SUBMODULAR MINIMIZATION IN COMBINATORIAL PROBLEMS

Zoya Svitkina

joint work with Lisa Fleischer

Classical problems in new light

What happens to the classical, well-understood computer science problems:

• Knapsack, bin packing, scheduling, graph cuts

when a submodular function is involved?

Classical problems in new light

What happens to the classical, well-understood computer science problems:

• Knapsack, bin packing, scheduling, graph cuts

when a submodular function is involved?

They become very hard to approximate

Submodular minimization with cardinality lower bound (SML)

- Given: ground set V, function f, integer W
- f(S) submodular, not necessarily monotone
- Find $S \subseteq V$ with $|S| \ge W$ minimizing f(S)

Submodular minimization with cardinality lower bound (SML)

- Given: ground set V, function f, integer W
- f(S) submodular, not necessarily monotone
- Find $S \subseteq V$ with $|S| \ge W$ minimizing f(S)

Results:

- Algorithm: $f(S) \leq O\left(\sqrt{\frac{n}{\log n}}\right) OPT, |S| \geq \frac{1}{2} \cdot W$
- Lower bound: $\alpha/\beta = \Omega\left(\sqrt{\frac{n}{\log n}}\right)$

Lower bound technique

- Take advantage of the oracle model to fool the algorithm
- Define a function f_1 and a distribution of functions f_2
- For any set S, $\Pr[f_1(S) \neq f_2(S)] = n^{-\omega(1)}$

Lower bound technique

Computation tree for deterministic algorithm \mathcal{A} :

 \mathcal{A} cannot distinguish f_1 and f_2 with high probability

- use $\Pr[f_1(S) \neq f_2(S)] = n^{-\omega(1)}$
- union bound over blue path

Lower bound technique

- Find f_1 and f_2 s.t. $OPT(f_1) \ge \gamma \cdot OPT(f_2)$ for a given problem
- Algorithm \mathcal{A} cannot distinguish f_1 and f_2 , so outputs solution S with $Cost(S) \ge OPT(f_1)$
- But then $Cost(S) \ge \gamma \cdot OPT(f_2)$
- So approximation ratio of $\mathcal A$ is at least γ
- (Also applies to randomized algorithms)

Lower bound for SML

- $f_1(S) = \min(|S|, \alpha)$
- $f_2(S) = \min(\beta + |S \cap \overline{R}|, |S|, \alpha)$
- Random R with $|R| = \alpha$, $\alpha = \frac{x\sqrt{n}}{5}, \ \beta = \frac{x^2}{5}, \ x^2 = \omega(\ln n)$

Lower bound for SML

- $f_1(S) = \min(|S|, \alpha)$
- $f_2(S) = \min(\beta + |S \cap \overline{R}|, |S|, \alpha)$
- Random R with $|R| = \alpha$, $\alpha = \frac{x\sqrt{n}}{5}, \ \beta = \frac{x^2}{5}, \ x^2 = \omega(\ln n)$
- $\Pr[f_1(S) > f_2(S)]$ maximized for $|S| = \alpha$
- W.h.p., for any S with $|S| = \alpha$, $|S \cap R| < \beta$, and $f_1(S) = f_2(S)$

Lower bound for SML

- $f_1(S) = \min(|S|, \alpha)$
- $f_2(S) = \min(\beta + |S \cap \overline{R}|, |S|, \alpha)$
- Random R with $|R| = \alpha$, $\alpha = \frac{x\sqrt{n}}{5}, \ \beta = \frac{x^2}{5}, \ x^2 = \omega(\ln n)$

- Hardness of SML with $W = \alpha$ is $\frac{OPT(f_1)}{OPT(f_2)} = \frac{\alpha}{\beta} = \Theta(\sqrt{\frac{n}{\ln n}})$
- Also applies to bicriteria guarantees

Algorithm for SML

Bicriteria decision procedure:

- Given: function f, bound W, guess B, probability p
- If there is S with $|S| \ge W$ and f(S) < B, outputs, with probability at least p, a set U with $|U| \ge \frac{W}{2}$ and $f(U) \le 5\sqrt{\frac{n}{\ln n}} \cdot B$

Algorithm building blocks

Find a set S of density $\frac{f(S)}{|S|} < \lambda$:

- Use submodular function minimization to minimize $f(S) \lambda \cdot |S|$
- If the result is negative, the low-density set is found
- Else such set does not exist

The easy case: $W \ge n/2$

- Let $U_0 = \emptyset$ be the current solution.
- While $|U_i| < W/2$:
 - Minimize $f(T_i) \frac{2B}{W} \cdot |T_i \setminus U_i|$
 - If negative, let $U_{i+1} = U_i \cup T_i$, else fail

The easy case: $W \ge n/2$

- Let $U_0 = \emptyset$ be the current solution.
- While $|U_i| < W/2$: - Minimize $f(T_i) - \frac{2B}{W} \cdot |T_i \setminus U_i|$ - If negative, let $U_{i+1} = U_i \cup T_i$, else fail

If feasible, there is U^* such that:

- $f(U^*) < B, |U^*| \ge W, |U^* \setminus U| > W/2$
- minimized expression is negative

The easy case: W > n/2

- Let $U_0 = \emptyset$ be the current solution.
- While $|U_i| < W/2$: - Minimize $f(T_i) - \frac{2B}{W} \cdot |T_i \setminus U_i|$ - If negative, let $U_{i+1} = U_i \cup T_i$, else fail

Algorithm terminates with a set U of low density:

•
$$|U| \ge W/2$$

•
$$f(U) \leq \sum_{i} f(T_i) < \frac{2B}{W} \sum_{i} |T_i \setminus U_i|$$

 $\leq \frac{2B}{W} \cdot n \leq 4B$

The hard case: W < n/2

- Just a low-density set can be too expensive
- "Guess" a set S with high overlap with OPT (pick each element with prob. W/n)
- Minimize $f(T) \alpha \cdot |T \cap S|$

•
$$\alpha = \frac{2B}{W} \sqrt{\frac{n}{\ln n}}$$

Algorithm for W < n/2

- While $|U_i| < W/2$:
 - random $S_i \subseteq V \setminus U_i$: include each element w/prob $\frac{W}{w(V)}$
 - minimize $f(T_i) \alpha \cdot w(T_i \cap S_i)$
 - **if** $f(T_i) \leq \alpha \cdot w(T_i \cap S_i)$ and $f(T_i) \leq 4B\sqrt{\frac{n}{\ln n}}$: $U_{i+1} = U_i \cup T_i$
 - if too many iterations, fail

Algorithm for W < n/2

Lucky case:

•
$$|U^* \cap S| > \frac{B}{\alpha} = \frac{W}{2}\sqrt{\frac{\ln n}{n}}$$

•
$$|\bar{U}^* \cap S| \le 1.5W$$

• Both happen with probability $\approx n^{7/2}$

Algorithm for W < n/2

Then:

- Negative minimization result:
- $f(T_i) \alpha \cdot |T_i \cap S_i| \le f(U^*) \alpha \cdot |U^* \cap S_i| < f(U^*) B < 0$
- $f(T_i)$ is not too large:
- $f(T_i) \leq f(U^*) + \alpha \cdot (|T_i \cap S_i| |U^* \cap S_i|) \leq B + \alpha \cdot |\overline{U^*} \cap S_i| \leq B + 1.5 \alpha W \leq 4B \sqrt{\frac{n}{\ln n}}$
- New set added to U by the algorithm

Bounding solution cost

• Separate the cost of the last set and other sets:

•
$$f(U) = \sum_{j=0}^{i-1} f(U_j) + f(U_i) \le \alpha \cdot \frac{W}{2} + 4B\sqrt{\frac{n}{\ln n}} = 5B\sqrt{\frac{n}{\ln n}}$$

Other problems

Submodular sparsest cut

• find set S minimizing $\frac{f(S)}{\min(|S|,|\bar{S}|)}$

Other problems

Submodular sparsest cut

• find set S minimizing $\frac{f(S)}{\min(|S|, |\bar{S}|)}$

Submodular load balancing (monotone f)

• find partition $\{V_1, ..., V_m\}$ minimizing $\max_i f(V_i)$

Other problems

Submodular sparsest cut

• find set S minimizing $\frac{f(S)}{\min(|S|, |\bar{S}|)}$

Submodular load balancing (monotone f)

• find partition $\{V_1, ..., V_m\}$ minimizing $\max_i f(V_i)$

Results:

• Algorithms:
$$O\left(\sqrt{\frac{n}{\log n}}\right)$$

• Lower bounds:
$$\Omega\left(\sqrt{\frac{n}{\log n}}\right)$$

- New problems involving submodular functions
 - Sparsest cut, load balancing,
 submodular minimization with
 cardinality lower bound
- Tight approximability bounds
 - Lower bounds for oracle query complexity
 - Approximation algorithms based on random sampling and submodular function minimization