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SUMMMARY 
 
 

Tropospheric aerosol information from NASA satellites in space has reached the 

milestone of ten years of continuous measurements. These higher resolution satellite 

aerosol records allow for a broader regional perspective than can be gained using only 

sparsely located ground based monitoring sites. Decadal satellite aerosol data have the 

potential to advance knowledge of the climatic impacts of aerosols through better 

understanding of solar dimming/brightening and radiative forcings on regional scales, as 

well as aid in air quality applications. The goal of this thesis is to develop and implement 

methodologies for using satellite remotely sensed data in conjunction with ground based 

observations and modeling for characterization of regional aerosol variations with 

applications to air quality and climate studies in the Southeastern U. S. This region is of 

special interest because of distinct aerosol types, less warming climate trends compared 

to the rest of U.S., and growing population. 

To support this primary goal, a technique is developed that exploits the statistical 

relationship between PM2.5 (particulate matter that has an aerodynamic radius of 2.5 µm 

or less) and satellite AOD (Aerosol Optical Depth) from MODIS (Moderate resolution 

Imaging Spectroradiometer) where a probabilistic approach is used for air quality 

assessments in the metropolitan Atlanta area. The metropolitan Atlanta area experiences 

the poorest air quality during the warmer seasons. We found that satellite AODs capture a 

significant portion of PM2.5 concentration variability during the warmer months of the 

year with correlation values above 0.5 for a majority of co-located (in time and space) 

ground based PM2.5 monitors, which is significant at the 95% confidence interval. The 

developed probabilistic approach uses five years of satellite AOD, PM2.5 and their related 



 xviii

AQI (Air Quality Index) to predict future AQI based solely on AOD retrievals through 

the use of AOD thresholds, e.g., 80% of Code Green AQI days have AOD below 0.3. 

This approach has broad applicability for concerned stakeholders in that it allows for 

quick dissemination of pertinent air quality data in near-real time around a satellite 

overpass. 

Examination of the use of multiple satellite sensors to aid in investigating the 

impacts of biomass burning in the region is performed. The utility of data fusion is 

evaluated in understanding the effects of the large wildfire that burned in May 2007.  

This wildfire caused PM2.5 in the metropolitan Atlanta area to exceed healthy 

levels with some measurements surpassing 150 µg/m3 during the month. OMI (Ozone 

Monitoring Instrument) AI (Aerosol Index), which qualitatively measures absorbing 

aerosols, have high values of more than 1.5 during May 26 – 31, 2007. CALIPSO 

(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) a space based lidar 

was used to determine the vertical structure of the atmosphere across the region during 

the active fire period. CALIPSO was able to identify wildfire aerosols both within the 

planetary boundary layer (likely affects local air quality) and aloft where aerosol 

transport occurs. This has important implications for climatic studies specifically aerosol 

radiative effects. 

In-depth analysis of the satellite and ground based aerosol data records over the 

past decade (2000 – 2009) are performed from a climatic perspective. The long temporal 

scale allowed for better characterization of seasonality, interannual variability, and 

trends. Spatial analysis of ten years of AOD from both MODIS and MISR (Multi-angle 

Imaging Spectroradiometer) showed little variability of AOD during the winter with 
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mean AOD below 0.1 for the entire region, while the summer had decidedly more 

variability with mean AOD around 0.33 for MODIS and 0.3 for MISR. Seasonal analysis 

of the PM2.5 revealed that summer means are twice as high as winter means for PM2.5. All 

of the datasets show interannual variability that suggests with time AOD and PM2.5 are 

decreasing, but seasonal variability obscured the detection of any appreciable trends in 

AOD; however, once the seasonal influence was removed through the creation of 

monthly anomalies there were decreasing trends in AOD, but only MODIS had a trend of 

-0.00434 (per month) that statistically significant at the 95% confidence level.  

Satellite and ground-based data are used to assess the radiative impacts of 

aerosols in the region. The regional TOA (Top Of the Atmosphere) direct radiative 

forcing is estimated by utilizing satellite AOD from MODIS and MISR both on Terra, 

along with satellite derived cloud fraction, surface albedo (both from MODIS), and single 

scattering albedo (SSA) from MISR data from 2000 – 2009. Estimated TOA forcing 

varied from between -6 to -3 W/m2 during the winter, and during the warmer months 

there is more variation with ΔF varying between -28 to -12.6 W/m2 for MODIS and -26 

to -11 W/m2 for MISR. The results suggest that when AOD, cloud fraction and surface 

albedo are all consider they add an additional 6 W/m2 of TOA forcing compared to TOA 

forcing due to aerosol effects only. Varying SSA can create changes in TOA forcing of 

about 5 W/m2. With removal of the seasonal variability timeseries anomaly trend analysis 

revealed that estimated TOA forcing is decreasing (becoming less negative) with MODIS 

based estimates statistically significant at the 95% confidence level.  

Optical and radiative 1-D radiative transfer modeling is performed to assess the 

daily mean TOA forcing and forcing at the surface for representative urban and 
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background aerosol mixtures for summer and winter. During the winter, modeled TOA 

forcing is -2.8 and -5 W/m2 for the WB (Winter Background) and WU (Winter Urban) 

cases, and the modeled summer TOA forcings e.g., SB = -13.3 W/m2 (Summer 

Background) also generally agree with earlier estimates. While surface forcings varied 

from -3 to -210 W/m2. The radiative forcing efficiency at the TOA (amount of forcing per 

unit of AOD at 550 nm) varied from -9 to -72 W/m2 τ-1, and RFE at the surface varied 

from -50 to -410 W/m2 τ-1. It was found that the forcing efficiency for biomass burning 

aerosols are similar to the forcing efficiency of background aerosols during the summer 

that highlights the importance of possible increased biomass burning activity. Ultimately, 

the methodologies developed in this work can be implemented by the remote sensing 

community and have direct applicability for society as a whole. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation and Goals 

With the launch of the first U. S. earth mission satellite, Explorer 1 in January 

1958, the age of mining remotely sensed data was thrust upon us. We now use satellites 

for not only communications, defense strategies, but for weather and climate. We use 

satellites to provide us information about natural disasters, often in real-time. In the 

future, satellites will provide understanding on how human activity has changed our 

home planet in a myriad of ways.  

In the U. S. the National Aeronautics and Space Administration (NASA) designs, 

operates and manages a number of satellites that focus upon different aspects of Earth’s 

system, e.g., aerosols, clouds, oceans. Aerosols are highly dynamic in their properties, 

spatiotemporal distributions, and impacts. Aerosols play a role in air quality, but are an 

equally important part of the climate system. There has been recent interest in the 

climatic phenomena of solar dimming/brightening, which basically is trying understand 

how much incident solar radiation makes it to the surface in the context of light 

extinction due to atmospheric aerosols. The intersection of air quality and climate is 

another interesting perspective as recent research suggests that policies that have 

improved air quality for a majority of developed countries, might have masked the true 

extent of climate change [Andreae, 2009; Jacob and Winner, 2009; Jimenez et al., 2009].   

Satellites can provide a broad regional perspective. Satellite data have been 

thought of as a means to address the lack of spatial coverage by ground based monitoring 
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sites. Satellite observations can be used to characterize aerosols, identify aerosol 

transport, and identify cases of biomass burning [Wu et al., 2006; Ahn et al., 2008; 

Dirksen et al., 2009; Fairlie et al., 2009] that can result in air quality degradation. Studies 

that relate satellite measurements to PM2.5 (particulate matter with an aerodynamic 

diameter of 2.5 µm or less) generally use AOD retrieved from the NASA MODIS 

(Moderate Resolution Imaging Spectroradiometer) instrument. The Terra satellite, which 

houses both the MODIS and MISR (Multi-angle Imaging Spectroradiometer) instruments 

has provided over a decade of data, while the satellite Aqua, which also has a MODIS 

sensor on board has been providing data since 2002. AOD (aerosol optical depth) is a 

measure of light extinction through the atmosphere for a given wavelength. 

 Engel-Cox et al. [2004] completed one of the first nationwide studies that 

presented results of the relationship between PM2.5 and AOD, and they demonstrated that 

the relationship varied by region. Further highlighting this regional perspective is the 

work of Al-Saadi et al. [2005], which developed a methodology for applying AOD maps 

over maps of PM2.5 concentrations for the entire U.S. to improve air quality forecasts 

through the IDEA (Infusing satellite Data into Environmental Applications) website 

(http://www.star.nesdis.noaa.gov/smcd/spb/aq/).  

Hoff and Christopher [2009] provided an in-depth critical review of satellite 

applications to air quality. Their overview outlines issues that can prohibit wider 

applicability of satellite data for air quality studies. One issue is the spatial mismatch 

between satellite data and the ground-based air quality monitoring sites that provide point 

measurements. When stations are located closely together, it is likely that those sites will 

occur in the same satellite pixel, which reduces the number of independent observations 
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per station. Another issue lies in the assumptions used for satellite retrievals. The satellite 

science teams are constantly making updates to their retrieval algorithms to better 

represent the regionality of aerosol composition. AOD does not provide information 

about the location of aerosols within the atmospheric column. Aerosols that are 

transported into an area can be located higher in the atmosphere, where ground based 

monitors do not detect it, but satellites do. Instances such as this can cause a mismatch 

between what the satellite and ground-based monitors observe.  

Any person flying into Atlanta, Georgia’s Hartsfield-Jackson Atlanta 

International Airport during the summer will see first-hand the visible effects of poor air 

quality in Atlanta. Atlanta has the highest population density in the southeastern U.S. 

making it one of the larger urban areas in the contiguous U.S. 

(http://www.census.gov/popest/metro/metro.html). The metropolitan area is comprised of 

31 counties, with the city boundary contained mostly within Fulton County. High 

population density and large amounts of environmental toxins have placed Atlanta at the 

top of Forbes’s Most Toxic City List for 2009 (http://www.forbes.com/2009/11/02/toxic-

cities-pollution-lifestyle-real-estate-toxic-cities.html). The American Lung Association 

declares Atlanta as the 17th worst city for year-round particle pollution 

(http://www.lungusa2.org/sota/2009/).  

By penetrating deep into the human body, PM2.5 (particulate matter with 

aerodynamic diameters less than 2.5 µm) can cause not only adverse respiratory 

complications such as asthma and emphysema but also could contribute to stroke, lung 

cancer, and heart disease [Slaughter et al., 2003; Metzger et al., 2004]. Epidemiological 

studies in Atlanta have linked increases in particle pollution to increased asthmatic 
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pediatric emergency room visits [Tolbert et al., 2000], while Peel et al. [2007] found that 

the risk of death increased for hypertensive people in cases of elevated PM10 (particulate 

matter with aerodynamic diameters less than 10 µm). 

According to the EPA Our Nation’s Air publication in 2008 

(http://www.epa.gov/airtrends/2010/index.html), PM2.5 concentrations nationwide have 

decreased by 19% since 2000, with the Southeastern U.S. showing a decrease in annual 

PM2.5 concentrations. There have been, for instance, large scale ground based 

measurement studies in the region consisting of a U.S. Environmental Protection Agency 

(EPA) Supersite Study [Solomon et al., 2003], and ongoing work through the 

Southeastern Aerosol Research and Characterization Study (SEARCH) 

(http://www.atmospheric-research.com/studies/SEARCH/index.html). This region is of 

interest because of the distinct aerosol mixtures associated with this geographic region 

that has been studied from the ground, yet little research has been done incorporating 

satellite data. The primary sources of PM2.5 in this region are from secondary processes 

driven primarily through photochemical reactions [Lee et al., 2007]. Sulfate and organic 

carbon primarily comprise particulate aerosols in this region [Edgerton et al., 2005; 

Weber et al., 2007]. Measurements and modeling studies have shown that significant 

portions of organic aerosols are formed through secondary processes, which are biogenic 

in origin [Weber et al., 2007; Lee et al., 2010]. This forms the basic premise behind the 

research of Goldstein et al. [2009], which summarily states that the Southeastern U. S. is 

experiencing radiative cooling at the TOA due to a layer of biogenic organic aerosols 

aloft from the surface. More details will be discussed further in Chapters 4 and 5.  
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Air quality policies focus upon controlling emissions of pollution from local and 

regional sources (such as transportation and industries), which have led to the 

introduction of national health standards such as the 24-hour PM2.5 National Ambient Air 

Quality Standards (NAAQS) [U.S. Environmental Protection Agency, 2006]. At the same 

time, there has been a growing recognition of the role of wildfires on urban air quality 

that cannot be regulated or controlled easily [Spracklen et al., 2009; Tian et al., 2009]. 

Given the most likely increase in the frequency of wildfires in a warming climate 

[Confalonieri et al., 2007] and growing urbanization, a better understanding of the extent 

to which fires can degrade the air quality of large metropolitan areas is needed. 

Additionally wildfire impacts can be large in spatial extent, and using a sporadic network 

of ground-based monitors can limit the amount of information needed to address these 

events. However, satellite data can provide a broad overview of entire regions that lends 

itself useful for these types of investigations.  

 Air quality analyses are generally done for short time scales, but satellites can aid 

in understanding aerosols over longer time periods, providing insight into the air quality -

climate linkages. Over the past fifty or so years global ground-based measurements of 

solar radiation reaching the surface have shown first a decrease (i.e., dimming) and in the 

last fifteen years have shown an increase (i.e., brightening) [Alpert and Kishcha, 2008; 

Gilgen et al., 2009; Wild et al., 2009]. During the 1980s, many industrialized countries 

enacted policies for controlling emissions of aerosols and their precursors. In the 1990s, a 

shift from dimming to brightening was reported at some locations [Streets et al., 2009]. It 

is hypothesized that the magnitude of global warming has been masked due to solar 
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dimming [Wild, 2009; Schwartz et al., 2010], thus linking this phenomenon to current 

climate.  

Solar dimming/brightening is more nuanced when observed from a smaller 

regional perspective, e.g., regions of the U.S. For example, some studies found that solar 

dimming/brightening is likely dominated by emissions from large urban areas [Alpert et 

al., 2005; Alpert and Kishcha, 2008]. Recent work by Wild [2009] further substantiates 

this point by investigation of trends of solar dimming/brightening at multiple locations. 

The locations from the U.S. all show a similar behavior, but each site’s trend slope is 

different owing to the influence of differing aerosol mixtures and loading associated with 

each site’s respective region. Long et al. [2009] investigated brightening of downwelling 

shortwave radiation at multiple U.S. locations and found that collectively the brightening 

is significant, but that the varying degrees of brightening amongst the different sites 

suggested that research into dimming/brightening should address local to regional scales. 

Ultimately, understanding of dimming/brightening variations requires knowledge of 

spatiotemporal changes in aerosols on a regional basis. Each satellite sensor uniquely 

positioned to provide a continuous timeseries of AOD that can be directly related to the 

dimming/brightening phenomena [Mishchenko et al., 2007; Hinkelman et al., 2009]. 

Atmospheric aerosols are an important climate-forcing agent. Some aerosols such 

as dust and black carbon can heat the atmosphere by absorbing solar radiation, while 

others (e.g., sulfates, and secondary organic aerosols, SOA) can have a cooling effect 

[Forster et al., 2007]. In climate studies, the concept of the Top-of-the-Atmosphere 

(TOA) forcing is a commonly used metric for quantifying the radiative impact of aerosol 

on climate. The Intergovernmental Panel on Climate Change (IPCC) (www.ipcc.ch) asses 
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changes to the climate system by using the metric of top-of-the-atmosphere (TOA) 

forcing, which is usually used in reference to global scale forcing. The IPCC (2007) 

report states that greenhouse gases produce a net warming, while aerosols are generally 

shown as having a cooling effect; however, the uncertainty associated with the magnitude 

of the aerosol forcing is less constrained than the uncertainty associated with greenhouse 

gases. Carrico et al. [2003] estimated TOA forcings (ΔF = -11W/m2) for Atlanta based 

on a six weeks of optical measurements during 1999. While Goldstein et al. [2009] used 

satellite AOD for their estimate of TOA forcing caused by organic aerosols of -3.9 W/m2 

over the Southeastern U. S. The complex nature of aerosols, in particular, their 

inhomogeneous distribution and variability in time and space, is one of the major factors 

that cause significant uncertainties in assessments of TOA direct radiative forcing exerted 

by aerosols on climate. The effects of aerosols on climate need more study to increase 

confidence in the understanding of these controlling processes.  

The main goal of this research is to develop and implement methodologies for 

using satellite remotely sensed data in conjunction with ground based observations and 

modeling for characterization of regional aerosol variations with applications to air 

quality and climate studies in the Southeastern U. S. To address this goal, the research 

featured in this dissertation will focus upon:  

(1) Development of a technique that exploits the relationship between PM2.5 and 

satellite AOD from MODIS (Moderate resolution Imaging Spectroradiometer) 

where a probabilistic approach is used for air quality assessments in the 

metropolitan Atlanta area.  
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(2)  Investigate the use of multi-sensor satellite data to aid in understanding the 

impacts of biomass burning in the region through a case study analysis. 

(3)  Determination of the decadal behavior of aerosols in the region from both satellite 

and ground measurements. 

(4)  Explore the radiative impacts of aerosols in the region through the use of a first-

order approximation and 1-D radiative transfer modeling. 

Figure 1.1 provides a schematic of the major goals and themes contained within this 

dissertation. 

 

Figure 1.1: Schematic of thesis structure and goals 

1.2 Outline of Dissertation 

Chapter 2 presents an assessment of the use of satellite data in air quality in the 

metropolitan Atlanta, GA based on five years (2004-2008) of statistical analyses of 

PM2.5, satellite AOD, and air quality designations during the spring and summer seasons. 
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We will explore the utility of aerosol speciation from the OMI (Ozone Monitoring 

Instrument) for defining background levels of scattering and absorbing aerosols to help 

identify cases of aerosol transport. Additionally we explore the specific goals of the 

robustness of the PM2.5-AOD relationship through linear regressions, which establishes 

and motivates the probabilistic approach developed in this chapter. 

The main focus of Chapter 3 is to examine multi-satellite data as a tool for 

characterizing wildfire impacts on a large urban area. Our specific goals are to (1) 

examine the dynamics of PM2.5 and AOD retrieved from MODIS aboard Terra and Aqua 

satellites and the PM2.5-AOD relationship in the case of high smoke loadings (exceedance 

days); (2) examine the capability of CALIPSO lidar to detect and identify smoke and 

quantify the vertical structure of AODs; (3) identify the wildfire signatures through the 

analysis of OMI data; (4) perform an in-depth analysis of smoke events that caused the 

largest impact on air quality across the Atlanta metro area in May of 2007 through a 

combination of multi-satellite data. 

 Chapter 4 presents a characterization of aerosols in the U.S. Southeast through 

analysis of ground and space based measurements from 2000 – 2009, with the emphasis 

on seasonal and interannual aerosol variations, and trends. The specific objectives are to 

(1) examine the temporal changes of ground based PM2.5 and AODs from MODIS and 

MISR over the past ten years; (2) determine common features and differences between 

these data records; and (3) determine if there is a discernible trend. 

Chapter 5 presents the results of an assessment of the regional TOA aerosol direct 

radiative forcing and its dynamics along with forcing at the surface. . We use satellite 

data from over the past decade in the U. S. Southeast, including  cloud cover, surface 
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albedo, and aerosol optical depth and single scattering albedo. We use a Mie model to 

determine optical properties of representative aerosol mixtures based on EPA aerosol 

speciation data. These optical properties are then used in a 1-D radiative transfer model 

that predicts TOA and surface forcings, and their efficiencies. Finally, this thesis 

concludes with a summary of key findings and their implications in Chapter 6. This 

concluding chapter 6 also outlines the direction of future work. 
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CHAPTER 2 

INVESTIGATION INTO THE USE OF SATELLITE DATA IN 

AIDING CHARACTERIZATION OF PARTICULATE AIR 

QUALITY IN THE ATLANTA, GA METROPOLITAN AREA 

 

The work presented in this chapter is published in the Journal of the Air & Waste 

Management [Alston et al., 2011a] 

2.1 Introduction 

Many studies have focused on ozone pollution in Atlanta [Chameides et al., 

1992; Cardelino et al., 2001; Diem et al., 2010] to name a few, but just as important is 

particulate matter pollution. Specifically, particle pollution of particles that are less than 

2.5 microns in diameter is known as PM2.5. Until 2008, Atlanta was designated as being 

in nonattainment of the National Ambient Air Quality Standard (NAAQS) for PM2.5 as 

determined by the U. S. Environmental Protection Agency (EPA) [U.S. EPA, 2009].  

Like other cities on the U. S. east coast, Atlanta PM2.5 is impacted by local and regional 

sources [Engel-Cox et al., 2005; Fairlie et al., 2009].  

In the U.S. assessment of air quality is currently based on averages of 24-hour 

data from ground-based measurements of PM2.5 performed at dedicated monitoring 

sites. The use of 24-hour average PM2.5 data is to relate concentrations to the air quality 

index (AQI), which relates the level of air pollution to possible health effects, and for 

compliance with the PM2.5 NAAQS. The AQI is used to disseminate information about 
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air quality to the public via different methods of media, e.g., local television news, radio 

or newspaper. The AQI is scaled to relate the PM2.5 concentrations to NAAQS [U.S. 

Environmental Protection Agency, 2006]. Through the Clean Air Act of 1990, the U.S. 

EPA has the authority to set national air quality standards to protect the public health. In 

2006, the U.S. EPA strengthened the NAAQS by reducing the 24-hour standard from 65 

µg/m3 to 35 µg/m3. In doing so, the AQI must now be revised to reflect the changes in 

the NAAQS, and this action by the EPA is currently under review. Table 2.1 gives the 

current AQI and the proposed AQI revisions. These changes will certainly affect a 

city’s proportion of good, moderate, and unhealthy days. The PM2.5 measurements that 

are used for AQI forecasts provide high temporal resolution, but lack spatial resolution 

and coverage. In a large metropolitan area like Atlanta with only seven monitoring sites 

for forecast purposes, the lack of spatial resolution has implications for air quality 

forecasts. 

 

Table 2.1: Current and proposed AQI designations. Source: U.S. EPA 
(http://www.epa.gov/pm/pdfs/20090115fs.pdf) 

PM2.5 24-hour (μg/m3) 
AQI Category  Color Index Values  

Current  Proposed  
Good  Green 0 - 50  0.0 - 15.4  No change  
Moderate  Yellow 51 - 100  15.5 - 40.4  15.5 - 35.4  
Unhealthy for 
Sensitive Groups  

Orange 101 - 150  40.5 - 65.4  35.5 - 55.4  

Unhealthy  Red 151 - 200  65.5 - 150.4  55.5 - 150.4  
Very Unhealthy  Purple 201 - 300  150.5 - 250.4  No change  
Hazardous  Maroon 301 - 400  250.5 - 350.4  No change  
  401 - 500 (this level 

used for emergency 
episode planning only.)  

350.5 - 500  No change  

 

States in the eastern U.S. have to consider air quality in a regional perspective 

especially under the onus of the U.S. EPA.’s Clean Air Interstate Rule. Satellites 
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provide a snap-shot picture of atmospheric conditions, and in some cases can provide 

information about aerosol loading and composition. Past studies defined a methodology 

for determining the relationship between PM2.5 and AOD through linear regressions 

[Wang and Christopher, 2003]. Engel-Cox et al. [2005] highlight the use and 

applicability of satellite data in observing aerosol transport over the entire state of 

Texas. Gupta et al., [2006] state that ground-based measurements cannot capture the 

synoptic transport of aerosols from region to region, and source identification of 

transported aerosols cannot be addressed necessarily by ground-based measurements 

alone.  In areas where ground-based measurements are limited satellites could be useful 

tool for air quality stakeholders. One conclusion from Hoff and Christopher [2009] is 

that reducing the uncertainty of the PM2.5-AOD through statistical regressions is 

unlikely, which is why here we propose an alternative method that uses  a statistical 

analysis of AOD values to directly relate them to AQI bypassing the PM2.5-AOD 

regression.  

In this study, hourly and 24-hour averaged PM2.5 measurements from seven 

PM2.5 stations across the metro Atlanta area are analyzed along with MODIS AOD from 

March 1- August 31, 2004 – 2008 (spring and summer seasons only). From the PM2.5 

hourly data, subsets are created to coincide with Terra and Aqua satellite overpasses. In 

addition, we analyze data from the Ozone Monitoring Instrument (OMI) that provides 

measurements in the UV-region of the electromagnetic spectrum. OMI performs many 

functions; however, of most interest to this study is its ability to detect light absorbing 

aerosols, especially over land [Torres et al., 2007]. 
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 In this chapter we present an assessment of the use of satellite data in air quality 

air quality in the metropolitan Atlanta, GA based on five years (2004-2008) of statistical 

analyses of PM2.5, satellite AOD, and air quality designations during the spring and 

summer seasons. We will explore the utility of aerosol speciation from the OMI (Ozone 

Monitoring Instrument) for defining background levels of scattering and absorbing 

aerosols to help identify cases of aerosol transport. Additionally we explore the specific 

goals of the robustness of the PM2.5-AOD relationship through linear regressions, which 

establishes and motivates the probabilistic approach outlined in this chapter. 

2.2 Data and Methodology 

2.2.1 PM2.5 Monitoring Stations 

The EPA makes determinations of whether states meet the NAAQS for 

particulate matter. That standard states that in order to receive attainment for daily 

PM2.5, the 98th percentile of the three-year average at each pollution monitor cannot 

exceed 35.5 µg/m3 [U.S. Environmental Protection Agency, 2006]. We use surface 

PM2.5 measurements from two different networks: continuous PM2.5 measurements 

(PM2.5,TEOM) provided by the Georgia Dept. of Natural Resources, and the filter-based 

PM2.5 measurements courtesy of the EPA (PM2.5,FRM), which will be discussed in 

Chapter 4. The location of the sites is shown in Figure 2.1. The network operated by the 

Georgia Dept. of Natural Resources Ambient Monitoring Program (AMP) 

(http://www.air.dnr.state.ga.us/amp/) performs continuous hourly measurements using 

TEOMs (Tapered Element Oscillating Microbalance). The TEOM measurements are 

not used for determination of NAAQS compliance; however, AMP assigns an 

exceedance whenever their 24-hour averaged TEOM-based PM2.5 measurements exceed 
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the current NAAQS daily standard of 35.5 µg/m3. Across Georgia, there are eighteen 

network sites located primarily within or near a city. For our study we use twelve sites. 

Seven of those sites are within the large metro Atlanta area and the remaining sites are 

smaller sized cities and towns. Most of the stations have seven years of data; however, 

sites without at least five years of data were excluded from this analysis. The time 

coverage of this is 2003 – 2009. 

For this chapter, we obtained one-hour and 24-hour measurements of PM2.5,TEOM 

from all seven metro Atlanta stations from March 1 – August 31, 2004 – 2008. Five out 

the seven stations have data for the entire period, while two stations (Confederate Ave. 

and Walton) only have data for 66% of 2005. These stations cover three types of 

locations:  urban – Confederate Ave., suburban – Gwinnett, S. DeKalb, McDonough, 

and rural – Newnan, Walton, Yorkville. For easier identification, for this chapter and 

Chapter 3 we will drop the TEOM subscript notation, since in these chapters we only 

use data from TEOM monitors. The PM2.5,24 dataset is a moving average that uses the 

current hour’s concentrations and the past 23 hours’ concentrations. Two more data sets 

were created for pairing with Terra and Aqua satellite observations, which have 

different equatorial crossing times. To match MODIS aboard Terra observations, hourly 

PM2.5 measurements from 10 and 11 am were averaged together to create the dataset 

PM2.5,T. Similarly for MODIS aboard Aqua, hourly measurements from 1 and 2 pm 

were averaged together to create the dataset PM2.5,A.  Analyses are performed using all 

three PM2.5 datasets (PM2.5,24, PM2.5,T and PM2.5,A). PM2.5,24 refers to the 24-hr averaged 

data, whereas PM2.5,T and PM2.5,A are averaged concentrations centered around the 

satellite overpass times for Terra and Aqua, respectively. 
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Figure 2.1: Map of the U.S. Southeast. Green box with red outline denotes study 
spatial domain for satellites 5° x 5°. Yellow markers represent EPA active PM2.5 
monitors (PM2.5,FRM). Blue markers represent EPA inactive PM2.5 monitors. Purple 
markers represent TEOM PM2.5 monitors (PM2.5,TEOM). 

 

2.2.2 MODIS Data  

 The MODerate resolution Imaging Spectroradiometer (MODIS) instrument flies 

onboard two of NASA’s Earth Observing System (EOS) satellites: Terra and Aqua. 

Terra flies in the descending polar orbit with an equatorial crossing time of 

approximately 10:30 am, while Aqua flies in the ascending polar orbit with an 

equatorial crossing time of approximately 1:30 pm. Generally, the satellites have 

overpass times over Georgia 5 -15 minutes after their equatorial crossing times. Both 



 17 

satellites orbit 700 km above the Earth in low earth orbit, and they have near global 

coverage daily.   

 MODIS passively measures reflected radiances from Earth across a broad 

wavelength spectrum. It primarily uses three channels (0.47, 0.66 and 2.12 µm) to 

measure atmospheric aerosols over land [Levy et al., 2007].  We use over five GB and 

3,700 files of Collection 5 data from NASA’s LAADS (Level 1 and Atmosphere 

Archive and Distribution System). Collection 5 is the most recent release of the data 

products from the MODIS science team. The analysis is performed with MODIS Level 

2 data, which have a nominal resolution of 10x10 km2 at nadir. Level 2 products are 

processed from the Level 1B geo-located 5-minute granules, which contain reflected 

radiance measurements at spatial resolutions of 250 m (660 nm channel) and 500 m 

(470 and 2120 nm channels). There can be resolution degradation at the swath edges. 

The variable of most importance to this study is “Optical_Depth_Land_and_Ocean” at 

the 500 nm wavelength. AOD is an unitless measure of the amount of light attenuation 

over a set distance, i.e., path. In general, AOD varies between 0 and 5 with values 

greater than 1 being associated with heavy haze, biomass burning, or dust events 

[Engel-Cox et al., 2004].     

 Following similar methodologies from Gupta and Christopher [2008b] and 

Engel-Cox et al. [2004], satellite data were matched with station data using a 0.5° 

degree box around each ground station. The Atlanta metropolitan area consists of 31 

counties, with 5 counties comprising the actual city of Atlanta. The metro area covers 

over 8,000 sq. miles and at its widest covers seven counties. The spatial distribution of 

PM2.5 stations minimizes overlap in satellite pixels by using the 0.5° search radius. Only 
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days where both data types were available are considered for additional correlation 

analysis. The time period of March 1 – August 31, 2004 – 2008 (spring and summer 

seasons only), is considered for this research. Thus, we created and analyzed seven 

different datasets that correspond to the AOD measurements from each MODIS 

instrument over the seven ground-based PM2.5 measurement stations. Another dataset 

was created for comparisons with the OMI sensor, i.e., city-scale averaged AOD. This 

dataset is considered to be Atlanta AOD and covers a lat/lon box of 33 – 34.5° N and 

83.5 – 85.3°W. Additionally, the time period for this dataset matches the OMI dataset. 

2.2.3 OMI Data 

The Ozone Monitoring Instrument (OMI) takes measurements in the near-

ultraviolet (UV) for retrievals of gases and aerosols [Torres et al., 2007]. OMI flies 

onboard the NASA satellite Aura. Aura and Aqua (MODIS) fly together in a satellite 

constellation called A-Train. A great advantage of the satellite constellation is multiple 

measurements made from different sensors within 15 minutes of each other.   

In this study, we consider the OMI aerosol products only that are cloud 

screened, primarily the UV Aerosol Index (AI). The time period of March 1- August 31, 

2005 – 2008, is considered, which is one year shorter than the PM2.5 and MODIS data 

because Aura did not launch until July 2004. OMI data were obtained from the NASA 

GES DISC (Goddard Earth Sciences Data and Information Services Center). The most 

recent release of data is in Collection 3. The OMI instrument has a swath of 2,600 km 

and provides mostly global coverage daily. Aerosol products are retrieved at a spatial 

resolution of 13 x 24 km at nadir; however, the spatial resolution increases at the 

extremes of the satellite swath [Torres et al., 2007]. In the presence of UV-absorbing 
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aerosols, AI has positive values between 0 and 5 [Ahn et al., 2008], where the highest 

values of AI occur during episodes of dust storms and/or biomass burning [Herman et 

al., 1997; Ahn et al., 2008]. In the presence of UV-scattering aerosols, AI has negative 

values that can vary between 0 and -2 [Langmann et al., 2009; Penning de Vries et al., 

2009]. Due to OMI’s larger footprints, it is difficult to match OMI measurements with 

specific station locations. Thus, OMI measurements are taken for a lat/lon box of 33 – 

34.5° N and 83.5 – 85.3°W covering the metropolitan Atlanta area. Although AI is a 

qualitative measure, it does provide valuable information about the spatial pattern of 

UV-absorbing aerosols over land and their transport [de Graaf et al., 2005; Fromm et 

al., 2005; Torres et al., 2007; Dirksen et al., 2009]. Past studies have attempted to 

establish the quantitative relationship between OMI AI and MODIS AOD [Torres et al., 

2007; Ahn et al., 2008]. However, that is not the focus of this research. The purpose of 

our analysis is to determine the specific signal of UV-absorbing aerosols over Georgia 

in terms of OMI AI values and their dynamics over the spring and summer seasons. 

Although we report here correlations between MODIS AOD and OMI AI, this analysis 

is only done to facilitate the characterizations of seasonal dynamics of urban aerosols 

across the state of Georgia.  

2.3 Results 

2.3.1 Characterization of urban aerosols through PM2.5  

 We first want to determine the variability of PM2.5 on a yearly (spring and 

summer) and seasonal basis. The analysis of yearly means reveals that there is year-to-

year variability within all three PM2.5 datasets (PM2.5,T, PM2.5,A, and PM2.5,24). Barplots 
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of the five years of selected months (1 March – 31 August) of the PM2.5,A, PM2.5,T,  and 

PM2.5,24 datasets for Gwinnett (33.96°, -84.07°)  and Newnan (33.40°, -84.74°) sites are 

shown in Figure 2.2(a and b). Gwinnett and Newnan are used to contrast differences 

between urban/suburban vs. rural stations. These barplots display how PM2.5 averages 

varied over the study period. The years of 2006 and 2007 have the highest means for all 

seven sites. The means for each year for all the stations are summarized in Table 2.2.  

 Though we only consider spring and summer, our PM2.5 averages agree well 

other published work of PM2.5 in Atlanta [Edgerton et al., 2006]. The years 2004 and 

2008 are below the five-year average (shown by dashed lines in Figure 2.2), while 2006 

and 2007 are the highest above the five-year average for Gwinnett, and 2005–2007 are 

the highest above the five-year average for Newnan. PM2.5,24 for all stations has values 

in between PM2.5,T and PM2.5,A, but it behaves similarly to the other PM2.5 datasets. Both 

Table 2.1 and Figure 2.2(a and b) show that the differences between minima and 

maxima of the PM2.5,T  and PM2.5,A means are about 5 – 8 µg/m3. To determine if the 

observed differences are statistically significant, we used a T-test to determine that for α 

= 0.05 the two means are in fact statistically different from each other, and those 

instances are bolded in Table 2.2.  
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Figure 2.2: Bar plots of yearly averaged PM2.5 at Gwinnett (a) and Newnan (b). 
Green dashed line represents PM2.5,T five-year average, and blue dashed line represents 
PM2.5,A five-year average.  Bar plots of seasonally averaged PM2.5 at Gwinnett (c) and 
Newnan (d). 

 

Table 2.2: Means of PM2.5,T and PM2.5,A concentrations (µgm-3) for considered 
stations. Bold numbers are significantly different from each other for α = 0.05. 

Location 2004 2005 2006 2007 2008 

 Terra Aqua Terra Aqua Terra Aqua Terra Aqua Terra Aqua 

Con. Ave. - - 18.61 18.87 23.63 21.25 23.42 21.31 20.68 17.89 

Gwinnett 16.69 14.12 17.72 15.63 19.94 17.02 21.64 17.22 15.90 13.70 

McDonough 17.26 14.74 18.41 16.59 21.13 17.32 21.54 16.63 17.29 13.51 

Newnan 16.63 14.14 18.05 16.14 19.94 16.10 22.55 17.01 17.13 14.29 

S. Dekalb 17.24 14.33 18.54 15.50 19.20 16.96 23.04 21.42 18.22 15.42 

Walton - - 16.80 15.23 18.81 16.48 19.70 15.79 15.84 13.17 

Yorkville 14.86 14.64 16.30 16.24 18.60 16.87 19.45 19.33 14.30 13.58 
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Edgerton et al. [2006] found that during the day, hourly mean measurements can vary 

by as much as 50 µg/m3 in the Atlanta area comparable to observations in this study. 

The PM2.5 data show a distinct seasonality having higher values in the summer 

compared to spring. Figure 2.2(c and d) shows seasonal averages of the three PM2.5 

datasets for Gwinnett and Newnan. During the spring at Gwinnett, PM2.5,T varies from  

around 15 – 21 µg/m3, PM2.5,A varies between 10 -14 µg/m3, and PM2.5,24 varies between 

13 – 16 µg/m3. Summer averages show increases of 30 – 45% over spring averages. All 

stations show similar values. The similarity between stations is established through 

timeseries analysis of PM2.5 (not shown), and the analysis also indicates that summer 

has more variability than spring. Our seasonal results are similar to the works by Butler 

et al. [2003] and Edgerton et al. [2005] even though they considered different sites and 

different years. It should be noted that the reduced seasonality in 2007 is likely a 

product of the late spring wildfire, which produced the additional influx of smoke 

aerosols to the metro area [Christopher et al., 2009].  

 We have discussed the yearly and seasonal trends within the PM2.5 data; 

however, we also want to understand how each of the satellite-overpass datasets relate 

to each other and to PM2.5,24. To assess the similarity between PM2.5,T and PM2.5,A , we 

created scatterplots of the two datasets and calculated linear regression statistics. 

Scatterplots of PM2.5,A vs. PM2.5,T for 2004 - 2008 and all years combined are shown in 

Figure 2.3. Correlation coefficients (r or r-values) between PM2.5,T and PM2.5,A vary 

around 0.78 – 0.85. The coefficient of determination (R2), which is a measure of 

variance, varies between 0.61 – 0.72. When seasonality was examined between these 
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two datasets, the summertime showed higher r-values than spring. Our results are 

consistent with Butler et al. [2003],  

 

Figure 2.3: Scatterplots of PM2.5,T vs. PM2.5,A for all considered stations. Dashed line 
represents 1:1 correspondence 

 

which shows diurnal variation of PM2.5 in Atlanta as a function of season, and during 

the summer the diurnal variation is less pronounced than during other seasons. When 

the PM2.5,24 dataset is compared to the PM2.5,A and PM2.5,T datasets, statistics show that 

they are well correlated with r-values between 0.65 – 0.83.  PM2.5,24 captures 70% (R2 = 

0.7) of the variability within the satellite-overpass PM2.5 datasets (PM2.5,T and PM2.5,A). 

This could have implications for studies that relate MODIS AOD to the 24-hour 

average of PM2.5.  
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We have shown that during our study period the PM2.5 concentrations across 

metro Atlanta are similar but have differences due to location. A majority of stations 

have their highest means during 2006 and 2007, with 2004 and 2008 as local minima. 

The year 2007 was dominated by a wildfire that changed the nature of PM2.5 in Atlanta 

by lessening the difference between spring and summer seasons. Across all stations 

summer months have increased PM2.5 concentrations as shown by increased means and 

variances. Additionally, we have shown that PM2.5,T correlates slightly better than 

PM2.5,A, but 30% (1-R2 = 0.3) of the variance shown by the satellite-overpass datasets is 

not represented in the 24-hour average; this could impact the strength of the AOD and 

PM2.5 correlations. For instance, during short (hours) duration exceedance events, the 

PM2.5-AOD correlation will be lower if PM2.5,24 is considered rather than hourly data 

centered around the satellite overpass. In the following section we will compare satellite 

measurements to the PM2.5 measurements to determine how well the satellites capture 

the PM2.5 behavior spatiotemporally.  

2.3.2 Characterization of urban aerosols with satellite products (MODIS AOD 

and OMI AI)  

In this section, we focus upon comparing the variability of MODIS AOD to 

PM2.5, as well as assessing the variability of OMI Aerosol Index and its linkages with 

MODIS AOD. In comparing yearly AOD averages of MODIS Terra to MODIS Aqua, 

the latter has higher AOD at all stations for 2004-2006 and 2008. However, in 2007 

Terra is markedly higher than Aqua. This finding is different from the PM2.5 yearly 

averages where PM2.5,T > PM2.5,A,which might imply that Terra should record higher 

values of AOD, yet this is not the case. Yearly averages of MODIS AOD at Gwinnett 
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and Newnan are presented in Figure 2.4(a and b). Like the feature shown in Figure 2.2(a 

and b), MODIS AODs have their highest averages in 2006 and 2007 and minima in 

2004 and 2008.  

From a seasonal perspective, MODIS AOD has higher summer averages than 

spring averages, which is in agreement with PM2.5 (see Figure 2.2(c and d)). In fact, for 

many cases the summertime AOD as shown in Figure 2.4(c and d) is almost double that 

of the springtime, yet this doubling is not found in the PM2.5 record. During the years of 

2005-2007, MODIS summertime AOD averages were almost double the springtime 

averages, whereas in 2004 and 2008 average summertime AOD was almost 50% higher 

than average springtime AOD. Barplots of seasonally averaged AOD from MODIS at 

Gwinnett and Newnan are shown in Figure 2.4(c and d). Our results indicate that the 

difference between Aqua and Terra spring AOD is smaller than the difference between 

the two during the summer. However, examination of the PM2.5 record yields that the 

largest difference between the datasets occurs during the spring rather than the summer. 

Goldstein et al. [2009] hypothesize that the high summertime AOD values are driven by 

secondary organic aerosols (SOA) from biogenic volatile organic compounds (BVOC) 

that occur aloft in the lower troposphere thus not impacting surface mass measurements 

of PM2.5. Other studies, however, pointed out that PM2.5 might be biased low due to 

significant losses of semi-volatile organics from particles collected on the filter during 

sampling [Eatough et al., 2003]. Further analysis is needed to determine, where in the 

atmospheric column SOA formation is most influential and implications to air quality 

assessments. 
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Figure 2.4: Bar plots of yearly averaged MODIS AOD at Gwinnett (a) and Newnan 
(b). Green dashed line represents MODIS Terra five-year average, and blue dashed line 
represents MODIS Aqua five-year average. Bar plots of seasonally averaged MODIS 
AOD at Gwinnett (c) and Newnan (d). 

 

  Further, we examine the variability of UV-absorbing aerosols in Atlanta as seen 

in OMI AI data and linkages with MODIS AOD. For this analysis we use the city-scale 

datasets (see MODIS and OMI Data Sections for explanation) considering positive 

(larger than zero) values of OMI AI, which are indicative of the presence of UV-

absorbing aerosols. We found that positive values of OMI AI show little variability 

from year to year, with a slight maximum occurring in 2007. As viewed from space, the 

carbonaceous aerosol signal in terms of positive AI values is fairly constant in the 

Atlanta metro area, with a multi-annual (2005-2008) mean of around AI = 0.3. Also, 

across all years a majority (80%) of AI values are below AI = 0.5. Using the yearly 
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average or 80% cutoff to establish background conditions of Atlanta implies that if AI 

rises above these values it could be indicative of UV-absorbing aerosol transport such 

as cases of wildfires smoke. Given the robustness of AI retrievals over land compared 

to MODIS AOD, establishing a threshold AI for a certain location provides a useful tool 

for assessing the area affected by smoke or dust transport with possible degradation of 

air quality.   

OMI AI does not appear to have the same seasonality as MODIS AOD. The 

mean and median values of AI vary little between spring and summer. Penning de Vries 

[2009] found that in the southeastern U.S. AI is at a minimum during the summer which 

is in agreement with our analysis of AI during the considered time period. Scatterplots 

between OMI AI vs. MODIS AOD Terra/Aqua are shown in Figure 2.5. It is apparent 

that there is not a discernable linear relationship between the AI and AOD, also 

evidenced by the low r-values shown in Table 2.3. Possible reasons for the low 

correlations include differences between retrieval algorithms’ assumptions of aerosol 

height, different spatial resolutions, and the vertical distribution of aerosols. Differences 

in the relative roles of factors affecting remote sensing at UV vs. visible wavelength 

[Ahn et al., 2008] show that comparisons between OMI measurements at 388 nm and 

MODIS measurements at 500 nm do not have a 1:1 relationship.  This is an expected 

result, given that UV-absorbing aerosols (such as black carbon) comprise a relatively 

small mass fraction compared to other aerosol types that dominate AOD at 500 nm. 

This might not be the case, however, in the locations affected by the transport of dust 

aerosols. 
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Table 2.3: Correlation coefficient and number of observations for OMI AI vs. 
MODIS AOD 

Year Season r #  
  Terra Aqua Terra Aqua 

2005 Spring -0.13 -0.05 57 53 
 Summer 0.06 0.23 46 48 

2006 Spring -0.12 -0.09 65 64 
 Summer 0.30 0.42 66 67 

2007 Spring 0.03 -0.13 65 69 
 Summer 0.08 0.10 58 61 

2008 Spring -0.35 -0.31 60 62 
 Summer 0.18 0.15 60 59 

 

Having shown that AI and AOD are not related further substantiates the 

effectiveness of AI as an indicator for transport events of UV-absorbing aerosols. For 

instance, the small box in Figure 2.5 for 2005 shows that AI is almost 1.4, but AOD is 

around 0.3 on April 13, 2005. There are no PM2.5 exceedances on this day; this suggests 

that increased concentrations of aerosols were aloft in the lower atmosphere. We 

believe this is an example of smoke remnants being transported into the area from the 

central U.S. Another example occurs in 2007 (see box in Figure 2.5 for 2007), where 

smoke aerosols were transported into the area. There were large active wildfires in 

Idaho and Montana during the time period August 2007. Those wildfires caused a large 

haze event across the eastern U.S. During this event there were PM2.5 exceedances in 

Atlanta on August 13 and 15-18, 2007. The carbonaceous aerosols detected by OMI on 

August 14 are aloft and most likely become entrained in the PBL on the following days. 

Jacob and Winner [2009] conclude that wildfires could become an important and more 

frequent contributor to PM2.5.  The aerosols associated with this additional particulate 

matter burden will most likely be carbonaceous in nature, and the baseline of AI 

established from multi-year OMI data would help to better assess the impact these 
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potential wildfires will have on air quality over a certain region and its dynamics with 

time. 

 

Figure 2.5: Scatterplots of MODIS Terra/Aqua AOD vs. OMI AI. Dashed line 
represents 1:1 correspondence. Data highlighted by inclusion in rectangular boxes are 
discussed in text. 

 

The above analysis demonstrates that satellites adequately capture the general 

nature of urban aerosols in the metro Atlanta area. Though there are some differences 

between what times of day results in the highest values, the overall patterns of MODIS 

AOD match well with the PM2.5 observed patterns on a yearly and seasonal basis. OMI 

AI allowed us to identify specific cases of aerosol transport into the metro area by 

detecting the UV-absorbing signature associated with these events. 



 30 

2.3.3 PM2.5 and AOD Analysis 

One of the goals of this research is to investigate the PM2.5-AOD relationship, 

and to statistically determine AOD thresholds that correspond to the AQI for the Atlanta 

metropolitan area. First, we investigate the PM2.5-AOD relationship through linear 

regression analysis and calculate statistics to quantify that relationship. Second, we use 

frequency distributions to determine statistical thresholds of AOD that relate directly to 

AQI.  

We begin by assessing the strength of the linear relationship between the two 

MODIS sensors, see Figure 2.6. Linear regression analysis on a per year basis shows 

that the two sensors are well correlated. Excluding 2005, r-values between MODIS 

Terra AOD and MODIS Aqua AOD are above 0.8 (R2 > 0.66), which are statistically 

significant correlations for α = 0.05. The year 2005 had instances where MODIS Terra 

and MODIS Aqua observed the same event, but MODIS Aqua AOD is higher than 

MODIS Terra AOD. Some of these instances are associated with afternoon increases in 

aerosol concentration as measured by surface monitors and a few others are associated 

with haze events being advected into the area in the afternoon. Combining all years 

results in a statistically significant r-value of 0.78 for α= 0.05. We expect the two 

sensors to be well correlated because they are calibrated to be consistent with each other 

and use the same aerosol retrieval algorithm, yet as our analysis reveals persistent 

variability between morning and afternoon aerosols could results in differences, e.g., 

year 2005 (See above). Over the period of our study, MODIS Aqua has fewer 

observations than MODIS Terra. During the summer in Georgia, the timing of 

convective systems growth often occurs in the early afternoon, which coincides with 



 31 

Aqua’s overpass. This might explain why MODIS aboard Aqua has fewer observations 

than MODIS aboard Terra, but both satellites have between 50 – 65% data available. 

Other U.S. locations have shown similar satellite data loss [Gupta and Christopher, 

2008a; Christopher and Gupta, 2010].  

 

Figure 2.6: Scatterplots of MODIS Aqua AOD vs. MODIS Terra AOD. Red line 
represents 1:1 correspondence. 

 

We consider the relationship between PM2.5,24 and MODIS AOD aboard Terra 

and Aqua at each station through analyses of scatterplots. For instance, Figure 2.7 

shows MODIS Aqua AOD vs. PM2.5,24 at Gwinnett. This site is chosen to be illustrative 

of the other stations, as all the stations show the same general behavior as discussed 

below. We use the values of AOD > 0.7 and PM2.5 > 35.5µg/m3 to broadly define 
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quadrants to help to describe the different types of relations between AOD and PM2.5,24. 

The scatterplots can be divided into quadrants, the NE quadrant is Q1, the NW quadrant 

is Q2, the SW quadrant is Q3, and the SE quadrant is Q4. These quadrants are 

representative of certain meteorological dynamic conditions. For instance, Q1 and Q3 

are most likely associated with a well-mixed PBL such that aerosols are well distributed 

throughout the atmospheric column, thus satellite and ground-based measurements are 

in sync together. A vast majority of the data points lie within Q3. The points in Q3 have 

low AOD and PM2.5 concentrations below 35.5 µg/m3, which correspond to the green 

and yellow AQI ranges, see Table 2.1. However, Q1 describes data points with both 

high AOD and high PM2.5 measurements (i.e., orange and higher AQI).  

 

Figure 2.7: Scatterplot of MODIS Aqua AOD vs. PM2.5,24 at Gwinnett. See text for 
explanation of notations. 
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In most cases, quadrants Q2 and Q4 can distinguish between different sources of 

air pollution. The points within Q2 have high AOD but low PM2.5 concentrations. This 

situation could arise from long-range transport of aerosols into the area. The long-range 

transport of aerosols generally occurs above the boundary layer. Subsequently, these 

aerosols do not necessarily impact ground-based measurements (see discussion in 

previous section). However, it is possible that those aerosols can become entrained 

within the boundary layer due to changing dynamics and can impact ground-based 

measurements further downwind. Finally, Q4 has data points that coincide with high 

PM2.5 concentrations and relatively low AOD. More than likely, these points represent 

increasing PM2.5 concentrations of local source emissions. A possible scenario where 

this could occur is a strong inversion. In late spring and summer in Georgia strong 

inversions occur that trap all the local sources of pollution, e.g., cars and power plants, 

close to the surface by hindering vertical mixing. Additionally, the points in this 

quadrant could be indicative of smaller spatial scale (sub-pixel) events that are difficult 

to detect from satellites. 

We have discussed what factors could possibly influence the PM2.5-AOD 

relationship; the following analysis involves determining the robustness of the PM2.5-

AOD relationship through correlations. For a majority of the stations, both Aqua and 

Terra are correlated with PM2.5. Correlation coefficients for Aqua vary between 0.37 – 

0.76, and Terra has r-values of 0.25 – 0.68 (see Table 2.4 and Table 2.5). MODIS Terra 

and Aqua produce correlations that are similar to each other. Table 2.4 and Table 2.5 

summarize the correlation coefficient (r), the slope, the y-intercept, and the number of 
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observations. In 2007, MODIS aboard Terra and Aqua have the highest correlations 

across all of the stations. The higher means of Terra AOD do not result in better 

agreement with PM2.5, except in 2007 when Terra has higher r-values than Aqua. Terra 

also produces more variability in the correlation coefficients across the stations in 

comparison to Aqua. The seasonality of AOD and PM2.5 is reflected in the values as 

well. Spring produces higher correlations than summer. The results presented here are 

somewhat different than the results from Gupta and Christopher [2009].  In their study, 

they presented correlations between observed PM2.5 and estimated PM2.5 from AOD for 

both a two-variable and multivariate linear regression. Our correlations and slopes show 

more variance than their reported values. Some of the differences between their work 

and ours could be due to the different time periods under consideration, as well as 

different approaches to ascertaining the PM2.5-AOD relationship. We also compared our 

linear correlation coefficients and r-values to those of Zhang et al. [2009]. Our r-values 

were similar to theirs; however, our slopes and y-intercepts were slightly higher than 

theirs. Different spatial and time domains likely explain the differences found between 

their work and ours. This supports further the strong regional dependence of the AOD-

PM2.5 regression as was pointed by past studies [Engel-Cox et al., 2004; Weber et al., 

2010] as well as highlights problems in determining a single regression line for 

accurately computing PM2.5 from AOD data. 
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Table 2.4: Slope, Y-intercept, correlation coefficient (r), and number of observations of seasonal PM2.5,24 vs. MODIS Terra AOD. 
Dash denotes missing data. Bold numbers are significant at α = 0.05. 

Location Year 2004 2005 2006 2007 2008 

 Season Spring Summer Spring Summer Spring Summer Spring Summer Spring Summer 

Confederate Ave. Slope - - 0.03 0.01 0.01 0.01 0.02 0.02 0.00 0.01 

 Y-intercept - - -0.24 0.30 -0.05 0.14 -0.12 -0.03 0.11 0.11 

 r - - 0.87 0.22 0.62 0.37 0.81 0.62 0.15 0.44 

 # - - 6 35 59 66 57 53 54 61 

Gwinnett Slope 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.01 

 Y-intercept -0.05 0.13 -0.02 0.23 0.00 0.11 -0.01 0.08 0.10 0.16 

 r 0.68 0.51 0.66 0.50 0.62 0.44 0.76 0.67 0.29 0.41 

 # 53 48 46 38 67 53 61 53 54 63 

McDonough Slope 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 

 Y-intercept -0.03 0.09 0.04 0.25 0.02 0.18 -0.05 0.03 0.09 0.17 

 r 0.54 0.64 0.51 0.38 0.53 0.40 0.70 0.67 0.25 0.34 

 # 54 44 56 39 57 70 59 59 51 61 

Newnan Slope 0.01 0.01 0.01 0.00 0.01 0.01 0.02 0.02 0.00 0.01 

 Y-intercept 0.00 0.16 0.02 0.28 -0.03 0.21 -0.05 0.09 0.11 0.08 

 r 0.44 0.46 0.57 0.30 0.73 0.37 0.78 0.61 0.16 0.56 

 # 55 32 40 35 57 63 57 57 49 62 

S. Dekalb Slope 0.01 0.01 0.01 0.00 0.01 0.01 0.02 0.02 0.01 0.01 

 Y-intercept -0.02 0.14 0.06 0.33 -0.01 0.15 -0.04 -0.03 0.10 0.19 

 r 0.54 0.49 0.56 0.22 0.59 0.40 0.78 0.69 0.19 0.33 

 # 54 44 56 35 55 63 59 55 54 66 

Walton Slope - - 0.01 0.00 0.01 0.02 0.02 0.02 0.01 0.01 

 Y-intercept - - -0.03 0.28 0.03 0.06 -0.03 0.05 0.05 0.19 

 r - - 0.65 0.28 0.51 0.51 0.76 0.68 0.35 0.23 

 # - - 32 36 55 64 53 56 49 59 

Yorkville Slope 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.01 

 Y-intercept -0.02 0.08 -0.04 0.24 -0.06 0.08 -0.05 0.00 0.03 0.11 

 r 0.45 0.60 0.74 0.38 0.62 0.51 0.74 0.76 0.50 0.51 
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Table 2.5: Slope, Y-intercept, correlation coefficient (r), and number of observations of seasonal PM2.5,24 vs. MODIS Aqua AOD. 
Dash denotes missing data. Bold numbers are significant at α = 0.05. 
 Location Year 2004 2005 2006 2007 2008 

 Season Spring Summer Spring Summer Spring Summer Spring Summer Spring Summer 

Confederate Ave. Slope - - 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 

 Y-intercept - - 0.10 0.29 -0.09 0.11 0.03 0.02 -0.09 0.07 

 r - - 0.18 0.37 0.70 0.41 0.54 0.51 0.54 0.51 

 # - - 6 42 57 59 45 47 49 58 

Gwinnett Slope 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 

 Y-intercept 0.00 0.19 0.10 0.21 -0.04 0.11 0.10 0.10 0.02 0.14 

 r 0.51 0.40 0.39 0.49 0.70 0.46 0.56 0.59 0.46 0.46 

 # 60 54 47 44 60 50 51 50 48 67 

McDonough Slope 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.01 0.01 

 Y-intercept -0.07 0.12 0.08 0.29 -0.02 0.14 -0.01 0.07 -0.02 0.07 

 r 0.56 0.54 0.47 0.38 0.67 0.46 0.62 0.65 0.58 0.53 

 # 58 46 49 43 54 58 43 55 52 61 

Newnan Slope 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.01 0.01 

 Y-intercept -0.01 0.23 0.12 0.21 -0.05 0.17 -0.02 0.09 0.05 0.15 

 r 0.40 0.43 0.26 0.56 0.70 0.45 0.71 0.61 0.37 0.50 

 # 56 38 39 44 57 56 42 52 49 58 

S.Dekalb Slope 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.01 

 Y-intercept 0.02 0.13 0.10 0.30 -0.07 0.09 0.05 0.01 0.02 0.06 

 r 0.41 0.52 0.42 0.42 0.76 0.54 0.53 0.63 0.40 0.56 

 # 60 48 51 42 54 55 46 53 52 61 

Walton Slope - - 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.01 

 Y-intercept - - 0.14 0.23 -0.04 0.06 0.07 0.08 0.02 0.04 

 r - - 0.23 0.41 0.61 0.51 0.50 0.63 0.42 0.51 

 # - - 36 39 52 61 44 50 45 57 

Yorkville Slope 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.01 

 Y-intercept -0.01 0.06 0.04 0.20 -0.02 0.06 0.08 0.05 -0.04 0.15 

 r 0.41 0.59 0.51 0.56 0.59 0.57 0.49 0.72 0.59 0.47 

 # 52 44 44 42 58 53 49 55 50 61 
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  To avoid problems with the AOD-PM2.5 regression, here we propose another 

approach for utilizing the multi-year AOD data in air quality applications. In this 

approach the AQI designations of PM2.5 concentrations are used to categorize the AOD. 

For instance, all AOD data points that correspond to PM2.5 concentrations between 0 – 

15.4 µg/m3 are considered to be Code Green AOD. This classification methodology is 

used for all six categories of AQI. This categorized AOD is then used to determine a 

threshold that can probabilistically separate days of air quality exceedances from days 

without exceedances.   

Figure 2.8 and Figure 2.9 show AQI classified MODIS aboard Aqua/Terra AOD 

for 2006 at Gwinnett. Figure 2.8a and Figure 2.9a are results for Terra, and Figure 2.8b 

and 7b are for Aqua. In Figure 2.8 the upper panel is Code Green AOD, and the bottom 

panel is Code Yellow AOD. The panels on the left are frequency histograms and on the 

right are cumulative histograms of AOD. In Figure 2.8, Code Green and Yellow AOD 

have similar frequency and cumulative distributions. The cumulative distributions for 

both satellites are interpreted as 80% of Code Green AOD are below 0.35, and 80% of 

Code Yellow AOD are below 0.65. In Figure 2.9 the upper panel is Code Orange AOD 

and if present the bottom panel is Code Red AOD. Code Orange and Red AODs have 

different distributions. It is not surprising that Code Red AOD is skewed toward higher 

AOD. The closely related relationship between AOD and PM2.5 suggests that high AOD 

will occur in cases of high PM2.5. Code Orange AOD is associated with AOD of 0.75 for 

Aqua and 0.65 for Terra. The lack of Code Red AOD makes determination of thresholds 

difficult and would require analysis of longer AOD records. 
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The broad thresholds (80%) discussed above yielded overestimation in the Code 

Orange and Red categories. To more accurately match the PM2.5-derived AQI, we used 

different thresholds for each satellite. For this we calculated AOD thresholds for 

Gwinnett for all years. The yearly threshold levels, e.g., 80%, 90%, and 95% were 

averaged to create AQI categorized AOD thresholds specifically tuned for Gwinnett. 

Figure 2.10 shows our AOD-derived AQI and PM2.5-dervived AQI at Gwinnett. 

Specifically for Terra we used the 80% threshold for green AQI and 95% for yellow and 

orange AQI. The exact cut-offs for Terra AOD are: Code Green AOD is below 0.26, 

Code Yellow AOD is 0.26 – 0.72, Code Orange AOD 0.72 – 1.0, and Code Red AOD is 

everything greater than 1. For Aqua we used the 80% threshold for green AQI and 90% 

for yellow and orange AQI. AOD cut-offs for Aqua are slightly different than for Terra. 

Aqua AOD thresholds are: Code Green AOD is below 0.28, Code Yellow AOD is 0.28 – 

0.69, Code Orange AOD is 0.69 – 1.15, and Code Red AOD is everything over 1.15.  

While we only show pie charts based upon the new AQI designations, there are 

few differences between them and pie charts produced with AOD-derived AQI using old 

designations. The differences occur mostly within the yellow and orange AQI categories, 

as these are the AQI designations that were proposed to be changed in accordance with 

the revised PM2.5 NAAQS 24-hr standard. Though these figures (AOD-derived pie 

charts) are not an exact match for the PM2.5-based AQI, they provide information at an 

easily understandable and relatable manner. Having probabilistic means to describe the 

incidence of AOD over metro Atlanta allows for this threshold approach to be 

extrapolated for use in areas without PM2.5 monitors. In particular, AQI categorized AOD 

has great applicability to suburban and rural areas in the state of Georgia and the other 
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rural areas across the country, because this approach is not bound strictly by achieving 

high correlations between PM2.5 and AOD. Another advantage to this method is that it 

can be used in real-time to provide a quick assessment of the air quality for a specific 

region that does not require any additional computing or forecasting resources.   
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Figure 2.8: (a) Relative frequency histograms and cumulative frequency histograms of 
Code Green and Code Yellow MODIS Terra AOD at Gwinnett for 2006. (b) Same as (a), 
except for MODIS Aqua AOD. 
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Figure 2.9: (a) Relative frequency histograms and cumulative frequency histograms of 
Code Orange and Code Red MODIS Terra AOD at Gwinnett for 2006. (b) Relative 
frequency histograms and cumulative frequency histograms of Code Orange MODIS 
Aqua AOD for 2006. 
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Figure 2.10: Piecharts of PM2.5-derived AQI, MODIS Terra AOD-derived AQI, and 
MODIS Aqua AOD-derived AQI at Gwinnett.  
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2.4 Chapter Summary 

 Utilization of multi-year remotely sensed data allows for a broader perspective 

view of air quality. Local air quality is affected by a number of factors including regional 

emissions, temperature, atmospheric dynamics, and traffic patterns. Satellite data also 

allow for viewing the transport features/aerosols that could impact air quality with time. 

This research presented a multi-year analysis of spring and summer data from 2004 - 

2008 in metropolitan Atlanta. Our research focused upon the synergy between ground-

based measurements of PM2.5 and NASA satellite observations in the terms of Aerosol 

Optical Depth (AOD) from MODIS and the Aerosol Index (AI) from OMI. MODIS AOD 

is a derived measurement from both MODIS instruments onboard the Terra and Aqua 

satellites. OMI onboard Aura is an instrument that measures the absorbing aerosols in the 

UV-spectrum. Our research goals were to understand the variability within the PM2.5 and 

AOD data records, assess the strength of the PM2.5-AOD relationship, and 

probabilistically determine AOD thresholds that relate directly to AQI categories, as an 

alternative to the PM2.5-AOD linear regression approach. 

 Results for the PM2.5 analysis show that PM2.5 differences are likely due to station 

location, with the highest averages of PM2.5 occurring at urban sites and the lowest 

averages occurring at rural sites. Across the all seven PM2.5 stations the springtime means 

show less variability than summertime means. MODIS AOD has captured the same 

yearly behavior seen in PM2.5, yet on a seasonal basis the summertime has AOD values 

double that of the spring. OMI AI does not have a discernable seasonal variability. 

Background levels of AI for the Atlanta metro area are around 0.3. Eighty percent of AI 

is below 0.5; therefore, AI values higher than this could be indicative of mid- and long-
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range transport of wildfires smoke into the area. The results of linear regressions between 

PM2.5 and AOD are r-values above 0.5 for a majority of sites with maximum r-values of 

0.8 for Terra and 0.7 for Aqua. Interestingly, Terra produced higher correlation 

coefficients than Aqua in 2007, while in other years the satellites have similar r-values. 

Given various problems in establishing a robust PM2.5-AOD regression, we proposed 

using statistical analysis of AOD data to relate AOD directly to AQI via probabilistic 

measures based upon the multi-year record of AOD values for a certain area. Applying 

this approach to the Atlanta metropolitan area, we determined that 80% of green AQI 

days occur with AOD of 0.35 or less, and 80% of yellow AQI days occur with AOD of 

0.65. These probabilistic AOD cutoffs can be used to quickly access the AQI 

classifications without the dependence upon ground-based measurements. There is some 

agreement between PM2.5 based AQI and satellite based AQI. Further work will need to 

be done to better tune the methodology for orange and red AQI, given the relatively low 

frequency of those AQI colors.  

 The great advantage of using the probabilistic approach to relating AOD to AQI is 

that it can be tuned for different regions of interest. Once AOD thresholds are established 

they can be used in real-time general assessments of the state of air quality on a daily 

basis. This method could also be applied to geostationary satellites (e.g., the National 

Oceanic and Atmospheric Administration’s (NOAA) GOES [Prados et al., 2007]) where 

half-hourly data from the satellites can provide quick, real-time information about air 

quality throughout the day. Finally, the use of long-term timeseries of AOD can be used 

to quantitatively determine if air quality policies are effective in bettering air quality. 

Longer term studies on air quality policies’ impacts can be obtained by extending the 
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AOD timeseries into the future with launch of the VIIRS (Visible Infrared Imager 

Radiometer Suite) instrument planned as part of the NPOESS (National Polar-Orbiting 

Operational Environmental Satellite System) program [Lee et al., 2006].  
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CHAPTER 3 

COMBINED CAPABILITY ASSESSMENT OF SATELLITE AND 

GROUND BASED DATA TO ASSESS IMPACTS OF BIOMASS 

BURNING ON AIR QUALITY WITHIN THE SOUTHEASTERN U.S. 

3.1 Introduction 

In this study, we examine the impact of a large wildfire episode that occurred in 

the spring of 2007 on air quality in the Atlanta metropolitan area by exploring the utility 

of multi-satellite data, especially new data provided by the A-Train satellite constellation 

(http://nasascience.nasa.gov/earth-science/a-train-satellite-constellation).  

Many past studies have explored the use of satellite data in air quality applications 

(see a recent review by Hoff and Christopher [2009]). The majority of them have focused 

upon establishing a linear regression between surface level particulate matter (PM2.5 or 

PM10) and satellite-derived aerosol optical depth (AOD), mainly from MODIS. Using the 

single or multiple regression approaches, the PM2.5/AOD relationships have been 

developed at the regional scales in the U.S. [Engel-Cox et al., 2005] and for selected 

cities in the U.S. southeast [Gupta and Christopher, 2008b]. This body of work has 

demonstrated various differences in PM2.5-AOD regressions revealing the role of specific 

region-dependent factors. However, only a few studies have used satellite data in 

addressing the impact of wildfires on air quality in large cities [Liu et al., 2009a]. 

Furthermore, some studies (e.g., Gupta et al. 2006) have reported low PM2.5 /AOD 

correlations in the case of fires that are expected to be affected by the region-dependent 

type of burning vegetation, fire regimes, meteorological conditions controlling the smoke 
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transport, among some other regional factors. The sole use of AODs, which reflects the 

columnar aerosol loading, limits the delineation of involved factors such as sources, 

composition, and vertical distribution of particulate matter. New data from the A-Train 

constellation, especially observations of the vertical profiles of aerosols and their types 

performed by the CALIPSO space lidar, offer a better opportunity to examine the impact 

of fires on air quality, as well as the value of PM2.5/AOD relationships. 

In spring of 2007 Atlanta was affected by the largest wildfire in southeastern U.S. 

history that burned along the Georgia (GA) – Florida (FL) state border in the Okefenokee 

Swamp National Wildlife Refuge. Atlanta is located approximately 240 miles north of 

the fire center. The fire burned over 300,000 acres in total, and transport of smoke 

affected the larger part of the U.S. southeast. The main goal of this paper is to examine 

multiple-satellite data as a tool for characterizing wildfire impacts on a large urban area, 

addressing the specifics of swamp fires and their impact on the Atlanta metropolitan area. 

Our specific goals are to (1) examine the dynamics of PM2.5 and AOD retrieved from 

MODIS aboard Terra and Aqua satellites and the PM2.5-AOD relationship in the case of 

high smoke loadings (exceedance days), (2) examine the capability of CALIPSO lidar to 

detect and identify smoke and quantify the vertical structure of AODs, (3) identify the 

wildfire signatures through the analysis of OMI data, and (4) perform an in-depth 

analysis of smoke events that caused the largest impact on air quality across the Atlanta 

metro area in May of 2007 through a combination of multi-satellite data. Section 2 briefly 

introduces the data and methodology used in this study followed by the results presented 

in Section 3. In out discussion section, we use the methodology developed in earlier 

sections and apply it to the wildfire of 2011. This wildfire occurred in the same location 
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as the fire in 2007, and a comparison on these fires could provide insights into the 

dynamics that control wildfire impacts to air quality. Finally, we conclude with a 

summary in Section 5.  

3.2 Data and Methodology 

3.2.1 Ground-based PM2.5 Data  

For this chapter, we use the same notation of PM2.5 subsets (PM2.5,T and PM2.5,A) 

with the exclusion of the 24-hr averaged PM2.5. Figure1.1 shows the location of seven 

stations in the metropolitan Atlanta area that were used in our study. We will be using the 

same PM2.5 stations as in Chapter 2. For details on this dataset, please see Section 2.2.1. 

The stations are abbreviated as the following: Confederate Ave – Con; Gwinnet – Gwi; 

McDonough – McD; Newnan – New; S. Dekalb – Sde; Walton – Wal; Yorkville – Yor. 

For this study we use PM2.5 measurements for May 2007. 

3.2.2  Satellite data products 

3.2.2.1 MODIS Data 

We analyzed the most recent MODIS Level 2, Collection 5 data that are provided 

by NASA LAADS (http://ladsweb.nascom.nasa.gov/index.html) for May 2007. A search 

radius of 0.5° and 0.25° was used to select all MODIS pixels around a station’s latitude 

and longitude following the approach of Engel-Cox et al. [2004] and Gupta and 

Christopher [2008a]. Those pixels were averaged to create a co-located, coincident 

dataset of AODs from MODIS on Terra and Aqua for each respective PM2.5 station. Two 
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search radii (0.5° and 0.25°) were considered to address the role of spatial heterogeneity 

of smoke and implications for correlations between coincident PM2.5 and MODIS AODs. 

In Section3.4, we use MODIS AOD to analyze the wildfire of 2011. Here we use 

AOD from May1 – July 31, 2007, 2009, 2011 to compare fire and non-fire years. 

3.2.2.2 OMI Data 

The Ozone Monitoring Instrument (OMI) on board the Aura satellite takes 

measurements in the near-ultraviolet (UV) for retrievals of gases and aerosols. In this 

chapter, we use OMI AI broadly centered of the same lat/lon box as in Chapter 2 

(Section2.2.2) since we are more focused on broader regional effects of the wildfires. We 

use OMI AI for May 2007 and for a number of days during the summer 2011 due to 

retrieval errors of the OMI sensor (see Section 3.4).   

3.2.2.3 CALIPSO Data 

 CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) 

includes a space-borne lidar, which measures vertical profiles of backscattering 24 hours 

a day with near global coverage in 16 days. The CALIPSO lidar (CALIOP) takes 

measurements in three channels 532 nm parallel, 532 nm perpendicular, and 1064 nm 

[Winker et al., 2009].  The CALIOP has a nominal vertical resolution of 30 m and 

horizontal resolution of 333; however, aerosol products are retrieved at coarser 

resolutions. The CALIPSO Level 2 algorithms identify features and classify these as 

clouds or aerosols. The feature finding algorithms use changes in the profiles of 

attenuated backscatter to identify features [Vaughan et al., 2009] and the cloud aerosol 

discrimination algorithm uses attenuated backscatter intensity, color ratio and volume 
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depolarization ratio to separate clouds from aerosols [Liu et al., 2009b]. The aerosol sub-

typing algorithm uses integrated attenuated backscatter and depolarization ratio to 

identify clean marine, clean continental, dust, polluted continental, polluted dust, and 

smoke aerosols [Omar et al., 2009]. The Version 3 data products used in this study 

consist of the attenuated backscatter profile, the vertical feature mask, and the CALIOP-

derived AOD [Omar et al., 2009]. Data were obtained from the NASA Langley 

Atmospheric Science Data Center (http://eosweb.larc.nasa.gov/). The CALIOP-derived 

AOD is reported at 5 km horizontal resolution while the number of vertical layers (and 

hence the vertical resolution of AODs) varies from scene-to-scene. We focus on 

examining the CALIPSO capability in identifying the smoke plumes, resolving their 

vertical layered structure, and determining AODs of resolved layers.  

3.3 Results 

3.3.1 Analysis of Ground-based Data 

According to the Georgia Department of Natural Resources, during May of 2007 

there were six days (May 4, 16, 22, 26, 27, and 31) that the daily NAAQS for PM2.5 was 

exceeded (http://www.georgiaair.org/tmp/exceedances/index.php?yr=2007). All these 

exceedance cases were associated with wildfire smoke transported to the Atlanta 

metropolitan area.  

Figure 3.1 shows the diurnal cycle of hourly PM2.5 at the seven sites for the six 

exceedance days. An interesting finding is that most of the exceedance cases are from 

stations outside the I-285 perimeter (McDonough, Newnan, Walton, and Yorkville. These 

sites reached the exceedance level before the more centrally located stations of 

Confederate Ave., Gwinnett, and South Dekalb. In fact, the two furthest removed stations 
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from the metro area, Newnan and Yorkville, consistently recorded some of the highest 

concentrations, 280 µg/m3, and 180 µg/m3 respectively. The centrally located stations had 

maximum concentrations around 180 µg/m3 for Confederate Ave., 175 µg/m3 for 

Gwinnett, and 247 µg/m3 for South Dekalb in comparison to non-exceedance days where 

typical maximum concentrations are around the mid 20s µg/m3
. Maximum concentrations 

at all stations were greater than the level commonly considered as very unhealthy air 

quality, further stressing the significance of the adverse impacts of wildfires on urban air 

quality.   

The spatiotemporal distribution of smoke differs from the common pattern of 

urban pollution in Atlanta. In this instance, the common pattern of pollution refers to 

urban areas having higher concentrations than rural areas as well as how the diurnal cycle 

varies from different representative stations [Butler et al., 2003; Edgerton et al., 2006]. 

Understanding the normal (non-fire) PM2.5 concentration gradient is important to 

understanding how the wildfire causes changes to that pattern. The wildfire created an 

exaggerated diurnal cycle; where the overnight/morning concentrations were sometimes 

three to four times higher than normal, see Figure 3.2. Although examination of Figure 

3.2 reveals some similarities in the PM2.5 dynamics between the stations, various 

differences are apparent. Figure 3.2 also shows that, in most cases, the PM2.5 

concentrations were higher during the MODIS Terra overpasses compared to PM2.5 

coincident with MODIS Aqua that might have implications to the PM2.5 –AOD 

relationships.  
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Figure 3.1: PM2.5 diurnal cycle. (A) Exceedance day May 4, (B) Exceedance day May 
16, (C) Exceedance day May 22, (D) Exceedance day May 26 , (E) Exceedance day May 
27, (F) Exceedance day May 31. Red dashed line is NAAQS daily standard of 35.5 
µg.m3; green and blue dotted lines represent Terra and Aqua equatorial overpass times 
respectively. Station abbreviations, see Section 3.2.1. 

To further examine the differences in the behavior of PM2.5 across the stations 

during satellites’ overpasses, we subtracted PM2.5,T and PM2.5,A values observed at the 

Confederate Ave. station from those observed at the other six stations. We chose to use 

Confederate Ave. as the baseline because it is centrally located, and it generally has the 
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highest concentrations during May. These timeseries for the entire month of May are 

shown in Figure 3.3. Positive differences indicate that the station reported a higher 

concentration than Confederate Ave. On non-exceedance days, the absolute differences 

among the stations are within 10 µg/m3, while much larger differences are clearly seen in 

the case of exceedances. These differences also vary from one case to another. For 

instance, on May 25 Newnan and Yorkville stations have absolute difference values 

greater than 80 µg/m3, followed by differences of over 60 µg/m3 on May 26, and finally 

on May 27 have differences between 30–60 µg/m3. Overall, the analysis of ground-based 

data demonstrated that the wildfire increased PM2.5 concentrations across the metro area 

in a non-uniform way, as might be expected. Our analysis suggests that the counties 

furthest from the city, specifically to the west and south, were impacted more than other 

stations as shown by the differences between them in Figure 3.2 and Figure 3.3. Wildfires 

have been shown to create a heterogeneous spatial distribution of pollution 

concentrations in other areas as well [Wu et al., 2006]. Focusing on two exceedance cases 

(May 22 and 31) in Section 3.3.3.3 we explore how the multi-sensor satellite data can aid 

in air quality assessments by providing the larger scale perspective. We chose to closely 

examine these two days because both days have high PM2.5 concentrations and have the 

broadest range of satellite data available for analysis. But first we examine the linkage 

between MODIS AOD data and ground PM2.5 data. 
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Figure 3.2: Timeseries of the difference curves of PM2.5 concentrations, where 
difference = each station’s concentrations – Confederate Ave.’s concentrations (A) 
PM2.5,T (B) PM2.5,A.  Open symbols are urban stations; filled symbols are rural stations. 
Station abbreviations, see Section 3.2.1. 

 

3.3.2 Examination of PM2.5 and MODIS AOD Relationships 

Our analysis of MODIS data confirms that for the month of May retrieved AOD 

show elevated values with varying spatial distributions. We found that the MODIS can 

capture the heterogeneity associated with the different concentration gradients of PM2.5 

on a day-by-day basis. Visible imagery from MODIS Terra and Aqua showed thick cloud 
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cover over Atlanta on both days. The presence of clouds also resulted in missing AODs 

on other days, especially for Aqua overpasses.   

 The days of high AOD values from both satellites generally occur on the same 

days of PM2.5 exceedances. On May 22, 27, and 31 Terra AOD values were greater than 

0.8 while Aqua AOD values were as high as 0.7 – 0.9. There was a period of elevated 

AOD values around May 12 that did not corresponded to surface PM2.5 concentrations in 

Atlanta; however, there was a PM2.5 exceedance in Macon, Georgia, which is located 

south of Atlanta. The most likely explanation for the discrepancy of ground-based PM2.5 

and AOD is that the wildfire aerosols that were causing the exceedance in Macon were 

located aloft over Atlanta on that day. Unfortunately, there were no co-located CALIPSO 

passes to corroborate this.    

We show in Figure 3.1 that PM2.5 values were higher at the times of MODIS 

Terra overpasses than MODIS Aqua. Figure 3.3 presents the timeseries of AOD 

collocated with the McDonough and Yorkville stations, showing that Terra does record 

higher AODs compared to Aqua. McDonough and Yorkville stations were chosen to be 

representative of suburban and rural conditions, respectively. Figure 3.3 also presents the 

difference between using a search radius of 0.5° (Figure 3.3(A and C) and a search radius 

of 0.25° (Figure 3.3(B and D). Using the smaller radius results in fewer points, but 

lessens the effects of overlapping AOD measurements at the stations. Given the low 

number of data points, it is difficult to determine the general behavior of AOD. 
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Figure 3.3: Timeseries of MODIS AOD for May 2007 (A) MODIS AOD over 
McDonough for 0.5° radius, (B) MODIS AOD over McDonough for 0.25° radius, (C) 
MODIS AOD over Yorkville for 0.5° radius, (D) MODIS AOD over Yorkville for 0.25° 
radius. Blue squares represent MODIS Aqua and green triangles represent MODIS Terra. 
Missing data is shown by gaps. 

Yet, the high peaks in Figure 3.3 correspond to the peaks (up or down) shown in 

Figure 3.2, which indicate agreement on the six exceedance days. Figure 3.1 shows how 

the wildfire causes a heterogeneous response across the stations, and this could 

potentially explain the differences in correlation values shown in Table 3.1. PM2.5,A and 
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PM2.5,T  are positively correlated with the respective MODIS AODs with statistical 

significance above 95% for a majority of stations. The correlation coefficients with Terra 

vary between 0.59 – 0.89, while Aqua has correlations between 0.56 – 0.72. Newnan, 

which had relatively higher PM2.5 concentrations, has the highest correlations for both 

satellites. In comparison, r-values from the correlation between AODs with smaller 

(0.25°) search radius and PM2.5 are well correlated for both satellites. Regression 

coefficients are 0.63 - 0.89 (Aqua) and 0.52 – 0.9 (Terra). Our statistical analysis results 

show a broad range of values, which is not seen in Figure 6 of Christopher et al. [2009]. 

Their correlation analysis only considers four PM2.5 stations in Georgia, with possibly 

three stations from metro Atlanta, and their analysis considered PM2.5-24 hour averages. 

Nevertheless, our study and Christopher et al. [2009] both found higher linear 

correlations with Terra, despite the fact that the PBL dynamics favors the correlation 

between MODIS Aqua AODs and PM2.5 because of the Aqua’s afternoon time orbit. In 

summary, MODIS can provide visual imagery that allows for tracking the smoke plumes 

and AOD data related to total aerosol loading. However, MODIS provides only two 

measurements per day, so being able to track the evolution of biomass burning is 

hindered. Additionally, cloud cover reduces the number of satellite observations. MODIS 

satellite data could be used most effectively in multi-day events to compensate for the 

possibility of reduced observations, especially during the spring and summer months 

when biomass burning and cloudiness are more frequent. 
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Table 3.1: Correlation values (r-values) and number of coincident observations (#) 
between PM2.5 and MODIS AOD using 0.25° and 0.5° as search radii for MODIS pixels. 
Numbers in bold are statistically significant at α = 0.05.  

  Radius = 0.5° Radius = 0.25° 

Station Location r-values # r-values # 

 (Lat, Lon) Terra Aqua Terra Aqua Terra  Aqua Terra Aqua 

Con (33.81°. -84.38°) 0.90 0.89 17 9 0.82 0.57 16 20 

Gwi (33.96°, -84.07°) 0.81 0.63 17 11 0.77 0.64 17 20 

McD (33.43°, -84.16°) 0.85 0.82 17 8 0.81 0.52 12 17 

New (33.40°, -84.74°) 0.89 0.70 16 10 0.89 0.72 13 18 

SDe (33.68°, -84.29°) 0.77 0.72 15 6 0.72 0.35 11 17 

Wal (33.70°, -83.60°) 0.52 0.82 17 10 0.57 0.26 14 18 

Yor (33.93°, -85.04°) 0.83 0.84 17 11 0.59 0.56 13 20 

 

3.3.3 Characterization of Spatial (Horizontal and Vertical) Distribution of Smoke 

Plumes  

3.3.3.1 Biomass Burning Signatures from OMI 

In the case of May 2007, smoke aerosols were originating primarily from swamp 

wildfires. This type of wildfire differs from the seasonally driven biomass burning in 

other regions such as Africa, Australia, and S. America that were previously studied 

using OMI or TOMS [Ahn et al., 2008; Dirksen et al., 2009; Livingston et al., 2009]. 

Nevertheless, our analysis reveals that OMI AI detects swamp smoke reasonably well, 

allowing us to examine the spatial evolution of the smoke plumes and implications to air 

quality.  
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Figure 3.4 shows the dynamics of the wildfire plume viewed through OMI AI for 

25-30 May. We show the positive and negative AI values (shown in gray) to represent 

absorbing and non-absorbing aerosols, respectively. One consistent feature from all the 

days is an area of high AI located near the central border of GA-FL. The shape of the 

elevated AI remains oblong and stretches horizontally following the state border. The 

elevated values of AI (1.5 < AI < 3.0) are a persistent feature of the plume transport that 

remains throughout May 25-30, and near the epicenter AI values > 3.6 are reported. Our 

results using OMI data to identify the spatial extent of the wildfire aerosols are 

complementary to the modeling work done by Christopher et al. (2009) in terms of the 

predicted location of the wildfire plume. They use a model driven by estimated fire 

emissions from the GOES satellite. While Terra AOD didn’t capture the plume due to 

heavy cloud cover, the model predicted the plume extent along the GA-FL border, and 

our OMI results provide independent verification of the model on May 25. Our results 

suggest that OMI AI identified plume transport and distinguished between absorbing and 

non-absorbing aerosols through the use of positive and negative AI.   

While we have shown that OMI AI is able to detect aerosols from a swamp 

wildfire, AI has not proven to be effective at identifying urban pollution in the Atlanta 

metro area. It is possible that larger industrialized areas with a stronger carbonaceous 

signal (e.g., Ohio River Valley) might have a stronger signal detectable by OMI. The 

U.S. southeast is dominated by mostly non- UV absorbing aerosols, which allows for 

easy detection of transport of wildfire aerosols.  
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Figure 3.4: OMI AI on consecutive days: (A) May 25, 2007 through (F) May 30, 
2007. Negative AI shown in gray. Red X represents Atlanta, GA.  
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3.3.3.2 Analysis of Aerosol Vertical Profiles Using CALIPSO 

CALIPSO had 15 passes over the state of Georgia during May 2007. Eight 

overpasses were during the day, and seven were during the night. Of the seven night time 

passes, the two closest to Atlanta were on May 14 and 30, and the two closest to the 

wildfire were on May 7 and 23. There were overpasses on the exceedance days May 16 

and 26, but the passes are not located near metro Atlanta. Bhoi et al. [2009] discussed the 

vertical profiles of the attenuated backscattering coefficient from overpasses near the fire 

over land (April 30 and May 3) and ocean (May 18). Christopher et al. [2009] presented 

the vertical profiles of the attenuated backscattering coefficient from only one CALIPSO 

pass near Birmingham, Alabama, on May 24. Neither of the above studies has addressed 

the vertical feature mask, classification of the aerosol type, and AOD derived from 

CALIPSO. Examination of these CALIPSO products is important to better understand 

how CALIPSO data can be used in air quality applications. To that end, here we present a 

detailed analysis of CALIPSO passes that were closest to Atlanta (May 14) and the 

wildfire area (May 7). Additionally, we summarize findings from the daytime overpasses 

on May 5, 10, 12, and 19 to better understand the wildfire’s impacts on air quality. 

A night time pass has much less noise in the lidar retrievals, making it easier to 

identify features. In Figure 3.5(A) the red box highlights an area of high backscattering 

indicative of increased aerosol concentrations observed on May 7 near the wildfire 

epicenter. 
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Figure 3.5: CALIPSO nighttime images of May 7, 2007 overpass near fire. (A) Total 
Backscattering at 532nm, (B) Vertical feature mask, (C) Layer height in blue triangles 
and AOD in black columns for the CALIPSO pass shown by a red box.  
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In the vertical feature mask the area highlighted by the red box in Figure 3.5(B) is 

categorized as aerosol. The aerosols are further analyzed by the CALIOP algorithm to 

determine their subtype (e.g., biomass burning, polluted continental, dust, etc.). The area 

highlighted by the boxes in Figure 3.5 is sub-typed as polluted dust and desert dust that is 

clearly an algorithm error. This misclassification is due to the fact that the depolarization 

ratio of this aerosol layer is non-zero, and the CALIOP algorithm defaults to the layer 

being classified as dust because of the well-known fact that non-spherical dust particles 

cause significant depolarization. This classification error was reported to the CALIPSO 

science team.   

On May 7 the lidar shows the layer being close to the ground and extending to 

about 1.5 km, which is consistent with a low nocturnal PBL. The optical depth of this 

layer varies along the ground track from optically thin around 0.01 to optically thick at 

values above 0.5 (see Figure 3.5(C)). To determine the effect of the aerosol 

misclassification on AOD, we re-calculated AOD values using the correct lidar ratio for 

biomass burning aerosol. Resulting AODs increased by almost 50%.  

We also examine a night time pass on May14, which tracks through central 

Georgia near Atlanta. In Figure 3.6(A) the red box shows an area of high backscattering 

indicative of aerosols that is corroborated by Figure 3.6(C) showing the highlighted areas 

as aerosols. In this case CALIPSO detects multiple layers. The CALIOP algorithm again 

misclassifies the lower layer as dust with a second layer being correctly detected as 

smoke. We believe that all the layers are smoke associated with biomass burning. The 

AODs along the ground track reach a maximum of 0.6 for the first layer and 1.2 within 
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the second layer (see Figure 3.6(D)). By correcting the lower level AODs to match with 

the correct aerosol type, AODs nearly doubled in comparison to the original values. 

 

Figure 3.6: Same as Figure 3.5, except for nighttime May 14, 2007 overpass near 
Atlanta, (C) Two layers are shown with first layer in triangles and second layer in 
squares; AOD for first layer in red columns and second layer in black columns (for the 
CALIPSO pass shown by a red box). 

 The high values of AOD imply that the smoke layer is dense, thick and well developed 

vertically. The high AODs from CALIPSO are similar to MODIS AOD on exceedance 

days (e.g., May 26 - 27). Though a recent study by Kittaka that compared column-

averaged AOD from CALIPSO with MODIS Aqua found that for the Southeastern U.S. 
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CALIPSO AOD are biased low in comparison [Kittaka et al., 2011]. We agree with the 

authors in that CALIPSO’s uncertainty in selecting the appropriate lidar ratio, which 

affects the aerosol subtyping and AOD, could be a potential source of the bias. The 

smoke layer extends from just above the surface to 4.5 km. The height of the smoke layer 

indicates that the plume has been lifted aloft and within the region of the atmosphere 

where aerosol transport takes place. Bhoi et al. [2009] report vertical height of the plume 

to vary between 2.5 km over land and 4 km over ocean. Christopher et al. (2009) identify 

wildfire aerosols located 2 – 3 km above the surface. The combination of these results 

points to the wildfire plume being quite variable throughout May 2007.  

We analyzed daytime CALIPSO overpasses to understand the implications to air 

quality. We present the dates of May 5, 10, 12, 19 2007 as examples, see Figure 3.7. The 

other daytime overpasses (May 21, 26 and 28) repeat the ground-tracks for the dates 

previously mentioned e.g. May 5, 10, 12. Atmospheric boundary layer dynamics is a 

major controlling factor in surface concentrations. On all four dates, CALIPSO identified 

a well developed smoke layer, with the layer thickness of about 1 km, Figure 3.7(A-D).  

In some instances, there are two aerosol layers identified. Another consistent feature is 

that for the month of May, the daytime aerosol layer over Georgia is around 0.5 – 2 km in 

height. Afternoon boundary layer heights during this same time period vary between 2.5 

– 3 km. This implies that the nighttime inversion likely traps the smoke aerosols close to 

the surface.  
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Figure 3.7: CALIPSO Vertical feature masks of daytime overpasses (A) May 5, 2007, 
(B) May 10, 2007, (C) May 12, 2007, (D) May 19, 2007, (E) CALIPSO satellite overpass 
tracks (pink) May 10, 2007, (purple) May 19, 2007, (orange) May 12, 2007, (navy) May 
5, 2007 (E) Geographic representation of daytime overpasses shown in A-D. 

 

This could explain why most exceedances occur in the early morning hours. Analyses of 

the nighttime overpasses yield different results. A majority of nighttime overpasses show 
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two layers where one layer is closer to the ground (similar to Figure 3.7), and the other 

(higher) layer is located around 3 – 4 km. In summary, CALIPSO adds valuable 

information about the vertical profile of aerosols. In relation to air quality studies, we 

have shown that CALIPSO is capable of detecting boundary layer aerosols, but that the 

capability is tempered by the longer overpass repeat cycle of 16 days and distance 

between overpasses.  

3.3.3.3 Integrated Event Analysis 

In the following analysis we explore the complementary nature of multiple sensor data 

focusing on May 22 and 31. These two cases were chosen because these days reached 

very high PM2.5 concentrations and had the most amounts of data available from satellite 

and ground-based monitors. We use ground-based, satellite data and back trajectory 

analyses [Draxler, 2006] from HYSPLIT to provide understanding of the evolution of air 

quality in metro Atlanta from a local, state, and regional perspective. Unfortunately, 

CALIPSO due to its repeat cycle was unable to provide data near Atlanta during any of 

the six exceedance events.  

Event – May 22, 2007 

The majority of the southeastern U.S. was dominated by a large high pressure 

system that was centered over Georgia throughout May 20-21. This system moved off the 

GA-SC coast bringing southeasterly flow to the metro Atlanta area. By 8 AM, a majority 

of sites, except the eastern most of Walton, had reached exceedance levels (see Figure 

3.1(C)). The high pressure system provided cloud-free conditions across Georgia. When 

MODIS Terra flew over the southeast U.S. at 16:10 GMT (11:10 AM EST), all sites 
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reported PM2.5 concentrations above 50 µg/m3. The two biomass burning aerosol plumes 

are clearly seen in the MODIS Terra true color images (Figure 3.8(A)), with one located 

over the Georgia-Alabama border and another one in central Georgia. Accordingly, 

retrieved AODs across the stations were above 0.8, with the exception of Walton. In the 

plume over central Georgia, AOD values > 1 were over the urban stations Confederate 

Ave., Gwinnett and South Dekalb (Figure 3.8(C)). Some monitors stopped reporting data 

causing gaps in the timeseries shown in Figure 3.1(C). The remaining three rural sites 

recorded maximum concentrations between 50 -100 µg/m3, whereas the urban and 

suburban sites reported maximum concentrations of 100 – 225 µg/m3. By early afternoon, 

convective processes along with southeasterly winds lowered the ground level PM2.5 

concentrations. A visible image from MODIS Aqua shows more cloud cover, yet the 

plume over central Georgia is still visible (Figure 3.8(B)). Aqua AOD of 0.3 over all 

Atlanta is lower than the reported Terra AOD (Figure 3.8(D)). Figure 3.8(E) shows an 

area of absorbing aerosols where AI  > 3 located just west of the wildfire epicenter. Also, 

back trajectory analysis from HYSPLIT (Figure 3.8(F)) depicts descending parcels of air 

arriving in the Atlanta metro area having originated in the southeastern part of the state in 

the vicinity of the wildfires. The HYSPLIT analysis supports that the plumes shown in 

both MODIS Aqua and Terra RGB images are associated with transported biomass 

burning aerosol.     

The elevated levels of aerosols that caused poor air quality in Atlanta moved 

further west (downwind) impacting Alabama and Mississippi on May 23–25. Christopher 

et al. (2009) attribute the poor air quality event to a decrease of PBL height that allowed 

the sinking of smoke aerosols mixing that degraded air quality near the surface. Our 
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analysis of surface weather maps, show that during May 23- 25, another high pressure 

system is located of the mid-Atlantic coast. As time progresses to late on 24 May, the 

system has shifted further south in the Atlantic pushing the area of increasing wind 

speeds towards the west and southwest. Thus, the entire period of May 22 – 25 could be 

seen as one event with impacts in multiple urban areas downwind of the wildfire. 
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Figure 3.8: Multiple satellite perspectives on May 22, 2007: (A) MODIS Terra RGB 
image, (B) MODIS Aqua RGB, (C) MODIS Terra AOD, (D) MODIS Aqua AOD, (E) 
OMI AI, (F) HYSPLIT backtrajectory. Red X represents Atlanta, GA. 

Event –May 31, 2007 

The synoptic dynamics on this day was similar to that of 22 May. The region was 

again controlled by a high pressure system. The PM2.5 concentrations appear to rise 
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across the area in an eastward progression. Beginning around 4 AM, the western-most 

stations of Newnan and Yorkville record elevated PM2.5 concentrations, breeching 

exceedance levels within the next hour (Figure 3.1(F). All stations surpass exceedance 

levels by 10 AM. Back trajectories (not shown) confirm that air in the metro area 

transects the area on the wildfire, thus bringing increased levels of PM to Atlanta. The 

trajectories on May 31 appear very similar to the trajectories on May 22 shown in Figure 

3.9. A difference from May 22 is that the highest exceedances are at rural stations. By 11 

AM, Newnan, Walton, and Yorkville have concentrations very close to double that of the 

urban stations (see Figure 3.1(F)). Furthermore, all the rural stations record maxima for 

the day above 100 µg/m3, whereas the urban stations have maxima between 74 – 83 

µg/m3. Visible images from MODIS Terra (Figure 3.9(A)) and Aqua (Figure 3.9(B)) 

show what appears to be haze associated with the wildfire below higher-level clouds. The 

amount of cloud cover does not inhibit MODIS Terra from retrieving AOD over the 

Atlanta area, but retrievals for the remainder of the state are sparse. AODs for the area are 

greater than 0.78 (Figure 3.9(C)). Unfortunately, MODIS Aqua is unable to make any 

AOD retrievals for southern Georgia due to the large amount of clouds (Figure 3.9(D)). 

Despite the cloud cover, OMI AI is able to detect elevated amounts of absorbing aerosols 

slightly west - northwest of the wildfire epicenter (Figure 3.9(E)). In comparison to May 

22, the area of highest AI values is located entirely within central Georgia. This could 

explain why the southernmost stations experienced elevated PM2.5 concentrations before 

the rest of the metro Atlanta area. The map of PM2.5 across the U.S. shows elevated 

concentrations in the states east of the Mississippi River with the highest concentrations 

in the metro Atlanta area (Figure 3.9(F)). Afternoon vertical mixing lowers 
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concentrations throughout the area; however, the concentrations remain above 

exceedance level until the early hours of June 1.  

 

 

Figure 3.9: Multiple satellite perspectives on May 31, 2007: (A) MODIS Terra RGB 
image, (B) MODIS Aqua RBG image, (C) MODIS Terra AOD, (D) MODIS Aqua AOD, 
(E) OMI AI, (F) PM2.5 map of SE U. S. from www.airnow.gov. Red X represents Atlanta, 
GA. 

 



 73 

3.4 Discussion 

The techniques showcased earlier in this manuscript, reflect a methodology that 

can be used in other wildfires. In late April 2011, a lighting strike occurred within the 

Okefenokee Swamp National Wildlife Refuge, which started a wildfire named the Honey 

Prairie Complex Fire. In July 2011, another fire started just north of the wildfire refuge, 

and its name is the Sweat Farm Again Fire. This fire is occurring in nearly the same 

location as the fire studied earlier in this manuscript, and this new fire allows for direct 

comparison with the fire of 2007. As of September 19, 2011 the fire complex (Honey 

Prairie and Sweat Farm Again) has consumed over 320,000 acres. During peak burn 

periods, the extent of the drought in 2011 is more severe (exceptional drought) across 

more of the state than in 2007 (http://droughtmonitor.unl.edu/monitor.html).  

The two fires’ impacts on aerosol concentration as measured by MODIS AOD are 

show in Figure 3.10. Unlike the 2007, the 2011 fire has a much longer burn period, which 

has extended further into the summer months. To better highlight the direct aerosol 

contribution of the wildfire these timeseries are area averaged in a 4° x 4° box centered 

over the wildfire refuge, and for comparison a non-fire year (2009) was added. Both 

wildfire years show increased aerosol concentrations with the 2011 fire having 15 days 

where MODIS Terra AOD > 0.5. Though it should be noted that the 2007 wildfire had 

more days of high MODIS Terra AOD (AOD >0.7) compared to the 2011 wildfire (2 

days). This is not a surprising finding, in that the 2007 wildfire was shorter in duration, 

but consumed more acreage.   

In comparing the 2011 wildfire to a non-fire year (2009) there are some 

appreciable differences. Monthly averages of MODIS Terra AOD covering May – July 
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are higher in 2011 than in 2009. The monthly averages for May 2009 = 0.2071, May 

2011 = 0.2496; June 2009 = 0.3067, June 2011 = 0.3955; July 2009 = 0.2552, July 2011 

= 0.3237. Not surprisingly the standard deviation of MODIS Terra AOD are higher in 

2011 (May = 0.1207, June = 0.1913, July = 0.1938) than in 2009 (May = 0.0736, June = 

0.1285, July = 0.0817). 

 

Figure 3.10: Timeseries of MODIS Terra AOD for May – July 2007, 2009 and 2011.  

   

An analysis using OMI AI would be fitting for this discussion; however, the OMI 

sensor was experiencing row anomalies that affect the Level 1B and Level 2 data 

products, which lead to either no retrievals being made or erroneous retrievals at the 

edges of those row anomalies within the scan. Thus a timeseries comparison is not 

appropriate, yet there are a number of days where AI > 0.5 which suggests the presences 
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of absorbing aerosols. On June 6th, AI = 0.99 which coincides with an elevated MODIS 

AOD value of about 0.79. Savannah, GA, which is less than 180 miles away from the 

refuge, experienced an air quality exceedance on this day. Also, between June 21-22nd 

there were elevated AOD values (0.623 and 0.828 respectively) which coincided with an 

high OMI AI value of 1.36 taken on June 21st, see Figure 3.10. During this time span 

most of the smoke was blown offshore as shown in the visible image from MODIS Terra, 

see Figure 3.11. MODIS Aqua also measured increased AOD, but it should be noted that 

the elevated AOD retrievals occur mostly over water. No cities in GA had air quality 

exceedances during this time range, but Jacksonville, FL, which is less than 75 miles 

away from the refuge experienced air quality exceedances.  

 

Figure 3.11: Visible image from MODIS Terra on June, 21 2011. 
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Unfortunately, there is little to be gained by CALIPSO. Though the fire was 

longer in duration, the space-borne lidar did not detect any wildfire signatures over this 

region. On the days where AOD was highest, there were not any overpasses nearby, thus 

a missed opportunity for a multi-sensor analysis. It would have been beneficial to 

determine if the CALIPSO science team had indeed corrected the problems mentioned 

earlier in the results section e.g. incorrect lidar ratio.  

From 2003 until 2007 the metro Atlanta area never had a TEOM-measured air 

quality exceedance. One could hypothesize that in a warming climate; the number of 

wildfires in the U. S. southeast could increase thus resulting in more poor air quality 

events. Potentially a warmer climate could lead to more severe droughts that are larger in 

size, severity and duration. Though wildfires are an integral part of the swamp/bog 

ecosystem, the impacts from fires like this are increased as more people move towards 

the coasts in U.S. This research has shown a robust methodology that provides insights 

into peat-based wildfires and their remotely sensed signatures. Yet, if anything, our 

research has shown that studying wildfire impacts from satellites require a person to 

understand the capabilities and limitations of satellite data. In cases where the satellite 

data has missing retrievals due to cloud contamination or the inability to separate aerosol 

and cloud effects, maybe interpolation schemes can be used to fill-in the missing data. 

Ultimately a person must decide based on the available data provided what is a wildfire 

effect.  

3.5 Chapter Summary 

The goal of this study was to examine multiple-satellite data as a tool for 

understanding biomass burning impacts on an urban area, focusing on the specifics of 
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swamp wildfires and their impact on the Atlanta metropolitan area. In May 2007, the 

wildfire caused six exceedance days where smoke aerosols pushed ambient 

concentrations of PM2.5 to extremely high levels (> 100 µg/m-3), producing a visible haze 

layer on some days and causing degradation in air quality. We have shown that MODIS 

AODs were able to characterize the dynamics of surface PM2.5 over the Atlanta metro 

area. The urban PM2.5 stations correlated well with MODIS Terra, while MODIS Aqua 

AODs have somewhat lower r-values for all of the PM2.5 stations. By using a smaller 

radius (0.25°), r-values for both satellites increased for most stations. Correlation values 

for Terra using the smaller radius varied between 0.52 – 0.9, and Aqua had r-values of 

0.63 – 0.89. The range of correlation coefficients underscores the variability seen across 

all the stations and highlights potential biases in selecting which stations to correlate with 

AOD. To compensate for this, the use of as many stations as possible could be beneficial.    

OMI measured AI values greater than three near the vicinity of the wildfire 

epicenter. OMI AI also provided satellite verification of model-predicted AODs reported 

by Christopher et al. [2009] when MODIS AODs were not available. Our CALIPSO 

analysis found that the wildfire plume was dynamic. A thick layer of smoke near the 

surface was persistent throughout the study period; however, our analysis presented 

evidence of a smoke layer aloft where it could be advected to other areas. When studied 

sequentially, we found that the plume height varied from around 1.5 km near the fire to 3 

– 4.5 km further downwind from the fire.   

Our analysis has shown that CALIPSO is adept at identification and classification 

of aerosol layers; however, the current (Version 2) algorithm does not always correctly 

identify the type of aerosol. In our case, there was a persistent misclassification of smoke 
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as polluted dust that resulted in lower AOD values. A strength of CALIPSO data is the 

ability to discriminate between elevated aerosol loads within the PBL (e.g., in the case of  

May 7) and those aloft (May 14). Aerosols within the PBL most affect air quality locally, 

while those aloft may affect air quality downwind later in time. This vertical distribution, 

especially in the case of wildfires, provides valuable information for constraining air 

quality models. However, the narrow lidar footprint results in infrequent coincident 

observations with ground sites so the relationship between ground PM2.5 and CALIPSO-

derived AOD seems to be of limited use.   

Large urban areas have poor air quality due to local sources and/or the transport 

of aerosols into the local air shed. While we have quantified the effects of biomass 

burning in metro Atlanta, additional research is needed to understand the extent to which 

fires can impact air quality in other large metropolitan areas. Multi-satellite data can be 

used to aid in understanding biomass burning impacts on a large urban area’s air quality, 

especially in causal determination of poor air quality episodes which can be important to 

local and state environmental managers.  
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CHAPTER 4 

ANALYSES OF SEASONAL AND INTERANNUAL VARIABILITY 

OF ATMOSPHERIC AEROSOLS IN THE U. S. SOUTHEAST FROM 

GROUND AND SPACE BASED MEASUREMENTS OVER THE 

PAST DECADE 

The work presented in this chapter has been published in Atmospheric Measurement 

Techniques Discussions [Alston et al., 2011b]. 

4.1 Introduction 

As mentioned in the Introduction, solar dimming relates to increases in aerosol 

concentration that prevent incoming solar radiation from reaching the surface, while solar 

brightening refers to decreases in aerosol concentration that results in increased surface 

solar radiation. Dutton et al. [2006] analyzed twenty seven years of NOAA/GMD surface 

solar irradiance data from five remote sites and concluded that while the sites span a large 

geographic area, the behavior of surface solar irradiance was similar (decreasing then 

increasing with time) across the sites. Wild et al. [2009] provide updates of surface 

radiation measurements through 2005 and present evidence that brightening across large 

areas is ongoing and that anthropogenic contributions are an important factor in this 

phenomena. Streets et al. [2009] use model-predicted aerosol optical depth (AOD) to 

determine the regional nature of solar dimming/brightening. Their results indicate that the 

U.S., Europe and Russia have decreasing AOD values over a twenty-five year (1980 – 

2005) period, and these regions also have a strong linear relationship between AOD and 

surface radiation.  
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Ground based measurements of aerosols can provide high temporal concentration 

data over an extended period of time, yet these measurements are generally limited in 

their geographic coverage. A majority of ground based measurement sites are mostly in 

areas with high population densities. Additionally, ground based measurements are at 

best representative of aerosols in the lower atmosphere, mainly in the planetary boundary 

layer (PBL); as such, these measurements miss aerosols aloft, especially transport events.  

Satellites provide atmospheric column measurements that are ideally 

representative in a well-mixed PBL and have regional viewing perspectives; however, 

satellite retrievals of aerosols are associated with a number of problems, especially over 

land such as deserts or urban environments. Liu and Mishchenko [2008] found that 

MODIS and MISR retrievals can disagree on a regional basis; yet, Kahn et al. [2009; 

2011] attempt to disprove those findings in concluding that MISR (Multi-angle Imaging 

Spectroradiometer) and MODIS retrievals are in agreement and provide details on the 

causes of the discrepancies between the two. Given the regional nature of aerosols and 

inherent difficulties and limitations in both satellite and ground based observations, it is 

important to utilize multiple sensors in aerosol analysis in order to develop as accurate 

understanding of aerosol behavior as possible. 

The goal of this study is to characterize aerosols in the U.S. Southeast through 

analysis of ground and space based measurements from 2000 – 2009, with the emphasis 

on seasonal and interannual aerosol variations. The specific objectives are to examine the 

temporal changes of ground based PM2.5 and AODs from MODIS and MISR over the 

past ten years, determine common features and differences between these data records, 

determine if there is a discernible trend, and if a trend is present, what are the 
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implications of such for the region in the context of the dimming/brightening phenomena. 

We analyzed ten years of AOD from MODIS and MISR onboard Terra and eight years 

for MODIS onboard Aqua over a 5° x 5° box that encompasses the state of Georgia. This 

analysis also uses ten years of filter-based PM2.5 data provided by the EPA, and all 

available data from Georgia-run continuous PM2.5 monitors. This paper is organized as 

follows. Section 4.2 Introduces the data and methods used in this study. Section  4.3 

presents the results, and Section 4.4 concludes with a summary and discussion. 

4.2 Data and Methodology 

4.2.1 Ground Based PM2.5 data 

As mentioned in Section 2.2.1, we use two different surface PM2.5 measurements: 

continuous from TEOMs and filter-based from the EPA. We have already discussed the 

PM2.5,TEOM dataset in Section 2.2.1. The filter-based data set is provided by the EPA Air 

Quality Monitoring System (http://www.epa.gov/airexplorer/index.htm). The data from 

this network are used for air quality regulatory purposes, e.g. attainment/non-attainment 

designations. Each monitor uses EPA-defined reference methods described in 40 CFR 

Part 53 (http://ecfr.gpoaccess.gov/cgi/t/text/textidx?c=ecfr&tpl=/ecfrbrowse 

/Title40/40cfr53_main_02.tpl), and they must meet high quality control measures. Due to 

high level of quality control, there is usually a time lag from the measurement, the 

analysis, and finally making the data publically available. Each station serves a different 

purpose; as such there are different repeat cycles. Population exposure monitors have 

daily concentrations; while the majority of sites have a 3-day repeat cycle. Monitors that 

capture background conditions have a 6-day repeat cycle. Similar to our methodology for 
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the PM2.5,TEOM dataset, we only use EPA sites completely within Georgia state lines, 

subsequently we use data from 29 sites in total for both types of monitors. This dataset 

will be annotated as PM2.5,FRM. Over half of the PM2.5,FRM stations have data that 

encompass 2000–2009, and the PM2.5,FRM station locations are shown in Figure 2.1.  

To separate out Atlanta’s influence from the remainder of the state, we split each PM2.5 

dataset into subsets depending on the geographical location of the considered sites. 

Ultimately, we have three subsets for each PM2.5 dataset. We calculate a statewide mean 

for the All GA subset. The Atlanta subset is the mean exclusively using Atlanta sites. The 

last subset Outside Atlanta uses sites outside Atlanta for the calculated mean. For the 

PM2.5,TEOM datasets, hourly means are averaged to create daily means. Those daily means 

are then used in subsequent analyses. Given the repeat cycle associated with the 

PM2.5,FRM dataset, fill values were used to fill-in the gaps in the data record where 

measurements were not taken. Those complete timeseries were used in subsequent 

analyses.  

4.2.2 Satellite Data 

4.2.2.1 MODIS Data 

The analysis is performed with MODIS Collection 5 Level 2 data, which have a 

nominal resolution of 10x10 km2 at nadir. The variable of most importance to this study 

is “Optical_Depth_Land_and_Ocean” at the 550 nm wavelength which incorporates only 

the highest quality retrievals. We use daily AOD data from 2000 - 2009.  

4.2.2.2 MISR Data 
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The Multi-angle Imaging SpectroRadiometer (MISR) flies onboard of the Terra satellite 

together with MODIS. MISR is a multi-angle imaging instrument consisting of nine 

cameras with view angles of ±70.5°, ±60.0°, ±45.6°, ±26.1°, and 0° (nadir), operating in 

four spectral bands centered at 446 nm (blue), 558 nm (green), 672 nm (red), and 867 nm 

(near infrared).  In global observing mode, the spatial resolution of the red band is 275 m 

in all nine cameras, the other bands are re-sampled to 1.1 km resolution in all the 

cameras, except the nadir, which preserves the full 275 m resolution in all four bands. 

The common swath width is ~400 km and global coverage is obtained every nine days at 

the equator and more frequently at higher latitudes [Diner et al., 2002]. MISR operational 

aerosol retrievals are performed at 17.6 km horizontal resolution, and particle size, shape, 

and single-scattering albedo are retrieved in addition to aerosol optical depth (AOD) 

[Martonchik et al., 2002; Martonchik et al., 2009]. A global comparison of coincident 

MISR and AERONET sunphotometer data showed that overall about 70% to 75% of 

MISR AOD retrievals fall within 0.05 or 20% of AOD, and about 50% to 55% are within 

0.03 or 10% of AOD, except at sites where dust or mixed dust and smoke are commonly 

found [Kahn et al., 2010]. MISR data were obtained from NASA Langley ASDC 

(Atmospheric Science Data Center). The analysis is performed with MISR version 22 

Level 2 aerosol data. The used AOD values are “best estimate AOD” at MISR green (558 

nm) band that combines the land and ocean AOD products.  

For each satellite, we create a subset based on the latitude/longitude box 30°N – 35°N 

and 80°W - 85°W. All the satellite pixels contained within that latitude/longitude box are 

averaged together to create a regional mean AOD value on a daily basis for each satellite 

sensor. The daily mean AOD values are used in the subsequent analyses. For spatial 
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analysis the nominal Level 2 products are used to create maps of AOD from both Terra 

instruments. The daily granules are averaged on a global grid (0.25° x 0.25° for MODIS 

and 0.2° x 0.2° for MISR). These grids are then averaged to create seasonal means of 

AOD fields for the ten year time period covering the aforementioned latitude/longitude 

box. 

4.3 Results 

4.3.1 Seasonal Cycle 

Where available, we analyzed 10 years of PM2.5,TEOM, PM2.5,FRM , and AOD data from 

MODIS Terra and Aqua, and MISR Terra to investigate the seasonal aerosol signatures 

over the U.S. Southeast.  Considering only spring and summer seasons in our previous 

study [Alston et al., 2011a] we found that PM2.5 and AOD have different seasonal traits 

with AOD values almost doubling during the summer compared to values in the spring. 

Here we calculated 10-yr (if available) averages of each month for both the satellite and 

PM2.5 datasets. The results are shown in Figure 4.1. In analyzing a full calendar year 

instead of just spring and summer, here we determine that summer (June – August) AOD 

(0.32 – 0.35) is almost tripled from wintertime (December – February) AOD (0.08 – 0.1). 

MODIS Terra has the highest average AOD. Generally speaking, both Terra sensors 

(MODIS and MISR) have higher AOD than MODIS Aqua. During the summer months 

the difference between the MODIS AOD sensors and MISR AOD is about 0.1. While the 

difference between the MODIS AOD sensors at its highest is about 0.025. The noted 3x 

increase cannot be fully attributable to PM2.5 increases over the same period. The 

different PM2.5 datasets behave differently, with PM2.5,TEOM doubling concentrations 
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during the summer whereas PM2.5,FRM shows only a modest increase over the same period 

(~10.0 µg/m3 during the winter to ~18.0 µg/m3 during the summer). It is possible that 

some of the differences seen between the datasets are that the PM2.5,TEOM dataset only has 

7 years of data compared with 10 years of the EPA dataset. Another possibility could be 

due to the differences in measurement techniques used. The standard error (standard 

deviation/number of observations) of the means of both datasets show more variability 

during the warmer months, see Figure 4.2.  

Timeseries of monthly mean data for each year are shown in Figure 4.2. The 

winter months have the lowest values of AOD and PM2.5 , while the summer months have 

the highest. Specifically, July and August have the highest AOD values with maximums 

over the years varying between 0.5 – 1.5, with January and December having the lowest 

values between 0.2 – 0.55. MODIS Aqua has a much tighter AOD envelope with 

wintertime AOD values between 0.05-0.08 and summertime AOD values between 2.5 – 

0.5. The year 2007 has anomalously high values in all the datasets. For a majority of the 

year, the satellite datasets have small amounts of interannual seasonal variability, with the 

highest amounts of interannual variability occurring in the summer.  

The PM2.5 datasets have more interannual variability than the satellite datasets. By 

breaking the PM2.5 datasets into different geographic regions allows us to evaluate the 

effect of the large urban area of Atlanta on the region as a whole. Atlanta concentrations 

from both PM2.5,TEOM and PM2.5,FRM have more variability throughout the year when 

compared to stations outside the Atlanta metropolitan area, see Figure 4.3 and Figure 4.4. 

Our results suggest that during the summer there is a complex dynamic relationship 

between regional background PM2.5 concentrations and anthropogenic emissions that lead 
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to Atlanta having a 50% or more increase in surface concentrations that are not observed 

elsewhere in the state.  

 

Figure 4.1: (A) Bar plots of ten-year means by month for MODIS Terra AOD, MISR 
Terra AOD and MODIS Aqua AOD. (B) Same as (A) except for PM2.5,FRM All GA 
(µg/m3), PM2.5,FRM Atlanta (µg/m3) and PM2.5,FRM Outside Atlanta (µg/m3). (C) Same as 
(A) except for PM2.5,TEOM All GA (µg/m3), PM2.5,TEOM Atlanta (µg/m3) and PM2.5,TEOM 
Outside Atlanta (µg/m3). Whiskers represent +/- standard error of the mean for each 
respective dataset. 
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Figure 4.2: (A to C) Multi-year plots of monthly means for MODIS Terra AOD, 
MISR Terra AOD and MODIS Aqua AOD. 
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Figure 4.3: (D to F) Multi-year plots of monthly means for PM2.5,FRM All GA (µg/m3), 
PM2.5,FRM Atlanta (µg/m3) and PM2.5,FRM Outside Atlanta (µg/m3). 
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Figure 4.4: (G to I) Multi-year plots of monthly means for PM2.5,TEOM All GA (µg/m3), 
PM2.5,TEOM Atlanta (µg/m3) and PM2.5,TEOM Outside Atlanta (µg/m3). 
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Our analysis to this point has shown relatively good agreement between the 

satellite sensors. To further investigate the agreement between sensors, specifically 

MODIS Terra and MISR Terra, we analyze seasonal coincident AOD monthly means. 

We define each season in standard fashion: winter (December, January and February), 

spring (March, April and May), summer (June, July and August), and fall (September, 

October and November). Figure 4.5 presents the comparison of AODs. In most seasons, 

MODIS reports higher AOD values than MISR. Although our results from Figure 3 show 

that on a monthly basis the differences between the two sensors are smallest during the 

fall and winter, our seasonal analysis (Figure 4.5) shows more variance between the 

sensors. Not surprisingly, the linear regression slopes (0.33 for winter and 0.54 for fall) 

are not close to 1, and the subsequent correlation coefficients are 0.33 and 0.57, 

respectively. The outliers in scatterplots are possibly due to retrieval biases, differences 

within the retrieval algorithms, and cloud effects. Remer et al. [2008] found that on a 

global scale, aerosols near clouds only occur less than 1% of the time over land; however, 

they note that AOD values near clouds can double the reported AOD due to subpixel 

cloud contamination [Zhang et al., 2005], 3-D effects [Wen et al., 2007], and increase of 

AOD due to increased humidity near clouds [Koren et al., 2007]. Kahn et al. [2009] 

found that MODIS AOD values are lower than MISR AOD values for AOD below 0.2, 

which could be related to Collection 5 algorithm changes that allow for negative AOD 

retrievals. The spring and summer seasons produce the greatest agreement between the 

two sensors with correlation coefficients of 0.64 and 0.71, respectively. Hygroscopic 

growth of aerosols due to higher relative humidity in the summer also possibly influences 

the agreement between the sensors.  
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Figure 4.5: Seasonal scatterplots of MODIS Terra AOD vs. MISR Terra AOD. Red 
dashed line denotes 1:1. Purple dotted line denotes linear regression line. 

 

An additional influence could be the weather pattern dynamics with the spring 

and summer seasons experiencing large-scale high pressure systems that can persist, 

which likely results in increased AOD values for both sensors despite their differences in 

viewing geometry. Interestingly, the signs of the y-intercepts are negative for spring and 

summer seasons. Possible explanations for this include that we do not force our linear 
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regressions through zero, and due to systematic underestimation of AOD by MISR [Kahn 

et al., 2009], the regression line is pulled downward. Nevertheless, our results suggest 

good agreement between the two sensors over the past ten years. Yet Liu and Mishchenko 

[2008] reported larger disparities between the two. We should note that Liu and 

Mishchenko [2008] only consider two months (January and July) from 2006, and they 

consider a region (Eastern U.S.) that is spatially larger than our area and contains 

multiple sources of aerosols (e.g., large metropolitan areas), while our area only contains 

one large metropolitan area, i.e., Atlanta.  

Figure 4.6 shows how the seasonal means for each dataset change over time. As 

expected, spring and summer seasons show the most variance over the years. For 

instance, in the year 2000 MODIS Terra and MISR Terra had summer AOD means of 

0.38 and 0.29, respectively, and by 2009 the means were 0.21 and 0.24. Also, even 

though our considered spatial domain is relatively small (5° by 5°), our seasonal means 

are similar in behavior to those of East North America as shown in Remer et al. [2008] 

where Level 3 1° x 1° globally gridded AOD are used for regional seasonal analysis, yet 

our seasonal means are higher. In the PM2.5 datasets there appear to be different 

behaviors. The PM2.5,FRM values all appear to be decreasing with time. In 2000, PM2.5,FRM 

concentrations were around 22 µg/m3, but by the end of the decade they had decreased to 

around 14 µg/m3. The spring, fall, and winter seasons have similar behaviors, with 

summer being the exception. The three seasons also show similar behavior across all of 

Georgia, yet during the summer our results suggest that Atlanta is dominating 

concentrations across the state. The difference between the All GA and Atlanta means at 



 93 

most varied around 2 µg/m3, and there is a larger difference (4 µg/m3) between the All 

GA means and the Outside Atlanta means.  

 

Figure 4.6: (A) Timeseries of seasonal means for MODIS Terra AOD, MISR Terra 
AOD and MODIS Aqua AOD. (B) Same as (A) except for PM2.5,FRM All GA (µg/m3), 
PM2.5,FRM Atlanta (µg/m3) and PM2.5,FRM Outside Atlanta (µg/m3). (C) Same as (A) except 
for PM2.5,TEOM All GA (µg/m3), PM2.5,TEOM Atlanta (µg/m3) and PM2.5,TEOM Outside 
Atlanta (µg/m3). 
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Alston et al. [2011a] highlighted how the spring of 2007 was anomalous in both AOD 

and PM2.5 concentrations compared with other springs due to the large wildfire that 

burned for almost two months. It is likely that if the wildfire had not occurred, the spring 

means would decrease with time. Despite increased means for 2006 and 2007, the 

PM2.5,TEOM dataset appears to generally decrease with time.  

The aerosol seasonality was also examined through an analysis of satellite AOD 

fields over the past 10 years. In particular, we were interested in understanding if there 

are any discernable AOD differences from the large metropolitan area of Atlanta and the 

remainder of the state. Seasonal maps of AOD from MODIS Terra and MISR Terra are 

shown in Figure 4.7: winter mean AOD (A and D), summer mean AOD (B and E), and 

the difference between the two seasons in (C and F). These maps, specifically the 

seasonal difference maps provide comparison to similar figures in Goldstein et al. [2009], 

see their Figure 1. Our spatial analysis does not strongly resemble the features seen in 

Goldstein et al., namely the large area of AOD (AOD > 0.25) over the broader 

southeastern U.S. It should be noted that a major difference between this study and theirs 

is that we use a finer resolution product (Level 2), which is gridded to finer resolution 

grid than is provided by the Level 3 (1° x 1°) monthly mean product used by Goldstein et 

al. The Level 3 products produces smoother appearing maps that can likely mask large 

point sources (e.g., industrialization, large metropolitan areas). This study also uses data 

from 2000 – 2009, whereas their study encompassed 2000 – 2007.  

The MODIS maps suggest that the Atlanta area has slightly higher AOD from the 

remainder of the region, see Figure 4.7 (A-C). The MISR maps do not appear to capture 

the AOD signal in Atlanta as well as MODIS, see Figure 4.7 (D-F); however, both 
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sensors show very low AOD during the winter season with AOD values < 0.1, though 

there are some areas near the coastlines and over the ocean where AOD > 0.1 [Chu et al., 

2002; Levy et al., 2005; Kahn et al., 2007]. The summer season presents a more varied 

spatial representation. As noted early, there is almost a 3x increase from winter AOD 

values.  

 

Figure 4.7: Maps of satellite AOD. (A) Winter mean AOD for MODIS Terra. (B) 
Summer mean AOD for MODIS Terra. (C) Difference between summer mean AOD 
minus winter mean AOD for MODIS Terra. (D) Same as (A) except for MISR Terra. (E) 
Same as (B) except for MISR Terra. (F) Same as (C) except for MISR Terra. In (A and 
D) the red ‘X’ denotes Atlanta, GA. In (B-C and E-F) the navy ‘X’ denotes Atlanta, GA. 

 

One common feature between the sensors is that the background region (the 

region minus Atlanta) appears fairly uniform in AOD. The difference plots (Figure 4.7     

(C and F) suggest variation across the region that is not seen in Figure 1 of Goldstein et 
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al. [2009]. In summary, the spatial analysis presented here shows slight differences 

between Atlanta and the remainder of the region at least from the MODIS Terra 

perspective, and this analysis shows more marked seasonality in spatial extent and 

magnitude than previously shown by Goldstein et al. [2009]. Finer scale spatial 

resolution of satellites will likely aid the differentiation of urban centers from background 

conditions. Until newer satellite sensors are available with finer resolution, regional scale 

analysis are likely to remain the current standard, which has implications for air quality 

forecasts that want to incorporate satellite data into these forecasts on a state or smaller 

scale. 

4.3.2 Interannual Variability and Trends  

To examine interannual variability of aerosol in the Southeast U.S., we analyzed 

monthly means of satellites AODs and ground based PM2.5 data, including analyses of 

anomalies and trends. Figure 4.8 presents the timeseries of monthly mean AODs for 

MODIS Terra, MISR Terra, and MODIS Aqua, along with timeseries of monthly mean 

PM2.5 concentrations for the two ground datasets. When viewed over the past ten years, 

the satellites have generally good agreement with each other. Though there are 

differences in AOD magnitudes between MODIS Terra and MISR Terra, their behavior 

over time is quite similar. The difference between minima (~ 0.1) and maxima (~ 0.4) for 

the MODIS sensors is about 0.3. Another way to put that is according to the MODIS 

sensor, AOD almost quadruples from the lowest values in winter to the highest values in 

summer. MISR appears to have quite dramatic fluctuations as well, with its minima ~ 0.3 

and its maxima ~ 0.8. The interannual variability makes it difficult to determine if there is 

a trend over time.  
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Figure 4.8: Timeseries of monthly means for satellite AOD and PM2.5 (µg/m3) 
datasets 

 

In contrast, the PM2.5 datasets show a distinctly decreasing trend over time. Both the 

maxima and minima for these datasets have decreased by 5- 8 µg/m3. The seasonality is 

present in the PM2.5 datasets, but not as pronounced as the AOD datasets. When viewed 

together (both AOD and PM2.5 datasets), the peaks and valleys in the timeseries 
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correspond well together. For instance, the correlation coefficient of MODIS Terra vs. 

PM2.5,FRM All GA and MISR Terra vs. PM2.5,FRM All GA is 0.72 and 0.73, respectively; 

however, the correlation coefficient of MODIS Aqua vs. PM2.5,FRM All GA is 0.8. 

Correlation analysis between the satellites and PM2.5,TEOM All GA yields 0.84, 0.81 and 

0.84, respectively. Finally, Figure 4.9 presents AOD and PM2.5 concentrations over the 

past 10 years in terms of yearly means calculated from monthly means. It is readily 

apparent that there is a decreasing trend across all datasets. One point of incongruity 

occurs in 2007. In the AOD datasets, 2007 is high compared with years 2006 and 2008, 

yet 2007 does not have this peak in the PM2.5 dataset. Alston et al. [2011a] suggested that 

aerosols aloft associated with aerosol transport of local and long range haze and biomass 

burning events could be a likely explanation.  

 As shown in Figure 4.8 there is strong seasonality, which makes the determination 

of any increasing/decreasing trend difficult. The first step in the determination of a trend 

is to fit the timeseries with a linear regression. The second step is to access if the slope is 

statistically different from zero by using t-test for α = 0.05. Though there was no trend 

easily detected in Figure 4.8, we fit each satellite AOD with a linear regression and 

determined that all the datasets did not have a statistically significant slope. As mentioned 

earlier, the PM2.5 datasets appear to be decreasing with time. The linear regression for 

PM2.5,FRM all have slopes that are significant for α = 0.05. In other words, the detected 

decrease in the timeseries is valid with some certainty. The PM2.5,TEOM datasets have 

more varied results. 
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Figure 4.9: Timeseries of multi-year means for satellite AOD and PM2.5 (µg/m3) 
datasets 

 

The slopes for PM2.5,TEOM All GA and Atlanta are not statistically significant, yet 

PM2.5,TEOM Outside Atlanta is significant. Our previous results suggest that metro Atlanta 

concentrations likely skew the statewide average towards higher values due to the 

majority of the TEOM monitors (7 or 60%) being in the metro Atlanta area. Our results 

also hint that the rest of the state is indeed experiencing decreasing PM2.5 concentrations, 

but the anthropogenic emissions especially in the summer in the metro Atlanta are likely 
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masking this decreasing trend. Another possible explanation for why one PM2.5 dataset 

shows a decreasing trend and the other does not is the difference in length of the data 

records. We believe that given the air quality control policies in place, the PM2.5,TEOM 

dataset will likely show a statistically decreasing trend given more time.  

Ultimately, it is necessary to remove the seasonal signal in order to access the 

presence of any true trends. We calculate a ten-year mean of every month, and subtract 

each month from the 10-yr mean of that month. For example, if the ten-year January 

average is 0.18, then 0.18 is subtracted from each January in the dataset, thus we are 

using anomalies from the 10-yr monthly mean to detect trends over the past 10 years. The 

resulting timeseries of anomalies for both satellite and PM2.5 datasets are shown in Figure 

4.10. The anomaly timeseries are fit with linear regressions to determine the trend and are 

shown by the dashed line in Figure 4.10. MODIS Terra was the only satellite dataset to 

have a statistically significant slope. We believe the smaller range of MISR AOD is why 

that dataset does not have a significant slope, while the MODIS Aqua dataset is only 8 

years long. It is possible that as time progresses the MODIS Aqua dataset will show a 

decreasing trend with certainty. By removing the seasonal component within the PM2.5 

datasets revealed statistically significant decreasing trends, see Figure 4.11 and Figure 

4.12. The linear regression variables (slope and y-intercept) are summarized for each 

dataset in Table 4.1. The regression variables are calculated on a per decade basis. We 

hypothesize that removing the strong seasonality from those datasets the summertime 

peaks in concentrations were minimized thus allowing a true and statistically significant 

trend to emerge.   
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Figure 4.10: (A to C) Timeseries of monthly anomalies for MODIS Terra AOD, MISR 
Terra AOD and MODIS Aqua AOD. Dashed red lines denote linear regression trend line. 
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Figure 4.11: (D to F) Timeseries of monthly anomalies for PM2.5,FRM All GA (µg/m3), 
PM2.5,FRM Atlanta (µg/m3) and PM2.5,FRM Outside Atlanta (µg/m3). Dashed red lines 
denote linear regression trend line. 
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Figure 4.12: (G to I) Timeseries of monthly anomalies for PM2.5,TEOM All GA (µg/m3), 
PM2.5,TEOM Atlanta (µg/m3) and PM2.5,TEOM Outside Atlanta (µg/m3). Dashed red lines 
denote linear regression trend line. 
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Table 4.1: Linear regression coefficients for satellite and PM2.5 datasets. Significance 
is denoted in bold. 

Dataset Slope 

(AOD/month) or (µg/m3 
month-1) 

Y-intercept 

(AOD) or (µg/m3) 

 Seasonal 
component 

No seasonal 
component 

Seasonal 
component 

No seasonal 
component 

MODIS Terra -0.000415 -0.00434   0.214 0.025 

MISR Terra -0.000177 -0.000112   0.15 0.011 

MODIS Aqua -0.000219 -0.000275   0.196 0.017 

PM2.5,FRM All GA -0.046 -0.0448 17.75 2.781 

PM2.5,FRM Atlanta -0.0488 -0.0472 18.187 2.951 

PM2.5,FRM Outside Atlanta -0.0301 -0.0302 16.029 1.821 

PM2.5,TEOM All GA -0.0317 -0.0319 15.876 2.501 

PM2.5,TEOM Atlanta -0.0324 -0.0319 16.325 2.561 

PM2.5,TEOM Outside Atlanta -0.0335 -0.0385 15.876 2.696 

 

4.4 Chapter Summary 

We analyzed aerosol data from both ground based (PM2.5) and space based 

(satellite AOD) platforms to examine the seasonality and interannual variations of the 

regional aerosol signal, and to detect if there was any discernable trends over the past ten 

years. We found that strong seasonality exists in both the AOD and PM2.5 datasets where 

mean summertime AOD is nearly three times higher than mean wintertime AOD, and 

mean summertime PM2.5 concentrations are almost twice as high as mean wintertime 

concentrations. Another factor that possibly influences the seasonality is the effect of 

hygroscopic aerosol growth during the summer months, given much higher relative 

humidity in the summer. Though satellite retrieval algorithms do not directly incorporate 

relative humidity, the retrievals are affected [Wang and Martin, 2007]. Additionally over 
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the past ten years, the PM2.5 dataset used for regulatory purposes (PM2.5,FRM) agree quite 

well with the satellite AOD measurements of aerosols. The correlation coefficients 

between PM2.5,FRM and AODs from MODIS Terra are 0.72, for MISR Terra are 0.73, and 

for MODIS Aqua are 0.8.  

We found that MODIS onboard Terra and MISR onboard Terra agree well with 

each other during the warmer months with correlation coefficients of 0.67 for spring and 

0.71 for summer. It is possible that cloud cover and inherent differences in sensor 

sensitivity explain the reduced agreement during the cooler months. Trend analysis was 

performed to establish baselines of different aerosol measures. We use t-tests of the 

slopes for α = 0.05 to determine whether the calculated slopes are statistically different 

from zero. Trend analysis of monthly means AOD revealed that none of the satellite 

datasets shows a statistically significant negative trend. Yet the PM2.5, FRM monthly mean 

timeseries does have statistically significant negative trends. Given the strong seasonality, 

we removed the seasonal component to create monthly mean anomalies. Trend analysis 

of the monthly mean anomalies yielded that MODIS onboard Terra has a statistically 

significant negative trend, and all the PM2.5 datasets have statistically significant negative 

trends. It should be noted that for MODIS onboard Terra, this detected trend could be 

impacted by degradation of the blue channel used in MODIS retrievals over land, yet 

even with this drift taken into account the retrieved values are within the acceptable error 

envelope [Levy et al., 2010; Kahn et al., 2011].  

Our results question the Goldstein et al. (2009) hypothesis on a dominant 

contribution of SOA from biogenic emission to AODs in the region. AOD is a column-

averaged measurement that cannot readily differentiate between sources without a priori 
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information. If the conversion rate between BVOC and SOA is primarily temperature 

driven, then if the temperature record was found to neither increase or decrease [Menne et 

al., 2009] then biogenic SOA is unlikely to be the driver behind the negative trends in 

AOD. Following this reasoning the primary driver behind the negative trend appears to 

be anthropogenic sources which are monitored and controlled through air quality policies. 

Another facet of the Goldstein et al. [2009] hypothesis is that these BVOC associated 

SOA are formed in an aerosol layer aloft and thus ground based sensors would not likely 

capture the additional aerosol load of those aerosols. One would not expect trends in the 

PM2.5 records, yet our results show decreasing seasonal and yearly trends. These results 

suggest that ground based monitors are measuring some portion of these SOA aerosols. 

Of course, this result requires additional measurement of aerosol profiles in this region 

for confirmation purposes. However, given the current state of measurement techniques it 

is not a simple exercise to differentiate between SOA of anthropogenic and biogenic 

sources (Weber et al., [2007]). Finally, the spatial analysis presented here somewhat 

agrees with that shown in Goldstein et al. [2009]. Of significance is that our results are 

different in spatial features (not smooth continuous fields of AOD) and magnitude (the 

difference between summer and winter is higher).  

Our analysis suggests that air quality policies and controls placed upon PM2.5 

precursors have resulted in appreciable decreases in aerosols in the U.S. Southeast. Our 

results also suggest that this region is experiencing solar brightening associated with 

decreasing concentrations of aerosols. Ground based measurements of solar irradiance in 

the region would be necessary to confirm our conclusions. Currently, there is no such 

monitoring being done. Our analysis also provides a useful baseline for naturally derived 
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aerosols representative of background conditions in this region of the U.S. Establishing 

the background helps to delineate the PM2.5 contributions of the metropolitan area of 

Atlanta. Thus, it is likely that future air quality control strategies will need to focus upon 

the anthropogenic component, while also incorporating naturally occurring aerosols. 

Additionally, the air quality control policies that have likely resulted in solar brightening 

might have potential climatic trade-offs. As such these longer-term analyses are critical 

for evaluation of the air pollution regulatory policies, and these analyses can serves as 

baselines of measures that can be used to access impacts of future policies and climate 

change. The methodology applied here is readily applicable to regions that have 

sufficient ground based aerosol measurements so long as the chosen area is large enough 

for sufficient satellite coverage. The need for finer scale resolution satellite sensors will 

aid a host of applications seeking to do more detailed regional and local scale analyses. 

Users of satellite data need to be aware of possible bias within the data at land-water 

boundaries, which is an important consideration given that so many highly populated 

areas are near coasts. It is possible that with newer sensors better treatment of these issues 

will be addressed. Our future work will focus upon the climatic impacts of the decreasing 

aerosol trend on this region. 



 108 

CHAPTER 5 

 CLIMATIC RADIATIVE FORCING OF AEROSOLS IN THE 

SOUTHEASTERN U.S.: ASSESSMENT BASED ON DECADAL 

SATELLITE DATA AND RADIATIVE TRANSFER MODELING 

ANALYSIS 

5.1   Introduction 

In the U. S. aerosols have distinct compositions based upon region, see the U.S. 

EPA’s report of Our Nation’s Air (http://www.epa.gov/airtrends/2010/index.html). 

Aerosols in the Southeastern U.S. are dominated by sulfates and organic carbon, with 

remaining contributions from nitrates, elemental carbon (or black carbon, BC) and crustal 

material. Several previous studies assessed TOA radiative forcing in the Southeastern U. 

S. Carrico et al. [2003] estimated TOA forcing to understand the radiative effects of 

urban aerosols on climate. Recently, Goldstein et al. [2009] estimated the radiative 

forcing (ΔF = -3.9 Wm-2) associated with secondary organic aerosols (SOA) formed from 

biogenic emission during the summertime in the U. S. Southeast. Their calculated forcing 

is less than the estimate from Carrico et al. [2003] (ΔF = -11 ± 6 Wm-2) taken during the 

summer of 1999. The Goldstein study used a mean value of summer aerosols from seven 

years of aerosol optical depth (AOD) measured by the MISR (Multi-angle Imaging 

SpectroRadiometer) and MODIS instruments on the NASA Terra satellite. Both studies 

used a first order approximation (see Eq.5.1) to assess the TOA forcing. While this 

research provides an interesting starting point in understanding the radiative impacts of 

aerosols in the Southeastern U.S., it only provides a snapshot of summertime conditions 
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as shown by the one calculated value of TOA forcing. To date, there have been over ten 

years of satellite data from Terra that can now be used to assess how TOA forcing 

responds over the longer time period.  

The first order approximation of TOA forcing can be defined as (Haywood and 

Shine, [1995]):  

  (5.1) 

where D the is fractional day length, solar constant (S0) = 1370 Wm-2, Tatm is the 

atmospheric transmission, Ac is the fractional cloud amount, ω0 the is single scattering 

albedo, β is the up-scatter fraction, and Rs the is surface reflectance. Goldstein et al. 

[2009] only considered changes in AOD by keeping the other variables constant. A single 

scattering albedo of 0.972 was used as a representative value of the optical properties of 

aerosols in the Southeastern U.S. Also, they chose to use a fixed surface albedo value of 

0.15 and fractional cloud cover amount of 0.6 to be representative of the region. Many of 

these variables can now be measured by satellite that provide a unique opportunity to 

assess the TOA radiative forcing of aerosols taking into account the decadal variations in 

aerosol AOD, cloud faction and surface albedo. The National Research Council Report 

[2005] advocates for the better understanding of regional variations in the radiative 

forcing as well as for long-term monitoring of radiative forcing variables.  

Goldstein et al. [2009] suggested that the negative TOA forcing produces a 

cooling at the surface. Earlier analysis of surface temperature using the GISS global 

climate model suggested that over the past hundred years the U. S. Southeast had cooled 

[Hansen et al., 1999]. However, recent reanalysis of surface temperature records point 

towards a different conclusion, namely that the Southeast has neither warmed nor cooled 
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[Menne et al., 2009]. If the latter is accurate, that has implications on whether the haze 

that persists in the Southeast is indeed responsible for cooling as Goldstein et al. 

hypothesized.  

In Chapter 4, our analysis of ten years of data has revealed distinct seasonality 

with respect to aerosol concentration and AOD, but that is only part of the story. The 

chemical composition of aerosols in this region changes with season as well [Butler et al., 

2003; Edgerton et al., 2006; Edgerton et al., 2009]. Chapter 4 results also supported 

differences between the urban area of Atlanta and the remainder of the state (see Section 

4.3.1). Tombach and Brewer [2005] found that the region is fairly homogeneous in 

sulfate, which happens to be the largest contributor to aerosols by mass, while organics 

were homogeneous as well. Organics are the second largest contributor to aerosols by 

mass. Nitrates were found to be homogeneous as well, but in considerably lower 

concentrations. Interestingly, Blanchard et al. [2011] found that in the Atlanta area, 

organic carbon and black carbon (BC) have noted higher concentrations from the 

surrounding region. The differences between the urban center and the remainder of the 

region are likely anthropogenic influenced. As mentioned earlier, a way to ascertain the 

impact of anthropogenic aerosols is through TOA estimates of forcing. However, the 

approximation given by Eq. 5.1 cannot capture the complexity of aerosol composition To 

have a more accurate estimate of forcing, a full-scale radiative transfer model can be used 

that includes optical properties of aerosols computed from measurements of the chemical 

speciation of aerosols. The radiative transfer model can also be used to address the 

differences between summer and winter aerosols. The model can also explore the 
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radiative impacts of certain conditions that have been raised earlier in this dissertation, 

namely biomass burning [Panicker et al., 2010] and aerosol layers located aloft.  

This study seeks to (1) assess the regional TOA aerosol direct radiative forcing 

and its dynamics over the past decade in the U. S. Southeast by taking into account 

changes in cloud cover, surface albedo, and aerosol concentration through AOD; and (2) 

quantify the radiative impacts of representative aerosols occurred during the summer and 

winter seasons both at the TOA and surface. In the first part of this chapter, we used 

AOD, cloud fraction and surface albedo data from MODIS and MISR from March 2000 

– December 2010. Our first order approximation of TOA radiative forcing assessment 

focuses on determining the seasonal and interannual variations of these variables across 

the region of interest and associated dynamics of the TOA radiative forcing, especially 

the presence of trends. The second portion of this chapter focuses upon full-scale optical 

and 1-D radiative modeling of Southeastern U. S. aerosols to determine the differences 

between the urban and background areas during the summer and winter seasons. We 

assemble different mixtures of aerosol species representative of winter and summer 

aerosols through the use chemical speciation measurements of PM2.5 and optical 

properties of those species. The mixtures are then used as input into an optical model 

whose results then serve as input into a 1-D radiative transfer model. We also quantify 

the radiative impacts of biomass burning as seen during the years 2007 and 2011, and test 

the Goldstein hypothesis of an organic layer aloft. The chapter is organized as follows. 

Section 5.2 describes the types of data and methodologies used in the first order 

approximation of TOA radiative forcing and presents the results. Section 5.3 presents the 

results of the radiative transfer modeling. Finally, section 5.4 concludes this chapter with 
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a combined summary from both the estimated radiative forcing assessment and the 

radiative transfer modeling analysis. 

5.2 First-Order Radiative Forcing Assessment Based on Decadal Satellite Data 

5.2.1 Data and Methodology 

This research utilizes aerosol products from MODIS and MISR along with cloud 

fraction and surface land albedo from MODIS. This study uses Collection 5 Level 2 over 

land aerosol product MOD04 from MODIS (see Chapter 2 for further information on 

MODIS). Level 2 data are separated into five-minute granules. One variable of interest to 

this study is “Optical_Depth_Land_and_Ocean” which is measured at 550 nm. This 

product combines the corrected optical depth over land and ocean with the best data 

quality (QA Confidence flag = 3).  

MISR AOD used in this analysis is version 22 Level 2 aerosol data, which have a 

17.6 km resolution at nadir (see Chapter 4 for further details). The AOD values used are 

“best estimate AOD” at MISR green (558 nm) band. MISR also has in their standard 

product a variable that estimates single scattering albedo (ω0 or SSA), which is used in 

this analysis. 

  This study uses a 5° x 5° latitude/longitude box centered over the Southeastern 

U.S. The box’s coordinates are 30-35 °N and 80-85°W. The AOD values associated with 

the pixels contained within the box are averaged together for each day from March 1, 

2000  - December 31, 2010. The daily AOD means are then averaged to create monthly 

means. These data files were obtained from NASA Goddard Space Flight Center’s 

LAADS (Level 1 and Atmosphere Archive and Distribution System).  
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This study also uses the same MODIS product to obtain cloud cover information. 

Specifically the “Cloud_Fraction_Land” subset is used. Cloud fraction is simply the ratio 

of the number of cloudy/probably cloudy pixels to the total number of pixels within a 

granule during the cloud-top algorithm processing [Platnick et al., 2003]. The same 

lat/lon box is used for obtaining cloud fraction over the Southeastern U.S for the same 

time period.  

The final dataset used in this analysis is a Level 3 CMG (Climate Modeling Grid) 

Albedo product (MCD43C3) at 0.5° x 0.5° resolution provided by Dr. Schaaf (personal 

communication). Albedo is a measure of a surface reflectivity that depends on the surface 

type. MCD43C3 is a combined product that uses both MODIS sensors as inputs. This 

product is available in 16-day aggregates every 8 days, which results in a maximum of 46 

Albedo measurements over a year.  

The MODIS Albedo products are generated using the Ross-Thick/Li-Sparse-

Reciprocal BRDF model [Ju et al., 2010]. The model parameters are estimated 

independently for each gridded pixel location by inversion of against the MODIS 

observations (surface reflectance and solar and viewing geometry values) sensed in the 

16-day retrieval period [Schaaf et al., 2002]. For more detailed explanation of the 

Albedo/BRDF algorithm please see [Schaaf et al., 2002]. The Albedo product is provided 

in three broadbands: visible (0.3-0.7 µm), near-infrared (0.7 – 5.0 µm) and shortwave 

(0.3 – 5.0 µm) using the spectral to broadband conversion approach developed by [Liang 

et al., 2002]. The use of quality flags is necessary to ensure the albedo values have real 

meaning with high confidence as to the validity of the values. The confidence associated 

with the inversion results is provided through the use of data quality flags. The same 
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lat/lon box is used to obtain albedos over the Southeastern U.S. This study utilizes the 

shortwave broadband white sky (isotropic diffuse radiation) albedos where more than 

80% of the albedos values are considered to be acceptable (data flag 2 or lower). 

Additionally, the 46 files are averaged on a monthly basis with each month having 3-4 

retrievals.  

  TOA radiative forcing is computed using Eq. (5.1) given in the Introduction. The 

methodology is as follows. The area averaged variables described above are used in the 

in the timeseries analysis and as input into Eq. (5.1). The analysis of the TOA radiative 

forcing is broken into four portions: (1) assessments of individual impacts of AOD, cloud 

fraction and surface albedo; (2) a comparison between surface-cloud impacts versus 

aerosol effects, e.g., AOD and cloud fraction; (3) a combined assessment where AOD, 

cloud fraction, and surface albedo all change with time; (4) same as (3) with three 

different values for single scattering albedo that capture seasonal aerosol composition 

changes. For those analyses mean values of input variables are calculated to serve as 

constants from the data instead of using representative values. Unless otherwise stated, 

the constants identified in the Introduction are used as is in the calculations. The 

calculated mean AOD refers only to MODIS AOD. For the purposes of clarity, in this 

context maxima will refer to more negative values, and minima will refer to less negative 

values.  

5.2.2 First Order Radiative Forcing Assessment Results  

5.2.2.1 Temporal Variability of AOD, Cloud Fraction and Surface Albedo 

Strong seasonality is a strong characteristic seen in the satellite AOD datasets of 

MODIS and MISR. Figure 5.1 shows the MODIS and MISR satellite monthly mean 
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AOD datasets as a timeseries from 2000 until 2009. Maxima occur during the warmer 

months with minima occurring during the cooler months. For most years the maxima 

occurs near 0.4, but in more recent years the maxima are around 0.3, whereas the minima 

hover between 0.05 – 0.1. For more detailed analysis see Chapter 4. Overall both datasets 

have decreasing trends with time. To determine trends without seasonal basis the same 

methodology from Alston et al. [2011b]. MODIS has a statistically significant decreasing 

linear trend (slope = -0.000415) in the monthly AOD anomalies using a t-test for α = 

0.05.  

Cloud fraction behaves slightly different from the other two variables. As shown 

in Figure 5.2, cloud fraction appears to have a bimodal behavior in terms of maxima. The 

summer months generally have the highest maxima, but the winter months also have 

maxima albeit lower than the summer maxima. The largest minima occur during the fall 

with the spring having the other minima. Minima values vary around 0.2 – 0.45 while 

maxima values fluctuate between 0.5 – 0.8. Due to the dynamic nature of clouds the year-

to-year behavior appears somewhat erratic. Additionally, the shorter time period 

considered in this study makes detecting a linear trend within the record challenging. As 

such, there is not a discernable trend in the monthly anomalies of cloud fraction.  
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Figure 5.1: (top) Timeseries of monthly mean AOD from MODIS and MISR. 
(bottom) Timeseries of monthly mean AOD anomalies from MODIS and MISR. Linear 
regression information inset with figure. 
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Figure 5.2: (top) Timeseries of monthly mean cloud fraction. (bottom) Timeseries of 
monthly mean cloud fraction anomalies. Linear regression information inset with figure. 

 

The last variable considered is surface albedo. Surface albedo has strong 

seasonality as shown in Figure 5.3. As expected during the warmer seasons there are 

albedo changes associated with a green-up of vegetation that results in seasonal maxima. 
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While there is a seasonal cycle, the southeastern region of the U.S. is region that stays 

green throughout the year due to high concentration of evergreen trees. Thus surface 

albedos do not vary as much as other regions in U.S. Interestingly, during the first seven 

years of the timeseries, the maxima are almost 0.155, yet during the latter years, the 

maxima only occur between 0.145 and 0.15. Barnes and Roy [2010] found that this 

region experienced over a 20% change in land cover and land use from 1973-2008, 

though the associated albedo change during that time was negligible because the region 

retained a forested type of ecosystem. Subsequently, our area averaged albedo values 

compare well with those of Barnes and Roy [2010]. The minima occur between 0.1175 – 

0.13, but the minima appear to be declining over time as well. After removing the 

seasonal component, surface albedo monthly anomalies have a decreasing linear trend 

(slope = -0.000052) for α = 0.05.  
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Figure 5.3: (top) Timeseries of monthly mean surface albedo. (bottom) Timeseries of 
monthly mean surface albedo anomalies. Linear regression information inset with figure. 
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5.2.2.2 Assessment of TOA Radiative Forcing Over the Past Decade 

Independent Estimates of Radiative Forcing Due to AOD, Cloud Fraction and Surface 

Albedo 

Functional analysis of Equation 5.1 provides some insight into the main drivers in 

the TOA radiative forcing calculations. Of the variables considered AOD would be the 

largest driver followed by cloud fraction then surface albedo. Yet the timeseries analysis 

revealed that cloud fraction varies the most with time, which could influence the behavior 

of the estimated TOA forcing. As discussed in Section 1.2.1, for these calculations of 

TOA radiative forcing, means of the variables are calculated for use in lieu of 

representative values along with the other equation constants, thus to assess the influence 

of each variable only this variable is allowed to vary with time. 

Estimated TOA forcing only considering surface albedo and cloud fraction are 

shown in Figure 5.4, and the estimated TOA forcing only considering varying AOD 

(MODIS and MISR) are shown in Figure 5.5. Not surprisingly, the estimated forcing 

closely resembles the behavior of the input variables. Estimated TOA radiative forcing 

(ΔF = -8.14 to -7.68 W/m2) due only to surface albedo varied the least. ΔF varied 

between -8.9 and -4.5 W/m2 due to cloud fraction. Only considering AOD yielded that 

largest variation in ΔF (-19 to -3.3 W/m2) for MODIS. Using a timeseries of input data 

allows for understanding the dynamic nature of radiative forcing associated with changes 

in aerosol and other time-varying factors, instead of simplifying it down to a single value 

as was done in Goldstein et al. [2009] (ΔF = -3.9 W/m2).   
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Figure 5.4: (top) Timeseries of estimated TOA radiative forcing due to only cloud 
fraction. (bottom) Timeseries of estimated TOA radiative forcing due to only surface 
albedo. 
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Figure 5.5: Timeseries of estimated TOA radiative forcing based on AOD from 
MODIS and MISR. 

 

Surface-cloud and Aerosol Effects on Radiative Forcing 

Estimates of TOA radiative forcing are modulated by the interaction between the 

different physical properties represented by variables and constants. How those estimates 

respond to only non-aerosol (non-AOD) variations are shown in Figure 5.6 (top). Figure 

5.6 (bottom) shows how TOA radiative forcing responds to coupling MODIS AOD with 

either surface albedo or cloud fraction. Without time-varying aerosol effects, the radiative 

forcing resembles the timeseries of cloud fraction. It appears that surface albedo has a 

minor modulating effect that is most apparent in the minima shown in the teal line in Fig. 

6(top). The addition of varying aerosol effects causes the radiative forcing to more 

closely resemble the MODIS AOD timeseries. However, cloud fraction does appear to 
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have an additive effect on radiative forcing more so than surface albedo as shown by the 

larger variation in the MODIS AOD and surface albedo timeseries (orange line, ΔF = -

18.1 to -2.5 W/m2) compared to the MODIS AOD and cloud fraction timeseries (purple 

line, ΔF = -23 to -2.4 W/m2). Given the dynamics of cloud fraction, surface albedo and 

AOD our results seem to suggest that by using observations to estimate forcing instead of 

averaged values yields a more complete perspective of the climatic system. 

 

Figure 5.6: (top) Timeseries of estimated TOA radiative forcing due to cloud fraction 
and surface albedo. (bottom) Timeseries of estimated TOA radiative forcing due to 
aerosol effects. Orange line is the estimated forcing due to MODIS AOD and surface 
albedo. Purple line is the estimated forcing due to MODIS AOD and cloud fraction. 
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Sensitivity Analysis of SSA 

Seasonal differences in aerosols not only affect concentration but also 

composition. A spatial analysis was performed using SSA from MISR averaged over 

2000- 2009 is used to better understand the effect seasonality had on aerosol composition, 

see Figure 5.7. Both seasons appear to fairly uniform, though during the winter MISR 

had some retrieval errors. SSA range from lows of ~0.87 to highs of 0.96. 

 

Figure 5.7: Maps of satellite derived winter and summer mean single scattering albedo 
from MISR onboard Terra.   

 

The SSA used, 0.8, 0.85, and 0.9, are more consistent with measurements of SSA in the 

region [Carrico et al., 2003], recalling that all previous estimates used a high SSA of 

0.975, e.g., Goldstein et al. [2009]. We estimated TOA ΔF due to AOD, cloud fraction 

and surface albedo along with varying SSA (Figure 5.8). The lower the SSA results in 

less negative forcing most notable during the summer months. For instance, for SSA = 

0.8 the largest maxima (most negative) of estimated forcing is approximately -19 W/m2 

for MODIS and -18 W/m2 for MISR. Yet, for the cooler months when the forcing is at a 

minimum, varying SSA has little effect. If SSA fluctuated more (possibly due the influx 
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of different aerosols e.g., smoke) for this region then it is possible that it would have a 

more pronounced effect on the estimates of TOA radiative forcing.  

 

 

Figure 5.8: (top) Timeseries of estimated TOA radiative forcing based on MODIS 
AOD, cloud fraction and surface albedo for three different single scatting albedo (ω0) 
values. (bottom) Timeseries of estimated TOA radiative forcing based on MISR AOD, 
cloud fraction and surface albedo for three different single scatting albedo (ω0) values. 
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Combined AOD, Cloud Fraction and Surface Albedo Effects on Radiative Forcing 

Allowing the AOD, cloud fraction and surface albedo to vary with time is a more 

reflective of actual variations in atmospheric and environmental conditions. We also 

allow the fractional day length (denoted D) in Eq. 5.1 to vary with time according to the 

latitude in Atlanta as a representative value of day length for the entire region. The 

behavior of the forcing estimates in Figure 5.9 appears similar to each other.  

 

Figure 5.9: (top) Timeseries of estimated TOA radiative forcing based on MODIS 
AOD, cloud fraction and surface albedo. (bottom) Timeseries of estimated TOA radiative 
forcing based on MISR AOD, cloud fraction and surface albedo. The dashed black line 
represents +/- the standard deviation of the estimated radiative forcing.  
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Figure 5.9 resembles the behavior of the AOD and cloud fraction driven estimates 

of forcing in Figure 5.6. Closer examinations of the periods of increased negative forcing 

generally occur during periods of wildfire activity. The increased negative forcing around 

the summer of 2000 can be attributed to increases in AOD due to heavy wildfire activity 

(2000 and 2007) in the western portion of the U.S. (http://science.nasa.gov/science-

news/science-at-nasa/2000/ast04aug_1m/). Also the increased negative forcing in 2007 is 

mainly due to two factors: 1) wildfire activity within the state of GA during May, and 2) 

events of aerosol transport into the region from wildfires in the western U.S. during late 

July and August. It is likely that these high AOD events as well as weather dynamics 

(e.g., high pressure systems that increase aerosol loading that take place during the 

summer) increase the standard deviation (STD) of the AOD and thus the estimated TOA 

forcing. Given the seasonality within the timeseries, we performed the standard deviation 

calculation on each respective month over all ten years e.g., all Januaries were combined 

to calculate the standard deviation of the estimated forcing for January and so on. The 

monthly mean (10-year mean of each respective month) of estimated forcing from 

MODIS during January is -2.47 +/- 0.351 W/m2 and during July is -15.74+/-3.71 W/m2. 

The January mean for MISR is  -1.8 +/-0.55 W/m2 and during July the mean is -12.11 +/- 

3.05 W/m2. 

During the cooler months, the minima (less negative) of radiative forcings vary 

between -6 to -3 W/m2, and during the warmer months there is more variation with ΔF 

varying between -24 to -12.6 W/m2 for MODIS and -22.5 to -11 W/m2 for MISR. Yet if 

we take an average over time ΔF = -7.57 W/m2 for MODIS and ΔF = -5.72 W/m2  for 

MISR. The estimates of forcing presented here are more negative compared with the 
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results of Carrico et al. [2003] where they used the same first order approximation to 

estimate TOA radiative forcing (ΔF = -11.6 +/- 6 W/m2) using instantaneous 

measurements of optical properties during six weeks in late summer 1999 in Atlanta. The 

estimates of direct TOA radiative forcing have a slightly increasing (less negative) linear 

trend, but it is not statistically significant. This result suggests that this region could be 

experiencing solar brightening. To determine if there is a true trend, we use a similar 

methodology here to calculate monthly radiative forcing anomalies by removing the 

seasonal signal from the timeseries as was used in Chapter 4. We then use the monthly 

anomalies to fit a linear regression, see Figure 5.10. Both anomaly timeseries show an 

increasing trend with time, which implies decreasing TOA forcing (less negative); 

however, only the anomalies for MODIS are statistically significant at the 95% 

confidence level where the slope is 0.012. 

 

Figure 5.10 Timeseries of monthly anomalies of radiative forcing based on AOD for 
both MODIS (green) and MISR (blue).  
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To better visualize the differences between the estimated forcing considering only 

AOD from the forcing calculated using AOD, cloud fraction and surface albedo, we 

subtracted the AOD only estimates as shown in Figure 5.11.  

 

Figure 5.11: Timeseries of the difference in TOA radiative forcing where difference = 
TOA forcing due to AOD, cloud fraction and surface albedo – TOA forcing due to only 
AOD.  

The convention is as follows: if the AOD only estimates are greater than the combined 

estimates then the difference is positive; however, if the AOD only estimates are less than 

the combined estimates then the difference is negative. During the cooler months the 

difference is between 1 and 2 W/m2, which implies that the addition of surface-cloud 

effects reduces the estimated forcing during this time period. Not surprisingly, the largest 

difference was noted in the warmer months where the differences varied between -7 and -

3 W/m2. The aerosol-cloud effects appear to have an additive effect on the estimated 

forcing especially during periods of high AOD (increased negative forcing). For a first-
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order approximation as shown here, the use of only AOD does provide information about 

the behavior of the TOA radiative forcing, yet by not including the aerosol-cloud effects 

your estimates are off by almost an amount equal to the standard deviation of the 

estimated forcing, which could introduce additional bias into the estimates.  

To sum up major points of this analysis, first we have shown that using average 

values for either AOD, cloud fraction, surface albedo and SSA causes the seasonal 

characteristics to be lost in the TOA forcing estimates. Our analysis showed that by 

incorporating seasonal variations within the radiative forcing estimates leads to a more 

robust representation of forcings for this region. During the summer, TOA forcing can be 

as large as ~ 25 W/m2 during biomass burning events and on average is ~ -11 to -15 

W/m2 using MODIS AOD and  -10 to -12 W/m2 using MISR AOD, which agrees well 

with results from Carrico et al. [2003], which found that TOA forcing was ~ 12 W/m2. 

However, our results do not agree well with the estimated TOA forcing presented in 

Goldstein et al. [2009], which calculated TOA forcing due to summer aerosols around -4 

W/m2, yet our differences due to summer aerosols are almost double that. Nevertheless, 

recognizing the limitations of the first order assessment we perform more precise 

calculation of forcing through the use of a 1-D radiative transfer model that presented in 

Section 5.3.  
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5.3 Assessment of Aerosol Radiative Forcing with 1-D Radiative Transfer 

Modeling 

5.3.1 Methodology for Optical and Radiative Transfer Modeling 

To access the radiative impacts of aerosols many factors must be considered such 

as species, sources, concentrations, particle size distributions, atmospheric vertical 

structure, etc. In order to accurately represent regional Southeastern U. S. aerosols in both 

optical and radiative transfer models, we use information from both published literature 

and generic aerosol models. Based on this information we constructed cases that are 

representative of mixtures of aerosol species and concentrations for season (winter or 

summer), constituents (urban or background) and physical process (biomass burning and 

suspended organic aerosol layer). For each case the Mie optical modeling was performed 

to calculate the scattering and extinction coefficients, single scattering albedo (SSA or 

ω0) and asymmetry parameter (g) for wavelengths encompassing the shortwave portion 

of the electromagnetic spectrum (0.3 – 2.0 µm). The AOD for each wavelength are 

calculated from computed extinction coefficients using satellite retrieved AOD at 550 nm 

or aerosol concentrations and the aerosol layer depth (see Section 5.3.1.1). The AOD, ω0, 

and asymmetry parameter are used as input into the Santa Barbara Disort Atmospheric 

Radiative Transfer (SBDART) model (see Section 5.3.1.2) to calculate TOA and surface 

radiative fluxes and forcings. We examine daily mean forcings and their diurnal pattern. 

5.3.1.1 Optical Modeling Using Mie Theory 

The Mie code requires input of the microphysical properties of each respective 

assemblage of aerosols. We consider four aerosol species that make up most of the 
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measured PM2.5: sulfates, organics, black carbon (BC) and nitrates [Butler et al., 2003; 

Edgerton et al., 2005]. Size distribution in terms of the parameters R0 (the median radius) 

and σ (geometric standard deviation) of a log-normal function, and ρ (density) are  taken 

from OPAC [Hess et al, 1998]. To account for hygroscopic effects on sulfates and 

nitrates, R0 and the refractive indexes were calculated for each RH of interest, e.g., RH of 

75% for the winter cases and 90% for the summer cases.  

To address seasonality we compare the winter (W) with summer conditions (S) to 

create the four study cases: WB- Winter Background; WU-Winter Urban; SB-Summer 

Background, SU-Summer Urban. These cases were constructed based on aerosol 

composition data from the EPA’s Air Quality System (http://www.epa.gov/airexplorer/). 

For sulfates we used ammoniated sulfates and for nitrates we used ammoniated nitrates 

based on EPA data. To construct representative compositional mixtures in terms of mass 

fraction of individual species, speciation concentrations were averaged for each season 

over all available data between years 2000 – 2009 (Figure 5.12).  
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Figure 5.12: Mass fractions of BC, organics, sulfates and nitrates derived from EPA 

data and used  in study cases (see also Table 5.1). 

 

We consider the species to be externally mixed in keeping with satellite retrieval 

algorithms; however, there is observational evidence to support internal mixtures of BC 

with other aerosol species. For addressing this type of internal mixture, we follow a 

methodology similar to Wang and Martin [2007] and these cases will be denoted by 

WBi, WUi, SBi and SUi. We consider that all of the BC aerosols are covered by sulfate, 

and that internally mixed BC/Sulfate aerosols form an external mixture with Organics 

and Nitrates (at appropriate RH).  
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Table 5.1: Study case names and microphysical properties used in the optical 
modeling.  

Model Cases 
 
 WB (Winter Background) WU (Winter Urban) 

Microphysical 
Properties  

 

BC Organics Sulfates 
75% 

Nitrates 
75% 

BC Organics Sulfates 
75% 

Nitrates 
75% 

R0 
 0.01188 0.0296 0.0296 0.0296 0.0118 0.0296 0.0296 0.0296 
ln σ 
 0.6931 0.8065 0.8065 0.8605 0.6931 0.8065 0.8065 0.8065 
Density (ρ) 
(g/cm3) 1.00 2.00 1.30 1.30 1.00 2.00 1.30 1.30 

M*(µg/m3) 
/cm-3 5.98E-05 2.81E-03 1.83E-03 1.83E-03 5.98E-05 2.81E-03 1.83E-03 1.83E-03 

Mass Fraction 0.0636 0.4475 0.3359 0.1530 0.0933 0.4443 0.2976 0.1648 

Number 
Fraction 0.7139 0.1067 0.1232 0.0561 0.7915 0.0801 0.0826 0.0457 
 SB (Summer Background) SU (Summer Urban) 

Microphysical 
Properties  

 

BC Organics Sulfates 
90% 

Nitrates 
90% 

BC Organics Sulfates 
90% 

Nitrates 
90% 

R0 
 0.0118 0.0348 0.0348 0.0348 0.0118 0.0348 0.0348 0.0348 
ln σ 
 0.693 0.8065 0.8065 0.8065 0.6931 0.8065 0.8065 0.8065 
Density (ρ) 
(g/cm3) 1.00 2.00 1.18 1.18 1.00 2.00 1.18 1.18 

M*(µg/m3) 
/cm-3 5.98E-05 6.59E-03 4.28E-03 4.28E-03 

    

Mass Fraction 0.0330 0.3950 0.5329 0.0392 0.0590 0.3686 0.5426 0.0298 

Number 
Fraction 0.7401 0.0805 0.1671 0.0123 0.8389 0.0475 0.1077 0.0059 
 SBB (Summer Biomass Burning) 

    
R0 
 

0.011 0.0348 0.0348 0.0348     
ln σ 
 0.693 0.8065 0.8065 0.8065     

Density (ρ) 
(g/cm3) 1.00 2.00 1.18 1.18 

 

   

M*(µg/m3) 
/cm-3 5.98E-05 6.59E-03 4.28E-03 4.28E-03     

Mass Fraction 
0.0217 0.6508 0.3037 0.0239 

    
Number 
Fraction 

0.6743 0.1835 0.1319 0.0104 
    

 
SALA (Summer Aerosol Layer Aloft)  
– Layer 1 

SALA – Layer 2 
 

R0 
 

0.0118 0.0348 0.0348 0.0348  0.0348   
ln σ 
 0.693 0.8065 0.8065 0.8065  0.8065   

M*(µg/m3) 
/cm-3 5.98E-05 6.59E-03 4.28E-03 4.28E-03  6.59E-03   

Density (ρ) 
(g/cm3) 1.00 2.00 1.18 1.18  2.00   

Mass Fraction 0.0330 0.3950 0.5329 0.0392  1.00   

Number 
Fraction 0.7401 0.0805 0.1671 0.0123  1.00   

 



 135 

We calculate an effective refractive index based on the well-mixed sphere mixing rule 

[Lesins et al., 2002] for a particle with the BC mass fraction presented in Table 5.1.  

For the biomass burning case, PM2.5 speciation mass measurements from the 2007 

GA wildfire from the IMPROVE network are used [Christopher et al., 2009]. Finally, for 

the aerosol layer aloft case, we use typical summertime aerosols for the first (lowest) 

layer, and the second layer is pure organics where measurements are provided by 

Hennigan et al. [2009]. CALIPSO is used to identify the frequency of this occurrence in 

the region, see Section 5.3.2. 

The Mie model inputs and case names are summarized in Table 5.1. The 

parameter M* shown in Table 5.1 is the ratio of mass concentration and particle number 

concentration that was computed for each species to provide the conversion between 

mass concentration and particle number concentrations. 

Mie optical model produces the normalized (per unit concentration) extinction, 

scattering and absorption coefficients, SSA, and asymmetry parameters for each species 

as a function of wavelength. The effective normalized coefficient of the external mixture 

is   

      (5.2) 

where j represents each individual species, , and fj is the number fraction. The effective 

normalized scattering coefficient is given by similar expression so that the effective SSA 

(ω0) and the effective asymmetry parameter (g) are 

                  (5.3) 

        (5.4)  
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 From the calculations of the normalized effective extinction coefficient, the 

optical depth of a layer Δz with total particle number concentration N is  

     (5.5) 

Using satellite derived AOD at 550nm and layer depth (Δz) we can use Equation 5.4 to 

solve for the total number concentration per modeling case.  

          (5.6) 

Multiplying   by N gives the spectral AOD for each study case. 

5.3.1.2  Radiative Transfer Modeling using SBDART 

The Mie optical model output is used as input to SBDART in terms of 

considering boundary layer aerosols that are representative of southeastern U.S. Since 

this region is covered year round by evergreens, surface albedos do vary over seasons, 

but the magnitude of that variance is small, see Section 5.2.2.1, thus we use seasonal 

surface albedo values from MODIS. Since we are considering two seasons, we use the 

appropriate atmospheric profile (mid-latitude winter or mid-latitude summer). Table 5.2 

summarizes the SBDART model inputs and Figure 5.13 presents a pictorial 

representation of the steps used for this modeling approach.  
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Table 5.2: SBDART model initialization for each study case 

Cases 

 WB WU SB SU SBB SALA 

Season  

Mid-
latitude 
Winter 

Mid-
latitude 
Winter 

Mid-
latitude 
Summer 

Mid-
latitude 
Summer 

Mid-
latitude 
Summer 

Mid-
latitude 
Summer 

Wavelength 
min  0.3    0.3    0.3 0.3 0.3 0.3 

Wavelength 
max  2 2 2 2 2 2 

Albedo  0.12 0.12 0.15 0.15 0.15 0.15 

SZA 50  - 85 50 - 85 10 – 84 10 – 84 10 - 84 10 – 84 

AOD550nm 0.04 0.09 0.28 0.34 0.7 

L1= 0.04 

L2= 0.24 

Number of 
Layers 1 1 1 1 1 2 

Layer Depth 
(km) 1 1 2 2 2 

2 

1 
 

 

Figure 5.13: Schematic of general modeling approach 
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5.3.2 Vertical Profile Analysis of CALIPSO Data 

Different aerosol layer depths or mixing layer thicknesses are considered also. To 

determine the thickness of the layer (shown in Table 5.2), one-year of CALIPSO browse 

images are used to determine “average” heights of those layers. We looked at winter 

overpasses (December 2008- February 2009) and summer overpasses (June 2009 – 

August 2009). We chose to use this year because we wanted a year with no problems 

with the laser and a year without any appreciable biomass burning in the region. Our 

analysis determined that during the winter, the aerosol layer was approximately 1km 

thick, and during the summer, the layer depth was about 2 km. Our analysis, which is 

summarized in Table 5.3and Table 5.4, revealed that during the winter, there are a 

number of days where there are no aerosols present or if there were some aerosols, they 

were not in sufficiently high enough concentration to have significant backscattering at 

532nm. We also use this analysis to determine if there is a persistent organic aerosol layer 

aloft, and if there are two distinct layers, use the AOD and layer information from 

CALIPSO. Our analysis showed that there is no persistent aerosol layer aloft over this 

region, which is a tenet of the hypothesis from Goldstein et al. [2009]. Goldstein et al. 

offer different definitions of what “aloft” means, but they do not provide a clear single 

answer. Further casting doubt on this hypothesis is work by Heald et al. [2011] which 

concludes that data from 17 field experiments do not substantiate elevated SOA in the 

mid-troposphere where it is often predicted to be by models. It is possible that due to 

some of CALIPSO’s limitations in the PBL and being able to discriminate between SOA 

and other aerosols, that there are aerosols present aloft so, we do consider a case where an 
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aerosol layer consisting of organics is aloft from a lower layer of typical summertime 

aerosols (SALA case).  

Table 5.3: Aerosol layer analysis using CALIPSO browse images for winter 2008-
2009. Attenuated= Signal attenuated; No Aerosols = No aerosols detected in the vertical 
feature mask; < = the 532nm total attenuated backscatter (km-1 sr-1) is less than 2.0x10-2. 
Days without data that would have flown over area of interest: 1/11/09, 2/17/09, 2/19/09, 
2/21/09, 2/24/09, 2/26/09, 2/28/09. Dashes denote missing data. 

Winter Layer 1 
Dates Time (UTC) # of layers Layer Bottom 

(km) 

Layer Top 

(km) 

Layer 

Thickness 

12/1/08 18:06 Attenuated - - - 
12/3/08 7:14 1 0.00 1.00 1.00 
12/6/08 18:24 Attenuated - - - 

12/8/08 18:12 1 0.00 2.00 2.00 
12/10/08 7:20 1 0.00 2.00 2.00 
12/15/08 18:18 1 0.00 1.00 1.00 
12/17/08 18:05 < - - - 

12/19/08 7:13 1 0.00 1.50 1.50 
12/22/08 18:24 No Aerosols - - - 

12/24/08 18:12 1 0.00 1.00 1.00 
12/26/08 7:20 1 0.00 1.00 1.00 
12/31/08 18:18 No Aerosols - - - 

1/2/09 7:26 Attenuated - - - 

1/2/09 18:06 1 0.00 1.50 1.50 
1/4/09 7:14 1 0.00 1.00 1.00 
1/7/09 18:25 Attenuated - - - 

1/9/09 18:12 No Aerosols - - - 

1/16/09 18:19 Attenuated - - - 

1/18/09 7:41 < - - - 

1/20/09 7:15 Attenuated 0.00 1.50 1.50 
1/23/09 18:26 1 - - - 

1/25/09 18:14 No Aerosols - - - 

1/27/09 7:22 Attenuated 0.00 1.50 1.50 
2/1/09 18:21  - - - 

2/3/09 7:29 Attenuated - - - 

2/5/09 7:18 No Aerosols 0.00 1.00 1.00 
2/8/09 18:28 1 0.00 1.00 - 

2/10/09 18:16 1 0.00 1.50 - 

2/12/09 7:24 1 0.00 1.00 1.00 
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Table 5.4: Aerosol layer analysis using CALIPSO browse images for summer 2009. 
Attenuated= Signal attenuated; < = the 532nm total attenuated backscatter (km-1 sr-1) is 
less than 2.0x10-2. Dashes denote missing data. 

Summer Layer 1 Layer 2 
Dates Time # of layers Layer Layer Layer Layer Layer Layer 

6/2/09 18:27 1 0.00 2.00 2.00 - - - 
6/4/09 5:56 Attenuated - - - - - - 
6/6/09 7:23 1 0.00 1.00 1.00 - - - 

6/11/09 7:14 1 1.00 2.00 1.00 - - - 
6/16/09 18:40 1 1.00 2.00 1.00 - - - 
6/18/09 19:08 1 1.00 2.00 1.00 - - - 
6/20/09 7:35 2 0.00 2.00 2.00 1.50 2.50 1.00 
6/22/09 7:23 Attenuated - - - - - - 
6/27/09 7:41 1 0.00 2.50 2.50 - - - 
6/29/09 7:29 1 0.00 2.50 2.50 - - - 
7/2/09 18:39 1 2.00 3.00 1.00 - - - 

7/11/09 18:32 <    - - - 
7/18/09 18:35 2 0.00 2.00 2.00 1.50 2.50 1.00 
7/20/09 7:46 < - - - - - - 
7/20/09 18:26 1 1.00 3.00 2.00 - - - 
7/29/09 7:29 1 0.00 2.00 2.00 - - - 
8/3/09 18:37 1 0.00 1.00 1.00 - - - 
8/5/09 18:24 1 0.00 2.00 2.00 - - - 

8/12/09 18:30 1 0.00 2.00 2.00 - - - 
8/14/09 7:37 2 0.00 2.00 2.00 2.50 3.50 1.00 
8/19/09 18:35 1 0.00 1.00 1.00 - - - 
8/28/09 18:28 1 0.00 1.00 1.00 - - - 

 

Our analysis revealed one date (August 14, 2009) where there were two distinct aerosol 

layers, see Figure 5.14. During this nighttime overpass, the lowest layer (0-2 km) is 

identified as polluted continental and has an AOD of 0.11, and the upper layer (2.5-3.5 

km) is clean continental with an AOD of 0.03. Though CALIPSO’s problem of 

misidentifying some polluted aerosols as polluted dust is still a minor issue, the majority 

of the aerosol typing was correct. While the CALIPSO derived AOD values are slightly 

on the low side, we have already established in Chapter 3 (Section 3.3.3.2) that problems 

with CALIPSO selecting the correct lidar ratio could be a possible reason why CALIPSO 

AOD is biased low against MODIS AOD [Kittaka et al., 2011].We use our results from 
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the biomass burning case studies (see Chapter 3) to determine that for most of the 

biomass burning events there is only one layer of aerosols that is approximately 2 km 

thick (SBB case).  
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Figure 5.14: CALIPSO layer base and top (height), lidar ratio, and layer AOD for 
August 14, 2009 with an overpass time of 4:37am EDT. 



 142 

5.3.3 Analysis of Optical Modeling Results of Southeastern U. S. Aerosols 

 Figure 5.15 shows the refractive indexes for sulfates and nitrates computed at 

multiple RH of 0% (dry salt), 50%, 75% (winter) and 90% (summer). As expected the 

only species with significant absorption as measured by the imaginary part of the 

refractive index is BC, Organics and the BC/Sulfate internal mixture. The other species 

can be called essentially light scattering. In the shorter wavelengths, sulfates and nitrates 

have different behaviors in their absorption spectra, but as wavelengths increase, the 

behavior of the two becomes similar. For nitrates, the dry salt has the strongest absorption 

relative to the other nitrate measurements at increasing RH. Sulfate behaves opposite of 

nitrate, where increases in RH lead to slightly more absorption. In the scattering spectra 

for sulfates and nitrates, the dry salts are the most scattering, while the uptake of water 

leads to decreases in scattering.    

 The Mie optical model requires each species be modeled individually and the 

external mixture of aerosols is done afterward for each study case outlined in Table 5.1. 

Figure 5.16 shows the normalized (per unit concentration) extinction coefficient and ω0 

for each species. The behaviors of the extinction and ω0 curves are similar for sulfates 

and nitrates. The single scattering albedo (ω0) provides additional information that can be 

used in interpreting the optical depth. The single scattering albedo is defined as the ratio 

between the scattering coefficient and the extinction coefficient. A high value of ω0 

implies that scattering is more dominant, vice versa small values imply absorption is 

more dominant. BC has the smallest extinction, but has the lowest ω0, while ω0 for 

organics falls in between the other species.   
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A

C

B

D

 

Figure 5.15: Real and imaginary parts of the refractive indexes for (A) BC, (B) 
organics, (C) nitrates, and (D) sulfates for wavelengths 0.3-2.0 µm. Nitrates and sulfates 
are shown for 0%, 50%, 75% and 90% RH.  
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Figure 5.16: Normalized extinction coefficient ( ) and ω0 for BC (A), organics (B), 

nitrates (C), and sulfates (D) for wavelengths 0.3 – 2.0 µm. For nitrates and sulfates at 
RH of 50%, 75% and 90%. 

 
The outputs from the optical model are normalized properties and must be 

multiplied by the number concentrations per species for each case to obtain effective 

layer properties. Earlier MODIS AOD analyses from Chapters 2 and 4 were used to 

determine a representative AOD at 550 nm for each study case. Through Equations 5.2 

and 5.6 we can then calculate the total number concentration, which can then be 

multiplied by the effective normalized extinction coefficient to determine the spectral 
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AOD for 0.2 – 2.0 µm. The spectral AOD  (or τ) are shown in Figure 5.17. We used 

AOD from MODIS from earlier analyses in Chapter 2 and 4. The addition of a layer of 

organics above typical summer background conditions causes increased extinction. The 

biomass burning case (SBB) had the highest spectral AOD with values around 1.2 in the 

visible range, and the winter cases have the lowest AOD with values below 0.2. Though 

these effective properties are tuned to match satellite observed AOD, it would be useful 

to compare the spectral properties with those from AERONET; however, there are no 

AERONET stations in our region of interest. The effective asymmetry parameter (g) 

behaves similarly for all of the cases, with small differences between the cases (Figure 

5.17). In fact, for the winter and summer cases, they are virtually the same. The urban 

cases have the lowest effective ω0, followed by the background winter conditions. The 

cases with the highest ω0 are the winter cases and the aerosol layer aloft (SALA). These 

effective ω0 agree well with published literature data that show that scattering aerosols 

dominate this region [Edgerton et al., 2005; Tombach and Brewer, 2005; Blanchard et 

al., 2011; Heald et al., 2011]. Also, these ω0 agree well with satellite estimates of ω0 from 

MISR, see Figure 5.7, though for the internal mixture SSA values are lower with ranges 

in the visible spectrum around 0.7 – 0.8. Wang and Martin [2007] found a similar result 

in SSA relating to external mixtures and internal mixtures. 
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Figure 5.17: Effective AOD (τ), asymmetry parameter (g), and ω0 for wavelengths 0.3 
– 2.0 µm for each study case, considering the external aerosol mixtures (A, B, C) or 
internal mixtures (D, E, F). 

   

5.3.4 Analysis of Modeled Radiative Forcing 

Earlier in Section 5.2 we performed an estimate of TOA radiative forcing using 

the first order approximation where we used timeseries of surface albedo, cloud fraction 

and satellite AOD from both MODIS and MISR. However, that approximation is only 

applicable to TOA and cannot be used to determine the extent of surface forcing, not only 

for typical conditions (e.g., WB, SB) but for special cases such as biomass burning or 

deciphering the presence of an organic aerosol layer aloft. Thus we use the SBDART 
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radiative model to perform an assessment of TOA and surface forcing for our study cases 

(see Tables 5.1 and 5.2). 

We define the radiative forcing as the difference in fluxes between clean 

atmosphere (refers to the model run without any aerosols) and aerosols (refers to the 

model run with aerosols as specified in Tables 5.1 and 5.2): 

   (5.7) 

   (5.8) 

Equations 5.7 and 5.8 represent the direction of the fluxes:  = upward flux and  = 

downward flux. Using this convention negative values of ΔF are indicative of net aerosol 

cooling, and positive values are indicative if net aerosol warming.  

 Comparisons between the different cases are dependent upon aerosol speciation, 

concentration and RH, so we define the radiative forcing efficiency (RFE) as  

     (5.9) 

RFE is a useful metric because is removes aerosol load dependence. We use 

representative AOD at 550nm from MODIS for each study case (see Table 5.2). RFE is 

calculated for both the TOA and surface forcings. The units for RFE are W/m2 τ-1.  

Figure 5.18 presents the results of daily mean TOA and surface forcing and RFE 

for the study cases considering the external mixture. All study cases result in negative 

TOA and surface forcing. The special summer cases SBB (biomass burning) and SALA 

(organic aerosol layer aloft) have the largest forcings in absolute terms. During the 

winter, modeled TOA forcing is -2.8 and -5 W/m2 for the WB and WU cases, and these 

values generally agree with the estimated forcing given earlier in this chapter in Section 
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5.2.2.2. The modeled summer TOA forcings (SB = -13.3 W/m2) also generally agree well 

with earlier estimates. Interestingly the study case that is representative of the Atlanta 

metropolitan area has less forcing (SU = -3.3 W/m2) in absolute terms compared with 

background conditions that can be explained by relatively lower SSA as discussed below. 

All of the aerosol cases result in negative surface forcing (cooling). The SBB case had the 

largest degree of surface cooling, with the next highest being the summer cases. All of 

these estimates of forcing presented in this Chapter are significantly higher than those 

predicted by the IPCC (1.5 W/m2) [Forster et al., 2007], though they consider global 

TOA forcing (~1.5 W/m2) as opposed to our regional study.  

 Figure 5.18 also shows that there is less variability in RFE at the TOA. We find 

that the urban cases have higher RFE at the TOA than background conditions at the 

surface, yet WB, WU, SB have RFE that vary between -40 to -70 W/m2 τ-1. The SU case 

is unexpected in terms of comparing its RFE from the surface with the TOA. The SU 

case has the lowest RFE for TOA forcing of -9.8 W/m2 τ-1, yet has the largest RFE for 

surface forcing of -406.7 W/m2 τ-1. As Figure 5.12 shows the SU case has slightly more 

BC than the SB case, it is likely this increase in BC lead to a less cooing, i.e., less 

negative TOA forcing. This suggests that the region experiences TOA cooling year 

around as opposed to just the summer as is implied in Goldstein et al. [2009]. 

Interestingly, the biomass burning case (SBB) has similar forcing efficiencies (-44 W/m2 

τ-1) to that of summer background conditions (-47.6 W/m2 τ-1). This has an interesting 

implication for those situations where biomass burning aerosols are located aloft, our 

results suggest that in those cases the surface may experience increased surface level 

forcing. 
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Figure 5.18: Modeled daily mean radiative forcing and its radiative forcing efficiency 
(RFE) at the TOA and surface for the study cases. 

 

Previous studies demonstrated that the internal mixing of BC with other species 

leads to higher light absorption, i.e., lower SSA [Lesins et al., 2002]. For a certain AOD 

and surface albedo, decreasing SSA will result in less negative TOA forcing, and even 

may cause a positive TOA forcing. Unfortunately, there are no measurements available to 

quantify the BC fraction internally mixed with other aerosol. The case of complete 

coating of BC by sulfates considered here is likely to give the lowest SSA, and thus helps 

to bracket the extent of the effect. 

For the internally mixed cases, we show TOA forcing as a function of hour in 

Figure 5.19. Our analysis shows that for a majority of the day, TOA forcing is positive 
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for the summer cases. We believe that the lower SSA (i.e., different chemical 

composition: Sulfate coated BC) associated with these cases and high solar zenith angle 

leads to the sign change in TOA forcing. Thus when means are calculated of these 

internally mixed cases, the summer cases have positive mean TOA of 12.4 W/m2 for SBi 

and 21.6 W/m2 for SUi. The winter cases have negative mean TOA forcings of -1.4 W/m2 

for WBi and -3.6 W/m2 for WUi, which are lower than the mean TOA for the externally 

mixed cases WB and WU. It should be noted, that the mean forcing for WUi agrees very 

well with the estimated forcing of Goldstein et al. [2009] of -3.9 W/m2, which is 

interesting considering that in their study they considered a much larger region and did 

not consider different chemical speciation of aerosols. 

 

Figure 5.19: Diurnal pattern of TOA forcing as a function of time (SZA) for the 
internal study cases. 
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5.4 Chapter Summary 

The primary goal of this research was to estimate the regional TOA aerosol direct 

radiative forcing and its dynamical nature over the past decade in the U. S. Southeast by 

accounting for changes in cloud cover, surface albedo and aerosol loading through AOD 

as measured by satellite. The use of ten year datasets allows for understanding how these 

variables and TOA direct radiative forcing change from a seasonal perspective. By 

exploring seasonality differences in aerosol composition and concentration can be taken 

into account. The AOD datasets from MODIS and MISR (both sensors onboard the Terra 

satellite) have decreasing linear trends. The MODIS AOD linear trend (slope = -

0.000415) is statistically significant using a t-test statistic for α = 0.05. Also, the surface 

albedo from MODIS shows a statistically significant decreasing linear trend (slope = -

0.000052) for α = 0.05, while cloud fraction from MODIS does not have an apparent 

trend.  

Through varying AOD, cloud fraction and surface albedo one variable at a time 

while all other variables are kept constant allowed determination of the major drivers of 

direct TOA radiative forcing. AOD was a major driver of the estimated forcing 

calculations, while surface albedo and cloud fraction have modulating impacts on the 

influence of AOD on the estimated forcing. Allowing AOD, surface albedo, and cloud 

fraction to all vary gives a broad range of estimates of direct TOA radiative forcing from 

around -28 to -3 W/m2. During the cooler months radiative forcing varies between –28 to 

-11 W/m2, and during the warmer months the forcing varies between -28 to -12.6 W/m2 

for MODIS and -26 to -11 W/m2 for MISR. In comparison, Goldstein et al. [2009] 

estimated the TOA radiative forcing was -3.9 W/m2. The results of this study suggest that 
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this one value is overly simplistic and it does not provide any insight into the distinct 

seasonality of the aerosols in the U. S. Southeast. Additionally, these results expand the 

findings of Alston et al. [2011b] which suggests that this region is experiencing solar 

brightening as shown by a slightly increasing linear trend within the estimated direct 

TOA radiative forcing dataset.  

The results from the SSA sensitivity analysis provide some interesting 

connections. SSA of 0.8, 0.85, and 0.9 were considered for all input variables varying, 

and during the warmer months the difference between the estimates based on SSA were 

pronounced. As expected, higher SSA yielded increased TOA radiative forcing (negative 

values). The timeseries of AOD revealed increased AOD associated with wildfires both 

locally and transported into the region. These smoke aerosols increase AOD, but they are   

more light absorbing than sulfate-based aerosols due to increased amounts of black 

carbon. Presently these wildfire impacts usually encompass one season. If the climate 

continues to change to a warmer equilibrium it is possible that the spatial extent and 

duration of the wildfires will increase, which will ultimately change the concentration 

and composition of aerosols in this region. We calculated monthly anomalies of 

estimated TOA forcing, and we found that with time there is a positive trend, which 

implies the region is experiencing less radiative cooling. The trend based on estimated 

TOA forcing for both satellites was positive; however, only the MODIS Terra trend was 

statistically significant at the 95% confidence interval. One implication from the result is 

that this region is experiencing solar brightening, though a longer timeseries will give 

statistical credence to this assertion. 
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 The second part of this chapter focused on modeling radiative forcing at the TOA 

and surface through the use of an optical model and 1-D radiative transfer model 

(SBDART). We used representative microphysical properties to calculate optical 

properties of BC, organics, sulfates and nitrates as external mixtures. We also considered 

study cases where BC was coated with sulfate for an internal mixture. We used results 

from the Mie optical model of the effective aerosol layer properties to predict surface and 

TOA forcing using SBDART. We found that all of externally mixed aerosol cases 

considered resulted in negative TOA radiative forcing. The radiative forcing efficiency at 

the TOA varied from -9 to -72 W/m2 τ-1, while RFE at the surface varied from -50 to -410 

W/m2 τ-1. Interestingly the RFE at the TOA was similar for the winter cases, and the 

modeled TOA forcing was more similar to the estimated forcing calculated by Goldstein 

et al. [2009]. The RFE of biomass burning both at the TOA and surface are similar to the 

RFE of summer background aerosol. This result has direct implications for biomass 

burning radiative effects in this region especially in the context of a potentially warming 

climate. The interpretation of the internally mixed cases are slightly more ambiguous, in 

that the diurnal TOA forcing for the SBi and SUi cases show positive values for most of 

the day. Since a majority of the day results in positive TOA forcing, the mean TOA 

forcing for these cases are 12.4 W/m2 and 21.6 W/m2. While the winter cases have 

negative mean TOA, their values (WBi = -1.4 W/m2 and WUi = -3.6 W/m2) are lower 

than those of the externally mixed cases. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Dissertation Summary and Discussion 

 From their orbits high above, satellites have the unique ability to monitor life, 

weather and phenomena unlike earthly bound observers. As technology has advanced so 

has our understanding of science, especially atmospheric science. Today, there are 

multitudes of flying orbiters that provide an array of pertinent measurements to unlock 

the ever-changing state of our atmosphere. These satellites can be thought of as taking 

pictures with different types of lenses to glean different information, an apt description of 

using satellites for aerosol applications. Yet a satellite’s operational life is short, thus we 

must plumb the depths of data they create. In that regard, this research developed and 

implemented methodologies for using satellite remotely sensed data in conjunction with 

ground based observations and modeling for characterization of regional aerosol 

variations with applications to air quality and climate studies in the Southeastern U. S. 

 This region is characterized by a sub-tropical climate, which includes humid wet 

summers and relatively mild winters. Though this region has a few large metropolitan 

areas, a significant portion of it remains covered in forests, which are natural source of 

biogenic emissions of volatile organic compounds, which thought to result in secondary 

organic aerosol (SOA) formation [Lee et al., 2010; Blanchard et al., 2011; Heald et al., 

2011]. It is this interplay between man and nature that creates a unique characteristics 

chemical composition of aerosol for this region. This region is scientifically interesting 

because of the intersection of a large source of biogenic aerosols with anthropogenic 
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influences, e.g., transportation, industry, etc. Some research has been done to quantify 

those influences from both ground and in-situ measurements [Solomon et al., 2003; 

Weber et al., 2007; Hennigan et al., 2009]. Though much of the aerosol research has 

focused upon summer conditions, we strive to broaden and deepen those studies by 

building on the foundation previously laid through investigating different time and spatial 

scales and fusion of satellite data from an air quality and climatic perspective, examining 

the decade-long record of aerosol observations from space and ground.  

 The goals of this research presented in Chapter 1 were achieved through a 

combination of data analysis, data fusion, time series, and statistical analysis of multiple 

satellite sensors, e.g. MODIS, MISR, OMI and CALIPSO, and ground based 

measurements of aerosols, namely PM2.5 and their composition. Data analysis was 

performed in conjunction with optical and radiative transfer modeling. This dissertation 

provides a framework for integrating satellite observations in ways that benefit societal 

health now (air quality) and in the future (climate).   

 We performed an assessment of air quality in the metropolitan Atlanta, GA area 

through the close integration of ground based measurements and satellites during the 

spring and summer season of 2004-2008 (Chapter 2). One of the first tasks was to create 

datasets of PM2.5 that were close in time to MODIS Terra and MODIS Aqua overpass 

times of 10:30am and 1:30pm respectively. Comparison between PM2.5 (Figure 2.2) and 

AOD (Figure 2.4) shows that MODIS AOD captures the seasonal and yearly variability 

reasonably well. Some information about diurnal behavior is retained, though as shown in 

Figure 2.3 the two datasets (PM2.5,T (for Terra overpass) and PM2.5,A (for Aqua overpass) 

correlated very well with R2 varying between 0.78-0.85. Performing linear regressions of 
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MODIS Terra AOD vs. PM2.5,24 and MODIS Aqua AOD vs. PM2.5,24 further quantified 

how well AOD from both MODIS sensors encompassed the variability within the PM2.5 

datasets,  see Table 2.4 and Table 2.5. Correlation coefficients with Aqua vary between 

0.37 and 0.76, and Terra has r -values (correlation values) of 0.25–0.68. Information 

about aerosol composition was derived from the analysis of OMI AI. We found that mean 

AI for the Atlanta metropolitan area was around 0.3. This low value is due to the 

presence of relatively few absorbing aerosols among the majority of mildly UV-

scattering aerosols that have lower AI. This means AI can be used as a background 

baseline for the area to identify transport of absorbing aerosols into the area, for instance, 

from biomass burning events or long-range transport of heavy pollution episodes. We 

also compared the two MODIS sensors and found that the two despite different overpass 

times agree well with each other with correlations greater than 0.78 (Figure 2.6).  

 With the robustness of the PM2.5-AOD relationship established, we developed a 

probabilistic threshold approach to use AOD as proxy for PM2.5 concentrations. This 

approach was novel in that it is not directly tied to a single linear regression, but rather is 

related to the linear regression statistics with time that allows for a more robust 

approximation between PM2.5 and AOD. An example of the statistics associated with this 

method is that 80% of green AQI days have AOD below 0.3 (Figure 2.8). The threshold 

method predictions of Code Green and Code Yellow days based on AOD agree well with 

PM2.5 based Code Green and Code Yellow days (Figure 2.9). With more years and 

exceptional events this method has the potential to improve upon its predictive 

capabilities with regards to Code Orange and Code Red days.  
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 The following chapter (Chapter 3) delves into understanding the impact of 

wildfires on increases in AOD and PM2.5. The large wildfire that occurred in the 

Southeastern part of GA in 2007 caused the increase in aerosol loading. This case study 

was done to examine the utility of using multi-satellite sensor data as a tool for 

characterizing biomass burning effects on the metropolitan Atlanta area. Using the 

methodology (developed in Chapter 2) of spatial and temporal averaging of the PM2.5 

datasets with the MODIS AOD datasets (Terra and Aqua), we determined that during the 

active burn period May 2007 there were 6 air quality exceedance days (5/4, 5/16, 5/22, 

5/26, 5/27, 5/31) where PM2.5 concentrations surpassed 35.5 µg/m3 (Figure 3.2). 

Timeseries of AOD and PM2.5 behaved similarly across all stations. Yet because the 

stations are located close together, we also explored the effect of AOD pixel proximity to 

the station by comparing timeseries of MODIS AOD with a radius of 0.5° and 0.25°. 

Making the radius small reduces the number of coincident matches between the station 

and AOD swath (Figure 3.3). Our results suggest that by using a smaller spatial radius 

around a station can improve the characterization of aerosol loading as measured by the 

station (r-values for Terra = 0.52 -0.9 and r-values for Aqua = 0.63 -0.89). The range of 

correlation coefficients underscores the variability seen across all the stations and 

highlights potential biases in selecting which stations to correlate with AOD. To 

compensate for this, the use of as many stations as possible could be beneficial.  

The additional aerosol loading increased the linear correlations between AOD and 

PM2.5 during the wildfire period (Table 3.1). We identified wildfire signatures using OMI 

AI data during the period May 25-30, 2007 (Figure 3.4). We allowed OMI AI to be 

negative to show the presence of UV-scattering aerosols throughout the region, and 
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against this background it was easy to discern the presence of the wildfire aerosols (AI > 

0.7) during a poor air quality episode in late May. We also explored the benefits to using 

a space-based lidar (CALIPSO) for biomass burning applications (Figure 3.5 and Figure 

3.6). CALIPSO provides information about the vertical structure of aerosols, which can 

be used to determine how far widespread the wildfire effects are relation to air quality 

(located near-surface) and aerosol transport (located aloft). CALIPSO measurements 

detect aerosol layers and then attempts to identify the aerosol type, e.g., dust, pollution. 

On May 7, CALIPSO retrieved backscattering was around 4.5 km-1sm-1 and on May 14 

the backscattering was around 4.5 km-1sr-1 for the lowest layer and 2.0 km-1sr-1 for the 

second (higher) layer. Though the short time period reduced the number of CALIPSO 

overpasses, we were able to draw some conclusions from the analysis. First, we believe 

that CALIPSO miscategorizes biomass burning aerosols as polluted dust likely due the 

aerosols retrieved color ratio and backscattering coefficients. Second, there was at least 

one instance of two aerosol layers being present near the fire with one layer close to the 

ground likely impacting local air quality and the other layer being high enough for 

aerosol transport.  

We highlight the advantages of data fusion with an in-depth analysis of MODIS 

Terra AOD, MODIS Aqua AOD, OMI AI and HYSPLIT backtrajectories to understand 

the dynamics that lead to poor air quality on May 22 and 31 (Figure 3.8 and Figure 3.9). 

For instance, on May 22 PM2.5 monitors recorded very high concentrations of over 200 

µg/m3 and MODIS measured AOD values around 0.8. By fusing the data products 

together we can minimize the disadvantages associated with each individual satellite 

sensor. For instance, MODIS cannot directly provide information about aerosol 
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composition (scattering or absorbing), but OMI can. Yet OMI cannot provide visible 

confirmation of aerosol events as MODIS can, nor does OMI have a spatial resolution as 

fine scale as MODIS. Finally, we apply the methodology developed earlier to the recent 

fire of 2011. This fire occurred in the same location as the fire of 2007, and though it 

burned longer (April to September 2011) than the fire in 2007 less fuel was consumed. 

We compared the two fires with a non-burn year (2009) to ascertain the relative effects 

each fire had on aerosol loading in the region. Our analysis determined that the 2011 had 

a longer peak burn period compared to 2007, and these results verify that less peat was 

burned as shown by lower AOD values between 0.6 – 0.8 during the peak burn period 

(Figure 3.10).  

 Investigation of a decade-long perspective on aerosols in the region was presented 

in Chapter 4. We analyzed satellite AOD from MODIS Terra and MISR onboard Terra 

and PM2.5 aerosol measurements from 2000-2009. The goal was to examine the temporal 

changes of PM2.5 and AOD during the past decade. Both datasets show distinct 

seasonality. Our analysis shows that during the summer (JJA) mean AOD (~0.3 for both 

MODIS sensors and 0.28 for MISR) nearly tripled from winter (DJF) means (~0.85 for 

both MODIS and 0.6 for MISR). The PM2.5 datasets behaved similarly. We used data 

from both the EPA’s FRM network and GA Depart of Natural Resources continuous 

TEOM measurements that were split between three locales: Atlanta, All GA, and Outside 

Atlanta. The different PM2.5 datasets allow for understanding how the urban area impacts 

the remainder of the region. Since we already established the agreement between MODIS 

sensors, we now want to ascertain the agreement among sensors onboard the Terra 

spacecraft. We found that the two sensors’ agreement is a function of season (Figure 4.5) 
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with better agreement during the warmer seasons and less agreement during the cooler 

seasons.  

We also explore the apparent seasonality from a spatial perspective (Figure 4.7). 

In keeping with earlier results, during the winter the region appears to have little 

variability in aerosol concentration inferred from MODIS Terra and MISR AOD (winter 

mean AOD for MODIS Terra is 0.03 and winter mean AOD for MISR is 0.05); yet in the 

summer there are distinct areas of high aerosol loading, e.g., metropolitan Atlanta, and 

the overall spatial pattern of AOD is highly variable. Our spatial analysis, however, did 

highlight areas of discontinuity in both satellite sensors’ transition between land and 

ocean (see the increased AOD or missing AOD pixels near the coast). Finally, we 

conclude this chapter with timeseries analysis of both ground and satellite datasets 

(Figures 4.10 - 4.12). It was also important to understand a seasonal perspective, thus we 

calculated linear regressions with the seasonal component and without (anomalies). The 

PM2.5 data record anomalies show a statistically significant (α = 0.05) decrease. Despite 

the Atlanta area increasing the statewide average PM2.5 concentrations, the decreases 

appear to be uniform. This suggests that air quality control policies have had reasonable 

success at reducing PM2.5 concentrations in this region. The satellites anomalies 

timeseries generally have a negative trend though only MODIS Terra has a decreasing 

trend that is statistically significant. Our trend analysis agrees well with published trends 

on different geographical scales (broader regional definitions, e.g., Eastern U.S.) and 

surface types [Mishchenko et al., 2007; Zhang and Reid, 2010]. 

  Analyses of the decadal data records enable us to perform an assessment of the 

radiative impacts of regional aerosols (Chapter 5). We consider a first-order 
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approximation of TOA radiative forcing of aerosols [Haywood and Shine, 1995] as well 

as perform detailed radiative transfer modeling. Decadal TOA forcing (ΔF) (see Equation 

5.1) was estimated by taking into account changes in AOD (MODIS onboard Terra and 

MISR), surface albedo (MODIS Terra), cloud fraction (MODIS Terra) and single 

scattering albedo (SSA or ω0) from MISR during 2000-2009. We take advantage of the 

long dataset provided by Terra to understand the seasonal and interannual variability of 

the above variables. We also examined trends in AODs, surface albedo and cloud fraction 

datasets. Cloud fraction had not distinct seasonality and is highly variable with time 

(Figure 5.2) where minima values vary around 0.2 – 0.45 and maxima values fluctuate 

between 0.5 – 0.8; yet, surface albedo does have a decreasing trends and shows some 

seasonal pattern, the variance between winter (minima) and summer (maxima) are small 

in relative terms with the difference between the seasons around 0.4 (Figure 5.3).  

To ascertain the individual effects of aerosols, clouds and surface variations, we 

estimated TOA forcing only considering changes in surface albedo and cloud fraction 

while holding AOD constant (using a 10-yr AOD mean). Our analysis shows that by 

themselves, these two constituents are not the main driver of forcing (Figure 5.5) as 

shown by ΔF only varying between -10 and -5 W/m2 compared to the ΔF (-20 to -3 

W/m2) due to only AOD. Letting all three physical parameters vary with time, we 

estimated a complete TOA forcing over the past decade. During the cooler months, the 

minima (less negative) of radiative forcings vary between -6 to -3 W/m2, and during the 

warmer months there is more variation with ΔF varying between -28 to -12.6 W/m2 for 

MODIS and -26 to -11 W/m2 for MISR. We also calculated the standard deviation of the 

estimates to provide some measure of the total variance within the TOA forcing. 
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Estimated TOA forcing due to MODIS Terra AOD and MISR AOD behaved similarly, 

but the absolute values were slightly different. To better understand the impact of the 

surface-cloud interactions have on TOA forcing, we subtracted the estimated forcing with 

all three variables from estimated forcing due to satellite AOD only (Figure 5.11). We 

found that the surface-cloud interactions have an additive effect on ΔF where the 

difference between AOD-only forcing and AOD, cloud fraction and surface albedo 

forcing caused an additional ~ 6 W/m2 of forcing. The use of forcing anomalies 

determined that there has been less forcing with time, which suggests solar brightening. 

This analysis also address the effect of single scattering albedo We selected SSA (0.8, 

0.85 and 0.9) from Figure (Figure 5.7) to assess the potential effects of changes in 

composition due to seasonality on TOA ΔF (Figure 5.7). Our results indicated that lower 

SSA resulted in less TOA forcing of about 5 W/m2 in absolute terms, which has 

implications for biomass burning effects on the radiative budget.  

Using more representative aerosol compositions and loading better estimate 

radiative forcing motivates the second half of Chapter 5, which investigates the changes 

in forcing at the surface and TOA due to Southeastern U. S. aerosols using a 1-D 

radiative transfer modeling analysis. We first used a Mie optical model to predict the 

properties of different aerosol study cases that we choose to be representative of the 

region. We used black carbon (BC), organics, nitrates and sulfates for our externally 

mixed cases. We also considered an internally mixed case where BC was coated with 

sulfate. In choosing test cases, care was taken to choose mixtures that were representative 

of different locales such as more urbanized vs. background (rural) and different seasons: 

winter and summer. We also wanted to model two special cases: the first is representative 
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of biomass burning events, and the second is testing the hypothesis that there is an 

organic aerosol layer aloft. Our results showed that the biomass burning case produced 

the highest spectral AOD with visible spectrum values around 1, which is consistent with 

the analysis from Chapters 2 and 3. . During the winter, modeled TOA forcing is -2.8 and 

-5 W/m2 for the WB and WU cases, and the modeled summer TOA forcings (SB = -13.3 

W/m2) also generally agree with earlier estimates. While surface forcings varied from -3 

to -210 W/m2, see Figure 5.18. We introduced a metric to compare surface and TOA 

aerosol forcings: radiative forcing efficiency (RFE), where the units are W/m2 τ-1. RFE 

allows direct comparison between forcings as aerosol load is removed from consideration 

by dividing by AOD. RFE for the TOA produced less variation than at the surface. The 

radiative forcing efficiency at the TOA (amount of forcing per unit of AOD at 550 nm) 

varied from -9 to -72 W/m2 τ-1, and RFE at the surface varied from -50 to -410 W/m2 τ-1 

(Figure 5.18). It was found that the forcing efficiency for biomass burning aerosols are 

similar to the forcing efficiency of background aerosols during the summer that 

highlights the importance of possible increased biomass burning activity. The modeled 

forcings of the internally mixed case are more challenging to decipher because there is a 

sign change from negative to positive in the forcing (Figure 5.19). 

6.2 Research Implications and Future Work 

The threshold technique established in Chapter 2 could provide other areas of the 

U. S. and other countries a relatively quick way of understanding the potential air quality 

risks in a near-real time manner through the use of satellite data. Weber et al. [2010] 

suggest the use of seasonally averaged aerosol data from both the ground and satellites to 

improve quantification of the PM2.5-AOD relationship through linear regressions. Related 
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research suggests using regionally averaged aerosol data improves PM2.5-AOD linear 

regressions (their r-value for SE U. S was around 0.6) [Zhang et al., 2009]. The research 

presented in this chapter combines both of these suggested approaches over a longer 

period of time, which could have broad applicability to operational tools such as the 

IDEA website (http://www.star.nesdis.noaa.gov/smcd/spb/aq/) currently run by NOAA 

[Al-Saadi et al., 2005]. 

The data fusion methodology developed in Chapter 3 can be adapted to fit other 

regions where wildfires occur, which could be beneficial if climate-model prediction of 

warming increase the burn season, duration and frequency [Park et al., 2007; Spracklen 

et al., 2009]. One aspect of our research that is presented in Chapter 3 that separates our 

analysis from other published literature [Bhoi et al., 2009; Christopher et al., 2009]on the 

2007 wildfire, is that first, we use more satellite sensors in our analysis. We use MODIS, 

OMI, and CALIPSO. The addition of OMI provides independent verification of wildfire 

aerosol impacts as well as indirect evidence for fire intensity (AI is related to 

concentration of aerosol in the UV channels). Additionally, we have identified an 

algorithm detection problem in the CALIPSO data, of which we have notified the 

CALIPSO science team. Additionally we use other products from CALIPSO (e.g., 

vertical feature mask, aerosol sub-typing, and layer AOD) to identify the vertical 

structure of the wildfire through multiple days during May 2007, and we estimate layer 

AOD using corrected lidar ratios, which we found compared more favorably with 

MODIS AOD.   

The methodology developed in Chapter 4 has broad applicability to understanding 

aerosol behavior over longer time scales. While [Mishchenko et al., 2007] detected a 
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decreasing trend in AOD, it was over ocean and the analysis was done for the entire 

globe. We are the first to publish results that related the decreasing trends in AOD to 

decreasing trends in surface PM2.5 concentrations for this region. Streets et al. [2009] use 

GCM (global climate model) estimated AOD based upon aerosol emissions for their 

trend analysis. Though satellite AOD over land has more bias and uncertainties than it 

does over water, to our knowledge there have not been any studies that use satellite AOD 

to determine trends over any region of the U. S. Our analysis provides the critical first 

step in determining these aerosol trends from a climatic perspective.  

Our analysis of ten years of satellite data to estimate TOA forcings as a function 

in time we are able to describe the decadal variability in TOA forcing. Our results 

indicate that over time there is less radiative forcing, which has implications for regional 

climate studies. Taken in totality our results suggest that aerosols alone cannot explain 

the climatic measures of surface temperature. It would appear that other climate 

controlling factors are playing an active role. Lastly, our finer spatial scale radiative 

transfer modeling revealed that aerosol compositions and solar zenith angle as a function 

of season play a large role in determining surface and TOA aerosol radiative effects and 

efficiencies. It is likely that future air control policies will need to target aerosol 

speciation as a way to balance the opposing effects of climate change mitigation and 

improvement of air quality. 

 We summarize possible avenues for future research below.  

(1) Develop and apply AOD threshold technique to other regions in the U. S. and 

potentially abroad.  
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a. The system of EPA air quality monitors is sparse, especially in the central 

portion of the U. S., and other less densely populated areas. Using 

available satellite data to quickly disseminate air quality information could 

be of use for those states and areas. 

b. Identification of aerosol transport events (biomass burning, dust storms, 

pollution).  

c. Inclusion of newer satellite aerosol data products: VIIRS, GEOCAPE 

(2) Extend climatology work to more regions with different aerosol compositions 

a. Method to address efficacy of air quality control policies 

b. Method to potentially address solar dimming/brightening 

(3) Perform more detailed in-depth optical and radiative modeling 

a. Incorporate more in-situ measurements for more realistic test cases and 

CERES satellite based radiation products. 

b. Extend the test cases to cover more years – compare non-fire year to fire 

years over season as opposed to a single event 

c. Extend CALIPSO analysis to more years to better characterize the vertical 

structure of aerosols and their associated concentrations 
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