
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/1939

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.



Two-component regulation: modelling, predicting &

identifying protein-protein interactions & assessing

signalling networks of bacteria

by

Peter J. A. Cock

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

MOAC Doctoral Training Centre

August 2008



Contents

List of Tables vi

List of Figures vii

Acknowledgments xi

Declarations xii

Abstract xiii

Abbreviations xiv

Chapter 1 Introducing two component signalling 1

1.1 Brief outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Transmitters and receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 TCS system architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Exemplar systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 EnvZ/OmpR osmoregulation in Escherichia coli . . . . . . . . . . . . . 5

1.4.2 Nar regulatory TCS system of E. coli . . . . . . . . . . . . . . . . . . . 7

1.4.3 Chemotaxis in E. coli . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.4 Chemotaxis in Rhodobacter sphaeroides . . . . . . . . . . . . . . . . . 10

1.4.5 Hybrid kinase systems in Bacteroides . . . . . . . . . . . . . . . . . . . 13

1.4.6 Phosphorelays with a tripartite HY and RR . . . . . . . . . . . . . . . 13

1.4.7 RcsC/RcsD/RcsB phosphorelay in E. coli . . . . . . . . . . . . . . . . 15

1.4.8 Sporulation in Bacillus subtilis . . . . . . . . . . . . . . . . . . . . . . 15

1.4.9 Quorum-sensing in Vibrio harveyi . . . . . . . . . . . . . . . . . . . . . 18

1.4.10 VirA/VigG virulence in Agrobacterium tumefaciens . . . . . . . . . . . 20

1.4.11 RcaE/RcaF/RcaC phosphorelay in Fremyella diplosiphon . . . . . . . . 20

1.4.12 Red system in Myxococcus xanthus . . . . . . . . . . . . . . . . . . . 22

ii



1.4.13 TCS systems in Caulobacter crescentus . . . . . . . . . . . . . . . . . 22

1.4.14 Phosphorelays in yeast . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.15 TCS systems in plants . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Three dimensional structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 TCS networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.7 Predicting TCS interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.7.1 Genome arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.7.2 Phylogenetics and comparative genomics . . . . . . . . . . . . . . . . . 37

1.7.3 Co-expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.7.4 Multiple sequence alignment based predictions . . . . . . . . . . . . . . 38

1.8 Research aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 2 Finding TCS genes and pairs 41

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 Source of genomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Identifying TCS genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Isolated and paired genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Survey results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6.1 Transmitters versus receivers . . . . . . . . . . . . . . . . . . . . . . . 45

2.6.2 TCS architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6.3 TCS gene pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.4 TCS associated domains . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6.5 TCS associated input and output domains . . . . . . . . . . . . . . . . 50

2.6.6 Species specific remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Potential refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7.1 More efficient searching . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7.2 Updates to PFAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Chapter 3 Phase preference in gene overlaps 69

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Observed separations or overlaps from TCS genes . . . . . . . . . . . . . . . . 71

3.3 Observed separations or overlaps from all genes . . . . . . . . . . . . . . . . . 75

3.3.1 Divergent gene pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

iii



3.3.2 Convergent gene pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3.3 Unidirectional gene pairs . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4 Current understanding of gene overlaps . . . . . . . . . . . . . . . . . . . . . 87

3.5 Long unidirectional gene overlaps . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Generating overlaps from alternative start/stop codons . . . . . . . . . . . . . 90

3.6.1 Generating convergent overlaps from alternative stop codons . . . . . . 91

3.6.2 Generating divergent overlaps from alternative start codons . . . . . . . 91

3.6.3 Generating unidirectional overlaps from alternative start/stop codons . 94

3.7 Predicting overlap length spectra . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter 4 TCS gene fusion 99

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Minimal TCS systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Transmembrane and DNA-binding domains . . . . . . . . . . . . . . . . . . . 100

4.4 TCS domain location in HK and RR genes . . . . . . . . . . . . . . . . . . . . 102

4.5 TCS domain location in HY genes . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6 Domain separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter 5 Identifying amino acid residues for TCS partner specificity 113

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 TCS protein complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 Column pair correlations and results . . . . . . . . . . . . . . . . . . . . . . . 121

5.5.1 Chemical potential summations . . . . . . . . . . . . . . . . . . . . . . 121

5.5.2 Hydrophilicity correlations . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5.3 Chi-squared score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5.4 Mutual information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.6 Mapping scores onto protein structures . . . . . . . . . . . . . . . . . . . . . . 144

5.7 Summary and comparison of results . . . . . . . . . . . . . . . . . . . . . . . 152

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

iv



Chapter 6 Predictions using a generalised linear model (GLM) 161

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.2 Modelling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2.1 Selecting column pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.2.2 Column pair scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2.3 Related column pair scores . . . . . . . . . . . . . . . . . . . . . . . . 166

6.2.4 Restricted models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2.5 Model assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5 Application to Escherichia coli . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.6 Application to Bacillus subtilis . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.7 Application to Caulobacter crescentus . . . . . . . . . . . . . . . . . . . . . . 187

6.8 Application to Nostoc and M. xanthus . . . . . . . . . . . . . . . . . . . . . . 191

6.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Chapter 7 Conclusions and future work 205

Appendix A Species List 209

Appendix B GLM predictions 217

Bibliography 217

v



List of Tables

2.1 PFAM and CDD motifs used to identify TCS domains . . . . . . . . . . . . . . 44

2.2 Domain architectures of identified TCS genes . . . . . . . . . . . . . . . . . . 47

2.3 Domain architectures of identified TCS gene pairs . . . . . . . . . . . . . . . . 49

2.4 The top forty PFAM domains in prokaryotes . . . . . . . . . . . . . . . . . . . 51

2.5 PFAM input domains by architecture of identified TCS genes . . . . . . . . . . 52

2.6 PFAM output domains by architecture of identified TCS genes . . . . . . . . . 53

2.7 TCS domain counts by species . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.8 Domain architectures of identified TCS genes by species . . . . . . . . . . . . 62

3.1 The prokaryotic genetic code . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 The mycoplasma/spiroplasma genetic code . . . . . . . . . . . . . . . . . . . 72

3.3 Divergent overlap nucleotide sequences (n < 6) . . . . . . . . . . . . . . . . . 77

3.4 Divergent overlap nucleotide sequences (n ≥ 6) . . . . . . . . . . . . . . . . . 78

3.5 Convergent overlap nucleotide sequences . . . . . . . . . . . . . . . . . . . . . 82

3.6 Unidirectional overlap nucleotide sequences . . . . . . . . . . . . . . . . . . . 85

4.1 Minimal TCS systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Apparent fusion rates of minimal TCSs . . . . . . . . . . . . . . . . . . . . . . 101

5.1 KD and HW hydrophilicity/hydrophobicity scores. . . . . . . . . . . . . . . . . 125

6.1 Top Nostoc predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.2 Top M. xanthus predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.1 List of 457 sequenced prokayotes . . . . . . . . . . . . . . . . . . . . . . . . . 209

vi



List of Figures

1.1 Two gene TCS system, Ti + R . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Two gene TCS system, Tii + R . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 One gene TCS system, Ti-R . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Phosphorelay TCS systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 E. coli Nar TCS network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 E. coli chemotaxis system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Rhodobacter sphaeroides chemotaxis system . . . . . . . . . . . . . . . . . . . 11

1.8 Bacteroides Ti-R hybrid kinases . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.9 E. coli Rcs three gene TCS relay . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.10 Bacillus subtilis sporulation TCS network . . . . . . . . . . . . . . . . . . . . . 17

1.11 Vibrio harveyi quorum-sensing TCS network . . . . . . . . . . . . . . . . . . . 19

1.12 Agrobacterium tumefaciens VirA/VirG system . . . . . . . . . . . . . . . . . . 21

1.13 Fremyella diplosiphon Rca phosphorelay . . . . . . . . . . . . . . . . . . . . . 21

1.14 M. xanthus Red TCS network . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.15 Saccharomyces cerevisiae phosphorelay . . . . . . . . . . . . . . . . . . . . . . 24

1.16 Schizosaccharomyces pombe TCS network . . . . . . . . . . . . . . . . . . . . 26

1.17 The receiver structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.18 The receiver domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.19 The four helix bundles in HisKA, Spo0B and Hpt domains . . . . . . . . . . . 30

1.20 The HisKA structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.21 The Hpt structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.22 The Spo0B structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.23 The Spo0B/Spo0F complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.24 Schematics of TCS pairs, relays and networks . . . . . . . . . . . . . . . . . . 35

2.1 Number of receiver domains vs. transmitter domains . . . . . . . . . . . . . . 46

2.2 Number of TCS genes vs. total number of genes . . . . . . . . . . . . . . . . 55

vii



2.3 Number of TCS domains vs. genomes size . . . . . . . . . . . . . . . . . . . . 56

2.4 Number of TCS genes vs. genomes size . . . . . . . . . . . . . . . . . . . . . 57

2.5 Number of TCS genes vs. genomes size with pathogenicity . . . . . . . . . . . 58

2.6 Number of TCS genes vs. number of paired TCS genes . . . . . . . . . . . . . 64

2.7 Number of TCS genes vs. number of isolated TCS genes . . . . . . . . . . . . 65

2.8 Number of TCS genes vs. number of TCS genes in a complex gene cluster . . 66

2.9 Number of TCS domains vs. number of TCS genes . . . . . . . . . . . . . . . 67

3.1 Example unidirectional gene overlap in phase +1 . . . . . . . . . . . . . . . . 70

3.2 Example unidirectional gene overlap in phase +2 . . . . . . . . . . . . . . . . 70

3.3 Example unidirectional gene overlap in phase +0 . . . . . . . . . . . . . . . . 70

3.4 Unidirectional TCS gene separation/overlap . . . . . . . . . . . . . . . . . . . 73

3.5 Unidirectional HK then RR gene separation/overlap . . . . . . . . . . . . . . . 74

3.6 Unidirectional RR then HK gene separation/overlap . . . . . . . . . . . . . . . 74

3.7 Divergent gene separation/overlap . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Example divergent gene overlap of length one . . . . . . . . . . . . . . . . . . 79

3.9 Example divergent gene overlap of length two . . . . . . . . . . . . . . . . . . 79

3.10 Example divergent gene overlap of length four . . . . . . . . . . . . . . . . . . 79

3.11 Convergent gene separation/overlap . . . . . . . . . . . . . . . . . . . . . . . 81

3.12 Example convergent gene overlap of length four . . . . . . . . . . . . . . . . . 83

3.13 Unidirectional gene separation/overlap . . . . . . . . . . . . . . . . . . . . . . 84

3.14 Example unidirectional gene overlap of length one . . . . . . . . . . . . . . . . 86

3.15 Example unidirectional gene overlap of length four . . . . . . . . . . . . . . . . 86

3.16 Example unidirectional gene overlap of length five . . . . . . . . . . . . . . . . 86

3.17 Convergent overlaps generated by an alternative stop codon . . . . . . . . . . 92

3.18 Divergent overlaps generated by any valid start codon . . . . . . . . . . . . . . 93

3.19 Divergent overlaps generated by any common start codon . . . . . . . . . . . . 93

3.20 Unidirectional overlaps generated by any valid start codon . . . . . . . . . . . 95

3.21 Unidirectional overlaps generated by any common start codon . . . . . . . . . 95

3.22 Unidirectional overlaps generated by an alternative stop codon . . . . . . . . . 96

4.1 N and C-terminal regions of paired HKs and RRs . . . . . . . . . . . . . . . . 103

4.2 N and C-terminal regions of paired HKs . . . . . . . . . . . . . . . . . . . . . 104

4.3 N and C-terminal regions of paired RRs . . . . . . . . . . . . . . . . . . . . . 105

4.4 N, mid and C-terminal regions of Ti-R hybrids . . . . . . . . . . . . . . . . . . 106

viii



4.5 N, mid and C-terminal regions of R-Ti hybrids . . . . . . . . . . . . . . . . . . 107

4.6 TCS domain separation in minimal systems . . . . . . . . . . . . . . . . . . . 109

5.1 Simple locks and keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Column pairs from paired domain MSAs . . . . . . . . . . . . . . . . . . . . . 117

5.3 Chemical potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Histogram of chemical potential summations for column pairs . . . . . . . . . 123

5.5 Grid of summed chemical potential for column pairs . . . . . . . . . . . . . . . 124

5.6 Histogram of KD Spearman’s ρ correlations for column pairs . . . . . . . . . . 126

5.7 Grid of KD Spearman’s ρ correlations for column pairs . . . . . . . . . . . . . 127

5.8 Top column pairs with positive KD Spearman’s ρ . . . . . . . . . . . . . . . . 128

5.9 Top column pairs with negative KD Spearman’s ρ . . . . . . . . . . . . . . . . 128

5.10 KD Spearman’s ρ correlations against estimated distances . . . . . . . . . . . 129

5.11 Histogram of KD Kendall’s τ correlations for column pairs . . . . . . . . . . . 131

5.12 Grid of KD Kendall’s τ correlations for column pairs . . . . . . . . . . . . . . . 132

5.13 Top column pairs with positive KD Kendall’s τ . . . . . . . . . . . . . . . . . 133

5.14 Top column pairs with negative KD Kendall’s τ . . . . . . . . . . . . . . . . . 133

5.15 KD Kendall’s τ correlations against estimated distances . . . . . . . . . . . . . 134

5.16 Assorted hydrophilicity based smoothed scatter plots . . . . . . . . . . . . . . 136

5.17 Histogram of KD Spearman’s ρ correlations for column pairs . . . . . . . . . . 137

5.18 Histogram of χ2 scores for column pairs . . . . . . . . . . . . . . . . . . . . . 139

5.19 Grid of χ2 scores for column pairs . . . . . . . . . . . . . . . . . . . . . . . . 140

5.20 χ2 correlations against estimated distances . . . . . . . . . . . . . . . . . . . . 141

5.21 Histogram of MI scores for column pairs . . . . . . . . . . . . . . . . . . . . . 145

5.22 Grid of MI scores for column pairs . . . . . . . . . . . . . . . . . . . . . . . . 146

5.23 Histogram of MI scores for column pairs . . . . . . . . . . . . . . . . . . . . . 147

5.24 Grid of MI scores for column pairs . . . . . . . . . . . . . . . . . . . . . . . . 148

5.25 Top 100 column pairs by MI, using CLUSTAL W . . . . . . . . . . . . . . . . 149

5.26 Top 100 column pairs by MI, using MUSCLE . . . . . . . . . . . . . . . . . . 149

5.27 MI against estimated distances . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.28 Largest KD τ on HisKA and receiver 3D structures . . . . . . . . . . . . . . . 151

5.29 Maximum MI on HisKA and receiver 3D structures . . . . . . . . . . . . . . . 151

5.30 Assorted smoothed scatter plots, using CLUSTAL W . . . . . . . . . . . . . . 153

5.31 Assorted smoothed scatter plots, using MUSCLE . . . . . . . . . . . . . . . . 154

5.32 MI scores for CLUSTAL W and MUSCLE (HK and RR gene pairs) . . . . . . . 155

ix



5.33 MI scores for CLUSTAL W and MUSCLE (HY genes) . . . . . . . . . . . . . . 156

5.34 MI scores for CLUSTAL W and MUSCLE (HK and RR pairs, and HY genes) . 157

6.1 Overview of the MSA data and indexing . . . . . . . . . . . . . . . . . . . . . 163

6.2 Model performance on full dataset, 80% for training . . . . . . . . . . . . . . . 172

6.3 Omega model performance on full dataset, 80% for training . . . . . . . . . . 173

6.4 Model performance on two gene TCS systems, 80% for training . . . . . . . . 175

6.5 Omega model performance on two gene TCS systems, 80% for training . . . . 176

6.6 Model performance on hybrid kinases, 80% for training . . . . . . . . . . . . . 177

6.7 Omega model performance hybrid kinases, 80% for training . . . . . . . . . . . 178

6.8 Model performance on E. coli . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.9 Omega model performance on E. coli . . . . . . . . . . . . . . . . . . . . . . . 181

6.10 Omega model prediction grid for E. coli . . . . . . . . . . . . . . . . . . . . . 182

6.11 Model performance on Bacillus subtilis . . . . . . . . . . . . . . . . . . . . . . 184

6.12 Omega model performance on Bacillus subtilis . . . . . . . . . . . . . . . . . . 185

6.13 Omega model prediction grid for Bacillus subtilis . . . . . . . . . . . . . . . . 186

6.14 Model performance on Caulobacter crescentus . . . . . . . . . . . . . . . . . . 188

6.15 Omega model performance on Caulobacter crescentus . . . . . . . . . . . . . . 189

6.16 Omega model prediction grid for Caulobacter crescentus . . . . . . . . . . . . 190

6.17 Model performance on Nostoc sp. . . . . . . . . . . . . . . . . . . . . . . . . 192

6.18 Omega model performance on Nostoc sp. . . . . . . . . . . . . . . . . . . . . 193

6.19 Omega model prediction grid for Nostoc sp. . . . . . . . . . . . . . . . . . . . 194

6.20 Model performance on M. xanthus . . . . . . . . . . . . . . . . . . . . . . . . 197

6.21 Omega model performance on M. xanthus . . . . . . . . . . . . . . . . . . . . 198

6.22 Omega model prediction grid for M. xanthus . . . . . . . . . . . . . . . . . . . 199

B.1 Model performance on full dataset, 80% for training, MUSCLE MSAs . . . . . 218

B.2 Model performance on full dataset, 25% for training . . . . . . . . . . . . . . . 219

B.3 Omega model performance on full dataset, 25% for training . . . . . . . . . . 220

B.4 Model performance on two gene TCS systems, 33% for training . . . . . . . . 221

B.5 Omega model performance on two gene TCS systems, 33% for training . . . . 222

x



Acknowledgments

I would like to thank the following:

• My supervisors, Dr. David Whitworth and Dr. Bärbel Finkenstädt for their help and
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Abstract

Two-component signalling systems (TCSs) are found in most prokaryotic genomes.

They typically comprise of two proteins, a histidine (or sensor) kinase (HK) and an associated

response regulator (RR), containing transmitter and receiver domains respectively, which in-

teract to achieve transfer of a phosphoryl group from a histidine residue (of the transmitter

domain in the HK) to an aspartate residue (of the partner RR’s receiver domain).

An automated analysis pipeline using the NCBI’s RPS-BLAST tool was developed to

identify and classify all TCS genes from completed prokaryotic genomes using the PFAM and

CDD protein domain databases.

A large proportion of TCS genes were found to be simple hybrid kinases (HYs) con-

taining both a transmitter domain and a receiver domain within a single protein, presumably

the result of the fusion or combination of separate HK and RR genes. This propensity to

consolidate functionality into a single protein was found to be limited in the presence of either

a transmembrane sensory/input domain or a DNA binding domain – two spatially separated

functions.

While HK and RR genes are usually found together in the genome, in some species a

large proportion of TCS domains are found as part of complex hybrid kinases (genes containing

multiple TCS domains), in isolated or orphaned genes, or in complex gene clusters. In such

organisms the lack of paired HK and RR genes makes it difficult to define genome-encoded

signalling networks.

Identifying paired transmitter and receiver domains from a pan-genomic survey of

prokaryotes gives a database of amino acid sequences for thousands of interacting protein-

protein complexes. Covariation between columns of multiple sequence alignments (MSAs)

identifies particular pairs of residues representing interactions within the docked complex. Us-

ing numerical scores, these amino acids pairs were successfully used as explanatory variables in

a generalised linear model (GLM) to predict the probabilities of interaction between transmitter

and receiver domains.
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bp base pair(s)
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Chapter 1

Introducing two component signalling

1.1 Brief outline

This thesis focuses on the prediction of protein-protein interactions within or between two-

component signalling (TCS) systems. TCS systems and their multistage variant, the phos-

phorelay, comprise the majority of prokaryotic signal pathways (Stock et al., 2000; Robinson

et al., 2000; Hoch, 2000), and they regulate a wide variety of cellular process including motil-

ity, heat-shock responses, sporulation, antibiotic production and virulence (Hoch and Silhavy,

1995; Atkinson and Ninfa, 1999). TCS are also found in yeast (Maeda et al., 1994) and plants

(Mizuno, 2005), but not in animals (Thomason and Kay, 2000), which makes them a possible

target of anti-microbial compounds.

A typical TCS system comprises two proteins, a histidine (or sensor) kinase (HK) and

an associated response regulator (RR). Upon detecting its input signal, the HK will activate its

partner RR by a protein-protein interaction which transfers a phosphoryl group. The phospho-

rylated RR will then elicit a response. Using two proteins in this way allows a spatial separation

of the input signal’s detection and the triggered response, typically linking an external envi-

ronmental cue to gene regulation.

Most organisms employing TCS systems will have multiple HK and RR pairs, which

could potentially interact with each other. Such signal cross-talk may be undesirable, and

can be controlled by a combination of TCS interaction specificity (the focus of this study),

phosphatase activity by the RR’s true partner HK (Laub and Goulian, 2007), and spatial and

temporal segregation of the proteins. Knowing the full TCS network for an organism will

explain how the various HK input domains are connected to the RR output domains, and thus

is important for understanding its adaptive behaviour.

Some HK and RR pairings can be inferred from their genome organisation, by iden-
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tifying neighbouring genes in an operon. However, in some species such as Nostoc sp. and

Myxococcus xanthus, a large proportion of TCS genes are complex hybrid kinases (HYs), iso-

lated or orphaned genes, or in complex gene clusters (Whitworth and Cock, 2008a,b). In such

organisms, the lack of simple paired HK and RR genes makes it difficult to define genome-

encoded signalling networks. Thus, being able to predict TCS domain partnerships from

genome sequences would be especially useful. This is the main aim of this thesis.

1.2 Transmitters and receivers

A typical TCS comprises two proteins, an HK and associated RR. Both types of protein are

modular, with discrete domains of defined function.

HKs contain an N-terminal input domain with a C-terminal transmitter domain (Parkin-

son and Kofoid, 1992). Upon receiving a stimulus through its input domain, the transmitter

domain hydrolyses ATP into ADP (using a histidine kinase-type ATPase (HATPase) domain

within the transmitter) and auto-phosphorylates at a conserved histidine residue. Transmitter

domains form dimers, and are believed to phosphorylate in trans (i.e. a protein phosphory-

lates its dimer partner, see Cai et al. (2003) and the references therein). Bilwes et al. (1999)

classified two types of transmitter. In Class I (or orthodox) transmitter domains, the phospho-

accepting histidine residue is in a HisKA motif (histidine kinase), which is also the site of the

HK dimerisation. Class II (or unorthodox) transmitter domains are usually associated with

motility1. Instead of using a HisKA motif, the phospho-accepting histidine is part of an Hpt

motif (histidine-containing phosphotransfer) which is generally followed by a separate dimerisa-

tion domain. These transmitter domains are illustrated within Figures 1.1 and 1.2, respectively,

and for brevity will be written as Ti and Tii.

Transmitters are generally thought to form homodimers, and the HATPase of one

monomer will phosphorylate the HisKA domain of the other monomer. Brencic et al. (2004)

have demonstrated this trans-phosphorylation within the Ti dimer using VirA from Agrobac-

terium tumefaciens, part of a complex system discussed in Section 1.4.10. Current models of

the Rcs system from Escherichia coli suggest that some transmitters could form heterodimers

(see Section 1.4.7), but this has yet to be confirmed.

RRs also typically comprise two functionally separate domains, an N-terminal receiver

domain and a C-terminal output domain. Upon docking with a phosphorylated HK, the phos-

phoryl group is transferred from the transmitter histidine residue onto a conserved aspartate

residue within the receiver domain (His→Asp). Phosphorylation of the receiver domain causes

1Flagella biosynthesis in Rhodospirillum centenum is a counter example (Berleman and Bauer, 2005).
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Figure 1.1: Simple two gene His→Asp TCS system consisting of an HK on the left containing
a Class I (orthodox) transmitter (Ti, made up of a HisKA, in blue, and HATPase, in green),
and RR on the right containing a receiver domain (in red). The blocks represent the linear
domain structure of each protein, although not to scale, with the N-terminus on the left. The
dimerisation of the HK is not shown. Dotted arrows show information flow, solid arrows show
the phosphotransfer. When the HATPase domain uses ATP to phosphorylate the histidine
residue, ADP is released, which is not shown.

Figure 1.2: Simple two gene His→Asp TCS system consisting of an HK on the left containing
a Class II (unorthodox) transmitter (Tii, made up of Hpt, in blue, dimerisation region, in grey,
and HATPase, in green), and RR on the right containing a receiver domain (in red). The
dimerisation of the HK is not shown. cf. Figure 1.1
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a conformational change (Lewis et al., 1999), which results in an altered activity of the out-

put domain, thus giving an output response to the initial stimulus. This output domain is

frequently DNA-binding, controlling gene expression levels. In many RRs there is no separate

output domain, and the protein is presumed to have a direct action based on a further in-

teraction of the receiver domain, or to be part of a phosphorelay (discussed in the following

section).

Figures 1.1 and 1.2 show typical HK and RR pairs (with Class I and Class II transmitters

respectively), illustrating the normal domain arrangement within each gene. The dotted arrows

show the flow of information, with solid arrows showing the phosphotransfer.

HK and RR genes do not necessarily interact in isolation, there is often additional

regulation – for example from phosphatases which are enzymes that remove phosphate groups.

In fact, many HK genes have a phosphatase activity from the HisKA domain (Zhu et al., 2000),

and can dephosphorylate their partner RR. This suggests retro-phosphorylation Asp→His from

the RR receiver to the HK transmitter may be possible. The use of an Asp→His transfer is

well established as the basis of the TCS phosphorelay systems discussed next.

1.3 TCS system architectures

The TCS transmitter (and its constituents) and receiver domains are modular, and are fre-

quently found in different combinations. For example, in addition to the conventional two-gene

TCS systems illustrated in Figures 1.1 and 1.2, there are numerous examples of hybrid kinases

(HYs) containing both a transmitter and receiver, combining the functionality of the HK and

RR into a single protein. This is illustrated in Figure 1.3, and specific examples are discussed

later in this chapter. Interestingly, most eukaryotic TCS genes are hybrid kinases (Koretke

et al., 2000). Far more elaborate combinations of domains within a single gene have also been

found and are believed to have evolved several times independently (Zhang and Shi, 2005).

The example TCS systems shown thus far (Figures 1.1, 1.2 and 1.3) all have a single

phosphotransfer, His→Asp, from a transmitter to receiver. In some organisms, an Asp→His

transfer from receiver to Hpt domain has been co-opted to extend the TCS system into a

phosphorelay His→Asp→His→Asp (Appleby et al., 1996). Figure 1.4 shows several possible

His→Asp→His→Asp relays using the same basic domains. Note that in all known cases the

Asp→His transfer is from a receiver to an Hpt domain (and not a HisKA domain).

The most numerous examples of phosphorelays in the literature use two separate pro-

teins, a tripartite HY containing a Class I transmitter, receiver and Hpt domain, and a normal

RR, denoted Ti-R-H + R. Some theoretical work suggests these tripartite HY genes are more
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Figure 1.3: Simple one gene His→Asp TCS system consisting of an HY containing a Class I
(orthodox) transmitter (Ti, made up of a HisKA, in blue, and HATPase, in green), and
receiver domain (in red). Colour scheme as in Figure 1.1, where the same domains appear in
two separate genes.

sensitive to their input signal, and robust to noise (Kim and Cho, 2006), which may explain

their relative abundance. These, and the handful of known examples of phosphorelays with

three or more genes, are discussed in the next section.

Hereafter TCS proteins will often be written in a shorthand notation. Any TCS domains

within a gene are listed in the N to C-terminal order, separated with dashes. Thus for example,

Ti-R denotes a simple hybrid kinase (HY) with a Class I transmitter (Ti) N-terminal to receiver

domain (R), while R-Ti denotes a HY with the domain order reversed. Plus signs are used to

indicate separate genes, for example Ti + R for a simple HK and RR pair, or Ti-R-H + R for

a tripartite HY and RR.

1.4 Exemplar systems

In this section a range of TCS systems from the literature are described, focusing on the

canonical examples and known complex systems which illustrate particular properties of in-

terest. Some proteins from these systems have solved 3D-structures, which are discussed in

Section 1.5.

1.4.1 EnvZ/OmpR osmoregulation in Escherichia coli

Escherichia coli survives in both fresh water and in the gut of animals where solute concen-

trations (osmolarity) are much higher, and does this by adjusting the type of pores in its

outer membrane (Csonka and Hanson, 1991). This osmoregulation system is controlled by the
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Ti-R-H-R
One gene relay

No examples
documented in
the literature

Ti-R-H + R
Two gene relay

e.g. ArcB/A in
E. coli

Ti-R + H + R
Three gene relay

e.g. RcsC/D/B
in E. coli, and
Sln1/Ypd1/Ssk1
in Saccharomyces
cerevisiae.

Ti + R + H-R
Three gene relay

RcaE/F/C relay in
the cyanobacteria
Fremyella
diplosiphon is
similar.

Ti + R + H + R
Four gene relay

Sporulation in
Bacillus subtilis
is similar

Figure 1.4: Example TCS phosphorelay systems, His→Asp→His→Asp, with one, two, three
or four genes. The example systems mentioned are discussed in Section 1.4. Other variations
are possible, such as the three gene relay Ti + R-H + R, but have not been reported in the
literature. (cf. Appleby et al. (1996), Figure 3).
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EnvZ/OmpR TCS system. This is a ‘classical’ TCS system with the flow of information from

one HK to one RR (Figure 1.1), where the two proteins are encoded as neighbouring genes in

an operon (Perraud et al., 1999).

The HK EnvZ senses levels of osmolarity and phosphorylates its partner RR OmpR

(i.e. His→Asp transfer), which is a transcription factor for the ompF and ompC genes which

code for major outer membrane proteins (Mizuno et al., 1988). OmpC is produced at high

osmolarity, while OmpF is produced at low osmolarity (Dutta et al., 2000). EnvZ also possesses

phosphatase activity and can dephosphorylate phosphorylated OmpR (Aiba et al., 1989; Zhu

et al., 2000).

EnvZ/OmpR is an archetypal TCS system, a simple HK and RR encoded in an operon

as neighbouring genes. Furthermore, it is also typical in that it combines an N-terminal

transmembrane input domain in the HK with a C-terminal DNA-binding output domain in the

RR (see Chapter 4).

1.4.2 Nar regulatory TCS system of E. coli

The Nar system in E. coli regulates nitrate and nitrite metabolism, and is an example of a small

TCS network (Rabin and Stewart, 1992, 1993). Encoded by neighbouring genes, NarX and

NarL are an ordinary pair of HK and RR proteins. However, two further locations in the genome

encode another HK, NarQ, and another RR, NarP. The TCS domains of these genes are more

similar to each other than other TCS genes in E. coli, which helped in their identification. Both

NarX and NarQ have transmembrane input domains, and will phosphorylate both NarL and

NarP, which both have DNA-binding output domains (Figure 1.5). However, the interactions

between these proteins are not fully symmetric, and they are also regulated differently (Darwin

and Stewart, 1995).

This system illustrates that an HK and RR encoded in a single operon (such as NarX

and NarL) may not be exclusive partners forming an isolated system, and furthermore that

orphan TCS genes (such as NarQ or NarP) may interact with paired genes.

1.4.3 Chemotaxis in E. coli

Chemotaxis is directed movement in response to chemical stimuli, such as nutrient levels (see

Adler (1975) for an early review). E. coli’s directed random walk is one of the best studied

bacterial chemotaxis systems. E. coli cells have multiple flagella which, when rotated anti-

clockwise, twist together forming a single rotating bundle, causing the bacteria to swim in a

straight line. However, when rotated clockwise the bundle separates and each flagella points

7



Figure 1.5: The E. coli Nar TCS network, discussed in Section 1.4.2, is the best studied
example of cross-talk between two HKs and two RRs.

Figure 1.6: The E. coli chemotaxis TCS network, with one HK phosphorylating two RRs,
discussed in Section 1.4.3. RR CheY is unusual in having no separate output domain.
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in a random direction – resulting in an undirected tumbling at the mercy of diffusion and local

currents (Macnab and Koshland, 1974). When tumbling the cell is randomly reorientated.

Hence switching between anti-clockwise and clockwise rotation and back again gives a random

change in direction, essentially a three dimensional random walk (Larsen et al., 1974).

The mechanism E. coli uses to direct its random walk is very simple. If, while swimming,

the levels of the attractant are increasing (or levels of a repellent are decreasing), then the cell

should keep swimming. If conditions are getting worse, it should stop swimming and tumble

in order to randomly select a new direction. To achieve this, the regulatory system can switch

the rotation of the flagella (see RR CheY below), and detect if the attractant/repellent levels

are increasing or decreasing. This “memory” works by adjusting the sensitivity of the ligand

sensors, known as methyl-accepting chemotaxis proteins (MCPs), by modifying their level of

methylation (Springer et al., 1977; Goy et al., 1977) (see RR CheB below).

The E. coli chemotaxis TCS system has one HK, CheA, and two RRs, CheY and CheB

(Figure 1.6). CheA contains what Bilwes et al. (1999) called a Class II transmitter (Tii),

where the histidine phosphorylation site is within an Hpt domain rather than a HisKA domain

(Figure 1.2). Unusually for an HK, the “input” domain of CheA is C-terminal. This region

forms a complex with the CheW protein and the transmembrane MCPs, allowing CheA to

indirectly receive extracellular signals.

Once stimulated, CheA self-phosphorylates its Hpt domain, which can then phosphory-

late both the RRs CheB and CheY (Bourret and Stock, 2000; Wadhams and Armitage, 2004)

(Figure 1.6). The second domain in HK CheY, denoted P2, has been shown to be unnecessary

for this transfer, but by binding to CheB and CheY it increases the rate of phosphotransfer

(Jahreis et al., 2004).

The cheA gene is unusual in having two distinct in-frame initiation sites, where the

second possible start codon gives rise to a shorter protein CheAS (Smith and Parkinson, 1980).

This short form CheAS lacks the N-terminal Hpt domain found in the full length CheA (or

CheAL) described above, and therefore cannot be phosphorylated itself. While CheAS has been

shown to be non-essential for chemotaxis (Sanatinia et al., 1995), it can however phosphorylate

the Hpt domain of CheA (Wolfe and Stewart, 1993; Wolfe et al., 1994).

CheY has only a receiver domain and interacts directly with the flagellar proteins to

control its direction of spin, achieving chemotaxis (Lowry et al., 1994; Djordjevic et al., 1998).

This is probably the best understood RR without a separate output domain. CheB on the

other hand has an output domain, a methylesterase controlling the methylation state of the

MCPs, adjusting the sensitivity of the chemo-receptors (Stock and Koshland, 1978; Hayashi
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et al., 1979; Yonekawa et al., 1983).

The E. coli chemotaxis TCS system serves not only as an example of a simple one-

to-many or divergent network, but also includes the exemplar Tii containing HK, CheA, and

output domain less RR, CheB.

1.4.4 Chemotaxis in Rhodobacter sphaeroides

The E. coli chemotaxis system, with its very simple set of TCS genes discussed above, appears

to be a minimal system when compared to other bacteria – for one thing there is only a single

type of flagellum which is regulated by a simple binary switch (the tumble/swim mechanism

giving directed Brownian motion). Some bacteria have two flagellar systems, a polar flagellum

for swimming and lateral flagella for swarming. Indeed, recent work suggests that some strains

of E. coli have acquired a second flagellar system by horizontal gene transfer (Ren et al.,

2005). For recent reviews see Szurmant and Ordal (2004) and Wadhams and Armitage (2004).

Given some bacteria have multiple motor systems, and may live in far less homogeneous

environments than a mammalian gut, it is not surprising that the TCS networks controlling

their movements can be much more complicated, for example Sinorhizobium meliloti (Schmitt,

2002), Helicobacter pylori (Jiménez-Pearson et al., 2005) and Myxococcus xanthus (Li et al.,

2005).

Rhodobacter sphaeroides is a purple photosynthetic bacterium found in freshwater and

marine environments. It has two different flagellar systems, a single subpolar flagellum (fla1)

and multiple polar flagella (fla2) (Poggio et al., 2007). In other species, dual flagellar systems

allow motility in different environments (swimming and swarming) (McCarter, 2004), whereas

here both systems appear to be used for swimming.

There are multiple homologues of the E. coli chemotaxis genes in Rhodobacter sphae-

roides, and while many of these proteins have been shown to be involved in chemotaxis, it is

possible that others are not. For example, in the related Rhodospirillum centenum which also

has numerous che-homologues, Berleman and Bauer (2005) showed some controlled flagellar

biosynthesis rather than chemotaxis.

Rhodobacter sphaeroides has three HKs homologous to E. coli CheA (CheA1, CheA2,

and the special case of CheA3/CheA4), four CheW’s, six RRs homologous to CheY (CheY1

through CheY6), two RRs homologous to CheB (CheB1 and CheB2), plus a more unusual

protein dubbed CheBRA. Most of these genes are found in three loci. Focusing on the TCS

and CheW genes only cheOp1 contains cheY5, cheY1, cheA1, cheW1 and cheY2 ; cheOp2

contains cheY3, cheA2, cheW2, cheW3 and cheB1 ; cheOp3 contains cheA4, cheB2, cheW4,

10



Figure 1.7: The Rhodobacter sphaeroides chemotaxis TCS system. Colour scheme as in other
figures, but with dashed horizontal blue lines separating proteins from different operons (not
spatial segregation). For figure clarity, none of the potential in vitro inter-operon phospho-
transfers from Porter and Armitage (2004) Figure 6 are shown here (except CheA2 to CheY4,
as CheA2 appears to be CheY4’s only phospho-donor). cf. Figure 1.6 for E. coli.
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cheY6 and cheA3 (Porter et al., 2002); with cheY4 encoded on the small mcpG locus (Shah

et al., 2000). Note that the protein numbers do not correspond to the operon numbers (see

Porter et al. (2002) Figure 1 for further details on the operon structure). These proteins are

illustrated in Figure 1.7.

An additional small locus encodes locus tag RSP 2229, a gene dubbed cheBRA, as it

resembles a CheB-CheW-CheA fusion (Mackenzie et al., 2001; Porter et al., 2002). However,

while there are good matches to CheB and CheW proteins, the C-terminal region does not

resemble a CheA Tii domain, but rather a HisKA domain without an HATPase – suggesting

this is a novel phosphotransfer protein. Immediately downstream of this, locus tag RSP 2230

encodes a RR which could be a seventh CheY homologue. To date, neither protein has

been characterised in the literature, and any role they may have in chemotaxis remains to be

explored.

One of the most interesting aspects of the Rhodobacter sphaeroides TCS systems is

proteins CheA3 and CheA4 (both encoded in cheOp3). These are essential for chemotaxis, and

contain between them all five domains expected in CheA (as illustrated in Figure 1.6) (Porter

et al., 2002). These two proteins appear to function together as an HK where the HATPase

of CheA4 phosphorylates the Hpt domain of CheA3 (Porter and Armitage, 2004), somewhat

similar to the Rcs system in E. coli (Section 1.4.7). There are also even striking similarities

to the trans-phosphorylation between the short and long forms of E. coli CheA described in

Section 1.4.3.

Thus far, CheA1 appears to be non-essential for chemotaxis (Porter et al., 2006). On

the other hand, CheA2 is essential for aerotaxis, phototaxis, and chemotaxis (Martin et al.,

2001), and as noted above, CheA3/CheA4 is also essential for chemotaxis. Chemotaxis of the

single subpolar flagellum (fla1) is controlled by CheY6 and either CheY3 or CheY4 (Porter

et al., 2006), while it was recently shown that the cheOp1 RRs (CheY1, CheY2 and CheY5)

control the multiple polar flagellar (fla2) system (del Campo et al., 2007).

In vitro work has shown broad potential cross-talk between the three CheA HKs and

the eight CheY or CheB like RRs (Porter and Armitage, 2004). It appears that in vivo there are

two spatially separated chemotaxis systems controlling the polar flagellum (fla1). The cheOp2

encoded proteins including CheA2, CheW2 and cheW3 are targeted to the cell poles, while

cheOp3 proteins CheA3/CheA4 and CheW4 are targeted to a cytoplasmic cluster, with RRs

CheB1 and CheB2 throughout the cytoplasm (Martin et al., 2003; Wadhams et al., 2003).

The RRs CheY3, CheY4 and CheY6 all appear relatively mobile but somewhat surprisingly, all

three appear to associate with the cytoplasmic cluster (i.e. near CheA3/A4), but only CheY4
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was shown to associate with the polar cluster (i.e. near CheA2) (Porter et al., 2006). It would

be interesting to see if these proteins are also segregated from the cheOp1 system controlling

fla2, or if the in vitro cross-talk between the systems also occurs in vivo which would suggest

CheA2 has a key role as a master transmitter activating both flagellar systems.

Given the results of del Campo et al. (2007) tying the cheOp1 RRs to the fla2 system,

it now seems likely that the HK CheA1, which is also encoded on cheOp1, does have a role

in chemotaxis after all. On the basis of both the genome arrangement and the in vitro results

reported in Porter and Armitage (2004), CheA1 might be expected to drive the fla2 system

almost exclusively, and have little interaction with the fla1 system (except perhaps via CheY3).

The chemotaxis TCS genes in Rhodobacter sphaeroides serve as a model system where

spatial segregation reduces cross-talk between otherwise compatible transmitters and receivers,

which appear to be the result of both gene duplications and horizontal transfer.

1.4.5 Hybrid kinase systems in Bacteroides

Bacteroides thetaiotaomicron and Bacteroides fragilis are very unusual in having a number

of HY genes (with Ti-R domains) which have both transmembrane input domains and DNA-

binding output domains (Xu et al., 2004) (discussed in more detail in Chapter 4). These

systems presumably function as separate self-contained signalling pathways linking external

stimuli to DNA regulatory responses (Figure 1.8).

Figure 1.8: This is an example of a Ti-R hybrid kinase (HY), with a transmembrane input
domain and a DNA-binding output domain. This combination is extremely rare, however
multiple examples exist in Bacteroides species.

1.4.6 Phosphorelays with a tripartite HY and RR

All the examples so far have had single step phosphotransfers His→Asp from a transmitter to

receiver domain. This section will describe examples of a His→Asp→His→Asp phosphorelay
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using two genes, Ti-R-H + R, a tripartite HY containing a Class I transmitter, receiver and

Hpt domain, with a normal RR containing one receiver, as illustrated in Figure 1.4.

Aerobic metabolism in E. coli is regulated by the ArcB/ArcA TCS system. The mem-

brane sensor protein ArcB is a Ti-R-H tripartite HY (Iuchi et al., 1990). Its partner ArcA is

a cytoplamsic RR with a DNA-binding output domain and receiver domain. These genes are

not located on the same operon, but it is now well established that this system is a two gene

His→Asp→His→Asp phosphorelay (Tsuzuki et al., 1995; Georgellis et al., 1998; Matsushika

and Mizuno, 1998; Kwon et al., 2000).

When ArcB detects anaerobic growth conditions, the Ti auto-phosphorylates, then

phosphorylates the receiver which phosphorylates the Hpt domain. Finally via an inter-protein

interaction, the phosphoryl group is transfered from the ArcB Hpt to the ArcA receiver, which

then regulates metabolic operons. Conversely, under aerobic conditions ArcB acts as a phos-

phatase and dephosphorylates ArcA, deactivating it (Kwon et al., 2000; Malpica et al., 2006).

The Hpt domain of ArcB is similar to that of CheA, and some work suggests that the

Hpt domain of ArcB can also phosphorylate the receiver domain of CheY (Yaku et al., 1997;

Kato et al., 1999), see Section 1.4.3. There is also some evidence that the RR ArcA is also

phosphorylated by another HK, CpxA (Iuchi et al., 1989), suggesting some cross-talk between

the ArcB/ArcA and CpxA/CpxB TCS systems in E. coli.

In addition to the E. coli ArcB/ArcA phosphorelay described above, there are numerous

other analogous Ti-R-H + R phosophorelay systems in the literature, such as the E. coli

EvgA/EvgS system (Utsumi et al., 1992, 1994; Tanabe et al., 1998), and the BvgS/BvgA

relay in Bordetella pertussis which controls virulence and is essential for the colonisation of

the respiratory tract (Uhl and Miller, 1994, 1996). Another example is DorS/DorR, found

in Rhodobacter sphaeroides encoded on neighbouring genes within chromosome II, but on

opposite strands (Mouncey et al., 1997; Mouncey and Kaplan, 1998).

The TosS/TorR system in E. coli (Jourlin et al., 1999) is an interesting case as it appears

that the His→Asp→His→Asp relay can run partly in reverse with HY TorS dephosphorylating

RR TorR, an example of retro-phosphorylation (Ansaldi et al., 2001) previously also suggested

for ArcB/ArcA.

Finally, the GacS/GacA system is yet another Ti-R-H + R relay, found in Gram-negative

bacteria, which is reviewed in Heeb and Haas (2001). What signal the HY GacS detects has

yet to be determined, however the partner RR GacA controls the production of secondary

metabolites and extracellular enzymes involved in pathogenicity to plants and animals, or anti-

fungal activity. Interestingly, in no species were the two genes found in the same operon. GacS
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was first found in Pseudomonas syringae with a lesion manifestation giving its original name of

LemA (Hrabak and Willis, 1992), while in Erwinia carotovora the genes are known as ExpS (or

RpfA) and ExpA. The inter-protein phosphotransfer has been demonstrated in vitro for BarA

and UvrY, the Escherichia coli K12 homologues of GacS and GacA (Pernestig et al., 2001).

Note that in E. coli alone, there are at least four Ti-R-H + R two gene His→Asp→His-

→Asp relays, ArcB/ArcA, EvgA/EvgS, TorS/TorR and BarA/UvrY, together making up over

10% of the TCS genes in this organism. In fact, this sort of TCS phosphorelay appears to be

relatively common across the prokaryotes (see Chapter 2).

1.4.7 RcsC/RcsD/RcsB phosphorelay in E. coli

The RcsC/RcsD/RcsB system in E. coli is a three gene His→Asp→His→Asp phosphorelay,

similar to the Ti-R + H + R system shown in Figure 1.4 (Takeda et al., 2001; Clarke et al.,

2002). While the three genes are all found in the same region of the genome in E. coli

K12, rcsC is on the opposite strand (Clarke et al., 2002, Figure 2(A)). Homologous genes

have been identified in other bacteria, and the system is believed to be specific to enteric

pathogens/commensals (Erickson and Detweiler, 2006).

What is particularly interesting in this system is the second gene, RcsD previously

known as YojN, which functions as the Hpt containing phosphotransfer protein in the phospho-

cascade. It also has a non-functional Ti domain which is similar to that of RcsC but lacks

the conserved histidine residue. Both RcsC and RcsD have transmembrane domains, leading

Takeda et al. (2001) to suggest that they form a heterodimer, as illustrated in Figure 1.9.

The figure shows the HATPase domain of RcsD phosphorylating the HisKA domain of RcsC,

based on analogy to trans-phosphorylation in normal HK homodimers. It is not yet clear if

this is the case, or indeed which input domain(s) trigger the initial phosphorylation. RcsC is

understood to phosphorylate the RR RcsB, which then acts with a co-factor RcsA to bind to

DNA, targeting regions known as RcsAB boxes (Wehland and Bernhard, 2000).

The Rcs system demonstrates how surprising the TCS systems can be, and shows that

even transmitter domains lacking their conversed phosphorylatable histidine residue may still

play an active role.

1.4.8 Sporulation in Bacillus subtilis

When placed under environmental stress, many bacteria will form resilient spores allowing

them to wait for conditions to improve. The timing of this is extremely important, too late

and there may not be enough nutritional resources to complete spore formation. On the other
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Figure 1.9: The E. coli Rcs TCS relay, discussed in Section 1.4.7. RcsC is presumed to form a
dimer with RcsD/YojN, with the HATPase phosphorylating in trans. The colour scheme is as
in previous figures, but the HisKA domain in RcsD/YojN lacking its histidine phospholaytion
site is shown in grey and marked with an asterisk. Based on Takeda et al. (2001) Figure 8.

hand, sporulating too early does not take full advantage of limited resources, and runs the risk

of being out-competed by other cells.

The TCS systems of Bacillus subtilis are reviewed in Fabret et al. (1999). The sporula-

tion (Spo) system of Bacillus subtilis is one of the most studied complex TCS networks of any

bacteria (Figure 1.10). There are at least five HK proteins feeding various signals into a mas-

ter regulator via a phosphorelay (Hoch, 1993; Piggot and Hilbert, 2004; Barák et al., 2005).

The master regulator is Spo0A, a typical RR containing an N-terminal receiver domain and a

C-terminal DNA-binding domain. Dependent on its phosphorylation state, Spo0A influences

over 500 genes directly or indirectly (Molle et al., 2003).

Early work on the Bacillus subtilis Spo system focused on the relatively simple His→-

Asp→His→Asp phosphorelay from proteins KinA to Spo0F to Spo0B to Spo0A (Burbulys

et al., 1991), like that illustrated in Figure 1.4. KinA is a normal HK with a single Ti domain,

and both Spo0F and Spo0A are normal RRs with a single R domain. What is particularly

unusual is the histidine containing phosphotransfer protein Spo0B. This forms a dimer giving

a four α-helix bundle structurally analogous to the HisKA dimer or Hpt domain, but is quite

unique at the sequence level (Varughese et al., 1998). The structure of the Spo0B/Spo0F

complex was later solved (Zapf et al., 2000), and shows the receiver residues involved are

highly conserved between Spo0F and Spo0A suggesting they interact with Spo0B in the same

way, consistent with earlier mutagenesis results (Tzeng and Hoch, 1997). See Section 1.5.

It is now established that at least five HK proteins will phosphorylate Spo0F, namely

KinA, KinB, KinC, KinD and KinE (Jiang et al., 2000), allowing the Spo system to integrate
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Figure 1.10: The Bacillus subtilis sporulation TCS network, with five HKs feeding into a
phosphorelay, discussed in Section 1.4.8. The dimerisation of the HKs and Spo0B is not
shown. The colour scheme is as in previous figures, with the unique phosphotransfer domain
of Spo0B also shown in blue. Additional non-TCS proteins are involved in this pathway but
not shown here, for example see Piggot and Hilbert (2004) Figure 2.
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multiple input signals (both internal to the cell and external via transmembrane input domains).

In the case of KinA, recent work has elucidated the mechanism by which the extra-cellular

sensor domain controls the self-phosphoylation of the HisKA domain (Lee et al., 2008)

A broad range of other proteins also intract with the system, for example Sda is known

to prevent the self-phosphorylation of KinA in the event of DNA damage or replication defects

(Rowland et al., 2004), and Spo0E will de-phosphorylate Spo0A (Ohlsen et al., 1994). For a

recent overview of the full sporulation system in Bacillus subtilis see Piggot and Hilbert (2004)

Figure 2.

Stephenson and Hoch (2002) looked at the evolution of the Spo TCS system by a

comparison of Bacillus subtilis, B. halodurans, B. anthracis and B. stearothermophilus. They

found the spo0F, spo0B and spo0A genes to be present in all species. Homologues of the

kinA-E HK genes could only be identified by their highly conserved transmitter domains, as

there were dramatic differences in the input domains of these genes. It is therefore presumed

that the different Bacillus species use the same basic TCS network topology, but integrate

different input signals according to their own very different ecological niches. It seems likely

that the changes of input domains occurred by recombination events.

1.4.9 Quorum-sensing in Vibrio harveyi

Bacteria communicate using extracellular signal molecules termed autoinducers in a process

called quorum-sensing. The higher the local population level, the higher the levels of these

autoinducer signal molecules. In many cases, this communication is within species, for example

collective behaviours like sporulation or bioluminescence, although interspecies communication

is also possible where multiple species produce and detect the same autoinducers (Schauder

and Bassler, 2001; McNab and Lamont, 2003).

A model organism in this area is the bioluminescent marine bacterium Vibrio harveyi,

which uses a TCS network to integrate three different quorum-sensing systems (Figure 1.11).

In the first system, the HY LuxN detects autoinducer AI-1 (or HAI-1 for harveyi autoinducer

one), which is produced by LuxM. In system two, the HY LuxQ together with LuxP detects the

autoinducer AI-2, whose precursor is produced by LuxS (Freeman and Bassler, 1999). Finally,

the HK CqsS detects the cholerae autoinducer CAI-1, which is produced by CqsA (Henke and

Bassler, 2004). This third system is called the cholerae quorum-sensing (Cqs) system as it

was initially identified in the related species Vibrio cholerae, which has a similar TCS network

sharing many of the same genes (Miller et al., 2002).

The three different autoinducers AI-1, AI-2 and CAI-1 are detected independently using
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Figure 1.11: The Vibrio harveyi quorum-sensing TCS network, with three HYs feeding into
a phosphorelay. Based on figures in Freeman and Bassler (1999); Henke and Bassler (2004);
Timmen et al. (2006). Additional non-TCS proteins are involved in this network but not shown
here. c.f. the Vibrio cholerae network shown in Miller et al. (2002) Figure 7.
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three different transmembrane Ti-R HYs (LuxN, LuxQ and CqsS). All three HYs phosphorylate

the Hpt containing protein LuxU, integrating the stimuli. LuxU will in turn phosphorylate the

RR LuxO whose DNA-binding output domain regulates numerous other systems, including the

bioluminescence genes (lux) (Freeman and Bassler, 1999; Henke and Bassler, 2004; Timmen

et al., 2006). The TCS network is therefore based on a Ti-R + H + R phosphorelay, but with

multiple initial HYs.

Like the Bacillus subtilis sporulation TCS network described above, this is a many-

to-one network, integrating multiple inputs into a single output response (in the form of

gene regulation). Although both networks use a His→Asp→His→Asp relay, here the first

phosphotransfer is intra-protein, whereas in Bacillus subtilis all three steps are inter-protein.

1.4.10 VirA/VigG virulence in Agrobacterium tumefaciens

The Agrobacterium tumefaciens VirA/VirG system is an interesting two gene TCS system

controlling virulence (Jin et al., 1990; Chang and Winans, 1992; Chang et al., 1996; Jin et al.,

1990; Brencic et al., 2004), illustrated in Figure 1.12. VirA is a transmembrane Ti-R HY which

phosphorylates a RR, VirG. The receiver in VirA functions as an autoinhibitory domain. In

its unphosphorylated state, this receiver domain interacts with the transmitter and prevents it

from auto-phosphorylating, indirectly preventing the phosphorylation of the receiver in VirG.

It would appear that the role of the VirA receiver is to prevent low level signalling from

VirA to VirG, as in order for VirG to become phosphorylated, first the VirA receiver must be

phosphorylated, overcoming its own inhibitory action.

1.4.11 RcaE/RcaF/RcaC phosphorelay in Fremyella diplosiphon

For over a century it has been known that some cyanobacteria will change colour, expressing

red pigments in green light and vice versa. This process is called complementary chromatic

adaptation (CCA), and in the filamentous cyanobacterium Fremyella diplosiphon it is partly

controlled by the Rca TCS system (regulator for complementary chromatic adaptation, Fig-

ure 1.13). This is a complex three gene TCS phosphorelay system (Kehoe and Grossman, 1997;

Stowe-Evans and Kehoe, 2004; Li and Kehoe, 2005; Kehoe and Gutu, 2006). Simplistically, it

can be regarded as a variant of the Ti + R + H-R three protein relay illustrated in Figure 1.4.

The first protein in the relay is the HK RcaE, which has a chromophore-binding domain

and will self-phosphorylate in red light, and then phosphorylate the receiver of RcaF. This in

turn will phosphorylate the Hpt domain of HY RcaC, which has two functional receiver domains,

and a third degenerate receiver. The RcaC has a DNA-binding domain which controls the
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Figure 1.12: Agrobacterium tumefaciens VirA/VirG system, consisting of a transmembrane
HY with Ti-R domains and a normal RR. This system can be thought of as a normal Ti + R
two gene pair, except the VirA has a receiver domain which when unphosphorylated inhibits
the self-phosphorylation of the Ti domain and/or the phosphorylation of the VirG receiver.

Figure 1.13: The Fremyella diplosiphon Rca phosphorelay, based in part on Kehoe and Gutu
(2006) Figure 4. The central receiver domain of RcaC, shown in gray and marked with an
asterisk, is degenerate and lacks the conserved aspartate phosphorylation site.
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expression of the differently pigmented photosynthetic light-harvesting antennae. This output

domain is adjacent to the N-terminal receiver, and it is presumably activated by it. The role

of the second, C-terminal, receiver in RcaC is unclear, as is that of the degenerate receiver

domain. Perhaps they act as in an inhibitory way, through competitive binding to the Hpt

domain akin to the functionality of VirA (see Section 1.4.10).

In addition to showing yet another variation on the TCS phosphorelay, RcaC appears to

show a possible competitive binding role for multiple receiver domains within a single protein.

The complex HY RodK in M. xanthus is a similar example, containing domains Ti-R-R-R

(Rasmussen et al., 2006).

1.4.12 Red system in Myxococcus xanthus

The Red TCS system in M. xanthus is a complex four gene TCS network important in sporu-

lation (Higgs et al., 2005). The red operon encodes four consecutive TCS proteins: RedC is

a conventional transmembrane HK. RedD is a complex RR containing two receiver domains

(and no output domain). RedE is another HK, it appears to be cytosolic and lacking an input

domain. Finally RedF is another RR, containing a receiver but no output domain.

Figure 1.14 shows the four TCS genes and the interactions suggested by a yeast two-

hybrid (Y2H) assay. RedC appears to bind to the second receiver in RedD, while RedE appears

to bind to both the first receiver in RedD, and the receiver of RedF (Higgs et al., 2005). The

fact that the RRs RedD and RedF have no output domains suggests that they could act as

phosphorelay proteins, or perhaps acts directly like CheY in E. coli (see Section 1.4.3). To date

no further clarification of this system has been published, leaving many unanswered questions,

such as what controls the phosphorylation state of the HK RedE.

1.4.13 TCS systems in Caulobacter crescentus

The Gram-negative aquatic bacterium Caulobacter crescentus is a model organism for study-

ing the cell cycle, where unusually cell division is asymmetric, yielding a swarmer cell and a

non-motile stalked cell (Shapiro and Losick, 1997; McAdams and Shapiro, 2003). A recent

comprehensive deletion analysis found at least 39 of its 106 TCS genes are required for cell

cycle progression, growth, or morphogenesis (Skerker et al., 2005).

One of the key regulators in the cell cycle is a RR CtrA which controls both polar

morphogenesis and essential cell cycle processes. Another key RR in the cell cycle is DivK,

which appears to act upstream of CtrA, perhaps by a phosphorelay (Wu et al., 1998). The

RR DivK is known to be phosphoryolated by HKs DivJ and PleC. Y2H work suggests DivK
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also interacts with the sensor kinase DivL and two further uncharacterised soluble HKs, CckN

and CckO (Ohta and Newton, 2003), while previous work had suggested DivL interacted

with RR CtrA. DivL is of particular note as it has a phosphorylatable tyrosine residue, rather

than a histidine as expected in a TCS kinase (Wu et al., 1999) (making it a tyrosine sensor

kinase rather than a histidine sensor kinase). Together these TCS proteins and others yet to

be identified appear to form a complex and tightly regulated signalling network, reviewed in

Ausmees and Jacobs-Wagner (2003).

In addition to their knock out mutant analysis, Skerker et al. (2005) also tested around

ten HKs against a panel of 44 RRs using radioactively labelled phosphotransfer assays. This

demonstrated an in vitro kinetic preferences for the HKs known partner RR(s), and successfully

identified two orphan TCS genes as a novel system. However, even this comprehensive analysis

covered only a fraction of the full interaction matrix for Caulobacter crescentus. This is a much

more manageable task in E. coli, where a similar set of experiments has tested most of the

possible TCS interactions (Yamamoto et al., 2005), giving a fairly complete overview.

1.4.14 Phosphorelays in yeast

As mentioned in the introduction, TCS genes have also been found in yeast. A three gene

osmoregulatory His→Asp→His→Asp phosphorelay was found in the budding yeast Saccha-

romyces cerevisiae (Maeda et al., 1994; Posas et al., 1996; Wurgler-Murphy and Saito, 1997).

This is like the Ti-R + H + R example shown in Figure 1.4. The transmembrane HY Sln1

contains a transmitter domain which intra-molecularly phosphorylates its C-terminal receiver

domain, which in turn phosphorylates the Hpt containing protein Ypd1, which phosphorlyates

the RR Ssk1. Unusually, in the RR Ssk1 the receiver domain is C-terminal with an N-terminal

output domain, the reverse of the typical domain order. This output domain interacts with a

mitogen-activated protein kinase (MAPK) cascade controlling glycerol synthesis, thus modu-

lating the composition of the cell membrane.

Later, a second RR partner for Ypd1 was identified, Skn7 (Li et al., 1998; Ketela et al.,

1998), making this a one-to-many network (Figure 1.15). This means that Ypd1 interacts with

three receiver domains, and exploration of the molecular basis of these interactions identified a

common binding site on the Hpt domain of Ypd1 (Porter et al., 2003; Porter and West, 2005).

In addition, the crystal structure of the Sln1/Ypd1 complex has been solved (Xu et al., 2003)

(see Section 1.5).

The fission yeast Schizosaccharomyces pombe has its own TCS network (Aoyama et al.,

2000; Nguyen et al., 2000; Buck et al., 2001; Nakamichi et al., 2002, 2003) which is similar,
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Figure 1.14: The M. xanthus red TCS network. Based on Y2H interactions reported in Higgs
et al. (2005), with the directionality His→Asp by assumption.

Figure 1.15: The Saccharomyces cerevisiae TCS network, based on a His→Asp→His→Asp
phosphorelay Ti-R + H + R relay, discussed in Section 1.4.14.
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but with more proteins involved (Figure 1.16). There are three known HKs (Mak1, Mak2

and Mak3 – also known as Phk3, Phk1 and Phk2) which are all cytosolic, unlike Snl1 in

Saccharomyces cerevisiae. The three HKs appear to phosphorylate the Hpt containing Mpr1

(aka Spy1), which in turn phosphorylates two RRs (Mcs4 and Prr1). Thus this can be seen as

a many-to-one-to-many network, where Mpr1 acts as a central point of regulation.

The phosphotransfer protein Mpr1 has a C-terminal Hpt, with an additional non-

essential N-terminal domain which appears to facilitate binding to the RR (Tan et al., 2007).

The RR Mcs4 appears to be a homologue of Ssk1 in Saccharomyces cerevisiae, and also ini-

tiates a MAPK cascade. The TCS system responds to oxidative stress, but forms part of a

larger network which also regulates mitosis and meiosis.

Both these yeast TCS networks are very similar to the quorum-sensing TCS network in

Vibrio harveyi (see Section 1.4.9). Also, as an experimental system, yeast have one potential

advantage – these appear to be their only TCS genes, meaning inter-system cross-talk need

not be considered as a complicating factor when designing genetic modification experiments.

Interestingly the somewhat related filamentous ascomycetes encode an extensive family

of HY signaling proteins, but with only one Hpt phosphotransfer protein and just two or three

RRs (Catlett et al., 2003). These fungi may also have just a single many-to-one-to-many TCS

network, but with over ten HYs acting as inputs.

1.4.15 TCS systems in plants

Around fifty TCS genes have been identified in Arabidopsis thaliana (Hwang et al., 2002),

with a similar number found in rice (Pareek et al., 2006). In some cases their role or func-

tion is somewhat understood. Many of these genes are HYs containing Ti-R domains, for

example osmotic stress responses are regulated by ATHK1 which appears to act upstream

of a MAPK cascade (Urao et al., 1999). One unusual HY protein is WOL, containing an N-

terminal transmembrane domain followed by Ti-R-R, which appears to be important in vascular

morphogenesis (Mähönen et al., 2000).

Plants (and cyanobacteria) also contain phytochromes, which are photosensory mol-

ecules with significant homology to histidine protein kinases (Schneider-Poetsch et al., 1991).

These usually lack the conserved histidine residue, and interact with G-proteins rather than RRs

(NeuhausEtAl1993). Some of these proteins may feed into the circadian clock, which is a well

studied system known to include several RR homologues lacking the aspartate phosphorylation

site, termed pseudo response regulators (RPPs). One of these, TOC1/PRR1, is believed to

be a key part of the clock (Makino et al., 2000). Furthermore, the transcription of four other
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Figure 1.16: The Schizosaccharomyces pombe TCS network, with three HYs feeding into a
phosphorelay, discussed in Section 1.4.14. Additional non-TCS proteins are involved in this
pathway but not shown here, for example see Nakamichi et al. (2003) Figure 7.
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PRR genes is also tied to the circadian rhythm (PRR3, 5, 7, and 9), peaking at different times

during the day (Matsushika et al., 2000; Makino et al., 2002).

For recent reviews of TCS systems in plants, including the circadian clock, see Grefen

and Harter (2004) and Mizuno (2005).

1.5 Three dimensional structures

Three dimensional structures have been solved for examples of the individual TCS domains,

but for interacting complexes only a handful of minority cases have been resolved. In particular,

a structure of the HisKA dimer in complex with a receiver domain has not yet been obtained.

All the structures listed below are deposited in the Protein Data Bank (PDB) (Berman et al.,

2000).

CheY from E. coli was the first response regulator receiver domain structure to be

solved (Stock et al., 1989; Volz and Matsumura, 1991). Since then many others have been

solved (Madhusudan et al., 1996; Baikalov et al., 1996; Feher et al., 1997; Solà et al., 1999;

Birck et al., 1999; Lewis et al., 1999; Kern et al., 1999; Guillet et al., 2002; Toro-Roman

et al., 2005). These structures are all highly similar, with a five strand β-sheet surrounded

by five α-helices in a barrel like arrangement. Figure 1.17 shows the Bacillus subtilis Spo0F

receiver domain from PDB file 1F51 (Zapf et al., 2000), while Figure 1.18 shows a simplified

representation with the standard notation for the receiver secondary structure.

While all the receiver domains (with their asparate phosphorylation site) are very similar,

there are several classes of histidine containing transmitter/phosphotransfer domain: HisKA,

Hpt and the special case of Spo0B. These are shown schematically in Figure 1.19, and discussed

below. They all share a four α-helix bundle, with the phosphorylated histidine about half-way

down one helix, and are presumed to interact with their partner receiver domains in analogous

fashions.

The HisKA domain, found in Class I transmitters (Ti), forms homodimers giving a

four α-helix bundle. Each monomer has two α-helices, with the histidine phosphorylation site

exposed about half way along the first helix. There are therefore two phosphorylation sites on

opposite sides of the dimer bundle. Solved structures include E. coli EnvZ (Tomomori et al.,

1999, PDB reference 1JOY), shown in Figure 1.20.

The Hpt domain, found in Class II transmitters (Tii) and as a phosphotransfer domain

in TCS relays, also forms a four α-helix bundle, but this is a monomer and so there is only

one histidine phosphorylation site. Solved structures include E. coli ArcB (Kato et al., 1997;

Ikegami et al., 2001, PDB references 1BDJ, 1A0B, 1FR0) and RcsD/YojN (Rogova et al.,
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Figure 1.17: The 3D monomer structure of the receiver domain from Bacillus subtilis RR Spo0F
(Zapf et al., 2000, PDB ref. 1F51). A “cartoon” representation by the software package VMD
(Humphrey et al., 1996) is shown, coloured according to the secondary structure (five α-helices
in blue, five β-sheets in yellow, and coils in green), with a purple space-filling representation
of the phosphorylatable aspartate (D54).
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Figure 1.18: Simple diagram of the five α-helix barrel of the receiver domain, with its five
strand β-sheet core. By convention, the receiver domain is considered to have a front side
which forms the interaction surface (shown in the foreground) and a back side. Following the
notation of Zapf et al. (2000) the front five loops are labeled L1 to L5, with the conserved
phosphorylatable aspartate on the end of β3 / start of L3, while the four back loops have not
been labeled. cf. the solved structure shown in Figure 1.17.
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Figure 1.19: Simple diagrams of the four α-helix bundles in the HisKA and Spo0B dimers,
and the Hpt monomer. In the case of the dimers, the second protein is shown in a pale blue
with the backbone and labels in grey, and the α-helices numbered with a prime. cf. solved
structures shown in Figures 1.20, 1.21 and 1.22.
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Figure 1.20: The 3D dimer structure of the HisKA domain of E. coli EnvZ, from PDB file
1JOY (Tomomori et al., 1999). The histidine phosphorylation sites (H243) are shown using
a space-filling model. One monomer is shown in red, with the phosphorylatable histidine in
orange, the other is in blue with its phosphorylatable histidine in purple.
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Figure 1.21: The 3D monomer structure of the Hpt domain of E. coli ArcB, from PDB file 1BDJ
(Kato et al., 1999). The protein is shown in red, with the conserved histidine phosphorylation
site (H715) using a space-filling model in orange.

Figure 1.22: The 3D dimer structure of Bacillus subtilis Spo0B, from PDB file 1F51 (Zapf
et al., 2000). The histidine phosphorylation sites (H30) are shown using a space-filling model.
One monomer is shown in red, with the phosphorylatable histidine in orange, the other dimer
is in blue with its phosphorylatable histidine in purple.
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Figure 1.23: Crystal structure of the Bacillus subtilis dimer Spo0B in complex with the
Spo0F receiver, PDB file 1F51, adapted from Laub and Goulian (2007) Figure 5. The Spo0B
monomers are in light and dark blue, and two Spo0F molecules are in green. The histidine
(H30) and aspartate (D54) phosphorylation sites are shown as red and yellow stick models
respectively.

2004, PDB ref. 1SR2). The ArcB Hpt structure is shown in Figure 1.21. The yeast protein

Ypd1 has also had its Hpt structure solved (Xu and West, 1999, PDB ref. 1QSP), and while

not perfectly in agreement, does also have the four α-helix bundle structure.

The Bacillus subtilis protein Spo0B is a unique case. While phylogenetically distinct, it

is structurally analoguous to the HisKA domain and forms a four α-helix bundle with similarly

positioned histidine phosphorylation sites (Varughese et al., 1998, PDB reference 1IXM). When

compared to the HisKA dimer, one obvious difference is the switch of the relative positions

of the second helix of the two proteins (see Figure 1.19). As discussed in Section 1.4.8, this

protein acts in a phosphorelay, interacting with the receiver domains of proteins Spo0F and

Spo0A. A crystallographic structure has been obtained for the Spo0B/Spo0F interaction (Zapf
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et al., 2000, PDB reference 1F51), see Figure 1.23, which can be used as a basis to interpret

the likely orientation of a HisKA and receiver interaction.

Structures of the Hpt domain in complex with a receiver domain have also been solved

experimentally, for example the Hpt domain of ArcB with response regulator CheY from E. coli

(Kato et al., 1999, PDB reference 1BDJ). The ArcB Hpt is similar to that of CheA, which

interacts with the CheY receiver as described in Section 1.4.3. The ArcB/ArcC system was

described in Section 1.4.6. The yeast Ypd1/Sln1 complex (see Section 1.4.14) is another

solved example of the Hpt-receiver interaction (Xu et al., 2003, PDB references 1OXB and

1OXK).

1.6 TCS networks

Input and output domains in TCS systems are heterogeneous due to the variety of different

stimuli they respond to, and the different responses they elicit (Mascher et al., 2006). While

the input and output domains define the function, it is the transmitter-receiver interactions

which define the topology of the TCS pathway or network (Figure 1.24).

Skerker et al. (2005) and other results suggest that transmitter-receiver interactions

are usually pairwise exclusive, or at least have a kinetic preference for the cognate partner.

However, as the examples in the previous section show, some domains are promiscuous and

have multiple partners. This means that instead of an organism being restricted to having

multiple separate TCS pathways operating in parallel and in isolation, complicated networks

are possible.

For example, in E. coli there are two Nar HK proteins which will both interact with the

two Nar RR proteins (Section 1.4.2). The Bacillus subtilis sporulation system has five HKs all

phosphorylating the same RR, a many-to-one network (Section 1.4.8). Conversely, the E. coli

chemotaxis system has one HK phosphorylating two different RRs, a one-to-many network

(Section 1.4.3).

The comparison of Bacillus species in Stephenson and Hoch (2002) found the same ba-

sic TCS sporulation network structure (Section 1.4.8), but with different input domains present

in the HKs, presumably achieved by recombination events. More generally, TCS networks are

presumably created from simple HK+RR pairs by a series of gene duplications, modifications

and deletions.

The literature also shows that in addition to simple cross-talk by promiscuous phos-

phorylation, and TCS regulating each other at the transcriptional level (Bijlsma and Grois-

man, 2003), more complex interactions can also occur between systems. For example, the
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Salmonella PhoP/PhoQ and PmrA/PmrB TCS systems can interact via the PmrD protein

which is promoted by phosphorylated PhoP, and binds to phosphorylated PmrA and prevents

its dephosphorylation (Kato and Groisman, 2004). The VirA/VirG system (Section 1.4.10), or

HYs RcaC (Section 1.4.11) and RodK (Rasmussen et al., 2006) appear to demonstrate roles

for competitive phosphorylation between multiple receivers. Similarly in Helicobacter pylori,

the CheA homologue CheAY2 has an additional receiver domain which seems to act as a

phosphate sink to modulate the phosphorylation level of the partner CheY homologue, CheY1

(Jiménez-Pearson et al., 2005).

More recent work on an artifical cross-talk system in genetically modified E. coli was

reviewed in Laub and Goulian (2007). The enterococci VanS/VanR TCS system was expressed

in E. coli, and its ability to interact with the native E. coli PhoR/PhoB TCS system was studied.

When only one of these HKs is present (PhoR or VanS) they can phospholylate both RRs PhoB

and VanR. However, when both HKs are present this cross-talk is much reduced, likely the

result of the HKs having phosphatase activity on their partner RR. This suggests bifunctional

HKs (with kinase and phosphatase activity) may be important in preventing unwanted cross-

talk, while mono-functional HKs (kinase only) would be required in many-to-one pathways.

A complex TCS network linking multiple stimuli and responses to control the behaviour

of a prokaryote can be considered analagous to a neural network in higher organisms (Helling-

werf et al., 1995). The evolution of the TCS network over generations can adjust the affinity

of each potential TCS interaction, and even alter the network topology, allowing prokaryotes

to acquire new behaviour. This is akin to the development of neural networks over the life-

time of an individual higher organism. Hoffer et al. (2001) goes one step further, claiming

past phosphate levels influence auto-amplification of two-component regulatory systems giving

“learning” behaviour on a much faster time scale.

1.7 Predicting TCS interactions

Identifying potential interactions between HKs and RRs is the first step to building up an

understanding of a prokaryote’s TCS network. There are several approaches to predicting

these TCS interactions, which must ultimately be verified experimentally.
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1.7.1 Genome arrangement

The simplest way to deduce TCS pairings is from the arrangement of the TCS genes in the

genome. In prokaryotes, co-expressed genes are normally found together in operons, and as a

result genes of related or interacting function are often found next to each other. Typically the

genes for HKs are found adjacent to the genes for their partner RRs in a single operon. Fur-

thermore, a high proportion of TCS gene pairs appear to have fused into single HYs containing

both a transmitter domain and a receiver domain. Such examples can easily be identified from

the genome (Chapter 2).

In addition to these simple cases, there are more complicated hybrid proteins contain-

ing multiple transmitters and/or receiver domains, and also complex gene clusters containing

multiple TCS genes. Conversely, some TCS genes are isolated or orphaned – they do not lie

adjacent to the gene for their partner signalling protein. In general, not only do larger genomes

tend to have more TCS genes, the genes and cluster also tend to be more complicated (Chap-

ter 2). Thus in many cases the partner proteins and consequent signalling pathways for many

TCS proteins are unclear, and cannot be predicted from the genome arrangement alone. In

M. xanthus for example, a large proportion of TCS genes are complicated hybrids and/or in

complex gene clusters, and their partnerships cannot be easily inferred (Whitworth and Cock,

2008a; Shi et al., 2008).

1.7.2 Phylogenetics and comparative genomics

If an operon containing an HK/RR pair were to be duplicated, this would yield two initially

identical TCS systems which would exhibit cross-talk if they were to be co-expressed. Over evo-

lutionary timescales, the transmitter and receiver interaction surfaces could diverge, restricting

the cross-talk, for example giving rise to two isolated HK/RR pairs. A simple interpretation of

the phylogenetic relatedness of the transmitter and receiver domains within an organism can

be indicative of past interactions, and thus guide predictions of the current interactions. See

Figure 5 in Grebe and Stock (1999) and Figure 2 in Koretke et al. (2000), or for non-TCS

example, Goh et al. (2000). Indeed, domain sequence comparison was used in the discovery

of the Nar system in E. coli (Section 1.4.2).

Comparative genomics is also potentially very powerful for predicting TCS interac-

tions. When a system is known in one organism, this can be used as a template to interpret

the interactions of homologous genes in related species. For example, Bacillus sporulation

(Section 1.4.8), and Vibrio quorum sensing (Section 1.4.9).
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1.7.3 Co-expression

For any TCS phosphotransfer to take place, the two components must be co-expressed and co-

located. Strict regulation can prevent cross-talk between otherwise compatible domains. The

chemotaxis system in Rhodobacter sphaeroides appears to employ spatial segregation in this

way (Section 1.4.4). Other organisms have complex temporally regulated behaviour which may

also prevent unwanted TCS cross-talk. Examples include the cell cycle in Caulobacter crescen-

tus (Section 1.4.13) and developmental regulation of fruiting body formation in M. xanthus

(Whitworth and Cock, 2008a).

Co-expression data has been used to predict TCS partnerships in Desulfovibrio vulgaris

using whole-genome microarrays to identify orphan TCS genes with similar expression patterns

(Zhang et al., 2006). Such studies are likely to become more common as microarray or next

generation sequencing technologies become cheaper and more widely available.

1.7.4 Multiple sequence alignment based predictions

Potential interactions between TCS transmitters and receivers have begun to be predicted from

their amino acid sequences. Such interactions may be valid in vitro but may be prevented in

vivo if regulated to prevent co-expression.

Chapters 5 and 6 introduce a multiple sequence alignment (MSA) based approach

to predicting TCS pairings between HisKA and receiver domains. During the course of this

project, two independent groups published rival approaches. The work of White et al. (2007) is

discussed in Chapter 6 as a special case of our own MSA approach to predicting TCS pairings,

while Burger and van Nimwegen (2006, 2008) introduced a more complicated MSA based

Bayesian model.

1.8 Research aims

To understand the behaviour of any one bacterium, an understanding of its signalling network

is required. To construct a model of any network a list of parts is needed, and their intercon-

nections. Focusing on just TCS signalling, this means a list of all transmitter, Hpt and receiver

domains, and a list of their interactions.

The main thrust of this thesis is to predict transmitter-receiver interactions from their

amino acid sequences. For any statistical problem, lots of data is usually required - in this case,

lots of known transmitter-receiver pairings. Searching hundreds of fully sequenced bacterial

genomes for simple TCS gene clusters (containing only one transmitter and one receiver)
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provided this list (see Section 1.7.1, and Chapter 2).

This collection of paired transmitter and receiver domains was then used to identify

those residues important for the pairing specificity (Chapter 5). While 3D structures of docked

transmitter and receiver domains would be ideal for identifying interacting residues, as discussed

above in Section 1.5, to date co-crystals have only been solved for a few atypical cases.

The related question of which residues are essential has been tackled experimentally

for certain transmitter/receiver pairings - for example with alanine mutation studies of Bacil-

lus subtilis Spo0F (Tzeng and Hoch, 1997) (see Section 1.4.8). The interactions of the Hpt

domain in Saccharomyces cerevisiae Ypd1 with its three partner receiver domains (see Sec-

tion 1.4.14) have been explored using a combination of alanine scanning mutagenesis and a

Y2H assay (Porter et al., 2003; Porter and West, 2005). Answering the question of which

impart partner specificity would require mutation studies on a panel of transmitters and re-

ceivers. Nevertheless, there is some existing information regarding the role and importance of

particular residues for certain known TCS pairs.

Establishing which parts of the TCS domains govern pairing specificity (Chapter 5) is

the basis of the predictive model presented in Chapter 6. A selection of scoring systems are

investigated to assign numerical values to amino acid pairs from the transmitter and receiver

domains, for use as explanatory variables in a generalised linear model (GLM).

For bacteria with a large number of TCS genes, testing all possible domain combinations

experimentally is an enormous undertaking. David Whitworth et al. have begun a multi-year

project to systematically test all pairwise combinations of TCS transmitters and receivers in

M. xanthus using the yeast two-hybrid assay (Y2H) (Whitworth et al., 2008), a technique

that has also been used in Caulobacter crescentus (Ohta and Newton, 2003). More recently,

relatively high throughput phosphotransfer assays with radio labeling have also been reported

(Yamamoto et al., 2005; Skerker et al., 2005). However, any sequence based prediction tool

would allow biological experiments to be targeted at the most promising candidate interactions

– helping to clarify the signalling pathways.

If a transmitter and receiver are predicted to interact, or even if they have been shown

to interact in vitro, there is no guarantee they will interact in vivo. Both proteins must be

expressed at the same time, and in the same place – a prerequisite for any such potential

interaction to actually take place. For example, bacterial movement is normally controlled

by TCS, and the chemotaxis machinery is known to be located at the poles of the cell in

some bacteria. Temporal separation of protein expression is likely to be important in species

with complicated life-cycles, such as developmental regulation in sporulation. Microarray time
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course experiments have begun to be used to study this (Section 1.7.3).

As most prokaryotes contain multiple TCS systems, this is an especially numerous

class of protein-protein complex. This makes it an ideal candidate system for the more

general problem of predicting pairings between members of paralagous families, such as in

σ-factor/anti-σ-factors (Hughes and Mathee, 1998) or G-protein coupled receptors/trimeric

G-proteins (Cabrera-Vera et al., 2003).
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Chapter 2

Finding TCS genes and pairs

2.1 Introduction

With the long term aim of identifying thousands of HK/RR pairs to build a predictive model

of TCS interactions, the first step was to list TCS genes from all available genomes. From a

manual inspection it was clear that the level and quality of TCS annotation varied dramatically

between species and even between strains. Any attempt to use just the genome annotation

would therefore miss many genes, and also make direct comparisons between genomes prob-

lematic.

In this chapter an automated analysis pipeline for the identification and classification of

TCS genes is described, using protein domain motifs from both PFAM (Bateman et al., 2004)

and CDD (Marchler-Bauer et al., 2005) with the standalone Reversed Position Specific Blast

(RPS-BLAST) tool (Marchler-Bauer and Bryant, 2004). The CDD is a composite database

drawing on PFAM and other motif databases such as SMART (Schultz et al., 1998) and COG

(Tatusov et al., 2003). The results of the analysis of hundreds of fully sequenced prokaryotic

genomes are presented.

During this work the sequencing of the social-predatory bacteria Myxococcus xanthus

DK 1622 (accession NC 008095) was completed, and this analysis contributed to the anno-

tation of the TCS genes, acknowledged in Goldman et al. (2006). Additionally, publications

Whitworth and Cock (2008a,b) draw directly on this work.

2.2 Source of genomes

The NCBI provides all publicly available fully sequenced prokaryotes in a variety of file formats,

including as GenBank flat files which in addition to the complete DNA sequence also include
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every annotated gene with its amino acid sequence. Starting from a snapshot taken in January

2004 with just a couple of hundred genomes, a local data-bank was regularly updated as and

when new genomes were released.

However, for simplicity, all survey results presented herein will focus on a single collec-

tion downloaded as a compressed archive from the National Center for Biotechnology Informa-

tion (NCBI) FTP site1 on 26 February 2007. This contained all 457 of the then available fully

sequenced prokaryotes, which due to multiple chromosomes or plasmids came to 807 GenBank

files. These species and their accessions numbers are listed in Table A.1 on page 209.

In addition, the NCBI also provides a table of information for the sequenced prokaryotes2

which includes information about pathogenicity, habitat, Gram staining, spores and shape. This

information allows the investigation of correlations between this information and TCS usage.

2.3 Identifying TCS genes

The standalone tool RPS-BLAST was used to identify protein domains within the given amino

acid translation of every annotated CDS within the GenBank files used. A single search against

the PFAM database (Bateman et al., 2004) was found to identify almost every TCS gene ex-

pected, but was not enough to detect or classify all the expected domains. Transmitter domains

had to be defined as a small phosphotransfer sub-domain (HisKA or Hpt) followed by an HAT-

Pase. While most receiver and HATPase domains were easily detected, the phosphotransfer

regions were often not recognised by the PFAM models – even with a lowered expectation

threshold. Furthermore, it was difficult to exclude many non-TCS-related HATPase domains

(false positives).

Both these issues were resolved satisfactorily by screening candidate TCS genes identi-

fied from PFAM domain hits against the CDD database (Marchler-Bauer et al., 2005), which

included a number of models for full length HKs (including the full transmitter domain) and

for several non-TCS HATPase containing proteins (allowing the elimination of many HATPase

false positives).

2.4 Isolated and paired genes

In addition to sequence data, the GenBank files include the location of each gene within the

chromosome. Parsing this information allowed each TCS gene to be considered in the context

1ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/all.gbk.tar.gz
2http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi as a webpage, or as a simple tab separated text

files at ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/lproks 0.txt and lproks 1.txt.
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of its neighbouring genes, and in particular allowed a simple classification of TCS genes as

either isolated, paired or complex (other).

A TCS gene was considered to be isolated or orphaned if there were no other TCS

genes (including unassigned HATPase domains) within 5, 000 nucleotide base pairs (bp).

To be considered paired, two TCS genes were required to be on the same strand (i.e.

same direction, forwards or reverse), no more than 100 bp apart, with an overlap no more than

100 bp. Furthermore, any pairing was rejected if another TCS gene was found within 5, 000

bp (the same cut-off distance used for an isolated gene) as this could be considered to be a

complex gene cluster. These distance criteria were chosen in part based on known systems

such the TCS genes in E. coli.

2.5 Implementation

A multi-step screening procedure was adopted. Initially, the protein sequences were searched

against the PFAM database. Receiver (pfam00072) and HATPase (pfam02518) domains were

accepted with expectation cut-off of 10−4. A threshold of 1.0 was used for the smaller domains:

HisKA pfam00512, Hpt pfam01627 and the dimerisation region pfam02895. Proteins with

any matches to these five PFAM domains were then searched against the CDD database at

expectation threshold 10−4. The CDD includes specific models for the HisKA (smart00388,

cd00082) and receiver domains (cd00156). Further HisKA and HATPase domains were found

by checking CDD matches to full length HK motifs: BaeS COG0642, NtrB COG3852, NtrY

COG5000, KdpD COG2205, and VicK COG5002. Some CDD models cover long motifs or

entire genes (e.g. COG motifs are based on orthologous genes), thus any (partial) match was

examined closely to see which sub-region of the motif had been matched (Table 2.1).

As most domains could be detected by more than one model (e.g. both pfam00072

and cd00156 for a receiver), any such hits with substantial overlap were simply merged. It

was observed that some Tii domains gave good matches to some of the HK COG models,

potentially leading to the mis-identification of a dimerisation region in a Tii domain as a

HisKA sub-domain within a Ti domain. Sub-domain matches from these COG models were

therefore labeled KD, denoting either HisKA (K) or dimerisation regions (D), unless there was

an additional unambiguous match in the same region to either a HisKA or dimerisation region.

Small overlaps between different domain types where tolerated. A small list of less

than fifty borderline overlap cases were resolved by hand.

Class I transmitter domains (Ti) were then constructed as the composite of a HisKA

domain followed by a HATPase, and Class II transmitters (Tii) by a Hpt domain then HATPase,
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Domain Motif Name Sub-region Exp.

R, Receiver pfam00072 Response reg any 10−4

cd00156 REC 13-103 10−4

A, HATPase pfam02518 HATPase c any 10−4

COG3852 NtrB 236-355 10−4

COG5000 NtrY 595-709 10−4

COG0642 BaeS 223-330 10−4

COG5002 VicK 339-447 10−4

COG2205 KdpD 771-880 10−4

K, HisKA pfam06580 His kinase any 1
pfam00512 HisKA any 1
smart00388 HisKA 1-66 10−4

cd00082 HisKA 3-62 10−4

D, Dimerization pfam02895 H-kinase dim any 1
KD, HisKA or dimerization COG3852 NtrB 134-187 10−4

COG5000 NtrY 484-556 10−4

COG0642 BaeS 113-178 10−4

COG5002 VicK 224-290 10−4

COG2205 KdpD 569-727 10−4

H, Hpt pfam01627 Hpt any 1
MutL DNA mismatch repair enzyme COG0323 MutL 19-225 10−5

RsbW Anti-σ regulatory factor COG2172 RsbW 13-125 10−6

Hsp90 protein pfam00183 HSP90 any 10−4

DNA gyrase B carboxyl terminus pfam00986 DNA gyraseB C any 10−4

DNA gyrase B pfam00204 DNA gyraseB any 10−4

DNA gyrase/topoisomerase IV pfam00521 DNA topoisoIV any 10−4

Table 2.1: PFAM and CDD motifs used to identify TCS domains, or exclude false positives.
Motifs derived from COG tend to be for entire genes, and thus an additional restraint was
used that the RPS-BLAST hit had to span the specified sub region before being considered.
Domains in the bottom section of the table were used to identify non-TCS HATPases (false
positives).
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optionally with a dimerisation region in between. Non-TCS genes containing the HATPase

domain were identified and excluded using other domain matches: DNA gyrase/topoisomerase

IV (pfam02518, pfam00986, pfam00521), Hsp90 (pfam00183), MutL (COG0323) and RsbW

anti-sigma factor (COG2172). A small fraction of the HATPase domains remained unassigned,

and from manual inspection these were mostly transmitter domains where the phosphoacceptor

domain had not been automatically identified. Genes with unassigned HATPase domains are

therefore included in the gene counts reported below.

The Python programming language (www.python.org) was used to script this process,

using the Biopython libraries (www.biopython.org) to manipulate sequence files and to call

RPS-BLAST and parse its output. The plots in this chapter were drawn using the R pro-

gramming language (R Development Core Team, 2007) based on tables of data prepared with

Python scripts.

2.6 Survey results and discussion

In total 24, 039 TCS genes were identified out of 1, 435, 868 annotated genes from the 457

completely sequenced prokaryotes listed in Table A.1, a number similar to that expected by

extrapolation from other studies (Koretke et al., 2000; Kim and Forst, 2001; Zhang and Shi,

2005). This is about two percent of all prokaryotic genes.

2.6.1 Transmitters versus receivers

Figure 2.1 shows that to a first approximation the number of transmitters and receiver domains

are about equal in each species. However, in general more receivers are found than transmit-

ters (even including the unassigned HATPase and phosphotransfer domains in the transmitter

count). It seems that there is not always a simple one-to-one pairing between transmitters

and receivers, and taking this at face value, on average a transmitter may have more than one

partner.

One explanation for this is that the transmitter or phosphotransfer domain detection

was less successful than that of receivers. While manual checks of a sample of species against

published TCS lists confirmed that most domains were found, some Hpt domains were missed.

However, the HATPase domain is large and not easily missed, and all unassigned HATPases

(which may be part of transmitters) were included in this plot. Alternatively, perhaps there

is another class of transmitter or phosphotransfer domain yet to be identified. The phospho-

transfer protein Spo0B in Bacillus subtilis is one example of this (see Section 1.5).
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Figure 2.1: A scatter plot showing the number of receiver domains vs. the number of trans-
mitter domains (including unassigned HATPases and phosphotransfer domains) for the 457
species listed in Table A.1. The dashed line has gradient one, as would be expected for a one-
to-one pairing between transmitter and receiver domains. The solid line is a simple regression
line. Certain species have been marked with a grey symbol: Myxococcus xanthus DK 1622
(upwards triangle), Nostoc sp. (square), Anaeromyxobacter dehalogenans 2CP-C (downwards
triangle), Bacillus subtilis subsp. subtilis str. 168 (diamond) and Escherichia coli K12 (circle).
See also Table 2.7.
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Gene architecture Isolated Paired Complex Total

R 2769 5556 3493 11818
Ti 1498 4893 1807 8198
Tii 17 35 232 284
K 136 120 81 337
KD 8 11 11 30
D 15 0 0 15
H 97 33 61 191
A 149 129 84 362

R-R 58 33 34 125
R-Ti 95 44 192 331
R-Tii 0 0 0 0
Ti-R 764 195 467 1426
Tii-R 1 18 69 88
Ti-R-H 103 64 95 262
Ti-R-R 74 18 33 125
Ti-R-R-H 17 39 32 88
R-Ti-R 16 16 32 64
Others 55 54 186 295

Total 5872 11258 6909 24039

Table 2.2: Domain architecture of all 24, 039 TCS genes identified from the 457 species listed
in Table A.1, classified as isolated, paired or complex. Table 2.8 has a partial breakdown by
species, while the paired genes are also listed in Table 2.3.

2.6.2 TCS architectures

Table 2.2 gives a break down of the TCS gene counts by domain architecture, with the

additional classification into isolated, paired or complex based on the genomic arrangement.

Notice that the typical HK (with a single Ti domain) and RR (with a single R domain) are by

far the most common architectures, together making up over 80% of the TCS genes identified.

Simple HK genes with a Tii domain are comparatively rare, with only 284 examples found.

The third most common architecture is Ti-R, a simple hybrid kinase (HY) containing a

single Class I transmitter (Ti) followed by a single receiver domain (R), with 1, 424 examples,

followed by 331 cases of R-Ti where this domain order is reversed.

Table 2.2 includes 558 genes appearing to contain a phosphotransfer domain (K, KD,

or H), but no HATPase or receiver domains, and 362 genes with an HATPase (A) but no other

TCS associated domains. While some of these may be false positives, over half are next to or

close to a TCS gene and thus may be real TCS genes - perhaps containing further unidentified

domains. Further refinements to the analysis could reduce the number of these oddities, which

currently make up less than 5% of the identified TCS genes. However, for the purposes of

identifying most typical HK/RR pairs the results as shown are sufficient.
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Table 2.2 also shows that while simple HK (with only a T domain) and RR genes (with

only an R domain) dominate, there are considerable numbers of genes with more complex

architectures. The “simple” hybrid kinases (HYs) with a single transmitter and single receiver

are relatively common (Ti-R, R-Ti and Tii-R, but interestingly no examples of R-Tii were

observed). These hybrid proteins can be regarded as self contained TCS pathways, as they

contain a tethered transmitter-receiver pair, although being part of a phosophorelay cannot be

ruled out. On the other hand, the Ti-R-H tripartite HYs are presumably part of phosophorelays,

based on similar genes discussed in Section 1.4.

2.6.3 TCS gene pairs

Table 2.3 enumerates the 5, 629 TCS gene pairings for the most common TCS gene architec-

tures, which will be described using an order-dependent plus sign notation for neighbouring

genes. Given the most numerous TCS architectures are R and Ti (Table 2.2), unsurprisingly

pairings between these genes are most the common, with 2, 092 cases of Ti + R and 2, 689 of

R + Ti where the genes in the opposite order, making up about 85% of all TCS gene pairs.

HK genes with the minority Class II transmitters are also found paired with RRs, 5 cases of

Tii +R and 30 cases of R+Tii. Chapter 3 explores the separation or overlaps between these

HK and RR gene pairs.

Chapter 4 compares the number of isolated Ti-R and R-Ti genes to the number of Ti

+R and R+Ti gene pairs in an investigation of apparent gene fusion rates. These genes are

also used in Chapters 5 and 6 to compile a set of known transmitter-receiver interactions.

In addition to these expected gene pairings, Table 2.3 also lists many less common

pairings. 29 cases of Ti-R-H + R and 34 cases of R + Ti-R-H were identified (tripartite HY

with RR), which could be two-gene phospho-relay systems like those described in Section 1.4.6.

There were also 115 examples of Ti-R + R (simple HY with RR) and 53 pairs in the oppo-

site order, R + Ti-R. These could function analogously to the VirA/G system discussed in

Section 1.4.10, or alternatively they could be phospho-relays where an Hpt domain was not

detected.

Other unexpected neighbours include 54 cases of R + R and 37 cases of Ti + Ti, as

well as TCS gene pairing involving complicated hybrid genes. The R + R pairs are difficult to

explain, given no evidence of receiver-receiver dimerization or phosophotransfer to date. On

the other hand, HKs are known to dimerize so hypothetically these Ti + Ti pairs could be

forming HK heterodimers, something that has yet to be demonstrated in vivo.
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2.6.4 TCS associated domains

Table 2.4 lists the forty most common PFAM domains measured by the number of genes con-

taining at least one of each domain, and how many of those were TCS genes. While the ABC

transporter (pfam00005) is by far the most numerous domain, the RR receiver (pfam00072)

and HATPase (pfam02518) domains are next – underlining just how ubiquitous TCS genes

are. However, while most of these HATPase domains could be identified as part of transmitter

domains, the HisKA domain (pfam00512) found in Class I transmitters (Ti) is only the eleventh

most common domain in this table, with the Hpt domain found in Class II transmitters (Tii)

ranked number 618. This poor detection rate for the phosphotransfer domains led to the need

for the various strategies described above in order to identify most transmitter domains.

Several of the other top forty domains are frequently associated with TCS systems,

in particular the DNA binding domains trans-reg-C domain (pfam00486, 89%) and GerE do-

main (pfam00196, 57%), and the HAMP sensory domains (pfam00672, 53%). The second

half of Table 2.4 shows other less common PFAM domains which are particularly associated

with TCS genes. These include the HTH 8 (pfam02954, 51%) and LytTR (pfam04395, 71%)

DNA-binding domains, and the PAS (pfam00989, 65%) and PAC (pfam00785, 54%) input

associated domains, and the CHASE3 (pfam05227, 72%) sensor. The CheB methylest do-

main (pfam01339, 73%) is a methylesterase output domain named after the E. coli RR CheB

(Section 1.4.3). The KdpD domain (pfam02702, 79%) is named after the E. coli HK KdpD,

and is believed to be an osmotic pressure sensory domain (Walderhaug et al., 1992). Finally all

fifty genes found with the P2 domain (pfam07194), a receiver binding domain first identified

in E. coli CheA (see Section 1.4.3), were identified as TCS genes.

2.6.5 TCS associated input and output domains

Most of these TCS associated domains discussed above can be categorized into input or output

domains. Their association with different TCS gene architectures is explored in Tables 2.5

and 2.6 (input and output domains respectively).

The HAMP domain is the most common PFAM input domain (Table 2.4), and is

particularly associated with standard Ti HK genes (1970/2221 genes, 89%, Table 2.5). Also,

the HAMP domain is the single most common input domain associated with the Ti HKs (found

in 1970/8198 Ti genes, 24%). However, in almost 90% of the Ti HK genes (7237/8198)

there was a region of over 100 amino acids which was not recognised by any PFAM domain,

suggesting that a large number of uncharacterised input domains remain to be identified.

Notice in Table 2.5 that the CheW-binding domain (pfam01584) is mostly found in
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Rank PFAM description All genes TCS genes Fraction

1 pfam00005 ABC tran 27209 14 0.00
2 pfam00072 Response reg 14499 14499 1.00
3 pfam02518 HATPase c 12752 11397 0.89
4 pfam00106 adh short 10771 0 0.00
5 pfam03466 LysR substrate 9127 7 0.00
6 pfam00126 HTH 1 9081 2 0.00
7 pfam00528 BPD transp 1 9066 0 0.00
8 pfam00083 Sugar tr 7195 1 0.00
9 pfam00583 Acetyltransf 1 7013 2 0.00

10 pfam00070 Pyr redox 6912 12 0.00
11 pfam00512 HisKA 6680 6680 1.00
12 pfam04055 Radical SAM 6315 0 0.00
13 pfam00702 Hydrolase 6123 0 0.00
14 pfam00665 rve 5699 6 0.00
15 pfam00004 AAA 5537 75 0.01
16 pfam00561 Abhydrolase 1 5458 0 0.00
17 pfam00440 TetR N 5429 4 0.00
18 pfam00501 AMP-binding 5079 0 0.00
19 pfam00271 Helicase C 4924 0 0.00
20 pfam01370 Epimerase 4834 0 0.00
21 pfam00270 DEAD 4716 0 0.00
22 pfam00990 GGDEF 4628 406 0.09
23 pfam00155 Aminotran 1 2 4464 1 0.00
24 pfam00486 Trans reg C 4439 3970 0.89
25 pfam00534 Glycos transf 1 4436 0 0.00
26 pfam00535 Glycos transf 2 4347 2 0.00
27 pfam00392 GntR 4298 14 0.00
28 pfam00672 HAMP 4198 2221 0.53
29 pfam00753 Lactamase B 3954 1 0.00
30 pfam00009 GTP EFTU 3894 0 0.00
31 pfam00171 Aldedh 3834 1 0.00
32 pfam00107 ADH zinc N 3804 1 0.00
33 pfam01073 3Beta HSD 3775 0 0.00
34 pfam00593 TonB dep Rec 3585 0 0.00
35 pfam02653 BPD transp 2 3499 0 0.00
36 pfam01381 HTH 3 3478 1 0.00
37 pfam02421 FeoB 3478 0 0.00
38 pfam00015 MCPsignal 3438 1 0.00
39 pfam00293 NUDIX 3416 1 0.00
40 pfam00196 GerE 3384 1920 0.57

107 pfam02954 HTH 8 1779 900 0.51
142 pfam00989 PAS 1474 965 0.65
230 pfam00785 PAC 1110 594 0.54
556 pfam04397 LytTR 541 382 0.71
618 pfam01627 Hpt 497 497 1.00
739 pfam01339 CheB methylest 451 329 0.73
922 pfam06580 His kinase 388 388 1.00

1153 pfam02895 H-kinase dim 291 291 1.00
1579 pfam02702 KdpD 169 134 0.79
1602 pfam05227 CHASE3 165 118 0.72
2614 pfam07194 P2 50 50 1.00

Total Genes 1435868 24039 0.02

Table 2.4: The top forty prokaryotic PFAM domains, measured by the number of genes
containing each domain, and also selected domains found most often as part of TCS genes.
This is for all annotated genes from the 457 species listed in Table A.1, using RPS-BLAST
with an expectation threshold of 10−4.
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simple HKs with Tii domains (like the model system, CheA in E. coli, see Section 1.4.3), and

never found in a simple HK with a Ti. Intriguingly CheW domains have also been found in

simple RRs (with an R domain only), and in simple Tii-R HYs. About 10% of the CheW-

binding domains are found in genes with other more complicated TCS architectures (like the

cheBRA gene discussed in Section 1.4.4). These figures also support the widely observed rule-

of-thumb that Tii are only associated with chemotaxis (over 95% of Tii HK genes contain a

CheW-binding domain).

Reassuringly, only a handful of input domains were found in the 11, 818 simple RR genes

(or in more complex RR architectures such as R-R). In addition to the 196 CheW domains

discussed above (pfam01584, 1.6%), there were 21 GAF domains (pfam01590, 0.2%), 24 PAC

domains (pfam00785, 0.2%) and 49 PAS domains (pfam00989, 0.4%) plus a single HAMP

domain (pfam00672) and two Pkinase domains (pfam00069). These numbers are too low to

question the classification of these PFAM domains as input associated.

Similarly, very few output domains are found in the Ti or Tii HKs (Table 2.6). Of

particular note, 19% of simple RRs have no output domain at all (2253/11818). These may

function like CheY in the E. coli chemotaxis system (Section 1.4.3) by directly interacting with

other proteins, or some of these RRs could be part of phosphorelays like Spo0F in the Bacillus

subtilis sporulation network (Section 1.4.8).

Interestingly no recognised output domains were found in the 262 Ti-R-H HY genes

(Table 2.6), although a number of known input domains were found (Table 2.5). This is con-

sistent with the idea that these function as the first step in a phosphorelay (see Sections 1.4.6

and 1.4.9). The same presence of some input domains but complete lack of output domains

is observed for the 88 Ti-R-R-H HY genes, which may function in a similar way.

2.6.6 Species specific remarks

Figures 2.2, 2.3 and 2.4 shows how the number of TCS domains (or genes) increases with the

total number of genes or genome size. These all illustrate that species with larger genomes

tend to have more TCS domains and genes. As suggested in van Nimwegen (2003), these

trends are well described using a squared power law distribution.

Figure 2.5 illustrates how this trend is linked to the species’ lifestyle, showing that non-

pathogenic prokaryotes tend to have more TCS genes for their size than pathogenic species.

This can be explained on the assumption that pathogens enjoy a much less variable environment

in their host than environmental organisms.

Out of the 340 representative prokaryotes in this survey, only 64 had over a hundred
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Figure 2.2: A scatter plot showing the number of TCS genes vs. the total number of genes
for the 457 species listed in Table A.1. The solid line is a fitted square scaling through the
origin. Symbol key as per Figure 2.1.
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Figure 2.3: A scatter plot showing the number of TCS domains vs. the genome size for the
457 species listed in Table A.1. The solid line is a fitted square scaling through the origin.
Symbol key as per Figure 2.1. See also Table 2.7.
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Figure 2.4: A scatter plot showing the number of TCS genes vs. the genome size for the 457
species listed in Table A.1. The solid line is a fitted square scaling through the origin. Symbol
key as per Figure 2.1. See also Table 2.8.
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Figure 2.5: A scatter plot showing the number of TCS genes vs. the genome size for 382 of
the species listed in Table A.1 which the NCBI had categorized as pathogenic (plus symbol,
dashed line) or non-pathogenic (dots, solid line). See also Table 2.4.
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TCS genes. These species are listed alphabetically in Tables 2.7 and 2.8 which show the

number of TCS domains (R, Ti and Tii etc) and the number of TCS genes (divided by

domain architecture). The vast majority of these species are bacteria, with only two archaea:

Acidobacteria bacterium Ellin345 (with 198 TCS genes) and Methanospirillum hungatei JF-1

(with 179 TCS genes).

Figures 2.6, 2.7 and 2.8 show scatter plots illustrating what fraction of each species’

TCS genes are found together in pairs, isolated or in some other more complex arrangement.

These figures attempt to represent how different species organise their TCS genes. For example,

marked species Bacillus subtilis and E. coli have almost all of their TCS genes as pairs. On

the other hand, larger genomes with more TCS genes tend to have less in pairs, and instead

have a higher proportion of isolated (orphan) TCS genes and more complicated clusters. In

particular from the marked species, Nostoc sp. appears to have more isolated TCS genes than

normal, while the myxobacteria M. xanthus and Anaeromyxobacter dehalogenans have more

TCS genes in complex clusters.

Figure 2.9 shows the number of TCS domains plotted against the number of TCS

genes in each species. It is quite clear that the number of TCS domains increases faster than

the number of TCS genes. That is to say, genomes with more TCS genes tend to have more

complex TCS architectures (genes containing more than one TCS domain). From its position

in this plot, it is not surprising that M. xanthus has many TCS hybrid genes with complex

multi-domain architectures, such as the protein RodK (see Section 1.4.11).

From these plots (and the underlying tables) it is clear that prokaryotes with especially

large numbers of TCS tend to have more complicated TCS arrangements. The myxobacteria,

and M. xanthus in particular, are an extreme case and thus a useful model-species for the

investigation of complex TCS systems (Whitworth and Cock, 2008a,b).

2.7 Potential refinements

2.7.1 More efficient searching

As implemented, every gene was searched using RPS-BLAST against the full set of PFAM

domains, and then any candidate TCS genes were searched against the full set of CDD domains

– each time recording the full results. This gave a rich database allowing enquiries to further

refine the analysis (such as identifying HATPase associated domains), as well as identifying

other TCS associated domains (potential input and output domains, e.g. Table 2.4).

However, from the point of view of identifying TCS genes, it would be more efficient
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Figure 2.6: A scatter plot showing the number of TCS genes vs. the number of paired TCS
genes for the 457 species listed in Table A.1. The dotted line has gradient one, and thus any
point on or close to this line has all or more of its TCS genes in pairs. The solid line is a simple
trend line. Symbol key as per Figure 2.1. See also Figures 2.7 and 2.8.
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Figure 2.7: A scatter plot showing the number of TCS genes vs. the number of isolated TCS
genes for the 457 species listed in Table A.1. The dotted line has gradient one, and thus any
point on or close to this line has all or more of its TCS genes isolated from each other. The
solid line is a simple trend line. Symbol key as per Figure 2.1. See also Figures 2.6 and 2.8.
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Figure 2.8: A scatter plot showing the number of TCS genes vs. the number of TCS genes
in a complex gene cluster (not paired or isolated) for the 457 species listed in Table A.1. The
dotted line has gradient one, and thus any point on or close to this line has all or more of its
TCS genes in complex gene clusters. The solid line is a simple trend line. Symbol key as per
Figure 2.1. See also Figures 2.6 and 2.7.
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Figure 2.9: A scatter plot showing the number of TCS domains vs. the number of TCS genes
for the 457 species listed in Table A.1. The dotted line has gradient one, and shows the
expected number of domains if each TCS gene contained only one TCS domain. The solid
line is a simple trend line. Symbol key as per Figure 2.1.
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to first compile a minimal RPS-BLAST database containing only the relatively few domains of

interest. This would require knowing a priori which domains would be required, but running

RPS-BLAST would then require far less RAM (with only tens of motifs to hold in memory)

and correspondingly less run time (fewer models to search).

2.7.2 Updates to PFAM

This survey was conducted using a set of PFAM models from circa 2004. Since then these

protein models have been updated, and now give slightly different results. For instance, the

current Hpt domain pfam01627 model appears to be more sensitive, and detects domains that

previously had been ignored. In addition the PFAM database now includes three additional

models for HisKA domains, HisKA 2 (pfam07568) and HisKA 3 (pfam07730) based on Grebe

and Stock (1999) and HWE HK (pfam07536) based on Karniol and Vierstra (2004). Using

these new HisKA models may reduce the apparent surplus of receivers seen in Figure 2.1.

Also, it may now be possible to have an equally efficient screen based purely on the

latest PFAM domains, without using the CDD or its subsidiary motif collections. RPS-BLAST

was used for both PFAM and CDD domains in order to keep the analysis pipeline simple,

although the PFAM database uses the tool HMMER (Eddy, 1998) internally. If only PFAM

domains were to be used, switching from RPS-BLAST to HMMER should be considered.

2.8 Conclusion

The results of this survey demonstrate just how common TCS genes are in prokaryotes, and

that over 80% of these genes are simple HKs and RRs (with only a Ti and an R TCS domain

each). Furthermore, about half of these simple genes are found as neighbours, confirming that

the simplistic TCS scheme introduced in Figure 1.1 on page 3 really is typical, and that the

more exotic examples discussed in Section 1.4 are the exceptions rather than the norm.

In automatically identifying HK and RR gene pairs (Section 2.4), it was necessary to

determine how far apart neighbouring TCS genes were, or to what extent they overlapped.

Plotting a histogram of the gene overlap/separation presented several interesting features

worthy of explanation (Chapter 3, Cock and Whitworth (2007a)).

The rest of this thesis will concentrate on the Ti with R pairings found here as either

Ti + R or R + Ti gene pairs, or as simple hybrids, Ti-R or R-Ti. Chapter 4 will explore factors

affecting the relative numbers of simple pairs and simple hybrids. The remainder of the thesis

will explore these Ti/R pairs as a training dataset to predict the partnerships from the amino

acid sequences.
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Chapter 3

Phase preference in gene overlaps

3.1 Introduction

Overlapping genes can be found in all domains of life, but are particularly common in viruses

and prokaryotes (Normark et al., 1983; Rogozin et al., 2002; Makalowska et al., 2005). Any

gene overlap allows the same number of genes to be encoded in a smaller genome, potentially

advantageous to organisms under selective pressure to minimize the size of their genome, and

enables mechanisms of co-regulation to operate, including translational coupling (Normark

et al., 1983; Oppenheim and Yanofsky, 1980; McCarthy, 1990).

When discussing two adjacent or overlapping genes, there are three distinct geometries

to consider. Using the terminology of Rogozin et al. (2002), these are convergent (tail-to-tail,

→←), divergent (head-to-head, ←→), and unidirectional (head-to-tail, or tandem, →→). In

the first two cases the genes are on opposite strands of the DNA, and the labels “gene one”

and “gene two” are interchangeable. However, for unidirectional overlaps this symmetry is

broken, with an upstream gene (“gene one”) and a downstream gene (“gene two”) on the

same strand.

In general, there are three separate phases to consider, which, based on the gene

separation length modulo three, Kingsford et al. (2007) labeled as phases +0, +1 and +2.

i.e. separations of 3i, 3i + 1 and 3i + 2 (for i ∈ Z)1. By including the stop codons when

calculating separation or overlap lengths, an overlap of length n corresponds to a separation

of length −n, which means the three phases +0, +1 and +2 can also be described in terms

of overlaps of 3i, 3i− 1 and 3i− 2 (for i ∈ Z).

For unidirectional gene overlaps, both genes are encoded on the same DNA strand, and

the three phases can be considered as relative reading frames. Only phases +1 and +2 will be

1The set of integers, {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, is denoted by Z. Similarly N will denote the set of
natural numbers, {1, 2, 3, . . .}.
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Figure 3.1: An example unidirectional gene overlap in phase +1, where the overlap length
takes the form 3i− 1 for i ∈ N, in this case 8 bp. Note that the reading frame of gene two is
1 bp advanced from that of gene one.

Figure 3.2: An example unidirectional gene overlap in phase +2, where the overlap length
takes the form 3i− 2 for i ∈ N, in this case 7 bp. Note that the reading frame of gene two is
2 bp advanced from that of gene one.

Figure 3.3: An example unidirectional gene overlap in phase +0, where the overlap is a multiple
of three bp (i.e. overlap length 3i for i ∈ N). The two genes’ reading frames are in-phase,
thus they both terminate at the same stop codon. Such overlaps can also be considered as
one gene with alternative initiation sites giving two possible protein products with a common
C-terminal region, and are excluded from the analysis.
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considered, for example as illustrated in Figures 3.1 and 3.2 for overlaps of 8 and 7 nucleotide

base pairs (bp). Phase +0 (or in-phase) unidirectional overlaps are a special case as both genes

share the same reading frame. As a consequence, they must share the same stop codon, and

therefore this is equivalent to alternative initiation sites for a single gene (Figure 3.3). Such

cases are rare, and have been excluded from the following analysis.

Short overlaps of less than six bp are extremely restricted due to the amino acid genetic

code (Tables 3.1 and 3.2), as such cases require the nucleotides in the overlap to be dual coding

for a start/stop codon in two different genes. In the case of divergent genes, the two start

codons would overlap. Similarly for convergent genes, the two stop codons would overlap.

Unidirectionally overlapping genes are on the same strand, and here the stop codon of the

upstream gene overlaps with the start codon of the downstream gene. In many cases, overlaps

of particular lengths are rendered impossible by the genetic code. For overlaps of six or more

nucleotides, the start/stop codons merely share nucleotides with ordinary amino acid coding

codons in the other gene. These start/stop codon restrictions lead to very different distributions

for short overlaps (less than 6 bp), compared to longer overlaps (6 or more bp).

This chapter starts with a motivational observation about unidirectional gene overlaps

in TCS systems (Cock and Whitworth, 2007a), then a survey of all gene overlaps from the se-

quenced prokaryotes. Existing work looking at gene overlaps is summarized, and the remainder

of the chapter focuses on explaining unidirectional gene overlaps.

3.2 Observed separations or overlaps from TCS genes

Figure 3.4 shows a bar chart of gene separation/overlap for unidirectional gene pairs. As in

Cock and Whitworth (2007a), this is restricted to neighbouring HK and RR genes (in either

order), where the HK has a single transmitter (Ti or Tii) and the RR a single receiver domain

(see Section 2.4). Using TCS partners allows us to be confident that each overlap is between

biologically linked genes, which we would expect to be co-expressed.

In addition to peaks at overlaps of lengths one and four, there is a clear phase bias

in the gene overlaps which is emphasized by the colour scheme. Related Figures 3.5 and 3.6

show this same dataset divided according to the order of the two genes, RR then HK and HK

then RR respectively. Both figures show very similar distributions.

Extending the analysis to all neighbouring gene pairs shows a smoother version of the

same pattern (Figure 3.13, described in following section), making this a global phenomenon,

and not some quirk of TCS operons. The remainder of this chapter will focus on this general

case, rather than on only the TCS gene pairs.
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TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Stop TGA * Stop
TTG L Leu (i) TCG S Ser TAG * Stop TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu (i) CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile (i) ACT T Thr AAT N Asn AGT S Ser
ATC I Ile (i) ACC T Thr AAC N Asn AGC S Ser
ATA I Ile (i) ACA T Thr AAA K Lys AGA R Arg
ATG M Met (i) ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val (i) GCG A Ala GAG E Glu GGG G Gly

Table 3.1: This table shows what the NCBI refers to as Translation Table 11, the genetic code
used for bacteria, archaea, prokaryotic viruses and chloroplast proteins. Recognised initiation
start codons are marked with (i).

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu (i) TCA S Ser TAA * Stop TGA W Trp
TTG L Leu (i) TCG S Ser TAG * Stop TGG W Trp

CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu (i) CCG P Pro CAG Q Gln CGG R Arg

ATT I Ile (i) ACT T Thr AAT N Asn AGT S Ser
ATC I Ile (i) ACC T Thr AAC N Asn AGC S Ser
ATA I Ile (i) ACA T Thr AAA K Lys AGA R Arg
ATG M Met (i) ACG T Thr AAG K Lys AGG R Arg

GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val (i) GCG A Ala GAG E Glu GGG G Gly

Table 3.2: This table shows what the NCBI refers to as Translation Table 4, the genetic
code used for mould, protozoan, coelenterate mitochondria and mycoplasma/spiroplasma.
Recognised initiation start codons are marked with (i). cf. Table 3.1 where TGA is a stop
codon, and TTA is not recognised as an initiation start codon.
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Figure 3.5: Unidirectional (→→) HK then RR gene pair separation or overlap (in that order,
i.e. T + R pairs), from the 457 species listed in Table A.1.
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Figure 3.6: Unidirectional (→→) RR then HK gene pair separation or overlap (in that order,
i.e. R + T pairs), from the 457 species listed in Table A.1.
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3.3 Observed separations or overlaps from all genes

Separation/overlap frequencies were tabulated for divergent, convergent and unidirectional

adjacent genes based on the annotation in the GenBank files of the 457 species listed in

Table A.1. For simplicity, any genes with non-exact locations, ambiguous sequences, internal

stop codons, invalid start or stop codons (as verified using the declared genetic code, Table 3.1

or 3.2), or special cases with non-continuous coding sequences (e.g. from ribosomal slippages)

were excluded, as were cases where one gene was entirely within another (fully overlapped).

Separated gene pairs with any ambiguous sequence between them were also excluded.

In total 1, 428, 039 gene pairs were considered: 210, 209 divergent, 210, 494 convergent

and 1, 007, 336 unidirectional gene pairs; a split of 14.7%, 14.7% and 70.5% respectively (3 sf).

Within each orientation, the proportion of overlapping gene pairs varies considerably. Only

3.6% of divergent genes are annotated as overlapping, compared with 13% of convergent pairs

and 21% (2 sf) of unidirectional pairs. These ratios agree within one percent with published

results (Fukuda et al., 2003; Kingsford et al., 2007).

In the following bar charts, for all three orientations there is a clear division between

short overlaps (n < 6), and longer overlaps (n ≥ 6) where there are periodic patterns in the

distributions, which have been emphasized by using three alternating colours for the three

phases.

3.3.1 Divergent gene pairs

Figure 3.7 illustrates divergent gene pairs, which make up about 15% of neigbouring genes.

Of these, only 3.6% or about 7, 600 pairs (2 sf) are overlapped. Divergent overlaps require

any promoter or translation initiation sites to be dual-encoded in the complementary strand of

the other gene’s coding region - which may go some way to explaining their rarity.

This bar chart can be divided into three regions which exhibit different behaviours:

separated genes, short overlaps, and long overlaps. There is a periodic behaviour in the

separated genes, with phase +2 apparently most common. Also noteworthy is a drop in the

observed counts around six bp, which could be explained by requirements of the ribosomal

binding site having to be dual coded with the other gene’s start codon.

Short divergent overlaps (n < 6) are restricted by the limited set of possible start

codons. Table 3.3 shows these overlaps tabulated according to the start codons used. In cases

where a pair of start codons cannot give a particular overlap length, a dash has been shown.

Otherwise the observed count is given, which is zero in some cases. Because divergent overlaps

are symmetric with respect to the strands, these tables are symmetric.
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n = 1 gene two start codon
ATA ATC ATG ATT CTG GTG TTA TTG

ATA (TAT) - - - - - - 0 0
ATC (GAT) - - - - - - 0 0

gene one ATG (CAT) - - - - - - 0 219
start codon ATT (AAT) - - - - - - 0 0
(and reverse CTG (CAG) - - - - - 3 - -
complement) GTG (CAC) - - - - 3 - - -

TTA (TAA) 0 0 0 0 - - - -
TTG (CAA) 0 0 219 0 - - - -

222 overlaps

n = 2 gene two start codon
ATA ATC ATG ATT CTG GTG TTA TTG

ATA (TAT) 0 1 1 0 - - - -
ATC (GAT) 1 0 0 0 - - - -

gene one ATG (CAT) 1 0 1120 0 - - - -
start codon ATT (AAT) 0 0 0 0 - - - -
(and reverse CTG (CAG) - - - - - - - -
complement) GTG (CAC) - - - - - - - -

TTA (TAA) - - - - - - - -
TTG (CAA) - - - - - - - -

1122 overlaps

n = 4 gene two start codon
ATA ATC ATG ATT CTG GTG TTA TTG

ATA (TAT) 0 - - - - - 0 -
ATC (GAT) - - - - - - - -

gene one ATG (CAT) - - - - - - - -
start codon ATT (AAT) - - - - - - - -
(and reverse CTG (CAG) - - - - - - - -
complement) GTG (CAC) - - - - - - - -

TTA (TAA) 0 - - - - - 0 -
TTG (CAA) - - - - - - - -

0 overlaps

n = 5 gene two start codon
ATA ATC ATG ATT CTG GTG TTA TTG

ATA (TAT) - - - 0 - - - -
ATC (GAT) - - 0 - 0 0 - 0

gene one ATG (CAT) - 0 - - - - - -
start codon ATT (AAT) 0 - - - - - 0 -
(and reverse CTG (CAG) - 0 - - - - - -
complement) GTG (CAC) - 0 - - - - - -

TTA (TAA) - - - 0 - - - -
TTG (CAA) - 0 - - - - - -

0 overlaps

Table 3.3: Divergent overlap sequences of varying lengths, n < 6, tabulated by start codon.
Bold indicates which parts of the two start codons would coincide, with dashes for impossible
combinations. Note that these tables are symmetric. Same dataset as Figure 3.7.
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n ≥ 6, phase +0 gene two start codon
ATA ATC ATG ATT CTG GTG TTA TTG

ATA (TAT) 0 0 2 0 0 1 0 0
ATC (GAT) 0 0 0 0 0 0 0 0

gene one ATG (CAT) 2 0 641 0 8 651 0 598
start codon ATT (AAT) 0 0 0 0 1 0 0 0
(and reverse CTG (CAG) 0 0 8 1 1 1 0 1
complement) GTG (CAC) 1 0 651 0 1 152 0 197

TTA (TAA) 0 0 0 0 0 0 0 0
TTG (CAA) 0 0 598 0 1 197 0 103

2357 overlaps

n ≥ 6, phase +1 gene two start codon
ATA ATC ATG ATT CTG GTG TTA TTG

ATA (TAT) 0 0 0 0 0 0 0 0
ATC (GAT) 0 0 0 0 0 0 0 0

gene one ATG (CAT) 0 0 838 0 4 627 0 610
start codon ATT (AAT) 0 0 0 0 0 0 0 1
(and reverse CTG (CAG) 0 0 4 0 0 2 0 1
complement) GTG (CAC) 0 0 627 0 2 170 0 198

TTA (TAA) 0 0 0 0 0 0 0 0
TTG (CAA) 0 0 610 1 1 198 0 124

2575 overlaps

n ≥ 6, phase +2 gene two start codon
ATA ATC ATG ATT CTG GTG TTA TTG

ATA (TAT) 1 0 0 0 0 0 0 0
ATC (GAT) 0 0 0 0 0 0 0 0

gene one ATG (CAT) 0 0 275 1 2 381 0 300
start codon ATT (AAT) 0 0 1 0 1 0 0 0
(and reverse CTG (CAG) 0 0 2 1 1 0 0 1
complement) GTG (CAC) 0 0 381 0 0 105 0 143

TTA (TAA) 0 0 0 0 0 0 2 0
TTG (CAA) 0 0 300 0 1 143 0 93

1306 overlaps

Table 3.4: Divergent overlap nucleotide sequences of length n ≥ 6, tabulated by phase ac-
cording to the start codons used. This is a continuation of Table 3.3.
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Figure 3.8: An example divergent gene overlap of length n = 1, ...CAATG... (or
...CATTG... on the reverse complement strand) where the two genes commence ATG...
and TTG... (using the standard start codon ATG, and an atypical start codon, TTG).

Figure 3.9: An example divergent gene overlap of length n = 2, ...CATG... (which is a
palindromic sequence) where both genes commence ATG... using the standard start codon,
ATG.

Figure 3.10: An example divergent gene overlap of length n = 4, ...ATAA... (or ...TTAT...
on the reverse complement strand) where the two genes commence ATAA... and TTAT...
(using atypical start codons ATA and TTA).
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There are over two hundred divergent gene overlaps of length n = 1, almost exclusively

...CAATG... or equivalently ...CATTG... (its reverse complement), which was observed

219 times. In this particular overlap the two genes commence with start codons ATG... and

TTG..., as illustrated in Figure 3.8. The n = 1 overlap ...CACTG... or ...CAGTG... was

found three times, while the remaining theoretical possibilities were not observed (Table 3.3).

Over a thousand divergent overlaps of length n = 2 were found, almost exclusively

where both genes commence with the standard start codon ATG... giving an overlap region

...CATG... (a palindromic sequence, 1120 cases). This is illustrated in Figure 3.9. Table 3.3

shows several other possible overlaps of length n = 2 using different start codons pairings,

which were observed only once or not at all.

A divergent overlap of length n = 3 would require a start codon whose reverse com-

plement is also a start codon, and this is not possible in the known genetic codes. Divergent

overlaps of lengths n = 4 and 5 bp are possible using atypical start codons (e.g. Figure 3.10),

but were not observed (Table 3.3)

For longer divergent overlaps (n ≥ 6), phase +2 is clearly least common, while the

number of overlaps in phases +0 and +1 are similar, with slightly more in phase +1 (Figure 3.7,

Table 3.4). Note that while long overlaps in phase +2 are least common, separations in

phase +2 are most common. This symmetry may be due in part to misannotated start codons.

3.3.2 Convergent gene pairs

Around 15% of all neighbouring genes are convergent, and of these 13% (2 sf) are overlapping.

Figure 3.11 shows separations/overlap lengths in convergent gene pairs.

Short convergent overlaps (n < 6) are restricted by the limited set of three possible

stop codons. Table 3.5 shows these overlaps tabulated according to the stop codons used. In

cases where a pair of stop codons cannot give a particular overlap length, a dash has been

shown. Since divergent overlaps are symmetric with respect to the strands, these tables are

symmetric.

Figure 3.11 shows about a third of the convergent overlaps are of length four, a distri-

bution spike previously reported (Fukuda et al., 1999). In fact, overlaps of length n = 4 are

the only possible short convergent overlaps (n < 6), as overlaps of lengths 1, 2, 3 and 5 bp

cannot appear due to stop codon limitations (Table 3.5).

Convergent overlaps of length n = 4 can occur in three ways (Table 3.5), with both

genes using stop codon TAA (2359 cases), both using TAG (2729 cases), or one using TAA and

the other using TAG (3329 cases, illustrated in Figure 3.12). Convergent overlaps of length
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n = 1 gene two stop (reverse complement)
TAA (TTA) TAG (CTA) TGA (TCA)

gene TAA - - -
one TAG - - -
stop TGA - - -

0 overlaps

n = 2 gene two stop (reverse complement)
TAA (TTA) TAG (CTA) TGA (TCA)

gene TAA - - -
one TAG - - -
stop TGA - - -

0 overlaps

n = 4 gene two stop (reverse complement)
TAA (TTA) TAG (CTA) TGA (TCA)

gene TAA 2359 3329 -
one TAG 3329 2729 -
stop TGA - - -

8417 overlaps

n = 5 gene two stop (reverse complement)
TAA (TTA) TAG (CTA) TGA (TCA)

gene TAA - - -
one TAG - - -
stop TGA - - -

0 overlaps

n ≥ 6, phase +0 gene two stop (reverse complement)
TAA (TTA) TAG (CTA) TGA (TCA)

gene TAA 892 713 1020
one TAG 713 460 912
stop TGA 1020 912 753

4750 overlaps

n ≥ 6, phase +1 gene two stop (reverse complement)
TAA (TTA) TAG (CTA) TGA (TCA)

gene TAA 1051 1203 1508
one TAG 1203 372 1519
stop TGA 1508 1519 2753

8406 overlaps

n ≥ 6, phase +2 gene two stop (reverse complement)
TAA (TTA) TAG (CTA) TGA (TCA)

gene TAA 217 307 1065
one TAG 307 251 1614
stop TGA 1065 1614 1395

4849 overlaps

Table 3.5: Convergent overlap sequences of varying lengths, n, tabulated by stop codons.
Bold indicates which parts of the two stop codons would coincide, with dashes for impossible
combinations. Note that these tables are symmetric. From the same dataset as Figure 3.11.
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Figure 3.12: An example convergent gene overlap of length n = 4, ...TTAG... (or
...CTAA... on the reverse complement strand) where the two genes end ...TTAG and
...CTAA using stop codons TAG and TAA respectively.

n = 4 using the stop codon TGA are impossible. In this situation, since one gene would finish

...NTGA, giving an overlap of NTGA with reverse complement TCAN, the other gene would end

...TCAN requiring a stop codon of the form CAN.

For the longer convergent overlaps (n ≥ 6), phase +1 overlaps are clearly the most

common (Figure 3.11, Table 3.5), as reported in Rogozin et al. (2002) (where phase +1 is

referred to as C2) and Kingsford et al. (2007). On the other hand, for separate convergent

pairs, phase +0 is slightly more common than phase +1, than phase +2, also reported in

Kingsford et al. (2007). However, the overlap and separated gene spectra do not appear to be

mirror images of each other, as claimed in Kingsford et al. (2007).

3.3.3 Unidirectional gene pairs

The most common gene pair orientation is unidirectional, with over 70% of cases. This

orientation also has the highest overlap rate (21%, 2 sf).

For unidirectional overlaps, the three phases can be viewed in terms of relative reading

frames. As mentioned in the introduction, the special case of “in phase” overlaps (of length 3i

for i ∈ N, phase +0) reduces to alternative start codons for a single gene which were excluded

(Figure 3.3). This leaves two possible overlap phases, phase +1 (overlaps of length 3i − 1,

Figure 3.1) and phase +2 (overlaps of length 3i− 2 for i ∈ N, Figure 3.2).

Figure 3.13 shows unidirectional gene pairs. Overlaps of length n = 1 make up about

one sixth of unidirectional overlaps, while overlaps of length n = 4 constitute just under half.

The high number of length 1 and 4 bp overlaps has long been recognised (Eyre-Walker, 1996).

Overlaps of 2, 3 and 6 bp are prevented by the genetic code, however there are a handful of

overlaps of 5 bp made possible by an atypical start codon, ATT (Table 3.6).

The simplest possible unidirectional overlap is by one bp. For example, Figure 3.14
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n = 1 gene two start codon
ATA ATC ATG ATT CTG GTG TTA TTG

gene TAA 2 2 15618 15 - - - -
one TAG - - - - - 1331 - -
stop TGA 0 1 14982 1 - - - -

31952 overlaps

n = 2 gene two start codon
ATA ATC ATG ATT CTG GTG TTA TTG

gene TAA - - - - - - - -
one TAG - - - - - - - -
stop TGA - - - - - - - -

0 overlaps

n = 4 gene two start codon
ATA ATC ATG ATT CTG GTG TTA TTG

gene TAA 73 - - - - - 14 -
one TAG 5 - - - - - 4 -
stop TGA - - 78840 - 116 18487 - 4945

102484 overlaps

n = 5 gene two start codon
ATA ATC ATG ATT CTG GTG TTA TTG

gene TAA - - - 22 - - - -
one TAG - - - 4 - - - -
stop TGA - - - 2 - - - -

28 overlaps

n ≥ 6, phase +1 gene two start codon
ATA ATC ATG ATT CTG GTG TTA TTG

gene TAA 25 9 18514 14 47 3073 28 3073
one TAG 2 3 5490 4 6 1166 8 1072
stop TGA 0 3 18768 1 24 3873 0 2579

57782 overlaps

n ≥ 6, phase +2 gene two start codon
ATA ATC ATG ATT CTG GTG TTA TTG

gene TAA 11 21 3730 56 16 1003 6 826
one TAG 1 3 2163 5 6 724 0 469
stop TGA 4 0 4440 3 25 2611 0 1160

17283 overlaps

Table 3.6: Unidirectional overlap nucleotide sequences of varying lengths, n, tabulated ac-
cording to the upstream gene stop codon (gene one) and the downstream gene start codon
(gene two). Bold nucleotides indicate which parts of the start and stop codons would have to
coincide, impossible combinations are shown as a dash. Note that the combination of start
codon TTA with stop codon TGA is not possible for overlaps of length n < 6 in either of the
genetic codes used (Tables 3.1 and 3.2). From the same dataset as Figure 3.13.
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Figure 3.14: An example unidirectional gene overlap of length n = 1, ...TGATG... where
the upstream gene one ends ...TGA (stop codon TGA) and the downstream gene two starts
ATG... (standard start codon ATG).

Figure 3.15: An example unidirectional gene overlap of length n = 4, ...ATGA... where
the upstream gene one ends ...ATGA (stop codon TGA) and the downstream gene two starts
ATGA... (standard start codon ATG).

Figure 3.16: An example unidirectional gene overlap of length n = 5, ...ATTAA... where
the upstream gene one ends ...ATTAA (stop codon TAA) and the downstream gene two starts
ATTAA... (atypical start codon ATT).
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shows an overlap ...TGATG... where the overlapping region (A) is the last nucleotide of

a stop codon in gene one (...TGA) and the first nucleotide of a start codon in gene two

(ATG...). Referring to Table 3.6, overlaps of ...TGATG... and ...TAATG... make up the

bulk of n = 1 overlaps, with a handful of others using different start codons.

The most numerous unidirectional overlap is length n = 4, principally ...ATGA...

(gene one ends ...TGA and gene two starts ATG..., illustrated in Figure 3.15). Because

prokaryotes employ multiple possible start codons, other overlaps of four are also possible,

with GTGA and TTGA being the next most common (Table 3.6).

An overlap of five nucleotides is rare, requiring the atypical start codon ATT (Table 3.6).

One example of this is shown in Figure 3.16. A similar analysis based on the codon tables

excludes overlaps of two nucleotides. The in-phase cases of n = 3 and n = 6 can also be

specifically ruled out as these would require a codon to serve double duty as both a stop and

a start site, or reduce the downstream gene to a trivial six nucleotide start-stop sequence.

Thus for n ≤ 6 the major overlaps are n = 1 and 4, plus the slight possibility of n = 5

with an atypical start codon. These extremely common short overlaps almost certainly cause

translational coupling (Oppenheim and Yanofsky, 1980; McCarthy, 1990), resulting in both

genes being expressed at a similar level. Eyre-Walker (1996) discusses the use of particular

alternative stop codons in this context.

For overlaps of more than six nucleotides, it is striking that overlaps in phase +1 are

far more common than in those in phase +2. Plots like this have previously been published

although the phase bias for longer overlaps was not apparent due to lack of data (Eyre-Walker,

1996), or not stressed (Borodovsky et al., 1999; Johnson and Chisholm, 2004), until this work

(Cock and Whitworth, 2007a).

3.4 Current understanding of gene overlaps

The three different overlap orientations share certain features. For short overlaps (n < 6),

the absence of certain overlap lengths is trivially explained by the codon table. For the longer

overlaps (n ≥ 6) there appears to be an exponential drop off in the observed counts, but

with an additional effect with a periodicity equal to the codon length of three bp. There are

also some visible phase effects in the separation distribution for neighbouring non-overlapping

genes.

One important question to address when considering potentially overlapping genes is

how they were predicted or annotated. For stop codons, there is little chance of error (barring

abnormalities like ribosomal slippages), but for start codons the situation is less clear cut –
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indeed multiple start codons can be used in vitro resulting in different gene products from the

same gene (e.g. the genes inf B (Nyengaard et al., 1991; Laursen et al., 2002) or cheA (Smith

and Parkinson, 1980) in E. coli and other species) as illustrated in Figure 3.3.

How each genome was annotated, and any biases in start codon selection regarding

potential gene overlaps will complicate this analysis. To avoid concerns about mis-annotated

start codons Rogozin et al. (2002) restricted their analysis to evolutionarily conserved over-

lapping gene pairs, but this does have the downside of restriction to a much smaller dataset.

In Cock and Whitworth (2007a) our analysis was restricted to TCS genes only, where because

these genes contain characterized domains, they are more likely to be genuine than predicted

genes of unknown function.

There has been little work in the literature looking at the phase patterns in divergent

genes, presumably handicapped by both the relative scarcity of divergent gene overlaps, and

uncertainty over the reliability of the start codon annotation which is doubly crucial in this

head-to-head orientation.

Several groups have looked at the more common case of convergent overlaps, where

being tail-to-tail any ambiguity of start codons is not so important. Rogozin et al. (2002)

concluded the phase +1 preference in convergent gene overlaps could be explained because

this offered the least mutual constraint on nonconservative amino acid replacements in both

overlapping coding sequences (Krakauer, 2000), and overlaps in this phase were therefore more

likely to be retained by positive selection.

To explain this reasoning, the three nucleotides within a codon will be referred to as

c1, c2 and c3. In this notation c3 corresponds to the “wobble position” (Crick, 1966). When

two convergent genes overlap in phase +1, the c1 positions of each gene coincide, while the c2

position of one gene matches a c3 position in the other, and vice versa. This arrangement allows

non-synonymous changes in one gene by point mutation of a nucleotide in the c2 position, with

minimal disruption to the other gene where this change is in the c3 or wobble position, and the

change is therefore likely to be synonymous. This imposes minimal mutual constraints on the

co-evolution of the two genes, compared to the other two phases. In particular, in phase +2,

the wobble positions in both genes coincide, which means any non-synonymous change in one

gene will likely be non-synonymous in the other gene.

Kingsford et al. (2007) later observed that due to the likelihood of finding alternative

stop codons in the reverse complement of a non-overlapping gene coding sequence, the simple

loss of a stop codon will produce a similar three bp periodic pattern of overlapping gene

lengths. They concluded convergent gene overlaps arose by random extension of genes to the
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next in-frame stop codon, followed by selection against longer overlaps, which was modeled

using an exponential fitness function. This data-driven explanation is much simpler than the

mutual constraint arguments of Rogozin et al. (2002), although as the authors observed, the

two are not mutually contradictory.

Our own work focused on the phase bias in unidirectional overlaps, initially from a

mutual restraint perspective (Cock and Whitworth, 2007a), similar to that of Rogozin et al.

(2002). This chapter presents an alternative start/stop codon analysis following the method

of Kingsford et al. (2007). While there is one start codon to worry about in unidirectional

gene pairs, this orientation is by far the most common, providing a wealth of data to analyse.

3.5 Long unidirectional gene overlaps

Short overlaps of length n < 6 have been discussed above (Section 3.3.3), while multiples of

three are excluded (n = 3i for i ∈ N, phase +0). This leaves the longer overlaps (n ≥ 6) where

there are two distinct phases to consider. Based on shared information content alone, it has

been predicted there would be no phase preference for unidirectional gene overlaps (Krakauer,

2000), but this is not the case (Figure 3.4, Table 3.6).

For the overlapping region, each nucleotide is encoding two different codons - and thus

controls the amino acid sequence of two different proteins. Due to the nature of the amino

acid translation table, mutations in the wobble position of a codon (c3) generally make least

difference to the resulting amino acid, and mutations in this position are most likely to be

tolerated. Looking at the amino acid nature, mutations in codon position one (c1) generally

are less damaging than mutations in position two (c2).

With a phase difference of +1, the wobble position (c3) in gene one corresponds to a

fragile c2 nucleotide in gene two. With a phase difference of +2, the wobble position (c3) in

gene two corresponds to a c2 nucleotide in gene one. If it is assumed that there is no difference

in the evolutionary pressures on two overlapping genes, then by a symmetry argument, one

would predict there should be no preference for the +1 or +2 phase differences (for overlaps

of more than six bp). However, any simple argument based on either of the upstream or

downstream gene being “more important” is somewhat undermined by our analysis of TCS

gene pairs, HK + RR pairs versus RR + HK pairs, where the genes are presumably of equal

importance to the organism, and yet the same phase bias was observed (Figures 3.5 and 3.6).

On the basis of this codon based mutual constraint argument, the observed phase +1

bias in longer overlaps (Figures 3.4 and 3.13) suggests that in general the tail end of gene one

is “more important” than the start of gene two. That is to say, a phase +1 overlap allows
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maximal non-synonymous changes in the start of gene two while minimizing changes in gene

one. This argument can be assessed directly by considering hypothetical point mutations in

the overlap region (Cock and Whitworth, 2007a).

On the basis of this mutual constraint argument, in Cock and Whitworth (2007a) we

proposed that unidirectional gene overlaps tend to arise from non-overlapping unidirectional

genes by the N-terminal extension of the downstream gene by the (gradual) adoption of an

alternative start codon. Under this model, the overlap region was originally single coding

for the C-terminal region of the upstream gene, and becomes dual coding giving an initially

random N-terminal prefix to the original downstream gene. There would then be evolutionary

pressure to optimize the amino acid composition of this new stretch of protein, which can

occur more easily without disruption to the upstream gene in phase +1. Assuming generation

of overlaps in either phase happens at similar frequencies, this mutual constraint suggests that

phase +1 overlaps are more likely to be retained by purifying selection, resulting in a phase

+1 bias.

Alternatively, unidirectional overlaps could arise by the C-terminal extension of the

upstream gene - for example a (point) mutation in the original stop codon leading to an

extension to the next in-frame stop codon. Applying the same argument as above suggests a

phase +2 bias would be expected. In Cock and Whitworth (2007a) a simplistic codon frequency

analysis suggested the codon usage in non-overlapped regions was more similar to that of the

overlapped region of the upstream gene than the downstream gene, taken as support for the

creation of these overlaps by extension of the downstream gene via an alternative start codon.

In an alternative explanation, the following section will explore unidirectional over-

lap generation by the adoption of alternative start or stop codons, based on the analysis of

Kingsford et al. (2007) for convergent gene overlaps.

3.6 Generating overlaps from alternative start/stop codons

Kingsford et al. (2007) introduced a model explaining the convergent gene overlap phase bias

based on the likelihood of finding alternative stop codons in the reverse complement of non-

overlapping gene coding sequences. They concluded convergent gene overlaps arose by the

loss of a stop codon leading to random extension of a gene to the next in-frame stop codon,

followed by a selection against longer overlaps which was modelled as an exponential fitness

function.

This analysis is repeated here and generalised to cover the other gene orientations.

The extension to look for alternative stop codons in non-overlapping unidirectional gene pairs
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is straightforward. Alternative start codons can also be searched for to generate potential

unidirectional or divergent gene overlaps. This analysis does not explicitly look for Shine-

Dalgarno binding sites (Shine and Dalgarno, 1975), nor any other translation initiation regions,

which would have to be dual coding with the protein sequence of the other gene. However,

the function of these regions is not known to require a precise distance from the start codon,

and thus should be irrelevant to the phase effects we are interested in.

3.6.1 Generating convergent overlaps from alternative stop codons

Kingsford et al. (2007) looked at non-overlapping convergent gene pairs, and considered how

these could give rise to overlaps by the adoption of an alternative stop codon. They searched

each non-overlapped gene for the first reverse complement stop codon. A histogram of the

convergent overlap which would result from a neighbouring gene adopting this stop codon

revealed the same phase bias observed in Figure 3.11. Such an overlap could be created by

a simple point mutation of the existing stop codon (assuming the gene separation was in the

correct phase) or by a more radical mutation.

This analysis is repeated in Figure 3.17, where the horizontal axis is labeled by the

resulting overlap length. As in Kingsford et al. (2007), there is a striking phase bias, with

phase +1 most common. Each phase appears to show an exponential-like decay, but with

different rates. As a result, for overlaps up to about 12 bp, phase +0 is more common than

phase +2, but this ranking switches for the longer overlaps. Kingsford et al. (2007) Figure 3

shows similar behaviour, however in their dataset phase +2 overtakes phase +0 to become the

second most common phase at around forty bp.

3.6.2 Generating divergent overlaps from alternative start codons

Figure 3.18 shows a similar analysis, searching non-overlapping divergent genes for the first

reverse complement start codon (looking for any valid start codon in the relevant codon table).

This appears to show a similar overlap phase bias to that observed in Figure 3.7, with phase

+1 more common than phase +0 than phase +2.

A large number of potential overlaps of lengths one and two are found, with n = 2

about ten times more common, as expected. However, these short overlaps make up a far

higher fraction of the generated overlaps than observed in annotated overlaps. In addition,

there are a substantial number of overlaps of length n = 5 predicted, which does not agree

with the overserved data where none have been annotated. These differences are likely due to

the fact that any potentially valid start codon has been accepted when generating the hypo-
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Figure 3.17: Hypothetical convergent overlaps generated by an alternative stop codon, from
the 457 species listed in Table A.1.

thetical overlaps, which does not reflect the start codon usage observed in annotated overlaps

(Table 3.3). One particular problem with this simplistic analysis is that some alternative start

codons defined for the bacterial genetic code may only be used by a subset of species. More

generally, different start codons have different initiation rates and thus different usage rates.

This start codon bias is dealt with very simply in Figure 3.19, where only overlaps

generated using a commonly observed start codon (ATG, GTG or TTG) were accepted (these

three start codons together make up the bulk of all annotated start codons observed). The

number of n = 1 and n = 2 overlaps are much reduced compared to Figure 3.18 (using any

start codon), although still over-represented. There are only a handful of overlaps of length

n = 5 predicted now, which does better match the observed distribution. In reducing the

number of short overlaps, there are correspondingly more longer overlaps (n ≥ 6), which now

show a very clear phase bias (with phase +1 most common), much more pronounced than in

the observed distribution (Figure 3.7), although phases +0 and +2 are now almost equally

common. There is a smooth exponential decay, bar the low number of overlaps of length

n = 6, although that is observed in Figure 3.7. This exponential decay appears to be faster

than in the oberserved data (Figure 3.7).

Given the comparatively small sample of divergent gene overlaps observed, and the rel-

atively indistinct phase patterns therein (Figure 3.7), further comparison with these predictions

(Figures 3.18 and 3.19) has not been pursued.
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Figure 3.18: Hypothetical divergent overlaps generated by any potential valid start codon,
from the 457 species listed in Table A.1. Any valid start codon in the relevant codon table
was accepted.
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Figure 3.19: Hypothetical divergent overlaps generated by any common start codon (ATG, GTG
or TTG), from the 457 species listed in Table A.1.
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3.6.3 Generating unidirectional overlaps from alternative start/stop codons

Analysis of non-overlapping unidirectional genes is slightly more complicated, as both N-

terminal extension of the downstream gene via a new start codon, and C-terminal extension

of the upstream gene via a new stop codon must be considered.

Figure 3.20 shows the resultant overlaps from the most C-terminal out-of-phase start

codon in the upstream gene, using any valid start codon in the genetic code assigned to

each organism. For the longer overlaps (n ≥ 6) there is a smooth exponential decay, with

phase +1 about twice as common as phase +2. This is the phase bias expected, but it is not

as pronounced as observed in annotated overlaps (Figure 3.13).

Large numbers of overlaps of lengths n = 1 and 4 are predicted, with about twice as

many of length n = 4. This does not match the oberved ratio where overlaps of n = 4 are

about three times as common (Table 3.6). Another noteable difference between Figure 3.20 and

the observed distribution is the high peak at overlap length n = 5, which is almost completely

absent in Figure 3.13. As discussed in Section 3.3.3, unidirectional overlaps of length n = 5 are

only possible using the alternative start codon ATT. As in the case of divergent gene overlaps

above, this analysis is simplistic in that even “rare” start codons like ATT are given equal

weighting. This peak at n = 5 is absent in Figure 3.21 where only the commonly observed

three start codons were considered.

Figure 3.21 shows other differences. Overlaps of n = 1 and 4 are also much reduced,

which is also to be expected as only the standard three start codons were considered, restricting

the set of possible short overlaps (see Table 3.6). Also their ratio is closer to that observed. For

the longer overlaps (n ≥ 6), the phase bias is now much stronger, with phase +1 about three

times as common as phase +2, in much closer agreement with the observed bias (Figure 3.13,

Table 3.6). Also of note, in Figure 3.21 the decay rate is much slower than in Figure 3.20.

Figure 3.22 shows the resultant overlaps from the most N-terminal out-of-phase stop

codon in the downstream gene. The breakdown of short overlaps (n < 6) is in reasonable

agreement, with a only a small fraction of n = 5 overlaps generated, although the ratio of

overlaps of length n = 1 and 4 is skewed. The longer overlaps (n ≥ 6) show exponential decay

as expected, except that the number of overlaps of length n = 6 is comparatively low. There

is a slight phase bias, with phase +2 somewhat more common, which is the opposite of the

bias observed (Figure 3.13).

Notice that the phase bias in the hypothetical overlaps from alternative start codons

(Figures 3.20 and 3.21) matches that observed in annotated overlaps (Figure 3.13), but those

generated from alternative stop codons do not (Figure 3.22). This would appear to support
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Figure 3.20: Hypothetical unidirectional overlaps generated by any valid start codon within
the upstream gene of non-overlapping unidirectional gene pairs, selected from the 457 species
listed in Table A.1. Any valid start codon in the relevant codon table was accepted.
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Figure 3.21: Hypothetical unidirectional overlaps generated by any common start codon ( ATG,
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from the 457 species listed in Table A.1.
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the hypothesis that unidirectional gene overlaps tend to be generated from non-overlapping

unidirectional gene pairs by the N-terminal extension of the downstream gene by the adoption

of an alternative start codon within the upstream gene, rather than C-terminal extension of

the upstream gene by a adoption of new stop codon within the downstream gene.
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Figure 3.22: Hypothetical unidirectional overlaps generated by any potential alternative stop
codon within the downstream gene of non-overlapping unidirectional gene pairs, selected from
the 457 species listed in Table A.1.

3.7 Predicting overlap length spectra

The results of the previous section can be used to generate overlap spectra showing the

expected phase biases for convergent overlaps (using alternative stop codons) and unidirectional

overlaps (using alternative start codons). However the exponential decay rates do not quite

match, which in their model for convergent overlaps Kingsford et al. (2007) resolved using

a two-step model. Firstly, a new convergent overlap is generated by the adoption of a new

stop codon. Secondly, the fitness of this new overlap is limited by its length, modelled with

an exponential fitness function. This idea could be applied to unidirectional overlaps (and

potentially divergent overlaps), modelling their generation by the adoption of a new start

codon, followed by a length-based selection.
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3.8 Discussion

Given the relative scarcity of divergent overlap examples, we have not examined the case of

divergent overlaps in any detail. However, it appears that the overlap phase biases here may

also be explained by the relative frequencies of start codons within the other reading frames

of normal coding sequences.

Both the mutual constraint selection model (Cock and Whitworth, 2007a), and the

alternative start codon model presented above based on Kingsford et al. (2007), explain the

observed unidirectional overlap phase bias. The models are compatible, both assuming that

overlaps tend to happen by the N-terminal extension of a downstream gene. The alternative

start codon model suggests a strong phase bias at the creation of the overlap, while the mutual

constraint model suggests a strong phase selection bias after the overlaps is created. Either or

both may be valid.

Similarly, for convergent overlaps, the alternative stop codon (Kingsford et al., 2007)

and mutual constraint selection (Rogozin et al., 2002) models are also compatible. I am

inclined to follow Kingsford et al. (2007) in concluding that the inherent phase bias in the

observed frequency of start and stop codons in alternative reading frames of coding sequences

gives the more elegant and straightforward explanation of the convergent overlap patterns

observed, and also favour this explanation for unidirectional overlaps.

The phase patterns in overlapping genes have no immediately apparent evolutionary

function, but rather are inherently linked to the genetic code itself. The genetic code will have

evolved under various pressures. Itzkovitz and Alon (2007) explored a range of hypothetical

genetic codes, and concluded that the genetic codes observed in nature are near optimal for

allowing additional information to be encoded within a protein sequence. This work did not

specifically mention nucleotide sequences simultaneously encoding two proteins, but rather

arbitrary (short) sequences representing possible DNA-binding regions or other motifs. Fur-

thermore, the presence of alternative out of frame stop codons within a gene (hidden stop

codons) was looked at from the point of view of robustness to translational frameshift errors

(Seligmann and Pollock, 2004). The standard genetic code was found to terminate erroneous

reads sooner than the hypothetical genetic codes, which is advantageous as less resources are

wasted constructing and degrading non-functional proteins. It seems reasonable that func-

tions like double-coding and hidden stop codons may have shaped the genetic code, and thus

indirectly contribute to the overlap phase patterns observed.

One assumption in the work presented in this chapter, has been taking annotated start

codons at face value. From the perspective of phase biases, as long as two genes still overlap,
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the chosen start codon does not actually matter. Also, mis-annotations would be expected to

cause marked phase bias in the distribution of non-overlapping genes. This may indeed be the

case in divergent overlaps (Figure 3.7), but does not appear to be an issue in the unidirectional

gene pairs (Figure 3.13). In Cock and Whitworth (2007a), filtering the dataset to exclude any

gene pairs with possible alternative start codons actually made the overlap phase bias slightly

stronger, however this dramatically reduces the size and therefore the reliability of the dataset.

While the genetic code itself appears to induce these phase biases in longer overlaps,

without searching for translation initiation sites it is not clear how many of these long uni-

directional (or divergent) overlaps are biologically relevant. Translational coupling provides

a biological reason for short unidirectional gene overlaps, but may not apply to the longer

overlaps reported. Indeed, a recent analysis by Pallejá et al. (2008) concluded that most long

overlaps are mis-annotations. The phase biases of these longer overlaps may be an artefact -

our simple model of alternative start codon selection with an exponential length-based fitness

criterion can be applied equally well to the genome annotation process!

Finally, the high number of unidirectional overlaps of length n = 5 generated using

“rare” alternative start codons (Figure 3.20) may be of biological relevance, with the handful

of cases annotated being just the tip of the iceberg. Eyre-Walker (1996) noted skewed ratios

of alternative stop codons in short overlaps (n = 1 or 4), so a similar atypical start codon

usage in this context is not unreasonable. Perhaps future work will reveal that overlaps of

n = 5 are in fact far more common than current annotation indicates.
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Chapter 4

TCS gene fusion

4.1 Introduction

The prototypical TCS system consists of two proteins, a histidine kinase (HK) containing a

transmitter domain (T), and its partner response regulator (RR) containing a receiver domain

(R) (e.g. Figure 1.1). The domain motif based search described in Chapter 2 identified a

large number of more complicated genes containing multiple TCS domains (see Table 2.2 on

page 47), the most common of which are simple hybrid kinases (HYs) containing a single T

and a single R domain (e.g. Figure 1.3).

One explanation for such HY genes is they are the result of a gene fusion event, merging

neighbouring HK and RR genes into a single composite. However these genes are created,

for so many HYs to be preserved across multiple species, these systems must retain some

functionality, so it is presumed that there is intra-protein phosphorylation between the T and

R domains in a simple HY.

If these simple HY proteins do form self-contained TCS systems, then the presence of

an output domain could be expected. In the absence of a separate output domain, a response

could be elicited directly by the receiver domain itself, similarly to CheY (Section 1.4.3).

Alternatively, rather than constituting a self-contained TCS, a simple HY protein could be part

of a phosphorelay, as in the Vibrio harveyi quorum-sensing system (Section 1.4.9). However,

relatively few phosphotransfer proteins have been identified to date (see Section 1.4).

In this chapter the lists of paired T and R domains generated in Section 2.4 are used

to infer apparent net TCS gene fusion rates, and to investigate factors influencing this, in

particular the presence of transmembrane helices in HKs, and the presence of DNA-binding

domains in RRs. In the absence of such features there is a relative abundance of fused genes.

These results were published in Cock and Whitworth (2007b).
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Two gene pairs Isolated hybrids
Domains Count Domains Count Fused Total

Ti + R 2092 Ti-R 764 27% 2856
Tii + R 5 Tii-R 1 17% 6
R + Ti 2689 R-Ti 95 3% 2784
R + Tii 30 R-Tii 0 0% 30
Total 4816 Total 860 15% 5676

Table 4.1: Minimal TCS systems from 457 species (Table A.1), data points from Tables 2.2
and 2.3. The fused column shows the fraction in isolated hybrids, an apparent net fusion rate.

4.2 Minimal TCS systems

A minimal TCS system will be taken as one containing a single T and a single R domain,

either as neighbouring HK and RR genes, or as isolated HYs. Only isolated HYs are used

(where there are no other TCS genes within 5, 000 bp) allowing direct comparison to paired

genes (where again, there are no other TCS genes within 5, 000 bp, see Section 2.4) to infer

apparent net fusion rates.

These systems will be denoted as T + R or R + T for the two gene pairs, and T-R or

R-T for the hybrids, with plus signs denoting two separate neighbouring genes, and minuses

indicating multiple domains within one gene. Similarly, TR and RT denote minimal TCS

systems as either two gene pairs, or as single gene hybrids.

Table 4.1 shows minimal TCS systems identified as part of the survey described in

Chapter 2. Given the small number of Tii systems, this chapter will focus on the Ti systems

only. There are similar numbers of TR and RT systems (2, 856 and 2, 784 respectively, exclud-

ing Tii systems), however, the proportion of single-gene systems (and therefore the apparent

fusion rate), was found to be markedly different for TR and RT geometries: 27% and 3%

respectively were hybrid kinases (independence rejected with chi-squared p-value < 0.001).

It is clear that the apparent net fusion rate depends on the domain order, with the TR

fusion rate an order of magnitude higher than that for RT systems.

4.3 Transmembrane and DNA-binding domains

Two factors important in TCS function that might affect TCS gene fusion are transmembrane

(TM) helices in input domains, and the presence of DNA-binding domains, as these domains

require separate spatial localisation for function. TCSs were therefore assessed for the presence

of TM helices and DNA-binding domains.

Transmembrane (TM) predictions were made for genes containing T domains using the

online web-interface to TMHMM v2.0 (Krogh et al., 2001) (as recommended in an independent
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comparison (Moller et al., 2001)). Note that the TMHMM software is now available to

download as a standalone tool, which would allow its complete integration into the analysis

pipeline, rather than the semi-automatic procedure adopted which prepared batches of queries

for the online tool.

The presence of DNA-binding output domains was based on matches to any of the

following PFAM domains with an expectation threshold of 10−4 using RPS-BLAST (see Section

2.5): pfam00486, pfam00196, pfam02954, pfam04397, pfam00165, pfam04545, pfam00447,

pfam00440, pfam01381, pfam04967, pfam00249, pfam00126 or pfam01022.

Table 4.2 shows the breakdown of the minimal TCS systems (with Class I transmitters)

by both domain architecture and the presence of TM and DNA-binding domains. Overall,

83% of minimal TCSs possessed TM helices and 26% contained DNA-binding domains, with

20% containing both. However, these breakdowns are very dependent on the TCS system

architecture.

Most HKs possessed TM helices (4, 223 out of 4, 781 [88%]), as did a large number

of hybrid kinases (456 out of 859 [53%]). The proportion of TM HKs was found to be much

higher in R + Ti systems than in Ti + R systems (97% and 77% respectively), and additionally,

was much lower in R-T systems than in T-R systems (1% and 60% respectively).

There also appears to be a relationship between TCS geometry and the presence of

DNA-binding domains (Table 4.2). Of 4, 739 RRs within minimal TCSs, 29% possess DNA-

binding output domains. Small numbers of HYs were found to have DNA-binding domains

(5% of Ti-R proteins, but no R-Ti cases), while in two gene pairs, DNA-binding domains were

more common (59% of Ti + R pairs, and 6% of R + Ti pairs). Thus it seems that hybrid

kinases possessing DNA-binding domains are selected against, and this selection is stronger

for R-Ti hybrids than for Ti-R hybrids (0% of DNA-binding RT geometry TCSs are hybrid

kinases, compared to 3% of TR geometry TCSs).

The chi-squared test rejects the independence of gene order and the proportion of fused

genes with p-values of 6.1×10−3 and 1.6×10−237 when TM helices and DNA-binding domains

respectively are excluded. However, considering only those TCSs that lack both TM helices

Ti + R Ti-R Fused R + Ti R-Ti Fused Total Fraction

TM only 697 422 38% 2454 1 0% 3574 63%
DNA only 311 6 2% 29 0 0% 346 6%
TM+DNA 927 33 3% 145 0 0% 1105 20%
Neither 157 303 66% 61 94 61% 615 11%
Total 2092 764 27% 2689 95 3% 5640 100%

Table 4.2: Occurrence of minimal TCSs, sub-divided by the presence/absence of transmem-
brane helices (TM), DNA-binding domains (DNA) and TCS geometry.
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and DNA-binding domains, we see similar proportions of fused genes in TR and RT geometries

(61% RT, 66% TR, p-value for independence 0.416), implying that the presence of TM helices

and DNA-binding domains are the main factors affecting the propensity for gene fusion. It

also suggests that in the absence of domains requiring specific spatial localisation, evolution

generates (and/or retains) fused gene products at a higher frequency than separated gene

pairs, which agrees with more general studies (Snel et al., 2000; Kummerfeld and Teichmann,

2005).

4.4 TCS domain location in HK and RR genes

The results of the previous section clearly show domain order (TR versus RT) is linked to the

apparent fusion rate. A related question is the location of the T and R domains within HK

and RR genes. Figure 4.1 uses bar-charts to show the position of the T within each HK, and

the R within each RR, for the paired systems discussed in this chapter.

It is apparent that the transmitter domain is typically within 25 amino acids of the

C-terminus of the HK, and there are normally hundreds of amino acids preceding it at the

N-terminus (which presumably includes an input domain). Figure 4.2 shows the same data

divided according to whether or not the HK is TM, and the same patterns persist.

For the RRs, the opposite holds. The receiver is usually within 25 amino acids of the

N-terminus, and there is typically a C-terminal region of 50 to 400 amino acids (presumably

containing an output domain). Figure 4.3 shows that DNA-binding domains are all within

a C-terminal region of around 100 amino acids, while for non-DNA-binding output domains

there is a wider range of lengths.

4.5 TCS domain location in HY genes

Figures 4.4 and 4.5 show similar plots for the Ti-R and R-Ti isolated hybrids, with the addition

of separation of the TCS domains. For the Ti-R hybrids, there is generally an N-terminal

region of up to 1000 aa, presumably containing an input domain. The region between the

TCS domains is typically around 25 aa, with a second peak at about 150 aa perhaps indicative

of an intermediate domain. Most of these HYs have a C-terminal region less than 50 aa,

however, some are longer suggesting the presence of an output domain.

For the R-Ti hybrids (Figure 4.5), the N and C-terminal regions are generally short

(under 50 aa), but there is considerable variation in the intra-TCS domain spacing, where

input and output domains might be expected.
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Figure 4.4: Bar-charts of the lengths of the regions N-terminal to the transmitter, between
the receiver and transmitter, and C-terminal to the receiver domain, in isolated Ti-R HYs.
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Figure 4.5: Bar-charts of the lengths of the regions N-terminal to the receiver, between the
receiver and transmitter, and C-terminal to the transmitter domain, in isolated R-Ti HYs.
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4.6 Domain separation

Figure 4.6 shows the separation (nucleotide bps) between encoded transmitter and receiver

domains for the four minimal TCS geometries. Domains tend to be much closer to each

other in TR than RT systems, which is consistent with the observation that most RRs possess

C-terminal output domains, and typical HKs have N-terminal input domains (Section 4.4).

A minimum separation between the TCS domains is apparent in the HY genes. These

TCS domain separations are also shown measured in amino acids in Figures 4.4 and 4.5.

A sub-population of Ti-R systems is apparent with an average domain separation of

∼ 500 bp, ∼ 400 bp larger than the main population, suggesting the presence of an additional

domain between the transmitter and receiver domains. A periodicity of ∼ 400 bp may also be

present for the inter-domain distances of RT systems, presumably reflecting integer values of

intervening domains between the transmitter and receiver domains.

4.7 Discussion

If HYs arise from the fusion of HK and RR genes, then many of the trends observed can be

explained due to the typical domain arrangements. HKs tend to have an N-terminal input

domain, and a C-terminal transmitter (INPUT-Ti), while RRs tend to have an N-terminal

receiver domain and C-terminal output domain (R-OUTPUT) (Section 4.4). Thus a TR fusion,

starting with an INPUT-Ti HK upstream of an R-OUTPUT RR, would give a domain layout

of INPUT-Ti-R-OUTPUT, while an RT fusion would give R-OUTPUT-INPUT-Ti instead.

DNA-binding output domains require some steric freedom in order to function, and

hypothetically this would be hampered by being a central domain within a HY. Thus an RT

fusion (expected to give R-OUTPUT-INPUT-Ti) would be less functional than a TR fusion

(which would be INPUT-Ti-R-OUTPUT), which matches the observed data (39 Ti-R with

DNA-binding, but no R-Ti cases). However, this alone does not seem to explain the scarcity

of HYs with DNA-binding domains.

TM proteins are known to have an N-terminal signal peptide which marks them for

membrane export. In a TR fusion event, this marker would be preserved at the N-terminal of

the resulting hybrid gene. However, in RT fusions the marker would be lost or rendered non-

functional by virtue of being in the central core of the new fused gene. Another important order

dependent difference between hypothetical fusions of TM HK with RR genes is the location

of the TM input domain. If as is normally the case, the HK domain layout is INPUT-Ti,

then in a TR fusion the TM input domain remains at the N-terminus of the protein, and thus
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Figure 4.6: TCS domain separation in minimal systems, for the four system architectures.
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should remain functional. In this case, the previously cytosolic RR domains become membrane

associated, which may impact their functionality, depending on the nature of the output signal

(a particular concern for DNA-binding). However, for an RT fusion this would place the

TM region in the middle of the resulting HY protein, which may complicate or prevent the

membrane insertion (even if given a suitable membrane export signaling marker). Furthermore,

if there are an odd number of TM helices, this would put the transmitter and receiver domains

on opposite sides of the membrane, preventing the phosphotransfer.

On the basis of these arguments, while TM Ti-R HYs should be possible (and indeed

455 were identified), no TM R-Ti HYs would be expected. In fact, a single TM R-Ti HY

was found, StyS of Xanthomonas axonopodis pv. citri (GI:21244368), with two predicted TM

helices in the middle of the protein. This may simply be a false positive TM prediction.

20% of minimal TCS systems contain both a TM input domain and a DNA-binding

output domain. From the arguments above, here an RT fusion event would be non-functional

(and no R-Ti HYs were observed with both TM and DNA-binding domains), while a TR fusion

of a TM HK and DNA-binding RR resulting in an INPUT-Ti-R-OUTPUT domain structure

does appear to be possible. Such proteins would be membrane bound, thus in order for the

output domain to bind to the DNA, the DNA itself would have to move into proximity with the

HY, which seems energetically unfavourable. On the contrary, for normal RRs or cytosolic HYs,

the protein itself is mobile and can diffuse to the DNA. It is therefore somewhat surprising that

a total of 33 HYs containing both a transmembrane domain and a DNA-binding output domain

were observed (Table 4.2). These were from Bacteroides thetaiotaomicron, Bacteroides fragilis

(multiple occurrences each, also reported in Xu et al. (2004), see Section 1.4.5) and three

strains of Bacillus cereus (one example each). If these proteins truly have transmembrane

helices, and are therefore membrane anchored, perhaps their DNA-binding domains act to

spatially organize the DNA in a more complex regulatory process than the simple modulation

of gene expression?

TMHMM was trained on a set of only 160 known TM proteins, of which 76 are from

Eukaryota (64 from Mammalia), 3 from Archaea (all Halobacterium), 76 from Bacteria (of

which 48 are Escherichia) and 5 from viruses (Krogh et al., 2001, suplementary information).

Thus only half are from prokaryotes, and half of these are from Escherichia. It is possible that

there is some species bias in the transmembrane predictions.

Finally, 11% of minimal TCS systems contain neither a TM input domain nor a DNA-

binding output domain. With no further information about the nature of the domains in these

proteins, there is no reason a priori to expect the proportion of HYs to be different for the TR
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and RT geometries, which indeed are very similar (61% RT, 66% TR, p-value for independence

0.416). Moreover, the fact that the apparent net fusion rate is so high in the absence of a

TM input and a DNA-binding output domain (with about two thirds of these systems being

HYs), suggests that when otherwise prevented, TCS genes will readily fuse into single proteins

– effectively becoming one-component systems.

Considering the domain separations of Ti-R and R-Ti systems (Figures 4.4, 4.5 and 4.6),

it is apparent that very few of the hybrid systems have a TCS domain separation less than

ten amino acids (i.e. 30 bp). This suggests that a linker region of at least ten amino acids

is required for appropriate interaction between the receiver and transmitter domains in both

Ti-R and R-Ti HYs.

Providing there is a sufficiently flexible linker region between the T and R domains,

fusion allows the diffusion limited step in the TCS signalling cascade to be eliminated, resulting

in a quicker/stronger response to the stimuli. It would also reduce the chance of cross-talk with

other receivers. TCS gene fusion could therefore be described as a heavy handed approach to

tuning the bacteria’s decision making network.

Taken together, this data suggests that the presence of TM helices and DNA-binding

domains are the main factors affecting the propensity for TCS gene fusion. It also suggests that

in the absence of domains requiring specific spatial localisation, evolution generates (and/or

retains) fused gene products at a higher frequency than separated gene pairs, which agrees with

more general studies (Snel et al., 2000; Kummerfeld and Teichmann, 2005). This data provides

numerical support for the TCS dogma that the HK and RR are two separate components in

order to be able to couple spatially separated stimuli and responses.

4.8 Conclusion

In summary, these findings suggest that the presence of TM helices and DNA-binding domains

appear to be the primary factors correlating with observed rates of apparent TCS gene fusion.

In the absence of such domains there appears to be a general tendency to formation (and/or

retention) of fused TCS systems. A further consideration is the relative genetic distance

between encoded transmitter and receiver domains. This appears to be related to apparent

TCS gene fusion rates in a geometry-specific manner, presumably a reflection of the typical

domain ordering found in HK and RR genes. Additionally, it appears that any minimal linker

random-coil between Ti-R or R-Ti domains must be at least ten amino acids long.

HYs enforce a single cellular location upon the entire TCS. 83% of minimal TCSs

contain at least one TM helix, suggesting that the role of the majority of TCSs is to couple
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extracellular sensing to internal responses. 20% of minimal TCSs contain both TM and DNA-

binding domains, coupling extracellular sensing with transcriptional responses, and of these

only 3% are HYs. However, in addition to enforcing a single cellular location upon the entire

TCS, the gene fusion of a HK with RR also removes a diffusion-limited step in signal trans-

duction (formation of the transmitter-receiver complex), such that the resulting hybrid kinase

would, if functional, exhibit an increase in signalling speed and efficiency. Such fused TCSs

could be regarded as a step backwards towards one-component systems (OCS), which consist

of single proteins directly coupling an input and output domain (Ulrich et al., 2005). However,

the newly-formed hybrid kinase would retain its phosphotransfer signalling mechanism, pro-

viding additional opportunities for modulation of signal transduction by extrinsic kinases and

phosphatases.
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Chapter 5

Identifying amino acid residues for

TCS partner specificity

5.1 Introduction

This chapter analyses paired multiple sequence alignments (MSAs), with the aim of identify-

ing amino acid positions (MSA columns) important in the specificity of TCS HisKA-receiver

protein-protein interactions. The residues thus identified are used in the following chapter to

predict TCS protein pairings.

In general, any highly conserved MSA columns have been preserved during evolution and

are interpreted as critically important for protein function. In the case of TCS domains, such

residues are presumably essential for the correct structural folding, the formation of the protein-

protein complex, or are perhaps catalytic residues required to permit phosphotransfer. However,

highly conserved MSA columns by their nature cannot restrict partner specificity, where some

variability is required. The aim of the analysis presented is to identify co-varying MSA column

pairs from the two proteins, with the expectation that these will represent interacting residues

in the protein-protein complex governing partner specificity.

By means of an analogy, think of the protein-protein complex as a matching key and

lock (Figure 5.1), and consider a collection of keys and locks, where all the keys fit in all the

locks, but only unlock their specific partner. Comparing the keys to each other, some parts

are perfectly conserved, in particular the length and cross section of the blade. There are no

such constraints on the the key bow (or handle) where many designs are possible and equally

functional. Similarly some parts of the lock such as the key hole and tumbler mechanism will be

conserved, while the casing or any handle need not be. The lock-key pairings are governed by

variations in the key teeth and compensating variations to the pin lengths in the lock cylinder

113



Figure 5.1: Simple pin tumbler cylinder lock and keys. In this type of lock, when the key is
inserted the pins within the lock are raised up to different heights by the key teeth. Each pin
is divided into two parts (coloured grey and red here), and can therefore sheer at a particular
height, allowing the cylindrical lock-barrel to turn. The important parts for specificity are the
key teeth (in dark blue) and the lock pins (in red). The two keys have been drawn in two
contrasting styles, emphasising that the bow (handle) is unimportant.
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tumblers. To identify key-lock parings within this set, we need only consider the key teeth and

the lock pins - everything else is either perfectly conserved or irrelevant.

Returning to the world of proteins, we need to identify which parts of the two proteins

are important for pair specificity (corresponding to the teeth and pins in the key-lock example),

and in particular how they interact (which key tooth matches which lock pin). A naive analysis

of the properties of a set of key-lock pairs should be able to identify these tooth/pin pairings

as correlations - but may also select spurious matches, for example in the choice of metal,

or the branding. Similarly we might expect some false positives in our MSA analysis from

phylogenetic effects.

Various approaches have been used in the literature to tackle similar problems such as

identifying protein-protein interaction sites from correlated mutations in MSAs (Göbel et al.,

1993; Pazos et al., 1997). One particular measure is mutual entropy or mutual information

(MI) (Shannon and Weaver, 1949), a measure of co-variation which can be calculated directly

from the sequence letters. It has previously been used to identify potential residue interactions

within proteins or between interacting proteins (Korber et al., 1993; Giraud et al., 1998; Atchley

et al., 1999, 2000; Buck and Atchley, 2005; Martin et al., 2005; Gouveia-Oliveira and Pedersen,

2007; Dunn et al., 2008), having earlier been successfully applied to RNA structure analysis

(Chiu and Kolodziejczak, 1991; Gutell et al., 1992; Gorodkin et al., 1997; Adami, 2004).

In this chapter several approaches, including the use of the MI (Section 5.5.4), are

discussed as methods to identify which amino acid residues are important for the specificity of

TCS interactions using paired MSAs. As there is only limited and indirect information available

about the spatial orientation of the HisKA-receiver complex, inter-residue distance information

has not been used except to interpret the results. If the specificity residues can be identified

and interactions predicted without the use of three-dimensional data, this makes the approach

applicable to a wider range of protein-protein interactions where there is no three-dimensional

data at all. In the following chapter a predictive model is considered, based on these particular

amino acids selected from the sequences of the HisKA and receiver domains.

5.2 TCS protein complexes

The survey of TCS genes generated thousands of paired transmitter and receiver domains

(Chapter 2), including both Class I transmitters (with HisKA domains) and the minority Class II

transmitters (with Hpt domains, see Section 1.2). This and the following chapter focus ex-

clusively on the more numerous Class I transmitters, where the HisKA-receiver complex is

important for phosphotransfer.
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3D structures of docked transmitter and receiver domains would be ideal for identifying

interacting residues, based on physical proximity. However, to date co-crystals have only been

solved for a few atypical cases (Section 1.5), and even predominantly buried residues have

been shown to play a role in recognition (McLaughlin et al., 2007). A related question of

which residues are essential can be tackled experimentally for a given transmitter/receiver

pairing - for example with alanine mutation studies, e.g. Tzeng and Hoch (1997); Jiang et al.

(1999); McLaughlin et al. (2007). Doing this to answer the question of which impart partner

specificity would require mutation studies on a panel of transmitter/receivers. Nevertheless,

there is existing information regarding the role and importance of particular residues for certain

known TCS pairs, and this will be useful to validate the results of the analysis.

5.3 Approach

If one accepts that all HisKA dimers (or receiver domains) share broadly the same three

dimensional structure, and that any two examples could be superimposed on each other with

a rigid body motion, then columns in a MSA correspond to specific locations on the average

domain structure. Furthermore, assuming that all interacting HisKA and receiver complexes

adopt the same orientation, if the structures for these protein complexes were available they

too could be superimposed on each other. With this image in mind, any pair of amino acid

residues from this generic HisKA-receiver complex can be represented by the corresponding

pair of MSA columns.

Only a minority of MSA column pairs will represent amino acids in close contact,

forming part of the interaction surface. Amino acids making up the interaction site between

the two protein families would be expected to exert mutual constraints, and thus to have

co-evolved, manifesting as a correlation or co-variation between columns of paired MSAs.

Figure 5.2 shows a schematic of the HisKA and receiver MSAs, sorted according to known

domain pairings, and represents the possible amino acid interactions as a grid of inter-protein

MSA column pairs.

Hydrophilicity is believed to play a role in TCS interactions (Kojetin et al., 2003), and

therefore correlations in hydrophilicity between MSA columns were calculated. Two alternative

hydrophilicity scorings were used, those of Kyte-Doolittle (KD) (Kyte and Doolittle, 1982)

and Hopp-Woods (HW) (Hopp and Woods, 1981). Although these give numerical values

and therefore a standard Pearson correlation could be calculated, the scores are not normally

distributed as they come from a small discrete set of amino acids. Instead two rank based

correlations were used with tie corrections, Spearman’s ρ and Kendall’s τ (Kendall and Gibbons,
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Figure 5.2: Schematic figure showing a possible pair of MSA columns (i, j) from the paired
HisKA MSA column i and receiver domain MSA column j. In the example shown, this column
pair defines a list of paired amino acids (E,I), (E,-), (D,L), (D,I), . . . , (E,I).

117



1990).

Another MSA column pair score evaluated, dubbed CP, was calculated as the sum of the

chemical potentials between each amino acid pair. This used an existing statistical chemical

potential derived empirically from known protein complexes (Lu et al., 2003), an approach

building on earlier work (Tanaka and Scheraga, 1976; Miyazawa and Jernigan, 1985; Sippl,

1990; Moont et al., 1999). This chemical potential, which is illustrated in Figure 5.3, assigns

values ranging from −4.4 for the amino acid pair (Cys,Cys) to +1.9 for (Asp,Asp), with the

mapping largely explained by hydrophilicity. Low potentials between close amino acids should

indicate energetically favourable complexes, and thus may identify interacting complexes.

In addition to these scores based on the physical properties of the amino acids them-

selves, two scores based on the letters themselves were considered. The first of these was

the χ2 statistic, which measures the difference in distribution of amino acid pairs from that

expected if the two MSA columns were independent. Finally, the mutual information (MI)

between each MSA column pair was also calculated.

MSA column pairs with an extreme score (e.g. a high MI) may be indicative of co-

evolution due to mutual constraint posited for amino acid pairs playing a role in TCS partner

specificity. Grids of the MSA column pairs were plotted, with each square coloured according

to the score (i.e. a coloured matrix, also termed a level-plot or heatmap), with the rows and

columns labelled by the amino acid sequences of a reference HisKA and receiver domain. This

allows any “hot-spots” to be interpreted in the context of known 3D structures and literature

regarding the protein-protein interaction surface. These column pairs with extreme value scores

were also visualised as lines between the HisKA and receiver reference sequences shown running

across the top and bottom of the figure.

One key validation step is to perform the same calculations using randomised protein

pairings, to give an estimate of the typical range of scores which could be expected from the

natural variation of the protein sequence motifs concerned. Should the distribution of scores

from the random pairings show little difference to those using the pairings inferred from the

genome arrangement, that scoring system is clearly unsuitable for the intended purpose.

As there is not yet a solved 3D structure for the HisKA-receiver complex which could

be used as a template (Section 1.5), the analogous Spo0B-Spo0F complex has been used as a

model (e.g. Laub and Goulian (2007)). By superimposing a known HisKA structure onto the

Spo0B dimer, a rough approximation of the expected HisKA-receiver complex was created.

This allowed crude pairwise distances to be calculated, providing another way to evaluate the

MSA column pairs selected by the different scoring systems.
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5.4 Implementation

To reduce potential sampling bias, HisKA and receiver domain pairs were taken from the 340

representative species listed in bold in Table A.1. The alignments were generated using three

different datasets, two-gene pairs (3, 473 neighbouring HK and RR genes), HYs (1, 434 single

isolated genes containing both a Ti and R domain), and a combined dataset (4, 907 pairs).

These sequences were not filtered for redundacy based on sequence similarity.

Additional sequences consisting of the HisKA domain from E. coli EnvZ (PDB ref.

1JOY), or the receiver domain of Bacillus subtilis Spo0F (PDB ref. 1F51), listed below, were

included in each MSA to provide a convenient reference point for describing the MSA columns,

and for inferring distances as described later. However, for the calculation of the MSA column

pair correlation scores, these two reference sequences were excluded.

>REF HisKA domain from 1JOY EnvZ

DRTLLMAGVSHDLRTPLTRIRLATEMMSEQDGYLAESINKDIEECNAIIEQFIDYLR

>REF Receiver domain from 1F51 Spo0F

KILIVDDQSGIRILLNEVFNKEGYQTFQAANGLQALDIVTKERPDLVLLDMKIPGMDGI

EILKRMKVIDENIRVIIMTAYGELDMIQESKELGALTHFAKPFDIDEIRDAVKKYLPL

The quality of the MSAs themselves was expected to play some role, and this was

assessed by using two different alignment programs, CLUSTAL W (Thompson et al., 1994)

and MUSCLE (Edgar, 2004). Specifically, CLUSTAL W version 1.83 was used with its default

settings, and MUSCLE version 3.7 with a maximum of three iterations (-maxiter 3), and

the alignments output using the CLUSTAL W file format (-clwstrict).

When calculating scores using randomised pairings, a same sized set of HisKA-receiver

pairings was generated from the alignments using sampling with replacement. This is equivalent

to generating two new “paired” MSAs by copying rows (domain sequences) from the rows of

the original MSAs selected at random. A bootstrapping procedure based on this procedure is

discussed at the end of this chapter.

MSA columns where the fraction of gap characters exceeded a given threshold (50%

unless otherwise stated) were excluded from the analysis, unless the column happened to

include an amino acid from the reference sequence. The chemical potential between a gap

character and an ordinary amino acid or another gap was taken as zero. Similarly, gaps were

assigned a hydrophilicity score of zero before calculating the ρ or τ correlations. For the χ2

and MI scores gap characters were treated as another letter.
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A crude 3D structure for the HisKA-receiver complex was created by a three-dimensional

alignment of the E. coli EnvZ HisKA dimer (PDB 1JOY, Figure 1.20) onto the Spo0B dimer in

the Bacillus subtilis Spo0B-Spo0F complex (PDB 1F51, Figure 1.22), based on the structural

analogy of their four α-helix bundles shown in Figure 1.19. Specifically, a rigid body motion

mapping one dimer onto the other was selected using singular value decomposition to minimise

the least squares Euclidean distance between the Cα atoms1 of the conserved hisitidine phos-

phorylation sites and the three amino acids either side of them (within the same α-helices).

This ensured the histidine phosporoylation sites of EnvZ and Spo0B were co-located and that

the orientation of the α-helix bundles was consistent. Note that structural alignment is in

general much more complicated, see for example Taylor and Orengo (1989) and Levitt and

Gerstein (1998).

Since the E. coli EnvZ and Bacillus subtilis Spo0F domain sequences were included

in the HisKA and receiver MSAs, using this crude HisKA-receiver complex Cα distancescould

straightforwardly be assigned to most MSA column pairs. For columns in the MSA where a

gap had been introduced in the reference sequences, a simple linear interpolation between the

Cα atoms of the residues either side of the gap was used to assign a notional set of coordinates

to this MSA column, and thus pairwise distances.

The whole analysis was scripted in python (www.python.org). MSA files were loaded us-

ing the Biopython libraries (www.biopython.org). The Bio.PDB module in Biopython (Hamel-

ryck and Manderick, 2003) was used to load the PDB files and calculate the structural align-

ment. Spearman’s ρ and Kendall’s τ correlations were calculated using the Bio.Cluster

module in Biopython (de Hoon et al., 2004), while the χ2 and MI calculations were imple-

mented by hand in python.

The figures were drawn using the python library ReportLab (www.reportlab.org), or R

(R Development Core Team, 2007) invoked from python via RPy (Moreira and Warnes, 2003).

In particular, the smoothed scatter plots were drawn using the R function smoothScatter

from the Bioconductor package (Gentleman et al., 2004). This uses a kernel density estimate,

where each scatter point is replaced with a “smoothed out” kernel using a standard two-

dimensional normal or Gaussian distribution. The plot area is divided using a fine grid, and

each grid square is coloured according to the sum of these values, giving an image resembling

a contour plot.

1The Cα atom is the protein back bone carbon atom to which the amino acid residue side chain is attached.

120

http://www.python.org
http://www.biopython.org
http://www.reportlab.org


5.5 Column pair correlations and results

In this section, for each scoring system discussed, a similar set of figures is presented. Firstly,

the distribution of the observed scores is shown together with that given by a random set of

protein pairings. This also serves as a colour key for a following figure, where the score of each

MSA column pair is shown on a coloured grid, with the receiver residues shown horizontally and

the HisKA residues vertically, with the axes labelled with the reference structures (including

their secondary structure using dark and light greys for the α-helices and β-sheets). A further

figure (or pair of figures) shows the MSA column pairs giving extreme scores as lines connecting

those residues on the two reference sequences, drawn horizontally across the top and bottom

(again with their secondary structure indicated). Finally smoothed scatter plots have been used

to show how the correlation scores compare to the inferred distance from the crude protein

complex.

Unless otherwise stated, these figures are from CLUSTAL W alignments from HisKA

and receiver domains found in neighbouring HK and RR genes (i.e. not HYs).

5.5.1 Chemical potential summations

The simplest MSA column pair score considered was the summation of the Lu et al. (2003)

chemical potential of each amino acid pair (illustrated in Figure 5.3). The resulting distribution

of scores is shown in Figure 5.4, where it is clear that there is no difference in pattern between

those from the identified domain pairs, and a control set of random domain pairings. This

indicates that this approach has not identified any MSA column pairs linked to the domain

pairings. Figure 5.5 confirms this by showing these scores as a grid, where there is no spatial

patterning of interest. Analysis of the MUSCLE alignments or the alternative datasets showed

no difference (data not shown).
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Protein−Protein Interaction Potential
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Figure 5.3: The chemical potential from Lu et al. (2003), shown as a coloured grid where
the potential for each amino acid combination is indicated by the brightness (key on right).
The potential assigned to each amino acid pair ranges from −4.4 for (Cys,Cys) to +1.9 for
(Asp,Asp), with the mapping largely explained by hydrophilicity.
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curves (bottom).
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5.5.2 Hydrophilicity correlations

Using a mapping such as the KD or HW hydrophilicity (Table 5.1), the list of amino acids in

any MSA column can be translated into a list of numbers. For a pair of columns from the

HisKA and receiver MSAs, this gives a set of paired hydrophilicity scores for which a correlation

can be calculated. This could be a simple linear regression (treating the hydrophilicities as a

continuous variable), such as a Pearson correlation. However, as there are only twenty amino

acids, and some of them have the same hydrophilicity, this is actually a discrete problem. It is

therefore more appropriate to use a rank based correlation such as Spearman’s ρ or Kendall’s

τ , both of which include a tie correction.

Amino acid KD HW

A Ala −1.80 −0.50
C Cys −2.50 −1.00
D Asp 3.50 3.00
E Glu 3.50 3.00
F Phe −2.80 −2.50
G Gly 0.40 0.00
H His 3.20 −0.50
I Ile −4.50 −1.80
K Lys 3.90 3.00
L Leu −3.80 −1.80
M Met −1.90 −1.30

Amino acid KD HW

N Asn 3.50 0.20
P Pro 1.60 0.00
Q Gln 3.50 0.20
R Arg 4.50 3.00
S Ser 0.80 0.30
T Thr 0.70 −0.40
V Val −4.20 −1.50
W Trp 0.90 −3.40
Y Tyr 1.30 −2.30
X Xxx 0.00 0.00
- Gap 0.00 0.00

Table 5.1: KD and HW hydrophilicity/hydrophobicity scores. The final rows show the unknown
amino acid X and gap character, for which an arbitrary value of zero was typically used.

Given lists of n paired values (here hydrophilicities from two MSA columns), denote

their ranks by xi and yi (ranging from 1 to n) for i = 1, . . . , n. Tied elements are assigned the

mean of the ranks they would otherwise be given. Spearman’s ρ is defined as follows where it

is useful to introduce N ′ := n(n2 − 1)/6,

ρ := 1−
6
∑

i

[
(xi − yi)2

]
n(n2 − 1)

=
N ′ −

∑
i

[
(xi − yi)2

]
N ′ . (5.1)

Kendall and Gibbons (1990) then gives a tie corrected form of Spearman’s ρ,

ρ :=
N ′ −

∑
i

[
(xi − yi)2

]
− U ′ − V ′

√
N ′ − 2U ′

√
N ′ − 2V ′ , (5.2)

where U ′ :=
∑

(u3 − u)/12 and V ′ :=
∑

(v3 − v)/12 are sums over the observed ranks with

u and v the number of elements with each rank in lists xi and yi respectively. In the absence

of ties, U ′ = V ′ = 0 and this reduces to Equation (5.1).

Kendall’s τ works by looking at the 1
2n(n− 1) pairs of rank entries (i and j), counting

concordant pairs which have the same rank orders (i.e. xi < yi and xj < yj , or xi > yi and
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Figure 5.6: Histogram of KD Spearman’s ρ from HisKA and receiver pairs (top), and ran-
domised pairings (middle). These are shown as density curves (bottom).
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β1 α1 β2 α2 β3 α3 β4 α4 β5 α5

KILIVDDQSGIRILLNEVFNK----EGYQTFQAANGL-QALDIVTKERPDLVLLDMKIPGMDGIEILKRMKVIDEN--IRVIIMTAYGELDMIQESKELGALTHFAKP-FDIDEIRDAVKKYLPL

α1 α2
DRTLLMAGVSHDLRTPLTRIRLATEMMSE---QDGYLAE---SINKDIEECNAIIEQFIDYLR

Figure 5.8: Top 100 MSA column pairs with positive KD Spearman’s ρ correlations.

β1 α1 β2 α2 β3 α3 β4 α4 β5 α5

KILIVDDQSGIRILLNEVFNK----EGYQTFQAANGL-QALDIVTKERPDLVLLDMKIPGMDGIEILKRMKVIDEN--IRVIIMTAYGELDMIQESKELGALTHFAKP-FDIDEIRDAVKKYLPL

α1 α2
DRTLLMAGVSHDLRTPLTRIRLATEMMSE---QDGYLAE---SINKDIEECNAIIEQFIDYLR

Figure 5.9: Top 100 MSA column pairs with negative KD Spearman’s ρ correlations.

128



−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

10
20

30
40

50

Spearman's ρ correlation of KD hydrophobicities

A
pp

ro
xi

m
at

e 
di

st
an

ce

Figure 5.10: Smoothed scatter plot of KD Spearman’s ρ correlations against estimated dis-
tances from a crude protein-protein complex. Rather than attempting to show a scatter plot
with tens of thousands of points, this figure (and later similar plots) indicate the local smoothed
kernel density estimate by color, ranging from white to green to yellow to red to brown. Only
one hundred outliers are shown as points (in the green regions).
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xj > yj), and discordant pairs with opposite rank orders (e.g. xi < yi and xj > yj). Writing

P for the number of concordant pairs and Q for the number of discordant pairs, Kendall and

Gibbons (1990) defines

τ :=
2(P −Q)
n(n− 1)

. (5.3)

Correction factors U :=
∑

u(u− 1) and V :=
∑

v(v − 1), summed over the observed ranks,

are included in the tie corrected variant,

τ :=
2(P −Q)√

n(n− 1)− U
√

n(n− 1)− V
. (5.4)

As before, in the absence of ties the correction factors vanish (U = V = 0) giving the

uncorrected Equation (5.3). In this chapter the tie corrected forms of ρ and τ are used

exclusively.

Figure 5.6 shows the distribution of KD Spearman’s ρ correlations for the paired pro-

teins, and as a control for randomised domain pairings. The distributions have similar bell

shaped distributions centred at the origin. The paired domains show a much broader range

of ρ correlations, suggesting those column pairs with extreme ρ correlation scores may be

important for the protein-protein interaction specificity.

Inspection of a grid of these correlation scores (Figure 5.7) shows many of these column

pairs with extreme ρ correlations are associated with the first α-helix of the HisKA (bright red

or blue against a white background where ρ ∼ 0). This is also apparent in Figures 5.8 and 5.9

which show the column pairs with the highest or lowest 100 KD ρ correlations.

Figure 5.10 shows these KD ρ correlations plotted against the estimated separation of

the associated amino acids in the reference protein complex. Overall there is no correlation,

although by eye one might argue that the column pairs with the most extreme correlation

scores are slightly closer together than average (in that the top left and top right corners of

the plot are empty). Although not shown in full, plots using the HW hydrophilicity values with

Spearman’s ρ yield much the same results as those discussed above using the KD hydrophilicity

scale (see Figure 5.16, described below).

Kendall’s τ is an alternative rank-based correlation. Figure 5.11 shows the distribution

of KD τ correlations for the paired proteins and the randomised pairings. Both distributions are

symmetric about the origin, however the paired data clearly shows more extreme correlations,

both positive and negative. As with the ρ results, the fact that there is a noticeable difference

between these two distributions is encouraging if these correlations are capturing something of

the interaction information.

Figure 5.12 shows the KD τ correlations as a grid, where the MSA column pairs with

extreme positive (or negative) correlations are shown in bright red (or blue). Since most
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Figure 5.11: Histogram of KD Kendall’s τ from HisKA and receiver pairs (top), and randomised
pairings (middle). These are shown as density curves (bottom).
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Figure 5.13: Top 100 MSA column pairs with positive KD Kendall’s τ correlations.
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Figure 5.14: Top 100 MSA column pairs with negative KD Kendall’s τ correlations.
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Figure 5.15: Smoothed scatter plot of KD Kendall’s τ correlations against estimated distances
from a crude protein-protein complex. Those column pairs with an extreme Kendall’s τ are
slightly closer together than average based on the estimate distances.
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column pairs have τ ∼ 0, the majority of this grid is white. As with KD ρ, there are a number

of extreme values, particularly associated with the first α-helix of the HisKA. These extreme

values are also illustrated in Figures 5.13 and 5.14, where it can be observed that many of the

receiver residues selected are on the interaction face of the protein.

Figure 5.15 plots the KD τ correlation scores against the residue separation from the

inferred protein-protein structure. Again one might argue that those column pairs with extreme

τ values do appear to be slightly closer together than average, but even so, at best this is only

a slight improvement over KD ρ (Figure 5.10).

As with Spearman’s ρ, a repeat analysis using the HD hydrophilicity rather than the KD

hydrophilicity gave very similar distributions of Kendall’s τ correlations, although the precise

MSA column pairs highlighted do differ (data not shown in full). These alternative results

are summarised in Figure 5.16, which shows a number of smoothed scatter plots comparing

the KD and HW hydrophilicity scores, Spearman’s ρ and Kendall’s τ , against the estimated

residue separation.

Kendall’s τ is much more computationally expensive than Spearman’s ρ, but under the

following circumstances it proved more robust. In calculating the results described above, any

gap characters in the MSA (and the few unknown amino acids recorded as X) were given a

zero score. One alternative explored was to assign a null or NA value, and exclude such pairs

from the correlations. This lead to the score for gap-rich MSA column pairs being determined

by the minority of non-gapped residues, which often gave a spuriously high ρ correlation, as

shown in Figure 5.17. Interestingly, this artifact was not seen when this gap handling approach

was used with the Kendall’s τ correlation, where the distribution remained symmetrical about

zero.
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Figure 5.16: Assorted smoothed scatter plots for the hydrophilicity based scores and the
estimated distances from a crude protein-protein complex. The captions along the diagonal
indicate which scoring method is shown on the associated row/column. For example, the top
row shows smoothed scatter plots of the estimated distances against the KD ρ, HW ρ, KD
τ and HW τ correlations (cf. Figures 5.15 and 5.10). The KD ρ and KD τ scores correlate
extremely well with each other, as do the HW ρ and HW τ scores.
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Figure 5.17: Histogram of KD Spearman’s ρ from HisKA and receiver pairs (top), and ran-
domised pairings (middle). These are shown as density curves (bottom). In Figure 5.6, gap
and unknown residues were given a score of zero. Here, they are instead excluded from the
correlation, which is then calculated from the remaining residue pairs. This gives rise to a
spurious set of gap-rich column pairs with ρ ≈ +1.
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5.5.3 Chi-squared score

A given MSA column pair can be viewed as a list of paired amino acids (one from the HisKA,

and one from the partner receiver). A simple contingency table can tabulate the observed

amino acid pairings. The χ2 (chi-squared) statistic is a measure of how the observed amino

acid pairs compare to the expected distributions if the HisKA and receiver columns were

independent.

Let vectors ~A and ~B of length l represent the HisKA and receiver MSA columns under

consideration. For any letters α in ~A and β in ~B, define the observed and expected distributions

of amino acid pairs as follows:

Obsv ~A, ~B(α, β) := Count of (α, β) in ( ~A, ~B)

Obsv ~A(α) := Count of α in ~A

Obsv ~B(β) := Count of β in ~B

Expt ~A, ~B(α, β) := 1
l × Obsv ~A(α)× Obsv ~B(β)

(5.5)

The chi-squared statistic χ2 is then given by:

χ2( ~A, ~B) :=
∑
α,β

[Expt ~A, ~B(α, β)− Obsv ~A, ~B(α, β)]2

Expt ~A, ~B(α, β)
(5.6)

Note that when χ2 is calculated for each column pair, the set possible amino acids summed

over in Equation (5.6) changes, and thus the number of degrees of freedom also changes.

For a contingency table the χ2 statistic is typically used in (Pearson’s) χ2 test for

independence. This gives a p-value with the null hypothesis that the marginal distributions

(here the two amino acid distributions in ~A and ~B) are independent. Such a p-value could

be used to rank MSA column pairs, however there are good computational reasons to work

directly with the χ2 value. In addition to the additional computation time required, sorting

and comparing small p-values can cause computational problems due to limited floating point

number resolution. The χ2 test is also best avoided when dealing with a large number of

samples (as here, with thousands of protein-protein pairs).

Figures 5.18 shows a histogram of observed χ2 values for MSA column pairs from the

paired proteins, and the matching distribution for randomly paired proteins. It is very clear

that paired proteins give much higher χ2 values, well outside the random distribution. These

scores are shown on a grid in Figure 5.19 with the 100 highest scoring column pairs in red.

Figure 5.20 shows the χ2 scores plotted against the estimated distance between the

residues in the protein-protein complex. Column pairs with the highest χ2 scores are closer

together than average. While this approach does seem to have merit, there is much more

literature and precedent for the next method discussed, MI.
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Figure 5.18: Histogram of χ2 scores from HisKA and receiver pairs (top), and randomised
pairings (middle). These are shown as density curves (bottom). Based on MSAs generated by
CLUSTAL W.
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Figure 5.20: Smoothed scatter plot of χ2 scores against estimated distances from a crude
protein-protein complex. Those column pairs with high χ2 are closer together than average,
based on the estimate distances.
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5.5.4 Mutual information

The final scoring system considered for MSA column pairs was MI. Unlike the chemical potential

(CP) and hydrophilicity scores used above, this does not map the amino acids onto a numerical

system, but, like the χ2 statistic, works directly with the data itself.

As before, let vectors ~A and ~B of length l represent the HisKA and receiver MSA

columns under consideration. Let A and B represent random variables describing the amino

acids found in the two MSA columns ~A and ~B. As per Shannon and Weaver (1949), MI is

then defined by the following sum over the observed letters α in ~A and β in ~B, as follows2:

MI( ~A, ~B) :=
∑
α,β

{
P [A = α, B = β] · log

(
P [A = α, B = β]

P [A = α]P [B = β]

)}
(5.7)

Using this definition it is clear that MI is commutative, that is MI( ~A, ~B) = MI( ~B, ~A).

Furthermore, it is zero when the random variables A and B are independent (i.e. when

P [A = α, B = β] = P [A = α]P [B = β]). In particular, if either column ~A or ~B is perfectly

conserved, this implies the MI is zero. Although not immediately apparent from this equation,

MI is always positive, shown later. Statisticians may note that MI can also be defined as the

Kullback-Leibler divergence between the joint distribution P [A = α, B = β] and the product

P [A = α]P [B = β] (Kullback and Leibler, 1951).

The probabilities in this equation are calculated as the observed frequencies of the

amino acids in MSA columns ~A and ~B (which are both of length l). Using the notation

introduced in Equation (5.5) we can now express Equation (5.7) in a form suitable for direct

calculation:

MI( ~A, ~B) =
1
l

∑
α,β

{
Obsv ~A, ~B(α, β) · log

(
l · Obsv ~A, ~B(α, β)

Obsv ~A(α) · Obsv ~B(β)

)}
(5.8)

These equations can be generalised to a summation over all possible amino acid pairs,

provided the summand is taken as zero when an amino acid has not been observed, avoiding

the undefined term log(0/0).

As an alternative to Equation (5.7), MI can also be defined in terms of entropies

(Shannon and Weaver, 1949). Summing over the observed values, the (marginal) entropies

are defined as:

H( ~A) := −
∑
α

{
P [A = α] · log(P [A = α])

}
H( ~B) := −

∑
β

{
P [B = β] · log(P [B = β])

} (5.9)

2Gap characters are treated as letters.
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Note that these are positive quantities, zero only when the sequence is perfectly conserved.

They measure our uncertainty about the value of the random variables A or B. Similarly the

joint entropy is:

H( ~A, ~B) := −
∑
α,β

{
P [A = α, B = β] · log(P [A = α, B = β])

}
= H( ~B, ~A)

(5.10)

Again, this is a positive quantity. The joint entropy is always at least the individual entropy,

H( ~A) ≤ H( ~A, ~B) and H( ~B) ≤ H( ~A, ~B). Similarly, it is bounded by the sum of the individual

entropies, H( ~A, ~B) ≤ H( ~A) + H( ~B), with equality only when A and B are independent.

These inequalities are intuitive if the entropy is thought of as the information content of the

amino acid sequences. The MI can be expressed as the difference between the joint entropy

and the sum of the two marginal entropies:

MI( ~A, ~B) = H( ~A) + H( ~B)−H( ~A, ~B) (5.11)

Proof. This result follows from the observation that P [A = α] =
∑

β P [A = α, B = β] and

similarly for P [B = β], thus:

H( ~A) + H( ~B)−H( ~A, ~B) = −
∑
α

{(∑
β

P [A = α, B = β]
)
log(P [A = α])

}
−
∑
β

{(∑
α

P [A = α, B = β]
)
log(P [B = β])

}
+
∑
α,β

{
P [A = α, B = β] · log(P [A = α, B = β])

}
= −

∑
α,β

{
P [A = α, B = β] · log

(
P [A = α, B = β]

P [A = α]P [B = β]

)}
= MI( ~A, ~B)

From Equation (5.11), it follows 0 ≤ MI( ~A, ~B) ≤ max(H( ~A),H( ~B)), that is to say

the MI is postive and limited by the variability of both sequences. A high MI value is only

possible when ~A and ~B are correlated with a high variability. If either ~A or ~B is very conserved

(or perfectly conserved) then the MI will be small (or zero).

MI was originally calculated with a base two logarithm, giving an information measure

in bits, which is natural for binary codes. The choice of base is essentially a scaling issue. When

dealing with amino acids, some authors have continued to use base two (Atchley et al., 1999,

2000), but others such as Dunn et al. (2008) have adopted base 20 (the number of amino
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acids, ignoring potential gap characters). Here, the natural logarithm has been used (base e),

meaning the MI scores are in nats rather than bits (Comley and Dowe, 2005). This choice

was in part for consistency with link functions in the following chapter. Gouveia-Oliveira and

Pedersen (2007) explores other choices, including a weighted scaling according to the number

of amino acids present in the two columns.

As with the previous scoring systems discussed above, MI was calculated between the

columns of the paired HisKA and receiver MSAs. Figure 5.21 shows the distribution of MI

values for the protein pairs, and that given by a randomised pairing of the proteins. There is

a very clear difference in distribution, with the paired proteins giving much higher MI values.

As with the χ2 plot (Figure 5.18), this difference is much more pronounced than that seen in

the equivalent plots for the earlier column pair correlation scores, for example KD Kendall’s τ

(Figure 5.11).

Figure 5.22 shows these MI scores as a grid, with the column pairs giving the top 100

MI scores highlighted in red. These tend to be associated with the first α-helix in the HisKA,

and cover a range of points in the receiver.

Figures 5.21 and 5.22 are both based on MSAs generated with CLUSTAL W. Fig-

ures 5.23 and 5.24 show the same information using MSAs generated by MUSCLE. The MI

analysis using the output from the two alignment programs identifies similar but non-identical

sets of column pairings, as illustrated in Figures 5.25 and 5.26 for the CLUSTAL W and

MUSCLE alignments, respectively.

A visual inspection suggests the column pairs with MI may be interesting in terms of

the known interaction surfaces. For more concrete support, Figure 5.27 shows the MI scores

plotted against the inferred separation (for the CLUSTAL W MSAs, the results for MUSCLE

are similar). Column pairs with a high MI score are generally closer together than average.

5.6 Mapping scores onto protein structures

When the alignments used to calculate the correlation and mutual information/entropy scores

were created, a reference sequence was included for which a known 3D structure was available.

By mapping alignment positions to these reference sequences, most alignment columns can

be mapped to a 3D position. For alignment positions corresponding to a gap in the reference

sequence, this is not so straightforward.

Taking the HisKA and receiver structures in isolation, any MSA column score can be

displayed visually by colouring the protein model of the reference sequence. For example, each

position in the HisKA could be assigned the maximum of all the MSA column pair scores for
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Figure 5.21: Histogram of MI scores from HisKA and receiver pairs (top), and randomised
pairings (middle). These are shown as density curves (bottom). Based on MSAs generated by
CLUSTAL W.
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Figure 5.23: Histogram of MI scores from HisKA and receiver pairs (top), and randomised
pairings (middle). These are shown as density curves (bottom). Based on MSAs generated by
MUSCLE.
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Figure 5.25: Top 100 co-varying amino acid positions of HisKA and receiver domains, as
determined by MI, for two gene domain pairs. Based on MSAs generated by CLUSTAL W.
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KILIVDDQSGIRILLNEVFNKE-GYQTFQAANGLQALD-I-VTKERPDLVLLDMKIPGMDGIEILKRMK--VIDENIRVIIMTAYGE-LDMIQESKELGALTHFAKPFDIDEIRDAVKKYLPL

α1 α2
DRTLLMAGVSHDLRTPLTRIRLATE-MMSEQ------DGYLAESINKDIEECNAIIEQFIDYLR

Figure 5.26: Top 100 co-varying amino acid positions of HisKA and receiver domains, as
determined by MI, for two gene domain pairs. Based on MSAs generated by MUSCLE.
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Figure 5.27: Smoothed scatter plot of MI against estimated distances from a crude protein-
protein complex. Those column pairs with a high MI are closer together than average based
on the estimate distances. Based on MSAs generated by CLUSTAL W.
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Figure 5.28: This shows the KD τ correlation score with the largest absolute value for each
column in the HisKA and receiver alignment, mapped onto reference 3D structures. On the
left is the HisKA dimer structure, EnvZ, orientated to show the conserved histidine (shown by
a space filling model in orange). On the right is the receiver structure, Spo0F, orientated to
show the conserved aspartate (shown by a space filling model in orange). The KD τ colour
ranges from blue (negative) through white to red (positive), although the colours do not exactly
match those used in previous figures. Residues which were not in the alignments are in green.

Figure 5.29: Maximum MI score for each column in the HisKA and receiver alignment mapped
onto reference 3D structures (EnvZ and Spo0F as in Figure 5.28). MI colour ranges from
white (zero) to red (maximum). Residues which were not in the alignments are in green.
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that position, and similarly for the receiver. Figure 5.28 uses this approach to show the KD

Kendall’s τ correlation with the largest absolute value, while Figure 5.29 shows the maximum

MI score.

Simplified representations of the reference protein structures, which are not dependent

on the amino acid side chains, are most suitable for representing a generic HisKA or receiver.

The “new ribbon” representation in VMD was used (Humphrey et al., 1996), rather than a

“cartoon” representation which reduces α-helices to simple cylinders discarding the orientation

of the individual residues. It should be noted that these representations do not attempt to show

the amino acid pairings identified (between the proteins), which is a much more complicated

problem to visualise.

5.7 Summary and comparison of results

Figures 5.30 and 5.31 (for the CLUSTAL W and MUSCLE MSAs respectively, using the HK

and RR domain pairs) summarise the correlations between the scores considered, and the

approximate distance in the protein-protein complex. Those column pairs with the highest MI

are by definition highly variable, and from these figures show a broad range of hydrophobicity

correlations (represented in the figures by the KD Kendall’s τ), while those with a low MI have

KD τ ∼ 0. These figures also show the χ2 and MI scores correlate well, and these show the

most convincing link to the distances. However, distance isn’t everything – McLaughlin et al.

(2007) shows predominantly buried residues can play a role in recognition.

Although Figures 5.30 and 5.31 look very similar, the precise MSA column pairs selected

do differ for the two alignment methods. Using the reference sequences EnvZ and Spo0F, it is

possible to cross-reference most of the column pairs (but not those where the patten of gaps

is different) allowing a direct comparison of the scores from the CLUSTAL W MSAs to those

from the MUSCLE MSAs.

Figures 5.32, 5.33 and 5.34 show this for MI. The results from the two alignment

methods correlate well, but overall the CLUSTAL W MSAs give somewhat higher MI scores.

The spread of the points can be significantly reduced by excluding column pairs which are “gap

rich” leaving a much clearer diagonal trend (comparing the top and bottom sub-figures, which

exclude columns with more than 1% gaps, or only columns with more than 50% gaps). This

suggests that most differences between the two alignment tools are down to the placement of

insertions.

As a consequence of this discrepancy due to the different gap placements, many of

the column pairs selected by MI using the CLUSTAL W MSAs have a much lower MI from
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Figure 5.30: Assorted smoothed scatter plots for selected scores and the estimated distances
from a crude protein-protein complex. As in Figure 5.16, the captions along the diagonal
indicate which scoring method is shown on the associated row/column. These plots are based
on MSAs created with CLUSTAL W.
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Figure 5.31: Assorted smoothed scatter plots for selected scores and the estimated distances
from a crude protein-protein complex, based on MSAs created with MUSCLE.
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Figure 5.32: Scatter plot of the MI scores from the CLUSTAL W and MUSCLE paired MSAs
using domains from HK and RR gene pairs. Column pairs were cross-referenced using the
EnvZ and Spo0F reference sequences.
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Figure 5.33: Scatter plot of the MI scores from the CLUSTAL W and MUSCLE paired MSAs
using domains from HY genes. Column pairs were cross-referenced using the EnvZ and Spo0F
reference sequences.

156



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3

0.
0

0.
1

0.
2

0.
3

Up to 1% gaps per column

Clustal W

M
U

S
C

LE

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3

0.
0

0.
1

0.
2

0.
3

Up to 50% gaps per column

Clustal W

M
U

S
C

LE

Figure 5.34: Scatter plot of the MI scores from the CLUSTAL W and MUSCLE paired MSAs
using domains from both HK and RR gene pairs and HY genes. Column pairs were cross-
referenced using the EnvZ and Spo0F reference sequences.
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the MUSCLE MSA, and thus are not ranked as highly. However, there is still a large overlap

between the top column pairs by MI given by the two different alignment sets (particularly if

gap rich columns are explicitly excluded).

Additionally, Figure 5.32 shows a small population of column pairs with a CLUSTAL W

MI ∼ 0 but MUSCLE MI ∼ 0.05 for the HK and RR paired domains. Interestingly this grouping

does not occur on the HY dataset, nor the combined dataset (Figures 5.33 and 5.34). These

column pairs all include the RR Spo0F residues D10 and K104 in the MUSCLE MSA. The

two RR aspartate residues (DD) corresponding to Spo0F D9 and D10 at the end of β1 are

highly conserved (see Figure 1.18 for the secondary structure naming). However in some RRs

there are three aspartate residues (DDD), and in others a glutamic acid and two aspartate

(EDD, chemically similar). This variability complicates the alignment and is likely to explain

the difference between the two methods in this region. K104 corresponds to another highly

conserved RR residue, at the end of β5. In the CLUSTAL W MSA this is conserved in all but 7

sequences. In the MUSCLE MSA, however, the K is missing or mis-aligned in 126 sequences,

meaning that this column is much more variable and therefore can by chance reach a higher

but still small MI score, ∼ 0.05.

Although the results from the Clustal W and MUSCLE MSAs do not differ substantially,

there are other ways to build MSAs (see Edgar and Batzoglou (2006) for a recent review).

In particular, given a number of solved 3D structures are available for both the HisKA and

receiver domains (see Section 1.5), it would be possible to build MSAs taking advantage of

this spatial information, for example using the tool 3DCoffee (O’Sullivan et al., 2004), and

repeat the analyses here.

5.8 Discussion

Based on these results, in the following chapter potentially informative column pairs for the

HisKA-receiver specificity are selected using MI. Column pairs with high MI are assumed to

represent positions on the two proteins which have co-evolved and interact in some way. When

either column is (almost) perfectly conserved, the column pair is uninformative, and the MI is

(almost) zero. In particular, this automatically down-weights any gap-rich columns.

One limitation of MI is that it can be drowned out by background noise for small MSAs.

Given Martin et al. (2005) suggested at least 125 sequences be used to avoid this issue, as the

MSAs here contain thousands of sequences this isn’t expected to be a problem.

Two other groups recently published work using MI to identify the residues controlling

the HisKA-receiver interaction specificity (White et al., 2007; Skerker et al., 2008). The
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later paper included experimental verification that disrupting the residues identified negatively

impacted the phosphotransfer, and more interestingly also demonstrated in vivo switching of

specificity of the HisKA-receiver complex. Even without this external verification, the results

above are highly encouraging in that MI appears to select column pairs are important for the

HisKA-receiver specificity. In the following chapter, these column pairs are used as the basis of

a predictive model for determining HisKA-receiver pairings from their amino acid sequences.

One open question at the close of this chapter is how many of the highly scoring

column pairs identified are actually biologically important. In Figure 5.21 (and similar plots),

the observed scores are compared to those generated using a randomisation of the TCS domain

pairings. Repeating this procedure multiple times would allow the variability of these scores to

be estimated. Such a bootstrap proedure would allow a p-value based cut off (incorpoating a

multiple testing correction) to select only those column pairings with a statistically significant

score. In Chapter 6 however, the number of column pairs to include is considered from an

alternative perspective.
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Chapter 6

Predictions using a generalised linear

model (GLM)

6.1 Introduction

While interacting TCS domains are usually found together as pairs in the genome, in some

species such as Nostoc sp. or M. xanthus, a large proportion of TCS domains are found

in more complicated arrangements (Whitworth and Cock, 2008a,b, and Chapter 2). In such

organisms, being able to predict TCS domain partnerships from genome sequences would be

especially useful, as the lack of paired HK and RR genes makes it difficult to define genome-

encoded signalling networks. Even without consideration of co-expression and co-localisation

(see Section 1.7), the ability to predict potential pairings solely from amino acid sequences

would be a useful tool to guide experimental investigation, especially in cases where a large

number of possible combinations makes exhaustive testing a daunting prospect.

In addition to the TCS systems, there are many other classes of protein-protein in-

teractions where the two interacting proteins are encoded as paralogous sets within genomes,

and it is therefore not immediately clear which of the possible combinations are biologically

relevant. Examples of such systems include G-protein coupled receptors/trimeric G-proteins

(Cabrera-Vera et al., 2003) and σ factors/anti-σ factors (Hughes and Mathee, 1998). Any

methodology demonstrated for predicting TCS interactions may therefore prove to have wide

utility.
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6.2 Modelling approach

GLMs are used to explain a dependent variable Yi (with samples indexed by i) using a weighted

linear combination of K explanatory variables Xik (for k = 1, 2, . . . ,K). The weights are

model parameters which must be estimated by fitting the model to a training dataset. The

aim here is to predict if two proteins interact, given only their amino acid sequences (and a

training dataset). In the GLM framework, this is a binary classification problem (Y is a binary

random variable, Yi = 1 if the proteins interact, Yi = 0 otherwise). This is handled as a

binomial logistic regression,

logit(P [Yi = 1|Xik for all k]) = log
P [Yi = 1|Xik for all k]
P [Yi = 0|Xik for all k]

= w0 +
K∑

k=1

wkXik + εi

(6.1)

where P [Yi = 1] denotes the probability of interaction, w0 an intercept parameter, wk the K

weights, and εi the error.

The sample index i is an integer used to index different combinations of the two protein

domains (arranged in a simple list rather than as a grid). The explanatory variables will be

based on the amino acids in the MSA entries of the relevant domains (indicated by i). However,

rather than attempting to include all the amino acids in these protein domains, only K MSA

column pairs will be selected, indexed by the integer k = 1, 2, . . . ,K. Any single value of k

identifies a column of the HisKA MSA and a column of the receiver MSA, and can therefore

be considered as a pair of indices (see Figure 6.1). Each value Xik is calculated from the

amino acid pair given by the MSA columns indicated k and the MSA rows indicated by i.

Estimating the w0 and the K weights, wk, requires samples (training data) of both

known interactions (Yi = 1) and non-interactions (Yi = 0). The weights are then selected to

best fit the training data. To generate suitable training data, members of the two paralogous

protein families under consideration (HisKA and receiver domains) must first be identified

(for example using domain based searches, or sequence similarity to known exemplars), and

interactions and non-interactions between these protein family members identified. The TCS

training sets used in this chapter were compiled from multiple prokaryotes, as described in

Chapter 2, assuming paired domains interact exclusively with their partner, and not with any

other paralogues encoded in that genome.

Given a test set of proteins for which we wish to make predictions (such as the TCS

domain complement of a genome of interest), an amino acid MSA is generated for each domain

type (HisKA and receiver domains), combining the training and test datasets. Using the MI of

the interacting domains in the training data, K column pairs are selected, and then the chosen
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Figure 6.1: Overview of the MSA data and the indexing used (cf. Figure 5.2). The bottom
left and top right panels show abbreviated representative HisKA and receiver domain protein
sequence MSAs. Column pairs are indexed by k, an example column pair is shown (dark
grey bars), represented as a point in the possible MSA column pair space (top left panel).
Dotted lines separate the training and test data. The bottom right panel shows the known
interactions for the training sequences (upper left of dotted lines), and the interactions we wish
to predict for the test sequences (bottom right of dotted lines, “?” on grey). The training
interactions are shown with a block structure reflecting inter- and intra-species combinations,
where the intra-species interactions are known (“0” or “1” on pale grey) while the hypothetical
inter-species interactions are unknown (“?” on white).
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scoring system is applied to calculate the explanatory variables Xik. Next, the GLM is fitted

to the training data, estimating the model parameters wk. A prediction for Yi can then be

made for any two sequences from the two MSAs (e.g. all combinations of the test proteins),

by extracting the relevant amino acids from the MSAs, applying the chosen scoring system to

give K numerical scores Xik, and substituting these values together with the estimated wk

into Equation (6.1).

6.2.1 Selecting column pairs

In the context of a GLM, there are established methods for variable selection. One typical

method employes the Akaike Information Criterion (AIC) (Akaike, 1974), which requires mul-

tiple models to be fitted testing different possible combinations of input variables. However,

since it is not computationally feasible to assess the fit of all possible combinations of MSA

column pairs as explanatory variables, we must use a strategy to tease out suitable subsets.

As argued in Chapter 5, assuming all consorting paralogues follow the same docking

orientation, any pair of columns from these two MSAs represents a potential inter-residue

interaction between the corresponding positions of the protein-protein complex. The vast

majority of these residue pairs will represent spatially separated amino acids, which will make

no contribution to the interaction specificity. However, a minority of column-couplets will be

informative, representing variable amino acids which do interact (possibly indirectly) in the

protein-protein complex. Our first question is how to identify these explanatory column pairs,

and then how to interpret them numerically.

Any solved structures of the protein-protein complex of interest could be used to assign

typical inter-residue distances, and thus short list pertinent MSA column pairs. Unfortunately,

no generic TCS HisKA-receiver complex has been solved to date, the closest available being

a sequence dissimilar but structurally analogous complex, PDB reference 1F51 (Zapf et al.,

2000). Chapter 5 instead explored several automated data driven techniques to select infor-

mative column pairs, concluding with the selection of Mutual information (MI) as the most

promising candidate.

Column pairs with high MI are assumed to represent positions on the two proteins

which have co-evolved and interact in some way. When either column is (almost) perfectly

conserved, the column pair is uninformative, and the MI is (almost) zero. Thus taking the MI

ranking gives an ordering allowing the simple selection of the top K column pairs, leaving us

only with the choice of K (how many terms to include).
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6.2.2 Column pair scores

Several ways to assign a numerical score to a pair of amino acids were investigated for use

as explanatory variables in a GLM to predict protein domain interactions. These included

two scoring functions, SV and SH , which are independent of the MSA column pair under

consideration (and symmetric with respect to the two protein families). In addition a series of

scores, SP
k , SM

k , Sζ
k , Sη

k and SΩ
k were constructed, specific to each column pair k, based on

the observed amino acid frequencies within the training data.

The integer k = 1, 2, . . . ,K indexes the K column pairs selected by MI. Recall any

single value of k can be considered as a pair of indices identifying a column of the HisKA MSA

and a column of the receiver MSA (see Figure 6.1). Let Ak and Bk represent random variables

describing the amino acids found in the training data for the two MSA columns of column pair

k, and let aik and bik be the specific amino acids from column pair k in sample i. For each

score, a separate GLM was constructed setting Xik = SV (aik, bik), Xik = SH(aik, bik), . . . ,

or Xik = SΩ
k (aik, bik) for substitution into Equation (6.1).

SV denotes an existing statistical chemical potential (Lu et al., 2003), introduced

in Section 5.5.1. Low potentials between close amino acids should indicate energetically

favourable complexes, and thus may identify interacting complexes. A major component of

this chemical potential is hydrophilicity, which is believed to play a role in TCS interactions

(Kojetin et al., 2003). Therefore a hydrophilicity compatibility score SH is introduced, de-

fined as the product of the Kyte-Doolittle (KD) hydrophilicities of the two amino acids (Kyte

and Doolittle, 1982) (see Section 5.5.2). Pairs of hydrophobic or hydrophilic residues have a

positive score, while a miss-matched combination is assigned a negative score. For example,

SH(Asn,Asp) = −1.8 × 3.5 = −6.3. For any gap characters or ambiguous amino acids, SV

and SH were taken as zero.

The other scores are probabilistic, based on observed amino acid frequencies in the

MSA columns for the column pair under consideration, treating gap characters as another

letter. Taking different scores for each column pair allows for different physical interactions

between different parts of the protein complex. Given the selection of column pairs using MI,

it was natural to consider these kinds of scores.

First SP
k is defined as the probability of an amino acid pair occurring in MSA column

pair k given a positive interaction (Y = 1) in the training data,

SP
k (α, β) := P [Ak = α, Bk = β|Y =1] . (6.2)
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Then the MI contribution score SM
k is defined as

SM
k (α, β) := SP

k (α, β)Sζ
k(α, β) (6.3)

where Sζ
k is another scoring function,

Sζ
k(α, β) := log

(
P [Ak = α, Bk = β |Y =1]

P [Ak = α|Y =1]P [Bk = β|Y =1]

)
. (6.4)

Of the preceding scores, the best predictions were given by Sζ
k , and therefore two further logged

probability ratios were evaluated,

Sη
k(α, β) := log

(
P [Ak = α, Bk = β |Y =1]

P [Ak = α, Bk = β]

)
(6.5)

and

SΩ
k (α, β) := log

(
P [Ak = α, Bk = β |Y =1]
P [Ak = α, Bk = β|Y =0]

)
. (6.6)

All the probabilistic scores are estimated from the training data using the observed

amino acid frequency counts in the relevant MSA column pair. For example, for column pair

k and HisKA/receiver sample i where the amino acid pair is aik, bik, score SP
k is estimated as

ŜP
k (aik, bik) =

∑
j I(ajk =aik)I(bjk =bik)I(Yj =1)∑

j I(Yj = 1)
, (6.7)

where I(·) is the indicator function,

I(expression) :=


1 if expression is true,

0 if expression is false.

(6.8)

Estimates ŜM
k , Ŝζ

k , Ŝη
k and ŜΩ

k are constructed analogously.

6.2.3 Related column pair scores

The last three scores defined above, Sζ
k , Sη

k and SΩ
k , are all closely related, differing only

by their denominator. Under a couple of reasonable assumptions, these can be shown to be

approximately equal.

When considering the estimation of P [Ak = α|Y =1], P [Ak = α|Y =0] or P [Ak = α]

the same MSA column entries are simply counted with different weightings. By construction

the training data herein is structured into blocks where only within species interactions are

considered, and each HisKA and receiver form a single exclusive partnership (see Figure 6.1).

Ignoring the random sampling for cross-validation, this means that P [Ak = α|Y =1] counts

each HisKA residue once, while P [Ak = α|Y =0] counts each once per non-partner receiver

in the same species, and P [Ak = α] counts each once per receiver in the same species. It is
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therefore not unreasonable to expect these three distributions are similar (and likewise for the

receiver domains),

P [Ak =α |Y =1] ≈ P [Ak =α |Y =0] ≈ P [Ak =α] ,

P [Bk =β |Y =1] ≈ P [Bk =β |Y =0] ≈ P [Bk =β] .
(6.9)

In selecting the K column pairs, we expect the amino acids in those columns to be

mutually dependant for interacting domain pairs,

P [Ak = α, Bk = β|Y =1] 6= P [Ak = α|Y =1]P [Bk = β|Y =1] . (6.10)

However, for non-interacting domains the distributions could be independent,

P [Ak = α, Bk = β|Y =0] ≈ P [Ak = α|Y =0]P [Bk = β|Y =0] . (6.11)

Given that the training data contains many more non-interactions than interactions, this can

be stretched further,

P [Ak = α, Bk = β] ≈ P [Ak = α]P [Bk = β] . (6.12)

Starting from the definition of SΩ
k in Equation (6.6), and substituting the results from

Equations (6.11) and (6.9), leads to the definition of Sζ
k in Equation (6.4),

SΩ
k (α, β) = log

(
P [Ak = α, Bk = β |Y =1]
P [Ak = α, Bk = β|Y =0]

)
≈ log

(
P [Ak = α, Bk = β |Y =1]

P [Ak = α|Y =0]P [Bk = β|Y =0]

)
≈ log

(
P [Ak = α, Bk = β |Y =1]

P [Ak = α|Y =1]P [Bk = β|Y =1]

)
= Sζ

k(α, β). (6.13)

Thus SΩ
k (α, β) ≈ Sζ

k(α, β).

Similarly, from the definition of Sη
k in Equation (6.5), substituting the results from

Equations (6.12) and (6.9), also leads to Sζ
k ,

Sη
k(α, β) = log

(
P [Ak = α, Bk = β |Y =1]

P [Ak = α, Bk = β]

)
≈ log

(
P [Ak = α, Bk = β |Y =1]

P [Ak = α]P [Bk = β]

)
≈ log

(
P [Ak = α, Bk = β |Y =1]

P [Ak = α|Y =1]P [Bk = β|Y =1]

)
= Sζ

k(α, β) (6.14)

giving Sη
k(α, β) ≈ Sζ

k(α, β). Thus Sζ
k , Sη

k and SΩ
k could be expected to be approximately

equal for a large training dataset.

167



6.2.4 Restricted models

Under the assumption that the K interaction pair scores are independent, Bayes Theorem

provides an elegant interpretation of
∑

Sη
k and

∑
SΩ

k in terms of the probability of interaction

Y given the K amino acid pairs (αk and βk for k = 1, 2, . . . ,K):

log (P [Y =1|Ak =αk, Bk =βk for all k]) = log (P [Y =1]) +
K∑

k=1

Sη
k(αk, βk), (6.15)

= log

(
P [Y =1]
P [Y =0]

)
+

K∑
k=1

SΩ
k (αk, βk). (6.16)

Proof. Starting from Bayes Theorem, and applying the independence assumption,

P [Y =1|Ak =αk, Bk =βk for all k] =
P [Y =1]P [Ak =αk, Bk =βk for all k|Y =1]

P [Ak =αk, Bk =βk for all k]

= P [Y =1]
K∏

k=1

P [Ak =αk, Bk =βk|Y =1]
P [Ak =αk, Bk =βk]

. (6.17)

Taking logarithms and using the definition of Sη
k in Equation (6.5), gives

log (P [Y =1|Ak =αk, Bk =βk for all k]) = log (P [Y =1])

+
K∑

k=1

log

(
P [Ak =αk, Bk =βk|Y =1]

P [Ak =αk, Bk =βk]

)

= log (P [Y =1]) +
K∑

k=1

Sη
k(αk, βk). (6.18)

as claimed in Equation (6.15).

A derivation similar to that of Equation (6.17) gives

P [Y =0|Ak =αk, Bk =βk for all k] = P [Y =0]
K∏

k=1

P [Ak =αk, Bk =βk|Y =0]
P [Ak =αk, Bk =βk]

. (6.19)

Using Equations (6.17) and (6.19), together with the definition of SΩ
k in Equation (6.6) gives

logit (P [Y =1|Ak =αk, Bk =βk for all k]) = log

(
P [Y =1|Ak =αk, Bk =βk for all k]
P [Y =0|Ak =αk, Bk =βk for all k]

)
= log

(
P [Y =1]
P [Y =0]

)
+

K∑
k=1

log

(
P [Ak =αk, Bk =βk|Y =1]
P [Ak =αk, Bk =βk|Y =0]

)

= log

(
P [Y =1]
P [Y =0]

)
+

K∑
k=1

SΩ
k (αk, βk) (6.20)

as claimed in Equation (6.16).
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Equations (6.15) and (6.16) have the form of a GLM with equal weights, with log and

logit link-functions respectively. Hence, the following restricted GLMs were also formulated

for these scores (and the closely related Sζ
k score), with only two parameters w0 and w1 = wk

for k = 2, 3, . . . ,K,

log(P [Yi = 1|Xik for all k]) = w0 + w1

K∑
k=1

Xik + εi (6.21)

where for Xik = Ŝη
k(αk, βk) it would be expected w0 ≈ log (P [Y =1]) and wk ≈ 1, and

logit(P [Yi = 1|Xik for all k]) = w0 + w1

K∑
k=1

Xik + εi (6.22)

where for Xik = ŜΩ
k (αk, βk) it would be expected that w0 ≈ log

(
P [Y=1]
P [Y=0]

)
and wk ≈ 1.

The equal weight models in Equations (6.21) and (6.22) will be referred to as as

restricted GLMs, while Equation (6.1) is an unrestricted GLM. The particular sub-case
∑

Sζ
k

is used directly with a threshold in White et al. (2007) to rank protein-protein interactions.

6.2.5 Model assessment

Baldi et al. (2000) reviews a range of model assessment criteria, including receiver operator

characteristic (ROC) curves Fawcett (2003). These plot the true positive rate against the

false positive rate, which when done with a moving threshold gives a line ranging from the

bottom left corner (0, 0) (model predicts everything is false) to the top right corner (1, 1)

(model predicts everything is true). In good models, the curve will be well above the diagonal,

ideally reaching close to the top left corner (0, 1) giving every true positive prediction with

no false positives. Calculating the area under an ROC curve gives a simple assessment of the

model performance, typically in the range 0.5 (random) to 1 (perfect). A model with an ROC

area less than 0.5 is worse than random, with an area of 0 possible for inverted perfect model

(always wrong).

To compare the predictive performance of the different models, the list of known

interactions and non-interactions was divided randomly into a training set (typically 80%)

used for fitting and a test set (20%) used for out-of-sample prediction. The area under the

ROC curve was then calculated, and the procedure repeated five times, using a different random

split each time.

In addition, predictions were made for the interactions among the TCS proteins of

model organisms, E. coli K-12 (NC 000913), Bacillus subtilis (NC 000964) and Caulobacter

crescentus (NC 002696).
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6.3 Implementation

Paired TCS HisKA and receiver domains were compiled from 340 prokaryote species (excluding

multiple strains, Table A.1) as described in Chapter 2, comprising 3, 473 cases from neigh-

bouring HK and RR genes, and 1, 434 hybrid kinases (single genes containing both a HisKA

and receiver). The 4, 907 paired domains were taken as positive interactions (Y = 1) while

the 114, 763 other possible inter-species combinations of these domains were taken as non-

interactions (Y = 0). Many of the figures shown in this chapter draw on a subset containing

just the 3, 473 two gene pairs and their 55, 046 presumed non-interactions (inter-species com-

binations). Similarly, a third dataset was given by considering only the 1, 434 hybrid gene

domain pairs, and their 19, 726 other inter-species combinations. For the initial model cross-

validation, 80% of the presumed interactions and 80% of the presumed non-interactions were

taken as the training dataset, with the remaining 20% held out as a test dataset.

Note that only the HisKA domain from the Ti was used, and not the HATPase, as it

does not seem to be important for the kinase-receiver interaction (Ohta and Newton, 2003).

This was supported by an initial investigation of the MI scores where a MSA for the full Ti

domain was used (data not shown), also observed in Skerker et al. (2008).

As in Chapter 5, two different alignment programs were used to generate the MSAs,

CLUSTAL W version 1.83 with its default settings, and MUSCLE version 3.7 with a maximum

of three iterations (-maxiter 3), and the alignments output using the CLUSTAL W file format

(-clwstrict). MI was calculated between columns of the two MSAs by pairing rows for the

known interactions in the training data, treating any gap characters as another amino acid.

The columns pairs were then ranked by their MI, and the top K highest scoring couplets were

selected as input to the model via one of the described scoring functions.

One numerical complication for some of the probabilistic scores is the logarithm of zero

(and potentially also the undefined ratio 0
0) can occur when the amino acid pair (Aik, Bik)

has not been observed in an interacting pair. In this situation, for ŜM
k the natural limit value

zero was used, while for Ŝζ
k , Ŝη

k and ŜΩ
k the minimum observed score of any amino acid pair

was taken. In the contrary situation where (Aik, Bik) has only been observed in interacting

pairs, for ŜΩ
k we have a non-zero numerator with a zero denominator, and instead take the

maximum observed score of any amino acid pair from that column pair.

The use of an alternative power transformation in Sζ
k , square root in place of the

natural logarithm, made minimal difference, as did choosing an ad-hoc value of zero (square

root only) or one for undefined ratios where amino acids had not been observed in the training

data (data not shown). The use of a log link function, as suggested by Equation (6.15), proved
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numerically intractable.

GLM parameters (weights wk and intercept term w0) were estimated using the glm

function in the statistical programming language R (R Development Core Team, 2007). The

ROCR library (Sing et al., 2005) was used to generate ROC curves and their areas. The

process was scripted in Python (www.python.org) using RPy (Moreira and Warnes, 2003) and

Biopython (www.biopython.org). Figures were drawn using ReportLab (www.reportlab.org) or

R.

6.4 Results

Figure 6.2 shows plots of the AIC, and the performance of the models assessed using the

area under the ROC curve, against K for five random divisions of the full dataset using

CLUSTAL W MSAs. AIC is a measure of the trade-off between the model fit and the number

of parameters, with the aim of minimising the AIC. The area under a ROC curve is a measure

of predictive performance – a perfect model would give an area of 1, a random model 0.5.

In-sample predictions are naturally more successful (have a higher ROC area) than out-of-

sample (previously unseen test data), but even here the predictions are substantially better

than random.

As expected, for all scoring functions the performance of the unrestricted GLM, Equa-

tion (6.1), increases with the number of terms K. This begins to plateau at K ≥ 30, but has

still not quite saturated at K = 100. Increasing K further yields only marginal improvements

at increased computational cost (data not shown). While model assessments such as the dis-

tribution of residuals suggest the fit could be improved, nevertheless there is good predictive

power when assessed on the previously unseen test data (out-of-sample predictions). The SΩ
k

and Sη
k scores perform best (test ROC area ≥ 0.87 (2sf) for K ≥ 30), with little to choose

between them, followed by Sζ
k (≥ 0.81), SM

k (≥ 0.75), SP
k (≥ 0.72), SH (≥ 0.72) and SV

(≥ 0.67) scores in decreasing order – all better than a random model (area ≈ 0.5). The same

ordering of the scores is seen using the AIC, where again the SΩ
k and Sη

k scores are almost

indistinguishable.

The restricted GLM (where the K scores are summed with equal weighting) with a

log link-function, Equation (6.21), proved numerically intractable. However, with a logit-link

function the restricted GLMs for the SΩ
k , Sη

k and Sζ
k scores, Equation (6.22), performed almost

indistinguishably from the unrestricted GLM (Equation 6.1) for K < 20, but show a noticeably

lower ROC area with more terms. Impressively for such simple models, these still give a test

ROC area ≥ 0.85 for SΩ
k and Sη

k , and ≥ 0.73 for Sζ
k for K ≥ 30 (Figure 6.2). The AIC also
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suggests that the unrestricted GLM gives a better fit. As might be expected, the equal-weight

restriction was not useful on the remaining scores (data not shown).

Of the seven scores explored, SΩ
k and Sη

k give the best predictive performance, both

in the restricted and unrestricted GLM, with little to chose between them. Given the choice

of a logit link function, SΩ
k was selected as the preferred score because of the simple Bayesian

interpretation of
∑

SΩ
k (Section 6.2.4).

Figure 6.3 explores the performance of the SΩ
k score in more detail, for the five random

divisions of the full dataset. This figure is divided into four columns for K = 10, 20, 30 and

100. The top row of plots shows the range of predictions for known interactions (Y = 1)

and non-interactions (Y = 0), showing the class separation improves with higher K but that

even at K = 100 there are a number of false positives. The bottom row of plots shows the

corresponding ROC curves.

Figure B.1 shows the same set of results as Figure 6.2 but from MUSCLE MSAs rather

than CLUSTALW W MSAs. By eye, the two figures are practically identical, showing that the

details of the alignment algorithm play a much smaller role that the choice of scoring system

and the number of terms, K.

The performance of the models trained and evaluated on two-gene data (Figures 6.4

and 6.5), and the trends therein, is broadly similar to that using the full dataset (Figures 6.2

and 6.3), and marginally more successful. By contrast, the models trained and evaluated on

hybrid kinase data (Figures 6.6 and 6.7) show markedly less predictive power, particularly on

the test data (out-of-sample predictions). These differences are not simply due to the small

training sample effect, as shown by Figures B.2 and B.4 where the combined and two-gene

datasets were split to give a similarly sized training set to that of the HY dataset (Figure 6.6)

and still show better predictive performance. Otherwise comparing the individual scores, the

same general trends persist in the HY dataset predictions.
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6.5 Application to Escherichia coli

Figure 6.8 shows the prediction performance for E. coli K-12, where the training data was

the full dataset excluding excluding Escherichia, Salmonellae, Shigellas and Yersinias. The in-

sample performance is weaker than that in Figure 6.2, perhaps due to certain E. coli proteins

disrupting the MSAs. More strikingly, the out-of-sample predictions for the E. coli interactions

are better, and plateau at only K = 20 terms for SΩ
k , Sη

k and Sζ
k . This suggests E. coli is

very similar to the training data average. Perhaps this is a reflection of sampling bias towards

laboratory-cultured bacteria.

Figure 6.9 explores the performance of the unrestricted model using the SΩ
k in more

detail, showing the class separation and the actual ROC curves for K = 10, 20, 30 and 100.

From left to right (increasing the number of terms, K), the class separation and ROC area

both improve. These figures show that with K ≥ 20, almost all the true positives can be

identified with the false negative rate at only around 20%.

Figure 6.10 shows the predictions for E. coli using SΩ
k and K = 100 with the un-

restricted GLM (Equation 6.1). To answer the question “What is the partner for a given

protein?”, we can focus on a single row or column (where the top score is marked with a verti-

cal or horizontal bar). The top scoring receiver is a known partner for 16/28 HisKA domains,

and an established HisKA partner is identified for 16/28 receiver domains.

Alternatively, looking at this matrix with a global threshold allows us to identify po-

tential crosstalk between systems. For instance, a threshold of 0.25 (red squares) identifies 5

interactions in addition to 17/30 known pairings. Of these unexpected interactions, two sug-

gest potential coupling of the YpdA-YpdB system with YehU-YehT system, neither of which

has an apparent phenotype, raising the possibility that these are redundant through crosstalk.

There are other noticeable groupings of HisKAs and receivers with similar predicted interac-

tion profiles, in particular NarQ-NarP and NarX-NarL (plus perhaps UhbB-UhpA). It is well

established that the Nar systems intercommunicate (Rabin and Stewart, 1992), while some

interactions with the Uhp system have also been demonstrated in vitro (Yamamoto et al.,

2005). The remaining strong false positives (P > 0.5) are CusS/YedW, RstB/OmpR and

QseC/BasR.

Unorthodox TCS HKs which contain an Hpt domain rather than a HisKA, such as

CheA, were excluded from this analysis. Thus the lack of predicted partners for CheB and

CheY fits with expectations. Similarly, the phosphotransfer Hpt domains in the tripartite Ti-

R-H + R systems (Section 1.4.6) were also excluded, thus no interactions are expected for

RRs ArcA, EvgS, TorR and UvrY. Other than an apparent false positive for NarQ/UvrY, there
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Figure 6.10: Out-of-sample predictions for E. coli using SΩ
k and K = 100 with an unrestricted

GLM. Rows are HisKA domains, columns are receivers, sorted by gene location. Predicted
probability of interaction shown by colour (linear scaling from 0.0 as white to 0.25 in pale
grey, to 1.0 as red). In each row and column, the highest score is indicated with a vertical
or horizontal bar. Cells where the score is the highest in that row and column therefore have
a cross-hair shown. White circles show interactions expected from the genome arrangement
(which are therefore roughly on the diagonal) and/or the literature (the Nar system, see
Section 1.4.2).
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are no interactions predicted for these RRs. Likewise the only expected interaction from the

RcsC/RcsD/RcsB system relay (Section 1.4.7) is between the Ti and R domains of RcsC,

which scores highly. However, there are strong predictions for the RcsC transmitter with the

receivers of EvgS and ArcB (presumably false positives). On a positive note, there are no

predicted interactions with the non-function Ti domain in RcsD.

Finally, there are no strong partnerships predicted for the orphan receivers FimZ and

RssB, suggesting their partners (if they have any) are not HisKA domains.

6.6 Application to Bacillus subtilis

Figure 6.11 show the various models applied to Bacillus subtilis, where here Sη
k and SΩ

k reach

an ROC area of almost 0.9. Figure 6.12 explores the performance of the unrestricted model

using the SΩ
k in more detail, showing the class separation and ROC curves for K = 10, 20,

30 and 100. From left to right (increasing the number of terms, K), the class separation and

ROC area both improve.

Figure 6.13 shows a grid of the Bacillus subtilis predictions for SΩ
k and K = 100. For

the HisKA domains, the known partner is the top scoring receiver for 12/28 cases. Similarly,

a known partner is selected for 9/24 receivers. Using a global threshold of 0.25 (red squares)

selects only 11/28 expected interactions. However, while these interactions score less than

0.25, for all five of KinA to KinE, the top scoring receiver is correctly identified as Spo0F (see

Section 1.4.8, cf. predictions in supplementary Table 2 of Burger and van Nimwegen (2006)

where Spo0F is selected as the most likely partner only for KinA and KinC). Note that there are

no strong predictions for the receiver Spo0A, consistent with its only known phosphorylation

route via the atypical phosphotransfer protein Spo0B. Additionally, as there are no Tii HK

proteins in this dataset, the lack of any predicted partners for RRs CheB, CheY and CheV is

also as expected.

This grid also shows a number of HisKA and receiver domains with similar predicted

interaction profiles, for example HisKA domains YdfH, YocF, YvqE and YwpD and receiver

domains YfiK, YhcZ, YocG, YvqC and DegU could form a multiply connected network. The

LytS/LytT system also shows a number of possible cross talk interactions.
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Figure 6.13: Out-of-sample predictions for Bacillus subtilis using SΩ
k and K = 100 with an

unrestricted GLM, using CLUSTAL W MSAs. Rows are HisKA domains, columns are receivers,
sorted by gene location. Predicted probability of interaction shown by colour (linear scaling
from 0.0 as white to 0.25 in pale grey, to 1.0 as red). In each row and column, the highest score
is indicated with a vertical or horizontal bar. Cells where the score is the highest in that row
and column therefore have a cross-hair shown. White circles show interactions expected from
the genome arrangement (which are therefore roughly on the diagonal) and/or the literature
(the Spo system, see Section 1.4.8).
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6.7 Application to Caulobacter crescentus

Based on predictions for other bacteria, the outstanding model performance seen for E. coli

and Bacillus subtilis discussed above with ROC areas around 0.9 for SΩ
k and Sη

k is not universal.

Figure 6.14 shows predictions for Caulobacter crescentus compared to those expected from the

genome pairs or Skerker et al. (2005). Here the ROC areas for SΩ
k and Sη

k reach only around

0.8, shown in more detail in Figure 6.15.

A grid of the unrestricted GLM predictions for SΩ
k with K = 100 is shown in Figure 6.16.

Using a global threshold of 0.25 (red squares) only 13/41 expected interactions are identified.

However, a number of the “false positives” include domain pairs on the diagonal which did

not pass the stringent criteria used to automatically identify domain pairs: CC0238/CC0237,

CC0248/CC0247 and NtrY/NtrX (CC1742/CC1743).

Several domains show similar predicted interaction profiles (which could be shown

visually with a clustering method) perhaps suggesting they inter-phosphorylate. In particular

there is broad cross talk predicted between the HisKA domains from proteins CC0026, CC0921,

CC0934, CC2521, CC2670, CC2852, CC2971, CC2988, CC3075, CC3102, CC3191 and CC3219

with the receivers from proteins CC0921, CC0934, CC2852 and CC3102. There is also the

possibility of cross talk between the CC2932/PetR (CC2931) and CC1181/CC1182 systems,

and between CC0248/CC0247 and CC1768/CC1767.

Remaining unexpected possible predicted interactions include CC3198/CC1150 and

CC2755/CC1293, plus nearby genes CC3474/CC3477 which while scoring less that 0.25 are

nevertheless each other’s predicted top partner.
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Figure 6.16: Out-of-sample predictions for Caulobacter crescentus using SΩ
k and K = 100

with an unrestricted GLM, using CLUSTAL W MSAs. Rows are HisKA domains, columns are
receivers, sorted by gene location. Most gene names have been taken from http://caulo.
stanford.edu/GeneList.htm (Shapiro group) as the GenBank annotation predates many of
these assignations. As in Figure 6.10, predicted probability of interaction is shown by colour,
with the highest score in each row and column indicated with a vertical or horizontal bar. White
circles show interactions expected from the genome arrangement (roughly on the diagonal) or
Skerker et al. (2005).
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6.8 Application to Nostoc and M. xanthus

Figures 6.17 and 6.18 for Nostoc sp, and Figure 6.20 and 6.21 for M. xanthus shows the model

performance predicting those interactions in these species that were inferred from their genome

arrangements. Because both organisms have highly complex TCS arrangements, with a high

proportion of orphaned and complex HYs, this prediction assessment is only based on part of

the full interaction grid.

Figure 6.19 shows the prediction grid for Nostoc using SΩ
k with K = 100 in an unre-

stricted GLM, with those combinations with P ≥ 0.25 tabulated in Table 6.1, which include

both non-neighbouring HY and RR pairs, and predictions for some complex HY proteins as

well. The equivalent results for M. xanthus are shown in Figure 6.22 and Table 6.2.

6.9 Discussion

When trying to assign TCS domain partnerships, a biologist would typically start from the

genomic organisation before even looking at the actual sequences. Two simple pieces of

such information are the separation of the two domains in nucleotides, and whether or not

the domains are from the same gene (a hybrid kinase). The GLM framework allows model

extension by the addition of more explanatory terms, thus including this information would be

straightforward, but it would trivially explain our automatically compiled dataset. However,

for a large experimentally determined dataset of interactions and non-interactions, it would be

intriguing to explore a composite model using both sequence data and genomic organisation.

The use of MUSCLE rather than CLUSTAL W for the construction of the MSAs made

minimal difference to the predictive performance of the models, while the number of explana-

tory variables (K) and the scoring function function used to generate them had marked effects.

In the results shown up to K = 100 terms have be used, more explanatory variables gave only

marginal improvement and becomes increasingly computationally expensive. Selecting terms

with MI led to reasonable predictions, while an alternative scheme selecting columns with low

MI was found to give predictions little better than random (data not shown).

The hydrophilicity and chemical potential scores (SH and SV ) give similar prediction

performance, which is expected as they are highly correlated. Using the GLM framework

to assign different weights (with different signs) allows some residue pairs to be labelled as

having compatible physicochemical properties and others to be repulsive, and this gives a

model with measurable predictive power. In contrast, the SP
k , SM

k , Sζ
k , Sη

k and SΩ
k scoring

systems are specific to the observed frequencies for each amino acid column pair, and all give
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Figure 6.19: Model prediction grid for Nostoc sp. using SΩ
k and K = 100.
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Name TCS domains Name TCS domains Prediction Expected
All0638 Ti-R All2875 Ti-R-R-H (R2) 0.275
All0638 Ti-R All1389 Ti-R 0.266
All0824 Ti-R-R Alr2240 R 0.373
All0978 Ti-R All0182 Ti-R 0.295
All1178 Ti-R All1389 Ti-R 0.296
All1178 Ti-R All1178 Ti-R 0.287 Yes
All1178 Ti-R All5309 Ti-R 0.269
All1178 Ti-R All0638 Ti-R 0.261
All1178 Ti-R All2875 Ti-R-R-H (R2) 0.250
Alr1192 Ti Ycf27 R 0.379
Alr1192 Ti All4727 R 0.362
All1280 Ti Alr2241 R-Ti 0.472
All1280 Ti Alr7219 R 0.413
All1280 Ti Alr3156 R 0.294
All1280 Ti Alr2138 R 0.275
All1389 Ti-R All2875 Ti-R-R-H (R2) 0.536
All1389 Ti-R Alr3761 Ti-R-R (R2) 0.418
All1389 Ti-R Alr2279 Ti-R-R-H (R2) 0.279
Alr1551 K-Ti (K1) Alr2138 R 0.482
Alr1680 Ti All2239 R-Ti 0.306
All1914 Ti-R All1639 Ti-R 0.258
Alr1966 Ti All2239 R-Ti 0.679
Alr1966 Ti All3766 R 0.651
Alr1966 Ti Alr3158 R 0.639
Alr1966 Ti Alr1967 R 0.511
Alr1966 Ti All2898 R 0.388
Alr1966 Ti All3765 R-Ti 0.310
Alr1966 Ti All1640 R 0.280
All2095 Ti Alr3156 R 0.500
All2095 Ti Alr7219 R 0.449
All2095 Ti Alr0913 R 0.265
Alr2137 Ti All4635 R 0.255
All2239 R-Ti Alr7219 R 0.265
Alr2279 Ti-R-R-H All2875 Ti-R-R-H (R2) 0.297
All2875 Ti-R-R-H Alr3761 Ti-R-R (R2) 0.330
All2875 Ti-R-R-H All2875 Ti-R-R-H (R2) 0.315
AphB Ti All3766 R 0.646
AphB Ti Alr3158 R 0.381
AphB Ti Alr1967 R 0.304
Alr3092 Ti-R All0182 Ti-R 0.288
Alr3120 Ti-R Alr4880 R-Ti 0.382
Alr3155 Ti Alr3156 R 0.812
Alr3155 Ti Alr2138 R 0.521
Alr3155 Ti Ycf55 R 0.322
Alr3155 Ti All1704 R 0.312
Alr3155 Ti Alr8535 R 0.259
AphA Ti Alr3158 R 0.398
AphA Ti All3766 R 0.308
Alr3442 Ti-R All0182 Ti-R 0.308
Alr3547 Ti All2898 R 0.293
All3564 Ti Alr9013 R 0.460
All3564 Ti Alr8531 R 0.460
All3767 Ti All3766 R 0.363
All3767 Ti All3765 R-Ti 0.300
All3767 Ti Alr1967 R 0.294
All3767 Ti All2898 R 0.256
All4097 R-Ti-R Alr4880 R-Ti 0.384
Alr4586 K-Ti (K1) Alr2138 R 0.346
All4636 Ti All4635 R 0.624
All4636 Ti Alr2428 R-H-R-Ti-R-R (R3) 0.376
All4636 Ti Alr2138 R 0.368
All4726 Ti All4727 R 0.417 Yes
Alr4878 Ti-R All1389 Ti-R 0.264
Alr4878 Ti-R All2875 Ti-R-R-H (R2) 0.258
Alr5189 Ti Alr5188 R 0.662 Yes
Alr5189 Ti Alr1194 R 0.444
Alr5189 Ti Ycf27 R 0.365
Alr5189 Ti Alr0774 R 0.360
All5210 Ti-R All0182 Ti-R 0.316
All5308 R-K-Ti (K1) Alr2138 R 0.390

Table 6.1: Unrestricted model predictions P ≥ 0.25 for Nostoc sp. using SΩ
k and K =

100, corresponding to the red squares in Figure 6.19. The interactions are grouped by the
HisKA domain, with possible receiver interactions listed according the predicted probability
of interaction. The final column shows if the interaction was expected from the genome
arrangement. Where a protein contains more than one HisKA or receiver domain, the relevant
domain is indicated in brackets.
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Figure 6.22: Model prediction grid for M. xanthus using SΩ
k and K = 100.
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Name TCS domains Name TCS domains Prediction Expected
MXAN 0060 Ti MXAN 0931 Ti-R 0.514
MXAN 0060 Ti MXAN 7206 Ti-R 0.481
MXAN 0060 Ti MXAN 2763 Ti-R 0.328
MXAN 0060 Ti FrzZ R-R (R2) 0.312
MXAN 0060 Ti MXAN 2386 Ti-R 0.289
MXAN 0060 Ti MXAN 1093 R 0.283
MXAN 0060 Ti MXAN 7363 Ti-R-R (R2) 0.256
MXAN 0197 Ti MXAN 6966 R-R-Ti (R1) 0.266
MXAN 0229 R-Ti-R FrzS R 0.496
MXAN 0336 R-Ti MXAN 4245 R-R (R1) 0.305
MXAN 0347 Ti MXAN 1093 R 0.338
MXAN 0347 Ti MXAN 6620 R 0.285
MXAN 0399 Ti PilR R 0.577
MXAN 0399 Ti SasR R 0.439
MXAN 0399 Ti MXAN 4232 R 0.390
MXAN 0399 Ti MXAN 1378 R 0.342
MXAN 0399 Ti MXAN 3418 R 0.341
MXAN 0399 Ti MXAN 3555 R 0.337
MXAN 0399 Ti MXAN 2671 R 0.327
MXAN 0399 Ti Nla28 R 0.314
MXAN 0399 Ti MXAN 4785 R 0.311
MXAN 0399 Ti MXAN 5777 R 0.260
MXAN 0399 Ti MXAN 6224 R 0.253
MXAN 0459 Ti MXAN 5853 R 0.343
MXAN 0459 Ti MXAN 2671 R 0.315
MXAN 0459 Ti MXAN 4245 R-R (R2) 0.309
MXAN 0459 Ti MXAN 4232 R 0.269
MXAN 0459 Ti MXAN 4244 R-Ti 0.252
MXAN 0736 Ti MXAN 7206 Ti-R 0.544
MXAN 0736 Ti MXAN 0931 Ti-R 0.520
MXAN 0736 Ti MXAN 2386 Ti-R 0.441
MXAN 0736 Ti MXAN 2763 Ti-R 0.351
MXAN 0736 Ti MXAN 1093 R 0.344
MXAN 0799 K MXAN 0732 R 0.323
MXAN 1077 Ti PilR R 0.323
MXAN 1077 Ti MXAN 4785 R 0.318
MXAN 1077 Ti Nla28 R 0.287
MXAN 1077 Ti MXAN 3418 R 0.282
MXAN 1077 Ti MXAN 1378 R 0.275
MXAN 1077 Ti MXAN 4244 R-Ti 0.265
SasS Ti PilR R 0.281
MXAN 1679 Ti MXAN 1680 R 0.267 Yes
AsgA R-Ti PilR R 0.340
MXAN 3343 Ti PilR R 0.395
MXAN 3343 Ti MXAN 4253 R 0.362
MXAN 3343 Ti MXAN 1378 R 0.296
MXAN 3343 Ti SasR R 0.263
MXAN 3343 Ti MXAN 0460 R-R (R1) 0.258
MXAN 3879 Ti-R-R MXAN 3879 Ti-R-R (R1) 0.349
MXAN 4043 K MXAN 1093 R 0.425
MXAN 4071 Ti MXAN 6149 R 0.526
MXAN 4197 Ti MXAN 3811 R 0.321
MXAN 4246 Ti PilR R 0.413
MXAN 4246 Ti MXAN 4232 R 0.316
MXAN 4246 Ti SasR R 0.263
MXAN 4251 Ti PilR R 0.271
MXAN 4465 Ti-R SasR R 0.264
MXAN 4640 Ti-R FrzS R 0.540
PhoR1 Ti MXAN 4164 R 0.270
MXAN 4988 Ti SasR R 0.319
MXAN 4988 Ti MXAN 6980 R 0.265
MXAN 4988 Ti MXAN 4785 R 0.256
MXAN 5082 Ti MXAN 5083 R 0.362 Yes
HsfB R-Ti MXAN 3879 Ti-R-R (R1) 0.367
MXAN 5852 Ti MXAN 6224 R 0.366
MXAN 5852 Ti MXAN 5853 R 0.314 Yes
MXAN 5852 Ti MXAN 6980 R 0.282
MXAN 6015 Ti PilR R 0.526
MXAN 6015 Ti SasR R 0.376
MXAN 6015 Ti MXAN 1378 R 0.347
MXAN 6015 Ti MXAN 4785 R 0.315
MXAN 6015 Ti MXAN 4232 R 0.310
MXAN 6015 Ti MXAN 2671 R 0.254
MXAN 6150 Ti MXAN 6149 R 0.266
MXAN 6223 Ti MXAN 6224 R 0.330 Yes
MXAN 6979 Ti MXAN 6224 R 0.523
MXAN 6979 Ti MXAN 6980 R 0.364
MXAN 6979 Ti MXAN 5853 R 0.263
MXAN 6979 Ti MXAN 4253 R 0.259
AsgD R-Ti MXAN 4245 R-R (R1) 0.266
MXAN 7002 Ti MXAN 1093 R 0.366
MXAN 7027 Ti MXAN 7150 R 0.634
MXAN 7027 Ti MXAN 4580 R 0.268
MXAN 7027 Ti MXAN 6968 R 0.255
MXAN 7180 Ti MXAN 7206 Ti-R 0.279
MXAN 7444 R-Ti DotR R 0.299

Table 6.2: Unrestricted model predictions P ≥ 0.25 for M. xanthus using SΩ
k and K =

100, corresponding to the red squares in Figure 6.22. The interactions are grouped by the
HisKA domain, with possible receiver interactions listed according the predicted probability
of interaction. The final column shows if the interaction was expected from the genome
arrangement. Where a protein contains more than one HisKA or receiver domain, the relevant
domain is indicated in brackets. 202



better performance than the SH and SV scores. Given a suitably large and uniformly sampled

training dataset, these scores themselves could capture useful information about the nature

of each interaction, especially if coupled with spatial information about the protein-protein

complex.

By their construction, Sζ
k , Sη

k and SΩ
k are closely related (Section 6.2.3). In terms of

predictive power there is little to choose betweenSη
k and SΩ

k , but Sζ
k was found to be less

effective. One difference between these scores is the calculation of Sζ
k only looks at the amino

acid frequencies in the training set’s positive interactions (Y = 1), while Sη
k and SΩ

k also

consider the non-interactions (Y = 0), and thus Sζ
k may be less robust on smaller datasets.

The simple Bayesian interpretations given in Equations (6.15) and (6.16) allow
∑

Sη
k

and
∑

SΩ
k to be linked to the probability of interaction given the amino acids residues. The

argument in Section 6.2.3 extends this to give some justification for the use of
∑

Sζ
k as an

interaction indicator in White et al. (2007). Similarly,
∑

Sη
k and

∑
SΩ

k can also be used

directly with a sliding threshold to rank interactions (indeed, this would give the same ROC

curve as the restricted GLM used here). However, this simple Bayesian interpretation assumes

all K column pair scores to be independent. As a MSA column can be found in multiple

column pairs (e.g. Figures 5.25 and 5.26), this assumption may be problematic for large K.

Handling column interdependence explicitly in a Bayesian framework, perhaps along the lines

of Burger and van Nimwegen (2006, 2008), may be an interesting alternative to the GLM

approach herein.

The relatively poor out-of-sample prediction performance of all the models trained

on the hybrid dataset is probably of biological significance. We posit that the specificity

between HisKA and receiver domains in hybrid kinase proteins is less selective than in two-

gene partners, because in these proteins the two domains are tethered to each other and

thus the phosphotransfer suffers less competition from other receivers. i.e. domains in hybrid

kinases impose weaker co-evolutionary dependence on each other, than in two-gene TCS pairs.

See also Cock and Whitworth (2007b). Following this rationale, the assumption of exclusive

interaction between domains from hybrid kinases (used to compile our dataset) is perhaps

unjustified.

In parameter selection, the AIC is intended to penalise over-fitting. Typically plotting

the AIC against the number of terms (here K) will show a clear minimum for some value

of K. However, in these results the AIC was never minimised - even for large K > 100

where the predictive performance assessed by the ROC area had clearly plateaued. Also, less

direct evidence comes from the better than expected predictive performance on the E. coli

203



and Bacillus subtilis datasets (Sections 6.5 and 6.6). Taken together, this may indicate that

some of these models are over fitting the data, and that K should be limited based on some

other criteria. Biological knowledge could be used to suggest a sensible cut off, or a human

judgement call based on the ROC area curves. One more rigourous alternative suggested in

Chapter 5 would be to perform a bootstrap analysis on the protein pairs in order to assign a

p-value to each MI score. A threshold (say p = 0.01) would translate into a limit on K.

6.10 Conclusion

A GLM framework for predicting protein-protein interactions has been presented, and its pre-

dictive performance assessed for a variety of scoring functions therein using the AIC and the

area under the ROC curve. All scoring functions considered provide predictive power when

used as explanatory variables. There is most predictive power from the probabilistic scores SΩ
k

and Sη
k , with Sζ

k a close third best, all based on observed amino acid frequencies in the training

dataset. However, the more general fully defined SH and SV scores also have some predictive

power and may warrant consideration in smaller datasets where amino acid frequencies cannot

be calculated reliably.

The predictive power of the models was found to be lower when trained on and applied

to domains from hybrid kinases, and this is not simply an effect of a small training set.

This may be a biological phenomena, namely that these hybrid gene domain pairs are not as

monogamous as those in two-gene pairs, on that basis that being physically tethered to each

other the gives the “correct” pairing a thermodynamic advantage. Hypothetically this results

in less evolutionary pressure to maintain exclusive specificity at the protein-protein interface for

hybrid kinases. Thus there are two handicaps to predicting these pairings, firstly the reliability

of the interaction calls in the training dataset is undermined, and secondly the amino acid

“signal” would be expected to be weaker.

The unweighted sum of the Sζ
k , Sη

k or SΩ
k logged probability ratio scores has been shown

to have merit as an single explanatory variable in the GLM framework. These summations

can also be used directly with a threshold as a simple predictive guide for protein-protein

interactions, with the virtue of being comparatively simple to understand and implement.

However, using the unrestricted GLM improves on the predictive power.

Finally, the predictions shown for E. coli, Bacillus subtilis and Caulobacter crescentus

show broad agreement with current knowledge. The predicted interactions for more com-

plex organisms such as Nostoc sp. and M. xanthus should provide a useful list of candidate

interactions for experimental verification.
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Chapter 7

Conclusions and future work

Chapter 1 introduced TCS systems, and some of the known systems and networks. Chapter 2

described a protein domain motif based survey of fully sequenced prokaryotes, which identified

a number of trends. In particular, it was found that prokaryotes with a large TCS gene comple-

ment tend to have less simple TCS transmitter-receiver pairs, and instead have more complex

hybrid genes and TCS gene clusters. Nostoc sp. and M. xanthus are particular examples of

this, where the genome arrangement precludes simple deduction of TCS interactions.

Patterns in the phase of gene overlaps were considered in Chapter 3, a general property

of prokaryotic genes (not specific to TCS gene pairs). The observed phase bias in longer

unidirectional gene overlaps could be explained by the genetic code itself, provided these most

such overlaps arose from the selection of a new start codon for the downstream gene. However,

with the biological validity of these long overlaps somewhat in question (Pallejá et al., 2008),

the same model could equally well describe the annotation process.

Typical two gene TCS systems, consisting of neighbouring HK and RR genes, and

simple HY genes, containing one transmitter and one receiver, were the focus of Chapter 4.

While many TCS systems have evolved using these single proteins, it was found that in most

cases these lacked a TM input domain or DNA binding output domain. These domains impose

specific spatial constraints on the mobility of the protein, which would generally be impaired

by the merger of separate HK and RR genes into a HY. Further work would be required

using a phylogenetic analysis to determine what proportion of HY genes have evolved from

the in situ fusion of neighbouring HK and RR genes, and how many can be best explained

by recombination events. Additionally, refinements in TCS PFAM domain models should also

allow better detection of potentially missed phosphotransfer domains which could indicate that

some of these HY systems are in fact part of larger phosphorelays (Section 1.4.6).

Chapters 5 and 6 described a model developed to predict TCS interactions between
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HisKA and receiver domains from their amino acid sequences. Firstly, important amino acid

positions in the two domains were identified using MI, and then these were scored numerically

as explanatory variables in a GLM. The best predictive power came from two probabilistic

scores SΩ
k and Sη

k , constructed as log odds ratios of observed amino acid frequencies in the

training data. After model validation, predictions were made for a number of model organisms,

including Nostoc sp. and M. xanthus which have a particularly complex set of TCS genes.

After exploring sensible upper limits in the number of model terms to avoid over-fitting, the

next logical step would be to attempt experimental verification of the TCS predictions made

in Chapter 6.

Predicted interactions between specific TCS proteins can be verified experimentally,

both in vivo (for example, examining the phenotypes of knock out mutants), or in vitro (for

example, the Y2H assay, e.g. Whitworth et al. (2008)). For more robust proof demonstration

of actual phosphotransfer is usually confirmed using a radioisotope assay (e.g. Yamamoto et al.

(2005) and Skerker et al. (2005)). For most organisms where few if any TCS interactions have

been confirmed, predictions can usefully guide experiments to target particular combinations.

In model organisms such as E. coli, most native TCS interactions are already reasonably well

characterised, and new insights from these predictions are likely to be limited. However, the

models here could be applied to mutagenized or engineered variants of the proteins (Skerker

et al., 2008), to clarify the mechanisms involved.

If this modelling approach does prove useful, there are a number of relatively straight-

forward improvements that could be made. Firstly, the set of published sequenced genomes

keeps expanding, allowing for ever larger training sets to be compiled. It may now be feasible

to apply this method to other less common protein-protein interactions. Secondly, once the

training data has been compiled, the construction of new MSAs combining the training data

and a given test dataset is a major bottleneck. An obvious step would be to build alignments

of the test data once, and train the GLM on this data. After this upfront cost, test sequences

could be mapped onto these alignments one at a time in order to match up their amino acids

to those deemed to impart interaction specificity.

The simplistic Bayesian interpretation of
∑

SΩ
k or

∑
Sη

k (Section 6.2.4) suggests that

as an alternative to using a GLM to take a weighted sum of these terms, explicitly modelling the

inter-column dependencies could yield better predictions. Using MI identifies many columns

which show correlation to multiple positions in the other domain - perhaps this information

can be used explicitly to bundle MSA column pairs into larger groups describing the interaction

interface as a number of separate modules, each of which could be scored individually.
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In addition to helping to explain the biology of existing TCS systems, any successful

interaction prediction scheme will also have potential practical applications. The re-wiring of

HK interaction preference has already been demonstrated in E. coli by genetic manipulation

(Skerker et al., 2008). Bespoke TCS domains could have an important role in synthetic

biology, or perhaps even therapeutically as a means of manipulating the signalling pathways

within prokaryotic pathogens.
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Appendix A

Species List

Table A.1: List of all 457 sequenced species downloaded from the NCBI’s FTP site on 26 Feb
2007 (807 accessions/GenBank files), of which the 340 in bold are taken as representative
species (ignoring multiple strains, 615 accessions/GenBank files).

Species name Accessions
Acidobacteria bacterium Ellin345 NC 008009
Acidothermus cellulolyticus 11B NC 008578
Acidovorax JS42 NC 008765, NC 008766, NC 008782
Acidovorax avenae citrulli AAC00-1 NC 008752
Acinetobacter sp ADP1 NC 005966
Aeromonas hydrophila ATCC 7966 NC 008570
Aeropyrum pernix NC 000854
Agrobacterium tumefaciens C58 Cereon NC 003062, NC 003063, NC 003064, NC 003065
Agrobacterium tumefaciens C58 UWash NC 003304, NC 003305, NC 003306, NC 003308
Alcanivorax borkumensis SK2 NC 008260
Alkalilimnicola ehrlichei MLHE-1 NC 008340
Anabaena variabilis ATCC 29413 NC 007410, NC 007411, NC 007412, NC 007413
Anaeromyxobacter dehalogenans 2CP-C NC 007760
Anaplasma marginale St Maries NC 004842
Anaplasma phagocytophilum HZ NC 007797
Aquifex aeolicus NC 000918, NC 001880
Archaeoglobus fulgidus NC 000917
Arthrobacter FB24 NC 008537, NC 008538, NC 008539, NC 008541
Arthrobacter aurescens TC1 NC 008711, NC 008712, NC 008713
Aster yellows witches-broom phytoplasma AYWB NC 007716, NC 007717, NC 007718, NC 007719,

NC 007720
Azoarcus BH72 NC 008702
Azoarcus sp EbN1 NC 006513, NC 006823, NC 006824
Bacillus anthracis Ames NC 003997
Bacillus anthracis Ames 0581 NC 007322, NC 007323, NC 007530
Bacillus anthracis str Sterne NC 005945
Bacillus cereus ATCC14579 NC 004721, NC 004722
Bacillus cereus ATCC 10987 NC 003909, NC 005707
Bacillus cereus ZK NC 006274, NC 007103, NC 007104, NC 007105,

NC 007106, NC 007107
Bacillus clausii KSM-K16 NC 006582
Bacillus halodurans NC 002570
Bacillus licheniformis ATCC 14580 NC 006270
Bacillus licheniformis DSM 13 NC 006322
Bacillus subtilis NC 000964
Bacillus thuringiensis Al Hakam NC 008598, NC 008600
Bacillus thuringiensis konkukian NC 005957, NC 006578
Bacteroides fragilis NCTC 9434 NC 003228, NC 006873
Bacteroides fragilis YCH46 NC 006297, NC 006347
Bacteroides thetaiotaomicron VPI-5482 NC 004663, NC 004703

Continued. . .
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Species name Accessions
Bartonella bacilliformis KC583 NC 008783
Bartonella henselae Houston-1 NC 005956
Bartonella quintana Toulouse NC 005955
Baumannia cicadellinicola Homalodisca coagulata NC 007984
Bdellovibrio bacteriovorus NC 005363
Bifidobacterium adolescentis ATCC 15703 NC 008618
Bifidobacterium longum NC 004307, NC 004943
Bordetella bronchiseptica NC 002927
Bordetella parapertussis NC 002928
Bordetella pertussis NC 002929
Borrelia afzelii PKo NC 008273, NC 008274, NC 008277, NC 008564,

NC 008565, NC 008566, NC 008567, NC 008568,
NC 008569

Borrelia burgdorferi NC 000948, NC 000949, NC 000950, NC 000951,
NC 000952, NC 000953, NC 000954, NC 000955,
NC 000956, NC 000957, NC 001318, NC 001849,
NC 001850, NC 001851, NC 001852, NC 001853,
NC 001854, NC 001855, NC 001856, NC 001857,
NC 001903, NC 001904

Borrelia garinii PBi NC 006128, NC 006129, NC 006156
Bradyrhizobium japonicum NC 004463
Brucella abortus 9-941 NC 006932, NC 006933
Brucella melitensis NC 003317, NC 003318
Brucella melitensis biovar Abortus NC 007618, NC 007624
Brucella suis 1330 NC 004310, NC 004311
Buchnera aphidicola NC 004545, NC 004555
Buchnera aphidicola Cc Cinara cedri NC 008513
Buchnera aphidicola Sg NC 004061
Buchnera sp NC 002252, NC 002253, NC 002528
Burkholderia 383 NC 007509, NC 007510, NC 007511
Burkholderia cenocepacia AU 1054 NC 008060, NC 008061, NC 008062
Burkholderia cenocepacia HI2424 NC 008542, NC 008543, NC 008544, NC 008545
Burkholderia cepacia AMMD NC 008385, NC 008390, NC 008391, NC 008392
Burkholderia mallei ATCC 23344 NC 006348, NC 006349
Burkholderia mallei NCTC 10229 NC 008835, NC 008836
Burkholderia mallei SAVP1 NC 008784, NC 008785
Burkholderia pseudomallei 1710b NC 007434, NC 007435
Burkholderia pseudomallei K96243 NC 006350, NC 006351
Burkholderia thailandensis E264 NC 007650, NC 007651
Burkholderia xenovorans LB400 NC 007951, NC 007952, NC 007953
Campylobacter fetus 82-40 NC 008599
Campylobacter jejuni NC 002163
Campylobacter jejuni 81-176 NC 008770, NC 008787, NC 008790
Campylobacter jejuni RM1221 NC 003912
Candidatus Blochmannia floridanus NC 005061
Candidatus Blochmannia pennsylvanicus BPEN NC 007292
Candidatus Carsonella ruddii PV NC 008512
Candidatus Pelagibacter ubique HTCC1062 NC 007205
Candidatus Ruthia magnifica Cm Calyptogena magnifica NC 008610
Carboxydothermus hydrogenoformans Z-2901 NC 007503
Caulobacter crescentus NC 002696
Chlamydia muridarum NC 002182, NC 002620
Chlamydia trachomatis NC 000117
Chlamydia trachomatis A HAR-13 NC 007429, NC 007430
Chlamydophila abortus S26 3 NC 004552
Chlamydophila caviae NC 003361, NC 004720
Chlamydophila felis Fe C-56 NC 007899, NC 007900
Chlamydophila pneumoniae AR39 NC 002179
Chlamydophila pneumoniae CWL029 NC 000922
Chlamydophila pneumoniae J138 NC 002491
Chlamydophila pneumoniae TW 183 NC 005043
Chlorobium chlorochromatii CaD3 NC 007514
Chlorobium phaeobacteroides DSM 266 NC 008639
Chlorobium tepidum TLS NC 002932
Chromobacterium violaceum NC 005085
Chromohalobacter salexigens DSM 3043 NC 007963

Continued. . .
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Species name Accessions
Clostridium acetobutylicum NC 001988, NC 003030
Clostridium novyi NT NC 008593
Clostridium perfringens NC 003042, NC 003366
Clostridium perfringens ATCC 13124 NC 008261
Clostridium perfringens SM101 NC 008262, NC 008263, NC 008264, NC 008265
Clostridium tetani E88 NC 004557, NC 004565
Clostridium thermocellum ATCC 27405 NC 009012
Colwellia psychrerythraea 34H NC 003910
Corynebacterium diphtheriae NC 002935
Corynebacterium efficiens YS-314 NC 004369
Corynebacterium glutamicum ATCC 13032 Bielefeld NC 006958
Corynebacterium glutamicum ATCC 13032 Kitasato NC 003450
Corynebacterium jeikeium K411 NC 003080, NC 007164
Coxiella burnetii NC 002971, NC 004704
Cyanobacteria bacterium Yellowstone A-Prime NC 007775
Cyanobacteria bacterium Yellowstone B-Prime NC 007776
Cytophaga hutchinsonii ATCC 33406 NC 008255
Dechloromonas aromatica RCB NC 007298
Dehalococcoides CBDB1 NC 007356
Dehalococcoides ethenogenes 195 NC 002936
Deinococcus geothermalis DSM 11300 NC 008010, NC 008025
Deinococcus radiodurans NC 000958, NC 000959, NC 001263, NC 001264
Desulfitobacterium hafniense Y51 NC 007907
Desulfotalea psychrophila LSv54 NC 006138, NC 006139, NC 006140
Desulfovibrio desulfuricans G20 NC 007519
Desulfovibrio vulgaris DP4 NC 008741, NC 008751
Desulfovibrio vulgaris Hildenborough NC 002937, NC 005863
Ehrlichia canis Jake NC 007354
Ehrlichia chaffeensis Arkansas NC 007799
Ehrlichia ruminantium Gardel NC 006831
Ehrlichia ruminantium Welgevonden NC 005295
Ehrlichia ruminantium str. Welgevonden NC 006832
Enterococcus faecalis V583 NC 004668, NC 004669, NC 004670, NC 004671
Erwinia carotovora atroseptica SCRI1043 NC 004547
Erythrobacter litoralis HTCC2594 NC 007722
Escherichia coli 536 NC 008253
Escherichia coli APEC O1 NC 008563
Escherichia coli CFT073 NC 004431
Escherichia coli K12 NC 000913
Escherichia coli O157H7 NC 002127, NC 002128, NC 002695
Escherichia coli O157H7 EDL933 NC 002655, NC 007414
Escherichia coli UTI89 NC 007941, NC 007946
Escherichia coli W3110 AC 000091
Francisella tularensis FSC 198 NC 008245
Francisella tularensis holarctica NC 007880
Francisella tularensis holarctica OSU18 NC 008369
Francisella tularensis novicida U112 NC 008601
Francisella tularensis tularensis NC 006570
Frankia CcI3 NC 007777
Frankia alni ACN14a NC 008278
Fusobacterium nucleatum NC 003454
Geobacillus kaustophilus HTA426 NC 006509, NC 006510
Geobacter metallireducens GS-15 NC 007515, NC 007517
Geobacter sulfurreducens NC 002939
Gloeobacter violaceus NC 005125
Gluconobacter oxydans 621H NC 006672, NC 006673, NC 006674, NC 006675,

NC 006676, NC 006677
Gramella forsetii KT0803 NC 008571
Granulobacter bethesdensis CGDNIH1 NC 008343
Haemophilus ducreyi 35000HP NC 002940
Haemophilus influenzae NC 000907
Haemophilus influenzae 86 028NP NC 007146
Haemophilus somnus 129PT NC 006298, NC 008309
Hahella chejuensis KCTC 2396 NC 007645
Haloarcula marismortui ATCC 43049 NC 006389, NC 006390, NC 006391, NC 006392,

NC 006393, NC 006394, NC 006395, NC 006396,
NC 006397

Continued. . .
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Species name Accessions
Halobacterium sp NC 001869, NC 002607, NC 002608
Haloquadratum walsbyi NC 008212, NC 008213
Halorhodospira halophila SL1 NC 008789
Helicobacter acinonychis Sheeba NC 008229, NC 008230
Helicobacter hepaticus NC 004917
Helicobacter pylori 26695 NC 000915
Helicobacter pylori HPAG1 NC 008086, NC 008087
Helicobacter pylori J99 NC 000921
Hyperthermus butylicus NC 008818
Hyphomonas neptunium ATCC 15444 NC 008358
Idiomarina loihiensis L2TR NC 006512
Jannaschia CCS1 NC 007801, NC 007802
Lactobacillus acidophilus NCFM NC 006814
Lactobacillus brevis ATCC 367 NC 008497, NC 008498, NC 008499
Lactobacillus casei ATCC 334 NC 008502, NC 008526
Lactobacillus delbrueckii bulgaricus NC 008054
Lactobacillus delbrueckii bulgaricus ATCC BAA-365 NC 008529
Lactobacillus gasseri ATCC 33323 NC 008530
Lactobacillus johnsonii NCC 533 NC 005362
Lactobacillus plantarum NC 004567, NC 006375, NC 006376, NC 006377
Lactobacillus sakei 23K NC 007576
Lactobacillus salivarius UCC118 NC 006529, NC 006530, NC 007929, NC 007930
Lactococcus lactis NC 002662
Lactococcus lactis cremoris MG1363 NC 009004
Lactococcus lactis cremoris SK11 NC 008503, NC 008504, NC 008505, NC 008506,

NC 008507, NC 008527
Lawsonia intracellularis PHE MN1-00 NC 008011, NC 008012, NC 008013, NC 008014
Legionella pneumophila Lens NC 006366, NC 006369
Legionella pneumophila Paris NC 006365, NC 006368
Legionella pneumophila Philadelphia 1 NC 002942
Leifsonia xyli xyli CTCB0 NC 006087
Leptospira borgpetersenii serovar Hardjo-bovis JB197 NC 008510, NC 008511
Leptospira borgpetersenii serovar Hardjo-bovis L550 NC 008508, NC 008509
Leptospira interrogans serovar Copenhageni NC 005823, NC 005824
Leptospira interrogans serovar Lai NC 004342, NC 004343
Leuconostoc mesenteroides ATCC 8293 NC 008496, NC 008531
Listeria innocua NC 003212, NC 003383
Listeria monocytogenes NC 003210
Listeria monocytogenes 4b F2365 NC 002973
Listeria welshimeri serovar 6b SLCC5334 NC 008555
Magnetococcus MC-1 NC 008576
Magnetospirillum magneticum AMB-1 NC 007626
Mannheimia succiniciproducens MBEL55E NC 006300
Maricaulis maris MCS10 NC 008347
Marinobacter aquaeolei VT8 NC 008738, NC 008739, NC 008740
Mesoplasma florum L1 NC 006055
Mesorhizobium BNC1 NC 008242, NC 008243, NC 008244, NC 008254
Mesorhizobium loti NC 002678, NC 002679, NC 002682
Methanobacterium thermoautotrophicum NC 000916
Methanococcoides burtonii DSM 6242 NC 007955
Methanococcus jannaschii NC 000909, NC 001732, NC 001733
Methanococcus maripaludis S2 NC 005791
Methanocorpusculum labreanum Z NC 008942
Methanopyrus kandleri NC 003551
Methanosaeta thermophila PT NC 008553
Methanosarcina acetivorans NC 003552
Methanosarcina barkeri fusaro NC 007349, NC 007355
Methanosarcina mazei NC 003901
Methanosphaera stadtmanae NC 007681
Methanospirillum hungatei JF-1 NC 007796
Methylibium petroleiphilum PM1 NC 008825, NC 008826
Methylobacillus flagellatus KT NC 007947
Methylococcus capsulatus Bath NC 002977
Moorella thermoacetica ATCC 39073 NC 007644

Continued. . .
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Mycobacterium KMS NC 008703, NC 008704, NC 008705
Mycobacterium MCS NC 008146, NC 008147
Mycobacterium avium 104 NC 008595
Mycobacterium avium paratuberculosis NC 002944
Mycobacterium bovis NC 002945
Mycobacterium bovis BCG Pasteur 1173P2 NC 008769
Mycobacterium leprae NC 002677
Mycobacterium smegmatis MC2 155 NC 008596
Mycobacterium tuberculosis CDC1551 NC 002755
Mycobacterium tuberculosis H37Rv NC 000962
Mycobacterium ulcerans Agy99 NC 008611
Mycobacterium vanbaalenii PYR-1 NC 008726
Mycoplasma capricolum ATCC 27343 NC 007633
Mycoplasma gallisepticum NC 004829
Mycoplasma genitalium NC 000908
Mycoplasma hyopneumoniae 232 NC 006360
Mycoplasma hyopneumoniae 7448 NC 007332
Mycoplasma hyopneumoniae J NC 007295
Mycoplasma mobile 163K NC 006908
Mycoplasma mycoides NC 005364
Mycoplasma penetrans NC 004432
Mycoplasma pneumoniae NC 000912
Mycoplasma pulmonis NC 002771
Mycoplasma synoviae 53 NC 007294
Myxococcus xanthus DK 1622 NC 008095
Nanoarchaeum equitans NC 005213
Natronomonas pharaonis NC 007426, NC 007427, NC 007428
Neisseria gonorrhoeae FA 1090 NC 002946
Neisseria meningitidis FAM18 NC 008767
Neisseria meningitidis MC58 NC 003112
Neisseria meningitidis Z2491 NC 003116
Neorickettsia sennetsu Miyayama NC 007798
Nitrobacter hamburgensis X14 NC 007959, NC 007960, NC 007961, NC 007964
Nitrobacter winogradskyi Nb-255 NC 007406
Nitrosococcus oceani ATCC 19707 NC 007483, NC 007484
Nitrosomonas europaea NC 004757
Nitrosomonas eutropha C71 NC 008341, NC 008342, NC 008344
Nitrosospira multiformis ATCC 25196 NC 007614, NC 007615, NC 007616, NC 007617
Nocardia farcinica IFM10152 NC 006361, NC 006362, NC 006363
Nocardioides JS614 NC 008697, NC 008699
Nostoc sp NC 003240, NC 003241, NC 003267, NC 003270,

NC 003272, NC 003273, NC 003276
Novosphingobium aromaticivorans DSM 12444 NC 007794
Oceanobacillus iheyensis NC 004193
Oenococcus oeni PSU-1 NC 008528
Onion yellows phytoplasma NC 005303
Parachlamydia sp UWE25 NC 005861
Paracoccus denitrificans PD1222 NC 008686, NC 008687, NC 008688
Pasteurella multocida NC 002663
Pediococcus pentosaceus ATCC 25745 NC 008525
Pelobacter carbinolicus NC 007498
Pelobacter propionicus DSM 2379 NC 008607, NC 008608, NC 008609
Pelodictyon luteolum DSM 273 NC 007512
Photobacterium profundum SS9 NC 005871, NC 006370, NC 006371
Photorhabdus luminescens NC 005126
Picrophilus torridus DSM 9790 NC 005877
Pirellula sp NC 005027
Polaromonas JS666 NC 007948, NC 007949, NC 007950
Polaromonas naphthalenivorans CJ2 NC 008757, NC 008758, NC 008759, NC 008760,

NC 008761, NC 008762, NC 008763, NC 008764,
NC 008781

Porphyromonas gingivalis W83 NC 002950
Continued. . .
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Prochlorococcus marinus AS9601 NC 008816
Prochlorococcus marinus CCMP1375 NC 005042
Prochlorococcus marinus MED4 NC 005072
Prochlorococcus marinus MIT9313 NC 005071
Prochlorococcus marinus MIT 9303 NC 008820
Prochlorococcus marinus MIT 9312 NC 007577
Prochlorococcus marinus MIT 9515 NC 008817
Prochlorococcus marinus NATL1A NC 008819
Prochlorococcus marinus NATL2A NC 007335
Propionibacterium acnes KPA171202 NC 006085
Pseudoalteromonas atlantica T6c NC 008228
Pseudoalteromonas haloplanktis TAC125 NC 007481, NC 007482
Pseudomonas aeruginosa NC 002516
Pseudomonas aeruginosa UCBPP-PA14 NC 008463
Pseudomonas entomophila L48 NC 008027
Pseudomonas fluorescens Pf-5 NC 004129
Pseudomonas fluorescens PfO-1 NC 007492
Pseudomonas putida KT2440 NC 002947
Pseudomonas syringae phaseolicola 1448A NC 005773, NC 007274, NC 007275
Pseudomonas syringae pv B728a NC 007005
Pseudomonas syringae tomato DC3000 NC 004578, NC 004632, NC 004633
Psychrobacter arcticum 273-4 NC 007204
Psychrobacter cryohalolentis K5 NC 007968, NC 007969
Psychromonas ingrahamii 37 NC 008709
Pyrobaculum aerophilum NC 003364
Pyrobaculum islandicum DSM 4184 NC 008701
Pyrococcus abyssi NC 000868, NC 001773
Pyrococcus furiosus NC 003413
Pyrococcus horikoshii NC 000961
Ralstonia eutropha H16 NC 008313, NC 008314
Ralstonia eutropha JMP134 NC 007336, NC 007337, NC 007347, NC 007348
Ralstonia metallidurans CH34 NC 007971, NC 007972, NC 007973, NC 007974
Ralstonia solanacearum NC 003295, NC 003296
Rhizobium etli CFN 42 NC 007761, NC 007762, NC 007763, NC 007764,

NC 007765, NC 007766
Rhizobium leguminosarum bv viciae 3841 NC 008378, NC 008379, NC 008380, NC 008381,

NC 008382, NC 008383, NC 008384
Rhodobacter sphaeroides 2 4 1 NC 007488, NC 007489, NC 007490, NC 007493,

NC 007494, NC 009007, NC 009008
Rhodococcus RHA1 NC 008268, NC 008269, NC 008270, NC 008271
Rhodoferax ferrireducens T118 NC 007901, NC 007908
Rhodopseudomonas palustris BisA53 NC 008435
Rhodopseudomonas palustris BisB18 NC 007925
Rhodopseudomonas palustris BisB5 NC 007958
Rhodopseudomonas palustris CGA009 NC 005296, NC 005297
Rhodopseudomonas palustris HaA2 NC 007778
Rhodospirillum rubrum ATCC 11170 NC 007641, NC 007643
Rickettsia bellii RML369-C NC 007940
Rickettsia conorii NC 003103
Rickettsia felis URRWXCal2 NC 007109, NC 007110, NC 007111
Rickettsia prowazekii NC 000963
Rickettsia typhi wilmington NC 006142
Roseobacter denitrificans OCh 114 NC 008209, NC 008386, NC 008387, NC 008388,

NC 008389
Rubrobacter xylanophilus DSM 9941 NC 008148
Saccharophagus degradans 2-40 NC 007912
Salinibacter ruber DSM 13855 NC 007677, NC 007678
Salmonella enterica Choleraesuis NC 006855, NC 006856, NC 006905
Salmonella enterica Paratypi ATCC 9150 NC 006511
Salmonella typhi NC 003198, NC 003384, NC 003385
Salmonella typhi Ty2 NC 004631
Salmonella typhimurium LT2 NC 003197, NC 003277
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Species name Accessions
Shewanella ANA-3 NC 008573, NC 008577
Shewanella MR-4 NC 008321
Shewanella MR-7 NC 008320, NC 008322
Shewanella W3-18-1 NC 008750
Shewanella amazonensis SB2B NC 008700
Shewanella denitrificans OS217 NC 007954
Shewanella frigidimarina NCIMB 400 NC 008345
Shewanella oneidensis NC 004347, NC 004349
Shigella boydii Sb227 NC 007608, NC 007613
Shigella dysenteriae NC 007606, NC 007607
Shigella flexneri 2a NC 004337, NC 004851
Shigella flexneri 2a 2457T NC 004741
Shigella flexneri 5 8401 NC 008258
Shigella sonnei Ss046 NC 007384, NC 007385
Silicibacter TM1040 NC 008042, NC 008043, NC 008044
Silicibacter pomeroyi DSS-3 NC 003911, NC 006569
Sinorhizobium meliloti NC 003037, NC 003047, NC 003078
Sodalis glossinidius morsitans NC 007712, NC 007713, NC 007714, NC 007715
Solibacter usitatus Ellin6076 NC 008536
Sphingopyxis alaskensis RB2256 NC 008036, NC 008048
Staphylococcus aureus COL NC 002951, NC 006629
Staphylococcus aureus MW2 NC 003923
Staphylococcus aureus Mu50 NC 002758, NC 002774
Staphylococcus aureus N315 NC 002745, NC 003140
Staphylococcus aureus NCTC 8325 NC 007795
Staphylococcus aureus RF122 NC 007622
Staphylococcus aureus USA300 NC 007790, NC 007791, NC 007792, NC 007793
Staphylococcus aureus aureus MRSA252 NC 002952
Staphylococcus aureus aureus MSSA476 NC 002953, NC 005951
Staphylococcus epidermidis ATCC 12228 NC 004461, NC 005003, NC 005004, NC 005005,

NC 005006, NC 005007, NC 005008
Staphylococcus epidermidis RP62A NC 002976, NC 006663
Staphylococcus haemolyticus NC 007168
Staphylococcus saprophyticus NC 007350, NC 007351, NC 007352
Streptococcus agalactiae 2603 NC 004116
Streptococcus agalactiae A909 NC 007432
Streptococcus agalactiae NEM316 NC 004368
Streptococcus mutans NC 004350
Streptococcus pneumoniae D39 NC 008533
Streptococcus pneumoniae R6 NC 003098
Streptococcus pneumoniae TIGR4 NC 003028
Streptococcus pyogenes M1 GAS NC 002737
Streptococcus pyogenes MGAS10270 NC 008022
Streptococcus pyogenes MGAS10394 NC 006086
Streptococcus pyogenes MGAS10750 NC 008024
Streptococcus pyogenes MGAS2096 NC 008023
Streptococcus pyogenes MGAS315 NC 004070
Streptococcus pyogenes MGAS5005 NC 007297
Streptococcus pyogenes MGAS6180 NC 007296
Streptococcus pyogenes MGAS8232 NC 003485
Streptococcus pyogenes MGAS9429 NC 008021
Streptococcus pyogenes SSI-1 NC 004606
Streptococcus sanguinis SK36 NC 009009
Streptococcus thermophilus CNRZ1066 NC 006449
Streptococcus thermophilus LMD-9 NC 008500, NC 008501, NC 008532
Streptococcus thermophilus LMG 18311 NC 006448
Streptomyces avermitilis NC 003155, NC 004719
Streptomyces coelicolor NC 003888, NC 003903, NC 003904
Sulfolobus acidocaldarius DSM 639 NC 007181
Sulfolobus solfataricus NC 002754
Sulfolobus tokodaii NC 003106
Symbiobacterium thermophilum IAM14863 NC 006177

Continued. . .
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Species name Accessions
Synechococcus CC9311 NC 008319
Synechococcus CC9605 NC 007516
Synechococcus CC9902 NC 007513
Synechococcus elongatus PCC 6301 NC 006576
Synechococcus elongatus PCC 7942 NC 007595, NC 007604
Synechococcus sp WH8102 NC 005070
Synechocystis PCC6803 NC 000911, NC 005229, NC 005230, NC 005231,

NC 005232
Syntrophobacter fumaroxidans MPOB NC 008554
Syntrophomonas wolfei Goettingen NC 008346
Syntrophus aciditrophicus SB NC 007759
Thermoanaerobacter tengcongensis NC 003869
Thermobifida fusca YX NC 007333
Thermococcus kodakaraensis KOD1 NC 006624
Thermofilum pendens Hrk 5 NC 008696, NC 008698
Thermoplasma acidophilum NC 002578
Thermoplasma volcanium NC 002689
Thermosynechococcus elongatus NC 004113
Thermotoga maritima NC 000853
Thermus thermophilus HB27 NC 005835, NC 005838
Thermus thermophilus HB8 NC 006461, NC 006462, NC 006463
Thiobacillus denitrificans ATCC 25259 NC 007404
Thiomicrospira crunogena XCL-2 NC 007520
Thiomicrospira denitrificans ATCC 33889 NC 007575
Treponema denticola ATCC 35405 NC 002967
Treponema pallidum NC 000919
Trichodesmium erythraeum IMS101 NC 008312
Tropheryma whipplei TW08 27 NC 004551
Tropheryma whipplei Twist NC 004572
Ureaplasma urealyticum NC 002162
Verminephrobacter eiseniae EF01-2 NC 008771, NC 008786
Vibrio cholerae NC 002505, NC 002506
Vibrio fischeri ES114 NC 006840, NC 006841, NC 006842
Vibrio parahaemolyticus NC 004603, NC 004605
Vibrio vulnificus CMCP6 NC 004459, NC 004460
Vibrio vulnificus YJ016 NC 005128, NC 005139, NC 005140
Wigglesworthia brevipalpis NC 003425, NC 004344
Wolbachia endosymbiont of Brugia malayi TRS NC 006833
Wolbachia endosymbiont of Drosophila melanogaster NC 002978
Wolinella succinogenes NC 005090
Xanthomonas campestris NC 003902
Xanthomonas campestris 8004 NC 007086
Xanthomonas campestris vesicatoria 85-10 NC 007504, NC 007505, NC 007506, NC 007507,

NC 007508
Xanthomonas citri NC 003919, NC 003921, NC 003922
Xanthomonas oryzae KACC10331 NC 006834
Xanthomonas oryzae MAFF 311018 NC 007705
Xylella fastidiosa NC 002488, NC 002489, NC 002490
Xylella fastidiosa Temecula1 NC 004554, NC 004556
Yersinia enterocolitica 8081 NC 008791, NC 008800
Yersinia pestis Antiqua NC 008120, NC 008121, NC 008122, NC 008150
Yersinia pestis CO92 NC 003131, NC 003132, NC 003134, NC 003143
Yersinia pestis KIM NC 004088, NC 004838
Yersinia pestis Nepal516 NC 008118, NC 008119, NC 008149
Yersinia pestis biovar Mediaevails NC 005810, NC 005813, NC 005814, NC 005815,

NC 005816
Yersinia pseudotuberculosis IP32953 NC 006153, NC 006154, NC 006155
Zymomonas mobilis ZM4 NC 006526
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