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Max-flow Min-cut Theorem 

[Ford-Fulkerson, Menger] 

G=(V,E) directed graph with 
non-negative edge-capacities 

max s-t flow value equal to min 
s-t cut value 

if  capacities integral max flow 
can be chosen to be integral 
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Multi-commodity Flows 

Several pairs (s1,t1),...,(sk,tk) 
jointly use the network 
capacity to route their flow 

fi(e) : flow for pair i on edge e 

∑i fi(e) · c(e)  for all e 
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Max Throughput Flow and 
 Min Multicut 

fi(e) : flow for pair i on edge e 

∑i fi(e) · c(e)  for all e 

max ∑i val(fi)     (max throughput flow) 
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Max Throughput Flow and 
 Min Multicut 

fi(e) : flow for pair i on edge e 

∑i fi(e) · c(e)  for all e 

max ∑i val(fi)    (max throughput flow) 

 

Multicut: set of  edges whose removal     
disconnects all pairs 

 

Max Throughput Flow ·   Min Multicut Capacity 
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Max Concurrent Flow and 
 Min Sparsest Cut 

fi(e) : flow for pair i on edge e 

∑i fi(e) · c(e)  for all e 

val(fi)  ¸ ¸ Di  for all i 

max ¸   (max concurrent flow) 
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Max Concurrent Flow and 
 Min Sparsest Cut 

fi(e) : flow for pair i on edge e 

∑i fi(e) · c(e)  for all e 

val(fi)  ¸ ¸ Di  for all i 

max ¸   (max concurrent flow) 

 

Sparsity of cut =  capacity of  cut / demand separated by cut 

Max Concurrent Flow ·  Min Sparsity 
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Flow-Cut Gap: Undir graphs 

[Leighton-Rao’88] examples via expanders to show 

Max Throughput Flow ·  O(1/log k)  Min Multicut 

Max Concurrent Flow ·  O(1/log k)  Min Sparsity 

k = £(n2) in expander examples 



Flow-Cut Gap: Undir graphs 

[Leighton-Rao’88] for product multi-commodity flow 

Max Concurrent Flow  ¸ Ω (1/log k)  Min Sparsity 
 

[Garg-Vazirani-Yannakakis’93] 

Max Throughput Flow ¸ Ω(1/log k)  Min Multicut 

 

[Linial-London-Rabinovich’95,Aumann-Rabani’95] 

Max Concurrent Flow  ¸ Ω (1/log k)  Min Sparsity 



Flow-Cut Gap: Undir graphs 
Node Capacities 

[Feige-Hajiaghayi-Lee’05] 

Max Concurrent Flow  ¸ Ω (1/log k)  Min Sparsity 

 

 [Garg-Vazirani-Yannakakis’93] 

 Max Throughput Flow ¸ Ω(1/log k)  Min Multicut 
 



Flow-Cut Gap: Dir graphs 

[Saks-Samorodnitsky-Zosin’04] 

Max Throughput Flow · O(1/k)  Min Multicut 

 

[Chuzhoy-Khanna’07] 

Max Throughput Flow · O(1/n1/7)  Min Multicut 
 
[Agrawal-Alon-Charikar’07] 

Max Throughput Flow ¸ Ω(1/n11/23)  Min Multicut 
       ¸ 1/k  Min Multicut (trivial) 

 
 



Flow-Cut Gap: Dir graphs 

Symmetric demands: (si,ti) and (ti,si) for each pair and 
cut has to separate only one of  the two 

 

[Klein-Plotkin-Rao-Tardos’97] 

Max Throughput Flow ¸ Ω(1/log2 k)  Min Multicut 

Max Concurrent Flow  ¸ Ω (1/log3 k)  Min Sparsity 
[Even-Naor-Rao-Schieber’95] 

Max Throu. Flow ¸ Ω(1/log n log log n) Min Multicut 
 

 



Flow-Cut Gaps: Summary 

k pairs in a graph G=(V,E) 

•   £(log k) for undir graphs 
•  Throughput Flow vs Multicut  

•  Concurrent Flow vs Sparsest Cut  

•  Node-capacited flows [Feige-Hajiaghayi-Lee’05] 

•  O(polylog(k)) for dir graph with symmetric demands 

•  Polynomial-factor lower bounds for dir graphs 



Polymatroidal Networks 

Capacity of  edges incident to v jointly constrained by a 
polymatroid (monotone non-neg submodular set func) 
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∑i 2 S c(ei) · f(S) for every S µ {1,2,3,4} 



Detour: 
Network Information Theory 

Question: What is the information theoretic capacity of  a 
network? 

Given G=(V,E) and pairs (s1,t1),...,(sk,tk) and rates/
demands D1,...,Dk : can the pairs use the network to 
successfully transmit information at these rates? 

•  Can use routing, (network) coding, and any other 
scheme ... 

•  Network coding [Ahlswede-Cai-Li-Yeung’00] 



Network Information Theory: 
Cut-Set Bound 

 Max Concurrent Rate · Min Sparsity  

S V\S 



Network Information Theory 

 Max Concurrent Rate · Min Sparsity 

•  In undirected graphs routing is near-optimal (within 
log factors). Follows from flow-cut gap upper bounds 

•  In directed graphs routing can be very far from 
optimal  

•  In directed graphs routing far from optimal even for 
multicast 

•  Capacity of  networks poorly understood 



Capacity of  Wireless 
Networks 



Capacity of  wireless networks 

Major issues to deal with: 

•  interference due to  broadcast nature of  medium 

•  noise 

 

 



Capacity of  wireless networks 

Recent work:  understand/model/approximate wireless 
networks via wireline networks 

•  Linear deterministic networks [Avestimehr-Diggavi-
Tse’09] 
•  Unicast/multicast (single source). Connection to 

polylinking systems and submodular flows [Goemans-
Iwata-Zenklusen’09] 

•  Polymatroidal networks [Kannan-Viswanath’11] 
•  Multiple unicast.  



Directed Polymatroidal Networks 

[Lawler-Martel’82, Hassin’79] 

Directed graph G=(V,E) 

For each node v two polymatroids 
•   ½v

-  with ground set ±- (v) 

•  ½v
+ with ground set ±+(v) 

 

 ∑ e 2 S f(e) ·  ½v
- (S)  for all S µ ±-(v) 

 ∑ e 2 S f(e) ·  ½v
+ (S)  for all S µ ±+(v) 
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s-t flow 

Flow from s to t: “standard flow” with polymatroidal 
capacity constraints 
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What is the cap. of  a cut? 

Assign each edge (a,b) of  cut to either a or b 

Value = sum of  function values on assigned sets 

Optimize over all assignments 

min{1+1+1, 1.2+1, 1.6+1} 
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Maxflow-Mincut Theorem 

[Lawler-Martel’82, Hassin’79] 

Theorem: In a directed polymatroidal network the max s-t 
flow is equal to the min s-t cut value. 

Model equivalent to submodular-flow model of[Edmonds-
Giles’77] that can derive as special cases 

•  polymatroid intersection theorem 

•  maxflow-mincut in standard network flows 

•  Lucchesi-Younger theorem 

 



Undirected Polymatroidal Networks 

“New” model: 

Undirected graph G=(V,E) 

For each node v single polymatroids 
•   ½v

  with ground set ±(v) 
 

 ∑ e 2 S f(e) ·  ½v(S)  for all S µ ±(v) 
  

Note: maxflow-mincut does not hold, only within 
factor of  2! 
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Why Undirected 
Polymatroidal Networks? 

•  captures node-capacitated flows in undirected graphs 

•  within factor of  2 approximates bi-directed 
polymatroidal networks relevant to wireless 
networks which have reciprocity 

•  ability to use metric methods, large flow-cut gaps for 
multicommodity flows in directed networks 



Multi-commodity Flows 

Polymatroidal network G=(V,E) 

k pairs (s1,t1),...,(sk,tk) 

Multi-commodity flow:   

•  fi is si-ti flow 

•  f(e) = ∑i fi(e) is total flow on e 

•  flows on edges constrained by polymatroid 
constraints at nodes 



Multi-commodity Cuts 

Polymatroidal network G=(V,E) 

k pairs (s1,t1),...,(sk,tk) 

Multicut: set of  edges that separates all pairs 

Sparsity of cut: cost of  cut/demand separated by cut 

Cost of  cut: as defined earlier via optimization 



Main Results 

•   £(log k) flow-cut gap for undir polymatroidal networks 
•  throughput flow vs multicut 
•  concurrent flow vs sparsest cut 

•  O(√log k)-approximation in undir polymatroidal networks for 
separators (via tool from [Arora-Rao-Vazirani’04]) 

•  Directed graphs and symmetric demands 
•  O(log2 k) flow-cut gap for throughput flow vs multicut 
•  O(log3 k) flow-cut gap for concurrent flow vs sparsest cut 
 

Flow-cut gap results match the known bounds for standard 
networks 

 



Other Results 

See paper ... 

 

Remark: Two “new” proofs of  maxflow-mincut 
theorem for s-t flow in polymatroidal networks 

 



Implications for network 
information theory 

[Kannan-Viswanath’11] + these results imply 

capacity of  a class of  wireless networks understood to 
within O(log k) factor for k-unicast 

 



Local vs Global Polymatroid 
Constraints 

A more general model: 

G=(V,E) graph 

f: 2E ! R is a polymatroid on the set of  edges 

f(S) is the total capacity of  the set of  edges S 

Function is global but problems become intractable 

[Jegelka-Bilmes’10,Svitkina-Fleischer’09] 



Technical Ideas 

•  Directed polymatroidal networks: a reduction via 
uncrossing in the dual to standard edge-capacitated 
directed networks 

•  Undirected polymatroidal networks: dual via Lovasz-
extension  
•  sparsest cut: round via line embeddings inspired by 

[Feige-Hajiaghayi-Lee’05] on undir node-capacitated 
graphs 

•  multicut: line embedding idea plus region growing 
[Leighton-Rao’88,Garg-Vazirani-Yannakakis’93] 



Rest of  talk 

O(log k) upper bound on gap between max concurrent 
flow and min sparsity in undir polymatroidal networks 



Relaxation for Sparsest Cut 

Want to find edge set E’ µ E to  

 minimize  cost(E’)/dem-sep(E’) 

Variables:   

x(e) whether e is cut or not 

y(i) whether pair siti is separated or not 



Relaxation for Sparsest Cut 

Relaxation for standard networks: 

min ∑e c(e) x(e) 

∑i Di y(i) = 1 

distx(si,ti) ¸ y(i)    for all pairs i 

x, y ¸ 0 

Dual of  LP for max concurrent flow 

 



Relaxation for Sparsest Cut 

Relaxation for polymatroidal networks: 

min  cost of  cut 

∑i Di y(i) = 1 

distx(si,ti) ¸ y(i)    for all pairs i 

x, y ¸ 0 

 



Modeling cost of  cut 

•  Each cut edge uv has to be assigned to u or v 
•  Introduce variables x(e,u) and x(e,v) for each edge uv 

•  Add constraint x(e,u) + x(e,v) = x(e) 

•  For a node v if  S µ ±(v) are cut edges assigned to v 
then cost at v is ½v(S) 



Relaxation for Sparsest Cut 

Relaxation for polymatroidal networks: 

min cost of  cut 

∑i Di y(i) = 1 

x(e,u) + x(e,v) = x(e)  for each edge uv 

distx(si,ti) ¸ y(i)    for all pairs i 

x, y ¸ 0 

 



Modeling cost of  cut 

•  Each cut edge uv has to be assigned to u or v 
•  Introduce variables x(e,u) and x(e,v) for each edge uv 

•  Add constraint x(e,u) + x(e,v) = x(e) 

•  For a node v if  S µ ±(v) are cut edges assigned to v 
then cost at v is ½v(S) 
•  xv is the vector (x(e1,v),x(e2,v),...,x(eh,v)) where 

e1,e2,...,eh are edges in ±(v) 

•  Use continuous extension ½*v(xv) to model ½v(S) 



Relaxation for Sparsest Cut 

Relaxation for polymatroidal networks: 

min ∑v ½*v(xv)  

∑i Di y(i) = 1 

x(e,u) + x(e,v) = x(e)  for each edge uv 

distx(si,ti) ¸ y(i)    for all pairs i 

x, y ¸ 0 

 



Lovasz-extension of  f  

f*(x) = Eµ 2 [0,1][ f(xµ) ]  = s0
1 f(xµ) dµ  

where  xµ = { i | xi ¸ µ } 

 

Example:   x = (0.3, 0.1, 0.7, 0.2)  

xµ = {1,3} for µ = 0.21 and xµ = {3} for µ = 0.6 

f*(x) = (1-0.7) f(;) + (0.7-0.3)f({3}) + (0.3-0.2) f({1,3}) 
 + (0.2-0.1) f({1,3,4}) + (0.1-0) f({1,2,3,4}) 
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Properties of  f* 

•  f* is convex iff  f  is submodular 

•  Easy to evaluate f* 

•  f*(x) = f-(x) for all x when f  is submodular 

•  If  f  is monotone and x · y then f*(x) · f*(y) 



Relaxation for Sparsest Cut 

Relaxation for polymatroidal networks: 

min ∑v ½*v(xv)  

∑i Di y(i) = 1 

x(e,u) + x(e,v) = x(e)  for each edge uv 

distx(si,ti) ¸ y(i)    for all pairs i 

x, y ¸ 0 

Lemma: Dual to LP for maximum concurrent flow 

 



Rounding of  Relaxation 

Standard undirected networks: 

•  Edge capacities: round via l1 embedding [Linial-
London-Rabinovich’95,Aumanna-Rabani’95] 

•  Node-capacities: round via line embedding [Feige-
Hajiaghayi-Lee’05] 



Line Embeddings 

[Matousek-Rabinovich’01] 

(V,d) metric space  w(uv) non-neg weight for each uv 

g : V ! R is a line embedding with average weighted 
distortion ® ¸ 1  if  

•  |g(u) – g(v)| · d(u,v) for all u,v  (contraction) 

•   ∑ uv w(uv) |g(u)-g(v)| ¸ ∑uv w(uv) d(uv)/® 



Line Embeddings 

[Matousek-Rabinovich’01] 

(V,d) metric space  w(uv) non-neg weight for each uv 

g : V ! R is a line embedding with average weighted 
distortion ® if  

•  |g(u) – g(v)| · d(u,v) for all u,v  (contraction) 

•   ∑ uv w(uv) |g(u)-g(v)| ¸ ∑uv w(uv) d(uv)/® 

Theorem [Bourgain]: Any metric space on n nodes admits  
line embedding with O(log n) average weighted distortion. 



Rounding Algorithm 

•  Solve Lovasz-extension based convex relaxation 

•  x(e) values induce metric on V 

•  Embed metric into line with O(log n) average 
distortion w.r.t to weights w(uv) = D(uv) 

•  Pick the best cut Sµ among all cuts on the line 



Rounding Algorithm 

•  Solve Lovasz-extension based convex relaxation 

•  x(e) values induce metric on V 

•  Embed metric into line with O(log n) average 
distortion w.r.t to weights w(uv) = D(uv) 

•  Pick the best cut Sµ among all cuts on the line 

•  Remark: Clean algorithm that generalizes edge/
node/polymatroid cases since cut is defined on 
edges though cost is more complex 



Rounding Algorithm 

µ 

Sµ 



Analysis 

º(±(Sµ)): cost of  cut at µ 

Lemma: s º(±(Sµ)) dµ · 2 ∑v ½*v(xv) = 2 OPTfrac 

D(±(Sµ)) : demand separated by µ cut 

Lemma: s D(±(Sµ)) dµ ¸ ∑i Di distx(siti)/log n 

Therefore:   

s º(±(Sµ)) dµ / s D(±(Sµ)) dµ · O(log n) OPTfrac 

 



Proof  of  lemma 

Lemma: s º(±(Sµ)) dµ · 2 ∑v ½*v(xv) 

º(±(Sµ))  is difficult to estimate exactly 

Recall: uv 2 ±(Sµ) has to be assigned to u or v  

Assign according to x(e,u) and x(e,v) proportionally 
 

 
u v 

µ 

x(e,v) 

x’(e,v) · x(e,v) 



Proof  of  lemma 

Lemma: s º(±(Sµ)) dµ · 2 ∑v ½*v(xv) 

º(±(Sµ))  is difficult to estimate exactly 

Recall: uv 2 ±(Sµ) has to be assigned to u or v  

Assign according to x(e,u) and x(e,v) proportionally 
 

With assignment defined, estimate s º(±(Sµ)) dµ by  
summing over nodes  



Proof  of  lemma 

Lemma: s º(±(Sµ)) dµ · 2 ∑v ½*v(xv) 

With assignment defined, estimate s º(±(Sµ)) dµ by  

summing over nodes  
s º(±(Sµ)) dµ · 2 ∑v ½*v(x’v) · 2 ∑v ½*v(xv) 

x’v = (x’(e1,v),...,x’(eh,v)) where ±(v)={e1,...,eh} 



Concluding Remarks 

•  Flow-cut gaps for polymatroidal networks match 
those for standard networks 

Questions: 

•  L1 embeddings characterize flow-cut gap in 
undirected edge-capaciated networks. What 
characterizes flow-cut gaps of  node-capacitated and 
polymatroidal networks? 

•  What are flow-cut gaps for say planar graphs? 
Okamura-Seymour instances? 

 

 



Thanks! 



Continuous extensions of  f  

For f  : 2N  ! R+ define g : [0,1]N ! R+ s.t  

•  for any S µ N want f(S) = g(1S) 

•  given x = (x1, x2, ..., xn) ∈ [0,1]N want polynomial  
time algorithm to evaluate g(x) 

•  for minimization want g to be convex and for 
maximization want g to be concave 



Canonical extension 

x = (x1, x2, ..., xn) ∈ [0,1]N 

 min/max  ∑ S ®S f(S) 

	
∑S ®S = 1 

	
∑S ®S = xi   for all i 

 ®S ¸ 0   for all S 

f-(x) for minimization and f+(x) for maximization: convex 
and concave closure of  f  



Submodular f  

•  For minimization f-(x) can be evaluated in poly-time 
via submodular function minimization 
•  Equivalent to the Lovasz-extension  

•  For maximization f+(x) is NP-Hard to evaluate even 
when f  is monotone submodular  
 


