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Classical problems in new light

What happens to the classical, well-understood
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• Knapsack, bin packing, scheduling,
graph cuts

when a submodular function is involved?
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They become very hard to approximate



• Given: ground set V , function f , integer W

• f(S) submodular, not necessarily monotone

• Find S ⊆ V with |S| ≥W minimizing f(S)
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Lower bound technique

• Take advantage of the oracle model to fool
the algorithm

• Define a function f1 and a distribution of
functions f2

• For any set S, Pr[f1(S) 6= f2(S)] = n−ω(1)



Lower bound technique

Computation tree for deterministic algorithm A:
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A cannot distinguish f1 and f2 with high probability
• use Pr[f1(S) 6= f2(S)] = n−ω(1)

• union bound over blue path

path taken for f1



Lower bound technique

• Find f1 and f2 s.t. OPT (f1) ≥ γ · OPT (f2)
for a given problem

• Algorithm A cannot distinguish f1 and f2, so
outputs solution S with Cost(S) ≥ OPT (f1)

• But then Cost(S) ≥ γ ·OPT (f2)

• So approximation ratio of A is at least γ

• (Also applies to randomized algorithms)



Lower bound for SML

• f1(S) = min(|S|, α)

• f2(S) = min(β + |S ∩ R̄|, |S|, α)

• Random R with |R| = α,

α = x
√
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• Pr[f1(S) > f2(S)] maximized for |S| = α

• W.h.p., for any S with |S| = α, |S ∩R| < β,
and f1(S) = f2(S)



Lower bound for SML

• f1(S) = min(|S|, α)

• f2(S) = min(β + |S ∩ R̄|, |S|, α)

• Random R with |R| = α,
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• Hardness of SML with W = α is
OPT (f1)
OPT (f2) = α

β = Θ(
√

n
lnn )

• Also applies to bicriteria guarantees



Algorithm for SML

Bicriteria decision procedure:

• Given: function f , bound W , guess B,
probability p

• If there is S with |S| ≥W and f(S) < B,
outputs, with probability at least p, a set
U with |U | ≥ W

2 and f(U) ≤ 5
√

n
lnn ·B



Algorithm building blocks

Find a set S of density f(S)
|S| < λ:

• Use submodular function minimization to
minimize f(S)− λ · |S|

• If the result is negative, the low-density
set is found

• Else such set does not exist



The easy case: W ≥ n/2

• Let U0 = ∅ be the current solution.
• While |Ui| < W/2:

– Minimize f(Ti)− 2B
W · |Ti \ Ui|

– If negative, let Ui+1 = Ui ∪ Ti, else fail
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The easy case: W ≥ n/2

• Let U0 = ∅ be the current solution.
• While |Ui| < W/2:

– Minimize f(Ti)− 2B
W · |Ti \ Ui|

– If negative, let Ui+1 = Ui ∪ Ti, else fail

Algorithm terminates with a set U of low density:

• |U | ≥W/2

• f(U) ≤
∑
i f(Ti) < 2B

W

∑
i |Ti \ Ui|

≤ 2B
W · n ≤ 4B



The hard case: W < n/2

• Just a low-density set can be too expensive

• “Guess” a set S with high overlap with OPT
(pick each element with prob. W/n)

• Minimize f(T )− α · |T ∩ S|

• α = 2B
W

√
n

lnn



Algorithm for W < n/2

• While |Ui| < W/2:

– random Si ⊆ V \ Ui:
include each element w/prob W

w(V )

– minimize f(Ti)− α · w(Ti ∩ Si)
– if f(Ti) ≤ α · w(Ti ∩ Si) and
f(Ti) ≤ 4B

√
n

lnn :
Ui+1 = Ui ∪ Ti

– if too many iterations, fail



Algorithm for W < n/2

Lucky case:

• |U∗ ∩ S| > B
α = W

2

√
lnn
n

• |Ū∗ ∩ S| ≤ 1.5W

• Both happen with probability ≈ n7/2



Algorithm for W < n/2

Then:

• Negative minimization result:

• f(Ti)−α · |Ti ∩Si| ≤ f(U∗)−α · |U∗ ∩Si| <
f(U∗)−B < 0

• f(Ti) is not too large:

• f(Ti) ≤ f(U∗) + α · (|Ti ∩ Si| − |U∗ ∩ Si|) ≤
B + α · |Ū∗ ∩ Si| ≤ B + 1.5αW ≤ 4B

√
n

lnn

• New set added to U by the algorithm



Bounding solution cost

• Separate the cost of the last set and
other sets:

• f(U) =
∑i−1
j=0 f(Uj) + f(Ui) ≤

α · W2 + 4B
√

n
lnn = 5B

√
n

lnn



Other problems
Submodular sparsest cut

• find set S minimizing f(S)
min(|S|,|S̄|)
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Other problems
Submodular sparsest cut

• find set S minimizing f(S)
min(|S|,|S̄|)

Submodular load balancing (monotone f)

• find partition {V1, ..., Vm} minimizing
maxi f(Vi)

Results:

• Algorithms: O
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)
• Lower bounds: Ω

(√
n

logn

)



Summary

• New problems involving submodular functions

– Sparsest cut, load balancing,
submodular minimization with
cardinality lower bound

• Tight approximability bounds

– Lower bounds for oracle query complexity
– Approximation algorithms based on

random sampling and submodular
function minimization


