Online Stochastic Matching Problem

Shayan Oveis Gharan

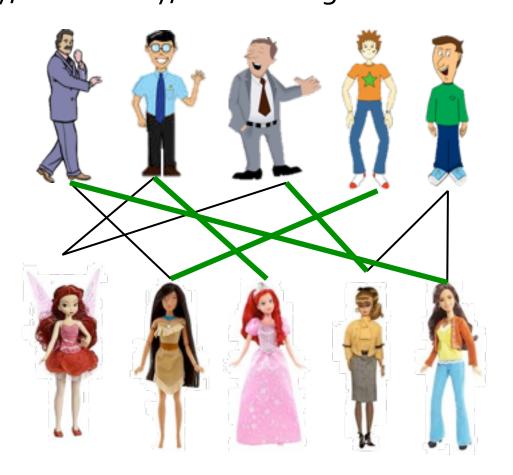
Joint work with Vahideh Manshadi, Amin Saberi

Online Bipartite Matching Problem

Given a set of girls, Boys arrive online,

Match each boy, irrevocably, maximizing the size of the

matching.



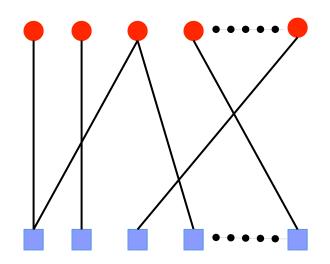
Online Bipartite Matching Problem (cont')

Given the set of bins, Balls: adversarially/stochastically

Measure the performance against optimum (offline) solution

Balls arrive online

Bins are given



Competitive Ratio =
$$\frac{E[ALG]}{E[OPT]}$$

Applications: Display Ads

Demand is offline from advertisers

Targeting a quantity ("1M ads a day")

Supply is online based on page views

Models / Results

Models:

- Adversarial: Balls arrive adversarially.
- Unknown Dist: Balls are sampled i.i.d. from an unknown dist.
- Known Dist: Balls are sampled i.i.d. from a given dist.

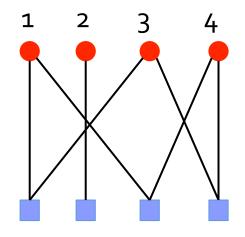
Model	Lower Bound	Upper Bound
Adversarial	1-1/e (KVV′90-BM)	1-1/e (KVV′90)
(integral rates)	o.677 (FMMM'09) o.699 (BK'10), o.705 (MOS'10) o.729 (JX'11)	o.86 (MOS'10)
Unknown Dist.	o.655 (KMT'11) o.696 (MY'11)	o.823 (MOS'10)

Online Stochastic Matching Problem (Known Dist.)

Given G with n ball types.

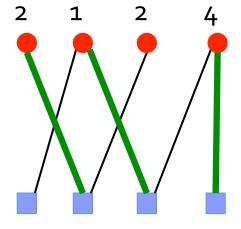
For t=1,...,n, select a ball uniformly, with replacement from the set of types.

Assign the ball to an empty bin, maximizing the expected number of assigned balls.



Expected graph G

Core Difficulty: oversampling/ undersampling



Sample graph $G(\omega)$

Outline

- Rounding by Sampling
- Applying Rounding by Sampling to St. Matching Problem
 - Offline Statistics

- A More Adaptive Algorithm
- Open Problems/Future Works

Rounding By Sampling

Given a fractional vector f in an integral polytope.

Goal: Round f to an integer point

Write f as a convex combination of integer points

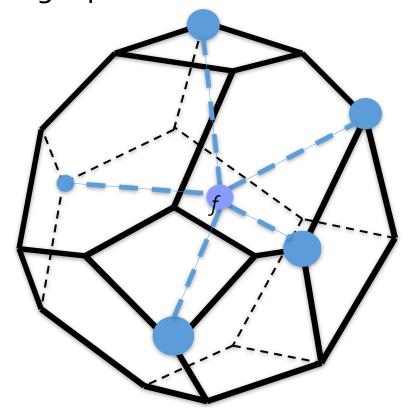
$$f = p_1 M_1 + p_2 M_2 + ... + p_k M_k$$

Pick M_i with probability p_i

$$Pr_{M\sim D} [e \in M] = f(e)$$

For any cost function c(.)

$$\mathsf{E}_{\mathsf{M}\sim\mathsf{D}}[\mathsf{c}(\mathsf{M})]=\mathsf{c}(\mathsf{f}).$$



Additional Features of Particular Distributions

Distribution	Properties	Domain
Pipage Rounding	Negative Correlaion	Matroid Polytopes
Maximum Entropy	Strongest form of Negative Dep.	Spanning Trees
Randomized Swap Rounding	Negative Correlation, Lower tail bounds for Monotone Submodular f	Matroid Polytopes

Applications in Approximation Algorithms

- Maximizing a Submodular Function w.r.t. Matroid Constraint [Calenscu, Checkuri, Pal, Vondrak 07, Vondrak 08]
 - Pipage Rounding
- Asymmetric TSP [Asadpour, Goemans, Madry, O., Saberi'09]
 - Maximum Entropy dist.
- Symmetric TSP [O. Saberi, Singh'10]
 - Maximum Entropy dist.
- TSP Path [An, Kleinberg, Shmoys'11]
 - Any dist.

Outline

- Rounding by Sampling
- Applying Rounding by Sampling to St. Matching Problem
 - Offline Statistics

- A More Adaptive Algorithm
- Open Problems/Future Works

Offline Statistics

Let $f: E \rightarrow [0,1]$ be the expected optimum offline solution

 $f((x,y)) = Pr_{G(\omega) \sim G}[x \text{ is matched to y in the optimum}]$

$$E[OPT] = \sum_{(x,y)} f(x,y)$$

f is a fractional matching, since

- Each ball type is sampled once in expectation
- Each bin is allocated at most once in each $G(\omega)$

Note: f can be estimated in polynomial time ...

Using Offline Statistics

Fractional matching

Integral matchings

Rounding by Sampling 1 Matching

Offline:

Estimate f(.), Compute D

Sample a matching M~D.

Online:

Allocate first ball of each type to its match in M, and drop the rest

The algorithm has a competitive ratio of 1-1/e:

E[ALG]
$$\geq$$
 (1-1/e) |M|
For all, (x,y) \in M:
P[y is allocated] = P[x is sampled]
= 1-(1-1/n)ⁿ = 1-1/e

$$E[OPT] = \sum_{e} f(e) = E[|M|]$$

G

Rounding by Sampling Two Matchings

Offline:

Sample M1 and M2 independently from D

Online:

Allocate the first ball of each type according to M1 Allocate the second ball of each type according to M2



Lower Bounding ALG

Offline:

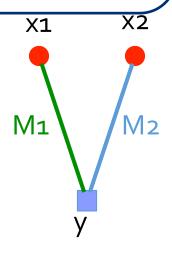
Sample M1 and M2 independently from D

Online:

Allocate the first ball according to M1

Allocate the second ball according to M2

Algorithm, in expectation matches (1-1/e)|M1| + 1/e (1-2/e) |M2 \ M1|



+P[x1 not sampled].P[x2 sampled twice | x1 not sampled]

$$= (1-1/e) + 1/e (1-2/e)$$

Lower Bounding E[|M1|], E[|M2|]

Theorem [Manshadi,O,Saberi'10]: the algorithm has a competitive ratio of 0.668

E[*ALG*] E[*OPT*]

Outline

- Rounding by Sampling
- Applying Rounding by Sampling to St. Matching Problem
 - Offline Statistics

- A More Adaptive Algorithm
- Open Problems/Future Works

A More Adaptive Algorithm

We can make the algorithm more adaptive by revising the decisions if the chosen bin is allocated.

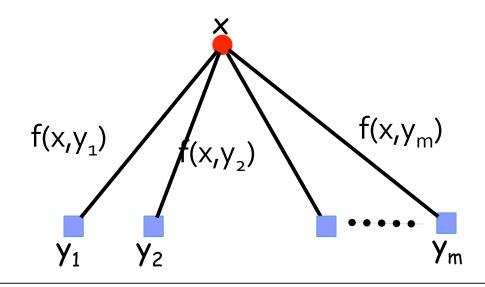
Offline: Estimate optimum offline solution f(.)

Online: When a ball x arrives,

For $i=1 \rightarrow T$,

Sample $y \sim f(x, .)$

If y is empty, assign x to y.



A More Adaptive Algorithm

```
Offline: Estimate optimum offline solution f(.), and dist. D Online: When a ball x arrives,

For i=1 \rightarrow T,

Sample y \sim f(x,.)

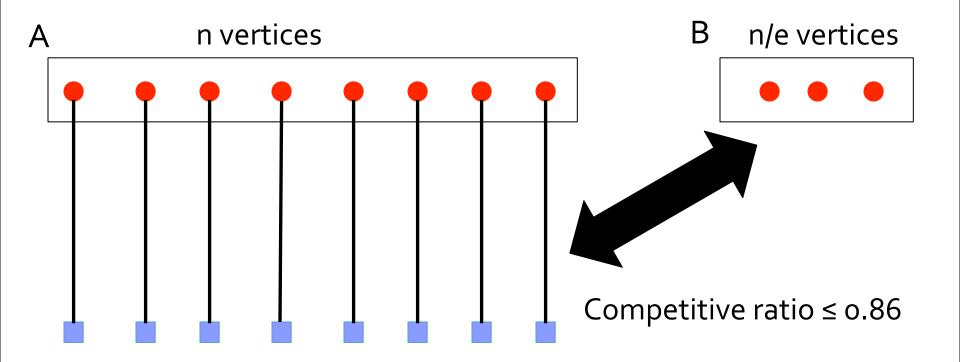
If y is empty, assign x to y.
```

Theorem [MOS'10]: A variant of the above algorithm for T=2 has a 0.705 competitive ratio.

Theorem [JX'11]: A variant of the above algorithm for T=3 has a 0.729 competitive ratio.

Hard Example

OPT allocates all of the n bins But, any online algorithm allocates at most n(1-1/e2).



Difficulty: n/e of the ball types in A will not be sampled at all But, we do not know that until the end of the input.

Outline

- Rounding by Sampling
- Applying Rounding by Sampling to St. Matching Problem
 - Offline Statistics

- A More Adaptive Algorithm
- Open Problems/Future Works

BIG OPEN PROBLEM: Competing with Online Optimum

Since the arrival distribution is known, using Dynamic Programming,

Optimum Online algorithm is computable in time O(n.2ⁿ).

- How well can the optimum online be approximated?
- Does it admit a PTAS?

Future Works 1: Online Submodular Welfare Problem

Stochastic Matching problem as a special case of online stochastic SWP:

- 1-1/e is achievable for online stochastic SWP [Devanur, Jain, Sivan, Wilkens'11]
- There are submodular functions s.t. online SWP can not be approximated better than 1-1/e [Mirrokni, Shapira, Vondrak'o8]

- What about the functions that can be approximated efficiently?

[Haeupler, Mirrokni, Zadimoghaddam'11] obtained 0.667 for weighted matching problem

Future Works 2:k-Strongly Connected Subgraph problem

SCSP: Given a directed graph G, find the smallest k strongly connected subgraph of G.

A union of in-aborescence and out-arborescence is a 2-app.

[Laekhanukit,O.,Singh'12]: Sampling the in-arborescence and outaborescence independently based on LP solution gives a 1+1/k.

- Obtaining better than 2 for the weighted version?

Conclusion and Open Problems

Model	Lower Bound	Upper Bound
Known Dist. With integer rates	0.729 (JX'11)	o.86 (MOS'10)
Known Dist.	0.708 (JX'11)	o.823 (MOS'10)
Known Dist. SWP	1-1/e (DJSV'11)	1-1/e (MSV'08)