Multi-commodity Flows and Cuts in *Polymatroidal* Networks

> Chandra Chekuri Univ. of Illinois, Urbana-Champaign

Joint work with Sreeram Kannan, Adnan Raja, Pramod Viswanath (UIUC ECE Department) Paper available at http://arxiv.org/abs/1110.6832

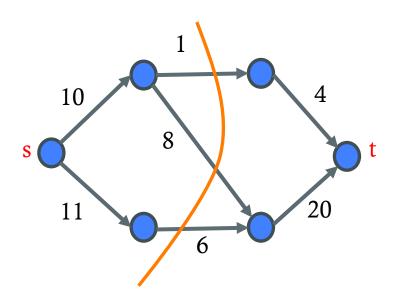
Max-flow Min-cut Theorem

[Ford-Fulkerson, Menger]

G=(V,E) directed graph with non-negative edge-capacities

max s-t flow value equal to min s-t cut value

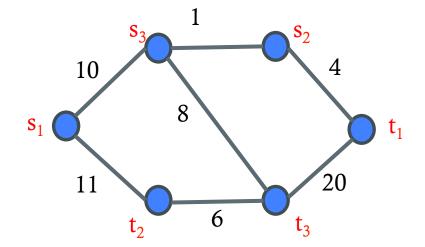
if capacities *integral* max flow can be chosen to be *integral*



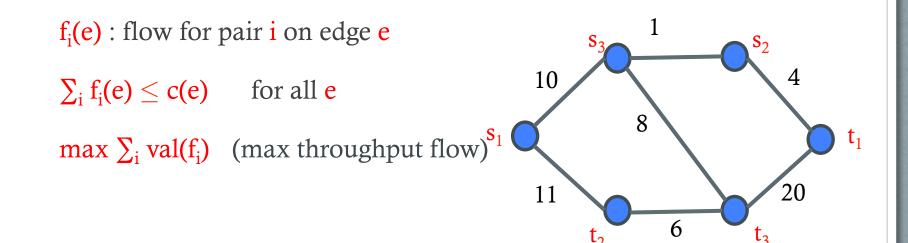
Multi-commodity Flows

Several pairs $(s_1,t_1),...,(s_k,t_k)$ jointly use the network capacity to route their flow

$$\begin{split} f_i(e) &: \text{flow for pair } i \text{ on edge } e \\ \sum_i f_i(e) &\leq c(e) \quad \text{ for all } e \end{split}$$



Max Throughput Flow and Min Multicut



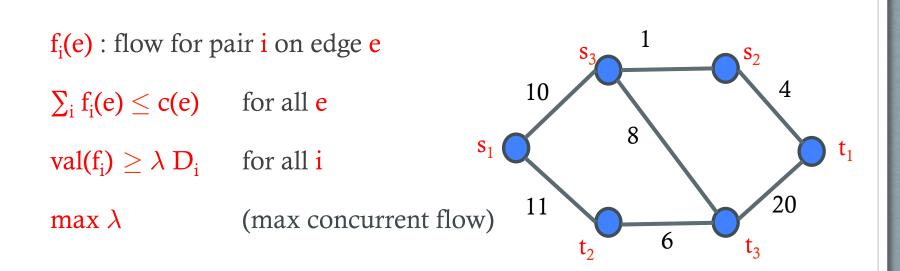
Max Throughput Flow and Min Multicut

 $f_i(e)$: flow for pair i on edge e $\sum_i f_i(e) \le c(e)$ for all e max $\sum_i val(f_i)$ (max throughput flow)^{s₁}

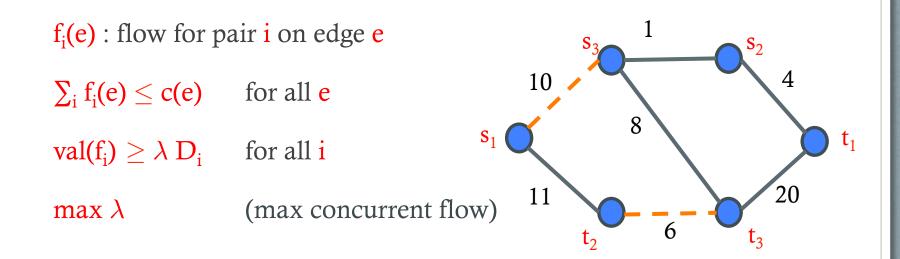
Multicut: set of edges whose removal disconnects all pairs

Max Throughput Flow \leq Min Multicut Capacity

Max Concurrent Flow and Min Sparsest Cut



Max Concurrent Flow and Min Sparsest Cut



Sparsity of cut = capacity of cut / demand separated by cut Max Concurrent Flow ≤ Min Sparsity

Flow-Cut Gap: Undir graphs

[Leighton-Rao'88] examples via expanders to show Max Throughput Flow $\leq O(1/\log k)$ Min Multicut Max Concurrent Flow $\leq O(1/\log k)$ Min Sparsity $k = \Theta(n^2)$ in expander examples

Flow-Cut Gap: Undir graphs

[Leighton-Rao'88] for product multi-commodity flow Max Concurrent Flow $\geq \Omega (1/\log k)$ Min Sparsity

[Garg-Vazirani-Yannakakis'93] Max Throughput Flow $\geq \Omega(1/\log k)$ Min Multicut

[Linial-London-Rabinovich'95, Aumann-Rabani'95] Max Concurrent Flow $\geq \Omega (1/\log k)$ Min Sparsity

Flow-Cut Gap: Undir graphs Node Capacities

[Feige-Hajiaghayi-Lee'05]

Max Concurrent Flow $\geq \Omega$ (1/log k) Min Sparsity

[Garg-Vazirani-Yannakakis'93]

Max Throughput Flow $\geq \Omega(1/\log k)$ Min Multicut

Flow-Cut Gap: Dir graphs

[Saks-Samorodnitsky-Zosin'04] Max Throughput Flow $\leq O(1/k)$ Min Multicut

[Chuzhoy-Khanna'07] Max Throughput Flow $\leq O(1/n^{1/7})$ Min Multicut

[Agrawal-Alon-Charikar'07] Max Throughput Flow $\geq \Omega(1/n^{11/23})$ Min Multicut $\geq 1/k$ Min Multicut (trivial)

Flow-Cut Gap: Dir graphs

Symmetric demands: (s_i, t_i) and (t_i, s_i) for each pair and cut has to separate only one of the two

[Klein-Plotkin-Rao-Tardos'97]

Max Throughput Flow $\geq \Omega(1/\log^2 k)$ Min Multicut Max Concurrent Flow $\geq \Omega(1/\log^3 k)$ Min Sparsity [Even-Naor-Rao-Schieber'95] Max Throu. Flow $\geq \Omega(1/\log n \log \log n)$ Min Multicut

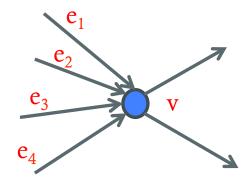
Flow-Cut Gaps: Summary

k pairs in a graph G=(V,E)

- $\Theta(\log k)$ for undir graphs
 - Throughput Flow vs Multicut
 - Concurrent Flow vs Sparsest Cut
 - Node-capacited flows [Feige-Hajiaghayi-Lee'05]
- O(polylog(k)) for dir graph with symmetric demands
- Polynomial-factor lower bounds for dir graphs

Polymatroidal Networks

Capacity of edges incident to v *jointly constrained* by a polymatroid (monotone non-neg submodular set func)



 $\sum_{i \in S} c(e_i) \leq f(S)$ for every $S \subseteq \{1,2,3,4\}$

Detour:

Network Information Theory

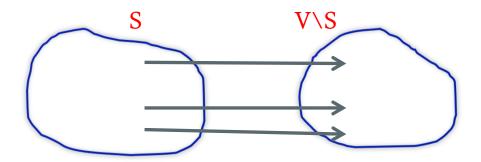
Question: What is the *information theoretic capacity* of a network?

Given G=(V,E) and pairs $(s_1,t_1),...,(s_k,t_k)$ and rates/ demands $D_1,...,D_k$: can the pairs use the network to successfully transmit information at these rates?

- Can use routing, (network) coding, and any other scheme ...
- Network coding [Ahlswede-Cai-Li-Yeung'00]

Network Information Theory: Cut-Set Bound

Max Concurrent Rate \leq Min Sparsity

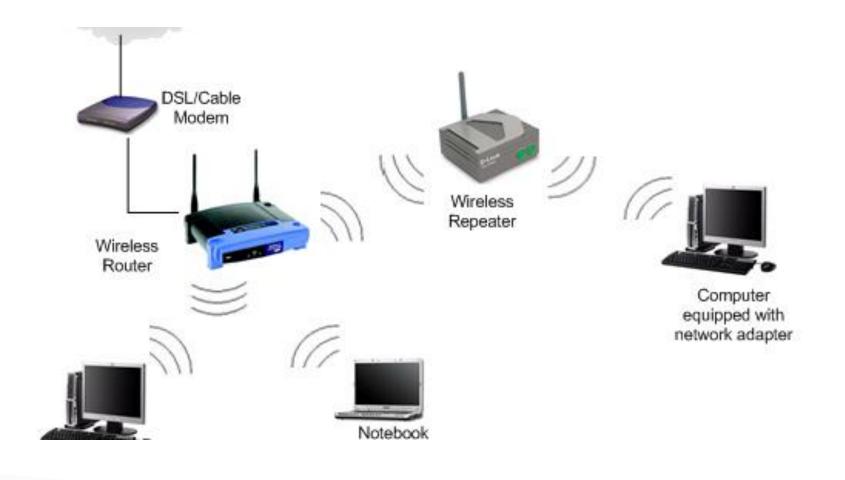


Network Information Theory

Max Concurrent Rate \leq Min Sparsity

- In undirected graphs routing is near-optimal (within log factors). Follows from flow-cut gap upper bounds
- In directed graphs routing can be very far from optimal
- In directed graphs routing far from optimal even for multicast
- Capacity of networks poorly understood

Capacity of Wireless Networks



Capacity of wireless networks

Major issues to deal with:

- interference due to broadcast nature of medium
- noise

Capacity of wireless networks

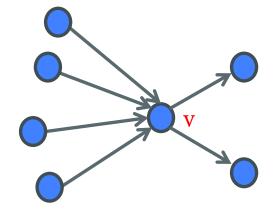
Recent work: *understand/model/approximate wireless networks via wireline networks*

- Linear deterministic networks [Avestimehr-Diggavi-Tse'09]
 - Unicast/multicast (single source). Connection to polylinking systems and submodular flows [Goemans-Iwata-Zenklusen'09]
- Polymatroidal networks [Kannan-Viswanath'11]
 - Multiple unicast.

Directed Polymatroidal Networks

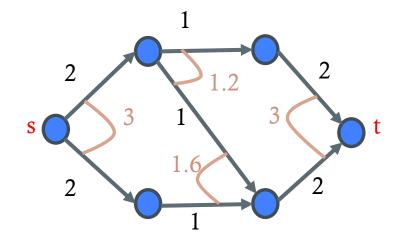
[Lawler-Martel'82, Hassin'79]
Directed graph G=(V,E)
For each node v two polymatroids
 ρ_v⁻ with ground set δ⁻ (v)
 ρ_v⁺ with ground set δ⁺(v)

 $\sum_{e \in S} f(e) \le \rho_v^{-}(S) \text{ for all } S \subseteq \delta^{-}(v)$ $\sum_{e \in S} f(e) \le \rho_v^{+}(S) \text{ for all } S \subseteq \delta^{+}(v)$



s-t flow

Flow from s to t: "standard flow" with polymatroidal capacity constraints



What is the cap. of a cut?

Assign each edge (a,b) of cut to either a or b Value = sum of function values on assigned sets Optimize over all assignments $min\{1+1+1, 1.2+1, 1.6+1\}$

2

Maxflow-Mincut Theorem

[Lawler-Martel'82, Hassin'79]

Theorem: In a directed polymatroidal network the max s-t flow is equal to the min s-t cut value.

Model equivalent to submodular-flow model of[Edmonds-Giles'77] that can derive as special cases

- polymatroid intersection theorem
- maxflow-mincut in standard network flows
- Lucchesi-Younger theorem

Undirected Polymatroidal Networks

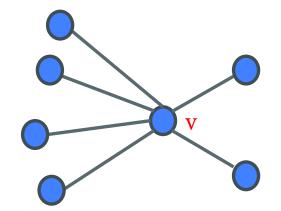
"New" model:

Undirected graph **G=(V,E)**

For each node v single polymatroids

• ρ_v with ground set $\delta(\mathbf{v})$

 $\sum_{e \in S} f(e) \le \rho_v(S)$ for all $S \subseteq \delta(v)$



Note: maxflow-mincut does not hold, only within factor of 2!

Why Undirected Polymatroidal Networks?

- captures node-capacitated flows in undirected graphs
- within factor of 2 approximates bi-directed polymatroidal networks relevant to wireless networks which have reciprocity
- ability to use metric methods, large flow-cut gaps for multicommodity flows in directed networks

Multi-commodity Flows

Polymatroidal network G=(V,E)

k pairs $(s_1, t_1), \dots, (s_k, t_k)$

Multi-commodity flow:

- f_i is s_i - t_i flow
- $f(e) = \sum_{i} f_i(e)$ is total flow on e
- flows on edges constrained by polymatroid constraints at nodes

Multi-commodity Cuts

Polymatroidal network **G**=(V,E)

k pairs $(s_1, t_1), \dots, (s_k, t_k)$

Multicut: set of edges that separates all pairs

Sparsity of cut: cost of cut/demand separated by cut

Cost of cut: as defined earlier via optimization

Main Results

- $\Theta(\log k)$ flow-cut gap for undir polymatroidal networks
 - throughput flow vs multicut
 - concurrent flow vs sparsest cut
- O(vlog k)-approximation in undir polymatroidal networks for *separators* (via tool from [Arora-Rao-Vazirani'04])
- Directed graphs and symmetric demands
 - O(log² k) flow-cut gap for throughput flow vs multicut
 - O(log³ k) flow-cut gap for concurrent flow vs sparsest cut

Flow-cut gap results match the known bounds for standard networks

Other Results

See paper ...

Remark: Two "new" proofs of maxflow-mincut theorem for s-t flow in polymatroidal networks

Implications for network information theory

[Kannan-Viswanath'11] + these results imply

capacity of a class of wireless networks understood to within O(log k) factor for k-unicast

Local vs Global Polymatroid Constraints

A more general model:

G=(V,E) graph

f: $2^E \rightarrow R$ is a polymatroid on the set of *edges*

f(S) is the total capacity of the set of edges **S**

Function is global but problems become intractable

[Jegelka-Bilmes'10,Svitkina-Fleischer'09]

Technical Ideas

- Directed polymatroidal networks: a *reduction via uncrossing* in the dual to standard edge-capacitated directed networks
- Undirected polymatroidal networks: *dual via Lovaszextension*
 - sparsest cut: round via line embeddings inspired by [Feige-Hajiaghayi-Lee'05] on undir node-capacitated graphs
 - **multicut**: line embedding idea plus region growing [Leighton-Rao'88,Garg-Vazirani-Yannakakis'93]

Rest of talk

O(log k) upper bound on gap between max concurrent flow and min sparsity in undir polymatroidal networks

Relaxation for Sparsest Cut

Want to find edge set $E' \subseteq E$ to

minimize cost(E')/dem-sep(E')

Variables:

x(e) whether e is cut or not

y(i) whether pair $s_i t_i$ is separated or not

Relaxation for Sparsest Cut

Relaxation for standard networks:

min $\sum_{e} c(e) x(e)$

 $\sum_{i} D_{i} y(i) = 1$

 $dist_x(s_i,t_i) \ge y(i)$ for all pairs i

 $\mathbf{x}, \mathbf{y} \ge \mathbf{0}$

Dual of LP for max concurrent flow

Relaxation for Sparsest Cut

Relaxation for polymatroidal networks:

min cost of cut

 $\sum_{i} D_{i} y(i) = 1$

 $dist_x(s_i,t_i) \ge y(i)$ for all pairs i

 $\mathbf{x}, \mathbf{y} \ge \mathbf{0}$

Modeling cost of cut

- Each cut edge **uv** has to be assigned to **u** or **v**
 - Introduce variables x(e,u) and x(e,v) for each edge uv
 - Add constraint x(e,u) + x(e,v) = x(e)
- For a node v if $S \subseteq \delta(v)$ are cut edges assigned to v then cost at v is $\rho_v(S)$

Relaxation for Sparsest Cut

Relaxation for polymatroidal networks: min cost of cut $\sum_{i} D_{i} y(i) = 1$ x(e,u) + x(e,v) = x(e) for each edge uv $dist_x(s_i, t_i) \ge y(i)$ for all pairs i $\mathbf{x}, \mathbf{y} \ge \mathbf{0}$

Modeling cost of cut

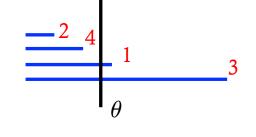
- Each cut edge **uv** has to be assigned to **u** or **v**
 - Introduce variables x(e,u) and x(e,v) for each edge uv
 - Add constraint x(e,u) + x(e,v) = x(e)
- For a node v if $S \subseteq \delta(v)$ are cut edges assigned to v then cost at v is $\rho_v(S)$
 - \mathbf{x}_v is the vector $(\mathbf{x}(\mathbf{e}_1, \mathbf{v}), \mathbf{x}(\mathbf{e}_2, \mathbf{v}), \dots, \mathbf{x}(\mathbf{e}_h, \mathbf{v}))$ where $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_h$ are edges in $\delta(\mathbf{v})$
 - Use continuous extension $\rho^*_{v}(\mathbf{x}_{v})$ to model $\rho_{v}(\mathbf{S})$

Relaxation for Sparsest Cut

Relaxation for polymatroidal networks: $\min \sum_{\mathbf{v}} \rho^*_{\mathbf{v}}(\mathbf{x}_{\mathbf{v}})$ $\sum_{i} D_{i} y(i) = 1$ x(e,u) + x(e,v) = x(e) for each edge uv $dist_x(s_i, t_i) \ge y(i)$ for all pairs i $\mathbf{x}, \mathbf{y} \ge \mathbf{0}$

Lovasz-extension of f

 $f^{*}(\mathbf{x}) = \mathbf{E}_{\theta \in [0,1]}[f(\mathbf{x}^{\theta})] = \int_{0}^{1} f(\mathbf{x}^{\theta}) d\theta$ where $\mathbf{x}^{\theta} = \{ i \mid x_{i} \ge \theta \}$



Example: $\mathbf{x} = (0.3, 0.1, 0.7, 0.2)$

 $\mathbf{x}^{\theta} = \{1,3\}$ for $\theta = 0.21$ and $\mathbf{x}^{\theta} = \{3\}$ for $\theta = 0.6$

 $f^{*}(\mathbf{x}) = (1-0.7) f(\emptyset) + (0.7-0.3)f(\{3\}) + (0.3-0.2) f(\{1,3\}) + (0.2-0.1) f(\{1,3,4\}) + (0.1-0) f(\{1,2,3,4\})$

Properties of f*

- **f*** is convex iff **f** is submodular
- Easy to evaluate **f***
- $f^*(x) = f(x)$ for all x when f is submodular
- If f is monotone and $\mathbf{x} \leq \mathbf{y}$ then $f^*(\mathbf{x}) \leq f^*(\mathbf{y})$

Relaxation for Sparsest Cut

Relaxation for polymatroidal networks: $\min \sum_{\mathbf{v}} \rho^{\star}_{\mathbf{v}}(\mathbf{x}_{\mathbf{v}})$ $\sum_{i} D_{i} y(i) = 1$ x(e,u) + x(e,v) = x(e) for each edge uv $dist_x(s_i, t_i) \ge y(i)$ for all pairs i $\mathbf{x}, \mathbf{y} \ge \mathbf{0}$

Lemma: Dual to LP for maximum concurrent flow

Rounding of Relaxation

Standard undirected networks:

- Edge capacities: round via *l*₁ *embedding* [Linial-London-Rabinovich'95,Aumanna-Rabani'95]
- Node-capacities: round via *line embedding* [Feige-Hajiaghayi-Lee'05]

Line Embeddings

[Matousek-Rabinovich'01]

(V,d) metric space w(uv) non-neg weight for each uv

 $g: V \rightarrow R$ is a line embedding with average weighted distortion $\alpha \ge 1$ if

- $|g(u) g(v)| \le d(u,v)$ for all u,v (contraction)
- $\sum_{uv} w(uv) |g(u)-g(v)| \ge \sum_{uv} w(uv) d(uv)/\alpha$

Line Embeddings

[Matousek-Rabinovich'01]

(V,d) metric space w(uv) non-neg weight for each uv

 $g: V \rightarrow R$ is a line embedding with average weighted distortion α if

- $|g(u) g(v)| \le d(u,v)$ for all u,v (contraction)
- $\sum_{uv} w(uv) |g(u)-g(v)| \ge \sum_{uv} w(uv) d(uv)/\alpha$

Theorem [Bourgain]: Any metric space on **n** nodes admits line embedding with O(log n) average weighted distortion.

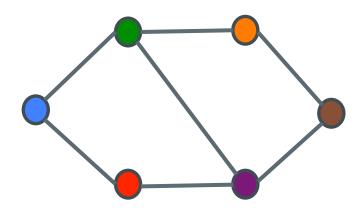
Rounding Algorithm

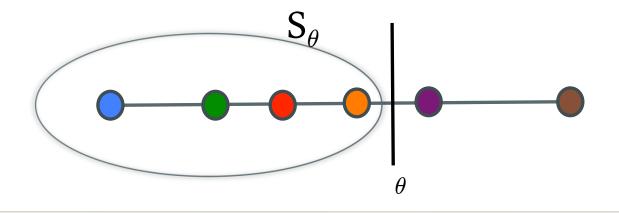
- Solve Lovasz-extension based convex relaxation
- **x(e)** values induce metric on **V**
- Embed metric into line with O(log n) average distortion w.r.t to weights w(uv) = D(uv)
- Pick the best cut S_{θ} among all cuts on the line

Rounding Algorithm

- Solve Lovasz-extension based convex relaxation
- **x(e)** values induce metric on **V**
- Embed metric into line with O(log n) average distortion w.r.t to weights w(uv) = D(uv)
- Pick the best cut S_{θ} among all cuts on the line
- **Remark:** Clean algorithm that generalizes edge/ node/polymatroid cases since cut is defined on edges though cost is more complex

Rounding Algorithm





Analysis

 $\nu(\delta(S_{\theta})): \text{ cost of cut at } \theta$ Lemma: $\int \nu(\delta(S_{\theta})) d\theta \leq 2 \sum_{v} \rho^{*}_{v}(\mathbf{x}_{v}) = 2 \text{ OPT}_{\text{frac}}$ $D(\delta(S_{\theta})): \text{ demand separated by } \theta \text{ cut}$ Lemma: $\int D(\delta(S_{\theta})) d\theta \geq \sum_{i} D_{i} \operatorname{dist}_{x}(s_{i}t_{i})/\log n$ Therefore:

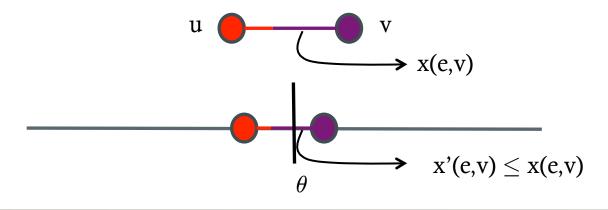
 $\int \nu(\delta(S_{\theta})) d\theta / \int D(\delta(S_{\theta})) d\theta \le O(\log n) OPT_{frac}$

Proof of lemma

Lemma: $\int \nu(\delta(S_{\theta})) d\theta \leq 2 \sum_{v} \rho^{*}_{v}(\mathbf{x}_{v})$

 $\nu(\delta(S_{\theta}))$ is difficult to estimate exactly

Recall: $uv \in \delta(S_{\theta})$ has to be assigned to u or v Assign according to x(e,u) and x(e,v) *proportionally*



Proof of lemma

Lemma: $\int \nu(\delta(S_{\theta})) d\theta \leq 2 \sum_{v} \rho^{*}_{v}(\mathbf{x}_{v})$

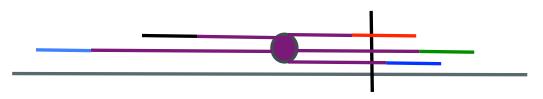
 $\nu(\delta(S_{\theta}))$ is difficult to estimate exactly

Recall: $uv \in \delta(S_{\theta})$ has to be assigned to u or v Assign according to x(e,u) and x(e,v) *proportionally*

With assignment defined, estimate $\int \nu(\delta(S_{\theta})) d\theta$ by summing over nodes

Proof of lemma

Lemma: $\int \nu(\delta(S_{\theta})) d\theta \leq 2 \sum_{v} \rho^{*}_{v}(\mathbf{x}_{v})$ With assignment defined, estimate $\int \nu(\delta(S_{\theta})) d\theta$ by summing over nodes $\int \nu(\delta(S_{\theta})) d\theta \leq 2 \sum_{v} \rho^{*}_{v}(\mathbf{x}^{*}_{v}) \leq 2 \sum_{v} \rho^{*}_{v}(\mathbf{x}_{v})$ $\mathbf{x}^{*}_{v} = (\mathbf{x}^{*}(\mathbf{e}_{1}, \mathbf{v}), ..., \mathbf{x}^{*}(\mathbf{e}_{h}, \mathbf{v}))$ where $\delta(\mathbf{v}) = \{\mathbf{e}_{1}, ..., \mathbf{e}_{h}\}$

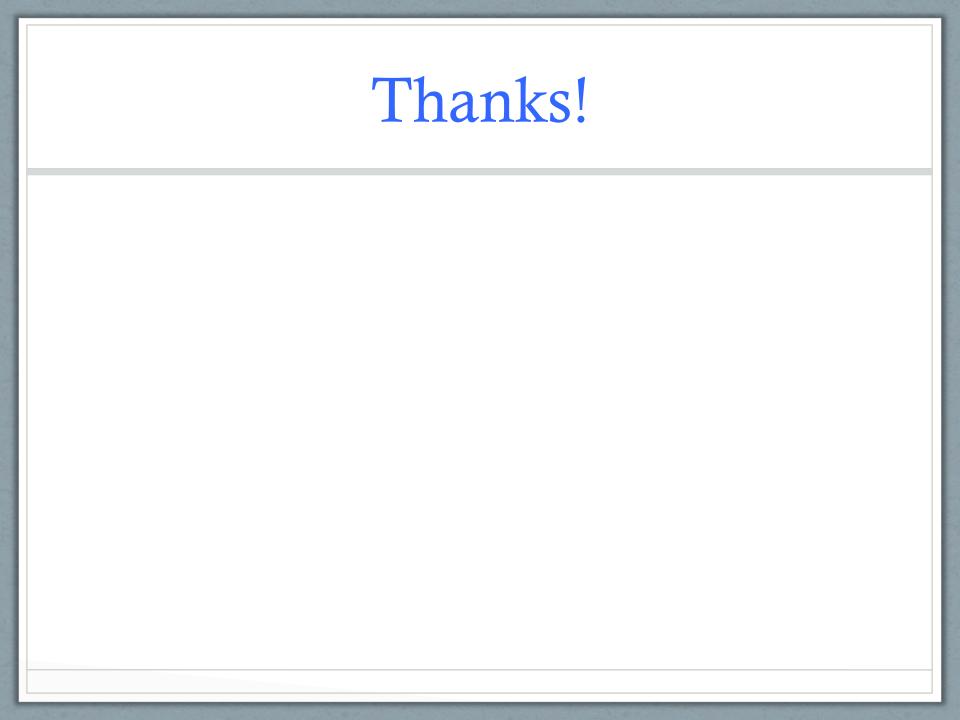


Concluding Remarks

• Flow-cut gaps for polymatroidal networks match those for standard networks

Questions:

- L₁ embeddings characterize flow-cut gap in undirected edge-capaciated networks. What characterizes flow-cut gaps of node-capacitated and polymatroidal networks?
- What are flow-cut gaps for say planar graphs? Okamura-Seymour instances?



Continuous extensions of f

For $f: 2^N \to \mathbb{R}^+$ define $g: [0,1]^N \to \mathbb{R}^+$ s.t

- for any $S \subseteq N$ want $f(S) = g(1_S)$
- given $\mathbf{x} = (x_1, x_2, ..., x_n) \in [0,1]^N$ want polynomial time algorithm to evaluate $\mathbf{g}(\mathbf{x})$
- for *minimization* want **g** to be *convex* and for *maximization* want **g** to be *concave*

Canonical extension

$$\mathbf{x} = (x_1, x_2, ..., x_n) \in [0, 1]^N$$

 $min/max \sum_{S} \alpha_{S} f(S)$

$$\sum_{S} \alpha_{S} = 1$$

$$\sum_{S} \alpha_{S} = x_{i} \text{ for all i}$$

$$\alpha_{S} \ge 0 \text{ for all S}$$

f(x) for minimization and f(x) for maximization: convex and concave closure of f

Submodular f

- For minimization **f**(**x**) can be evaluated in poly-time via submodular function minimization
 - Equivalent to the *Lovasz-extension*
- For maximization f⁺(x) is NP-Hard to evaluate even when f is monotone submodular