive than

crossing a region with flat terrain), we often observe that ISPs charge linearly in the distance

of communication [27, 35]. As we model cost as linear function of distance, we set cost

ci = γdi +β , where γ is a scaling coefficient that translates from relative to real costs, β is

a base cost (i.e., the fixed cost that the ISP incurs for communicating over any distance),

and di is the geographical distance between the source and destination served by an ISP. We

describe how we determine γ in Section 4.3.1. We model the base cost β as a fraction of the

maximum cost without the base component. More formally: β = θ max j∈1···n γd j, where

θ in this cost model is a relative base cost fraction, and n is number of flows with different

cost. For example, given distances 1, 10, and 100 miles, γ = $1/mile, and θ = 0.1, the

resulting base cost β is $10, and thus flow costs are $11, $20, and $110. In the evaluation,

we vary θ to observe the effects of different base costs. For example, low θ values (low

base cost) here represent a case where link distance is the largest contributor to the total

service cost.

Concave function of distance. We are also aware of ISPs that price transit as a concave

function of distance [63, 85]. For this scenario we model the ISP’s cost as ci = γ(a logb di+

c)+β . Figure 4.6 shows a concave curve fitting to two price data sets, resulting in a≈ 0.5,

b ≈ 6, and c ≈ 1 for normalized prices and distance. As in the case of linear cost, we set

the base offset cost β = θ max j∈1···n γ(a logb di + c). We use θ in the evaluation to change

link distance contribution to the total cost.

Function of destination region. As described in Section 4.1.2, both private communica-

tion with network operators and publicly available data suggest that ISPs can also charge
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mapping curve.

for traffic at rates depending on the region where traffic is destined [44, 88, 105]. For

example, an ISP might have less expensive capacity in the metropolitan area than in the

region, less expensive capacity in the region than in the nation, and less expensive capacity

in the nation than across continental boundaries. We divide flows into three categories:

metropolitan, national, and international. We map the flows into these categories by using

data from the GeoIP [75] database: flows that originate and terminate in the same city are

classified as metro, and flows that start and end in the same country are classified as na-

tional; all other flows are classified as international. For EU ISP we only have distances

between traffic entry and exit points, thus we classify flows traveling less than 10 miles as

metro, flows that travel less than 100 miles as national, and longer flows as international.

We set the costs as follows: cmetro = γ , cnation = γ2θ , and cint = γ3θ . This form allows us to

test scenarios when there is no cost difference between regions (θ = 0), the cost differences

are linear (θ = 1), and costs are different by magnitudes (θ > 1).
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2. COST

Models: linear, concave, destination region (sec. 3.3)

Map to data to find costs ci (sec. 4.1.3)

1. DEMAND

Models: Constant elasticity, Logit (sec. 3.2)

Map to data to find valuations vi  (sec. 4.1.2)

3. BUNDLING

Models: optimal, profit-weighted, demand-weighted, 
cost-weightedcost division, index division (sec. 4.2.1)

Compute profit maximizing prices (sec. 4.2.2)

Figure 4.7: We evaluate the effect of tiered pricing on Internet transit by separately mod-
eling the demand and cost of traffic and the way ISPs bundle flows under the same price.
At each step we use real-world data to derive unknown parameters.

Function of destination type. As we described in Section 4.1.2, ISPs offer discounts

for the traffic destined to their customers (“on net” traffic), while charging higher rates for

traffic destined for their peers (“off net” traffic). These offerings are motivated by the fact

that ISPs do recover some of their transport cost for the traffic sent to other customers. In

our evaluation, we model this cost difference by setting the cost of the traffic to peers to be

twice as costly than traffic to other customers. The logic behind such a model is that when

an ISP sends the traffic between two customers, it gets paid twice by both customers, but

when an ISP sends traffic between a customer and a peer it is only paid by the customer.

The parameter θ indicates a fraction of traffic at each distance that is destined to clients, as

opposed to traffic that is destined to peers and providers.

4.3 Evaluating Tiered Pricing
Strategies

In this section, we evaluate the efficiency of destination-based tiered pricing using the

model presented in Section 4.2 and real topology and demand data from large networks.

Our goal is to understand how the consumer suprlus and the profit that an ISP extracts from
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offering tiered-pricing depends on the number of tiers (or bundles), the bundling strategy

used, and the network topology and traffic demand.

One of the major challenges we face is that we cannot know some aspects of the cost

and demand models, or even which model to use. We use the ISP data to derive model

parameters, such as valuation or cost, and evaluate the profit of each strategy across models

and input parameters. Figure 4.7 presents an overview of our approach for computing ISP

profit and consumer surplus.

Our evaluation yields several important results. First, we show that an ISP needs only

3–4 bundles to capture 90–95% of the profit provided by an infinite number of bundles, if it

bundles the traffic appropriately. Second, choosing a bundling strategy that considers both

flow demand and cost is almost as effective as an exhaustive search for the best combination

of bundles. Finally, we observe that the topology and traffic of a network influences its

bundling strategies: networks with higher coefficient of variation of demand need more

bundles to extract maximum profit.

4.3.1 Mapping Data to Models

Because we do not know the parameters that we need to compute the profit-maximizing

prices and the maximum profit for each bundling strategy, we must derive them. We first

describe the data and how we extract the necessary information for computing model pa-

rameters. Then, we show how to apply the demand models to the real traffic demands to

compute the valuation coefficients vi for each flow i. Finally, we derive the ISP’s cost for

servicing the flow by applying flow distance information to each of the cost models.

4.3.1.1 Data Sources

We use demand and topology data from three networks: a European ISP serving thousands

of business customers (EU ISP), one of the largest CDN providers in the world (CDN),

and a major research network in United States (Internet 2). The data consists of sampled

NetFlow records from core routers in each network for 24 hours. Table 4.1 presents more
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Table 4.1: Data sets used in our evaluation. The columns represent: the network, data
capture date, demand-weighted average of flow distances, coefficient of variation (CV) of
flow distances, aggregate traffic per second, and CV of demand of different flows.

Data set Date Distance (miles) Traffic (Gbps)
w-avg CV Aggregate CV

EU ISP 11/12/09 54 0.70 37 1.71
CDN 12/02/09 1988 0.59 96 2.28
Internet 2 12/02/09 660 0.54 4 4.53

details about the data sets.

To drive our model, we must compute the traffic volume (which captures consumer

demand) and the distance between the source and destination of each flow (which captures

the relative cost of transit). To do so, we extract the source and destination IP and port

information, as well as the traffic level, from each NetFlow record. We obtain the demand

for each flow by aggregating all records of the flow, while ensuring that we do not double-

count records that are duplicated on different routers.

To compute distances that reflect the ISP’s cost of sending traffic, we use the following

heuristics. For the EU ISP, the distance that each flow travels in the ISP’s network is

the geographical distance between the flow’s entry and exit points, whose identity and

location is known. For the CDN, we use the GeoIP database [75] to estimate the distance

to the destination. Although this may not reflect the real distance that a packet travels

(because part of the path may be covered by another ISP), we assume that it is still reflective

of the cost incurred by the CDN. Finally, for Internet2, because each flow may traverse

multiple routers, we use the port information to identify the links the flow has traversed.

The distance each flow traverses is the sum of the links in the path, where the link length is

the geographical distance between the neighboring routers.

4.3.1.2 Discovering valuation coefficients

The valuation coefficient vi indicates the valuation of flow i. We need the valuation coeffi-

ceint vi to capture how the demand for flow i varies with price (Equations 4.2 and 4.8) and

thus affect the ISP profit. To find vi for each flow, we assume that ISPs charge the same
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blended price P0 for each flow and map the observed traffic demand from the data to each

demand model.

CED valuation coefficient. From Equation 4.2 we obtain:

vi =
q(

1
α )

i
P0

where qi is observed demand on flow i and α is the sensitivity coefficient that we vary in

the evaluation.

Logit demand valuation coefficient. Starting with Equation 4.8 and knowing that s0 +

∑si = 1 and s0 =
1

∑eα(v j−P0)+1
, we obtain:

vi =
logsi− logs0

α
+P0

where si is the market share of flow i. We vary s0 in the evaluation and compute the

remaining market shares from observed traffic as si =
qi(1−s0)

∑qi
.

4.3.1.3 Discovering costs

To estimate the ISP profit, we must know the cost that an ISP incurs to service each flow.

However, the data provides information only about the distance each flow traverses, which

reflects only the relative cost (e.g., flow A is twice as costly as flow B), rather than an

absolute cost value. To normalize the cost of carrying traffic to the same units as the

price for the flow, we introduce a scaling parameter γ , where ci = γ f (di) and di is the

distance covered by i (see Section 4.2.3). For each demand model, we compute the scaling

parameter by assuming (as in computing valuation coefficients) that ISPs are rational and

profit maximizing, and charge the same price P0 for each flow.

CED. Using Equation 4.6 and substituting ci for γ f (di), we find:

γ =
P0(α−1)∑

n
i=1 vα

i
α ∑

n
i=1 f (di)vα

i
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Logit demand. Differentiating profit Equation 4.9 and substituting ci for γ f (di), we can

express γ:

γ =
∑

(
eα(vi−P0)

(
αP0−1−∑

n
i=1 eα(vi−P0)

))
α ∑

n
i=1 f (di)eα(vi−P0)

4.3.2 How Should Tiers Be Structured?

ISPs must judiciously choose how they bundle traffic flows into tiers. As shown in Sec-

tion 4.1.1, today’s ISPs often offer at most two or three bundles with different prices. We

define six bundling strategies that classify and group traffic flows according to their cost,

demand, or potential profit to the ISP. We then evaluate them and show that, assuming

the right bundling strategy is used, ISPs typically need only a few bundles to collect near-

optimal profit.

4.3.2.1 Bundling strategies

Optimal. We exhaustively search all possible combinations of bundles to find the one

that yields the most profit. This approach gives optimal results and also serves as our

baseline against which we compare other strategies. Computing the optimal bundling is

computationally expensive: for example, there is more than a billion ways to divide one

hundred traffic flows into six pricing bundles. Presented below, all of the other bundling

strategies employ heuristics to make bundling computationally tractable.

Demand-weighted. In this strategy, we use an algorithm inspired by token buckets to

group traffic flows to bundles. First, we set the overall token budget as the sum of the

original demand of all flows: T = ∑i qi. Then, for each bundle j we assign the same token

budget t j = T/B, where B is the number of bundles we want to create. We sort the flows

in decreasing order of their demand and traverse them one-by-one. When traversing flow

i, we assign it to the first bundle j that either has no flows assigned to it or has a budget

t j > 0. We reduce the budget of that bundle by qi. If the resulting budget t j < 0, we set
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Figure 4.8: Profit capture for different bundling strategies in constant elasticity demand.
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Figure 4.9: Profit capture for different bundling strategies in logit demand.
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t j+1 = t j+1 + t j. After traversing all the flows, the token budget of every bundle will be

zero, and each flow will be assigned to a bundle. The algorithm leads to separate bundles

for high demand flows and shared bundles for low demand flows. For example, if we need

to divide four flows with demands 30, 10, 10, and 10 into two bundles, the algorithm will

place the first flow in the first bundle, and the other three flows in the second bundle.

Cost-weighted. We use the same approach as in demand-weighted bundling, but we set

the token budget to T = ∑i 1/ci. When placing a flow in a bundle we remove a number

of tokens equal to the inverse of its cost. This approach creates separate bundles for local

flows and shared bundles for flows traversing longer distances. The current ISP practices

of offering regional pricing and backplane peering maps closely to using just two or three

bundles arranged using this cost-weighted strategy.

Profit-weighted. The bundling algorithms described above consider cost and demand

separately. To account for cost and demand together, we estimate potential profit each flow

could bring. We use the potential profit metric to apply the same weighting algorithm as

in cost and demand-weighted bundling. In case of constant elasticity demand, we derive

potential profit of each flow i:

πi =
vα

i
α

(
αci

α−1

)1−α

(4.14)

For the logit demand, substituting pi in Equation 4.10 yields:

πi = Ksi(pi− ci) =
Ksi

αs0
∝ qi (4.15)

Cost division. We find the most expensive flow and divide the cost into ranges according

to that value. For example, if we want to introduce two bundles and the most expensive

flow costs $10/Mbps/month to reach, we assign flows that cost $0–$4.99 to the first bundle

and flows that cost $5–$10 to the second bundle.
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Index division. Index-division bundling is similar to cost division bundling, except that

we rank flows according to their cost and use the rank, rather than the cost, to perform the

division into bundles.

4.3.2.2 The effects of different bundling strategies

To evaluate the bundling strategies described above, we compute the profit-maximizing

prices and measure the resulting pricing outcome in terms of profit capture. Profit capture

indicates what fraction of the maximum possible profit—the profit attained using an infinite

number of bundles—the strategy captures. For example, if the maximum attainable profit is

30% higher than the original profit, while the profit from using two bundles is 15% higher

than the original profit, the profit capture with two bundles attains 0.5 of profit capture.

Formally, profit capture is (πnew−πoriginal)/(πmax−πoriginal).

Figures 4.8 and 4.9 show the profit capture for different bundling strategies, across the

three data sets, while varying the number of bundles. For the results shown here, we use

both the constant elasticity and the logit demand models and the linear cost model. We set

the price sensitivity α to 1.1, the original, blended rate P0 to $20, the cost tuning parameter

θ to 0.2, and the original market fraction that sends no traffic s0 to 0.2. We explore the

effect of varying these parameters in Section 4.3.4.

Optimal versus heuristics-based bundling. With an appropriate bundling strategy, the

ISP attains maximum profit with just 3–4 bundles. As expected, the optimal flow bundling

strategy captures the most profit for a given number of bundles. We observe that the EU

ISP captures more profit with two bundles than other networks. We attribute this effect

to the low coefficient of variation (CV) of demand to different destinations, which limits

the benefits of having more pricing bundles. We also discover that, given fixed demand, a

high CV of distance (cost) leads to higher absolute profits. With only minor exceptions, the

profit-weighted bundling heuristic is almost as good as the the optimal bundling, followed

by the cost-weighted bundling heuristic. Deeper analysis, beyond the scope of this work,
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Figure 4.10: Profit increase in EU ISP network using linear cost model.

could show what specific input data conditions cause the profit-weighted flow bundling

heuristic to produce bundlings superior to the cost-weighted heuristic.

Logit profit capture. Maximum profit capture occurs more quickly in the logit model

because (1) the total demand (including s0 option) is constant, and (2) the model is sensitive

to differences in valuation of different flows. When there is a flow with a significantly

higher difference between valuation and cost (vi− ci), it absorbs most of the demand. In

this model, with just two pricing tiers, local and non-local traffic are separated into distinct

bundles that closely represent the backplane peering and regional pricing for local area

service models.

4.3.3 Consumer Surplus Analysis

The consumer surplus gain shown in Figure 4.12 is normalized to the surplus gain the

consumers get when ISPs maximize their profit with an infinite number of pricing tiers. As

expected, the surplus gain follows closely, if not precisely, ISP profit gains.
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Figure 4.11: Profit increase in EU ISP network using concave cost model.

4.3.4 Sensitivity Analysis

We explore the robustness of our results to cost models and input parameter settings. As

we vary an input parameter under test, other parameters remain constant. Unless otherwise

noted, we use profit-weighted bundling, the EU ISP dataset, sensitivity α = 1.1, the linear

cost model with base cost θ = 0.2, blended rate P0 = $20.0, and, in the logit model, s0 = 0.2

(the original market fraction that sends no traffic).

4.3.4.1 Effects of cost models

We aim to see how cost models and settings within these models qualitatively affect our

results from the previous section. We show how profit changes as we increase the number of

bundles for different settings of the cost model parameters (θ ), described in Section 4.2.3.

We find that for different θ settings most of the attainable profit is still captured in 2-3

bundles. Unlike in other sections, in Figures 4.10–4.14, we normalize the profit of all the

plots in the graphs to the highest observed profit. In other words, πmax in these figures is

not the maximum profit of each plot, but the maximum profit of the plot with highest profit

in the figure. Normalizing by the highest observed profit allows us to show how changing
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Figure 4.12: ISP profit and consumer surplus change as ISP employ an increasing number
of pricing tiers. Concave cost model, θ = 0.2, α = 1.1, s0 = 0.2.

108



the parameter θ affects the amount of profit that the ISP can capture.

Linear cost. Figure 4.10 shows profit increase in the EU ISP network as we vary the

number of bundles for different settings of θ . As expected, most of the profit is still attained

with 2–3 pricing bundles. We also observe that the increase in the base cost (θ ) causes a

decline in the maximum attainable profit. The reduction in maximum attainable profit is

expected, as increasing the base cost reduces the coefficient of variation (CV) of the cost

of different flows and thus reduces the opportunities for variable pricing and profit capture.

We can also see, as shown in previous section, that the logit demand model attains more

profit than the constant elasticity demand model with the same number of pricing bundles.

Concave cost. Figure 4.11 shows the profit increase as we vary the number of bundles

for different settings of θ for the concave cost model. The observations and results are

similar to the linear cost model, with one notable exception. The amount of profit the ISP

can capture decreases more quickly in the concave cost model than in the linear cost model

for the same change in the base-cost parameter θ . This is due to the lower CV of cost in the

concave model than in the linear cost model. In other words, applying the log function on

distance (as described in Section 4.2.3) reduces the relative cost difference between flows

traveling to local and remote destinations.

Regional cost. In the regional cost model, the parameter θ is an exponent which adjusts

the price difference between three different regions: local, national, and international. Fig-

ure 4.13 shows the profit increase in the EU ISP network as we vary number of bundles for

different settings of θ . Higher θ values result in a higher CV of cost in different regions

which, in turn, in both demand models produces higher profit. Using constant elasticity

demand we observe a small dip in profit when using five and six bundles, which recovers

later with more bundles. Such dips are expected when there are only a few traffic classes.

For example, if traffic had just two distinct cost classes, two judiciously selected bundles
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Figure 4.13: Profit increase in the EU ISP network using regional cost model.

could capture most of the profit. Adding a third bundle can reduce the profit if that third

bundle contains flows from both of the classes (as may happen in a suboptimal bundling).

Destination type-based cost. Destination type-based cost model emulates “on-net” and

“off-net” types of traffic in an ISP network. As described in Section 4.2.3, we assume that

“on-net” traffic costs less than “off-net” traffic. We vary θ , which represents a fraction

of “on-net” traffic in each flow. The standard profit-weighting algorithm does not work

well with the destination type-based cost model. The effect observed in the regional cost

model—where five bundles produce slightly lower profit then four bundles—is more pro-

nounced when we have just two distinct flow classes. One heuristic that works reasonably

well is as follows: we update the profit-weighting heuristic to never group traffic from

two different classes into the same bundle. Figure 4.14 shows how profit increases with

an increasing number of bundles. Since there are two major classes of traffic (“on-” and

“off-net”), most profit is attained with two bundles for both demand models. In this cost

model, as in other cost models, the same change in CV of cost (induced by the parameter

θ ) causes a greater change in profit capture for constant elasticity demand than for logit
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Figure 4.14: Profit increase in the EU ISP network using destination type cost model.

demand.

4.3.4.2 Sensitivity to parameter settings

The models we use rely on a set of parameters, such as price sensitivity (α), price of the

original bundle (P0), and, in the logit model, the share of the market that corresponds to

deciding not to purchase bandwidth (s0). In this section, we analyze how sensitive the

model is to the choice of these parameters.

Figures 4.15–4.17 show how profit capture is affected by varying price sensitivity α ,

blended rate P0, and non-buying market share s0, respectively. Each data point in the figures

is obtained by varying each parameter over a range of values. We vary α between 1 and 10,

P0 between 5 and 30, and s0 between 0 and 0.9. As we vary the parameters, we select and

plot the minimum observed profit capture over the whole parameter range, for the profit-

weighted strategy with different numbers of bundles. In other words, these plots show the

worst case relative profit capture for the ISP over a range of parameter values. The trend

of these minimum profit capture points is qualitatively similar to patterns in Figures 4.8

and 4.9. For example, using the CED model and grouping flows in two bundles in the
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Figure 4.15: Minimum profit capture for a fixed number of bundles over a range of α

between 1 and 10.

EU ISP yields around 0.8 profit capture, regardless of price sensitivity, blending rate, and

market share. These results indicate that our model is robust to a wide range of parameter

values.

4.4 Implementing Tiered Pricing

ISPs can implement the type of tiered pricing that we describe in Section 4.3 without any

changes to their existing protocols or infrastructure, and ISPs may already be using the

techniques we describe below. If that is the case, they could simply apply a profit-weighted

bundling strategy to re-factor their pricing to improve their profit, possibly without even

making many changes to the network configuration. We describe two tasks associated with

tiered pricing: associating flows with tiers and accounting for the amount of traffic the

customer sends in each tier.

An ISP performs blended-rate pricing over a single link. When a link is used for tran-

sit, the upstream Internet service provider typically announces a complete Internet routing
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Figure 4.16: Minimum profit capture for a fixed number of bundles over a range of
starting prices P0 ∈ [5,30].
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Figure 4.17: Maximum profit capture for a fixed number of bundles over a range of
fractions of users who decide not to participate in the market s0 ∈ (0,1).

table over a single session. A Simple Network Management Protocol (SNMP) [59] sta-

tion polls the interface associated with a link to a customer every five minutes and records

the bytes transferred for each five-minute interval in an accounting database, as shown in

Figure 4.18. The provider ISP then implements 95th percentile pricing by charging the

customer a blended rate based on the traffic load in 95th percentile of all samples.
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Figure 4.18: SNMP-based accounting for blended rate pricing.

4.4.1 Associating Flows with Tiers

Associating each flow (or destination) with a tier can be done within the context of today’s

routing protocols. When the upstream ISP sends routes to its customer, it can “tag” routes

it announces with a label that indicates which tier the route should be associated with; ISPs

can use BGP extended communities to perform this tagging. Because the communities

propagate with the route, the customer can establish routing policies on every router within

its own network based on these tags.

Suppose that a large transit service provider has routers in different geographic regions.

Routers at an exchange point in, say, New York, might advertise routes that it learned in Eu-

rope with a special tag indicating that the path the route takes is trans-Atlantic and, hence,

bears a higher price than other, regional routes. The customer can then use the tag to make

routing decisions. For example, if a route is tagged as an expensive long-distance route,

the customer might choose to use its own backbone to get closer to destination instead of

performing the default “hot-potato” routing (i.e., offloading the traffic to a transit network

as quickly as possible). A large customer might also use this pricing information to better

plan its own network growth.

4.4.2 Accounting

Implementing tiered pricing requires accounting for serviced traffic either on a per-link or

per-flow basis.
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Figure 4.19: Implementing accounting for tiered pricing.

Link-Based Accounting. As shown in Figure 19(a), an edge router can establish two or

more physical or virtual links to the customer, with a Border Gateway Protocol (BGP) [95]

session for each physical or virtual link. In this setup, each pricing tier would have a sep-

arate link. Each link carries the traffic only to the set of destinations advertised over that

session (e.g., on-net traffic, backplane peering traffic). Because each link has a separate

routing session and only exchanges routes associated with that pricing tier, the customer

and provider can ensure that traffic for each tier flows over the appropriate link: The cus-

tomer knows exactly which traffic falls into which pricing tier based on the session onto

which it sends traffic. Billing may also be simpler and easier to understand, since, in this

mode, a provider can simply bill each link at a different rate. Unfortunately, the overhead

of this accounting method grows significantly with the number of pricing levels ISP intends

to support.

Flow-Based Accounting. In flow-based accounting, as in traditional peering and tran-

sit, an upstream ISP and a customer establish a link with a single routing session. As
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shown in Figure 19(b), the accounting system collects both flow statistics (e.g., using Net-

Flow [82]) and routing information to determine resource usage. For the purposes of ac-

counting, bundling effectively occurs after the fact: flows can be mapped to distances using

the routing table information and priced accordingly, exactly as we did in our evaluation

in Section 4.3. Assuming flow and routing information collection infrastructure in place,

flow-based accounting may be easier to manage, and it is easier to bundle flows into differ-

ent bins according to pre-agreed bundling scheme.

4.5 Related Work

Developing and analyzing pricing models for the Internet is well-researched in both net-

working and economics. Two aspects are most relevant for our work: the unbundling of

connectivity and the dimensions along which to unbundle it. Although similar studies of

pricing exist, none have been evaluated in the context of wholesale Internet transit and real

network demand and topology data.

The unbundling of connectivity services refers to the setting of different prices for such

services along various usage dimensions such as volume, time, destination, or application

type. Seminal works by Arrow and Debreu [22] and McKenzie [77] show that markets

where commodities are sold at infinitely small granularities are more efficient. More recent

studies however, demonstrate that unbundling may be inefficient in certain settings, such

as when selling information goods with zero or very low marginal cost (such as access to

online information) [23, 70, 81]. This is not always the case with the connectivity market,

where ISPs incur different costs to deliver traffic to different destinations. In addition, many

service providers already use price discrimination [86].

Kesidis et al. [67] and Shakkottai et al. [101] study the benefits of pricing connectivity

based on volume usage and argue that, with price differentiation, one can use resources

more efficiently. In particular, Kesidis et al. show that usage-based unbundling may be
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even more beneficial to access networks rather than core networks. Time is another dimen-

sion along which providers can unbundle connectivity. Jiang et al. [65] study the role of

time preference in network prices and show analytically that service providers can achieve

maximum revenue and social welfare if they differentiate prices across users and time.

Hande et al. [58] characterize the economic loss due to ISP inability or unwillingness to

price broadband access based on time of day.

4.6 Summary

As the price of Internet transit drops, transit providers are selling connectivity using “tiered”

contracts based on traffic cost, volume, or destination to maintain profits. We have stud-

ied two questions: How does tiered pricing benefit both ISPs and their customers? and

How should ISPs structure the connectivity tiers they sell to maximize their profits? We

developed a model for an Internet transit market that helps ISPs evaluate how they should

arrange traffic into different tiers, and how they should set prices for each of those tiers.

We have applied our model to traffic demand and topology data from three large ISPs to

evaluate various bundling strategies.

We find that the common ISP practice of structuring tiered contracts according to the

cost of carrying the traffic flows (e.g., offering a discount for traffic that is local) is subop-

timal. Dividing the contract into only three or four tiers based on both traffic cost and de-

mand yields near-optimal profit for the ISP; other strategies such as cost division bundling

also work well. We also find that networks with primarily lower cost traffic (either local or

traveling short distances) require fewer tiers to extract maximum profit than other networks

do.
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CHAPTER V

CONCLUDING REMARKS

As the Internet growth is accelerating, so does the diversity of applications that use it. Just

in last few decades we have seen dramatic shifts in use of the Internet. Starting merely as a

platform to send emails, the Internet embraced peer-to-peer networks, search engines, on-

line productivity tools, and video-on-demand applications. Many of such services have dif-

ferent requirements for the Internet connectivity. For example, a video-on-demand service

might prefer cheap and bulky Internet paths, while search providers would pay premium

for lower latencies between them and the end-users.

5.1 Towards Increasing Granularity of Wide-Area Route Control

Although different online services might have different networking requirements, not all of

them have access to wide-area route control which would allow them to choose different In-

ternet paths. Specifically, the services hosted at the facilities of cloud computing providers

are at the mercy of routing policies of said providers. For example, an Amazon EC2 data

center might hosts thousands of online service, yet each of these services uses the same

path (selected by Amazon edge router) to reach the end users. In this dissertation, I put

forward a thesis that many online services would benefit from a better access to a granular

wide-area route control.

Given the evolving nature of Internet online services, the current ISPs business models

also deserve scrutiny. Currently, the wholesale Internet transit is sold at bulk, using so

called “blended rates”. While such one-size-fits-all pricing works fine when all services

are similar, this pricing approach might not be the most effective for services with diverse

Internet uses. For example, some services, such as online gaming, reach a global audience,

while other services, such as content streaming, usually are constrained to a single locale.
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These two services will likely incur different cost to ISP, even when sending the same

amount of data. In this dissertation, I model and analyse the ISP pricing strategies as it

pertains to such online service diversity.

5.2 Summary of Contributions

My thesis has three claims: 1) we can make access to wide-area routing easier, 2) granular

wide-area routing can significantly benefit the online services, and 3) the business models

employed by today’s ISPs are adequate to support increasing diversity of online services.

My contributions to each of these claims are as follows:

1. Transit Portal platform. I propose, design, build, and deploy a testbed of a Transit

Portal (TP) platform. TP provides online services hosted in cloud computing en-

vironment with an illusion of direct access to upstream ISPs. The clients of such

platform can enjoy the same level of route control as their cloud hosting provider.

Our TP testbed consists of five nodes and provides researchers with access to the

Internet route control.

2. Fine-grained routing benefit analysis. I show that services that are replicated geo-

graphically, can still benefit significantly if they also employ a fine-grained routing.

Specifically, using our Transit Portal testbed, I show that by performing joint content

and network routing, OSPs can achieve 22% larger latency reduction than can be

obtained by content routing alone.

3. ISP profit and consumer surplus modeling. In the dissertation, I perform extensive

modeling of ISP pricing strategies, as it pertains to ISP profits and consumer surplus.

I build and evaluate a pricing model with two different demand models and four

different cost models. I evaluate the models on three different real-world data sets.

My results show that ISPs gain little if they price services at granularities exceeding

two to three tiers. In other words, I show that the current ISP pricing models are

adequate to support increasing online service diversity.
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5.3 Future Directions

Although I consider the dissertation complete, there are ample areas for further exploration.

In all of my dissertation I have relied only on the existing routing protocols to provide in-

creased routing diversity to the online services and to enhance the performance they deliver

to the end users. The existing routing protocols, however, namely BGP, have numerous

known deficiencies and, in the long run, might be superseded. More specifically, industry

practitioners are considering Locator/ID Separator Protocol (LISP) as a future replacement

for BGP and it warrants more attention from the research community.

Whatever is the protocol that drives the future Internet, the paths provided by such

protocol have to be evaluated and selected. The challenge today is that the online services

are left on their own to evaluate the end-to-end performance to their users. Interestingly,

many of such online service do these measurements concurrently and without coordination

or information sharing. For example, Amazon might be monitoring quality of paths to its

data centers, while at the same time many services inside the Amazon data centers to the

same. I foresee a need for a mechanism to share such performance information between

cloud providers and the hosted services so that hosted services can make more informed

route choices.

Finally, the last part of my dissertation took on modeling the ISP business models.

No model is perfect and mine certainly can be improved. What’s more, a more holistic

approach is necessary to model the Internet market. Such an approach should not only look

at the interaction between an ISP and its clients, but also look at the evolution of all of the

ISPs connection and the place of each ISP in the Internet ecosystem.
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