SUBMODULAR MINIMIZATION IN COMBINATORIAL PROBLEMS

> Zoya Svitkina
joint work with Lisa Fleischer

Classical problems in new light

What happens to the classical, well-understood computer science problems:

- Knapsack, bin packing, scheduling, graph cuts
when a submodular function is involved?

Classical problems in new light

What happens to the classical, well-understood computer science problems:

- Knapsack, bin packing, scheduling, graph cuts
when a submodular function is involved?

They become very hard to approximate

Submodular minimization with cardinality lower bound (SML)

- Given: ground set V, function f, integer W
- $f(S)$ submodular, not necessarily monotone
- Find $S \subseteq V$ with $|S| \geq W$ minimizing $f(S)$

Submodular minimization with cardinality lower bound (SML)

- Given: ground set V, function f, integer W
- $f(S)$ submodular, not necessarily monotone
- Find $S \subseteq V$ with $|S| \geq W$ minimizing $f(S)$

Results:

- Algorithm: $f(S) \leq O\left(\sqrt{\frac{n}{\log n}}\right) O P T,|S| \geq \frac{1}{2} \cdot W$
- Lower bound: $\alpha / \beta=\Omega\left(\sqrt{\frac{n}{\log n}}\right)$

Lower bound technique

- Take advantage of the oracle model to fool the algorithm
- Define a function f_{1} and a distribution of functions f_{2}
- For any set $S, \operatorname{Pr}\left[f_{1}(S) \neq f_{2}(S)\right]=n^{-\omega(1)}$

Lower bound technique

Computation tree for deterministic algorithm \mathcal{A} :

\mathcal{A} cannot distinguish f_{1} and f_{2} with high probability

- use $\operatorname{Pr}\left[f_{1}(S) \neq f_{2}(S)\right]=n^{-\omega(1)}$
- union bound over blue path

Lower bound technique

- Find f_{1} and f_{2} s.t. $O P T\left(f_{1}\right) \geq \gamma \cdot O P T\left(f_{2}\right)$ for a given problem
- Algorithm \mathcal{A} cannot distinguish f_{1} and f_{2}, so outputs solution S with $\operatorname{Cost}(S) \geq O P T\left(f_{1}\right)$
- But then $\operatorname{Cost}(S) \geq \gamma \cdot \operatorname{OPT}\left(f_{2}\right)$
- So approximation ratio of \mathcal{A} is at least γ
- (Also applies to randomized algorithms)

Lower bound for SML

- $f_{1}(S)=\min (|S|, \alpha)$
- $f_{2}(S)=\min (\beta+|S \cap \bar{R}|,|S|, \alpha)$
- Random R with $|R|=\alpha$,

$$
\alpha=\frac{x \sqrt{n}}{5}, \beta=\frac{x^{2}}{5}, x^{2}=\omega(\ln n)
$$

Lower bound for SML

- $f_{1}(S)=\min (|S|, \alpha)$
- $f_{2}(S)=\min (\beta+|S \cap \bar{R}|,|S|, \alpha)$
- Random R with $|R|=\alpha$,

$$
\alpha=\frac{x \sqrt{n}}{5}, \beta=\frac{x^{2}}{5}, x^{2}=\omega(\ln n)
$$

- $\operatorname{Pr}\left[f_{1}(S)>f_{2}(S)\right]$ maximized for $|S|=\alpha$
- W.h.p., for any S with $|S|=\alpha,|S \cap R|<\beta$, and $f_{1}(S)=f_{2}(S)$

Lower bound for SML

- $f_{1}(S)=\min (|S|, \alpha)$
- $f_{2}(S)=\min (\beta+|S \cap \bar{R}|,|S|, \alpha)$
- Random R with $|R|=\alpha$,

$$
\alpha=\frac{x \sqrt{n}}{5}, \beta=\frac{x^{2}}{5}, x^{2}=\omega(\ln n)
$$

- Hardness of SML with $W=\alpha$ is

$$
\frac{O P T\left(f_{1}\right)}{O P T\left(f_{2}\right)}=\frac{\alpha}{\beta}=\Theta\left(\sqrt{\frac{n}{\ln n}}\right)
$$

- Also applies to bicriteria guarantees

Algorithm for SML

Bicriteria decision procedure:

- Given: function f, bound W, guess B, probability p
- If there is S with $|S| \geq W$ and $f(S)<B$, outputs, with probability at least p, a set U with $|U| \geq \frac{W}{2}$ and $f(U) \leq 5 \sqrt{\frac{n}{\ln n}} \cdot B$

Algorithm building blocks

Find a set S of density $\frac{f(S)}{|S|}<\lambda$:

- Use submodular function minimization to minimize $f(S)-\lambda \cdot|S|$
- If the result is negative, the low-density set is found
- Else such set does not exist

The easy case: $W \geq n / 2$

- Let $U_{0}=\emptyset$ be the current solution.
- While $\left|U_{i}\right|<W / 2$:
- Minimize $f\left(T_{i}\right)-\frac{2 B}{W} \cdot\left|T_{i} \backslash U_{i}\right|$
- If negative, let $U_{i+1}=U_{i} \cup T_{i}$, else fail

The easy case: $W \geq n / 2$

- Let $U_{0}=\emptyset$ be the current solution.
- While $\left|U_{i}\right|<W / 2$:
- Minimize $f\left(T_{i}\right)-\frac{2 B}{W} \cdot\left|T_{i} \backslash U_{i}\right|$
- If negative, let $U_{i+1}=U_{i} \cup T_{i}$, else fail

If feasible, there is U^{*} such that:

- $f\left(U^{*}\right)<B,\left|U^{*}\right| \geq W,\left|U^{*} \backslash U\right|>W / 2$
- minimized expression is negative

The easy case: $W \geq n / 2$

- Let $U_{0}=\emptyset$ be the current solution.
- While $\left|U_{i}\right|<W / 2$:
- Minimize $f\left(T_{i}\right)-\frac{2 B}{W} \cdot\left|T_{i} \backslash U_{i}\right|$
- If negative, let $U_{i+1}=U_{i} \cup T_{i}$, else fail

Algorithm terminates with a set U of low density:

- $|U| \geq W / 2$
- $f(U) \leq \sum_{i} f\left(T_{i}\right)<\frac{2 B}{W} \sum_{i}\left|T_{i} \backslash U_{i}\right|$ $\leq \frac{2 B}{W} \cdot n \leq 4 B$

The hard case: $W<n / 2$

- Just a low-density set can be too expensive
- "Guess" a set S with high overlap with OPT (pick each element with prob. W / n)
- Minimize $f(T)-\alpha \cdot|T \cap S|$
- $\alpha=\frac{2 B}{W} \sqrt{\frac{n}{\ln n}}$

Algorithm for $W<n / 2$

- While $\left|U_{i}\right|<W / 2$:
- random $S_{i} \subseteq V \backslash U_{i}$:
include each element w/prob $\frac{W}{w(V)}$
- minimize $f\left(T_{i}\right)-\alpha \cdot w\left(T_{i} \cap S_{i}\right)$
- if $f\left(T_{i}\right) \leq \alpha \cdot w\left(T_{i} \cap S_{i}\right)$ and $f\left(T_{i}\right) \leq 4 B \sqrt{\frac{n}{\ln n}}$: $U_{i+1}=U_{i} \cup T_{i}$
- if too many iterations, fail

Algorithm for $W<n / 2$

Lucky case:

- $\left|U^{*} \cap S\right|>\frac{B}{\alpha}=\frac{W}{2} \sqrt{\frac{\ln n}{n}}$
- $\left|\bar{U}^{*} \cap S\right| \leq 1.5 W$
- Both happen with probability $\approx n^{7 / 2}$

Algorithm for $W<n / 2$

Then:

- Negative minimization result:
- $f\left(T_{i}\right)-\alpha \cdot\left|T_{i} \cap S_{i}\right| \leq f\left(U^{*}\right)-\alpha \cdot\left|U^{*} \cap S_{i}\right|<$ $f\left(U^{*}\right)-B<0$
- $f\left(T_{i}\right)$ is not too large:
- $f\left(T_{i}\right) \leq f\left(U^{*}\right)+\alpha \cdot\left(\left|T_{i} \cap S_{i}\right|-\left|U^{*} \cap S_{i}\right|\right) \leq$ $B+\alpha \cdot\left|\bar{U}^{*} \cap S_{i}\right| \leq B+1.5 \alpha W \leq 4 B \sqrt{\frac{n}{\ln n}}$
- New set added to U by the algorithm

Bounding solution cost

- Separate the cost of the last set and other sets:
- $f(U)=\sum_{j=0}^{i-1} f\left(U_{j}\right)+f\left(U_{i}\right) \leq$
$\alpha \cdot \frac{W}{2}+4 B \sqrt{\frac{n}{\ln n}}=5 B \sqrt{\frac{n}{\ln n}}$

Other problems

Submodular sparsest cut

- find set S minimizing $\frac{f(S)}{\min (|S|,|\bar{S}|)}$

Other problems

Submodular sparsest cut

- find set S minimizing $\frac{f(S)}{\min (|S|,|S|)}$

Submodular load balancing (monotone f)

- find partition $\left\{V_{1}, \ldots, V_{m}\right\}$ minimizing $\max _{i} f\left(V_{i}\right)$

Other problems

Submodular sparsest cut

- find set S minimizing $\frac{f(S)}{\min (|S|,|S|)}$

Submodular load balancing (monotone f)

- find partition $\left\{V_{1}, \ldots, V_{m}\right\}$ minimizing $\max _{i} f\left(V_{i}\right)$
Results:
- Algorithms: $O\left(\sqrt{\frac{n}{\log n}}\right)$
- Lower bounds: $\Omega\left(\sqrt{\frac{n}{\log n}}\right)$

Summary

- New problems involving submodular functions
- Sparsest cut, load balancing, submodular minimization with cardinality lower bound
- Tight approximability bounds
- Lower bounds for oracle query complexity
- Approximation algorithms based on random sampling and submodular function minimization

