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SUMMARY 

 

Retrofitting of existing buildings is essential to reach reduction targets in energy 

consumption and greenhouse gas emission. In the current practice of a retrofit decision 

process, professionals perform energy audits, and construct dynamic simulation models 

to benchmark the performance of existing buildings and predict the effect of retrofit 

interventions. In order to enhance the reliability of simulation models, they typically 

calibrate simulation models based on monitored energy use data. The calibration 

techniques used for this purpose are manual and expert-driven. The current practice has 

major drawbacks: (1) the modeling and calibration methods do not scale to large portfolio 

of buildings due to their high costs and heavy reliance on expertise, and (2) the resulting 

deterministic models do not provide insight into underperforming risks associated with 

each retrofit intervention.  

This thesis has developed a new retrofit analysis framework that is suitable for 

large-scale analysis and risk-conscious decision-making. The framework is based on the 

use of normative models and Bayesian calibration techniques. Normative models are 

light-weight quasi-steady state energy models that can scale up to large sets of buildings, 

i.e. to city and regional scale. In addition, they do not require modeling expertise since 

they follow a set of modeling rules that produce a standard measure for energy 

performance. The normative models are calibrated under a Bayesian approach such that 

the resulting calibrated models quantify uncertainties in the energy outcomes of a 

building. Bayesian calibration models can also incorporate additional uncertainties 
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associated with retrofit interventions to generate probability distributions of retrofit 

performance. Probabilistic outputs can be straightforwardly translated into a measure that 

quantifies underperforming risks of retrofit interventions and thus enable decision making 

relative to the decision-makers' rational objectives and risk attitude.  

This thesis demonstrates the feasibility of the new framework on retrofit 

applications by verifying the following two hypotheses: (1) normative models supported 

by Bayesian calibration have sufficient model fidelity to adequately support retrofit 

decisions, and (2) they can support risk-conscious decision-making by explicitly 

quantifying risks associated with retrofit options. The first and second hypotheses are 

examined through case studies that compare outcomes from the calibrated normative 

model with those from a similarly calibrated transient simulation model and compare 

decisions derived by the proposed framework with those derived by standard practices 

respectively. The new framework will enable cost-effective retrofit analysis at urban 

scale with explicit management of uncertainties. 

 

 

 

 

 



 

 

1 

 

CHAPTER 1 INTRODUCTION 

 

 

1.1 Importance of Retrofitting Existing Buildings 

In the U. S. and European countries, the building sector accounts for 39% of the 

total energy consumption (EPA, 2008; DECC, 2010a). While the energy consumption of 

current buildings is projected to grow annually by 1.7% to 2025 (Ryan, 2004), the total 

floor area of buildings is projected to increase roughly at the rate of 1- 2% per year. 

According to Commercial Buildings Energy Consumption Survey (EIA, 2003), in 2003 

the U.S. has 4.86 million commercial buildings corresponding to 71.6 billion square feet 

of floor areas, and adds 1.6 billion square feet of new constructed floor areas every year. 

Owing to the dominant volume of current buildings, energy retrofits of existing buildings 

are essential to meet energy and greenhouse gas emission reduction targets. Without 

enhancing performance of existing buildings, it will be difficult to reach the 2030 

challenge of 50% reduction in energy consumption from the building sector.    

Energy retrofits of existing buildings have gained interest due to growing 

awareness of energy inefficiency over the building lifecycle. These inefficiencies can 

result from degradation of materials and equipment, change in use, and/or unexpected 

faults. The efficiency of a building degrades even faster if it is not maintained properly. 

Moreover, building systems underperform when they are not properly installed. Indeed, 

faults in mechanical and lighting systems in a building can account for between 2% and 

11% of the total energy consumption for commercial buildings (Roth, 2005).  

Performance deficiencies in existing buildings are also emphasized in a study 

conducted by the Lawrence Berkeley National Laboratory of 643 existing commercial 
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buildings (Mills, 2009; Mills, 2004). This study has shown that improving existing 

buildings will yield median energy savings of 16%. Furthermore, this study projected that 

if these median energy savings are applied to the U.S. commercial building stock, 

potential energy-savings will correspond to monetary savings of approximately $30 

billion by 2030. According to this projection, energy retrofits of existing buildings can 

play a significant role in achieving national energy reduction targets cost-effectively.  

Federal, state, and local governments have established various goals towards 

reducing energy consumption and greenhouse gas emissions from the building sector. 

President Obama launched "Better Buildings Initiative" to improve energy efficiency in 

buildings; one of the targets is to make commercial buildings in U.S. 20% more energy 

efficient by 2020 through cost-effective retrofit interventions (White House, 2011). Also, 

the city of Chicago initiated a Chicago Climate Action Plan to mitigate climate change by 

reducing greenhouse gas emissions (City of Chicago Climate Action, 2011). One of the 

five strategies in the plan is energy efficient buildings: retrofitting 50% of commercial 

buildings and residential buildings in Chicago for 30% energy reduction by 2020.  

The advantages of investing in building retrofits for energy and environmental 

benefits have been long recognized at more local, community levels. The Texas Energy 

Office commenced the Texas LoanSTAR program in 1988, which had provided 191 

loans for public buildings by November 2007 for energy retrofits (SECO, 2007). In 1995, 

the U.S. Department of Energy developed the Rebuild America Program that assists 

communities to design and implement retrofit projects through community-based 

partnerships (Brown, 2004). In this program, a community works with a group of local 

private and public sector organizations to define its energy-saving goals, select buildings 

for improvements, and develop financial and action plans for energy efficiency 

improvements. As of October 2003, the program has supported over 560 communities in 

53 states, and renovations have been completed for 610 million square feet of building 
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floor area (EERE, 2003). Recently in 2009, the U.S. Department of Energy announced a 

$454 million fund for the Retrofit Ramp-Up program to make building retrofits 

accessible to existing houses and commercial buildings (Department of Energy, 2009). 

The program selected 25 communities that proposed innovative business models for 

whole-neighborhood energy retrofits.   

In addition to community-level retrofit efforts, large organizations (e.g., 

campuses, corporate owners, government entities) regard energy retrofits of their 

facilities as a profitable investment opportunity. Indeed, energy retrofits can be cost-

effective for institutions as they reduce the energy costs of large portfolio of buildings 

while increasing long-term real estate value. Energy-efficiency services for large public-

sector facilities yielded $2.8 billion in revenues for the Energy Service Companies in 

2008 alone (Satchwell, 2010). Besides, as of May 2011, 25 federal agencies have 

implemented more than 570 energy retrofit projects under the Federal Energy 

Management Program (FEMP) to improve energy efficiency of federal government 

buildings (FEMP, 2011).  

 

1.2 Importance of Risk Analysis in Retrofit Decision-makings 

Quantifying risks is important in the case of large-scale/high-cost retrofits since it 

provides explicit information about underperforming risks associated with each retrofit 

option. The objective of risk analysis is to quantify the magnitude of savings from retrofit 

decisions and the likelihood of the savings. Risk analysis typically requires probabilistic 

analysis, and should be preceded by uncertainty quantification. Many studies have 

demonstrated the significant role of uncertainty quantification and risk analysis in the 

context of buildings, for example in the design of HVAC systems (de Wit, 2002), mold 

risks (Moon, 2007), and energy management in off-grid solar homes (Hu, 2009). These 
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studies have shown how quantitative knowledge of risk changes the rational choice of the 

best design option.  

Quantitative risk analysis is especially necessary to adequately manage risk in 

retrofit investments, especially in the context of the Energy Service Companies (ESCOs) 

industry. ESCOs undertake energy retrofits of existing buildings through energy 

performance contracts that typically guarantee savings as part of their service. Energy 

service contracts have been a useful medium for delivering energy-efficiency services to 

various building sectors (e.g., government entities, schools, universities). The U.S. ESCO 

industry is expected to grow by an annual growth rate of 26% through 2011 with 75% of 

the revenues coming from energy performance contracts for building retrofits (Satchwell, 

2010). A performance contract guarantees energy-savings or energy-cost savings directly 

tied to the total cost (service cost) of the improvement contracted by the ESCO. In other 

words, the service cost is in part determined by the magnitude of the guaranteed cost 

savings. However, if the savings are overestimated and not realized during the contract 

period, ESCOs may have to compensate building owners for the shortfall depending on 

the contract clauses. The expression of a guarantee allows building owners to invest in 

the retrofits with high confidence, but the structure leads to relatively safe and often less 

aggressive ambitions towards energy savings.    

This means that ESCOs are less likely to recommend high-impact, high-cost 

technologies, unless the probability of energy savings can be quantified appropriately and 

associated risks expressed such that comparison between competing technologies is 

supported adequately. Hence, uncertainty analysis has been emphasized in energy 

efficiency projects to quantify financial and physical risks in the saving potential from 

ECMs (Mills, 2006; Mills, 2003; Mathew, 2005). However, there is a lack of sufficient 

research in developing methods that quantify risks for use in energy performance 

contracts.  



 

 

5 

1.3 Current Methods for Evaluating Energy Retrofits 

All retrofit projects essentially aim to improve building energy efficiency in a cost 

effective way by implementing the most optimal mix of technologies and retrofit 

interventions. In order to achieve this goal for a large portfolio of buildings, retrofitting 

should be generally preceded by the following steps. First, it is necessary to benchmark 

each individual building within the portfolio to identify the ones that need energy 

efficiency improvements most. Second, candidate energy conservation measures (ECMs) 

must be evaluated in the actual context of identified buildings for selecting the optimal 

measures. These steps are accomplished by a thorough energy audit of all buildings in the 

portfolio and using transient simulation models to predict the relative benefits of a set of 

ECMs. The ‘deep’ energy audits also serve to calibrate the transient simulation model, so 

the model accurately reflects the buildings. This thesis will show that this kind of 

methodology suffers from modeling inefficiencies due to the detailed level of modeling 

expertise required in the analysis process. It can be reasonably applied only for one or 

several buildings, but does not scale up to large sets of buildings. Hence, improving the 

energy efficiency of a large set of buildings will need a new generation of scalable and 

adaptable modeling methodologies.  The modeling methodologies should not only be 

scalable to evaluate the performance of every building in the portfolio but also be 

adaptable to represent each building as operated in order to correctly evaluate all feasible 

ECMs for the particular building.   

In the specific context of the ESCO industry, current practice for evaluating the 

energy saving potential of a building involves Investment Grade Audits (IGA). An IGA 

involves site surveys and collecting data about actual characteristics to establish 'current 

status' or ‘baseline energy’ of the building being considered. This process helps an ESCO 

identify the distribution of energy use within the building by end use and identify 

potential areas of improvement. Subsequent to an IGA, an ESCO evaluates candidate 
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ECMs by engineering analysis methods established by International Performance 

Measurement and Verification Protocol (IPMVP, 2010). The protocol offers several 

alternative methods for estimating energy savings from ECMs for a building, but all of 

them follow a deterministic approach. They compute an absolute value of energy-savings 

from a set of ECMs without quantifying any risks associated with the investments.  

In reality, ESCOs quantify risks associated with ECMs, but do so on the basis of 

an experts' knowledge and prior beliefs. As an acceptable rule of thumb, an experts' 

subjective judgment states guaranteed savings to be between 60% and 70% of the 

deterministic energy-saving estimate (Hansen, 2004). This rule of thumb is applied 

uniformly to all ECMs. It does not reflect risks pertaining to an individual technology or 

energy saving measure. Furthermore, the set of ECMs considered by ESCOs tend to be 

limited to those with proven track records in yielding energy savings. Indeed, the most 

commonly implemented ECMs by the ESCOs are high-efficiency lighting systems or 

lighting controls (Goldman, 2002).  

So far, despite the increasing recognition of the importance of risk analysis in 

performance contracts, the deterministic approach in current practice ignores uncertainty 

quantification in the retrofit analysis process. Moreover, no formal methodology exists to 

introduce risk analysis in the decision-making process.  

 

1.4 New Methodologies for Retrofit Analysis 

The objective of this thesis is to develop a new retrofit analysis framework that 

can support large-scale retrofit decisions under uncertainty. The new framework 

introduces three main features, and is applicable for retrofitting individual buildings, and 

also scalable to large portfolio of buildings. The three main features are as follows:  

 Normative Energy Models: The proposed retrofit analysis is based on using 

normative energy models in lieu of transient building simulation. Normative 
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energy models define energy flows in a building with a relatively small set of 

parameters. Hence, they greatly alleviate burdens in data collection, modeling, 

and computational time. In addition, they do not require modeling expertise 

since they follow a set of modeling rules that produce a standard measure for 

energy performance.  

 Bayesian Calibration of the Normative Energy Model: A Bayesian approach 

is used for calibrating uncertain parameters in the normative model and 

quantifying uncertainties in the parameters. This process improves the 

reliability of the baseline energy model and naturally enables probabilistic 

analysis of ECMs.  

 Probabilistic Analysis: Evaluation of ECMs is based on translating the 

probabilistic outputs from the Bayesian model into risks of underperformance 

associated with ECMs. Hence, the probabilistic analysis can support risk-

conscious decisions that reflect the decision-makers' willingness to accept a 

certain level of risk in their investments.  

 

1.5 Research Hypotheses and Methodology 

The thesis illustrates the proposed retrofit analysis framework for auditing 

applications through two case studies. The case studies are also used to verify the 

following two hypotheses: 

 Hypothesis 1: Normative models supported with Bayesian calibration can 

adequately support retrofit decisions without compromising the degree of 

confidence in decisions.   

 Hypothesis 2: Normative models that undergo Bayesian calibration can 

explicitly provide knowledge about performance uncertainty, and support the 

choice of rational decisions according to decision-makers' objectives.  
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The first hypothesis tests the feasibility of the proposed methodology, especially 

regarding the appropriate model granularity level for energy retrofits. We hypothesize 

that retrofit analysis at the whole building level does not require transient simulation 

models and normative models, if calibrated correctly, are adequate for evaluating energy-

savings potential of retrofit options. This hypothesis is examined by comparing outcomes 

from the calibrated normative model with those from a similarly calibrated transient 

simulation model.  

The second hypothesis examines the importance of uncertainty analysis in retrofit 

decision-making. We hypothesize that probabilistic analysis based on the Bayesian 

calibrated models can adequately support rational decisions according to decision-

makers' risk attitude in retrofit projects. The thesis does not claim that the probabilistic 

analysis always leads to better decisions. Instead, the thesis illustrates how quantification 

of risks can potentially influence the choice of ECMs. This is done by comparing 

decisions derived from the risk analysis with those derived by following the standard 

practice of deterministic analysis.  

 

1.6 Organization of Thesis 

This thesis is outlined as follows; 

 Chapter 1 has presented motivations for large-scale retrofits and quantitative 

risk analysis in energy retrofit decisions, and proposed a new framework that 

can support large-scale retrofit decisions with risk analysis.  

 Chapter 2 describes the limitations of existing modeling and calibration 

methods, details the three new features of the proposed retrofit framework, 

and outlines how the two hypotheses of this thesis were tested.  

 Chapter 3 covers uncertainty quantification in the context of energy analysis 

of buildings. It presents a process for quantifying uncertain parameters in 

building energy models.  
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 Chapter 4 presents two case studies for demonstrating the feasibility of the 

proposed retrofit analysis framework in energy retrofit applications 

(hypothesis 1).  

 Chapter 5 shows the limitations of current methods used for accounting 

uncertainty and risk in energy-savings contracts. It further demonstrates how 

the proposed framework is more appropriate to support risk-conscious 

decision-makings (hypothesis 2).  

 Chapter 6 summarizes the thesis with conclusions and suggestions for future 

research.       
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CHAPTER 2 A NEW FRAMEWORK FOR RETROFIT 

ANALYSIS 

 

 

2.1 Limitations on Current Methods for Retrofit Analysis 

Energy retrofit projects follow the International Performance Measurement and 

Verification Protocol for the determination of energy-savings from energy conservation 

measures (ECMs) (Hansen, 2004; IPMVP, 2010). ASHRAE Guideline 14-2002 

(ASHRAE, 2002) also provides guidelines and calculation methods for retrofit analysis. 

Both these guidelines recommend deriving energy-savings by subtracting projected 

(calculated) energy use during the post-retrofit period from baseline energy use during 

the pre-retrofit period. It is recommended that energy use is normalized to reflect energy-

savings solely due to ECMs and excluding the effects of other factors such as weather 

conditions and changes in building usage patterns.  

For the estimation of energy savings, the guidelines provide three methods: (1) 

retrofit isolation, (2) whole building metering, and (3) calibrated simulation. The retrofit 

isolation method evaluates the savings from an upgraded building component (e.g., 

boiler, lighting system) by metering its energy efficiency during pre-retrofit and post-

retrofit periods. The whole-building metering method is based on monitoring and 

comparing total energy consumption of a building during pre-retrofit and post-retrofit 

periods. Since these two methods rely on measurement data for energy-saving estimation, 

they provide information only after retrofit options are implemented in a building, and 

cannot thus evaluate retrofit options during the decision-making stage. The calibrated 

simulation method involves the use of energy simulation models; a simulation model is 

calibrated based on pre-retrofit data to represent actual building behavior in use and 
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predict energy-savings of all considered retrofit options. Hence, among the three 

methods, only the calibrated simulation method can serve as a method to support retrofit 

decision-making by projecting energy-saving impacts from retrofit options.    

Energy simulation models thus play a key role in computing potential energy 

savings from retrofits. In order to reliably predict energy-savings from energy 

conservation measures (ECMs), a simulation model should represent a building as 

operated; that is, models should capture building systems as-installed, as-operated, and 

as-used. For reliable predictions, calibration of energy models has hence been 

emphasized (Ahmad, 2006; Reddy, 2006; Yoon, 2003). Calibration requires building 

audits and monitored energy consumption. The audits help determine observable model 

parameters. Then, monitored energy consumption enables tuning of unobservable model 

parameters so the baseline model represents the actual building accurately. If the baseline 

model can generate outcomes that closely match monitored energy consumption of a 

building, then it is more likely to predict reliable estimates of energy-savings from 

planned retrofit options for that building. This is widely an accepted approach for 

analyzing existing buildings (Pan, 2007; Zhu, 2006; Reddy, 2005; Yoon, 2003; Pedrini, 

2002).  

ASHRAE Guideline 14-2002 provides a standard procedure for the whole-

building calibrated simulation approach (ASHRAE, 2002). First, a modeler should plan 

the calibration exercise by specifying a simulation software, the unit of monitored data 

for calibration (i.e., monthly, hourly), and acceptable tolerances for model validation. 

Second, one audits the building (e.g., building dimensions, construction specifications, 

system nameplates information, occupancy and operation schedules, and whole-building 

utility data). Third, based on collected information, one builds a simulation model of the 

building. In this step, one needs to make assumptions to represent the actual building 

reasonably: reducing the number of zones, simplifying HVAC systems, and defining 
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operation and occupancy schedules. Fourth, one compares simulation model outcomes to 

measured data, and refines the model until discrepancy between predicted energy uses 

and measured energy uses satisfies acceptable tolerances. ASHRAE Guideline 14 

stipulates acceptable tolerances in terms of statistical indices: Normalized Mean Bias 

Error (NMBE) and Coefficient of Variation of Root Mean Square Error (CVRMSE). 

NMBE and CVRMSE should be within 5% and 15% with the use of monthly data for a 

model to be deemed valid. After calibration, one obtains a baseline model which can be 

applied to evaluate a given set of ECMs.  

In general, the calibration procedure can be summarized with two steps: (1) 

operational adjustments and (2) parameter estimation. The term operational adjustments 

refers to the process of auditing a building to determine appropriate values for the 

observable parameters of a building simulation model. It typically includes site visits, 

interviews with building managers, field measurements to determine physical properties 

of the building, occupancy patterns, plug-in loads, and control settings. This is an 

important part of the calibration process since actual building operation often deviates 

from specifications assumed and documented during design and construction. The next 

step parameter estimation determines appropriate values for non-observable simulation 

parameters. Most simulation exercises on retrofit analysis employ a heuristic method for 

the parameter estimation process. For example, Pedrini (2002) manually calibrated 

internal loads, equipment operation, and occupancy schedules based on the building’s 

monitored energy consumption and metering power demand of specific equipment in the 

building. Pan (2007) adjusted values of infiltration rates in the energy model until 

discrepancy between simulated and monitored energy was reasonably small. Yoon (2003) 

uses a stepwise calibration procedure for energy simulation models: (a) building a base 

case model, (b) analyzing differences between simulations and measured data through 

scatter plots, (c) tuning model parameters for internal loads with measured energy uses 
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during intermittent seasons, (d) refining internal gain levels and operating schedules 

through additional site visits, (e) tuning model parameters for HVAC systems with 

measured energy uses during heating and cooling seasons, and (f) validating a calibrated 

model. In these studies, each step involves experts' manual interventions for selection of 

calibration parameters and their values under test.  

The quality of calibrated models thus relies heavily on the subjective judgment of 

experts. Moreover, current methods result in one single set of parameter values that 

results in a good fit between monitored and computed energy consumptions. In the 

parameter estimation process, uncertainties regarding parameter values are left un-

quantified although they always exist in any model. Indeed, even after the most rigorous 

calibration, the model cannot perfectly represent the reality since it is still the abstraction 

of the reality. Hence, without quantifying uncertainties in the calibrated model, one 

cannot be aware of the reliability of model outcomes, and accordingly cannot evaluate 

relative cost-benefits of different retrofit options with confidence. 

While employing expert-driven deterministic methods for calibration, the 

protocols have stipulated transient simulation models as the standard modeling approach 

(IPMVP, 2010; ASHRAE, 2002). They stipulate that energy analysis should be based on 

commercially available computer simulation models that compute dynamic energy 

consumption with the use of hourly weather data. No doubt, several commercial transient 

simulation software have been well-used over the last decade (e.g., eQuest, Energyplus, 

Blast, Trnsys), and they have earned the confidence of the simulation user community in 

the industry. These models are regarded as high-fidelity models that accurately 

approximate the actual building behavior if all parameter values are correct. 

 Transient simulation models emulate performances of systems in a building by 

solving the full set of dynamic heat balance equations using numerical methods. They 

discretize the whole building and systems into nodes that are connected by elements. 
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Each element corresponds to one heat transfer phenomenon, and all elements linked to 

each node are translated into one dynamic heat balance equation. The entire nodal 

network with all dynamic heat balance equations is solved simultaneously at each time 

step during the entire simulation period. Transient simulation models can thus be used to 

model a building and its control systems to a high degree of detail, which is quite 

beneficial when detailed design and sizing of specific systems need to be evaluated 

within the context of overall energy consumption of the building. However, this level of 

detail is often not necessary to compare cost-benefits of competitive retrofit technologies 

at the macro level, and it tends to burden the modeling process with excessive details. 

Due to the high cost of the model, the use of transient simulation models is generally 

prohibitive for large-scale retrofit analysis for a portfolio of buildings. However, because 

the protocols dictate the use of transient simulation models for retrofit analysis, other 

types of simplified methods have not been investigated as potentially feasible.  

 

2.2 Main Features of the Proposed Retrofit Analysis Framework 

2.2.1 Normative Energy Model  

This thesis proposes that normative building energy models can adequately 

support retrofit analysis with the added advantage of being feasible for evaluating a large-

portfolio of buildings. Normative models are quasi-steady state models designed to 

calculate the energy consumption by main end-uses in a building. They approximate 

energy flows in a building at the macro level with a simplified description of a building. 

A well-accepted normative method is defined in the CEN-ISO standards for energy 

performance calculation (ISO 13790, 2008; CEN, prEN 15203/15315, 2006). The 

normative model used in this thesis is the Energy Performance Standard Calculation 
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Toolkit (EPSCT) developed by Georgia Institute of Technology based on the CEN-ISO 

standards (Lee, 2011).  

CEN-ISO standards are initially developed to evaluate energy performances of 

buildings in a standardized way, in particular to support design benchmarking. They were 

developed under the Energy Performance of Buildings Directive (EPBD) as the 

standardized calculation methodology to benchmark new buildings against a reference 

case for building energy certification. The CEN-ISO standards provide a set of modeling 

rules that produce a standard measure for energy performance hence assuring the 

objectivity of model outcomes. More importantly, the standards define a calculation 

model with normatively defined parameters that capture all the major characteristics of a 

building and its components. As a result, the standards can make the modeling process 

much faster by enormously reducing the level of information required from building 

audits. The level of information required from building audits is much less. This is an 

extremely useful advantage since gathering detailed specifications can be extremely time-

consuming, if not impossible. Moreover, modeling effort and computational run-time is 

significantly reduced.  

 

Figure 2.1 Schematic of the normative energy model 
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Figure 2.1 illustrates approximations of energy flows in the normative energy 

model for the energy performance calculation. The calculations of heat gains and losses 

are aggregated by transmittance, ventilation, solar radiation, and internal gains at the 

boundaries of the building envelope. Equation 2.1 calculates transmittance heat transfer 

   as a function of the overall transmittance heat transfer coefficient    , the set-point 

temperature         , monthly-average exterior temperature   , and the duration of the 

calculation step (month)  . The overall transmittance coefficient refers to an area-

weighted U value of the entire building envelope. Equation 2.2 computes ventilation heat 

transfer    from the difference between exterior and interior temperature, the time 

duration, and overall ventilation heat transfer coefficient    . The coefficient is the sum 

of coefficients, each of which corresponds to outside airflow rates due to infiltration, 

natural ventilation, and mechanical ventilation.  

For transmittance heat losses:                                                  (2.1) 

For ventilation heat losses:                                                      (2.2) 

For solar heat gains:                                                       (2.3)      

For internal heat gains:                                              (2.4) 

Equation 2.3 computes solar heat gains that arise from shortwave and longwave 

radiations on the building fabric. The first part in the equation calculates the amount of 

global solar radiation as a function of envelope shading reduction factor    , effective 

solar collecting area     , and monthly-average global solar irradiance per area for each 

orientation. The second part computes the amount of longwave radiation from sky view 

factor    and heat flow due to thermal radiation   . Equation 2.4 calculates internal heat 

gains from occupants, appliances, and lighting devices. Heat gains from each type of 

internal heat sources are determined in terms of the fraction of the time heat sources 

produce heat  , heat production rate from sources per area  , and the total floor area  .  
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From these aggregated heat gains and losses, the normative model calculates 

heating and cooling needs with the use of utilization factors that approximate thermal 

inertia effects due to the building's thermal capacity, following Equations 2.5 and 2.6. 

The utilization factor is derived by an empirically driven equation in terms of the gain-to-

loss ratio and the time constant of a building. The time constant is also empirically 

defined as the entire envelope heat capacity divided by heat loss coefficient (       ). 

In the equations,     is the total heat loss due to transmittance and ventilation,     is the 

total heat gains due to solar and internal gains, and    and    are a utilization factor for 

heating and cooling respectively.  

For heating need:                                                   (2.5) 

For cooling need:                                                    (2.6) 

Following the calculation of various energy demands of a building in a similar 

manner, the model utilizes overall efficiency of the energy generation and the distribution 

system to calculate the energy consumption for heating and cooling. Equations 2.7 and 

2.8 derive energy consumption from energy demands with the two macro-level 

parameters;        and        refer to the generation system seasonal efficiency, and 

          and           refer to the distribution system losses for heating and cooling 

respectively. The model defines a simplified procedure to derive the seasonal efficiency 

value with the use of normative factors that reflect the effects of part loads and control 

settings. In the same manner, the model also determines the total energy losses during 

delivery in terms of a weight factor explaining losses in pipes or ducts and a waste factor 

expressing losses due to simultaneous heating and cooling. In short, the normative model 

derives overall system performance from the brief description about system types, 

configuration, and control settings instead of the detailed level of HVAC system 

modeling typically required in transient simulation models.  
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For heating energy consumption:         
                   

      
                 (2.7) 

For cooling energy consumption:         
                   

      
                  (2.8) 

Regarding the other end-use energy consumptions, the normative model also 

defines normative factors that account for systems efficiency, their configuration, and 

their control settings. For the lighting energy consumption, Equation 2.9 requires the 

installed lighting power value     and normative factors that take into account day-

lighting utilization (  ), occupancy sensor (  ), and dimming control (  ). Also, the 

model provides a normative value for each type of building to derive the domestic hot 

water (DHW) demand        , and utilize the generation system efficiency          and 

the distribution system efficiency          to calculate the DHW energy consumption. 

Equation 2.11 calculates the fan energy consumption as considering ventilation system 

efficiency and system operation settings.       refers to the system efficiency by 

indicating specific electricity consumption defined per ventilation type. The system 

operation settings are parameterized by forced airflow rates (    and     for heating and 

cooling) and operation schedules:       is the fraction of the time the system is on and 

  and    are monthly variations in the time fraction for heating and cooling. For the 

pump energy consumption, the model utilizes correction factors that express the effects 

of system design, control, and operation features particularly for water-based heating 

systems:           is the designed hydraulic power,      is the mean part load 

normatively defined, and     ,    ,       are correction factors for hydraulic networks, 

hydraulic balance, and integrated pump management (EN 15136-2-3, 2007).  

For lighting energy consumption:          
                     

    
                    (2.9) 

For DHW energy consumption:          
                

        
                             (2.10) 

For fan energy consumption:                                                             (2.11) 
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For pump energy consumption:         
         

    
                                 (2.12) 

Normative models approximately represent energy performances of the 

aggregate-level building systems with a small number of macro-level inputs based on a 

simplified description of a building and its systems. Accordingly, normative models can 

drastically improve the cost-effectiveness of the modeling process. Furthermore, the 

normative nature of the models can make the modeling process transparent as it implies 

that no modeling expertise is needed. Hence, normative models promise to be good 

candidates for building audits as they replace the complex and expensive transient 

simulation models. Although they are widely used and verified for design benchmarking, 

their suitability for auditing purposes is limited and untested. Since normative models are 

based on a relatively small set of macro-level parameters, testing is needed to determine 

whether macro-level parameters for sub-system characteristics are able to capture 

interactive, cumulative effects of its components through calibration. Therefore, this 

thesis will examine whether normative models can be suitably calibrated for retrofit 

analysis of buildings, and calibrated normative models can support retrofit decisions 

without compromising the degree-of-confidence in decisions.   

 

2.2.2 Bayesian Calibration of the Normative Energy Model 

This thesis proposes a Bayesian approach as the core of calibration as it could 

quantify uncertainty in the estimates of calibration parameters in a form of probability 

distributions. The Bayesian paradigm treats a probability as a numerical estimate of the 

degree-of-belief in a hypothesis. The Bayesian paradigm updates our prior belief on true 

values of uncertain parameters in a computer model given monitored data on building 

performance. Bayesian calibration is based on Bayes' theorem expressed in Equation 

2.13; where p(θ) are prior distributions assigned for uncertain parameters based on expert 
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knowledge from a pool of sources (e.g., experiments, surveys, industry standards, etc); 

p(y|θ) is a likelihood function that measures how closely computer results with testing 

parameter values match observations. Prior distributions are updated using observations 

in which the likelihood of obtaining observations from the computer model drives the 

updating process. As a result, Bayesian calibration results in plausible distributions of 

calibration parameters, referred to as posterior distributions p(θ|y). 

                                                               (2.13) 

Bayesian calibration has been widely adopted in environment and earth sciences 

to enhance reliability in model predictions. Models emulate the complex dynamics of 

systems with a large number of parameters, many of which are generally unknown due to 

limited empirical data to estimate parameter values. However, the reliability of model 

predictions depends on not only model fidelity but also accuracy of input values. 

Therefore, in order to estimate parameter values with measures of uncertainty from 

observed data on model outputs, Bayesian approach has been employed for ecological 

models (van Oijen, 2005), hydrologic models (Qian, 2005; Liu, 2008), and atmospheric 

models (Guillas, 2009). Notwithstanding the popularity and benefits of Bayesian 

techniques, building energy models have been calibrated only in a deterministic manner 

without accounting for uncertainties. Hence, this thesis attempts to extend Bayesian 

techniques to the domain of building energy simulations so that calibrated energy models 

can explicitly project their parameter uncertainty in model outputs.   

The Bayesian calibration module requires the three major steps: (1) specification 

of prior probability distributions for calibration parameters, (2) formulation of the 

likelihood function, and (3) Markov Chain Monte Carlo method for posterior simulation. 

For the likelihood function, the thesis follows the Kennedy and O'Hagan formulation of 

Bayesian calibration developed by (Kennedy and O'Hagan, 2001). The statistical formula 

captures three types of uncertainties: (1) parameter uncertainty in the building energy 
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model, (2) discrepancy between the model and the true behavior of the building, and (3) 

observation errors. As accounting for these uncertainties, Equation 2.14 defines the 

relationship between model outputs and observations.  

                                                            (2.14) 

     denotes observations at known conditions   (e.g., external climate 

conditions, occupancy schedules, etc);        denotes building energy model outcomes 

at known conditions   and calibration parameters  . The formula also introduces an 

additional stochastic term      that captures the discrepancy between the model and the 

true physical behavior. In fact, building energy models are based on approximations of 

the heat transfer processes occurring in a building, and they may not therefore capture the 

actual consumption of the building even with true values of the calibration parameters. 

The discrepancy term prevents over-estimation of calibration values, and indicates where 

the energy model falls short. The formula also includes a stochastic term      that 

expresses errors in collecting observations.  

The Kennedy and O'Hagan formulation requires three sets of data as input: (1) 

monthly utility data as observations     , (2) prior probability density functions of 

calibration parameters     , and (3) model outcomes from exploring the space of 

calibration parameters       . Given these input, both the model outputs        and the 

discrepancy term      are modeled as Gaussian processes (Rasmussen, 2006). A 

Gaussian process is a generalization of a multivariate normal vector to the case where the 

index set is infinite. The energy model output under specific known conditions and for a 

chosen set of calibration parameters, despite being deterministic, is assumed to follow a 

normal distribution. Jointly, with several outputs under different sets of known conditions, 

they form a multivariate normal vector with a specific covariance structure. With such 

distributional assumptions, we can obtain probabilistic distributions of outputs at 

unknown set of conditions and parameter values from the given dataset of input and 
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output values. Ideally, one wants to evaluate the energy model outputs over a very dense 

set of conditions and parameter values. Since this exhaustive exploration is infeasible, 

one uses design of experiments to explore the parameter space as much as possible with a 

manageable computational burden.  

A Gaussian process model is specified by a mean function and a covariance 

function. A mean function is a matrix of mean output values for the given set of input 

values. A covariance function is a matrix, each element of which indicates proximity 

between the two sets of input values with respect to their outputs. Equation 2.15 

expresses the      -th element of the covariance matrix for the Gaussian process model of 

      . The covariance function contains two hyper-parameters to control the predictive 

power of a Gaussian process model; λ controls the precision of a Gaussian process model 

and β controls correlation strength in each input parameter. Equation 2.16 defines the 

covariance function for the Gaussian process model of     . It should be noted is that 

     depends only on known parameters   whereas        depends on both known 

parameters   and calibration parameters  . In addition to the two Gaussian process 

models, observation errors are defined as a Gaussian distribution        , assuming that 

they are normally distributed and uncorrelated. 

        
 

  
                    

                     
   

    
 
              (2.15) 

        
 

  
                    

   
                                     (2.16) 

This Gaussian process formulation enables us to compute likelihoods of 

observations        given model parameters. In the Kennedy and O'Hagan framework, 

the joint vector for the likelihood function consists of observations and computer results, 

denoted as           . The vector is modeled as a Gaussian process model with mean 

function    and covariance function   . Equation 2.17 expresses the covariance function 
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for the data-likelihood while encompassing parameter uncertainty, model discrepancy, 

and observation errors. The data-likelihood function is defined in Equation 2.18.  

        
   
  

   
   
  

                                        (2.17) 

         
 
 

        
 

 
      

   
                               (2.18) 

Following Bayes' theorem, we attain posterior distributions by multiplying the 

likelihood function and all prior density functions for uncertain parameters. Uncertain 

parameters include not only calibration parameters   but also hyper-parameters for the 

Gaussian process models. Prior distributions for the hyper-parameters are assigned such 

that the building energy model can explain most of the variation in the observations with 

a relatively smaller bias and even smaller observation errors. During the posterior 

simulation, the calibration module corrects the predictive power of the energy model by 

updating prior distributions for the hyper-parameters while simultaneously updating prior 

distributions for calibration parameters.  

                                                                             (2.19) 

A Markov Chain Monte Carlo (MCMC) method, specifically the Metropolis-

Hastings algorithm, is used to draw from the joint multivariate posterior distribution. 

MCMC method generates a random walk through the parameter space such that the 

collection of sample points can approximate theoretical posterior density functions. 

Similar to Markov chains, the method draws a proposed point based on the current point 

in an iterative manner, and accepts the proposed point when it satisfies an acceptance 

criterion. The Metropolis-Hastings algorithm defines the criterion by the ratio of a 

posterior density at the proposed point to that at the current point (Gelman, 2004). The 

algorithm accepts the proposed point with the probability equal to              only 

when the ratio is larger than a number randomly generated from the uniform distribution 
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      . As a result, we obtain a sample of accepted values                 as posterior 

distributions.  

Figure 2.2 summarizes the entire calibration process. The procedure starts with a 

two-step pre-process targeted to objectively quantify uncertainty in model parameters and 

select calibration parameters. The first step is to quantify uncertainty in all uncertain 

parameters in the energy model based on expert knowledge collected from site surveys, 

industry reports, standards, and technical papers. The second step is to objectively select 

a smaller set of dominant parameters for calibration through a parameter screening 

technique called the Morris method. The Morris method enables the ranking of uncertain 

parameters with respect to the effects of their uncertainty on energy consumption.  

 

Figure 2.2 Systematic procedure for retrofit analysis 

 

The Bayesian calibration module calibrates selected parameters given prior 

distributions for the parameters, monthly utility data, and the energy model of a building 



 

 

25 

being investigated. With the resulting posterior distributions, the calibrated model is 

validated by posterior predictive checking that measures agreements between the utility 

data and predicted model outcomes. This validation step employs statistical measures that 

quantify the fit between the monitored and the predicted energy uses. Last, the validated 

model propagates uncertainty quantified by the calibration and additional uncertainty 

from evaluating ECMs to compute probabilistic outcomes of their potential energy-

savings.  

 

2.2.3 Probabilistic Analysis 

The new framework is designed for probabilistic analysis that defines uncertainty 

and translates effects of uncertainty on outcomes of interest in order to support retrofit 

decision-making under uncertainty. Figure 2.3 shows the overall probabilistic analysis 

process in the retrofit decision-making stage. The first step is uncertainty quantification 

that identifies sources of uncertainty and quantifies uncertainty in the identified sources 

in a form of statistical distributions. This step is extensively investigated in Chapter 3. 

The second step propagates uncertainty through the normative energy model to obtain a 

probability distribution of outcomes. The stage of uncertainty propagation requires a 

statistical technique that efficiently draws samples from statistical distributions. Sampling 

techniques are explained in detail in Chapter 3. The resulting probabilistic outcomes can 

be translated into any measure that reflects decision-makers' rational objectives and their 

risk attitude for rational decision-making.  
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Figure 2.3 Probabilistic analysis process in the retrofit decision-making 

 

2.3 Evaluation of the Hypotheses 

The major hypothesis in the thesis is that retrofit analysis at the whole building 

level does not require the most advanced simulation models and normative models with 

added calibration can adequately predict retrofit energy-savings for rational retrofit 

decision-making. The thesis evaluates the feasibility of normative models with respect to 

their intended uses (retrofit purposes). When models are deployed for problem-solving or 

decision-making, their credibility to compute "correct" results has been always a major 

concern to users. However, it is too time-consuming and expensive to build a model that 

is absolutely valid over the complete domain of its applications. Instead, users should 

determine the validity of a model for a specific application (Sargent, 2005). Figure 2.4 

depicts the relationships between the cost of validating a model, the level of the model 

confidence, and the value of the model to the user.  
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Figure 2.4 Relationships between a model confidence, its cost, and its value to user 

(from Sargent, 2005) 

 

These relationships can be equally applicable to all modeling exercises. Model 

confidence always increases at the expense of the modeling cost and time. For instance, 

transient simulation models require detailed description of the building.  At the same 

time, they significantly increase the modeling cost (in terms of time and expertise). 

However, increase in the modeling cost may not necessarily result in adding value to the 

analysis process. Indeed, if a normative model is well calibrated, it may be as accurate as 

a similarly calibrated transient simulation model and equally applicable (unless specific 

dynamic effects associated with equipment control or operation need to be evaluated). 

The thesis follows the same reasoning to evaluate a model resolution level 

appropriate for energy retrofit applications. The thesis evaluates whether the normative 

model has sufficient model fidelity to correctly evaluate ECMs and lead to reasonable 

retrofit decision-making in comparison to transient simulation models. The feasibility of 

the normative model is inspected by pair-wise comparisons between the normative model 

and the transient simulation model. The two models are compared under the following 

criteria: 
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 Criterion 1: Accuracy of Calibrated Models  

 Criterion 2: Accuracy of Predictions  

 Criterion 3: Effects of Prediction Accuracy on Decisions 

The first criterion evaluates the accuracy of the calibrated normative model in 

terms of how it replicates the historical utility data of the building being modeled. This 

criterion can evaluate only the reliability of the baseline model, but cannot tell that the 

calibrated normative model can reliably predict energy-savings of ECMs. The normative 

model can potentially compromise the degree of confidence in predictions because it 

approximates the mathematical representation of physical systems. Therefore, the second 

criterion is introduced to test the prediction accuracy of the normative model when 

supported by Bayesian calibration. If the normative model generates the same predictions 

as the transient simulation model, the normative model will lead to the same retrofit 

decisions as the transient simulation model. However, even if their outputs are not the 

same, the normative model can still be a good candidate if it does not bias decisions in 

the retrofit analysis process. Hence, the third criterion examines the effects of prediction 

accuracy on decisions by comparing decisions supported by the two models in the 

context of plausible decision-making scenarios.  

 

2.3.1 Criterion 1: Accuracy of Calibrated Models 

This criterion evaluates the accuracy of calibrated models with respect to 

agreement between model predictions and monitored data. The criterion uses standard 

validation metrics such as the index of agreement   and coefficient of variation of the 

root mean square error        for comparing the outputs from the calibrated model 

with observed values of energy consumption.   and        are expressed in Equations 
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2.20 and 2.21; iP denotes a predicted energy use for period i, iO an observed energy use 

for period i, and O  the mean of all observed energy uses. 
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ASHRAE Guideline 14 (ASHRAE, 2002) stipulates the tolerance limits of 

calibrated simulation models in terms of       ;        should be less than 15% 

with the use of monthly utility data when models are deemed valid. The index of 

agreement   is also widely used to assess the efficiency of models in comparison to 

measured data (Legates, 1999; Krause, 2005). The index of agreement ranges between 0 

and 1 with higher values indicating better fit between model outcomes and observed data. 

Based on these tests, if the calibrated model is deemed satisfactory, it can be exercised 

for computing energy-saving potential of different retrofit options.  

 

2.3.2 Criterion 2: Accuracy of Model Predictions 

This criterion examines the disparity of predictions between the calibrated 

normative model and the calibrated transient simulation model. In the retrofit investment 

decision-making process, retrofit interventions are typically evaluated by cost-

effectiveness such as cost/benefit ratio and simple payback time (Goldman, 2002). We 

employ Simple Payback Time (SPT), defined as investment costs divided by annual 

energy-saving costs, for decision-makings. The criterion compares SPT predictions of 

candidate ECMs derived by the calibrated normative model with those derived by the 

calibrated transient model. 
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The criterion employs a two-sample Kolmogorov-Smirnov test (K-S test) to 

quantitatively evaluate whether probabilistic outcomes projected by the two models are 

identical. The two-sample K-S test checks the location and the shape of the two samples 

to confirm whether the two samples come from the same cumulative distribution. The test 

hypothesizes that the two samples are from the same distribution, denoted as H=0, and 

rejects the hypothesis when they are different at 5% significant level. In addition, the 

criterion qualitatively evaluates the disparity by visually comparing the two histograms of 

predictions.   

 

2.3.3 Criterion 3: Effects of Prediction Accuracy on Decisions  

This criterion evaluates if the two calibrated models derive consistent results for 

supporting decisions. The criterion compares the ranking of candidate ECMs driven by 

the two models in the context of plausible decision-making scenarios. We evaluate 

candidate retrofit options under the three scenarios that express different levels of 

decision-makers' risk consciousness. Table 2.1 summarizes the three scenarios with 

performance measures applied for the final evaluation of the calibrated models. Scenario 

1 represents conventional practice that does not concern risks but overall performance. 

We use expected values of SPT for this scenario. Scenario 2 represents guaranteed 

savings in performance contracts commonly used in the energy service companies. The 

guarantee is translated into 95-quantile of the SPT distribution. Scenario 3 represents one 

of the existing risk measures, saving curve score proposed for actuarial pricing of retrofit 

projects (Mathew, 2005). The score is defined as the mean savings divided by risk, and 

the magnitude of risk is computed as the standard deviation of mean savings estimate. 

Since we use the payback time inverse to mean savings, we use 1/SPT instead of mean 

savings. If the two calibrated models lead to the same ranking of testing ECMs under 
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these three scenarios, it can be concluded that the normative model with Bayesian 

calibration can adequately support retrofit decision-makings under uncertainty.  

Table 2.1 Decision-making scenarios with probabilistic measures 

 Description Measure 

Scenario 1 Conventional practice        

Scenario 2 

 

Guaranteed savings  

(in ESCO projects) 

         

Scenario 3 Saving curve score  

(existing risk measure) 
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CHAPTER 3 UNCERTAINTY IN ENERGY RETROFIT 

ANALYSIS 

 

 

3.1 Introduction 

A building energy model is typically used to predict the energy-savings of energy 

conservation measures (ECMs) and ultimately assist decision-makers to select the 

optimal mix of ECMs according to their objectives. However, this model is not capable to 

exactly predict how much savings ECMs will achieve due to the following reasons. First, 

even after the model is built based on deep energy audits, the model may not correctly 

correspond to existing building conditions because the audits cannot provide full 

information. Second, the model cannot perfectly capture the system behavior. Hence, the 

model may not predict actual energy consumption even with the best possible values of 

the model parameters. Third, performance of ECMs in reality can differ from the 

expected because the actual properties of the system may not be the same as those 

documented in standards or specifications under dynamic and stochastic building 

operational conditions. Owing to these uncertainties the energy model often yields 

energy-saving predictions that unavoidably deviate from actual energy-savings.  

Uncertainty analysis helps overcome the lack of knowledge that may bias retrofit 

decisions by explicitly capturing the effects of incomplete knowledge on outcomes of 

interest. Hence, the level of rigor in uncertainty analysis depends on the quality of 

uncertainty quantification. Uncertainty quantification involves identifying sources of 

uncertainty that potentially impact the outcomes and quantifying uncertainty in a form of 

the probability density function. The following sections summarize sources of uncertainty 

in the context of energy retrofit analysis, and quantify uncertainty in the identified 
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sources. Quantified uncertainty is propagated through the energy model with the use of 

sampling methods, which results in probability distributions of model outcomes. The 

probabilistic outcomes can support retrofit decision-makings under uncertainty since they 

can be naturally translated into a single value according to decision-makers' objective and 

risk-awareness.  

 

3.2 Sources of Uncertainty in Energy Retrofit Analysis 

Risk in the assessment of ECMs can be categorized into two groups: (a) physical 

risk pertaining to the energy-savings of ECMs and (b) financial risk pertaining to the 

cost-effectiveness of ECMs. Table 3.1 lists sources of uncertainty that influence the 

physical and financial performance of candidate ECMs. Physical risk captures the risk of 

ECMs not resulting in expected energy savings as the result of scenario uncertainty, 

building physical and operational uncertainty, model inadequacy, and observation error. 

In addition to the physical risk, uncertainty in investment costs and utility costs impacts 

the financial risk of ECMs not recovering initial investment costs within an expected 

period.  
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Table 3.1 Sources of uncertainty in the evaluation of ECMs 

 Category       Factors 

Physical Scenario uncertainty - Outdoor weather conditions 

- Building usage / occupancy schedule 

 Building physical / 

operational uncertainty  

- Building envelope properties 

- Internal gains 

- HVAC systems 

- Operation and control settings 

 Model inadequacy - Modeling assumptions 

- Simplification in the model algorithm 

- Ignored phenomena in the algorithm 

 Observation error - Metered data accuracy 

Financial Investment cost  - Equipment cost 

- Labor cost 

- Discount rate 

 Utility cost  

 

- Energy source price  

- Utility energy contracts 

 

The scenario refers to the external environment and the use of the building (e.g., 

building usage, occupancy, and operation schedules). Actual weather conditions around 

the building (e.g., local ambient temperature, cloud cover, local wind speed) differ from 

the TMY weather data used in the model that capture average weather conditions by 

statistically collating 30-year weather data. Also, actual in-use scenarios fluctuate from 

average fixed schedules used in the model. Although scenarios are inherently uncertain, 

we ignore deviations from "average" scenarios, and assume that scenarios are known 

conditions. This assumption is reasonable since we use monthly average weather data and 

schedules in the normative models that are much less variable across years than daily 

variations.  
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Building physical and operational uncertainty refers to parameter uncertainty in 

the energy model. The model parameters that fall in this category specify material 

thermal properties, internal gains, HVAC system properties, and their operation and 

control settings. The behavior of these parameters in real buildings often deviates from 

their specifications because the nominal conditions used for performance testing cannot 

capture dynamic and stochastic building operation conditions. In addition, systems 

degrade over their life cycle, which amplifies the magnitude of uncertainty in the system 

performance. Moreover, design and specification documents often lack full description of 

system properties, but provide information about system types. Therefore, we investigate 

these fundamental factors that cause uncertainty in model parameters in order to quantify 

parameter uncertainty in the models. 

Another type of uncertainty arises from the inability of the energy models to 

exactly represent reality. Model inadequacy differs depending on the choice of specific 

energy models; a higher resolution model is known to represent the reality more 

accurately than a lower resolution model. Nevertheless, all energy models approximate 

physical heat transfer phenomena occurring in a building by abstracting complex 

phenomena into simplified models. In this process, some physical phenomena are ignored 

if they are regarded insignificant with respect to their effects on system energy 

performance. We quantify model inadequacy by identifying specific modules that 

compute the operation state of specific systems from empirically-driven equations and 

quantifying an uncertainty range of model coefficients in the equations.  

Observation error refers to the quality of metered data used in the retrofit analysis 

process. Since the monitored data is used to calibrate a building energy model and 

validate the model, the precision of the data can influence the accuracy of the resulting 

calibrated model. Hence, we capture this potential error stemming from observations by 

accounting for observation error in the Bayesian calibration formulation. The formulation 
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also accounts for model inadequacy in order to avoid overestimating parameter values in 

the calibration process.    

In addition to these physical uncertain factors, financial sources of uncertainty are 

an important factor that determines the cost-effectiveness of retrofit scenarios. The first 

category is investment costs that consist of equipment and labor costs. The investment 

costs for implementing an ECM are uncertain because an ECM can be realized by various 

costs associated with different commercial products and the actual retrofitting period that 

often differs from the expected period for completion. Furthermore, the value of 

investment costs can vary depending on the discount rate that changes over time. In 

addition, utility cost reduction from ECMs depend on not only their energy-savings but 

also energy source prices and types of utility contracts. Energy source prices constantly 

change due to variation in demand, commodity costs, and pricing regulation and structure 

(EIA, 2011).  

 

3.3 Quantification of Uncertainty 

This section focuses on quantifying parameter uncertainty in the context of 

normative models. Uncertainty in model parameters depends on the model granularity 

level. For instance, model parameters in transient simulation models describe the physical 

behaviour of an individual component while those in normative models describe the 

characteristics of systems at an aggregate level. Accordingly, uncertainty associated with 

different levels of model parameters should be separately investigated. Many studies have 

extensively investigated quantification of uncertainty in detailed simulation models (de 

Wit, 2001; Macdonald, 2002; Moon, 2005; Hu, 2009). Yet, uncertainty in normative 

model parameters has not been properly investigated.   

In normative models, we quantify uncertainty in macro-level parameters by 

investigating a set of detailed-level parameters that a macro-level parameter accounts for 
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and their relationships. Hence, quantification of aggregate-level parameter uncertainty is 

accomplished by the three steps: (a) investigating physics-based equations that 

parameterize the behavior of aggregate-level parameters with a set of detailed model 

parameters, (b) quantifying uncertainty in the detailed model parameters from the 

literature review, (c) propagating quantified uncertainty through selected equations to 

derive a probability distribution for one aggregate-level parameter.    

 

3.3.1 Thermophysical Properties 

Thermophysical properties define the physical characteristics of construction 

materials used in a building fabric that impact energy demands of a building. Normative 

models utilize four parameters to characterize the thermal behavior of the whole 

construction assembly: thermal transmittance, solar absorptance, emissivity, and 

envelope heat capacity. Uncertainty in thermal properties of materials largely arises from 

variations in how they are measured in laboratories and differences in manufacturing, 

rather than due to differences in how a building is specifically used or constructed. Thus, 

we are able to use uncertainties as quantified in Macdonald (2002) for thermal properties 

of wall and roof materials. For impermeable materials, the standard deviation of 

uncertainties in thermal transmittance, density, and specific heat is 5%, 1%, and 12.25% 

respectively as shown in Table 3.2. For solar absorptance and emissivity, the uncertainty 

range quantified as standard deviation differs depending on the type of materials, which 

is well summarized in Table 3.3. Using the standard deviation values, we use the 95% 

confidence interval as the minimum and the maximum values. 
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Table 3.2 Uncertainty quantification for impermeable materials (MacDonald, 2002) 

Category Conductivity Density Specific heat 

Impermeable 5% 1% 12.25% 

 

Table 3.3 Solar absorptance and emissivity of material surfaces (MacDonald, 2002) 

Category Absorptance Emissivity 

Mean Std. dev Mean Std. dev 

Metals polished 0.32 0.07 0.05 0.01 

Metals 0.56 0.12 0.24 0.06 

Brick (light) 0.49 0.04 0.90 0.02 

Brick (dark) 0.76 0.04 0.90 0.02 

Stone (natural) 0.63 0.10 0.91 0.02 

Plaster 0.40 0.03 0.09 0.02 

Concrete 0.68 0.04 0.90 0.02 

 

In addition, normative models use an aggregate parameter called effective heat 

capacity  , which approximates the dynamic heat storage (thermal mass) of the building 

envelope as a whole. We follow a calculation procedure in the CEN-ISO standard (EN 

ISO 13786, 2007) to calculate the cumulative effect of each component heat capacity. 

The standard calculates the effective heat capacity as an area-weighted function of 

density   (kg/m³) and specific heat capacity   (J/Kg.K) of building elements, starting 

from the internal surface up to the first insulating layer, the maximum thickness 10cm, or 

the middle of the wall and roof assembly, either of which comes first. We propagate 

uncertainty in the density and the specific heat of building elements through this 

calculation method to derive the uncertainty range for the effective heat capacity. For 

concrete buildings, the resulting value of   ranges between 160 and 275 (kJ/m².K). As 

the base value, we use the value recommended by the CEN-ISO standards for each 

construction class that are summarized in Table 3.4 (ISO 13790, 2008). 
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Table 3.4 Default values for the effective heat capacity (ISO 13790, 2008) 

Class   (kJ/m².K) 

Very light 80 

Light 110 

Medium 165 

Heavy 260 

Very heavy 370 

 

3.3.2 Infiltration 

Infiltration is the unavoidable introduction of outside air into a building 

depending on the air-tightness of the building envelope and indoor /outdoor climatic 

conditions. The infiltration rate is one of the most unknown parameter because attaining 

accurate values can be possible only through fan pressurized tests on a building under 

consideration. The fan pressurized tests are conducted by installing a fan, often mounted 

in a door, to maintain a certain pressure (typically 50Pa or 75Pa) across the building 

envelope and measuring airflow rates induced through the fan. Equation 3.1 is used to 

convert measured airflow rates to predict airflow rates through the envelope at any 

pressure difference.   denotes the airflow rate induced to maintain the pressure 

difference   ,   is flow coefficient, and n is pressure exponent (typically assumed as 

0.65). 

                                                                 (3.1) 

Infiltration rates vary from one building to another. In energy models, they are 

quantified by estimating the volumetric flow rate of outside air into a building    (m³/h) or 

air changes per hour     (1/h). It is generally understood that the infiltration rate of a 

building is a function of its age, its construction quality, and weather conditions (pressure 

difference between the outside and the inside of the building). However, researchers have 
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not been able to identify the correlation between building age / construction type and 

infiltration rate after having analyzed measured air-tightness data from 139 commercial 

and institutional buildings (Persily, 1998; Persily, 1999).  

National standards and guidelines establish recommended air permeability values 

that correspond to the normal and the best practice for different types of buildings. Table 

3.5 lists the air permeability values for naturally ventilated office buildings suggested by 

ATTMA (2010) and CIBSE TM23 (2000). They suggest that the air permeability of the 

envelope should be in the range of 7.0 - 10.0 m³/m²·h at 50Pa for the normal practice and 

in the range of 3.0 - 5.0 m³/m²·h at 50Pa for the best practice. These values correspond to 

pressurization tests at specific conditions, and are translated into an average annual air 

change rate ACH using an empirically derived correction factor. Table 3.6 shows annual 

air change rate values corresponding to pressurized test results from (CIBSE Guide A, 

2006).  

Table 3.5 UK recommended infiltration rates for naturally-ventilated office buildings 

Standard Air permeability (m³/ m².h at 50Pa) 

Normal Best Practice 

ATTMA, 2010 7.0 3.0 

CIBSE TM23, 2000 10.0 5.0 
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Table 3.6 Empirical values of air infiltration rates for naturally ventilated office buildings  

with partial exposure (CIBSE Guide A, 2006) 

Air permeability 

(m³/m².h at 50Pa) 

Infiltration rate (ACH) for a given building size (1/h) 

4 stories: 2000 m² 6 stories: 3000 m² 

Peak Average Peak Average 

20.0 (leaky) 0.75 0.55 0.75 0.55 

10.0 (Part L, 2002) 0.40 0.30 0.40 0.30 

7.0 (Part L, 2005) 0.25 0.20 0.30 0.20 

5.0 0.20 0.15 0.20 0.15 

3.0 0.15 0.10 0.15 0.10 

 

In addition, Perera (1997) measured the air-tightness of 10 UK office buildings 

that are naturally ventilated. The measured values ranged between 8.3 m³/m².h and 32.0 

m³/m².h at 50Pa with their mean value of 17.9 m³/m².h at 50Pa. Disparity between the 

measured data and the standard values indicates that actual infiltration rates of existing 

buildings are often much higher than the values recommended in the standards. Hence, 

based on both the standard and the measured data, we quantify the minimum and 

maximum values as 0.10 and 1.25 (1/h) respectively with 0.50 (1/h) as the base value.  

Table 3.7 Pressurized test results for 10 office buildings in UK (Perera, 1997) 

Buildings Air Permeability 

(m³/ m².h at 50Pa) 

Mean Std. Dev Min Max 

10 BRE office buildings 17.9 9.15 8.3 32.0 

 

3.3.3 Natural Ventilation 

Natural ventilation introduces outdoor fresh air into a building through window 

openings due to the pressure difference across the window. The volumetric flow rate    
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(m³/s) through single-sided open windows can be estimated from Equation 3.2.    refers 

to the flow discharge coefficient,    the effective window opening area,    the pressure 

difference across the opening (Pa), and   the air density (kg/ m³). The pressure difference 

    represents the sum of direct wind pressure, thermal buoyancy, and fluctuations. Since 

wind pressure is generally known as the dominant parameter, we ignore the terms 

representing thermal buoyancy and fluctuations. Following the relationships derived in 

Larsen and Heiselberg (2008),    across the window opening can be thus approximated 

by the ratio of local air velocity at the window and a reference mean velocity of outside 

air, at different wind directions, and for a given configuration of the building. Since    is 

derived mainly as a function of external weather conditions, we do not consider it as an 

uncertainty parameter in this study.    represents the fractional airflow loss due to the 

geometry of the windows. We use the empirically derived values of    found in de Wit 

(2001), which estimates their values to range between 0.60 and 0.75 for rectangular 

openings.    represents half the window opening area only for the ingoing airflow, and is 

thus a proportion of the total operable window area   of the building depending on the 

percentage of windows open at a given time denoted as   .  

                                                                   (3.2) 

                                                               (3.3) 

Quantifying    for a building can be quite difficult since the occupant action of 

opening or closing windows is controlled by a set of diverse factors. Studies have shown 

that occupants can have significantly different levels of activeness in relation to opening 

and closing windows. The act of opening or closing a window, and the duration for which 

they are left in one state or the other is triggered by a whole range of physical, 

environmental, and psychological factors. Borgeson and Brager (2008) study a large set 

of variables potentially influencing occupant control of windows, and summarize existing 

body of work in this area, many of which are empirical studies for quantifying    as a 
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function of local environmental conditions. From these studies, we consider a logistic 

regression model derived from a study of fifteen office buildings in UK (Rijal, 2007). 

The empirical model is able to compute the probability    of a window being open as a 

function of outdoor air temperature by the logit link function;  

   
      

        
                                                         (3.4) 

where   is the outdoor temperature at a given time,   is the regression coefficient 

for  , and   is the intercept in the regression equation. This study also derived the 

coefficient and the intercept values fit for each office building and for all buildings as 

summarized in Table 3.8. The intercept c varies from -3.90 to -2.09, depending on 

occupant behavior in a building with -2.92 as the base value. Coefficient b is also 

uncertain, but the range of values reported seems small enough for us to ignore them.  

Table 3.8 Regression coefficient and intercept values from field surveys (Rijal, 2007) 

Building b c 

Each 0.160 [-3.80, -2.09] 

All 0.157 -2.92 

 

3.3.4 Heating System 

Normative models parameterize the heating system of the building by its two 

main components: the seasonal efficiency of the heat generation system and the losses in 

the distribution system. Thermal efficiency of the heat generating equipment is typically 

documented in manufacturers' catalogs from experiments under full-load standard testing 

conditions. However, its seasonal efficiency can differ depending on its actual operation 

conditions: the frequency of occurring partial loads and the return water temperature to 

the boiler. Table 3.9 summarizes the range of steady-state efficiency for the three major 

types of boilers depending on the operation conditions: (a) the temperature regime (i.e., 
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80/60°C, 50/30°C) and (b) loads on the boiler (i.e.,100% load, 30% load). The ranges are 

estimated by the ECOBOILER model that integrates the boiler model with the building 

model to realistically estimate the boiler performance in the context of actual operations 

(Kemna, 2007).  

Table 3.9 Ranges of steady-state efficiency for three types of boilers (Kemna, 2007) 

Boiler type 80/60°C regime 50/30°C regime 

full-load part-load full-load part-load 

Condensing 84 - 88 % 83 - 87 % 94 - 98 % 93 - 97 % 

Low temperature 80 - 83 % 79 - 85 % - - 

Standard 78 - 81 % 76 - 79 % - - 

 

 

Figure 3.1 Steady-state efficiencies for the three types of boilers (Kemna, 2007)  

 

Figure 3.1 plots the range of steady-state efficiency for each boiler type for all 

temperature regimes. For standard and low-temperature boilers, their efficiency 

noticeably degrades when they operate under partial loads, but it does not change much 

due to the temperature regime. On the contrary, for condensing boilers the effects of 

partial loads on the system efficiency are negligible while the effects of the temperature 
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regime are significant. Hence, for condensing boilers, the main source of uncertainty 

about the boiler efficiency is due to the fact that the return water temperature is not 

known precisely. Provided the boiler efficiency is steady over partial loads, Lazzarin and 

Schibuola (1986) developed three empirical relationships that estimate average, 

minimum, and maximum performance efficiency as a function of the return water 

temperature within the temperature range between 50°C and 70°C. We follow these 

relationships to quantify the bounds of uncertainty for the seasonal efficiency of 

condensing boilers. 

For the maximum:                  
          

  
                          (3.5) 

For the minimum:                  
          

  
                          (3.6)     

For the average:                  
       

  
                                  (3.7)                              

Heat generated by the boiler is delivered through a distribution system, and part of 

this heat energy is lost during delivery. The efficiency of the distribution system depends 

on its distribution length, its insulation level, and its operation and surrounding 

conditions. Heat losses in hydraulic distribution systems           can be quantified by the 

following relationship (EN 15316-2-3, 2007).      is the linear thermal transmittance of 

the pipes in zone  ,    is the supply water temperature,    is the temperature of the 

surrounding spaces,    is the total length of pipes in zone  , and     is the number of 

hours when zone   is heated. While most of these parameters are observable, it is quite 

difficult to obtain them even from the most thorough building audit. In fact, most 

transient simulation models tend to ignore heat losses in the distribution system. 

Therefore, we use our best estimates for parameters described in Equation 3.8 based on 

operation manuals and construction drawings and specifications. With their uncertainty 

range obtained from the literature study, we derive the range of           through the 
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equation while using the normative value recommended by the CEN-ISO standards as the 

base value.   

                   
 
                                            (3.8) 

Table 3.10 Parameter uncertainty pertaining to the calculation of distribution heat losses 

Parameter Uncertainty Range Reference 

   ± 10% McDonald, 2002 

   ± 1.5 °C ASHRAE, 1999 

   ± 2.0 °C ASHRAE, 1999 

   ± 15% - 

 

3.3.5 Cooling System 

Normative models parameterize the cooling system of the building by its two 

main components: the seasonal efficiency of the cold generators and the losses in the 

distribution system. As described in the heating system, the seasonal efficiency of the 

cold generators also varies from its nominal efficiency measured under the standard 

testing conditions because the testing conditions cannot capture dynamic operation 

conditions under which the cooling system actually operates. Equation 3.9 in (EN 15243, 

2007) calculates the seasonal energy efficiency ratio (    ) from the steady-state energy 

efficiency ratio at full load (   ) while accounting for the system efficiency loss under 

partial loads with the use of part load factor    . The system efficiency loss arises from 

cyclic effects due to the fact that the cooling system operates under partial loads, often 

resulting in cycling between on and off states.  

                                                                  (3.9) 

                                                             (3.10) 

ANSI/AHRI Standard 210/240 (2008) presents a formula (Equation 3.10) that 

calculates     as a function of part load ratio     and degradation coefficient   .     
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refers to the ratio of the partial load on the cooling system to its design output, and    

refers to the system cycling loss coefficient measured by cycling loss tests and 

documented in manufacturers' catalogs. Southern California Edison (2005) analyzed over 

23,000 air-conditioners and heat pumps listed in the California Utilities database, and 

estimated    to range between 0.02 and 0.25. Hu (2009) reviewed existing field 

measurement data for air-source heat pumps for cooling, and quantified the bounds of    

to be in the range of 0.066 - 0.26 with 0.25 as the base value. From these studies, we 

quantify the bounds of uncertainty for the coefficient to be between 0.02 – 0.26.  

While cold generated by the cold generators is delivered to spaces, part of this 

cold energy is lost during delivery. For air distribution systems, part of conditioned air is 

lost through the duck leakage, and the volume of the loss depends on the duct system 

design, its construction quality, and its operation conditions (pressure difference between 

the duct and the surroundings). Equation 3.11 from (EN 15242, 2007) calculates the 

airflow through the duct leakage             (m³/h) from the duct area       (m²), the 

duct air-tightness   (m³/s· m²), and the pressure difference        (Pa). Table 3.11 

summarizes a normative duct leakage value for each duct system class provided by the 

CEN-ISO standard. Based on the standard, we estimate the cooling distribution loss 

factor to fall between 0% - 15%. 

            
                 

    

    
                                  (3.11) 

Table 3.11 Typical values of duct leakages  (EN 15242, 2007) 

   Distribution loss factor 

lost/airflow (%) 

2.5. class A 0.0000675 0.15 

class A 0.0000270 0.06 

class B 0.0000090 0.02 

class C or better 0.0000030 0.00 
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3.3.6 Domestic Hot Water System 

Normative models characterize the energy performance of domestic hot water 

(DHW) system in terms of the DHW generation efficiency and the distribution 

efficiency. The water heater efficiency can vary depending on its nominal efficiency, its 

thermostat settings, its operation schedule, and surrounding conditions. Fanney (1996) 

investigated the effects of various off-peak schedules on the thermal efficiency of electric 

water heaters through laboratory tests, and concluded that the efficiency can vary up to 

7%. Healy (2001) tested electric water heaters from five manufacturers, the rated 

efficiency of which ranges between 0.92 and 0.94. Table 3.12 summarizes the rated and 

the measured efficiency in the laboratory which varied from 0.87 to 0.95. This difference 

between the measured and rated efficiency suggests that in reality water heaters may 

often underperform the expected efficiency under actual operation conditions. From these 

test results, we determine the range of thermal efficiency for electric water heaters to be 

between0.87 and 0.95. Regarding the distribution efficiency, in common cases in which 

water heaters are locally distributed to support ancillary areas, the delivery system length 

is quite short. Thus, heat loss during delivery can be regarded as negligible, so the 

distribution efficiency is assumed to be ideal.  
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Table 3.12 Rated and measured efficiencies of electric water heaters (Healy, 2001) 

Type Rated Efficiency Measured Efficiency 1 Measured Efficiency 2 

1 0.93 0.896 - 

2 0.92 0.908 - 

3 0.93 0.884 0.876 

4 0.94 0.888 0.881 

5 0.94 0.894 - 

6 0.93 0.918 0.949 

7a 0.93 0.909 0.936 

7b 0.93 0.904 - 

8a 0.93 0.896 0.881 

8b 0.93 0.895 - 

 

3.3.7 Internal Gains 

Internal heat gains refer to the heat produced by occupants, lights, and plug-in 

appliances in a building. Heat gains from occupants depend on the number of occupants 

and their metabolic rates in spaces. Even if the number of occupants in the space 

temporarily fluctuates, building occupancy schedule is considered as the fixed profile that 

capture the average building occupancy pattern. Occupant metabolic rates depend on 

individuals’ activity level. Table 3.13 shows the range of metabolic rates for the four 

groups of activities based on Macdonald (2002).  

Table 3.13 Uncertainty range of metabolic rates for the four groups of activities  

Activity Metabolic rate (W) 

Min Max 

Sedentary 70 130 

Light work 130 250 

Medium work 200 425 

Exercising 425 950 
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Uncertainty in plug-in equipment loads is quantified based on the survey of 30 

UK buildings from (Dunn, 2005). The survey suggests that plug-in equipment loads 

range between 124 W and 229 W per person in a building with 158 W per person as the 

mean value.  Based on these values, we calculate the range of possible plug-in equipment 

loads from the number of occupants for a particular building under investigation.   

 

3.4 Goals of Uncertainty Analysis 

3.4.1 Identification of Dominant Parameters 

Building energy models contain a large number of uncertain parameters, and it is 

infeasible to calibrate all uncertain parameters given the limited measurement data on 

aggregate-level energy uses. Hence, we apply a parameter screening technique in order to 

select a smaller number of calibration parameters more objectively than using our own 

judgment. Particularly, we employ the Morris method (Morris, 1991) to rank uncertain 

parameters with respect to the effects of their uncertainty on energy consumption. The 

Morris method has been acknowledged as a suitable screening technique for building 

energy models (de Wit, 2001; Moon, 2005). First, this method is computationally 

efficient to test the sensitivity of many uncertain parameters with relatively small samples. 

Moreover, the method does not assume the relationship between parameters and model 

outcomes as linear, and evaluates the effects of parameters on the model outcome over 

the whole parameter space by exploring multiple regions sampled from the parameter 

space. Hence, the method can capture nonlinear effects of individual parameters and 

interaction effects among parameters.  
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Figure 3.2 Illustration of the Morris method (six-level, two-dimensional space) 

 

Figure 3.2 illustrates the Morris method with two-dimensional parameter space. 

The Morris method first discretizes the parameter space of the entire design  ; it divides 

each parameter space into a chosen number of levels that correspond to a pre-selected 

number of quantiles of the corresponding parameter. This forms a grid of values in the 

parameter space. After starting from an initial fixed point in that grid, the move to the 

next step is done by changing one parameter value at a time while the other parameter 

values stay the same; there is no diagonal move, only moves along axes. Eventually, this 

allows moves in all directions. At the end of each step, we obtain a number: the 

elementary effect equal to the change in the model outcome as the result of the change   

in one input value (Equation 3.12). At the end of the entire procedure, we obtain 

distributions of elementary effects for all parameters. The mean value of each distribution 

represents the overall importance of an individual parameter. This study uses Simlab 

version 2.2 to execute the Morris method (SIMLAB, 2009).  

      
                                   

 
                             (3.12) 
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3.4.2 Propagation of Uncertainty  

Uncertainties in projected energy-savings predictions arise broadly from 

uncertainties existing in the calibrated model and additional uncertainties coming from 

candidate ECMs. Figure 3.3 illustrates how to propagate these uncertainties through the 

energy model to obtain probability distributions of outcomes. Uncertainties in the 

calibrated model are conveyed in a form of posterior distributions of individual 

calibration parameters. Since the posterior distributions are correlated, we cannot treat 

individual posterior distributions independently. Instead, we randomly select a row of 

calibration parameter values from posterior realizations to propagate uncertainty existing 

in the baseline model. On the contrary, additional uncertainties in model parameters 

pertaining to a testing ECM can be considered as independent since each parameter 

represents a specific property of the system. This is a valid assumption that has been 

underlined in most studies of uncertainty analysis (Hu, 2009; Moon, 2005; Macdonald, 

2002; de Wit, 2001).   

 

Figure 3.3 Illustration of uncertainty propagation for probabilistic outcomes 

 

For uncertainty propagation, we need to sample values from the probability 

density functions of uncertain parameters. The most commonly used sampling methods 
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are Monte Carlo method and Latin Hypercube Sampling (Wyss, 1998). Monte Carlo 

method randomly draws values from uncertainty distributions, which often requires a 

large number of samples to ensure convergence to the true probability density. Hence, 

when a high-fidelity simulation model is deployed, this method is often not efficient due 

to high computational burden. Latin Hypercube sampling alleviates computational burden 

by efficiently capturing the real variability of the distributions of uncertain parameters. 

Latin Hypercube Sampling partitions a probability density function into segments by the 

same magnitude of probability, and draws a sample once from each of the segments. As a 

result, this method ensures the reliability of probabilistic outcomes with a much smaller 

sample size. Hence, we apply the Latin Hypercube Sampling method to propagate 

uncertainty, and execute the method with the use of Simlab version 2.2 (SIMLAB, 2009).  
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CHAPTER 4 ANALYSIS ON THE FEASIBILITY OF THE NEW 

FRAMEWORK ON RETROFIT DECISION-MAKING 

 

 

4.1 Case Study 1 

4.1.1 Building Description 

The first case building is the Faculty of English building in the University of 

Cambridge in the UK. The building consists of offices and seminar rooms as shown in 

Figure 4.1. The building is equipped with a condensing gas boiler with radiators for space 

heating. It does not have mechanical cooling systems, but utilizes natural ventilation for 

both ventilation requirements and space cooling. It has high-frequency fluorescent 

lighting, electric heaters decentralized for domestic hot water supply, and nominal office 

plug-in appliances. Since heating is the dominant energy consumer in this building, we 

evaluate only Energy Conservation Measures (ECMs) that reduce gas consumption in the 

retrofit analysis process. Accordingly, we built an energy model related to space heating, 

and calibrated the energy model with monthly gas utility bills.   

 

Figure 4.1 Elevation and typical floor plan of the first case building  



 

 

55 

 

We follow the standard process of consulting design specifications, construction 

documents and operation manuals to build the normative energy model of the building. 

The main parameters of the energy model can be broadly summarized within following 

groups: (a) building envelope properties (e.g., thermal transmittance, emissivity, solar 

absorptance, heat capacity), (b) internal loads (plug-in appliances, lighting, occupants), 

(c) properties of the HVAC systems, (d) properties describing ventilation and infiltration, 

and (e) external environment (weather data). Then, following audits and interviews with 

the building manager, we have adjusted initial values assigned to the model parameters 

such that the energy model aligns with the actual building. Figure 4.2 shows predicted 

gas energy uses by the normative model (red color) and the transient simulation model 

(blue color) against the three-year gas utility data (black color). The comparisons 

demonstrate that there is considerable difference between the outputs from the energy 

models and actual gas consumption of the building.   

 

Figure 4.2 Three-year gas utility data against model predictions  
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4.1.2 Bayesian Calibration of Normative Model 

4.1.2.1 Prior Uncertainty Quantification 

As the first step, we need to quantify the uncertainties in model parameters by 

reviewing published literature and industry standards. Table 4.1 summarizes the 

uncertainties around the initial values assigned to model parameters by listing the 

minimum and the maximum limit of the values that can be assigned to them. Chapter 3 

describes the process of quantifying the uncertainties in the normative model in detail. 

The uncertainty information is essential for the following two steps in the analysis 

process: parameter screening and Bayesian calibration. The Morris method used for 

parameter screening utilizes only the bounds of parameter uncertainty to determine 

dominant uncertain parameters. On the contrary, Bayesian calibration exploits full 

information about prior uncertainty distributions. Hence, we translate these values in 

Table 4.1 into prior uncertainty distributions p(θ) by assigning a triangular distribution to 

parameters. The base value is the top of the triangle, and its probability decays linearly to 

zero at the edges of the assigned interval.  
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Table 4.1 Uncertain parameters and their ranges in the normative model 

Model Parameters Base Min Max Reference 

Thermal Properties 

Roof U value (W/m²·K) 

Roof solar absorptance 

Roof Emissivity 

Wall U-value (W/m²·K) 

Wall solar absorptance 

Wall emissivity 

Window U-value (W/m²·K) 

Window solar transmittance 

Window emissivity 

Envelope heat capacity  (kJ/m²·K) 

 

0.19 

0.68 

0.91 

0.32 

0.63 

0.91 

2.62 

0.77 

0.84 

260 

 

0.17 

0.60 

0.87 

0.29 

0.43 

0.87 

2.36 

0.76 

0.75 

160 

 

0.21 

0.76 

0.95 

0.36 

0.83 

0.95 

2.88 

0.79 

0.92 

275 

 

see Chapter 3.3.1 

 

Internal Loads 

Lighting power density (W/m²) 

Appliance power density (W/m²) 

Occupant metabolic rate (W) 

 

13 

15 

80 

 

11 

12 

70 

 

15 

22 

130 

 

building log book 

see Chapter 3.3.7 

see Chapter 3.3.7 

Control 

Indoor heating temperature (°C) 

 

22 

 

20 

 

24 

 

building log book 

Ventilation 

Infiltration rate (1/h) 

Discharge coefficient 

Intercept c 

 

0.50 

0.68 

-2.92 

 

0.10 

0.60 

-3.80 

 

1.25 

0.75 

-2.09 

 

see Chapter 3.3.2 

see Chapter 3.3.3 

see Chapter 3.3.3 

Heating System 

Heating generation efficiency 

Heating distribution loss factor 

 

0.97 

0.08 

 

0.95 

0.06 

 

0.98 

0.16 

 

see Chapter 3.3.4 
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4.1.2.2 Parameter Screening 

We apply the Morris method described in the Chapter 3.4 to identity dominant 

uncertain parameters according to their effects on gas energy use. We generated five 

independent samples to calculate the elementary effects of individual parameters, which 

resulted in 100 runs for the nineteen uncertainty parameters. Table 4.2 shows the ranking 

of uncertain parameters by their relative importance on the energy consumption of the 

building. We selected the top four parameters to calibrate out energy model since it is a 

reasonable number given that we have three years of monthly gas consumption data (36 

observations).  

Table 4.2 Ranking of model parameters in the normative model by relative importance  

Rank Model Parameter 

1 Intercept c for windows open  

2 Indoor temperature 

3 Infiltration rate 

4 Discharge coefficient 

5 Appliance power density 

6 Window U-value   

7 Heating distribution loss factor  

8 Lighting power density  

9 Envelope heat capacity 

10 Occupant metabolic rate 

 

4.1.2.3 Model Calibration 

The Kennedy and O'Hagan formulation of Bayesian calibration (2001) requires 

three sets of data as input: (1) the prior probability density functions of calibration 

parameters, (2) computer outputs from exploring the space of calibration parameters, and 

(3) observation data (monthly utility bills in this study). For the parameter-space 
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exploration, we apply Latin Hypercube Sampling technique (Wyss, 1998) to generate 

model outputs given the calibration parameter space since this technique can sufficiently 

explore the space with much reduced samples. For the observation data, we utilize 

monthly gas bills over the three years.  

Figure 4.3 shows the posterior distributions of the four calibration parameters 

against the prior distributions assigned to them. For the intercept c, the posterior 

distribution is quite strongly towards the lower bound, and its mode is at -3.6 closely near 

the lower bound. The posterior distribution suggests that the proportion of windows open 

in this case building is far smaller than the average in UK buildings. For the indoor 

temperature, the posterior distribution shifts to the lower bound by 1°C, and its expected 

value is around 21°C deviating from the originally estimated value (22°C). Regarding the 

infiltration rate, the posterior distribution indicates that the infiltration rate of the case 

building is likely to be much higher than average UK buildings (      ), and the spread 

of uncertainty about it is much smaller. For the discharge coefficient, the posterior 

distribution does not change significantly from the prior distribution. It should be re-

emphasized that the posterior distributions of individual parameters are derived from the 

joint multivariate distribution, and are hence correlated. This means that a specific value 

of one parameter coincides with a certain value of other parameters. Hence, posterior 

distributions of all four calibration parameters should be applied in conjunction when 

exercising the model for retrofit analysis.  
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Figure 4.3 Posterior distributions of calibration parameters with the normative model 

 (posterior - blue, prior - red) 

 

4.1.3 Bayesian Calibration of Transient Simulation Model 

4.1.3.1 Prior Uncertainty Quantification 

Quantification of uncertainties in model parameters depends on the choice of a 

building energy model. For instance, the normative model describes the characteristics of 

major components whereas the transient simulation model requires a detailed level of 

model parameters that describe the physical behavior of individual parts. Owing to the 

different granularity level, parameter uncertainty in the transient simulation model can 

differ from that in the normative model. Chapter 3 describes the process of quantifying 

parameter uncertainty in the normative model: investigating uncertainties in detailed 
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model parameters and aggregating them to capture uncertainty in macro-level parameters. 

The first step yields quantified parameter uncertainty in the detailed transient simulation 

model. Table 4.3 summarizes the list of uncertain parameters in the energyplus model 

and their uncertainty ranges.  

Table 4.3 Uncertain parameters and their ranges in the energyplus model 

Model Parameters Base Min Max Reference 

Thermal Properties 

Stone conductivity (W/m²·K) 

Stone density (kg/m³) 

Stone specific heat (kJ/kg·K) 

Stone solar absorptance 

Stone emissivity 

Concrete conductivity (W/m²·K) 

Concrete density (kg/m³) 

Concrete specific heat (kJ/kg·K) 

Concrete solar absorptance 

Concrete emissivity 

Insulation conductivity (W/m²·K) 

Insulation density (kg/m³) 

Insulation specific heat (kJ/kg·K) 

Plaster conductivity (W/m²·K) 

Plaster density (kg/m³) 

Plaster specific heat (kJ/kg·K) 

Plaster solar absorptance 

Plaster emissivity 

Glass conductivity (W/m²·K) 

Glass emissivity 

Glass solar transmittance 

 

3.17 

2560 

0.79 

0.63 

0.91 

2.15 

2400 

0.90 

0.68 

0.91 

0.03 

43 

1.21 

0.16 

800 

1.09 

0.40 

0.90 

0.90 

0.84 

0.77 

 

2.85 

2509 

0.60 

0.43 

0.87 

1.94 

2352 

0.68 

0.60 

0.87 

0.0 

42.14 

0.91 

784 

823 

0.82 

0.34 

0.86 

0.81 

0.76 

0.76 

 

3.49 

2611 

0.98 

0.83 

0.95 

2.37 

2448 

1.12 

0.76 

0.95 

0.03 

43.86 

1.51 

0.18 

816 

1.36 

0.46 

0.94 

0.99 

0.92 

0.79 

 

see Chapter 3.3.1 
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Table 4.3 continued 

Internal Loads 

Lighting power density (W/m²) 

Appliance power density (W/m²) 

Occupant metabolic rate (W) 

 

13 

15 

80 

 

11 

12 

70 

 

15 

22 

130 

 

building log book 

see Chapter 3.3.7 

see Chapter 3.3.7 

Control 

Indoor temperature (°C) 

 

22 

 

20 

 

24 

 

building log book 

Ventilation 

Infiltration rate (1/h) 

Discharge coefficient 

Intercept c 

 

0.50 

0.68 

-2.92 

 

0.10 

0.60 

-3.80 

 

1.25 

0.75 

-2.09 

 

see Chapter 3.3.2 

see Chapter 3.3.3 

see Chapter 3.3.3 

Heating System 

Boiler nominal efficiency 

 

0.97 

 

0.95 

 

0.98 

 

Lazzarin (1986) 

 

4.1.3.2 Parameter Screening 

With the Morris method, we generated five independent samples to obtain the 

elementary effects of individual parameters. As a result, we ran 150 simulation runs to 

determine calibration parameters among 29 uncertain parameters. Table 4.4 shows the 

ranking of uncertain parameters in the energyplus model ordered by their relative 

importance regarding the gas energy consumption. The five most dominant parameters 

are the same as those ranked as the most dominant parameters in the normative model 

shown in Table 4.2. Further below, the ranking of parameters in the two model differs 

which is expected since they compute heat and mass flows in a building at very different 

resolutions. 
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Table 4.4 Ranking of model parameters in the energyplus model by relative importance 

Rank Model Parameter 

1 Intercept c for windows open 

2 Indoor temperature during heating 

3 Infiltration rate 

4 Discharge coefficient 

5 Appliance power density 

6 Lighting power density 

7 Glass emissivity 

8 Boiler nominal efficiency 

9 Insulation conductivity 

10 Glass solar transmittance 

 

4.1.3.3 Model Calibration 

Figure 4.4 shows the posterior distributions of the four calibration parameters 

with the energyplus model against their prior distributions. They are, in general, very 

similar to the posterior distributions derived from the calibrated normative model. 

However, some difference between the calibration results is unavoidable since the two 

models have a quite different model resolution level. For the intercept c, the normative 

model produced the posterior distribution that is slightly more towards the lower bound 

than the energyplus model. For the infiltration rate, the normative model resulted in the 

posterior distribution that is more strongly towards the upper bound than the energyplus 

model. This discrepancy between the two calibration results can be regarded as trivial 

given the magnitude of uncertainty reduced by Bayesian calibration and coincidence 

between the two results. The significance of this discrepancy will be further investigated 

in the following section with respect to its effect on predictions and decisions in the 

decision-making context.  
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Figure 4.4 Posterior distributions of calibration parameters with the energyplus model 

 (posterior-blue, prior-red) 
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energyplus model and better than the uncalibrated energy model. Furthermore, the 

validation measures demonstrate that Bayesian calibration enhances the accuracy of the 

baseline model as it reduced the CVRMSE value by half. Figure 4.5 also depicts that the 

calibration improves the predictive power of the normative model for the particular 

building at the same confidence level as the energyplus model.  

           Table 4.5 Validation measures for uncalibrated and calibrated models 

Type of Model d CVRMSE 

before calibration 

Normative 

Energyplus 

 

0.76 

0.88 

 

0.34 

0.30 

after calibration 

Normative 

Energyplus 

 

0.97 

0.97 

 

0.17 

0.17 

 

Figure 4.5 Predicted gas energy uses from the calibrated models against the monitored gas uses 
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ECMs for this building: (1) insulation addition, (2) window replacement, and (3) air-

tightness improvement. Table 4.6 lists the parameter values specified for these three 

improvements and their uncertainty ranges, and Table 4.7 lists the capital costs roughly 

estimated for the improvements based on the BCIS price book for building 

refurbishments (BCIS, 2010). For the calculation of annual saving costs, we keep the gas 

price at 2.4p/kWh (DECC, 2010b).   

Table 4.6 Uncertain parameters and their ranges for the three ECMs 

Parameters Base Min Max Reference 

ECM1: Insulation Addition 

Insulation U-value (W/m²·K) 

 

0.30 

 

0.27 

 

0.33 

 

see Chapter 3.3.1 

ECM2: Window Replacement 

Window U-value (W/m²·K) 

Window solar transmittance 

Window emissivity 

 

1.41 

0.65 

0.05 

 

1.27 

0.63 

0.04 

 

1.55 

0.67 

0.06 

 

see Chapter 3.3.1 

 

ECM3: Air-tightening 

Infiltration rate reduction (%) 

 

11 

 

1 

 

31 

 

Jacobson (1986) 

 

Table 4.7 Cost estimates of the three ECMs (in 1000£) 

Retrofit Options Base Min Max 

ECM1: Insulation Addition 16 15 17 

ECM2: Window Replacement 204 194 214 

ECM3: Air-tightening 10.5 10 11 

 

To verify the prediction accuracy of the normative model (evaluation criterion 2), 

we assess the disparity of predictions between the two calibrated models. First, the two-

sample K-S test is used to examine whether the two SPT distributions generated by the 

two models come from the same cumulative distribution. Table 4.8 shows that for the 

three ECMs the K-S tests reject the hypothesis that the two samples of outcomes are from 
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the same distribution. Although the two models do not yield identical outcomes for ECM 

predictions, graphical comparison in Figure 4.6 suggests that the SPT distributions 

predicted by the normative model coincide well with those predicted by the energyplus 

model. These comparisons conclude that the calibrated normative model can adequately 

estimate the cost-effectiveness of ECMs.  

Table 4.8 Two-sample K-S tests for predictions from the two calibrated models 

Retrofit Options Two-sample K-S test 

H p-value 

ECM1: Insulation Addition 1 0.00 

ECM2: Window Replacement 1 0.00 

ECM3: Air-tightening 1 0.00 

 

    

                                          

Figure 4.6 Simple Payback Time distributions of the three ECMs from the two models 
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Finally, we evaluate the two calibrated models to see if they derive the consistent 

rankings of candidate ECMs for supporting decisions despite the difference in the 

predictions. The ECMs are evaluated under the three decision-making scenarios which 

corresponds to different levels of decision-makers' risk awareness, which is summarized 

in Chapter 2.3.4. Table 4.9 shows the ranking of the three ECMs in the three decision-

making scenarios. This result shows that the ranking of the ECMs differs based on the 

decision-makers' willingness to accept a certain level of risks. In addition, the result 

shows that the normative and the energyplus model result in the same ranking of the three 

ECMs. This result demonstrates that lower resolution of the normative model does not 

bias decisions in the retrofit analysis process, and the normative model can adequately 

support retrofit analysis.   

Table 4.9 Ranking of the three ECMs for the three decision-making scenarios 

ECMs Scenario 1 Scenario 2 Scenario 3 

Normative 

ECM1 

ECM2 

ECM3 

 

2 

3 

1 

 

1 

3 

2 

 

1 

3 

2 

Energyplus 

ECM1 

ECM2 

ECM3 

 

2 

3 

1 

 

1 

3 

2 

 

1 

3 

2 

 

 

4.2 Case Study 2 

4.2.1 Building Description 

The second case building is a four-story office building located in London, UK. 

The three floors above the ground consist of open offices and meeting rooms while the 

basement floor includes an open office and a copy room with heavily loaded printers. The 
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building has two gas boilers that provide hot water to radiators for space heating. All 

floors except the basement are naturally ventilated without any auxiliary cooling. Due to 

high equipment density, the basement floor is air-conditioned. Electric lighting is 

provided by T-8 high frequency fluorescents, and domestic hot water is supplied by 

decentralized electric heaters. For this case study, we constructed a whole-building 

model, and calibrated the model with monthly gas and electricity utility bills. Figure 4.7 

shows energy uses predicted by the two energy models after operational adjustments 

(adjusting initial values of observable parameters according to site visits and surveys) 

against five-year utility bills. The figure demonstrates that the energy models without 

parameter estimation still yield substantial discrepancy between model outcomes and 

actual energy consumptions.  

    

Figure 4.7 Monitored gas (left) and electricity (right) energy uses against model predictions 
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4.2.2 Bayesian Calibration of Normative Model 

4.2.2.1 Prior Uncertainty Quantification 

We need to estimate uncertainties in model parameters specific for this building 

case. First, we assigned base values to model parameters based on design documents, 

operation manuals, and industry standards to make the model as close to existing building 

conditions as we can. Then, based on collective expert knowledge from the literature 

study, we quantified uncertainties in model parameters, which refer to possible deviations 

from base values. Table 4.10 shows the list of uncertain parameters in the normative 

model and their uncertainty ranges with the base values. 

Table 4.10 Uncertain parameters and their ranges in the normative model 

Model Parameters Base Min Max Reference 

Thermal Properties 

Roof U value (W/m²·K) 

Roof solar absorptance 

Roof Emissivity 

Wall U-value (W/m²·K) 

Wall solar absorptance 

Wall emissivity 

Window U-value (W/m²·K) 

Window solar transmittance 

Window emissivity 

Envelope heat capacity (kJ/m²·K) 

 

0.51 

0.40 

0.90 

0.52 

0.40 

0.90 

3.16 

0.84 

0.84 

260 

 

0.46 

0.34 

0.86 

0.47 

0.34 

0.86 

2.84 

0.76 

0.82 

160 

 

0.56 

0.46 

0.94 

0.57 

0.46 

0.94 

3.47 

0.92 

0.85 

275 

 

see Chapter 3.3.1 

 

Internal Loads 

Lighting power density (W/m²) 

Appliance power density multiplier 

Occupant Metabolic Rate (W) 

 

15 

1 

80 

 

11 

0.78 

70 

 

19 

1.45 

130 

 

measurements 

see Chapter 3.3.7 

see Chapter 3.3.7 
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Table 4.10 Continued 

Control 

Indoor heating temperature (°C) 

Indoor cooling temperature (°C) 

 

22 

24 

 

20 

22 

 

24 

26 

 

measurements/ 

operation manuals  

Ventilation 

Infiltration rate (1/h) 

Discharge coefficient 

Intercept c 

 

0.50 

0.68 

-2.92 

 

0.10 

0.60 

-3.80 

 

1.25 

0.75 

-2.09 

 

see Chapter 3.3.2 

see Chapter 3.3.3 

 

Heating System 

Heating generation efficiency 

Heating distribution loss factor 

 

0.86 

0.08 

 

0.84 

0.06 

 

0.88 

0.15 

 

see Chapter 3.3.4 

 

Cooling System 

Mean Partial Load Factor 

Cooling distribution loss factor 

 

0.84 

0.06 

 

0.83 

0.00 

 

0.96 

0.15 

 

see Chapter 3.3.5 

 

Domestic Hot Water System 

DHW generation efficiency 

 

0.91 

 

0.87 

 

0.95 

 

see Chapter 3.3.6 

 

4.2.2.2 Parameter Screening 

Table 4.11 lists the ranking of uncertain parameters with respect to the effect of 

their uncertainty on the total energy consumption. We selected the top five uncertain 

parameters for calibration: (1) intercept c for windows open, (2) indoor temperature 

during heating, (3) infiltration rate, (4) appliance power density multiplier, and (5) 

discharge coefficient. The top three parameters have an exceptionally higher impact on 

the energy consumption than the other parameters in this case building as well as the first 

case building. This similarity of the results between the two case studies implies that the 

sensitivity of uncertain parameters can be possibly generalized with proper classification 

of buildings when much more case buildings are investigated. 
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Table 4.11 Ranking of model parameters in the normative model by relative importance 

Rank Model Parameter 

1 Intercept c for windows open 

2 Indoor temperature during heating 

3 Infiltration rate 

4 Appliance power density multiplier 

5 Discharge coefficient 

6 Envelope heat capacity  

7 Heating distribution loss factor 

8 Lighting power 

9 Heating generation efficiency 

10 Window U-value 

 

4.2.2.3 Model Calibration 

Figure 4.8 shows the posterior distributions of the five calibration parameters 

compared with their prior distributions. For the intercept c, the posterior distribution 

shifts toward the lower bound. This change suggests that the proportion of open windows 

in this case is smaller than the average in UK buildings. For the indoor temperature 

during heating, the posterior distribution shifts to the lower bound by around 1°C. This 

update indicates that spatially-averaged indoor temperatures during heating in reality is 

most likely to be lower than the set-point temperature (22°C) due to vertical and 

horizontal stratifications in spaces. For the infiltration rate, the posterior distribution tells 

that the building is leakier than average UK buildings. For the appliance power density 

multiplier the posterior distribution is refined the most from the prior distribution. The 

expected appliance power density in reality is most likely 20% higher than our prior 

estimates, and the spread of uncertainty is significantly reduced. On the contrary, the 

posterior distribution of the discharge coefficient does not change much from the prior 

distribution.  
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Figure 4.8 Posterior distributions of the five calibration parameters with the normative model 

(posterior - blue, prior - red) 
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4.2.3 Bayesian Calibration of Transient Simulation Model 

4.2.3.1 Prior Uncertainty Quantification 

Table 4.12 summarizes the list of uncertain parameters in the energyplus model 

and their uncertainty ranges. In addition to uncertainty quantification described in 

Chapter 3, we further investigated technical papers and industrial reports that analyze the 

performance of commercial products in the market (e.g., Energy-using Products reports) 

in order to quantify uncertain parameters in the fan and the pump system model.  

Table 4.12 Uncertain parameters and their ranges in the energyplus model 

Model Parameters Base Min Max Reference 

Thermal Properties 

Concrete conductivity (W/m²·K) 

Concrete density (kg/m³) 

Concrete specific heat  (kJ/kg·K) 

Concrete solar absorptance 

Concrete emissivity 

Insulation conductivity (W/m²·K) 

Insulation density (kg/m³) 

Insulation specific heat (kJ/kg·K) 

Plaster conductivity (W/m²·K) 

Plaster density (kg/m³) 

Plaster specific heat (kJ/kg·K) 

Plaster solar absorptance 

Plaster emissivity 

Glass conductivity (W/m²·K) 

Glass emissivity 

Glass solar transmittance 

 

2.15 

2400 

0.90 

0.68 

0.91 

0.03 

43 

1.21 

0.16 

800 

1.09 

0.40 

0.90 

0.90 

0.84 

0.84 

 

1.94 

2352 

0.68 

0.60 

0.87 

0.0 

42.14 

0.91 

784 

823 

0.82 

0.34 

0.86 

0.81 

0.76 

0.82 

 

2.37 

2448 

1.12 

0.76 

0.95 

0.03 

43.86 

1.51 

0.18 

816 

1.36 

0.46 

0.94 

0.99 

0.92 

0.86 

 

see Chapter 3.3.1 
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Table 4.12 Continued 

Internal Loads 

Lighting power density (W/m²) 

Appliance power density multiplier 

Occupant metabolic rate (W) 

 

15 

1 

80 

 

11 

0.78 

70 

 

19 

1.45 

130 

 

measurements 

see Chapter 3.3.7 

see Chapter 3.3.7 

Control 

Indoor heating temperature (°C) 

Indoor cooling temperature (°C) 

 

22 

24 

 

20 

22 

 

24 

26 

 

measurements/ 

operation manuals 

Ventilation 

Infiltration rate (1/h) 

Discharge coefficient 

Intercept c 

 

0.50 

0.68 

-2.92 

 

0.10 

0.60 

-3.80 

 

1.25 

0.75 

-2.09 

 

see Chapter 3.3.2 

see Chapter 3.3.3 

 

Heating System 

Boiler nominal efficiency 

 

0.86 

 

0.84 

 

0.88 

 

Lazzarin (1986) 

Cooling System 

Degradation coefficient 

 

0.25 

 

0.06 

 

0.26 

 

see Chapter 3.3.5 

Fans 

Supply fan total efficiency 

Supply fan motor efficiency 

 

0.65 

0.82 

 

0.60 

0.75 

 

0.70 

0.87 

 

Radgen (2006) 

de Almeida (2008) 

Pumps 

Motor efficiency 

 

0.77 

 

0.70 

 

0.83 

 

de Almeida (2008) 

Domestic Hot Water System 

Heater thermal efficiency 

 

0.91 

 

0.87 

 

0.95 

 

see Chapter 3.3.6 

 

4.2.3.2 Parameter Screening 

Table 4.13 shows the uncertain parameters, ranked in the order of dominance 

using the Morris method. The top five dominant parameters are the same as those ranked 
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by the normative energy model (shown in Table 4.11), and we thus calibrated the same 

five parameters with the energyplus model.  

Table 4.13 Ranking of model parameters in the energyplus model by relative importance 

Rank Model Parameter 

1 Intercept c for windows open 

2 Indoor temperature during heating 

3 Appliance power density 

4 Infiltration rate 

5 Discharge coefficient 

6 Lighting power density 

7 Boiler nominal efficiency 

8 Indoor temperature during cooling 

9 Insulation conductivity 

10 Glass emissivity 

 

4.2.3.3 Model Calibration 

Figure 4.9 shows the posterior distributions of the five calibration parameters with 

the energyplus model. The posterior distributions from the energyplus model are quite the 

same as those from the normative model. This high coincidence proves the feasibility of 

the normative model to adequately capture a building as operated through the calibration 

process. However, this similarity does not necessarily guarantee that predictions between 

the two models are consistent because the normative model approximates the heat 

transfer processes in a building and may bias model outcomes. Hence, we will further 

investigate the feasibility of the normative model for retrofit analysis by comparing 

predictions and decisions derived by the normative model with those by the energyplus 

model.   
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Figure 4.9 Posterior distributions of calibration parameters with the energyplus model  

(posterior-blue, prior-red) 
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4.2.4 Evaluation: Comparison between Normative and Transient Energy Model 

Under the first criterion (accuracy of calibrated models), we evaluate the validity 

of the calibrated models in terms of agreements between predicted and monitored energy 

uses. Table 4.14 shows CVRMSE values of the uncalibrated models and the Bayesian 

calibrated models. The statistical measures indicate that the normative model, supported 

by Bayesian calibration, can predict the energy consumption as accurately as the 

calibrated energyplus model. Also, the validation measures tell that Bayesian calibration 

improves the accuracy of the baseline model by reducing the CVRMSE values by about 

65 percent for both gas and electricity consumption. The CVRMSE values of the 

calibrated models are still higher than the 15% stipulated in ASHRAE Guideline 14 (for a 

model to be deemed valid). However, it should be noted that even with lower agreements 

with measured data Bayesian calibration models still outweigh deterministically 

calibrated models because they can quantify uncertainties remaining in the model and 

propagate them in model predictions.  

Table 4.14 CVRMSE measures for uncalibrated and calibrated models 

Type of Model Gas Electricity 

before calibration 

Normative 

Energyplus 

 

0.95 

0.94 

 

0.38 

0.23 

after calibration 

Normative 

Energyplus 

 

0.34 

0.39 

 

0.14 

0.15 
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Figure 4.10 Predicted energy uses from the calibrated models against the monitored uses (left - gas 

energy use, right - electricity energy use) 

 

We further compare the two calibrated models in the context of retrofit decision-

makings. We exercise the calibrated models to evaluate six ECMs: (1) insulation 

upgrade, (2) window replacement, (3) infiltration air-tightening, (4) boiler upgrade 

(seasonal efficiency = 0.97), (5) air-conditioning upgrade (COP = 5), and (6) lighting 

upgrade (T-5 lamps). Table 4.15 summarizes uncertainty ranges for uncertain parameters 

pertaining to the six ECMs.  

Table 4.16 lists the capital investment costs, including equipment and labor costs, 

estimated for the six ECMs based on the BCIS price book (BCIS, 2010). For energy 

costs, the gas price was fixed at 2.4 pence/kWh, and the electricity price at 8.6 

pence/kWh (DECC, 2010b).   
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Table 4.15 Uncertain parameters and their ranges for the three ECMs 

Parameters Base Min Max Reference 

ECM1: Insulation Addition 

Insulation U-value (W/m²·K) 

 

0.30 

 

0.27 

 

0.33 

 

see Chapter 3.3.1 

ECM2: Window Replacement 

Window U-value (W/m²·K) 

Window solar transmittance 

Window emissivity 

 

1.41 

0.65 

0.05 

 

1.27 

0.63 

0.04 

 

1.55 

0.67 

0.06 

 

see Chapter 3.3.1 

ECM3: Air-tightening 

Infiltration rate reduction (%) 

 

11 

 

1 

 

31 

 

Jacobson (1986) 

ECM4: Boiler Upgrade 

Boiler seasonal efficiency  

 

0.97 

 

0.95 

 

0.98 

 

see Chapter 3.3.4 

ECM5: Air-conditioning Upgrade  

Degradation coefficient 

 

0.25 

 

0.06 

 

0.26 

 

see Chapter 3.3.5 

ECM6: Lighting Upgrade 

Lighting power density (W/m²) 

 

13 

 

11 

 

15 

 

see Chapter 3.3.7 

 
 

Table 4.16 Cost estimates of the six ECMs (in 1000£) 

Retrofit Options Base Min Max 

ECM1: Insulation Addition 11 10.5 12 

ECM2: Window Replacement 55 52 58 

ECM3: Air-tightening 7.2 6.8 7.5 

ECM4: Boiler Upgrade 3.4 3.2 3.6 

ECM5: Air-conditioning Upgrade  3.2 3.0 3.3 

ECM6: Lighting Upgrade 5.7 5.4 6.0 

 

Under the second criterion (accuracy of model predictions), we compare SPT 

predictions from the normative model with those from the energyplus model. Table 4.17 

shows the statistical results from the two-sample K-S tests that evaluate the hypothesis: 
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whether the two samples come from the same cumulative distribution. This hypothesis is 

rejected at the 5% significance level for all the ECMs except ECM 3. This result indicates 

that mostly the normative model may not yield probabilistic outcomes equivalent to those 

by the energyplus model. However, Figure 4.11 shows that overall the normative model 

predictions is similar to the energyplus model predictions. Nonetheless, the normative 

model tends to slightly overestimate potential energy-savings of ECMs 1 and 2, resulting 

in lower SPTs than the energyplus model.  This prediction bias in the normative model 

will be further looked into with respect to its effect on decision-making.  

Table 4.17 Two-sample K-S tests for model predictions from the normative  

and energyplus model 

Retrofit Options Two-sample K-S test 

H p-value 

ECM1: Insulation Addition 1 0.00 

ECM2: Window Replacement 1 0.00 

ECM3: Air-tightening 0 0.16 

ECM4: Boiler Upgrade 1 0.00 

ECM5: Air-conditioning Upgrade  1 0.00 

ECM6: Lighting Upgrade 1 0.01 
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Figure 4.11 SPT predictions of the six ECMs (red - normative, blue- energyplus) 

 

Finally, we evaluate the feasibility of the calibrated normative model by 

comparing decisions supported by the normative model with those by the energyplus 

model in a set of plausible decision-making scenarios. Table 4.18 lists the ranking of the 
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accept a certain level of risks. Unlike the first case study in which the preferred ECM 

differs depending on the scenario, the preferred ECMs are the same regardless of the 

scenario because their overall performance is far superior to the others. At this point it 

should be re-emphasized that information about underperforming risks of ECMs does not 

necessarily lead to better  decisions but guarantee that final decisions sufficiently reflect 

decision-makers' intentions. In addition, the comparison demonstrates that the normative 

and the energyplus model results in the consistent ranking of the ECMs for all the 

scenarios. The consistent ranking in the second case study confirms that the normative 

model can adequately support retrofit decision-makings while accounting for major 

sources of uncertainty.  

Table 4.18 Ranking of the three ECMs for the three decision-making scenarios 

ECMs Scenario 1 Scenario 2 Scenario 3 

Normative 

ECM1 

ECM2 

ECM3 

ECM4 

ECM5 

ECM6 

 

4 

6 

5 

2 

1 

3 

 

4 

5 

6 

2 

1 

3 

 

4 

5 

6 

2 

1 

3 

Energyplus 

ECM1 

ECM2 

ECM3 

ECM4 

ECM5 

ECM6 

 

4 

6 

5 

2 

1 

3 

 

4 

5 

6 

2 

1 

3 

 

4 

5 

6 

2 

1 

3 
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4.3 Discussion 

4.3.1 Weather Data for Calibration 

Generally it is recommended to use actual weather data for calibrating building 

energy models (ASHRAE, 2002). No doubt, actual weather data covering the same 

period as the metered energy consumption data provides the most reliable scenario for 

calibration. However, actual weather data is not always accessible. Hence, we investigate 

if the TMY data is good enough for the calibration. Figure 4.12 plots observed monthly 

outdoor temperatures over a three-year period against TMY temperatures. The plot 

demonstrates that the TMY temperatures well coincide with the average of the three-year 

observations. This implies that TMY data is good enough for the calibration when the 

calibration is based on monthly utility data over a multiple-year period.  

 

Figure 4.12 Three-year actual temperatures against TMY temperatures 

 

4.3.2 Effects of Prior Estimates on Calibration Results 
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levels (e.g., utility data, sub-metered data) can result in similar posterior distributions 

close to true values even without good prior estimates. However, in reality, metered 

energy consumption data (observations) is often only available for a limited period. 

Hence, it is expected that calibration results can be considerably influenced by the prior 

estimates. In order to investigate the effects of prior estimates on calibration results, we 

calibrate the model with two different prior distributions: 

 Scenario 1: increases the upper and lower limits of the original prior 

distributions by 50% while maintaining the distribution shape. 

 Scenario 2: uses uniform distributions within the limits specified for the 

original prior distributions. 

Figure 4.13 overlays posterior distributions from Scenario 1 (red color) and 

Scenario 2 (blue color) against those from the original prior estimates (black color). 

Increasing the ranges of prior estimates results in wider ranges of the posterior 

distributions because the observations are insufficient to curtail wider uncertainty 

assigned in the prior distributions. However, except the spread, the two posterior 

distributions have similar distribution characteristics: both the distribution shpaes and the 

expected values are similar. On the contrary, change in the distribution shape 

significantly impacts the posterior distributions. With the uniformly distributed priors, the 

resulting posterior distributions are strongly weighted toward one bound. But, in both 

Scenario 2 and Original Scenario, the posteriors shift toward the same bound due to the 

same likelihood function given the monitored data. Particularly for the appliance power 

density, the three posteriors (Original, Scenario 1, and Scenario 2) are quite similar 

despite the different priors since the monitored data contains enough information to 

derive the postier estimate.   
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Figure 4.13 Posterior distributions of the five calibration parameters (black - from original priors, 

red - scenario 1 (from wider priors), blue - scenario 2 (from uniformly distributed priors)) 
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Figure 4.13 Continued 

 

 
 

 

In summary, Bayesian calibration can correct our prior beliefs about true 

calibration parameter values, but its results still significantly depend on the prior 

estimates. This relationship implies that prior estimation is important. One point to be 

emphasized is that prior estimates are set up based on collective expert knowledge and 

change only when there is additional knowledge in the process of prior uncertainty 

quantification. Then, given prior estimates are further refined through Bayesian 

calibration. 
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posterior distributions from calibration exercises enhance our understandings of 

parameter values, and can be further utilized to set up better prior estimates for other case 

buildings. Beforehand we should inspect how distinctively parameter values differ 

depending on the case in order to investigate the potential of generalizing from case 

buildings to a large population of buildings.  

Figure 4.14 depicts the posterior distributions of the four calibration parameters 

derived from the first case study (purple color) and the second case study (green color). 

The two case buildings have similar posterior distributions for the two parameters: indoor 

temperature during heating and discharge coefficient. The indoor temperature refers to 

spatially-averaged indoor temperature that typically deviates from a set-point temperature 

due to air stratification in spaces. Similar posteriors for the indoor temperature imply that 

the posteriors can be possibly applied to other typical office buildings. Another 

parameter, discharge coefficient, depends on the shape and the size of openings, and the 

consistent calibration results for this parameter suggest that these results can be also used 

for other office buildings that have typical types of windows although they do not change 

much from the original prior estimates.  

On the contrary, the other two parameters, intercept c for windows open and 

infiltration rate, have noticeably different posterior distributions for each case building. 

Intercept c is part of the empirical formula that determine the proportion of windows 

open as the result of occupant control actions. Since window-opening behavior is 

triggered by various environmental and social factors, it is likely to differ depending on 

the building environment (e.g., cultural, organizational, and operational settings). 

Infiltration rate also differs building by building. Indeed, infiltration rate of a building is 

determined by case-specific factors such as the construction quality of a building and 

pressure difference between the outside and the inside of a building. Hence, the 

calibration results for these two parameters may not be generalized for all other cases. 
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Before the generalization, proper categorization of buildings should be studied through 

extensive case studies that enable deep understanding of main factors that impact 

building energy performance.  

  

   

Figure 4.14 Posterior distributions of the four calibration parameters from the two case studies 

(purple - the first case, green - the second case) 
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compared model outcomes and decisions from the calibrated normative models with 

those from the calibrated energyplus models. The case studies verified that normative 

models can adequately serve as a tool to support decision-makings under uncertainty as 

the replacement of transient simulation models when they are supported by Bayesian 

calibration.  
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CHAPTER 5 CONTRIBUTIONS OF THE NEW FRAMEWORK 

IN PRACTICE OF ENERGY-EFFICIENCY PROJECTS 

 

 

5.1 Introduction 

This chapter demonstrates the capability of the new framework to rigorously 

support uncertainty analysis for risk-conscious decision-making. Chapter 1.2 presents the 

importance of risk analysis in retrofit decision-making, particularly in the context of 

Energy Service Companies (ESCOs). Chapter 1.2 also summarizes key limitations of the 

current methods to support risk analysis: they follow the deterministic approach that 

ignores uncertainty in the retrofit analysis, and rely on experts' subjective decisions to 

quantify uncertainty in energy-saving estimates. In order to adequately evaluate all 

available ECMs with the confidence level, an analysis method should quantify risks in 

energy savings from ECMs while accounting for uncertainty in the analysis process. 

The new methodology proposed in this thesis can serve as a formal method to 

support rigorous risk analysis in the decision-making stage. Bayesian calibration models 

quantify uncertainties in the baseline model, and further incorporate additional 

uncertainties coming from ECMs in order to compute probabilistic predictions of retrofit 

performance. The resulting probabilistic outcomes systematically capture the effects of 

all major sources of uncertainty on the outcomes, which can be naturally translated to 

quantify risks of underperformance associated with ECMs. Indeed, energy-efficiency 

risks come from a broad range of uncertain factors that often confound ECM 

performances and increase the volatility in investment decisions (Mills, 2006). Hence, 

without taking all sources of uncertainty into account, one cannot realize the inherent 

risks one may undertake for his/her decisions.  
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This chapter investigates the importance of formal uncertainty analysis on retrofit 

decision-making. First, the chapter looks into current standard methods with respect to 

how they handle uncertainty in the process of determining energy savings. Then, the 

chapter revisits the first case study to illustrate the role of Bayesian calibration models in 

risk-conscious decision-making. The case study compares outcomes and decisions 

derived by the Bayesian calibration model with those derived by methods used in current 

practice in the context of plausible decision-making scenarios.  

 

5.2 Current Practice from the Perspective of Uncertainty 

This section describes primary concepts and methods employed in the current 

practice concerning uncertainty in energy-savings estimates. Energy-efficiency projects 

in the ESCO industry typically follow the International Performance Measurement and 

Verification Protocol to estimate ECM energy-savings (Hansen, 2004; IPMVP, 2010). 

The IPMVP offers several methods for determining energy savings from ECMs for a 

building, but all of them follow a deterministic approach; they set methods for computing 

an absolute value of energy-savings from a set of ECMs without quantifying any risks 

expressing potential underperformance of ECMs not resulting in energy savings as 

projected in the energy performance contract.  

In addition to the IPMVP, ASHRAE Guideline 14 (ASHRAE, 2002) provides 

guidelines and calculation methods for retrofit analysis in the US. These guidelines 

recommend deriving a deterministic model best fit to monitored data and estimating a 

single energy-saving value by subtracting projected (calculated) energy use during the 

post-retrofit period from baseline energy use during the pre-retrofit period. The 

deterministic results can be regarded as optimistic because they do not account for 

sources of uncertainty that can potentially cause ECMs to underperform the expected 

performance improvements.  
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Despite the deterministic approach, ASHRAE Guideline 14 implicitly 

acknowledges the importance of uncertainty (or rather variability) particularly for 

validating analysis results. The ASHRAE guideline attempts to quantify three types of 

uncertainty: (a) modeling uncertainty, (2) measurement errors and (3) sampling 

uncertainty. In the guideline, modeling uncertainty refers to how well a baseline model 

captures variability in measured data. The guideline defines modeling uncertainty    in 

terms of the coefficient of variation of the root mean square error (CVRMSE) shown in 

Equation 5.1;    is predicted value,    is observed value in period  , and the average of all 

observations is denoted by   . The guideline requires that CVRMSE should be less than 

15% for monthly calibration data and 30% for hourly calibration data in order that a 

calibrated model is deemed valid.  

   
         

    
    

  
                                                  (5.1)      

Measurement errors include errors in monitoring both energy use data and 

independent variables. Measurement equipment error    depends on the measurement 

accuracy of an instrument, and Equation 5.2 calculates the overall instrument error over a 

range of measured data.         denotes reading of an instrument at a point at which its 

manufacturer verifies its relative error (           ) through full-scale tests, and     

denotes the mean value of a series of instrument readings. Independent variable error     

refers to error in monitoring independent variables (e.g., outdoor weather conditions) 

during the post-retrofit period. The ASHRAE guideline recommends quantifying the 

spread of the additional uncertainty by calculating the difference between calculated 

savings with the maximum variable values and those with the minimum variable values. 

The guideline also stipulates the conditions in which measurement equipment error and 

independent variable error can be ignored: measurement equipment error is assigned zero 

when metered energy use data is from utility bills: independent variable error is assigned 
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zero when the weather data used for the post-retrofit analysis comes from a government-

operated weather reporting service.   

   
                         

  
   

    
 
   

                                        (5.2) 

Sampling uncertainty refers to errors in estimating energy use for the total 

population from a sample of units. For the pragmatic reason to reduce monitoring costs, 

projects often measure energy uses in a sample of units, and derive the average energy 

uses in the entire set of units from the sample. For instance, for a building with ten 

identical floors, projects measure the lighting electricity use in a random floor, and use 

the measured sample to estimate the average lighting electricity use in the whole 

building. Equation 5.3 computes sampling uncertainty   ;   is a number of the total 

units,   is a number of the units selected for measurement;    is a monitored value in 

period   from a randomly sampled unit, and    is the estimated mean of the total 

population  .  

   
   

  
     

 

 
   

       
 

     
 
     

 

 
                                  (5.3)   

ASHRAE Guideline 14 provides an empirically driven equation (Equation 5.4) 

that calculates overall savings uncertainty   from the three types of uncertainty. Savings 

uncertainty   refers to relative uncertainty in the estimated energy savings, which is 

defined as the standard deviation          divided by the energy-savings estimate 

       . F is the ratio of energy-saving estimate to baseline energy use, and t is a t-

statistics for the expected confidence level. m is the number of predictions in the post-

retrofit period, and n is the number of observations in the pre-retrofit period. The 

guideline stipulates that calculated standard deviation should be lower than 50% of the 

annual savings estimate for the projected energy-savings to be valid. 
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                      (5.4)       

Equation 5.4 simplifies to Equation 5.5 for typical projects in which (a) no 

sampling is done (     , (b) utility bills are used for metered energy uses (    ) and 

(c) government-published weather data is used for independent variables (     ). The 

equations are initially developed to validate the baseline model and estimated energy-

savings. Furthermore, the ASHRAE guideline implies that the equations can be used as 

means for parties in the ESCO projects to reach mutual agreements on risks associated 

with retrofit implementations.  

        

       
   

            

 
      

 

 
  

 

 
                          (5.5) 

ASHRAE Guideline 14 thus provides empirical tests that quantify the confidence 

in an energy-savings estimate for a building retrofit. However, this method is not suitable 

for quantifying risk for several reasons. First,          should be derived in principle 

from a probabilistic distribution. Second, the method cannot be used to quantify 

uncertainties associated with the proposed ECMs. Hence, it leads to the same magnitude 

of risk for any retrofit option although each retrofit option most likely contains different 

level of underperforming risks. Furthermore, the empirical relationship shown in the 

equations is designed for a very specific definition of energy-savings. Hence, it does not 

allow translation of computed energy-saving uncertainty into other risk measures. In fact, 

energy retrofit is an investment, and retrofit projects often employ cost-effectiveness 

measures such as cost/benefit ratio and simple payback time for decision-making. 

However, the current method cannot provide information about risks in these forms.  
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5.3 Case Study 

This chapter revisits the first case study to compare outcomes derived by the 

proposed methodology with those by the current methods in practice. Chapter 4.1 

summarizes analysis outcomes calibration results and predictions for the ECMs from the 

analysis process supported by the proposed methodology. As the counterpart, we employ 

the calibrated model approach endorsed by ASHRAE Guideline 14, which reflects the 

standard practice of retrofit projects (refer to Chapter 2.1).  

 

5.3.1 Calibration Results 

This section compares calibration results between the Bayesian approach and the 

deterministic approach used in current practice. As the standard practice, we calibrate the 

energy model of the same building following the standard calibration procedure in 

ASHRAE Guideline 14. The calibration process is more ad-hoc; the modeler selects 

calibration parameters according to his/her knowledge and experience, and manually tests 

different values until there is good match between model predictions and utility data. The 

high involvement of experts has been recognized as a major problem that makes the 

calibration process ad hoc and non-scientific (Reddy, 2006). In this study, we leave out 

the influence of experts on calibration outcomes, but focus on the effects of following a 

deterministic calibration process on risk analysis.  

We use the same four parameters used for the Bayesian calibration to calibrate the 

energy model as per the deterministic method. The upper and lower limits of parameter 

values are also the same as those specified in the prior distribution functions of the 

Bayesian calibration. Although in practice experts heuristically tune calibration 

parameters, we employ an optimization algorithm because current calibration practices 

are in principle a heuristic version of deterministic optimization (in terms of minimizing 
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the discrepancy between model outcomes and observations). Figure 5.1 shows the values 

of the calibration parameters derived by the deterministic calibration in comparison to the 

posterior distributions by the Bayesian calibration. All values are at the extreme upper or 

lower limits and quite far from the expected value derived from the Bayesian calibration 

process. This large difference between the two calibration results implies that the 

deterministic calibration process cannot guarantee that resulting parameter values 

accurately correspond to actual building conditions. 

 

Figure 5.1 Deterministic calibration results for the four parameters (red dot) against the posterior 

distributions from Bayesian calibration 

 

We evaluate the validity of the calibrated models by CVRMSE used in the 

ASHRAE guideline. It should be mentioned that most other validation metrics in the 

literature summarized well in (Krause, 2005; Legates, 1999) are similar goodness-of-fit 

measures between model predictions and observations. Table 5.1 shows the CVRMSE 
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values of the (a) uncalibrated model, (b) model calibrated based on the Bayesian 

approach, and (c) deterministically calibrated model. It shows that the calibration process 

enhances the accuracy of the baseline model as it reduced the CVRMSE value by half. 

Still, both calibration processes fail to satisfy the validation criteria in the ASHRAE 

guideline; CVRMSE should be within 15%. However, it should be noted that the 

guideline evaluates the accuracy of deterministically calibrated models. Even with lower 

agreements with measured data, calibrated models based on a Bayesian approach still 

outweigh deterministic models because they can quantify uncertainties in model 

predictions.  

Table 5.1 Validation measures for uncalibrated model, Bayesian calibration model, and 

deterministically calibrated model 

Calibration Method CVRMSE 

Un-calibrated model 0.34 

Bayesian Calibration 0.17 

Deterministic Calibration 0.18 

 

The CVRMSE also indicates that the deterministically calibrated model predicts 

the baseline energy use as closely as the Bayesian calibration model does. However, the 

standard validation measures (such as CVRMSE) cannot truly evaluate whether a model is 

accurate enough. Calibration techniques identify parameter values that compute predicted 

energy consumption closely matching monitored energy consumption. Hence, when 

calibrated models are evaluated against the monitored data, they seem quite valid. 

However, chose parameter values that attain good agreements between predicted and 

monitored energy use do not guarantee that they correspond to actual building conditions. 

Especially, the deterministic calibration technique results in one single solution that 

maximizes the agreement while ignoring many feasible parameter values that may have 

higher likelihoods. A deterministically calibrated model can thus potentially bias the 
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effects of certain ECMs on energy savings, and ultimately lead to wrong decisions. On 

the other hand, the Bayesian calibration process results in a set of plausible parameter 

values under which ECMs are assessed. Hence, the Bayesian process can enhance the 

reliability of model predictions by not only providing uncertainty in calibration parameter 

values but also assuring the reliability of baseline models.  

5.3.2 Retrofit Decision-making 

This section demonstrates the value of the Bayesian calibration approach to 

support retrofit decision-making. In order to investigate the positive effects of risk 

information on decisions, we deploy both the Bayesian calibrated and deterministically 

calibrated model in plausible decision-making scenarios, and compare their predictions 

and resulting decisions.  

We evaluate three ECMs: (1) upgrading insulation, (2) replacing windows, and 

(3) improving air-tightness. Table 4.6 summarizes uncertainties in model parameters 

associated with these three ECMs. Each ECM brings in varying amounts of uncertainty; 

for example, infiltration reduction has a higher degree of uncertainty than other ECMs, as 

the performance of air-tightening techniques depends on diverse factors including 

workmanship, weather conditions, and indoor conditions. A point to be noted is that a 

high level of uncertainty in an ECM does not necessarily result in large uncertainty in 

energy-saving estimates as different ECM parameters have different influence on the 

energy outcomes. The magnitude of uncertainty in energy-saving is derived through the 

energy model.  

In the decision-making stage, one needs to select a performance indicator to 

express and quantify the decision-makers' rational objectives. In this analysis, we employ 

the following performance indicators commonly used in current retrofit projects: 

 Performance Indicator 1: annual energy-savings leading to annual utility 

cost reduction 
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 Performance Indicator 2: simple payback time (SPT) concerning energy-

saving returns that recover initial investment costs  

In addition, one needs to a measure to capture the willingness to accept certain 

levels of risk. For each performance indicator, we compare three scenarios that express 

different levels of risk-consciousness.  

 Scenario 1: represents conventional practice that is not concerned with 

risks but only with overall performance. We use expected values for this 

measure. 

 Scenario 2: represents guaranteed savings in performance contracts. 

Guarantees are translated into 5-quantile for annual energy-savings and 

95-quantile for simple payback time.  

 Scenario 3: represents one of the existing risk measures proposed for 

actuarial pricing of energy-efficiency projects (Mathew, 2005). We use a 

saving curve score defined as the mean savings divided by the standard 

deviation of savings estimates. 

 

5.3.2.1 Decisions by energy-saving measure 

Table 5.2 shows the mean and the standard deviation of annual energy-savings 

predicted by the proposed probabilistic approach and the standard deterministic approach 

for each ECM. The probabilistic approach used 271 simulation runs to propagate 

uncertainties in ECM parameters using Latin Hypercube Sampling (Wyss, 1998). As a 

result, we obtain the distribution of annual energy-savings. With the deterministic 

approach (following ASHRAE Guideline 14), we obtain a single annual energy-saving 

estimate and its standard deviation. The probabilistic approach results in different 

magnitudes of energy-saving uncertainty (        ) for the three ECMs; ECM 3 has a 

higher risk of underperformance than ECM 1 and 2. However, the ASHRAE 14 method 
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computes the same degrees of validity for all ECMs because the calculated uncertainty 

(or standard deviation in this case) depends only on the CVRMSE of the calibrated model. 

Hence, it is concluded that the ASHRAE guideline cannot adequately quantify risks 

associated with ECMs.     

Table 5.2 Predictions by the proposed and the standard approaches (in kWh) 

 Probabilistic Standard 

                                  

ECM1 21,354 1,486 20,417 24,810 

ECM2 76,745 5,423 66,623 24,810 

ECM3 33,469 15,687 30,373 24,810 

 

Table 4.9 shows the ranking of the ECMs for the three risk-consciousness 

scenarios. In the proposed method, the ranking of ECMs differs depending on the 

scenario. In contrast, the ASHRAE 14 method results in the same ranking regardless of 

the scenario: window replacement being the most beneficial, followed by air-tightening 

and insulation improvement. It should be noted that the two methods lead to the same 

ranking for scenario 1, which is expected since scenario 1 is only concerned with overall 

performance rather than risk. However, the ECMs are ranked differently when scenario 2 

and 3 are considered. When guaranteed energy savings are required (the most risk-averse 

attitude), insulation improvement ranks highest, and for the moderate risk-averse scenario 

(scenario 3), window replacement is most suitable. The preliminary conclusion through 

this comparison is that the ASHRAE guideline provides poor support for risk analysis 

although it may be adequate for analysing overall performance of ECMs.    
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Table 5.3 Ranking of the three ECMs by energy-savings 

ECMs Scenario 1 Scenario 2 Scenario 3 

Probabilistic 

ECM1 

ECM2 

ECM3 

 

3 

1 

2 

 

1 

2 

3 

 

2 

1 

3 

Standard 

ECM1 

ECM2 

ECM3 

 

3 

1 

2 

 

3 

1 

2 

 

3 

1 

2 

 

5.3.2.2 Decisions by cost-effectiveness measure 

This section compares decisions supported by the two methods with respect to 

simple payback time (SPT). In addition to technical uncertainty in ECM performances, 

the cost-effectiveness measure should also quantify uncertainty in economic factors such 

as fuel costs, labor costs, and equipment costs. Table 4.7 lists estimated investment costs 

associated with labor and equipment and the range of uncertainty in the estimated costs. 

For fuel costs, we fix gas price at 2.4 pence/kWh (DECC, 2010b).   

Table 5.4 shows the ranking of ECMs for the three risk scenarios when SPT is the 

performance indicator. For scenario 1, the ranking by cost-effectiveness (SPT) differs 

from that by energy-savings. Although ECM 2 (window replacement) is likely to result in 

highest energy-savings, its investment cost is also far higher than the other options; the 

mean SPT is 32 years for improving insulation, 121 years for window replacement, and 

18 years for air-tightening. Using the proposed method, risk-averse decision-makers 

select ECM 1 (referring to scenarios 2 and 3) while those who are willing to accept 

higher levels of risks in obtaining potentially higher energy-savings select ECM 3. The 

ASHRAE 14 method cannot compute uncertainty in the cost-effective measures since it 
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provides an empirically derived formula to calculate uncertainty in energy-saving 

estimates. In other words, current standard practice does not support analysis of technical 

and financial risks associated with ECMs.  

 

Table 5.4 Ranking of ECMs by simple payback time 

ECMs Scenario 1 Scenario 2 Scenario 3 

Probabilistic 

ECM1 

ECM2 

ECM3 

 

2 

3 

1 

 

1 

3 

2 

 

1 

3 

2 

Standard 

ECM1 

ECM2 

ECM3 

 

2 

3 

1 

 

- 

- 

- 

 

- 

- 

- 

 

5.4 Concluding Remarks 

Although quantitative risk analysis is essential in energy-efficiency projects, 

current practice does not offer an adequate approach to quantify uncertainty. Instead it is 

solely based on a deterministic calibration of building energy models and their use to 

evaluate and compare ECMs. In order to tackle the limitation of current practice, we have 

presented a probabilistic risk analysis methodology based on Bayesian calibration. 

Bayesian calibration models can take all sources of uncertainties into account. The 

resulting energy model supports probabilistic risk analysis according to decision-makers' 

objectives and appetite for risk. The case study demonstrates how Bayesian calibration 

models enhance current practice by offering a formal method that supports decision-

making under uncertainty.   
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

 

 

6.1 Summary and Conclusions 

Despite the increasing need to improve the energy efficiency of the existing 

building stock, the current methods are not capable to support retrofit decision-makings 

at large scale with adequate risk management due to the two major drawbacks: (1) they 

cannot scale to support large-scale analysis due to low modeling efficiencies and high 

reliance on expertise: (2) they cannot adequately support risk-conscious decision-making 

because they deterministically calibrate an energy model and derive a single prediction of 

ECM savings. Hence, current methods cannot scale up to large portfolio of buildings and 

cannot support risk-conscious decision-making in retrofit projects.  

In order to overcome these limitations, this thesis proposed a scalable, adaptable 

methodology that is suitable for large-scale retrofit analysis by enhancing the cost-

effectiveness and objectivity of the modeling process. The proposed methodology is 

based on normative models and Bayesian calibration. In the context of large-scale retrofit 

projects, the normative model can provide the following strengths: 

 The normative model enables modeling a large portfolio of buildings while 

greatly reducing modeling burdens (i.e., data collection, modeling, and 

computation).  

 The normative model can extensively assess feasible ECMs to select the 

optimal mix of retrofit technologies.  

 The normative model does not require modeling expertise, and thus makes the 

modeling process transparent.   
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In addition, Bayesian calibration can enhance retrofit decision-making under 

uncertainty by providing the following strengths: 

 Bayesian calibration enhances the reliability of the normative model by tuning 

important uncertain parameters in the model to represent the actual building 

operations. 

 Bayesian calibration results in calibrated models that are suitable to 

uncertainty analysis. Calibrated models provide information about 

underperforming risks of ECMs while taking into account a full spectrum of 

uncertainty sources.  

 The proposed calibration procedure is designed to objectively quantify 

uncertainty and select a set of calibration parameters with respect to their 

importance on model outcomes.  

This thesis verified the two major hypotheses: (1) feasibility of the proposed 

methodology on retrofit applications and (2) the importance of uncertainty analysis on 

retrofit decision-makings. Chapter 4 verified through the case studies that lower 

resolution of normative models can correctly evaluate ECMs and derive consistent results 

as energyplus models when they are supported by Bayesian calibration. Chapter 5 

demonstrated the capability of the proposed methodology to support risk management 

particularly in the context of the ESCOs industry.  

 

6.2 Future Work  

6.2.1 From Methodological Perspective 

This thesis focused on developing the scalable methodology suitable for large-

scale retrofit analysis and verifying its feasibility through the case studies. However, in 
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order to improve the applicability of the proposed methodology into standard practice, we 

need to resolve the following issues: 

 Feasibility of normative models: this thesis verified the feasibility of the 

proposed methodology through the two case studies that are limited to office 

buildings. Therefore, more case studies are necessary to confirm the feasibility 

of normative models across various buildings (e.g., building function, building 

design, system design).  

 Versatility of Bayesian Calibration: The current Bayesian calibration module 

is based on Kennedy and O'Hagan's framework, and its applicability is 

currently limited to the cases in which the source of measured data is at one 

building level. Hence, the Bayesian calibration module should be extended to 

calibrate a model with various sources of sparse monitored data (e.g., 

containing a mix of building specific as well as portfolio-aggregated 

consumption data).  

 Extension of energy-efficiency risks: this thesis provides the analysis 

framework that is ready to incorporate all sources of uncertainty for ECM 

predictions. Nonetheless, the sources of uncertainty in the case studies have 

been limited to physical properties, equipment performance, and investment 

costs. The case studies ignore other uncertainties such as system degradation 

over the lifetime and detailed economic factors. In order to correctly evaluate 

the volatility of ECMs, we need to further quantify the full spectrum of 

uncertainties related to performance and financial risks of energy retrofit 

projects and ECM selection.  

 Performance indicators for decision-making: this thesis evaluates candidate 

ECMs solely with respect to their saving performance (e.g., energy-savings, 

simple payback time). However, this measure typically understates the value 
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of energy retrofit projects since it does not capture indirect benefits stemming 

from non-energy impacts: increasing real estate value, improving indoor air 

quality, and extending equipment life. Mills (2009) stated based on the survey 

that non-energy benefits are part of desires initiating the projects and they are 

difficult to be quantified. Nevertheless, in order to arrive at rational decisions, 

retrofit projects should use adequate performance indicators that reflect 

decision-makers’ preferences accurately.    

 

6.2.2 From Pragmatic Perspective 

In the context of large-scale retrofit projects, the proposed methodology can 

support the two steps: (1) it efficiently evaluates a large set of buildings to identify 

buildings that need energy-efficiency improvements: (2) for identified buildings it 

extensively assesses feasible ECMs to select the optimal mix of ECMs according to 

decision-makers' objectives. In order to strengthen the practicality of the methodology, 

we need to accomplish the following tasks: 

 Intelligent interface for modeling: the current normative calculation module 

has full functionalities to evaluate available retrofit interventions for any kind 

of buildings. However, it still requires manual efforts to link information 

about model parameters to the calculation module for each building or each 

what-if scenario. Hence, it requires to develop dashboards to link available 

data to the calculation module and evaluate performances of buildings 

simultaneously as testing city-scale improvement measures.  

 Automatic calibration process: this thesis proposed the calibration and retrofit 

analysis framework that can potentially be used without deep modeling and 

calibration expertise. In the current stage, however, the proposed method still 

relies heavily on experts' judgments especially in the choice of calibration 
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parameters, quantification of their prior distributions, and quantification of 

uncertainties in other parameters. The analysis process will remain dependent 

on experts until a repository for standard estimates of parameter uncertainty 

for variety of building cases becomes available. The development of such a 

comprehensive database requires an extensive effort and will rely on 

collaboration within the research community. Only through such effort, model 

calibration for retrofit analysis will become consistent and transparent, and 

ultimately automated. 

 Model-based benchmarking: normative models are initially designed to 

benchmark buildings-as-designed. In principle, we should evaluate individual 

buildings solely in terms of their energy performance as excluding the effects 

of extraneous factors ((e.g., building function, occupancy schedule, operation 

schedule) on energy consumptions. CEN-ISO standards (CEN prEN 15217, 

2005) summarize procedures to define references and benchmark buildings 

for certification. The analysis framework needs to incorporate the 

benchmarking mechanism based on the normative model to correctly rank 

buildings and identify those that need energy performance improvements.  
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