SUBMODULAR MINIMIZATION IN
COMBINATORIAL PROBLEMS

Zoya Svitkina

joint work with Lisa Fleischer

Classical problems in new light

What happens to the classical, well-understood
computer science problems:

e Knapsack, bin packing, scheduling,
graph cuts

when a submodular function is involved?

Classical problems in new light

What happens to the classical, well-understood
computer science problems:

e Knapsack, bin packing, scheduling,
graph cuts

when a submodular function is involved?

They become very hard to approximate

Submodular minimazation

with cardinality lower bound (SML

e Given: ground set V', tunction f, integer W

e f(S) submodular, not necessarily monotone

e Find S C V with |S| > W minimizing f(5)

Submodular minimazation

with cardinality lower bound (SML

e Given: ground set V', tunction f, integer W
e f(5) submodular, not necessarily monotone
e Find S C V with |S| > W minimizing f(5)

Results:
o Algorithm: f(S) <O (/.2)OPT, [S] > §-W

¢ Lower bound: o/ = Q (,/ 1Ogn)

Lower bound technique

e Take advantage of the oracle model to fool
the algorithm

e Define a function f; and a distribution of
functions f5

e For any set S, Pr[f1(S) # f2(S5)] = n=«W)

Lower bound technique

Computation tree for deterministic algorithm A:

polynomial

path taken for f;

A cannot distinguish f; and f5 with high probability
o use Pr[fy(8) # f2(5)] = n=+()

e union bound over blue path

Lower bound technique

e Find fl and f2 S.t. OPT(fl) >y OPT(fQ)
for a given problem

e Algorithm A cannot distinguish f; and f5, so
outputs solution S with Cost(S) > OPT(f;)

e But then Cost(S) > v - OPT(f2)
e So approximation ratio of A is at least ~

e (Also applies to randomized algorithms)

Lower bound for SML

o £1(S) = min(|S],)

o f5(S)=min(B+|SN K|S,)
e Random R with |R| = a, V
a= "=, B = %, 72 = w(lnn)

Lower bound for SML

o £1(S) = min(|S],)

o f5(S)=min(B+|SN K|S,)
e Random R with |R| = «, V
a= "=, B = %, 72 = w(lnn)

o Pr[fi(S) > f2(S)] maximized for |S| = a

e W.h.p., for any S with |[S| =«a, |[SNR| < B,
and f1(5) = f2(5)

Lower bound for SML

e f1(5) = min(|S], @)
o f>(S)=min(8+[SN [, |S] a)

e Random R With R| = a, V
o= w\/_,ﬁ . 2° = w(lnn)

e Hardness of SML with W = « is
OPT(fl) o @(T)

OPT(f2) pB Inn

e Also applies to bicriteria guarantees

Algorithm for SML

Bicriteria decision procedure:

e Given: function f, bound W, guess B,
probability p

o If there is S with |S| > W and f(S) < B,
outputs, with probability at least p, a set
U with |U| > % and f(U) <5,/7% - B

Algorithm building blocks

Find a set S of density f|(S|) < A

e Use submodular function minimization to

minimize f(S)— \-|S]

e If the result is negative, the low-density
set is found

e KHlse such set does not exist

The easy case: W > n/2

e Let Uy = () be the current solution.
e While |U;| < W/2:
— Minimize f(T;) — 22 - |T; \ Uj]
— If negative, let U; 11 = U; UT;, else fail

The easy case: W > n/2

e Let Uy = () be the current solution.
e While |U;| < W/2:
— Minimize f(T;) — 22 - |T; \ Uj]
— If negative, let U; 11 = U; UT;, else fail

If feasible, there is U* such that:
o f(U*)<B,|U*| =W, |U"\U|>W/2

e minimized expression is negative

The easy case: W > n/2

e Let Uy = () be the current solution.
e While |U;| < W/2:
— Minimize f(T;) — 22 - |T; \ Uj]
— If negative, let U; 11 = U; UT;, else fail

Algorithm terminates with a set U of low density:

o U|>W/2
o f(U) < X, f(Ty) < 35,1\ Uy
<28 .5 < 4B

— W

The hard case: W < n/2

e Just a low-density set can be too expensive

e “Guess” a set S with high overlap with OPT
(pick each element with prob. W /n)

e Minimize f(T) —a-|T NS|

_ 2B /m
.a_W Inn

Algorithm for W < n/2

e While |U;| < W/2:

— random S; C V \ U;:

include each element w/prob (V)

— minimize f(T;) — a-w(T; N S;)
— 1ff() < - w(T N S;) and

S 4B\/ lnn'

U@'_|_1 — Uz U Tz

— if too many iterations, fail

Algorithm for W < n/2

Lucky case:

0|U*ﬂs|>§:% In n

o [U*NS| <1.5W

e Both happen with probability ~ n"/?

Algorithm for W < n/2

Then:

e Negative minimization result:

f(G) —a- ;NS < f(U)—a- U NS <
f(U*)—B<O
e f(T;) is not too large:
. f(Tz) < fUF) +a-([TzN 5] —|UTNSi) <

a-|U*NS;| <B+15aW < 4B,/ =

e New set added to U by the algorithm

Bounding solution cost

e Separate the cost of the last set and
other sets:

o f(U)=3""0 f(U;)+ f(Us) <
Q- % —|—4B\/% — 5B\/%

Other problems

Submodular sparsest cut

f(S) _
min(|5],|S])

e find set S minimizing

Other problems

Submodular sparsest cut

f(S) _
min(|5],|S])

e find set S minimizing

Submodular load balancing (monotone f)

e find partition {V7,...,V;,} minimizing

max; f(V;-)

f(V1) r— .:0 o ®

3

Other problems

Submodular sparsest cut

f(S) _
min(|5],|S])

e find set S minimizing

Submodular load balancing (monotone f)

e find partition {V7,...,V;,} minimizing

max; f(V;)
Results:
e Algorithms: O(1ogn)

logn

e Lower bounds: Q(n)

e New problems involving submodular functions

— Sparsest cut, load balancing,
submodular minimization with
cardinality lower bound

e Tight approximability bounds

— Lower bounds for oracle query complexity

— Approximation algorithms based on
random sampling and submodular
function minimization

