
MULTI-LAYER SYNTACTICAL MODEL TRANSFORMATION

FOR MODEL BASED SYSTEMS ENGINEERING

A Dissertation
Presented to

The Academic Faculty

by

Ky-Sang Kwon

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology
December 2011

MULTI-LAYER SYNTACTICAL MODEL TRANSFORMATION

FOR MODEL BASED SYSTEMS ENGINEERING

Approved by:

Dr. Leon F. McGinnis, Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

 Dr. Marc Goetschalckx,
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Charles Eastman,
Colleges of Architecture and Computing
Georgia Institute of Technology

 Dr. Joel Sokol,
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Chris Paredis,
School of Mechanical Engineering
Georgia Institute of Technology

 Date Approved: November 1, 2011

DEDICATION

To Lord who I will praise forever, I trust in your unfailing love for ever and ever.

And to my lovely wife, Sangmin, for her love, faith, prayer, and patience ….

iv

ACKNOWLEDGEMENTS

 First of all, I would like to thank my wife, Sang Min Lee. Without her, I could not

have got through my long journey toward Ph.D. Throughout the journey, her prayer was

the source of strength; her love was the source of joy; and her presence was the source of

peace.

 I also deeply appreciate the endless supports from my parents, parents-in-law, my

brother, and brothers-in-law.

I would like to express my best gratitude to my advisor, Dr. Leon McGinnis. His

precious insight, abundant knowledge, and right attitude to research inspired and enabled

me to overcome all intellectual challenges. Whenever I struggled with my research, he

has always encouraged me to keep my study, and guided me to the right direction with

incredible patience. I sincerely appreciate all his supports. I am really honored and

pleased to have Dr. McGinnis as my advisor.

I also want to give my special thanks to my dissertation committee members, Dr.

Paredis, Dr. Goetschalckx, Dr. Eastman, and Dr. Sokol. Their valuable comments

increased the quality of my dissertation. I learned a lot from their sharp intuition and

research experience. Especially, I would like to appreciate the numerous valuable advices

from Dr. Paredis who I have worked with for a long time.

Above all, I sincerely thank God, who has always guided my every step into His

righteousness. In addition, I am also really grateful to all church members in SKBC. It

was so wonderful to have such a great community in faith for God.

.

 v

TABLE OF CONTENTS

DEDICATION ... C

ACKNOWLEDGEMENTS ... IV

LIST OF TABLES ... VII

LIST OF FIGURES ... VIII

SUMMARY ... XI

CHAPTER 1 INTRODUCTION .. 1
1.1 MOTIVATIONS FOR THIS RESEARCH .. 4
1.2 DISSERTATION OUTLINE .. 7

CHAPTER 2 BACKGROUND AND PROBLEM DEFINITION .. 11
2.1 LAYERED LANGUAGE FORMALISM .. 11
2.2 MODEL TRANSFORMATION .. 13
2.3 FORMAL DEFINITION OF THE KEY ISSUES ... 16
2.4 CONCLUSION .. 17

CHAPTER 3 MULTI LAYER SYNTACTIC MODEL TRANSFORMATION 19
3.1 SYNTACTIC MODEL TRANSFORMATION BASED ON DOMAIN SEMANTIC MODEL 19
3.2 MULTI LAYER MODEL TRANSFORMATION .. 25
3.3 JUSTIFICATION OF OUR APPROACH ... 34
3.4 CONCLUSION .. 36

CHAPTER 4 THEORETICAL FOUNDATION OF MULTI LAYER MODEL
TRANSFORMATION ... 38

4.1 INTRODUCTION TO GRAPH TRANSFORMATION ... 41
4.2 TRIPLE GRAPH GRAMMAR: MATHEMATICAL FORMALISM OF MODEL TRANSFORMATION 47
4.3 DERIVED TRANSFORMATION RULES OF TGG ... 51
4.4 INDIVIDUAL RULE VALIDITY OF A CORRESPONDENCE MODEL .. 60
4.5 COLLECTIVE ORDER VALIDITY OF A CORRESPONDENCE MODEL 61
4.6 CONCLUSION .. 77

CHAPTER 5 SYNTACTICAL MODEL TRANSFORMATION .. 79
5.1 DEMONSTRATION EXAMPLE: TRANSPORTATION PROBLEM .. 80
5.2 LINGUISTIC ANALYSIS OF TARGET MODELING DOMAINS... 82
5.3 SYNTAX GENERATION IN MODELING FRAMEWORK .. 89
5.4 SYNTACTICAL MODEL TRANSFORMATION WITH AMPL .. 94
5.5 SYNTACTICAL MODEL TRANSFORMATION WITH MS ACCESSTM.. 104
5.6 CONCLUSION .. 108

 vi

CHAPTER 6 MULTI LAYER MODEL TRANSFORMATION 110
6.1 GENERAL IMPLEMENTATION PROCESS OF CORRESPONDENCE MODEL-BASED APPROACH
 ... 110
6.2 MODEL TRANSFORMATION MODELS IN M2: MTM(2) .. 111
6.3 META-MODEL OF CORRESPONDENCE MODEL: STEP 1 ... 116
6.4 SYNTACTIC TRANSFORMATION TO AN ATL SCRIPT... 121
6.5 CONCLUSION .. 126

CHAPTER 7 CONCLUSION .. 129
7.1 SUMMARY .. 129
7.2 CONTRIBUTIONS .. 132
7.3 FUTURE RESEARCH .. 133

APPENDIX A DERIVED CANCELLATION RULE FOR CROSS-OVER CASE 135

REFERENCES ... 136

VITA .. 140

 vii

LIST OF TABLES

Table 1. Notations 20

Table 2. Comparison of the Two Approaches 33

Table 3. List of Technical Tools 80

Table 4. Key Components of Set-oriented Meta-model 83

 viii

LIST OF FIGURES

Figure 1. Four-layer Architecture of OMG 12

Figure 2. Model Transformation 14

Figure 3. Execution of Model Transformation (MT) 15

Figure 4. Key Issues 16

Figure 5. Key Idea of Horizontal Extension 20

Figure 6. Complete Meta-model 23

Figure 7. Syntactical Transformation over Multiple Layers 23

Figure 8. Traditional Approach for Instance Data 25

Figure 9. Direct Approach 27

Figure 10. Generation of Correspondence Model 30

Figure 11. HOT of Correspondence Model-based Approach 31

Figure 12. Example of Correspondence Model based Approach 32

Figure 13. Traditional model transformation in MBE 35

Figure 14. Definition and Execution of Graph Transformation 43

Figure 15. Global Confluence 45

Figure 16. Triple Graph Transformation 49

Figure 17. Example of Triple Production 52

Figure 18. Derived Creation Transformation Rules 53

Figure 19. Deletion Operation of Model Transformation 54

Figure 20. Negative Application Condition 55

Figure 21. Derived Cancellation Rules 56

Figure 22. Triple Productions of Cross-over Example 59

Figure 23. Cross-over Example 59

Figure 24. Dependency between Triple Productions 63

 ix

Figure 25. Notations for Triggered Creation Issue 65

Figure 26. Triple Production with Disconnected Graphs 67

Figure 27. Mixed Triggered Operation Loops 69

Figure 28. Algorithm that executes derived transformation rules 75

Figure 29. Implementation Scenario 81

Figure 30. Class Diagram of Set-oriented Meta-model 84

Figure 31. Class Diagram of Table-oriented Meta-model 84

Figure 32. Transportation Model 85

Figure 33. Transportation User Model in AMPL Syntax 86

Figure 34. Transportation User Model in RDB Schema 87

Figure 35. Transportation User Model in XSD 87

Figure 36. Instance Data in AMPL Syntax 88

Figure 37. Instance Data in XML Syntax 89

Figure 38. Hybrid Operation of Xtext 91

Figure 39. XSD Definition of Link 93

Figure 40. XML Syntax of Link 93

Figure 41. Xtext Script for the Complete Meta-model of AMPL User Model 94

Figure 42. Xtext Script for the Complete Meta-model of AMPL Instance 95

Figure 43. Syntactic Common Pattern of Xtext Scripts for Single Sets 96

Figure 44. ATL Mapping Rule of Syntactical Model Transformation for Single Set 97

Figure 45. Xtext Rules for Arithmetic Expression 100

Figure 46. Xtext Rules for Constraints and Index 101

Figure 47. Creation of Supply Balance Constrain in Java 102

Figure 48. Comparison of Xtext Rules for AMPL and LaTex 103

Figure 49. Syntactical Representations in AMPL and LaTex 103

 x

Figure 50. Syntactical Model Transformation to MS Access 105

Figure 51. The Dual Roles of XSD in the Syntax of MS Access 107

Figure 52. Triple Production for RDB Domain – Part 1 112

Figure 53. Triple Production for RDB Domain – Part 2 113

Figure 54. Triple Production for Optimization Domain – Part 1 114

Figure 55. Triple Production for Optimization Domain – Part 2 115

Figure 56. Triple Production for Optimization Domain – Part 3 115

Figure 57. The Meta-model of Correspondence Model 117

Figure 58. ATL Script for Class to SingleSet 118

Figure 59. ATL Script for Reference 119

Figure 60. ATL Script for Attribute 120

Figure 61. ATL Mapping Rule between Demand Class and Set 122

Figure 62. Xtext Rule for Class2Class 122

Figure 63. Mapping Rule of Link in ATL Syntax 123

Figure 64. Extended Xtext Rule for Class2Class 124

Figure 65. Xtext Rule for Primitive2Class and its Customized Indentifer 125

Figure 66. Class2Class Mapping in HOT 126

 xi

SUMMARY

Systems engineering supports interdisciplinary decision making in design

processes for complex systems by allowing engineers from different disciplines to have

an integrated view of the target system. Unlike traditional document based systems

engineering, model-based systems engineering (MBSE) uses various types of models to

facilitate formal communication among the disciplines, which is essential for system

level decisions.

In this dissertation, we propose a new model transformation approach to deal with

this variety of models, which plays an essential role in MBSE. Up to now, model

transformation has primarily been used to support development processes of software

systems in the context of model driven engineering (MDE); applying the model

transformation to MBSE, which deals with general systems, gives rise to a number of

new problems. We indentify and focus on two key problems: instance data integration for

virtually evaluating target systems, and syntactical inconsistencies among commercial

engineering tools.

In order to address these two issues, we propose multi-layer syntactical model

transformation by extending the standard model transformation methods and tools. We

intuitively present the key concepts and the practical benefits of the new model

transformation. This intuitive description is supported by theoretical discussion based on

graph grammar theory. Finally, we demonstrate the new approach by implementing it in

the optimization domain, which is a primary analysis domain of industrial engineering.

This dissertation is organized as follows.

Chapter 1 highlights the importance, and the motivations of this research. It also

provides the detailed outline of the dissertation. Chapter 2 explains necessary background

knowledge on formal modeling and model transformation. In chapter 3, we propose the

new model transformation, the key ideas and concepts.

Chapter 4 provides the theoretic foundation of our multi layer model

transformation. We find one necessary condition under which the new transformation is

viable. The theoretical discussion is based on the mathematical formalism of model

transformation, called triple graph grammar (TGG). We prove two key properties of

 xii

TGG; these properties play important roles in establishing the theoretical foundation of

the multi layer model transformation, and implementing it in the following chapters.

The following two chapters demonstrate the proposed approach. For the

demonstration, we use meta-modeling frameworks, and model transformation tools

which are built upon the Eclipse development environment. In order to practically

support the model transformation, we improve some parts of the tools; and we also

propose new ways to use the existing functions.

Finally, we end this dissertation with the summary, the contributions, and the

future research topics.

1

CHAPTER 1

INTRODUCTION

 "A model is a simplification of reality" [1]. Human beings have limited ability to

understand things in the world; models help them to interpret those things by formally

defining aspects important for understanding and leaving out unimportant ones. People

use various models to explain and verify their understating of various fields, ranging from

economics to business and science.

 Engineering is one of the fields that heavily use models. Engineers work with

models in order to design and analyze a complex engineering system before they actually

build the system. Mechanical engineers use mechanical drawings to design a car.

Aerospace engineers test a miniature model of an airplane in a wind tunnel to evaluate

the aerodynamic performance of the aircraft. Industrial engineers develop a number of

mathematical models or simulation models to evaluate the operational performance of a

plant.

 Although there are a wide variety of models across engineering fields,

contemporary engineering models have one thing in common; computers plays a growing

role in their creation and use. Since computers allow engineers to manipulate and analyze

models at low cost, increasing numbers of engineers develop their models using

computers. As computing power has grown, the range of application and the level of

fidelity of computer models also has dramatically increased; mechanical engineers are

able to handle a full 3D CAD model of a car, and industrial engineers are able to run a

full scale simulation model of a wafer fab with tens of thousands of entities.

 The increasing importance of computer models has led to a lot of research aimed

at developing modeling languages that help engineers build and use their models . This

research has various streams: ontology, language formalism, domain specific language,

 2

etc. Ontology engineering identifies a set of common and primitive constructs with which

to represent knowledge of a target domain [2-4]. Language formalism is a linguistic

foundation to formalize modeling languages so that both a human and a computer can

unambiguously interpret models expressed in the languages. Domain specific languages

allow domain experts to capture their knowledge so that it can be commonly used to

describe and analyze systems in a specific domain; it enables modelers to accurately and

efficiently develop the models of the systems in the domain.

 Software engineering leads the way in formal modeling languages and associated

methodology. Model Driven Engineering (MDE) has been suggested as a comprehensive

modeling approach to develop software systems in heterogeneous platform environments

[5]. Two key parts of MDE are the Unified Modeling Language (UML) and model

transformation. UML allows software developers to build a model of a target software

system that is independent from platforms on which the software system will be deployed.

In MDE, the software system model is called a Platform Independent Model (PIM).

Although the implementation independence of PIM allows the developers to have greater

focus on the problem itself, a PIM is not an actual software program, which is the

ultimate deliverable of software development. Model transformation generates executable

software programs by converting a PIM to multiple Platform Specific Models (PSMs)

that are compatible with the technical specifications of the software development

platforms. The approach using PIM and model transformation increases productivity of

software development by reusing the PIM across multiple platforms; promoting

communication among development teams; and ensuring interoperability among their

programs.

 In contrast, other engineering domains have approached this topic in ad-hoc ways.

Each engineering domain develops its own modeling concept. Even within the same

domain, each tool for a given problem may have a different syntax to implement the

modeling concept for various reasons: technical difficulties, or establishing an entry

 3

barrier to competitors. The lack of common modeling language and the diversity of

syntax hinder interoperability between engineering models and tools; engineers have

developed ad hoc integration solutions using general purpose program languages, like

Java, C++, etc. However, this is not a generic approach; that is, the integration programs

can work with the specific combination of the models that they target. The possible

number of the programs that are needed to integrate n tools would be O(n×(n-1)), if we

need to support every combination of the tools.

 There is a formal approach to the engineering tool interoperability. ModelCenter

is a comprehensive tool where an engineering analysis process is captured in a formal

flow chart-like model, and the engineering tools involved in the process are integrated

through a standard interface, such as built-in interfaces with COTS tools, and wrapper

interfaces for customer developed programs [6]. In spite of the formality, the standard

interface does not support full integration in terms of model transformation of MDE. It is

unable to generate a new model from an existing model of a different domain; it just

enables existing models to exchange data. This means that models themselves are

separately developed across different engineering tools. Moreover, ModelCenter does not

have a central PIM; hence, the possible number of interfaces between n tools would be

still O(n×(n-1)). ModelCenter lacks one of the important benefits of MDE, model

generation from a PIM.

 There have been efforts to tackle this problem by incorporating key features of

MDE. MDE’s language formalism can be a good base for a common modeling language.

Also, model transformation can play the role of generic integration tool, substituting for

the ad hoc integration interface. Moreover, the model transformation approach based on

PIM can reduce the number of integrations. PIM is a central model from which multiple

PSMs are generated. Since the conversions establish linkages with the PIM, the PSMs

can be integrated via the central PIM without direct connections between PSMs. This

 4

allows us to reduce the number of connections between n PSMs to O(n) because each

PSM is linked to only the PIM [7].

 In particular, the systems engineering community has made significant progress.

Model Based Systems Engineering (MBSE), which is a new systems engineering

approach based on models, plays a central role in conveying the key MDE concepts to

systems engineering [8]; e.g., Cloutier has explored the applicability of MDA (Model

Driven Architecture, OMG’s version of MDE) to MBSE [9]. These efforts identified the

need to extend the two key parts of MDE because systems engineering deals with general

systems beyond software systems.

 With regard to modeling languages, there is a significant achievement; OMG

developed the System Modeling Language (SysML) by reusing some parts of UML2 and

extending UML2 through the profile mechanism [10]. SysML has three new diagram

types: requirement diagram, internal block diagram, and parametric diagram. Combined

with the existing UML diagrams, these new diagrams allow engineers to describe, design,

analyze, and verify various components throughout the systems engineering process.

 There have been a few efforts to extend model transformation methodology for

MBSE. For instance, [11] used graph model transformation to address consistency issue

between the multiple models and views, one major problem in complex systems design.

However, research on model transformation still approaches the topic largely from a

software development perspective; there are few efforts addressing the application of

model transformation to MBSE.

1.1 Motivations for This Research

 The objective of this dissertation is to explore the extension of model

transformation, which has drawn relatively less research attention from the systems

engineering community, to Model Based Systems Engineering. In order to indentify

model transformation issues that arise in systems engineering, we need to understand

 5

how differently models (UML model for MDE, and SysML model for MBSE) and model

transformations are used between software engineering (MDE) and model based systems

engineering (MBSE).

 In software engineering, both the UML models and the target systems, which are

executable software programs, exist as software objects. As pointed out, model

transformations in MDE link them; the model transformations convert the UML models

into the executable software programs. Once the programs are generated, developers

carry out processes for their verification . They do not need to use other analysis models

because the target system itself is an executable software object. Therefore, the primary

purpose of the UML models is to provide the necessary input to the process that will

generate the target software systems.

 In contrast, the development targets for systems engineering are systems designs.

It is really expensive to make and test real objects compared to software systems; e.g., in

order to make a real car, engineers need to build up production facilities and make

production plans. Therefore, before actually building the target system, engineers have to

evaluate and analyze the target system, the car, to make sure their design will meet

requirements. For the evaluation and analysis, they use a wide variety of engineering

analysis models; most of the engineering models are computer models that run in various

engineering design and analysis tools. Productivity of the system development process,

therefore, largely depends on the efficiency of generating and managing the

computational analysis models. In this sense, SysML models in MBSE are used to

generate the engineering models for subsequent evaluation and analysis, as opposed to

UML models in MDE, which are used to generate executable software code.

 In this dissertation, we indentify the two critical model transformation issues that

this difference poses: instance data integration and syntactic inconsistency.

 6

Instance Data Integration

 Analysis and evaluation with engineering models require specific information

about the particular system that a design team is developing; that is, engineers need to

incorporate instance data into their engineering analysis models. For example, in order to

decide how many machines a factory should have, the engineers should know future

demand of the products the factory will produce and the performance specifications of

the machines. If we use simulation to support the decision, the simulation model will

represent machine elements with performance specifications like average process time or

mean time to failure; i.e., the generic machine defined in factory domain libraries should

be populated with the information specific to the factory being designed.

 In order to support this requirement, a model transformation in MBSE has to deal

with not only the generation of models, but also the integration of instance data for the

generated model; e.g. for optimization analysis, a model transformation needs to not only

generate a mathematical model as the general description of the problem, but also feed

instance data into the generated model to specify the problem.

Syntactic Inconsistency

 The computational evaluation of engineering models with instance data is usually

performed using COTS (commercial off the shelf) tools. Since development of

engineering analysis tools requires deep knowledge of execution methodologies and a

high level of computer programming skill, it is common that the tools have been

commercially developed by experts; e.g. CPLEX in optimization solvers, ArenaTM in

discrete event simulation, NastranTM in FEM (Finite Element Model) solver, etc.

 Since engineering communities develop COTS tools for their own purpose, the

syntax of the various tools, for either models or instance data, are quite diverse. However,

the traditional meta-modeling framework, in which model transformations are built, lacks

the capability of coping directly with this syntactic diversity. This is because the model

 7

transformation frameworks usually expect the permanent representations of the source

and target models in the form of XMI (XML Metadata Interchange) [12]. Few

contemporary engineering tools are able to read and write the XMI files syntactically. For

this reason, many implementations of model transformation use injectors or extractors for

pre processes or post processes, which sort out the syntactical incompatibility between

the XMI and the tools. The injectors and extractors are usually developed in ad-hoc ways

using a general purpose programming languages, like Java, or C++.

 For more elaborate discussion of these two issues, we formally define them in

terms of layered language formalism in chapter 2.

1.2 Dissertation Outline

 Chapter 2 provides basic concepts of layered language formalism and the formal

descriptions of the two key problems. The background knowledge about the layered

language formalism is essential to understanding the modeling and model transformation

issues throughout the rest of this thesis. Section 2.1 gives an explanation of the key

concepts: linguistic meaning of layer, linguistic relation between the layers, and practical

purpose of the layers. In Section 2.2, we discuss the key idea of model transformation in

the context of the layered language framework. Furthermore, we formally define a model

transformation and its execution using mathematical notation for concise discussion

throughout the rest of this dissertation. In Section 2.3, the key problems are formally

described in terms of the layered language formalism and the notation so that we can

have clear and common understanding of the problems.

 In Chapter 3, we suggest Multi Layer Syntactic Model Transformation as a

comprehensive approach to solve the two key problems. This consists of two key parts:

multi layer model transformation, and separate syntactical model transformation. We

briefly and intuitively explain these two parts.

 8

 Section 3.1 covers the separate syntactical model transformation to solve

syntactical inconsistency. We introduce a domain semantic model, which semantically

captures the common concepts of a modeling domain (e.g., optimization, simulation, etc)

without any consideration of syntactical representation. The separate syntactical model

transformation converts this generic semantic model into concrete syntactical models of

various COTS tools (e.g. AMPL, GAMS, LINDO, etc for optimization [13-15]) based on

the common concepts.

 Section 3.2 describes the key idea of multi layer model transformation and how it

addresses the problem of instance data integration. A normal model transformation is

able to handle only models without instance data. In contrast, the suggested multi layer

model transformation incorporates the integration of the instance data by generating

model transformation rules for the conversion of the instance data syntax. For the

generation, we do not develop any special program. Instead, we use an existing tool of

MDE, a model transformation, in a novel way; it is a special type of model

transformation in that it has to deal with the transformation rules themselves as the target

model unlike a normal model transformation. Higher-order model transformation (HOT)

was introduced for this purpose [16]. We apply the HOT to our context.

 We suggest two alternatives: a direct approach and a correspondence model-based

approach. They use HOT in two different ways to generate the model transformation

rules. We compare pros and cons of the two approaches.

 In section 3.3, we discuss how well our approach incorporates a model

transformation for engineering design by indentifying its practical benefits: reducing

complexity of model transformation, and sharing domain specific concepts between

different tools within the modeling domain.

 In chapter 4, we prove multi layer model transformation is theoretically valid

using graph grammar theory, the mathematical formalism of model transformation. In

section 4.1, we introduce key definitions and theories of graph grammar related to model

 9

transformation. In section 4.2 and 4.3, we focus on TGG (Triple Graph Grammar) since it

provides the theoretical foundation for many model transformation tools [17] . In section

4.4, and 4.5 we prove two key properties of TGG to show theoretical viability of the

multi layer model transformation, and we discuss under which condition we can use this

new approach.

 In chapter 5 and chapter 6, we suggest practical implementations of our approach.

In order to implement solutions, we identify technical issues that arise with existing tools.

We solve the issues by extending the existing tools or suggesting new ways to use the

tools. Throughout the dissertation, we use two example modeling domains: MS-

ACCESSTM (a relation database (RDB) tool), and AMPL (an optimization modeling

language). We take these two examples because of their importance in industrial

engineering; RDB plays an important role as a data source; and optimization is one of the

most frequently used analysis methodologies in industrial engineering.

 Chapter 5 covers the syntactical model transformation that addresses the syntactic

inconsistency problem. In section 5.1, we introduce the scenario in which we implement

our demonstration with RDB and optimization domain. In section 5.2, we analyze the

target modeling domains in terms of the layered language formalism so that readers can

have common understanding of the linguistic characteristics of the domains. In the

following section, we review and compare the existing approaches for the syntactical

problem. Among the approaches, we take hybrid modeling approach, where a semantic

model and a syntactic grammar are formally defined together, as our basic approach since

it can support bidirectional integration between a semantic model and a textual

representation, which is essential to engineering tool integration. We explain elaborately

how the hybrid approach solves the syntactic problems. As one tool for the hybrid

approach, we introduce Xtext, an EBNF (Extended Backus–Naur Form) based meta-

modeling tool [18]; we use the tool for the optimization domain. In addition, we use a

different approach based on XSD (XML Schema Definition) for the RDB domain. We

 10

view the XSD based approach as a special case of the Xtext based approach. We discuss

the advantages of the XSD based approach and the condition under which we can use the

approach.

 In chapter 6, we implement multi layer model transformation, specifically the

correspondence model-based approach. The key idea of the correspondence model-based

approach is to generate model transformation rules for instance data from the result of

another model transformation through HOT. For the implementation, we first develop the

meta-model of the correspondence model independently of model transformation tools so

that we can reuse the meta-model. Second, we specify the syntactical representation of

the correspondence model in the syntax of ATL (ATLAS Transformation Language) [19].

The HOT is defined between them in a way that generates an executable ATL script that

integrate the instance data.

 In chapter 7, we conclude the dissertation. In Section 7.1, we make a summary of

our research. In Section 7.2, we discuss future research topics.

 11

CHAPTER 2

BACKGROUND AND PROBLEM DEFINITION

 In this chapter, we introduce essential background knowledge for the research.

First of all, we explain the OMG four layer language formalism because it is the

fundamental basis of formal modeling framework on which this research is developed.

Second, we introduce key ideas of a traditional model transformation: how to define

transformation rules and how they are executed. Finally, we formally define the two key

issues identified in chapter 1, in term of the layered language structure.

2.1 Layered Language Formalism

 The layered language formalism describes a model in accordance with semantics

of a meta-model. The meta-model is a model of a model; that is, it is a model that defines

semantics that is used to describe another model. A language layer is defined by the

relation between the meta-model and the model described by the semantics of the meta-

model; the upper layer is the meta-model, and the lower layer is the model.

 The relation is the same as that between class and object in object-oriented

modeling. One calls the relations between the layers ‘instance of’ or ‘instantiation.’ In the

language formalism, the relations are renamed ‘conform to’ or ‘conformance.’ These new

names highlight the linguistic perspective; the models of any layer can be said to be

described in terms of the languages defined in the next higher layer.We use the two terms

– ‘instance of’ and ‘conform to’ - interchangeably.

 Modeling language designers can recursively use the relation as many times as

they want. OMG (Object Management Group) proposes a four-layer architecture to

support MDA (Model Driven Architecture), OMG’s version of MDE [20]. The four layer

architecture is widely accepted by other modeling domains. We also discuss our topic in

 12

the context of the four-layer architecture. The following section gives brief explanation of

the four-layer architecture.

Four-layer architecture

 Figure 1 depicts OMG’s four layer architecture. The top layer, M3, is a meta-

meta-model, the Meta Object Facility (MOF) [21]. It is interesting that MOF has self-

descriptive capability; that is, MOF can describe itself. This is why MOF can be a

starting point of language formalism. Indeed, all of OMG’s modeling standards (UML,

SysML, CWM, etc) are specified in terms of MOF [10, 21, 22]. This common linguistic

foundation enables the modeling standards to be compatible with one another [23].

Figure 1. Four-layer Architecture of OMG

 The primary purpose of the M2 layer (meta-model) is to define formal languages

that support modeling standards (e.g., UML, CWM, RDBM, and SysML). Each modeling

standard has its own modeling tools according to the primary purpose of the methodology.

For example, the primary purpose of MDE is software development. Therefore, UML,

which is a modeling language of MDE, has a number of diagrams that allow users to

 13

specify software systems. For instance, the sequence diagram of UML enables software

engineers to describe the logical flow of a software program. SysML, a modeling

language for MBSE, has an internal block diagram (IBD) which allows system engineers

to specify the internal structure of a block by describing physical or logical connectors

between blocks via ports [10].

 In the M1 layer, domain experts develop user models in order to capture various

aspects of systems in their domain of interest using the formal language of the modeling

standards defined in the M2 layer; they identify and describe the system’s structure and

behavior in the user model. Note that the user model captures general knowledge

applicable to any system in the domain; that is, it does not contain any information

specific to a particular system so that others can reuse the models for designing similar

systems in the same domain. For example, user models can express that workstations of a

factory have a number of machines. However they should not specify the number of

machines in the workstations.

 The system specific information is defined at the M0 level, which is the instance

data layer. In this layer, engineers and designers of a particular system put together the

domain specific modeling concepts, captured in M1, and specify them to describe the

system. For example, the instance data represents a specific factory, not a generic factory;

i.e., M1 describes that a factory has a number of machines, whereas M0 specifies how

many machines the specific factory has and the performance of each machine.

 Throughout this dissertation, we use M0, M1, M2, and M3 to refer to the four

OMG language layers.

2.2 Model transformation

 There are a number of standards and implementations of model transformation

[24-26]. In spite of the diversity, they have a common way of defining and executing the

model transformation. Figure 2 depicts this; a model transformation is defined by

 14

mapping rules between source meta-model (MMS) and target meta-model (MMT); and it

generates target models (MT), which conform to MMT, from source models (MS)

conforming to MMS. We hereafter use the figure as a visual representation of a model

transformation.

Figure 2. Model Transformation

 We define a formal notation for the model transformation model, which defines

the rules of the model transformation using mapping rules between source meta-models

and target meta-models.

Definition 1. (Model Transformation Model)
A model transformation model is a 3-tuple MTM<MMS, MMT, MR>, where MMS is a

set of source meta-models, MMT is a set of target meta-models, and MR is a set of

mapping rules between MMS, and MMT. In addition, MR is semantically compatible

with MMS, and MMT.

 We do not define the semantic compatibility of MR. We informally say that MR is

compatible with MMS, and MMT, if all mapping rules in MR are described using the

components of the meta-models in MMS, and MMT. We will formally define the

compatibility in chapter 4, in which we will discuss the theory of model transformation.

 Model transformation uses the model transformation model to convert source

models to target models. Figure 3 and Definition 2 show the visual representation and the

formal notation of the model transformation (MT), respectively.

 15

Figure 3. Execution of Model Transformation (MT)

Definition 2. (Model Transformation)
A model transformation is a combination of a 2-tuple and a set of models, MT(<MTM,

MS> MT) where MTM is a model transformation model defined by Definition 1,

MS is a set of source models, each conforming to some meta-model MMx ∈ MMS, and

MT is a set of target models, which are generated by the execution of MT, and each of

which conforms to some meta-model MMy ∈ MMT.

Relative meta-model vs absolute meta-model (M2)

 We use two different concepts of meta-model: an upper layer model in a

conforms-to relation between two models; and the M2 layer in the OMG four-layer

architecture. The former concept is relative in that the conform-to relation may be

recursively applied to all layers. Any layer can be a meta-model of the one-level down

layer; i.e., M3 is the relative meta-model of M2, M2 is the relative meta-model of M1,

and so on. In contrast, the latter concept is an absolute layer, which is the third layer (M2)

from the bottom layer, M0, in the four-layer architecture. In order to prevent the

confusion between them, we introduce the following two notations.

Definition 3. (Relative Meta-model)
 A relative meta-model of a model M is RMM(M); M conforms to RMM(M). Inverse

notation RMM-1 is also defined to refer to the reverse direction.

 16

Definition 4. (Absolute Layer Function)

Function AL returns the absolute layer of a meta-modeling component – model, meta-

model, model transformation model, and model transformation; i.e., if a model M is

in the k th layer from the bottom layer (M0), AL(M) = k-1.

By the definition, we can easily say the following:

Proposition 1. If Mx = RMM(My), then AL(Mx) = AL(My) + 1.

Proposition 2. If a model transformation, MT(<MTM, MS> MT), is valid, then AL(MT) =

AL(MS) = AL (MT) = AL(MTM) -1.

 Proposition 2can be restated that in a valid transformation, two “layer”

relationships must be satisfied—(1) the source and target models are on the same layer,

and (2) the transformation model is one layer up from the source and target models.

2.3 Formal definition of the key issues

 In this section, we formally define the two key issues –instance data integration,

and syntactical inconsistency - in terms of the layered language formalism. Figure 4

depicts the issues between PIM (Platform Independent Model) and an engineering tool

(Tool-1).

Figure 4. Key Issues

 17

 The first issue is that a normal transformation cannot directly deal with

conversion of instance data in M0. As discussed in the previous section, a model

transformation works between two language layers. The traditional way to use a model

transformation is to define the rules in M2 and execute them for M1; MT(<MTM, MS>

MT), where AL(MTM) = 2 and AL(MT) = 1. Since the instance data is in M0, the model

transformation cannot be applied to the instance data; the transformation model is defined

in M2 but the data model is in M0, violating Proposition 2.

 The second issue is that the target engineering tool cannot read the generated

models and instance data because of the syntactic inconsistency between the

transformation engine and the engineering tool. In Figure 4, the user model and the

instance data conform to their relative meta-models respectively. However, this can

assure only the semantic conformance because a normal meta-modeling framework offers

means of defining only semantics of the meta-models [21, 27]. The syntax of the models

and the instance data are not explicitly defined. The meta-modeling framework by default

stores them in the form of XMI, which is OMG’s XML standard for storing and

exchanging models. Unfortunately, few engineering tools support XMI.

 In order to discuss the syntactical issue, we need to elaborate the definition of a

model. We introduce the following extended definition to explicitly show the syntax of a

model.

Definition 5. (Model with modeling domain and syntax)
A model is a 2-tuple M(d, syn), where d is a modeling domain, syn is a syntax in which

the model is written. If syn = XMI, it can be omitted; i.e., M(d)

 According to Definition 5, ‘user model in the tool’ in Figure 4 can be expressed

as M(Tool-1, XMI) or M(Tool-1).

2.4 Conclusion

 We reviewed language layer as a key concept in the meta-modeling framework.

The language layer plays important roles in theory and practice of model transformation;

 18

that is, model transformation is defined and executed over two consecutive language

layers. the instance data layer, which we focus on, is also formally defined in terms of

OMG’s four-layer language formalism. Throughout this dissertation, the language layer

is essential to understanding our key discussions.

 In addition, we introduced a number of formal notations for the key meta-

modeling concepts that we use in this dissertation. These notations clarify the definitions

of the concepts, which are ambiguously used in the research literature. The notations

introduced here are unique in two senses. First, they make distinction between concepts

that bring about confusion: model transformation model versus model transformation;

and relative layer versus absolute layer. Second, they add modeling domain and syntax to

the definition of model. This extended definition plays an important role in defining a

new conform-to relation in the next chapter.

 The language layer concept and those notations allow us to formally describe the

two key issues of this dissertation. In particular, Proposition 1 and Proposition 2 show

that the traditional model transformation works well between two consecutive layers.

This prevents us from using the model transformation for instance data integration

because the instance data (M0) is two levels down from the meta-model (M2) where a

model transformation model is usually defined.

 Nevertheless, relative meta-model, Definition 3, casts light on a solution to model

transformation that can be used across more than two layers. According to the definition,

we can apply model transformation to any language layer; i.e., M1, or M0. If two model

transformations in two different language layers work together in a way that the upper

model transformation manages the lower one, we could develop the model transformation

that works over three layers. This idea underlies multi layer syntactical model

transformation we will propose in the following chapter.

 19

CHAPTER 3

MULTI LAYER SYNTACTIC MODEL TRANSFORMATION

 In this chapter, we suggest an overall framework to extend standard model

transformation in two directions: a horizontal extension for the syntactical inconsistency

issue, and a vertical extension for the instance data integration issue. We discuss the

concepts behind these two extensions and what practical benefits they provide in terms of

managing engineering models.

3.1 Syntactic model transformation based on domain semantic model

 Figure 5 shows the overall picture of the syntactical issue with an engineering tool

domain. An engineering tool domain is a set of tools which have common purpose and

modeling concepts. For example, the optimization domain is a set of tools that find

optimal solutions of an engineering decision problem based on set-oriented modeling.

The RDB domain is a set of database tools that store engineering data using table-

oriented modeling. However, object-oriented simulation tools and process-oriented

simulation tools are not in one engineering tool domain because those simulation tools

have different modeling concepts in spite of their common purpose.

 The domain semantic model plays a central role; it describes the target system in

terms of the common modeling concepts for the engineering tool domain. The common

modeling concepts are the basic conceptual building blocks with which the target systems

are described. By the definition of engineering tool domain, the engineering tools of the

domain are developed on the basis of these concepts, the tools have semantically similar

structure regardless of their syntactical representations; e.g., optimization modeling

languages - AMPL, GAMS, and LINDO [13-15]- have similar set-oriented concepts in

spite of differences in syntactical details. The domain semantic model is intended to

isolate the common semantic representation from tool dependent syntax.

 20

 Table 1 shows the notation that we use for clear discussion throughout this

chapter.

Table 1. Notations

Notations Description
TD Target engineering tool domain

Tools(TD) A set of tools in TD
Ti A tool of TD; Ti ∈ Tools(TD)

Syn(Ti) The syntax of tool Ti
Syn(Ti,l) The syntax of tool Ti in layer l

DSM(TD) Domain semantic model of TD

Figure 5. Key Idea of Horizontal Extension

 As shown in Figure 5, the domain semantic model has two roles: a repository for

modeling domain specific components and a coupling between semantic model

transformation and syntactic model transformation.

 First, as a repository, the domain semantic model contains the tool domain

specific semantic components. For example, mathematical constraints are a component of

the optimization modeling domain. If we put the constraint semantics into the PIM, PIM

 21

will become a large and complicated union of semantic components of both the

application domain and all possible engineering tool domains. We suggest putting the

mathematical constraints into optimization semantic model, DSM(Optimization), instead.

This enables us to keep PIM as concise as possible; that is, PIM can capture only

common components that are used across all domains. In spite of the separation, we do

not lose the primary benefit of MDE, integration through the PIM, in that

DSM(Optimization) is shared by all tools in the optimization domain.

 Second, the domain semantic model allows the transformation process to be

divided into two parts—semantic and syntactical. The first part, semantic model

transformation, converts PIM to DSM(TD), where TD is the target engineering tool

domain. Both PIM and DSM(TD) have their own modeling concepts; i.e., UML domain

describes an object as ‘class’, whereas optimization domain uses ‘set’ to represent the

object. This semantic model transformation deals with the conceptual difference between

the two modeling domains. It is not concerned with any syntactic aspects; thus, a normal

model transformation approach can be used for semantic model transformation.

 Syntactic model transformations, however, are a different matter. Syntactic model

transformations bridge between an analysis domain semantic model and the concrete

syntactic models of specific tools within the analysis domain; that is, these

transformations associate concrete syntax with the semantic concepts. This is the key part

of the horizontal extension to handle diverse syntactic representations.

 Prior research has approached this topic in different ways. We will survey the

approaches in chapter 5 in detail. In particular, [28] introduced a comprehensive tool

interoperability framework based on AtlanMod Model Management Architecture

(AMMA) [29]. The key part of this approach is an intermediate model that contains the

common concepts and features shared by the target tools. This is a similar concept to our

domain semantic model.

 22

 In spite of the similarity, our approach is differentiated from the approach in [28]

in that we take into account multiple layers: the user model layer and the instance data

layer. In our approach, the syntactical model transformations are defined in a way that

handles syntactical specification in both layers.

Proposed syntactical model transformation

 We propose an approach of syntactical model transformation based on a meta-

model which specifies models not only semantically but also syntactically. In order to

make the definition of the complete meta-model clear, we introduce a concept of meta-

syntax. The meta-syntax is analogous to the meta-model of the meta-modeling

framework. Remember that a meta-model is a model of model. Likewise, a meta-syntax

is a syntax of syntax; the meta-syntax is a syntax that defines another syntax. We call the

relation between the meta-syntax and the syntax, defined in the meta-syntax, syntactical

conform-to. Note that the meta-syntax is also a relative concept like the meta-model.

Definition 6. (Meta-syntax)
 A meta-syntax of a syntax S is MS(S); S syntactically conforms to MS(S).

 The complete meta-model is a combination of the usual semantic meta-model and

the meta-syntax; it defines the semantics of a model through the meta-model, and the

syntax that describes the model through the meta-syntax. The EBNF-based hybrid

approach, which we will discuss in chapter 5, enables us to define the complete meta-

model by incorporating the meta-syntax into the meta-model by means of a modified

EBNF-language.

Definition 7. (Complete meta-model and complete conform-to relation)
A complete meta-model of model M(d, Syn(Ti)) is 2-tuple CMM(M(d, Syn(Ti)) =

(RMM(M(d)) , MS(Syn(Ti))), where d is a engineering tool domain, and Ti is a tool

of d (i.e., Ti ∈ Tools(d)). We say that M(d, Syn(Ti)) completely conform to

CMM(M(d, Syn(Ti)).

 23

 Figure 6 depicts the visual representation of the complete meta-model and the

complete conform-to. Note that the complete meta-model is technically written in one

language of the EBNF-based approach.

Figure 6. Complete Meta-model

 Figure 7 shows how our approach deals with the syntactical model transformation

over two layers. It consists of two parts, which take care of the syntactical representations

of the target tool in M1 and M0, respectively.

Figure 7. Syntactical Transformation over Multiple Layers

 24

 At the first step, we construct a complete meta-model of user model in the syntax

of tool Ti using the EBNF approach. To do this, we add the meta-syntax of the tool

syntax in M1, MS(syn(Ti, 1)), into the existing meta model of DSM(TD), MM(TD).

This leads to 2-tuple (MM(TD), MS(syn(Ti, 1))).

Proposition 3. (MM(TD), MS(syn(Ti, 1))) = CMM(UM(TD, syn(Ti, 1))).

Proof) As shown on the side of DSM(TD), UM(TD) conforms to MM(TD); that is,

MM(TD) = RMM(UM(TD)). This means (MM(TD), MS(syn(Ti,1))) =

(RMM(UM(TD)) , MS(syn(Ti,1))). By Definition 7, (RMM(UM(TD)) ,

MS(syn(Ti,1))) = CMM(UM(TD, syn(Ti, 1))) □

 This proposition implies that an EBNF tool generates UM(TD, syn(Ti, 1)) in M1,

which is the user model written in the syntax of tool Ti. This is what is required to use the

target tool in M1.

 The novel part of our approach is the second step. Unlike the first step, we

generate the necessary complete meta-model rather than construct it. More specifically,

we define a model transformation that generates the complete meta-model for the

instance data written in the tool syntax, IM(TD, syn(Ti,0)). As shown in Figure 7, the

model transformation model is defined between MM(TD) and CMM(EBNF-MM, EBNF-

MS), where EBNF-MM (or EBNF-MS respectively) is the semantic meta-model (or the

meta-syntax respectively) of the EBNF language. Since the target meta-model is the

complete meta-model of the EBNF language itself, which is defined by the developers of

the EBNF language, the target model of the model transformation is grammatically an

EBNF model; the target model therefore technically can be a complete meta-model of

another model.

 The conversion rules of the model transformation are defined in a way that

duplicates the semantic information of the source model, UM(TD) and defines the meta-

syntax of the tool syntax for instance data, MS(syn(Ti ,0)); the target model of the model

 25

transformation is (UM(TD), MS(syn(Ti, 0))). Formally, the model transformation can

be expressed as follows:

MT(<MTM(MMS,MMT,MR), { UM(TD) }> {UM(TD), MS(syn(Ti, 0))}),

where MMS = {MM(TD)}, MMT = { CMM(EBNF-MM, EBNF-MS) }.

Proposition 4. (UM(TD), MS(syn(Ti, 0))) = CMM(ID(TD, syn(Ti, 0))).

Proof) It is same as Proposition 3. □

 This proposition implies that an EBNF tool generates ID(TD, syn(Ti, 0)), which

is the ultimate goal of the syntactical model transformation.

3.2 Multi Layer Model Transformation

 Figure 8 shows the traditional way to use a model transformation to address the

instance data integration issue. As discussed in chapter 2, the model transformation works

between the consecutive language layers. It can be applied to any two consecutive layers

because of the relative characteristics of the meta-model. The natural approach to deal

with instance data in M0 is to define a model transformation model in M1, which is

denoted by MTM(1). In consequence, we need to separately construct MTM(2) and

MTM(1), which convert the user models in M1 and the instance data in M0 respectively.

Figure 8. Traditional Approach for Instance Data

 26

 As the vertical extension, we suggest a new approach in which we generate

MTM(1), instead of constructing it. More specifically, we use a special type of model

transformation for the generation of MTM(1). The advantage of our approach over the

traditional approach is that we can accommodate changes in user models without human

effort to modify MTM(1). In the tradition approach, we need to manually revise MTM(1)

for any changes in the user models because MTM(1) is manually constructed. However,

our approach allows us to accommodate the changes by regenerating MTM(1) though the

special model transformation.

Brief Introduction of Higher-order Model Transformation

 A key aspect of our approach is the use of a special type of model transformation,

which is called high-order model transformation (HOT). We briefly explain how HOT

generates other model transformations. We will present more details about HOT in

chapter 6.

 HOT is a model transformation for a model transformation [30]. In other words, it

is a special type of model transformation to handle model transformation rules as either

the sources or the targets. Particularly, in our approach, HOT is used to generate MTM(1).

 This concept diverges from standard model transformations, which usually have

models as the source or target for the transformation; it might be expected that extensions

to the normal model transformation would be required. However, HOT does not require

any special extensions, but rather simply changing the perspective on model

transformation. The change is to view a model transformation rule itself as a type of

model.

 HOT considers a model transformation rule as a model, specifically, a

transformation model. It deals with the transformation rule just like a normal model using

the current modeling infrastructure. It defines the meta-model of the transformation rule

using a normal modeling language; the meta-model is used as either a source meta-model

 27

or a target meta-model to define a model transformation model in a normal way; a normal

model transformation engine, in turn, can read or generate the transformation rules

through the meta-model.

Two HOT-based approaches

 The key idea of the multi layer model transformation is to generate MTM(1)

through a HOT defined in M2. In order for the generated model transformation model to

be valid, we need to verify the model transformation model in two senses: rule validity

and syntactic validity. The first, rule validity, assures that the generated transformation

describes the transformation rules we intend it to construct in M1. The second, syntactic

validity, requires that the generated transformation conforms to the syntactic

requirements of the model transformation tool we work with.

 We suggest two different approaches to ensure the validity of the HOT generated

transformation: a direct approach, and a correspondence model based approach. We

discuss how both approaches work and their pros and cons.

Figure 9. Direct Approach

 28

 In the direct approach, we ensure validity using HOT. Figure 9. shows the HOT,

which is developed between the PIM meta-model and the complete meta-model of model

transformation language, CMM(MT-Lang), with which we describe MTM(1). MT-Lang

denotes the model transformation language. The complete meta-model of MT-Lang is

usually defined by the developers of the transformation language. Note that the HOT is a

different model transformation from MTM(2) for the user model conversion.

 For rule validity, the HOT needs to use semantic information of user models in

M1. Suppose that we want to construct mapping relation between component ‘A’ of PIM

and component ‘B’ of the target domain in M1 layer. In order to generate the rule using

the HOT, the HOT needs to know that those components exist in the user models. This

means the HOT has to use semantic information of both user models: the PIM user model,

and the DSM(TD) user model (UM(TD)). As shown in Figure 9. , the HOT takes the

semantic information from the PIM user model, the source model of the HOT. Although

it does not take UM(TD), the semantic information of UM(TD) can be generated from

the PIM user model if needed. This is because UM(TD) is generated from the PIM user

model through MTM(2).

 For the syntactic validity, the HOT needs to write the generated rules in the valid

syntax of the model transformation language. In order to do that, the HOT takes the

complete meta-model of the model transformation language, CMM(MT-Lang), as the

target meta-model - by the definition of HOT, it should do so. The HOT puts the

semantic information together in terms of CMM(MT-Lang) in a way that describes the

rules between the semantic components of the user models. We can formally express the

execution of the proposed model transformation as follows:

MT(<MTM(MMS,MMT,MR), { PIM user model }> { MTM(1)}), where MMS

= { PIM meta-model}, MMT = { CMM(MT-Lang) }.

 The direct approach has pros and cons. As pointed out, the HOT introduced by the

direct approach is defined independently from MTM(2) for the user model conversion.

 29

On one hand, the independence allows high expressive power of the model

transformation model that the HOT generates. Since we can independently manipulate

the conversion rules of the generated transformation using the semantic conversion of the

HOT, we can have full flexibility in expressing the rules; e.g., we can make a mapping of

an arbitrary pair of components, and put complicated logical expressions on the generated

rule. On the other hand, the independence may give rise to a compatibility issue with the

output user model that the normal model transformation generates. As shown in Figure

9. , the target meta-model of the generated model transformation model, MTM(1), is the

DSM(TD) user model. The user model is generated through MTM(2), while MTM(1)

refers to the user model through independently generated semantic information in the

HOT. Therefore, some inconsistency may occur between them. For example, the HOT

could generate a wrong name for a semantic component of the user model. A human has

to ensure the compatibility. This means when one modifies one of MTM(2) and the HOT,

a human has to revise the other in a way that maintains compatibility. This makes the

maintenance in this approach difficult.

 In order to address this shortcoming, we suggest another approach based on a

correspondence model. The key part of this approach is to use the correspondence model

as the conversion rules of MTM(1), which we manually define in the HOT in the

previous approach.

 The correspondence model represents the result of an execution of a model

transformation as associations between the source models and the target models. In other

words, it tells us about what component of the source models are converted to what

components of the target models; it maintains traceability between the source models and

the target models.

 30

Definition 8. (Correspondence model)

Correspondence model, CM, consists of a set of correspondence associations, where

a correspondence association is a link between components of a source model and

the target components that are generated from the source.

 Correspondence associations are used as the rules of MTM(1); a correspondence

association is interpreted as a mapping relation in the M1 layer. In M0, the mapping

relation transfers the instance data of the source components to instance data of the target

components that are linked to the source components through the correspondence

association.

 Figure 10 illustrates how to generate the correspondence model from MTM(2).

Unlike the previous approach, MTM(2) of this approach has an additional output, which

is the correspondence model (CM). In order to incorporate the correspondence model in

to MTM(2), we define the meta-model of the correspondence model, RMM(CM). We

developed RMM(CM) in a way that is independent of the target domain (TD) and the

model transformation language, MT-Lang. This independence allows us to reuse

RMM(CM) for any engineering tool domain and model transformation tool. We will

discuss how to design RMM(CM) in chapter 6. Definition 9 redefines MTM(2), which

has one source meta-model and two target meta-models.

Figure 10. Generation of Correspondence Model

 31

Definition 9. MTM(2) of the correspondence-based approach

MT<MMS,MMT,MR>, where MMS = {PIM meta-model}, MMT = { M(2,TD) ,

RMM(CM)}

Figure 11. HOT of Correspondence Model-based Approach

 This approach uses HOT to convert the correspondence model to MTM(1). The

HOT takes the correspondence model as the source model (See Figure 11). Since the

correspondence model is used as the conversion rules of MTM(1), all the HOT has to do

is to grammatically convert the rules into a valid model transformation script. In order to

create the valid script, the HOT use the complete meta-model of the transformation

language, CMM(MT-Lang), as the target meta-model like the previous approach. This

makes sense in that the ultimate outputs are same.

 In this approach, the HOT takes care of only the grammatical compliance of

MTM(1). This makes the HOT much simpler in the correspondence model approach than

in the direct approach. Furthermore, this makes the HOT more generic; that is, the HOT

can be reused for different engineering tool domains. Since the HOT addresses only

grammatical aspects, we can use the HOT as long as the grammatical conversion remains

same – the model transformation tool does not change,

 In spite of the benefits, this approach has limited applicability because it has less

expressive power than the direct approach. In this approach, the associations of a

 32

correspondence model are used as mapping rules. We therefore can use this approach in

cases where the rules that the correspondence model express are what we want to apply

to instance data.

 The example of Figure 12 illustrate how the correspondence can be used as the

mapping rules of MTM(1). The example is a model transformation between object-

oriented (OO) modeling domain and relational database (RDB) modeling domain. As

shown in the figure, the ‘machine’ class is converted to the ‘machine’ table as the result

of a model transformation in M1; therefore they have a correspondence association

indicated by the grey arrow. Since the association is interpreted as a mapping relation,

objects of ‘machine’ class (e.g., ‘welding machine’, and ‘bending machine’) are mapped

to records of ‘machine’ table in M0. This is exactly how the instance data is integrated

between the two domains.

Figure 12. Example of Correspondence Model based Approach

 If we want more complicated transformation rules in M1, we cannot use this

approach. In this case, we have to use the direct approach, which allows us to

 33

independently express the semantic conversion of the generated model transformation

model.

 The model transformation rule that the correspondence model can represent looks

too simple; the usage of this approach is too limited. However, we can find many

practical cases where we can apply this approach. The aforementioned RDB is the typical

case. The reason the simple transformation rules work with the example is that the target

domain allows us to define our own user model. As a result, we can convert the factory

class diagram from the OO domain to the factory database schema of the RDB modeling

domain in a way that results in the very similar semantic structure between them. This in

turn leads to the simple mapping rules in MTM(1).

 If there is a predefined user model in a target side and customization is not

allowed, the mapping rules become too complex to be expressed by the correspondence

model. Fortunately, many contemporary engineering tools allow customization of the

user model, which is usually implemented as engineering libraries, because the user

defined libraries are the key to productivity in engineering design or analysis. We can

apply the correspondence model-based approach to these engineering tools by generating

the libraries from the PIM user model.

Table 2. Comparison of the Two Approaches

Direct approach Correspondence model based
approach

• More expressive power in
model transformation rule

• HOT rules are simple
• HOT rules are generic; they are

independent of changes in M2
• Less expressive power, but

practically the usage is not too
limited

 34

3.3 Justification of Our Approach

 The proposed approach has two advantages.

 The first advantage is that we can reuse the developed model transformation rules

independently from the user model. In the both extensions, the direct approach; and

correspondence model-based approach, all model transformation models necessary for

our approach are defined in M2. In the horizontal extension, the model transformation

that generates the complete meta-model of tool specific instance data is defined in M2; in

the vertical extension, the HOT that generates the model transformation model, MTM(1)

for instance data conversion is also defined in M2 in either the direct approach or the

correspondence model-based approach.

 The independence from M1 layer makes our approach very productive. Whatever

problem we have to solve, meta-models in M2 do not need to be reconstructed once the

modeling domains are determined. Unlike the meta-models, user models in M1 depend

on the type of the problem; e.g., if we want to solve a production planning problem

instead of a transportation problem, we have to construct a totally new user model in M1.

This means that the user models need to be reconstructed more frequently. If any

approach demands that some necessary model transformation models need to be

developed in association with user models of M1, the transformation must be changed

whenever the type of problem is changed.

 The multi layer aspect of our approach allows us to avoid the frequent manual

reconstruction through the model transformations, which are defined in M2, that generate

the necessary components in M1: the model transformation model, MTM(1) for instance

data, and the complete meta-model for instance data. The model transformation models

are not affected by the type of problem we want to solve; once the approach is set for

particular modeling domains and their engineering tools, it can be reused for any type of

problem within the modeling domain and the tools.

 35

 The second advantage is that the separation between semantic transformation and

syntactic transformation increases productivity in developing the model transformation

models. In general, the semantic aspect of the transformations has two interesting

characteristics. It tends to be hard to develop because it should deal with conceptual gap

between two different modeling domains; and it is independent of tools within an

engineering tool domain since the tools are developed based on a common modeling

concept. Therefore, the semantic conversion is the common part of the transformation

across the tools. It is inefficient to put both the semantic aspects and syntactic aspects

together into one model transformation model and separately apply it to every tool in the

modeling domain (see Figure 13). The reason is that we need to repeatedly put

complicated but common rules into each model transformation model.

Figure 13. Traditional model transformation in MBE

 The separate syntactic model transformation of our approach allows one to avoid

the time consuming job, where we repeatedly incorporate the common semantic

transformation rules into a model transformation model with every tool. Through the

syntactic model transformation, we separate all tool specific syntax from the common

semantic part. The common semantic conversion is captured in the semantic model

 36

transformation with the domain semantic model (see Figure 5). This is developed once

and shared by multiple tools via the domain semantic model.

3.4 Conclusion

 We proposed multi layer syntactical model transformation as a comprehensive

solution to the two key issues of this dissertation. We gave explanations of the ideas

behind the proposed model transformation, and justified it by presenting a number of

practical benefits.

 Multi layer syntactical model transformation comprises two parts: the syntactical

model transformation that copes with syntactical inconsistency, and the multi layer model

transformation that handles instance data integration.

 The syntactical model transformation was suggested in a way that converts a PIM

model to tool specific models through sequential steps of semantic transformation and

syntactical transformation. We proposed two important concepts that are essential to

establishing the syntactical model transformation. First, the domain semantic model plays

roles of an intermediate model coupling the two steps, and a repository model of domain

specific components. Second, we introduced the notion of the ‘complete meta-model’

(Definition 7) that is used to formally define a model both semantically and syntactically;

meta-syntax, which is a syntax of syntax (Definition 6), is incorporated into the meta-

model introduced in the previous chapter.

 The key idea of the multi layer model transformation is to uses a HOT defined in

M2 to generate a model transformation model, MTM(1), which handles instance data in

M0. We introduced two approaches – the direct approach and the correspondence model-

based approach, which differently use the HOT. The HOT of the direct approach creates

the mapping rules of MTM(1) independently of MTM(2), whereas the HOT of the

correspondence mode-based approach converts the result of MTM(2), which is called

correspondence model, to MTM(1).

 37

 Although the syntactical model transformation and the multi layer model

transformation have been suggested for different purposes, they have something

interesting in common. Both of them use model transformation to resolve the issues of

model transformation; i.e., the syntactical model transformation uses model

transformation to generate a complete meta-model of tool specific instance data, and the

multi layer model transformation uses the special type of model transformation, HOT, to

create a model transformation model for instance data. In this sense, our approach

extends the standard model transformation by suggesting new ways of using existing

model transformation rather than changing the fundamental structure of model

transformation.

 We proposed a number of novel ideas for multi layer syntactical model

transformation. However, these ideas have been intuitively presented; they should be

rigorously verified. In the rest of this dissertation, we will theoretically prove some of the

ideas using graph grammar theories, and practically demonstrate the entire framework

using a concrete example.

 38

CHAPTER 4

THEORETICAL FOUNDATION OF MULTI LAYER MODEL

TRANSFORMATION

 This chapter aims to provide the theoretical foundation of the multi layer model

transformation. Between the two approaches of the multi layer transformation – the direct

approach and the correspondence model-based approach, we focus on the correspondence

model-based approach because the viability of the approach is not obvious. In the direct

approach, the HOT is intended to directly generate the model transformation model. And

the analyst obviously can develop the HOT in a way that results in a valid model

transformation model. In contrast, the correspondence model-based approach does not

directly generate a model transformation model; rather it is suggested that a

correspondence model (Definition 8) can be converted to a model transformation model.

We therefore need to show that the correspondence model can be a valid model

transformation model. Moreover, the correspondence model-based approach is more

efficient if it is applicable (see Section 3.2); hence, it is practically important to indentify

the conditions under which we can use the approach. In this chapter, we prove theorems

establishing the conditions; in Chapter 6, we use these theorems to implement this

approach as a demonstration.

 For the theoretical discussion on the viability of the correspondence model-based

approach, we need a formal definition of a model transformation model to establish the

criteria for a valid model transformation model. There have been a number of efforts to

establish a mathematical formalism of model transformation models, based on graph

grammar theories [17, 31]. Among them, we adopt triple graph grammar (TGG), because

it has been proven by successful implementations in a number of practical tools [17, 26,

32].

 This chapter presents three contributions to the theory of model transformation:

 39

i. We extend TGG in a way that deals with deletion operation. The original

TGG assumes that model transformation always adds elements. The

extension allows us to eliminate this limiting assumption.

ii. We prove a recursive property of individual triple productions of TGG,

where a triple production is the mathematical representation of the

mapping rule of model transformation model. The recursive property

means that an execution of a triple production results in a graph that

conforms to the definition of triple production.

iii. We prove that the extended TGG, which includes deletion operation, has

the determinism property, which we define in section 4.1 to mean that a

set of triple productions of a TGG results in an equivalent graph regardless

of their execution order.

The last two properties of TGG allow us to conclude that a correspondence model

is a valid model transformation model, if MTM(2), which generates the correspondence

model (Figure 10), can be described in TGG.

The Detailed Outline of This Chapter

This chapter consists of two parts: introduction and extension to existing graph

grammar theory – TGG in particular, and theoretical discussion on the viability of the

correspondence model-based approach based on the graph theory.

In the first part, there is an important extension to TGG; we extend TGG so that it

can deal with an important practical case, which the original TGG ignores. By definition,

TGG incorporates only non-deletion transformations; this is referred as to the monotonic

property of TGG. Schürr [17] omits the deletion case with the justification that model

editing - deletion or modification - is not the primary purpose of model transformation.

However, deletion or property value modification is commonplace in practice; i.e., once a

source model is transformed to a target model, if any components are removed in the

 40

source model, the corresponding components in the target model should be deleted as

well. We show that transformation rules that can deal with deletion operation can be

derived from the existing definition of TGG. This allows us to apply TGG to more

general cases without extension to the original definition and theorems.

 In the second part, we use TGG to prove that a correspondence model can be

converted to a valid model transformation model. To do this, we propose two validity

conditions that the correspondence model should have: individual rule validity, and

collective execution order validity. The individual rule validity requires that individual

correspondence associations should be valid mapping rules. In contrast, the collective

execution order validity demands that the correspondence associations collectively results

in the desired output. If the correspondence associations are dependent on one another

when they are converted into mapping rules, the output depends on the order in which the

rules are executed, and we need to make sure the execution order is correctly set.

 We show the individual rule validity of a correspondence model by proving the

recursive property of TGG. As mentioned, the recursive property assures that an

execution of a triple production mathematically results in a triple production. In practice

of model transformation, a mapping rule is instantiated as a correspondence association.

Therefore, we can say that correspondence associations are described in triple production,

mathematical representation of a valid mapping rule.

 However, the correspondence model does not necessarily satisfy the second

validity rule, collective execution order validity, because the correspondence model does

not contain information that controls the execution order of the rules. By Definition 8, a

correspondence model contains just an unordered set of correspondence associations.

 Nevertheless, we can make the correspondence model valid by specifying an

execution order. We address the execution order in the following two steps: i) we prove

that the execution order does not affect the ultimate result of TGG, ii) we propose an

algorithm to determine an efficient execution order.

 41

 For the first step, we use determinism of graph theory, which is explained in

section 4.1. Determinism holds if a set of transformation rules results in an equivalent

output, regardless of the order in which the rules are applied. Since the ultimate result is

independent of the order, we can use any arbitrary order.

 Although the determinism ensures that we can eventually obtain an equivalent

result in any execution order, the number of execution steps varies depending on the

order. The maximum number of steps for n rules, as we will prove in section 4.5, is O(n2).

We propose an algorithm that ensures n TGG rules reach an end in O(n) steps.

4.1 Introduction to Graph Transformation

 Graph transformation has been introduced in the 1970s [33-35], and applied to a

wide variety of areas in computer science: formal language theory, pattern generation and

recognition, complier construction, visual modeling, model transformation, etc.

 The basic idea of graph transformation is to modify graphs using rules described

in other graphs. This basic idea has different practical meanings depending on the

application area. In this section, we discuss graph transformation in the context of model

transformation. We briefly introduce the key concepts of graph transformation that are

necessary to understand the mathematical background of model transformation; we go

over how to mathematically define a graph transformation system (GTS), how to execute

it, and how to interpret it in the context of model transformation. In addition, we

introduce some advanced concepts – local Church-Rosser theorem, and local confluence -

that are essential to further discussion in Section 4.5 on the determinism of triple graph

grammar. Note that the definitions and the theorems of graph grammar that we introduce

in this section come from [36] and [37].

 42

Basic concepts

 A graph is the basic element of graph transformation; a transformation rule is

defined by a combination of two graphs, and the rule is applied to a graph. In addition, a

graph makes a contribution to the various applications of graph transformation because

the graph is able to naturally represent many types of systems in an abstract level; that is,

it plays the role of a formal abstract model in various areas of computer science, such as

UML diagrams, Petri Net, data modeling, etc.

 In this sense, we start with the formal definition of a graph. In order to support the

various application areas, computer scientists have introduced a number of variations of

graphs: labeled graph, typed graphs, attributed graphs, etc. However, we just introduce

the definition of a basic graph, because all variations satisfy the theorems and the

properties that we need in this dissertation. By using the simplest one, we can avoid

unnecessary complexities that the extended variations may cause.

Definition 10. Graph

A graph G = (V, E, s, t) consists of a set V of vertices, a set E of edges, and two

functions s, t: E →V, which are the source and the target function, respectively.

 A graph morphism defines mappings of nodes and edges between two graphs in a

way that preserves the source and the target of each edge.

Definition 11. Graph morphism

Given two graphs G1, G2 with Gi=(Vi, Ei, si, ti) for i=1,2, a graph morphism f : G1→

G2, f=(fv, fE) consists of two functions fv: V1→V2 and fE: E1→E2 such that fv◦s1=s2◦fE

and fv◦t1=t2◦fE.

 A graph transformation rule is constructed and executed based on the above two

basic concepts: graph, and graph morphism. The transformation rule, which is called a

graph rewriting rule in graph grammar, is defined by a graph production, p, which

consists of a pair of graphs, (L, R) and a graph morphism between them.

 43

Definition 12. Graph production

A graph production p = (L, R, M) consists of a source graph L, a target graph R, and

a graph morphism M: L→ R. 2-tuple (L, R) is the short notation where the morphism

is omitted. BC(p) denotes L (before condition graph), while AC(p) denotes R (after

condition graph).

 A graph transformation is an application of a graph production to a graph. The

graph production is applied to an original graph, G, via a match m, which is technically a

graph morphism. This graph transformation produces a modified graph, H. In addition, it

generates a derivation, which represents the occurrence of the graph production, between

G and H. The application operation is mathematically supported by pushout operation

developed based on category theory [38]. Detailed discussion on the pushout operation

and the category is beyond our scope. Instead, we introduce the following practical way

of conducting the pushout operation without mathematical explanation:

i) keep elements that exist both in L and R.

ii) delete elements that exist only in L.

iii) add elements that exist only in R.

Figure 14. Definition and Execution of Graph Transformation

 Figure 14 shows a graph transformation is defined by a production p, and

executed by a pushout operation po. Node 1 and 3 are kept because they exist in both L

 44

and R. Node 2 is deleted because it exists only in L, whereas edge 5 is added because it

exists only in R. Definition 13 formally represents the graph transformation. Note that the

relation between a graph production and its graph transformation is analogous to that

between a model transformation model and its model transformation; that is, the graph

production (or the model transformation model, respectively) defines the rule, while the

graph transformation (or the model transformation, respectively) executes the rule.

Definition 13 describes a direct graph transformation, which results from an execution of

a single graph production.

Definition 13. Direct Graph Transformation

Given a graph production p = (L, R, M), a graph G,and a graph morphism m: L→ G,

which is called match, a graph transformation GT = G H generates a modified graph

H by pushout operation.

 In practice, a graph is rarely transformed by only one rule; the graph is modified

via a sequence of rules, which are represented by graph productions in terms of graph

grammar theory. Indeed, a model transformation model is defined by a set of rules. In

order to deal with this aspect, graph transformation system and general graph

transformation has been defined as follows.

Definition 14. Graph Transformation System and Graph Transformation

A graph transformation system is a 2-tuple GTS = (G, P), where G is the initial graph,

and P is a set of graph productions. If graph G turns into H by the sequential

applications of n graph productions in P, the collective transformation is denoted by G

 H. TR(GTS) is a set of all possible transformations that can be obtained from P, i.e.,

permutation of P’, where P’ is any subset of P.

 In the following section, we discuss advanced theories on how the sequence of

applications affects the behavior of a graph transformation system.

 45

Advanced concepts

 The graph productions are usually dependent on one another. In this case, the

result of the sequential applications of the productions is affected by the order of the

execution. Graph grammar research community has intensively explored the effect of the

execution order on the result of a graph transformation system. Among a number of

important theories on this topic, we focus on theories relevant to determinism property,

which is the key to theoretical discussion on multi layer model transformation in section

4.5.

 The determinism property means that a graph transformation system produces an

equal or isomorphic graph regardless of the execution order when a graph transformation

is terminating. A graph transformation is called terminating if no more graph production

is applicable to the current graph.

 Confluence plays an important role in proving the determinism property. For a

graph transformation system GTS = (G,P), GTS is called confluent if, for every pair of

graph transformations in TR(GTS) - G H1 and by G H2, there exist a graph X, and

two graph transformations, GT1 and GT2, such that H1 X and H2 X. Figure 15

depicts the confluence property.

Figure 15. Global Confluence

 The following lemma, proven in [36], shows that confluence assures determinism

of a graph transformation system. We can also give an intuitive argument for the lemma.

 46

Suppose that there are two terminating graph transformations G H1 and by G H2. By

the definition of termination, no graph production of the graph transformation system is

applicable to H1 and H2. If both are not equal to each other, there does not exist

transformations that covert them into an equivalent graph. This is contradictory to the

definition of confluence.

Lemma 1 (global determinism of a graph transformation system) Every confluent

graph transformation system is deterministic. (See [36] for details)

 However, the application of this lemma is practically limited because there exist

too many graph transformations. If a graph transformation system has n graph

productions, the number of graph transformations is , where P(n,k) denotes

permutation of picking k out of n. Fortunately, there is a weak version of confluence -

local confluence – which we can use to efficiently prove determinism in a special case.

Local confluence means that the confluence property holds only for pairs of direct graph

transformations.

Definition 15. Local Confluence

A graph transformation system GTS = (G,P) has the local confluence property if, ∀

G⟹H1 and G⟹H2, there exist a graph X, and graph transformations such that H1

X and H2 X.

 We can use local confluence instead of global confluence if a graph

transformation system is terminating; a graph transformation system is called terminating

if all possible graph transformations derived from the initial graph are finite.

Lemma 2 (termination and local confluence) Every terminating and locally

confluent graph transformation system is deterministic as well. (See Appendix C of

[36] for details)

 This lemma makes it easier for us to prove determinism of a graph transformation

system; we need handle only a reasonable number of direct graph transformations instead

 47

of all possible graph transformations, i.e., n vs. . Moreover, the termination

condition is not too restricted in the context of model integration. The purpose of model

integration is to transfer information from source models to target models; non-

termination of model transformation means either never-ending growth of the target

models or cyclic modifications of the target models. Both cases are not desired in the

practice of model integration. In Proposition 8, we mathematically prove the termination

of model transformation.

 We use this local confluence lemma to prove the determinism property of TGG,

which plays an essential role in finding conditions under which we can use

correspondence model based multi layer model transformation, in section 4.5.

4.2 Triple Graph Grammar: Mathematical Formalism of Model Transformation

 Schürr introduced triple graph grammar as a mathematical formalism of model

transformation in [17]. We review the key definitions and theorems of TGG and how

they support theoretically model transformation.

 As mentioned, model transformation handles three key parts: source model, target

model, and mapping rules between them. TGG uses a special type of graph, called triple

graph, to accommodate that structure. A triple graph is a combination of three graphs that

represent the three key parts, respectively. It is formally defined as follows.

Definition 16. Triple graph

A triple graph is a 5-tuple (SG, CG, TG, lm, rm), where SG (source graph), CG

(correspondence graph), and TG (target graph) are graphs; and lm (or rm

respectively) is a graph morphism from CG to SG (or TG respectively), i.e., lm (or rm

respectively) : CG → SG (or TG respectively). The 3-tuple (SG, CG, TG) is the

simplified notation where the graph morphisms are omitted.

 TGG extends normal graph grammar by using triple graphs instead of normal

graphs as its basic building blocks. A transformation rule of TGG is defined as a triple

 48

production, which consists of two triple graphs associated through graph morphisms.

This triple production converts one triple graph to another triple graph in accordance with

the rule.

 Before getting into the formal definition of triple production, we need to introduce

the following monotonic production. The right graph (after condition graph) includes the

left graph (before condition graph); practically, it means that this production always adds

something but deletes nothing.

Definition 17. Monotonic Production

Production p : (L,R) is monotonic if L ⊂ R.

 A triple production consists of two triple graphs, which are associated with each

other through three monotonic productions. These three productions connect the

corresponding graphs between the two triple graphs respectively; i.e, the source graph of

the first triple graph is linked with that of the second triple graph, and so forth. It is

formally defined as follows.

Definition 18. Triple Production

A triple production is defined by two triple graphs TGL = (SL, CL, TL, sr, tr), and

TGR = (SR, CR, TR, sr’, tr’), where sr = sr’|CL, and tr = tr’|CL. The triple graphs are

associated through the three monotonic productions: sp: (SL,SR), cp: (CL,CR), and

tp: (TL,TR). We denote the triple production as follows:

((SL,SR) ← sr ‒ (CL,CR) ‒ tr → (TL,TR)).

 The way of applying a triple production to graph transformation is analogous to

the way of a normal graph production. As mentioned, a normal graph production is

applied to a graph through a match morphism, and converts the graph. Likewise, a triple

production is matched to a triple graph, and coverts it into another triple graph. The only

difference is that there are three separate match morphisms that apply the three

monotonic production of the triple production to the three parts of the triple graph

 49

respectively, i.e., the production of the source side (sp) is matched to SG of the triple

graph (SG, CG, TG), and so forth. Definition 19 formally describes the process of the

application.

Definition 19. Triple graph transformation

Given a triple production ((SL,SR) ← sr ‒ (CL,CR) ‒ tr → (TL,TR)); a triple graph

TGG = (SG, CG, TG,sc,tc); and three graph morphisms sm: SL→SG, cm: CL→CG,

and tm: SL→SG, triple graph transformation generates another triple graph

TGH=(SH,CH,TH,sc’,tc’) through the following productions:

SG SH, CG CH, and TG TH, where sp = (SL,SR), cp = (CL,CR),

and tp = (TL,TR).

 Figure 16 illustrates the transformation operation of a triple production. The

shaded back side represents triple production (Definition 18). This triple production is

applied to a triple graph over three matching morphisms (sm, cm, tm). It transforms the

original triple graph, (SG, CG, TG), to the derived triple graph, (SH, CH, TH), while

generating three derivations (sd, cd, td). The front side, which consists of the original and

derived triple graphs and the three derivations, represents the result of executing the triple

production.

Figure 16. Triple Graph Transformation

 50

 The definition of triple graph transformation represents a simultaneous

transformation of the three parts of a triple graph. However, this is not the way model

transformation works in practice. The following proposition has been suggested and

proven in [17] to support the actual process in which model transformation is used.

Proposition 5. Triple Production Separation Theorem

 A given triple production p = ((SL,SR) ← sr ‒ (CL,CR) ‒ tr → (TL,TR)) can be

replaced by the sequential applications of two particular triple productions:

 pL = ((SL,SR) ← ɛ ‒ (Ø, Ø) ‒ ɛ → (Ø, Ø)), and pLR = ((Ø, Ø) ← ɛ ‒ (CL,CR) ‒ tr →

(TL,TR)). The sequential applications of pL and pLR produce the equivalent triple

graph to the original triple production p.

 This theorem says that a triple production can be split into the two separate triple

productions, i.e., the triple production for only the source graph, and the triple production

for the rest of the graph. A series of applications of the split triple productions results in

the equivalent output to the output of the original triple production.

 This separation accounts for the way that we actually use the model

transformation. In practice, the three parts of a triple graph are not transformed

simultaneously. Instead, the source model is changed by humans’ authoring activities,

and then the change is transferred to the target model.

 The first triple production pL represents the authoring activities; the result of the

production is the snapshot of the source model right after the authoring activities. The

result is used to recognize the pattern that we need to transfer to the target model (See

section 4.3). In other words, it is used as the application condition under which model

transformation can be executed. If the authoring activity results in the pattern that meets

the condition, the second triple production pLR transfers the changes of the source model

to the target model in accordance with the triple production; this is the production that

transfers information from the source to the target, while completing the after condition

 51

graph of the original triple production from which pLR is obtained. We can therefore view

the second triple production as the practical execution of the model transformation.

 This separation property of triple production serves as the theoretical foundation

of the derived transformation rules, which we will discuss in the following section..

4.3 Derived Transformation Rules of TGG

 As discussed, TGG defines simultaneous transformation of the source model and

the target model. Practically, TGG is not directly applied to model transformation;

instead, it is used to derive rules that are used in the model transformation. A number of

transformation rules can be derived from a single TGG rule. They have been introduced

in [32]; i.e., consistency checking rule, correspondence creation rule, left-to-right

transformation rule, and right-to-left transformation rule.

 However, these rules do not cover operations that delete components. This is

because a triple production consists of three monotonic productions, which always add

elements. In order to support deletion, we propose a way to derive deletion rules from the

current definition of TGG.

 In this section, we introduce the existing derived transformation rules and propose

the new derived transformation rules for deletion.

Derived Transformation Rules: Creation rule

 Among the rules introduced in [32], we focus on left-to-right rule and right-to-left

transformation rule, which are practically important. Since both rules create graph

elements, we call them ‘creation rules.’

 Figure 17 shows one example of a triple production. Note that we substitute ‘Left’

(or ‘Right’, respectively) for ‘Source graph’ (or ‘Target graph’, respectively) of the

original definition of TGG. We use the new terms to reflect bidirectional transformation

property of TGG, i.e., either side can be the source model.

 52

Figure 17. Example of Triple Production

 As shown in the figure, the triple production can be depicted in a single graph.

Although it consists of two triple graphs, we can use this compact graph because of the

monotonic property. By the definition of monotonic production, the after condition graph

completely includes the before condition graph; this means the before condition graph is

a sub graph of the after condition graph. The before condition graph can be describe by

highlighting some part of the after condition graph. In Figure 17, the continuous line

represents the before condition. Hence, we can interpret this production as follows: if the

continuous line pattern is found, the thr triple production completes the whole graph – the

after condition - by adding the dashed pattern. In order to formally indicate the added

pattern, we introduce the following notation. In monotonic production (L,R), the dashed

pattern is L\R.

Definition 20. Difference Operation

Given two graphs G1 and G2, difference of G1 and G2, denoted G1\G2, is {e∈ G1|

e∉ G2}.

 Figure 18 shows the two creation rules: left-to-right transformation rule and right-

to-left transformation rule. The left-to-right transformation transfers information from the

left side to right side; i.e., if the left side model is modified, the transformation transfers

the modification to the right side model. Part a) describes the operation; i.e., if component

C is added to the left side, component C’ and the correspondence component are created.

Part b) represents the reverse direction, the right-to-left transformation. It can be

symmetrically derived.

 53

Figure 18. Derived Creation Transformation Rules

 The triple production separation theorem, which is introduced in section 4.2, plays

an important role in deriving the transformation rules. By the theorem, the TGG can be

split into two parts: left side production, and the correspondence together with the right

side production. As discussed, the left side production represents the model authoring

activities. The authoring activities are done before the application of a left-to-right

transformation; hence, the authoring activities are a prerequisite of the left-to-right

transformation. The left side should be the part of the application condition. We can

derive the application condition of the left-to-right by incorporating the left side

production into the original application condition of TGG. We can derive Part b) in the

symmetric way.

Definition 21. Derived Creation Rules
A given triple production p = ((SL,SR) ← sr ‒ (CL,CR) ‒ tr → (TL,TR)), left-to-right

(or right-to-left, respectively) creation rule is defined as production pLR =

((SR,CL,TL), (SR,CR,TR)) (or pRL = ((SL,CL,TR), (SR,CR,TR) respectively). CR(p)

is a set of the creation rules of production p.

 Definition 21 shows the formal definition of the derived creation rules.

Technically, these productions are the second production in Proposition 5 .

 54

Proposed Derived Transformation Rule for Deletion: Cancellation Rule

 In model transformation, deletion operations have a unique usage; i.e., they are

used to cancel the existing result of the transformations that were executed in previous

steps. In other words, if we delete any components of one side (e.g., left side graph) in an

existing transformation result, we need to delete the corresponding components of the

other side (e.g., right side graph). Figure 19 shows one example of the operation.

Deleting component C in left side leads back to the original condition before the

application. Hereafter, we call the operation ‘cancellation rule.’

Figure 19. Deletion Operation of Model Transformation

 We show that there are two types of cancellation rules: intended cancellation rule,

and forced cancellation rule. The intended cancellation rule is straightforward; it is

applied to components that a modeler intends to delete. Cancellation of (C, C’) in Figure

19 is an example of the intended cancellation; deleting component C means that the

modeler intends to also delete C’, which was created from component C.

 In contrast, a forced cancellation is triggered by other intended or forced

cancellations; that is, the forced cancellation rule is forced to delete the existing model

transformation result because other model transformations, on which the model

transformation is built, are cancelled. For example, suppose we delete component P in

Figure 17 with intention to cancel transformation of (P, P’); then (P, P’) is the intended

cancellation. However, if P and P’ do not exist, C and C’, which are created based on P

and P’, cannot exist. Therefore, we need to also cancel transformation of (C, C’), which is

a forced cancellation.

 55

 In order to express the cancellation rules, we need a new type of application

condition, called negative application condition. A normal application condition is tested

based on existence of components; i.e., if a sub graph matches up with the pattern of the

application condition, the transformation rule can be applied to the graph. However, this

type of condition cannot handle absence of components. In other words, it cannot check if

a pattern does not exist. In order to deal with the negative information, [39] suggested

negative application condition.

Figure 20. Negative Application Condition

 Figure 20 shows how differently a negative application condition works. The left

condition (P1) represents a negative application condition. The components drawn in

dashed lines with ‘X’ mark represent a negative pattern, which must not exist. A

transformation rule can be applied only if the solid components exist but the negative

pattern does not; that is, P1 is applicable only to graph G1 because G2 has component C,

which is prohibited by the negative pattern. In contrast, the normal application condition

(P2) is applicable to both graphs G1 and G2 because the application condition does not

care about the existence of component C.

Definition 22. Graph production with a negative application condition

A graph production p = ((L, R, M), NAC(X, x)), where x is a morphism from L to X,

i.e., x: L→X, is applicable to a graph G through a match morphism m: L→G if there

does not exist an injective graph morphism m’: X→G such that m’◦x = m. For simple

 56

notation, morphism x can be omitted when it is obvious, i.e., p = ((L, R, M),

NAC(X)).

 In order to deal with the negative pattern, we extend the definition of graph

production (Definition 22). In the example of Figure 20, graph X in Definition 22 is triple

graph (C, Corr, C’). For G1, we cannot make any injective graph morphism from X to G1

with m’◦x = m because G1 has no component that can be mapped to component C; hence,

the production is applicable to G1. In contrast, (C, Corr, C’) is a subgraph of G2. An

injective morphism m’ satisfying m’◦x = m can be developed by making one-to-one

mapping between corresponding components, i.e., CC, CorrCorr, and C’C’. It is

not applicable to G2.

Figure 21. Derived Cancellation Rules

 Figure 21 depicts the cancellation rules that are derived from the triple production

described in Figure 17. The first two rules are intended rules. Since the correspondence

component exists, the pattern can appear after the derived creation rules of the same triple

production are applied. The negative patterns of the cancellation rules result from

deleting components in the left or right side graph. This practically means that a modeler

intends to cancel the existing result of the creation rule by getting rid of the left side or

 57

the right side; that is, the modeler deletes a graph element from one side, and then the

model transformation takes away the rest (i.e., the correspondence component, and the

other side).

 In contrast, the bottom one is a forced cancellation. Unlike the top two, which are

created by the creation rule, are preserved. This means that the modeler does not

explicitly intend to cancel the result. However, the negative condition shows that the

before condition of the triple production should not exist. Since the result of the triple

production cannot exist without the before condition graph, the result is forced to be

deleted; that is, the triple production is cancelled as the result of the cancellation of

another triple production.

 We formally define the two classes of derived cancellation rules using as follows.

Definition 23. Derived Cancellation Rules
For a given triple production p = ((SL,SR) ← sr ‒ (CL,CR) ‒ tr → (TL,TR)), the two

intended cancellation rules are described as follows:

 ((Ø,CR\CL,TR\TL), (Ø, Ø, Ø), NAC((SR\SL,CR\CL,TR\TL))) and

((SR\SL,CR\CL,Ø), (Ø,Ø,Ø), NAC((SR\SL,CR\CL,TR\TL))). IDEL(p) denotes the

set of intended cancellation rules. The forced cancellation rules is

((SR\SL,CR\CL, TR\TL), (Ø,Ø,Ø), NAC((SR,CR,TR))). FDEL(p) denotes the set of

the forced cancellation rules. In addition, DEL(p) = IDEL(p) ∪ FDEL(p).

 In addition, we suggest the definition of a set of all derived transformation rules

as follows.

Definition 24. Derived rules of a triple production
Given a triple production p, the derived transformation rules set is defined as

DRules(p) = CR(p) ∪ DEL(p).

 58

Cross-over Derived Transformation Rules

 In the previous two subsections, we have been discussed the ways to derive

transformation rules from a triple production. The derived rules of a triple production p

are constructed in a way that modifies the constructs of p – BC(p) and AC(p). However,

those discussions ignored a case that the constructs of other triple productions could

involve in the derived rule construction of p. Schürr did not identify this case in [17]

where he introduced TGG. In this section, we further explore the case. In order to deal

with the case, we introduce cross-over derived transformation rules, which are derived

from more than one triple production.

 Mathematically, that case occurs when (AC(p1)\BC(p1) ∩ AC(p2)\BC(p2)) ≠Ø,

i.e., p1 and p2 creates common elements. If p1 creates the common elements of p2, the

derived creation rules of p2 should be constructed differently depending on whether p1 is

applied or not. For instance, if p1 has been applied, the derived creation rules of p2 do not

need to create the common elements again because they have been already generated by

p1. If p1 has not been executed yet, the derived creation rules have to create the common

elements. Cancellation operations also raise the same issue. A cancellation operation of

p1 must preserve the common elements if the result of p2 exists. However if p2 have

been removed, the cancellation should delete the common elements so that nothing

unnecessary remains.

Definition 25. Cross-over Relation
Given two triple productions p1 and p2, they are said to have a cross-over relation if

AC(p1)\BC(p1) ∩ AC(p2)\BC(p2)) ≠Ø.

 In order to get cross-over derived transformation rules, we modify the existing

derived cancellation rules by adding more negative application conditions (See Appendix

A). These negative application conditions prevent the rules from being applied in a case

that there exist common elements that have been generated by other triple productions.

 59

 Unfortunately, these additional derived transformation rules make it more

difficult for us to analyze dependencies among triple productions. The following example

shows a tricky situation that the additional derived transformation rules introduce.

Figure 22. Triple Productions of Cross-over Example

 Figure 22 shows three triple productions that illustrate the tricky situation.

Component B (or Component D, respectively) is the common part between TP3 and TP1

(or TP2, respectively).

Figure 23. Cross-over Example

 The left most graph in Figure 23 is the starting graph that we sequentially apply

derived transformation rules to. Component H is deleted from AC(TP3); one intended

cancellation rule of TP3 can be applied. However, due to the cross-over relations with

TP1 and TP2, the cancellation rule does not delete B and D; that is, B and D should exist

as the part of T1 and TP2. This results in the middle graph, which has the complete graph

of left side of TP3. This is the application condition of the left-to-right derived creation

 60

rule of TP3 (Definition 21); the derive transformation rule reconstructs the complete

graph of TP3. Interestingly, although we delete H in order to cancel TP3, these operations

end up back to the complete graph of TP3.

 In section 4.5, we will discuss dependency among triple productions including

this cross-over case. Fortunately, we find out a way to rule out these complicated cases

from the dependency discussion using a practical assumption.

4.4 Individual Rule Validity of a Correspondence Model

 To establish the individual validity rule, this section rigorously answers the

following question: can the correspondence associations created by a model

transformation define a valid mapping rule? Theoretically, does the result of triple

production individually conform to the definition of triple production? We prove this by

extending the theorems of TGG.

 Before answering the question, we introduce a key proposition of TGG that is

essential to the proof. The following lemma shows the existence and uniqueness of

correspondence relations in the derived triple graph. The formal proof is presented in [17].

Lemma 3. In the definition of triple graph transformation (see Figure 16), the

morphisms sc’ and tc’ always exist uniquely such that sc = sc’|CG and tc = tc’|CG.

 The lemma leads to the following proposition, which is the answer to the above

key question.

Proposition 6. Given a triple production ((SL,SR) ← sr ‒ (CL,CR) ‒ tr → (TL,TR));

and a triple graph G = (SG, CG, TG,sc,tc), a triple production is formed by

combining the original triple graph G, the derived triple graph H=(SH, CH,

TH,sc’,tc’) and the three derivations sd, cd, and td (See Figure 16 for notations).

Proof) According to the definition, there are two key conditions which a triple

production must satisfy: monotonic production and constraint on morphisms between

correspondence side and other two sides, respectively. Each vertical rectangle in

 61

Figure 16 represents a normal graph production; the derivations of three sides are

outcomes of pushout operations. The productions sp, cp, and tp are monotonic by the

definition of a triple production. According to the execution rules of the pushout

operation, all actions occurring during the transformation are adding or preserving,

which means the source graphs are subsets of the derived graphs in all three sides.

Therefore, they are monotonic productions. The second condition requires that

sc=sc’|CG and tc=tc’|CG. This has already been proved in Lemma 3. □

 This proposition shows that the execution of a triple production technically results

in another triple production; the combination of the derived triple graph and the original

graph through derivations that are obtained by pushout operations forms a triple

production. Practically, a triple production represents a transformation rule of a model

transformation model, and the result of an execution of the triple production is a

correspondence association. Therefore, we can say that a correspondence association can

be used as a transformation rule.

4.5 Collective Order Validity of a Correspondence Model

 To establish the collective order validity, we use the local confluence theorem,

which we introduced in section 4.1. The local confluence theorem has been investigated

in the context of general graph grammar; but there is no theorem that is specific to the

model transformation context. Although [40] discussed the local confluence theorem for

a special model transformation case from Statecharts to Petri nets, they did not derive

general theorems for model transformation. We find a general property of TGG by

applying the local confluence theorem to TGG; i.e., we prove that the derived

transformation rules of TGG are locally confluent, thus have the determinism property.

 62

Dependency between triple productions

 Before moving on to the proof of the determinism, we discuss dependency in

TGG. We suggest an indirect approach to identify dependency among the derived

transformation rules. Instead of directly handling dependencies between derived

transformation rules, we identify the dependencies through dependencies between triple

productions, from which the derived transformation rules are obtained. This indirect

approach has advantages because the dependency of triple productions is easier to

identify and allows us to handle the dependencies as a group.

 In general, if a production (p2) depends on another production (p1), the

application of p1 results in a condition under which p2 is applicable. This could be

because p1 creates the components that are prerequisites for p2, or p1 deletes some

components that prevent the application of p2.

 The monotonic property of triple production limits the occurrence of dependency

between triple productions; that is, the dependency is caused by only the former case, i.e.,

p2 is not applicable until p1 creates the required components. Since a triple production

always adds some components, the latter case (i.e., deletion of prohibited components)

cannot be a reason of dependency.

 In this sense, given two triple production p1 and p2, p2 depends on p1 if the

condition for application of p2 (i.e., BC(p2)) relies on the existence of p1 (i.e.,

AC(p1)\ BC(p1)). This statement can be mathematically expressed as follows:

Definition 26. Dependency of Triple Productions
Given a graph transformation system GTS = (G, P), where the initial graph G is a

triple graph and P is a set of triple productions, for p1, p2 ∈ P, p2 depends on p1 if

AC(p1)\ BC(p1) ⊂ BC(p2).

 This definition allows us to easily determine dependency between triple

productions by finding the elements that meets the suggested condition. This is much

 63

simpler than the dependency conditions of general graph production that are introduced

in [36].

 Dependency between two triple productions is easy to identify and can be used to

identify dependencies among their derived transformation rules; the dependency of triple

productions allows us to efficiently deal with the dependencies of the derived

transformation rules. It is worthwhile to further explore the dependency of triple

productions. The following proposition shows one way dependency: two triple

productions do not depend on each other; that is, if triple production p2 depends on triple

production p1, then p1 does not depend on p2.

Proposition 7. Given a triple graph transformation system GTS = (G, P), and p1, p2

∈ P, if p1 and p2 are applicable, dependency between them is one-way; i.e, if p2

depends on p1, p1 does not depend on p2, and vice versa.

Proof). Suppose p1 and p2 depend on each other. By definition, the execution of p1

should be prior to that of p2, and vice versa; obviously, both cannot be executed. □

Figure 24. Dependency between Triple Productions

 Figure 24 depicts the dependency between two triple production p1 and p2. It

describes the dependency as a precedence relation between the triple productions, i.e., the

application of p1 should precede that of p2. This graphical representation of the

dependency is used to develop a graph that represents the all dependency relations in the

entire set of triple productions. We call the graph a ‘dependency graph.’

 64

Definition 27. Dependency Graph
Given a set of triple productions P, the dependency graph of P, DG(P), is defined as a

graph (V,E), where vertex set V = P, and edge set E = {e | source(e) = p1 and

target(e) = p2, and p2 depends on p1}

 Technically, establishing the dependency graph does not require a lot of

computation. Checking the condition of Definition 26 is nothing more than seeing if a

graph includes some elements of other graphs. In addition, the number of triple

production pairs we need to check is n(n-1)/2 for n triple productions. Both steps can be

done within polynomial time with respect to the number of triple productions.

 The dependency graph (V, E) is acyclic, i.e., it does not have any cycle. Existence

of any cycle in the graph violates Proposition 7. There is a well-known algorithm that

identifies a topological order of an acyclic graph. In a topological order, for every edge

(node1, node2) of the graph, the order of node 1 is lower than that of node 2. See [41] for

more details on the algorithm. Since the dependency graph is acyclic, we can easily

obtain a topological order of the graph.

Definition 28. Topological Order of Dependency Graph
Given a set of triple productions P and the dependency graph of P, DG(P), TO(P) is a

ordered set of the triple productions of P in a topological order. toi(p) is the index of

p∈ P in TO(P).

 This topological order plays a key role in proving determinism property of triple

production, and coming up with the way to construct an efficient execution order of a

triple production set.

Triggered Creation and Termination

 Before we move on to the proof of determinism property, we need to discuss how

the cross-over relation, which we introduced in section 4.3, affects behaviors of a graph

transformation system; the cross-over relation may cause undesired behaviors such as

 65

non-termination because it may bring about triggered creations. A triggered creation is a

creation operation triggered by creation operations of other triple productions. In other

words, it is a creation operation that is triggered not directly by modeler intention but by

other triple productions.

 A set of triggered creations could cause non-termination of a graph transformation

system if their triggering sequence forms a loop; if this happened, the set of triggered

creations would be repeatedly executed without terminating. This would cause infinite

growth of the target graph. What is worse, such a loop might be non-terminating even

without the infinite growth if the loop contains forced cancellation rules as well as

triggered creation rules. Since the forced cancellation rules delete components without

modeler intervention, a combination of forced cancellation rules and triggered creations

may may be nonterminating because of the repeated deleting and creating of a certain set

of triple productions.

 For clear discussion, we introduce the formal definition of the triggered creation

with the following notation.

• GTS = (G, P): Triple graph transformation system

• TP = ((SL,SR) ← sr ‒ (CL,CR) ‒ tr → (TL,TR)) : a triple production ∈ P

• TPi = ((SLi,SRi) ← sri ‒ (CLi,CRi) ‒ tri → (TLi,TRi)): triple productions in P
that have a cross-over relation with TP

• CO(TP) = { TPi } : the set of all triple productions with cross-over relation with
TP

Figure 25. Notations for Triggered Creation Issue

Definition 29. Triggered Creation Issue
Execution of TP may be triggered by other triple productions if there exists

C⊂CO(TP) such that SR ⊂ , or TR ⊂ .

 66

 SR is the part of the before condition graph of the left-to-right creation rule of TP

(see Definition 21). is the union of the left side graphs of TPi ∀ i. Since

 includes SR, a series of applications of TPi may create the graph to which

the left-to-right creation rule of TP is applicable; this can trigger an execution of the left-

to-right creation rule.

 Figure 22 shows an example. TP1 and TP2 together generate the complete left

side graph of TP3; since it is the before condition of the left-to-right creation rule of TP3,

AC(TP3)\BC(TP3) is automatically generated as the byproduct of TP1 and TP2.

 Before going to the detailed discussion on the triggered creation, we introduce the

following assumptions because disconnected graphs in production rules could cause

unexpected results.

Assumption 1. Given triple production ((SL,SR) ← sr ‒ (CL,CR) ‒ tr → (TL,TR)),

the after condition graphs of both sides (i.e., SR, TR) are connected graphs. A graph

is connected if there exit a path between every pair of nodes.

 Assumption 1 does not restrict the usage of triple production in that a

disconnected triple production results in practically undesired outputs. Assumption 1

shows a triple production with a disconnected after condition graph in a typical model

transformation between RDB schema and class diagram; the left graph, which consists of

Table and Column, is disconnected. Since this graph condition does not specify any

relation between a table and a column, it can be applied to any pair of them. Given a table

T, the derived creation rule converts any column (even though it is irrelevant to T) to an

attribute of the corresponding class that have been generated from T. In this sense,

disconnection of a graph of a triple production practically means the triple production

handles together modeling components that are irrelevant to one another. The

connectivity assumption gets rid of this undesired case.

 67

Figure 26. Triple Production with Disconnected Graphs

 In the rest of this sub section, we show that triggered creations do not actually

cause the non-termination problem in TGG.

Lemma 4. Given two triple productions p1 and p2 ∈ P, p2 cannot trigger p1 if there

exist a dependency path from p1 and p2 in DG(P).

proof) One condition for triggering a creation rule of p1 is that the complete AC(p1)

does not exist. If it exists, one creation rule of p1 has already been executed; any

more creation rule cannot be applied to a target graph; we suppose that the current

target graph has incomplete AC(p1).

A dependency path from p1 to p2 is a set of dependency relations that connect p1 and

p2 in the dependency graph of P. Technically, if there exists a dependency path from

p1 to p2, p2 depends on p1. There are two types of dependencies: direct dependency

and indirect dependency.

i) Direct dependency means that p2 has a dependency relation with p1. In this case, a

creation rule of p2 cannot be executed without the existence of complete AC(p1).

Since the current graph does not has complete AC(p1), any creation rule of p2 is not

applicable; if p2 does not create anything, it cannot trigger creation rules of other

triple productions.

ii) Indirect dependency means that p2 relies on p1 through more than one dependency

relations. In this case, BC(p2) does not contain any component of AC(p1); otherwise,

p2 directly depends on p1. This means that any newly created component by p2 (i.e.,

 68

e∈ AC(p2)\BC(p2) cannot have any edge with AC(p1); (AC(p2)\BC(p2)) ∪ AC(p1)

is a disconnected graph. Therefore, any creation rule of p2 cannot result in complete

SR or TR of p1 because both are connected graphs by Assumption 1.

In both cases, p2 cannot trigger a creation rule of p1. □

 Lemma 4 shows how the dependency between triple productions affects the

triggered creation between them. It says that a triple production cannot trigger a creation

rule of another triple production that it depends on.

Lemma 5. A forced cancellation cannot cause a triggered creation, and vice versa.

proof) By Definition 23, a forced cancellation deletes some part of the target graph.

As shown in Definition 29, a triple production p is produced by a triggered creation

when other productions collectively create the complete graph of the left side (or right

side) of p; obviously, deleting something cannot result in the complete graphs.

By Definition 21, a creation rule adds some components to the target graph. As

shown in Definition 23, the application condition of a cancellation rule of a triple

production p’ is the incomplete (or partial) graph of BC(p’) or AC(p’)\BC(p’); in

order for a triple production to trigger the cancellation rule, it delete some part(s)

from BC(p’) or AC(p’)\BC(p’). A derived creation rule cannot do that because it does

not delete but add something. □

 Lemma 5 shows that forced cancellations and triggered creations cannot occur

alternatively. Lemma 4 and Lemma 5 leads to the termination property of a set of triple

production.

Proposition 8. A triple graph transformation system GTS = (G, P) is always

terminating if P is a finite triple production set.

Proof) If a finite triple production set can be executed infinitely, there should exists a

loop of triggered operations (i.e., forced derived rule, or triggered creation); since the

 69

number of triple productions is finite, non-termination means that some production

rules are executed repeatedly without modeler intervention. Without the triggered

operation loop, this cannot happen. There are three types of triggered operation loops:

a loop with only triggered creations, a loop with only forced cancellations and a loop

with both triggered creations and forced cancellation.

i) The first type (with only triggered creation) cannot exist. This is because once a

derived creation rule has been applied, it cannot be executed again until the creation

is rolled back by a derived cancellation rule. A series of triggered creation cannot

form a loop.

ii) The second type (with only forced cancellation rules) cannot be executed

repeatedly by nature of deletion. We cannot delete something forever if there is no

creation.

iii) The third type could form a loop as illustrated in the following figure.

Figure 27. Mixed Triggered Operation Loops

In iteration k, forced cancellation rules are sequentially applied from P1 to Pn-1.

Because of Lemma 5, any triggered creations cannot occur in the middle of the

iteration. The existence of Pn could trigger creation of P1 before it is cancelled by its

forced deletion triggered by Pn-1.

 70

Iteration k+1 gets started as the result of the creation of P1 triggered by Pn in iteration

k. The creation of P1 could cause a series of triggered creations all the way to Pn-1

again. At this time, the absence of Pn could trigger the forced cancellation of P1. This

triggering could result in the same operations in iteration k again. In this way,

iteration k and k+1 can be repeated infinitely.

Fortunately, this non-termination does not happen because Lemma 4 prevents the

triggering from Pn to P1 in iteration k. In the iteration, a series of forced cancellation

are executed. By definition, the forced cancellation of a triple production is triggered

as the result of deletions of other triple productions that it depends. This means a

forced cancellation is triggered between two triple productions with a dependency

relation. Therefore, P1→ P2→…→Pn is a dependency path. By Lemma 4, Pn cannot

cause a triggered creation of P1.□

 This proposition shows that a triple production set is terminating in spite of

triggered creations. The termination property of TGG allows us to easily prove the

determinism property of TGG in the next subsection.

Determinism of Triple Production

 Thanks to the termination property of triple production, we can use local

confluence theory to prove determinism property of TGG. As discussed in section 4.1,

local confluence theorem allows us to prove the determinism by checking confluence

property between direct graph transformations.

 Lemma 6 is repeatedly used in the proof of Proposition 9 where the determinism

of TGG is proven based on the local confluence theorem.

Lemma 6. Given a graph G and two productions p1 and p2, if only one of the two

productions is applicable, there exists confluence graph H that satisfies the condition

of local confluence in Definition 15.

 71

Proof) Suppose only production p1 is applicable. The two direct graph

transformations of p1 and p2 result in G H1, and G G respectively. Note that the

result of p2 is the initial graph G because it is not applicable. We can easily convert

H1, and G into the confluent graph in the following way: G H1 H1, G G H1. ∅

denotes no transformation. □

 Proposition 9. A triple graph transformation system GTS = (G, P) has the

determinism property.

Proof) The local confluence theorem requires us to show the confluence property

between every pair of direct graph transformations. Instead of taking into account all

possible combination of individual derived transformation rules, we use the classes of

derived transformation rules: derived creation rule, and derived cancellation rule (see

section 4.1). At most one derived transformation rule of each class is applicable to a

given graph. Furthermore, all derived transformation rules of each class result in an

equivalent graph; i.e., all creation rules generate complete AC(p)\BC(p), while all

cancellation rules delete the existing AC(p)\BC(p). In this sense, the following four

combinations between the two classes can represent all possible cases.

Let dt1 and dt2 denote the two direct graph transformations from the initial graph G,

respectively. Suppose there are two triple production pi and pj where i < j. Index i and

j are determined by the topological order of the dependency graph (see Definition 27).

By the definition, i < j means that pj depends on pi. Due to the one way dependency

proven in Proposition 7, pi and pj can represent all possible relations between two

arbitrary triple productions.

Because of Lemma 6, it is enough to show the local confluence property of dt1 and dt2

when both of them are applicable.

Case 1: dt1 ∈ CR(pi), and dt2 ∈ CR(pj)

 72

Only one of them is applicable: i) if dt1 is applicable, dt2 is not, because pj depends on

pi. Any derived creation rules of pj is not applicable until pi is applied; ii) as the

reverse direction, suppose that dt2 is applicable. This means dt1 has already been

applied; hence, dt1 is not applicable to the current graph anymore.

Case 2: dt1 ∈ CR(pi), and dt2 ∈ DEL(pj)

If dt2 is applicable, one element of CR(pj) must have been applied in one of the

previous steps. This means CR(pi) has also been applied; the only way of applying

any creation rule of pi is that existing pi is cancelled and executed again by a triggered

creation. Figure 23 shows the example.

dt2 does not affect the applicability of dt1 because pi is independent of pj; we need to

see if dt1 affects the applicability of dt2 for two cases: dt2 ∈ IDEL(pj), and dt2∈

FDEL(pj) .

i) dt2 ∈ IDEL(pj): This means that some part of AC(pj)\BC(pj) is missing. dt1 cannot

add the missing parts because they can be created by only CR(pj). dt2 is still

applicable.

ii) dt2 ∈ FDEL(pj). This implies AC(pi) does not exist; edges between AC(pi) and

AC(pj)\BC(pj) cannot exits. The creation of pi does not reconstruct these edges; they

are generated when pj is created. By Assumption 1, dt1 cannot restore the complete

graph of AC(pj); dt2 is still applicable.

Since dt1 and dt2 do not affect the applicability of each other, they have the local

confluence property; i.e., G H1 H, and G H2 H.

Case 3: dt1 ∈ DEL(pi), and dt2 ∈ CR(pj)

If both dt1 and dt2 are applicable, pj does not directly depends on pi. This is because

if dt1 (the cancellation of pi) is applicable, the target graph does not have AC(pi) in the

 73

complete form; dt2 cannot be executed because the existence of pj directly depends

on pi.

In the case of indirect dependency, dt1 does not affect the applicability of dt2 because

BC(pj) does not have any component of AC(pi). In addition, dt2 does not create the

complete graph of AC(pi) because of Lemma 4. Application of dt2 does not prevent

the execution of dt1. dt1 and dt2 have a local confluence property, ie., G H1 H,

and G H2 H.

Case 4: dt1 ∈ DEL(pi), and dt2 ∈ DEL(pj)

A cancellation rule does not affect the applicability of other cancellation rules

because deleting components cannot result in the after conditions of a triple

production, which prevent the cancellation operations of the triple production. dt1 and

dt2 is independent of each other; they have a local confluence property, ie.,

G H1 H, and G H2 H.

In consequence, GTS is locally confluent. This conclusion and Proposition 8 together

assure that a triple graph transformation system has always determinism by Lemma 2.

□

Execution order generation

 We have proven the determinism of triple graph transformation system. This

property allows us to make a correspondence model a completely valid model

transformation model by constructing an execution order. Since any arbitrary execution

order leads the model transformation to an equivalent result at the termination, it is not

theoretically important to discuss how to construct the order. However, it is practically

important because model transformation usually has to handle large models. It is not

uncommon, for example, that a factory model has thousands entities. The following

 74

proposition shows the worst case in terms of the number of execution steps that a model

transformation takes until reaching the termination.

Proposition 10. Given a triple graph transformation system with n triple productions

in its production set, the graph transformation system takes O(n2) attempts in the

worst case, when reaching the termination.

Proof), A finite number of transformation rules are derived from a triple production.

c denotes the number; there are c•n derived transformation rule. By definition, at least

one rule should be applicable to the current graph if the graph transformation is not

terminated. Suppose that only one of the derived transformation rules is applied at the

last step, i.e., c•n-1 other derived transformation rules fail to be applied and then the

last rule is applied. Since the graph is modified by the derived graph, we need to

check the applicability of the derived transformation rules to the new graph. Suppose

that a derived transformation rule of triple production can be executed only once; then,

we can rule out the derive rule that has already been executed.

Suppose that the same thing happens in every iteration, i.e., only one derived

transformation rule is applied in the last step of every iteration. In this case, we make

c•n - k attempts at kth iteration. Therefore, the worst case is = O(n2)

□

For a triple graph transformation system GTS = (TG, TP),

Step 1. generate a topologic order of TP, TO(TP)

Step 2. apply derived cancellation rules in the order of TO(TP)
for all p ∈ TP in the order of TO(TP)
 for all dr ∈ DEL(p)
 if dr is applicable, then
 apply it to the current graph (CTG)
 quit the for loop
 end if
 end for
end for

 75

Step 3. apply derived creation rules in the order of TO(TP)
for all p ∈ TP in the order of TO(TP)
 for all dr ∈ CR(p)
 if dr is applicable, then
 apply it to the current graph (CTG)
 quit the for loop
 end if
 end for
end for

Figure 28. Algorithm that executes derived transformation rules

 We suggest a way to construct an efficient execution order. We use the

topological order of dependency graph (see Definition 27). Figure 28 shows the

algorithm that executes the derived transformation rules of a triple graph transformation

system.

 Basically, this algorithm executes all derived cancellations rules in step 2 and then

applies all derived creation rules in step 3. In the both steps, we use a topological order of

the dependency graph to sort derived transformation rules. This order ensures that any

derived transformation rule does not fail to be applied at the first attempt if the derived

transformation rule is applicable eventually; this is the order that takes the fewest steps to

the termination. The topological order works differently for step 2 and step 3.

 In step 2 for derived cancellation rules, the topological order prevents failures of

applications for the following reason. By definition, intended cancellation rules can be

applied independently of other rules. However, a forced cancellation rule (fc) is affected

by other triple productions; it is caused by cancellations of other triple productions. This

means that if fc is applied prior to the cancellation of the other triple productions that it

depends on, we fail to apply the forced cancellation rule. By the definition, the

topological order of the dependency graph ensures that the forced derived cancellation

rules that fc depends on precedes fc.

 76

 In step 3 for derived creation rules, it is more straightforward. By the definition, a

derived creation rule of a triple production p can be applied when the complete before

condition graph of p exists. This before condition graph is created as the results of

applications of the other triple productions that p depends on. By the definition, the other

triple productions that p depends on precede p in the topological order. Since we do not

specify p, this is true for all triple productions of the triple graph transformation system;

the topological order executes the applicable derived creation rules without failure.

 In addition, executing derived cancellation rules prior to derived creation rules

increases the efficiency practically. If we apply creation rules first, there may be a case

where a graph created by one creation rule of a triple production (p) is deleted by the

corresponding forced cancellation of p triggered by the cancellations of the triple

productions that p depends on. The back triggering operation in iteration k+1 of

Proposition 8 show the case. This just creates and deletes the graphs for nothing;

practically, it consumes unnecessary computational power. Our algorithm has better

performance than the reverse order (i.e., derive creation rules first, and cancellation rules

later).

 Finally, the following proposition shows the number of execution steps of our

algorithm so as to compare the efficiency with the worst case, O(n2).

Proposition 11. Given a triple graph transformation system with n triple productions

in its production set, the number of execution steps of our algorithm is O(n).

Proof) An algorithm that generates a topological order for an acyclic graph in O(n)

has been known (see [41]). In addition, step 2 and step 3 repeat the sub routines n

times. Since all steps run in O(n), the entire algorithm also runs in O(n). □

 77

4.6 Conclusion

 In order to show multi layer model is theoretically possible, throughout this

section, we prove the two key properties of TGG: recursive property, and determinism

property. It is relatively easy to prove the first property. The monotonic production of

triple production plays an important role in proving the properties. We reuse a number of

theorems that have already been proven in other literatures.

 The more significant contribution to is the second property: determinism property.

To our knowledge, this is the first attempt to explore collective behaviors of TGG in

terms of dependency and termination of graph transformation.

 First of all, we introduce additional derived transformation rules so as to deal with

more realistic situation of model transformation. Derived cancellation rules have been

introduced to handle deletion operations. In addition, we indentify cross-over case where

we need to use more than one triple production, which are related to one another, to

derived transformation rules. We proposed how to obtain derived transformation rules in

this case. We also find that the cross-over case causes a triggered creation issue, which

makes analysis of dependency of triple productions much more difficult.

 Second, we explore how derived transformation rules affect one another. In

Definition 26, we define dependency between triple productions. Because of the

monotonic production of TGG, we can assume one way dependency. The one way

dependency allows us to develop an acyclic dependency graph, which shows the

dependencies among all triple productions in a triple graph transformation system.

 Third, we show a set of triple productions is terminating even if triggered

creations occur. Lemma 4 shows that if a triple production p2 depends on another triple

production p1, a triggered creation from p2 to p1 does not happen. This property ensures

the termination of TGG by preventing a loop of triggered operations. With the

termination property and connectivity assumption (Assumption 1), we proved the

determinism property of TGG using local confluence theory.

 78

 Finally, we suggested an algorithm to get an efficient execution order of a set of

triple productions using a topological order of the dependency graph.

 In the following chapters, the key results of this chapter play important rules in

implementing multi layer syntactical model transformation.

 79

CHAPTER 5

SYNTACTICAL MODEL TRANSFORMATION

 This chapter demonstrates the syntactical model transformation using the classical

transportation problem, a typical problem in optimization. We use a concrete scenario

where we store the data for the problem in an RDB and solve the optimization

formulation using AMPL. As the technical framework, we use EMF (Eclipse Modeling

Framework) because a great number of groups are actively developing various tools

supporting formal modeling based on the common meta-modeling framework, Ecore [27].

 We survey existing approaches for text-based representation of a model. Among a

number of types of approaches, we use an EBNF-based hybrid approach because it

supports a complete meta-model that we mentioned as the key part of the syntactical

model transformation. The approach allows us to define the complete meta-model by

incorporating the syntax definition capability of EBNF language into the semantic meta-

modeling framework. We use Xtext, which is based on EMF, as the implementation tool

[18].

 We implement the syntactical model transformations for two different tools: MS

AccessTM and AMPL. Technically, they have different syntactical bases; MS AccessTM is

based on XML, whereas AMPL is based on plain text files. It turns out that our approach

more efficiently supports MS AccessTM than AMPL. To shed light on desired aspects that

a good syntactic modeling framework should have, we explore what aspects of XML

contribute to the efficiency.

Our contribution to improvement of general EBNF-based approach

 We practically improve the EBNF-based approach. To our knowledge, no existing

tool of this approach allows us to define a syntax that represents a reference between

classes. In the meta-modeling framework, the reference plays a very important role in

 80

describing relations between classes. Other modeling domains have analogous concepts

for the same purpose, .e.g., foreign key in RDB domain, and indexing between sets in

optimization domain. In spite of the conceptual similarity, tools use different syntaxes for

the reference concept. Therefore, the EBNF-based approach has to be able to

accommodate the syntactical diversity of the reference concept. To address this issue, we

suggest an advanced way to define the syntax of the identifier of the referred class using

the attributes of the class. As a demonstration, we apply this suggestion to Xtext.

5.1 Demonstration Example: Transportation Problem

 In Chapters 5 and 6, we use a simple transportation model example, which is

represented in both a relational database (RDB) and an optimization analysis tool. This

simple example allows us to test whether our approach can support transformation of a

key advanced modeling concept, a compound object that is defined by a combination of

other objects. For example, ‘Link’ of the transportation problem is defined by a

combination of an origin and a destination. Different modeling standards differently

describe the compound object; e.g., a special type of table that links other tables using

foreign keys in RDB, a compound set in optimization modeling, an association class in

object oriented modeling. We demonstrate that our approach can cope with those

differences.

Table 3. List of Technical Tools

Tool Purpose
EMF (Eclipse Modeling Framework) Meta-modeling framework
Ecore Meta-model of EMF
ATL Model transformation
AMPL Optimization modeling language
MS AccessTM Relational database
Xtext Syntactical grammar definition tool
XML/XSD Syntactic representation of MS AccessTM

 81

 In order to demonstrate our suggested approach, we use the scenario depicted in

Figure 29 with technical tools listed in Table 3. In the scenario, models and instance data

are developed and transformed in three steps:

(1) A domain expert develops the transportation problem model as a PIM

(Platform Independent Model) using Ecore. The model is transformed to a schema

model of RDB and a mathematical problem description in AMPL.

(2) Instance data is populated to the database tables defined by the schema models

transformed in step 1. Since RDB is the most common data repository in practice,

we assume that instance data is created and stored in RDB.

(3) The instance data of RDB is transformed to an AMPL data model for

optimization analysis. The mapping rules that are necessary for the transformation

are generated from the result of the model transformation of step 1 through the

multi layer model transformation.

Figure 29. Implementation Scenario

 82

 Throughout the scenario, we apply our multi layer model transformation (the next

chapter) and syntactical model transformation (this chapter) in the following ways:

(1) Multi layer model transformation is used to generate transformation rules for

step 3 from the result of step 1. In step 1, we obtain correspondence associations

as the result of the model transformation. The multi layer model transformation

converts those associations into executable model transformation scripts that

execute step 3, instance data integration. We will demonstrate this in Chapter 6.

(2) Syntactical model transformation is used to make user models and instance

data compatible with the target tools in both M1 and M0. On the RDB side, the

syntactical model transformation uses ATL to generate MS Access compatible

schema model (M1) and record data (M0) in XML documents; in Optimization

side, it uses Xtext to generate AMPL compatible mathematical description (M1)

and instance data (M0) in the form of plain text. This chapter demonstrates the

syntactical model transformation.

5.2 Linguistic Analysis of Target Modeling Domains

 In order to properly apply our approach to the target modeling domains: RDB and

optimization, we need to understand their modeling concepts and syntactic

representations in terms of the layered language formalism. We analyze them in three

language layers – meta-model, user model, and instance data - using a simple

transportation example. In addition, we provide the syntactical representations of the

models in terms of implementation tools: MS-Access for the RBD domain, and AMPL

for the optimization domain.

Meta-model (M2)

 A meta-model is a set of fundamental constructs which are used to describe a

problem in a domain of interest; it is an abstract language used for developing domain

 83

specific models. The optimization domain has set-oriented meta-model, whereas

relational database (RDB) domain has table-oriented meta-model.

 An optimization model is expressed using mathematical constructs. Parameters,

variables, and equations are indexed over sets; hence, these can be regarded as the

elements of the meta-model of the optimization domain. Table 4 lists the key components

of the set-oriented meta-model from [13], which refers specifically to AMPL, but this set-

oriented concept is commonly used in most major optimization modeling languages.

Table 4. Key Components of Set-oriented Meta-model

Component Definition

Set a collection of objects with common properties

Parameter an attribute that characterize a set

Variable a variable determined by solving the optimization problem

Constraint a logical expression of the condition that must be satisfied

Index

Relation

a relation that links a parameter, a variable, or a constraint to

a set of objects that hold them

 Figure 30 depicts a class diagram that describes the set-oriented meta-model. This

diagram shows relations among the key components, and their attributes. The compound

set is a combination of other sets and is used to define parameters or variables that do not

belong to a single component. In the transportation example, a transportation link is a

compound set; it is described as an ordered pair of a supply node and a demand node. The

compound set refers to the base sets through ‘referenceSet’ relation. Hereafter this model

will be used as the meta-model of the optimization domain.

 84

Figure 30. Class Diagram of Set-oriented Meta-model

 Figure 31 displays the meta-model of RBD domain. This meta-model is simple,

but it has been proven to have enough expressiveness to capture almost all schema

models; it is commonly accepted by all relational database tools.

Figure 31. Class Diagram of Table-oriented Meta-model

 85

 We use these two meta-models throughout our implementation. As mentioned,

these meta-models define modeling concepts with which the domain problem is

described in the subsequent user model.

User model (M1)

 In the user model layer, we concretely describe the transportation problem. The

objective of the transportation problem is to determine minimum cost material flows that

meet demands at destination nodes without exceeding capacity of supplying nodes, or the

capacities of links between the nodes.

Figure 32. Transportation Model

 Figure 32 gives both graphical and mathematical representations of the

transportation problem. The source supplies and destination demands are remarked on

nodes as positive or negative number. Arrows between the nodes represent possible links

through which the materials can flow. Numbers noted on the arrows are transportation

costs per unit material flow represented in the mathematical model as cij. Constraint (1)

and (2) describe supply and demand balance conditions, i.e. a summation of outgoing

material flows (or incoming material flows, respectively) of a node has to be equal to the

supply (or demand, respectively) of the node. represents the amount of a flow from

 86

node i to j. Thus it is straightforward that (or , respectively) is the summation

of all outgoing flows from node i (or the summation of all incoming flows to node j,

respectively).

 In the optimization domain, the mathematical representation in Figure 32 is

captured using the set-oriented meta-model (Figure 30). Figure 33shows the model in

AMPL syntax. The correspondence between the mathematical representation and the

AMPL model is obvious, except for the link representation. The mathematical model

describes the properties of the link by a combination of two subscript indexes (i.e., i and

j), whereas AMPL explicitly defines Link as a compound set.

Figure 33. Transportation User Model in AMPL Syntax

 The AMPL model of Figure 33 captures the underlying structure of the

transportation problem without specific data. For example, the set Supply is just an

abstract declaration of supply nodes without specifying concrete instance, and constraint

(1) is imposed on the abstract declarations. This absence of specific instance data allows

us to reuse the user model for other problems within the domain; we can obtain the

concrete descript of our problem simply by filling the user model with problem specific

instance data. In that sense, the use model captures domain specific knowledge in a

reusable way. This is the reason people call the user model ‘domain specific model’ as

well.

Set Supply; # Supply nodes
Set Demand; # Demand nodes
Set Link within{ Supply, Demand }; # Possible linkages
param s {Supply}; # amount of available materials
param d {Demand}; # amount of required materials
param c {Link}; # cost of links
var x {Link}; # amount of material flows
minimize Total_cost:

sum {(i,j) in Link} c[i,j] * x[i,j];
subject to Supply{i in Supply}:

 sum {j in Demand} x[i,j] ≤ s[i]; --------------(1)
subject to Demand{j in Demand}:
 sum {i in Supply} x[i,j] = d[j]; --------------(2)

 87

 Figure 34 depicts the RDB schema model of the transportation problem.

Rectangles represent tables, while texts in the rectangles are columns of the tables. Edges

show foreign key relations between the columns in different tables.

Figure 34. Transportation User Model in RDB Schema

 Although the visual representation is easy to understand, we need the textual

models of the schema for model transformation. MS Access supports various export and

import formats. Among them, we use XML because it is a widely used standard textual

data format. Recently, most COTS tools use XML as their primary data format, or input

and output format. Furthermore, various APIs and tools have been developed for all

important programming development environments such as JAVA, .NET, etc. Therefore,

it is practically important to see how well model transformation handles XML format.

Figure 35. Transportation User Model in XSD

 88

 Figure 35 represents ‘Link’ table of Figure 34 in the format of XSD. ‘Link’ table

itself is defined using complexType, under which all the columns of the table are defined

as xsd:element. The correspondence between the RDB schema and the XSD definition is

quiet clear. The XSD also specifies how to describe XML in M0. We will discuss this in

details in section 5.3.

 The transportation problem is described differently in the two domains from two

perspectives. First, different meta-models lead to different descriptions; the transportation

problem is captured in different modeling concepts. Second, RDB model does not have

constraints. As mentioned, mathematical constraints are specific to optimization model.

We capture the constraints only where they are needed.

Instance Data (M0)

 The instance data instantiates the abstract declarations defined in the user model

(M1) by assigning concrete data. Figure 36 shows the instance data in AMPL data syntax.

Figure 36. Instance Data in AMPL Syntax

 The APML instance data specifies only sets, and parameters. This

is because constraints can be determined at runtime of an optimization solver once

parameters and sets that index the constraints are given. For example, the supply balance

condition of supply node, S1, can be expressed as ‘ ’. Link set, which

indexes variable x, specify node S1 is connected with node D1 and D2; the right term of

the equation is the summation of the material flows in the two links. Supply capacity is

given by parameter s. In this way, an optimization engine can generate the instances of

the constraint equations at runtime. This allows the modeler to avoid effort to repeatedly

Set Supply := S1, S2, S3 ; ---------------------(1)
Set Demand := D1, D2, D3 ; ---------------------(2)
Set Link := {S1,D1} {S1,D2} {S2,D1} {S2,D2} {S2,D3} {S3,D2} {S3,D3}; --(3)
param s := S1 5 S2 6 S3 2;
param d := D1 3 D2 6 D3 4;
param c := S1 D1 2 S1 D2 5 S2 D1 7 S2 D2 3 S2 D3 10 S3 D2 4 S3 D3 3;

 89

write down the constraint equations with the same pattern. It makes a significant

contribution to efficiency in developing optimization models.

Figure 37. Instance Data in XML Syntax

 In RDB, the instance data are stored as records of the tables defined in the

database schema of M1. As the textual representation of the data, we also use XML for

the same reason of M1. Figure 37 shows part of the instance data in XML. It has two

links in top level. All the attributes of links are presented as nested elements, which are

defined as xsd:element in Figure 35. Note that the rules with which the XML document

must comply are defined in the XSD of Figure 35. The linguistic relation between the

XSD and the XML will be discussed in the next section.

5.3 Syntax Generation in Modeling Framework

 The syntactic issues identified above arise in many practical cases where COTS

tools are involved. In order to address the issues, there have been efforts to incorporate

syntactic manipulation capability into meta-modeling frameworks; e.g., OMG has issued

an RFP for model to text transformation based on MOF [42].

 There are two streams of these efforts. The first stream is model-to-text

transformation, in which textual representations are generated by associating formal

models with predefined string patterns. There are a number of branches within the stream

depending on the way of specifying the associations [43].

<Link>
<origin>S1</origin>
<destination>D1</destination>
<c>2</c>

</Link>
<Link>

<origin>S1</origin>
<destination>D2</destination>
<c>5</c>

</Link>

 90

 Although these approaches are easy to use, there is a significant drawback; the

approaches cannot be used for importing textual models. The main reason is that the

association processes do not have formal ways to define language grammars; that is, the

string patterns are just defined by mixtures of quoted text streams and dynamic parts

referring to the information contained in the models without any grammatical definitions.

The grammatical definitions are not critical when writing the textual models because the

writing processes can be done simply by putting together the patterns and the information

from the formal models. However, the reverse process, importing the models, is not

simple; it requires a parser that understands input streams and can convert them into

abstract models. This parser cannot be generated without formal grammatical definitions.

 A second stream that addresses the lack of grammatical formalism has been

suggested by several research groups [18, 44-46]. Basically, this stream incorporates

language grammar definition forms, such as BNF (Backus-Naur Form) or EBNF

(Extended BNF), into the meta-modeling frameworks. BNF and EBNF are meta-syntaxes

that define context-free grammar of languages so that there is no ambiguity regarding

what is allowed in a language and what is not [47]. With mathematical language theories,

unambiguous grammars are used to automatically generate a parser for the languages.

The key point of this second stream is to incorporate this capability of generating a parser

into the meta-modeling framework. As an example of this stream, we describe how Xtext

[18] works, because we use it for our implementation.

Hybrid Approach (Xtext)

 Xtext implements the complete meta-model concept by combing an EBNF-based

language development framework with EMF (Eclipse Modeling Framework), which is

one of the major meta-modeling frameworks [48]. The key of the integration is a new

grammar definition language that is extended from EBNF so that it can define features of

EMF; that is, the extended EBNF is able to define not only a syntactic model for the

 91

language grammar but also semantic definitions for the meta-model. That is what the

complete meta-model has to do. Interestingly, EBNF and the meta-models (EMF, and

MOF) have a close correspondence, which has been identified in [45]. Due to the

correspondence, the extension has been accomplished by simply adding ‘Assignment’

that deals with definitions of attributes and cross references (e.g., name=ID, and

indexedBy=[Set] in Figure 38). The Xtext framework converts the hybrid grammar

definition into two components: an ANTLR parser [49] from the syntactical grammar,

and a Ecore model from the semantic definitions. Technically, the two components are

implemented in Java; the set of Java classes semantically has the equivalent structure to

the Ecore, and the Java classes are able to parse and serialize models in accordance with

the syntactic specification through the generated ANTLR parser.

 The hybrid characteristic of Xtext enables us to take advantage of both EMF and

EBNF. On the one hand, the generated Ecore model allows us to work with any EMF-

based tools independently of the syntactic model. On the other hand, the generated parser

enables us to read and write the permanent representation of the Ecore model in

accordance with the grammar.

Figure 38. Hybrid Operation of Xtext

 Figure 38 shows how a simple rule in an Xtext script generates the above two key

components. For the Ecore model, ‘Parameter’, which is the name of the Xtext rule, goes

to the name of the generated class. This rule also has the two assignments, i.e., ‘name’

 92

and ‘indexedBy’. They turn to a simple attribute and a cross-reference of the class,

respectively. The cross-reference, ‘indexedBy’, refers to another class, ‘Set’. When it

comes to the syntax model, the generated parser puts the quoted strings (i.e., ‘param’, ‘{‘,

and ‘};\n’) into the syntax model as they are. For the assignments, it puts assigned values

into the appropriate places; in the example, the second string, ‘cost’, is a value for the

simple attribute, name, while ‘Link’ between brackets is the name of a ‘Set’ object that

the cross-reference points to. For more detail, see [18].

Special Case: XSD-based Approach for XML

 An XML schema document (XSD) is a document that defines schema for XML

documentation [50]. The schema describes a set of rules that valid XML documents must

conform to. The schema is used not only to populate XML documents in conformance

with the schema but also to validate XML documents.

 In this subsection, we describe the XSD-based approach - as a special case of the

hybrid approach. As mentioned, the hybrid approach has to support the two aspects of the

complete meta-model: the semantic meta-model and the meta-syntax (syntactic meta-

model). XSD allows us to more simply specify the both meta-models than the general

hybrid approach does. This is because the syntactic representation of an XSD construct is

standardized; once we select a XSD construct to define a semantic component, the

syntactic representation of the component is determined by the XML syntax standard. In

this sense, XSD enables us to define the complete meta-model of a XML document

without need of manually defining syntactic specifications.

 The following two figures show how the syntax standard works between an XSD

definition and its XML syntax. We use ‘Link’, one important component of the

transportation problem, as an example. In Figure 39, we define the semantics of ‘Link’

using XSD components; ‘Link’ itself is described as ‘xsd:complexType’, while ‘cost’ (or

capacity, respectively) is defined in ‘xsd:element’ (or ‘xsd:attribute’ respectively). The

 93

syntaxes of the semantic components are determined in accordance with the XML syntax

standard. ‘Link’ is represented as the top tag. ‘cost’, which is captured in ‘xsd:elment’, is

turned into the separate tag nested in the top Link tag (see (2) in Figure 40). In contrast,

‘capacity’, which is defined as ‘xsd:attribute’, is converted into the inner tag attribute of

the Link tag (see (1) in Figure 40).

Figure 39. XSD Definition of Link

Figure 40. XML Syntax of Link

 The above example shows we can manipulate the syntax of XML by choosing

different xsd components; semantically, both ‘cost’ and ‘capacity’ are simple attributes of

‘Link’, but they are described differently in Figure 40 because they are specified in

different xsd components.

 This standardization, of course, limits freedom of syntactic expression; the

general syntaxes that the standard does not cover cannot be expressed. However, as long

as we handle XML documents, the standardization makes it much easier to create the

syntactical model specification; indeed, the implementation of the syntactical model

transformation is much easier in XSD-based approach than in EBNF-based approach. We

will discuss the details in section 5.5. The XSD-based approach is practically attractive in

that more and more contemporary COTS tools support XML formatted data.

<Link capacity=10> -------------------------------(1)
 <cost>12.0</cost> --------------------------(2)
</Link>

<xsd:complexType name="Link">
 <xsd:sequence>
 <xsd:element name="cost" type="xsd:double"/>
 <xsd:attribute name="capacity" type="xsd:double"/>
 <xsd:sequence>
</xsd:complexType>

 94

5.4 Syntactical model transformation with AMPL

 We implement the syntactical model transformation for AMPL using a general

EBNF-based tool, Xtext. As discussed in chapter 3, in order to implement the syntactical

model transformation, we need to develop two complete meta-models for AMPL in M1

and M0. The following two figures shows the complete meta-model written in Xtext

script.

Figure 41. Xtext Script for the Complete Meta-model of AMPL User Model

 Figure 41 is the Xtext script that defines the complete meta-model of the user

model in optimization domain and AMPL syntax. In the notation introduced in Chapter 3,

it can be denoted as CM(UM(Optimization, Syn(AMPL,1)). By the definition of

complete meta-model, the Xtext script should define the two types of meta-models. On

the one hand, the Xtext script semantically describes the set-oriented meta-model shown

in Figure 30. On the other hand, the Xtext script syntactically specifies the set-oriented

meta-model in a way that the user model is written in the syntax of AMPL user model in

Figure 33.

 In Figure 41, ‘OptModel’ is the top element. It includes ‘Declaration’, which is

the super class of all other components (See line (1)); we can put any component under

the top element. ‘CompoundSet’ is the most important element. As mentioned, it is

formed by a combination of other base sets (see line 4). ComponentSet refers to the base

OptModel:
 (declarations+=Declaration)*; -------------------------------(1)
Declaration:
 Set | Parameter| Variable;
Set:
 SingleSet | CompoundSet;
SingleSet: ---(2)

'set' name=ID ';\n';
CompoundSet: ---(3)

'set' name=ID 'within {'
referenceSets+=[Set1] (','referenceSets+=[Set])* '};\n';
Parameter: --(4)
 'param' name=ID '{' indexedBy = [Set] '};\n';
Variable: ---(5)
 'var' name=ID '{' indexedBy = [Set] '};\n';

 95

sets through ‘referenceSets+=[Set]’. Unlike ‘Declaration’ in line (1), Set is surrounded by

[]. This means that the base sets are referred through a cross-reference, which does not

embed but does point to the base sets. In other words, [Set] is a list of pointers to base

sets. These pointers are surrounded by ‘{}’ and separated by ‘,’.

Figure 42. Xtext Script for the Complete Meta-model of AMPL Instance

 Figure 42 shows the Xtext script that defines the complete meta-model of AMPL

instance data, i.e., CM(IM(Optimization, Syn(AMPL,0)). Unlike the previous Xtext

script for AMPL user model, we put fixed string patterns (e.g., ‘Set Supply ≔’) in the

relation with the top component, ‘OptModel’, (line (1) and (2)), not within the definition

of the components themselves (line (3) and (4)). Therefore, these string patterns appear

once over multiple components embedded in the assignments of the top components, e.g.,

‘supplys+=Supply*’. This complies with the grammar of AMPL instance data where

more than one components of a type share the fixed string patterns. In Figure 36, supply

nodes (S1, S2, S3) share ‘Set Supply :=’ as the collective fixed string patterns. The above

Xtext script accommodates this structure well.

 We extend Xtext script in the following practical sense. Existing Xtext script has

no way to manipulate the identifier of a rule; i.e., ‘name’ is always used as an identifier.

OptModel:
 "Set Supply :=" supplys+=Supply* ";\n" ---------------------(1)
 "Set Demand :=" demands+=Demand* ";\n" ---------------------(2)
 "Set Link :=" links+=Link* ";\n"
 "param s :=" ss+=s* ";\n"
 "param d :=" ds+=d* ";\n"
 "param c :=" cs+=c* ";\n";
Supply: --(3)
 name=ID;
Demand: --(4)
 name=ID;
Link hidden(LinkIdRule): -------------------------------------(5)
 "{" supply=[Supply] "," demand=[Demand] "}";
s:
 indexedBy=[Supply] value=STRING;
d:
 indexedBy=[Demand] value=STRING;
c:
 indexedBy=[Link|"ByHiddenRule"] value=STRING;
LinkIdRule: --(6)
 "<supply> <demand>";

 96

However, in many cases, we need customized identifiers. In the AMPL instance data, the

identifier of a compound set is the combined string of identifiers of the base sets with

space separation; e.g., the identifier of Link (line (5)) is a combination of the identifiers

of supply set and that of the demand set. In order to support this, we introduce a rule-

based identifier which allows us to customize the identifier using the attributes of the rule.

Line (6) shows the identifier rule for Link rule defined in line (5).

Model Transformation for Generating the Complete Meta-model of AMPL Instance

 In Chapter 3, we suggest generating the complete meta-model of AMPL instance

data, CM(IM(Optimization, Syn(AMPL,0)), through a special model transformation,

instead of manually constructing it. As shown in Figure 42, the Xtext script contains

information that is specific to the transportation problem (e.g., Link, Supply, Demand,

etc). The fact that the problem specific information should be changed when switching to

other optimization problems makes our generation approach attractive.

Figure 43. Syntactic Common Pattern of Xtext Scripts for Single Sets

 This generation is possible because AMPL language grammar for instance data

(in M0) has the same syntactic pattern as shown in Figure 43. The left side shows two

Xtext scripts that specify the Supply set and Demand set, both of which are single sets.

Although they have different concrete syntaxes, they have the common syntactic pattern

shown in the right side; the fixed terms are exactly the same; and even the different terms

can be considered as the name of the single sets (i.e., Set.name). We can write the

common pattern from the right side of Figure 43 in terms of the meta-model of

optimization model (in M2).

 97

 This common syntactic pattern plays an essential role in developing the special

model transformation that generates the Xtext script. The model transformation is

developed in a way that captures the common pattern in mapping rules; e.g., the common

pattern in Figure 43 is used as the mapping rule for a single set. Figure 44 shows the

details of the mapping rule in an ATL script.

Figure 44. ATL Mapping Rule of Syntactical Model Transformation for Single Set

 Technically, the special model transformation is defined between the meta-model

of DSM (domain semantic model) and the complete meta-model of EBNF language, i.e.,

rule Set2Set
{
from
 ss : OPT!SingleSet
to
 ts : XTEXT!ParserRule -------------------------------------(1)
 (
 name <- ss.name, --(1-1)
 type <- ty, --(1-2)
 alternatives <-thisModule.createAssingment --------------(1-3)
 ('name','=',thisModule.getRuleCall

(thisModule.getRuleByNameFromTerminal('ID')))
),
 ec : ECORE!EClass --------------------------------------(3)
 (
 name <- ss.name
),
 ty : XTEXT!TypeRef
 (

classifier <- ec,
metamodel <- thisModule.topMeta

)
 do
 {
 thisModule.topMeta.ePackage.eClassifiers <- OrderedSet{ec};
 thisModule.addTopRelationForSet(ts.name,ts); -----------------(4)
 }
}

rule addTopRelationForSet(setName : String, setRule : XTEXT!AbstractRule)
{
do ---(5)
 {
thisModule.getTopRule().alternatives.elements
 <- OrderedSet{thisModule.createKeyword('Set ' + setName +' :='),

 thisModule.createAssingmentWithCard(setName.toLower()+'s','+=',
 thisModule.getRuleCall(setRule), '*'),
 thisModule.createKeyword(';\n')};

 }
}

 98

the set-oriented meta-model and CMM(Xtext) in our example. For the implementation,

we define the set-oriented meta-model, shown in Figure 30, using Ecore. In contrast, we

do not need to develop CMM(Xtext) because it has been provided by Xtext developers as

an Xtext script. Interestingly, the complete meta-model of the Xtext language is

recursively defined in an Xtext script. This is similar to the self description property of

meta-modeling frameworks; i.e., MOF (or Ecore, respectively) is defined by MOF (or

Ecore, respectively).

 In order to generate an Xtext script through a model transformation, we need to

handle the detailed semantics of the meta-model of Xtext language. Manipulating the

semantics is difficult because the semantics include a number of hidden parts that do not

explicitly appear in the Xtext script. For example, semantically, a ParserRule contains its

grammar expressions within an attribute, called ‘alternatives’; in Figure 44, we put an

assignment, which denotes ‘name=ID’ in line (3) or (4) of Figure 42, into the ParserRule

though the attribute, ‘alternatives’ in line (1-3). However, the Xtext script does not show

existence of the attributes in Figure 42. You can get the detailed semantics of Xtext

language from ‘Xtext.Xtext’ in Eclipse plug-in of the Xtext framework. ‘Xtext.Xtext’ is

the Xtext script that recursively describes CMM(Xtext).

 Figure 44 shows the mapping rule for a single set. It takes a SingleSet object as

the input, and generates the grammar rules shown in line (3) and (4) of Figure 42. The

output rule is declared as a ParserRule, (See line (1)). Although ParserRule itself does not

explicitly appear in the syntax of (3) and (4), it semantically plays a role of container that

includes all syntax parts of the rule in its properties.

 In line (1-1), the name of ParserRule is set as the name of the input object. This

name property appears as the declaration part of the grammar rule in Figure 42, i.e.,

‘Supply:’ (or ‘Demand:’ respectively) for (3) (or (4) respectively). Since this is

dynamically assigned by the property of the input object, what concretely appears in this

portion depends on the input object. Indeed, line (3) and (4) have different declaration

 99

words in our example. This dynamic assignment allows us to reuse this mapping rule for

different objects that have a common syntactic pattern. In contrast, (1-3) in Figure 44

creates “name=ID”, which is a fixed part. Although it looks complicated, basically, it

creates the fixed string using the semantic components of Xtext language.

 Line (4) is the post action, which is executed after the output object is created.

This allows us to carry out additional operations on the created output. In the script, the

post action links the created grammar rule of single set into the top element, ‘OptModel:’

in Figure 42. The line calls ‘addTopRelationForSet’, which generate the syntax of the

relation with ‘OptModel’. We already found the common pattern of the syntax in Figure

43. The function ‘addTopRelationForSet’ creates the concrete syntax based on the

common pattern. For the dynamic term - Set.name, the function takes setName as its

parameter.

Mathematical Equation

 Mathematical equations are how optimization models are conceptualized. Usually,

the analyst translates a system of mathematical equations into the language required by

the optimization solver being used. We suggest a way to capture mathematical equations

using a formal modeling framework. The formal description of mathematical equations is

important because the equations are described in different forms across various tools; e.g.,

AMPL and GAMS have slightly different syntax for mathematical equations. If the

equations are described in simply plain text, they can be used only for a particular tool. In

contrast, the formally captured equations can be converted into different forms through a

model transformation.

 This capability of manipulating the equations becomes more important in the case

that mathematical equations should be dynamically generated throughout a problem

solving process. For instance, in Benders Decomposition [51], the constraints of the

master problem are iteratively generated from the solutions of the sub problems.

 100

 In order to support formal modeling of mathematical equations, we develop the

following complete meta-model for arithmetic expressions. The following figure shows

the Xtext rules that define the complete meta-model for AMPL syntax.

Figure 45. Xtext Rules for Arithmetic Expression

 First of all, we define four types of primary expressions: parenthesized expression,

number, summation clause, and indexed variable (or parameter) (line (4)). Second,

multiplication is defined between two primary expressions (line (3)). Finally, expression,

in turn, is defined as an addition between multiplications (line (1) and (2)); the expression

can describe formulations that combine the primary expressions with additions or

multiplications. Interestingly, the first primary expression type (parenthesized expression)

puts the expression back to the primary expression again (line (4-1)); the expression can

be a primary type expression if it is enclosed in parentheses. This means any expression

can be part of another expression. This recursive property allows us to describe any

general arithmetic expressions using this meta-model.

Expression: ---------------------------------------(1)
 Addition;
Addition returns Expression: -----------------------(2)
Multiplication (({Plus.left=current} '+' | {Minus.left=current} '-
') right=Multiplication)*;

Multiplication returns Expression: ------------------(3)
PrimaryExpression (({Multi.left=current} '*' | {Div.left=current}
'/') right=PrimaryExpression)*;

PrimaryExpression returns Expression: --------------(4)
'(' Expression ')' | --------------------------------(4-1)
{NumberLiteral} value=NUMBER |
'sum' {SummationCall} '{' over=IndexofSet '}' '(' exp=Expression
')' |
{IndexedDeclar} decl=[Declaration]'[' index += [IndexofSet] (','
index += [IndexofSet])* ']';

 101

Figure 46. Xtext Rules for Constraints and Index

 We introduce two additional concepts to incorporate arithmetic expressions into

an optimization model as constraints. The first concept is, of course, a constraint; it

consists of the left hand side, the right hand side, and the operation between them. We

define a cross-reference ‘forall’ to specify the sets that the constraint is imposed on. The

second concept is index letter for sets and variables. In an optimization model, the index

letters are frequently used simply to refer to sets. We define two ‘indexofSet’ rules for a

single set and a multi set respectively.

 We demonstrate how efficiently the complete meta-model of arithmetic

expression deals with constraints in the following two steps.

 In the first step, we create the constraints of the transportation problem in Figure

33, and add them into the optimization model generated by the model transformation with

PIM, i.e., MTM(2). MTM(2) cannot generate the constraints simply because the PIM, the

source model, does not explicitly describe the constraints. The constraints are

optimization specific components; they should be created in the optimization domain. In

our implementation, we use the Java classes generated from the Xtext script that defines

the complete meta-model of arithmetic expression in Figure 45 and Figure 46.

Constraint:
'Subject to' name=ID '{' forall += IndexofSet (',' forall +=
IndexofSet)* '}:' lhs = Expression opt=('=' | '=>' | '=<') rhs =
Expression ';\n' ;

IndexofSingleSet:
name = ID 'in' indexedSet = [Set];

IndexofMultiSet:
'(' name += ID (',' name += ID)* ')' 'in' indexedSet = [Set];

 102

Figure 47. Creation of Supply Balance Constrain in Java

 The above figure shows the Java code that creates supply side balance equations.

The Java classes are generated from the semantic definitions of the Xtext script in Figure

46, i.e., the parts not surrounded by quotations; it is not difficult to recognize the Java

classes have semantically identical structure with the Xtext script. These Java classes

hide all the detailed syntactic specifications from us. We can use the Java classes without

any knowledge of the syntactic specifications. This demonstrates how easily we can

incorporate the constraints model into general programming languages. This makes it

efficient for us to use our optimization model in general programming environment,

which is usually demanded in many practical problem solving cases.

 In the second step, we generate the syntactical representation of the semantic

optimization model (DSM(Opt)) we obtained through the execution of MTM(2) and the

additional creation of constraints in the previous step. We mentioned that a formal

descript of a mathematical expression can be reused for various tools by converting the

formal description into different syntactic representations. In order to demonstrate the

reusability of our mathematical constraint model, we create two different syntactic

representations of the optimization: AMPL syntax, and LaTex. Although LaTex is not an

optimization tool, we select it because it is widely used as a mathematical expression

authoring tool.

 We develop Xtext scripts for both tools in a way that shares the common semantic

model. The following simple example shows how it is done. All we need to do is to

differentiate the syntactic parts, while keeping the semantic parts in common. The only

Constraint c2= outputfactory.createConstraint();
c2.setName("SupplyBalance");
IndexofSingleSet indexOfLink2 =
outputfactory.createIndexofSingleSet();
indexOfLink2.setName("i");
indexOfLink2.setIndexedSet((Set1)getObjByName((OptModel)topCopy,
"Supply"));

 103

difference in the examples is ‘\\’ in front of ‘in’. In this way, we can accommodate all

syntactical differences without changing the semantics.

Figure 48. Comparison of Xtext Rules for AMPL and LaTex

 Since the both Xtext scripts have the exactly same semantic model, they have the

equivalent set of Java classes; DSM(Opt) can be use for the both tools. The syntactical

differences between the tools are reflected in the parsers generated from the syntactic

specifications of the Xtext script. These different parsers result in different syntactical

representations from the same semantic model, DSM(Opt).

Figure 49. Syntactical Representations in AMPL and LaTex

 The scripts in Figure 49 show the two different syntactic representations of the

supply balance constraint for AMPL and LaTex. In addition, we put the visual

representation of the constraint that LaTex complier generates in a PDF. This is a

example where a formal mathematical model is used for computation in an optimization

solver and documentation in an authoring tool.

For AMPL
Subject to SupplyBalance { i in Supply }: sum { j in Demand } (x
[i , j]) =< s [i] ;

For LaTex
$\ \sum _{ j \in Demand } (x _{ i , j }) =< s _{ i } \forall{ i
\in Supply } $: SupplyBalance \\

Visual Representation in LaTex

For AMPL
IndexofSingleSet:
name = ID 'in' indexedSet = [Set1];

For LaTex
IndexofSingleSet:
name = ID '\\in' indexedSet = [Set1];

 104

5.5 Syntactical model transformation with MS AccessTM

 We implement the syntactical model transformation for MS Access using an

XSD-based approach. This approach has two advantages over the EBNF-based general

approach: it is much easier to develop the special model transformation for generating the

complete meta-model of instance data; more importantly, the generated the complete

meta-model can be used as a user model. The second advantage makes it unnecessary for

us to separately develop the complete meta-model of the user model.

 The first advantage is attributed to the syntax standard of XSD/XML, which we

discussed in section 5.3. In the EBNF-based approach, model transformation developers

have to be concerned about even very trivial syntax elements, such as parenthesis,

separator, etc. Moreover, as mentioned, the EBNF language has a lot of hidden semantic

parts. These all make it very difficult to develop a model transformation for the EBNF-

language. Figure 44 visually shows the complexity of the development; creating just two

lines of syntax specifications for a single set object requires a quite lengthy script with

complicated syntax specifications. The length is much longer if we include all sub-

functions that the mapping rule uses. The syntax standard of XSD/XML frees developers

from describing all these complicated details. This is because once modelers determine

XSD constructs to describe the meta-model, the syntactical details can be automatically

generated by the syntax standard.

 105

 Figure 50. Syntactical Model Transformation to MS Access

 This figure shows a model transformation that converts an RDB semantic model

to an MS-Access specific syntactic model in XSD format. The mapping rule of the model

transformation links semantic components with XSD constructs, e.g., ‘Table’ (or

‘Column’ respectively) is mapped to ‘ComplexType’ (or ‘Element’ respectively).

Although this simple mapping rule is defined without specifying syntax, the syntax

standard of XML enables the model transformation to generate a valid XSD

representation in M1. This mapping is much simpler than that of general EBNF-language

(Figure 44) in terms of complexity of defining syntactic specifications and mapping rules.

 The meta-model of the target side is the complete meta-model XSD, i.e.,

CMM(XSD). Interestingly, CMM(XSD) is defined by another XSD model; it is

analogous to Xtext, in which a special Xtext – Xtext.Xtext - recursively defines the Xtext

language. Likewise, the XSD language itself is specified by XSD; this is technically

possible because XSD is a type of XML documentation. W3C, which is responsible for

 106

developing the XML standard, defined XSD.XSD [52]. We reuse the XSD.XSD in our

implementation.

 The second advantage of the XSD-based approach is that it reduces the effort to

manually develop a complete meta-model of a user model (CMM(UM)), which is the

first step in Figure 7. We capitalize on this advantage by reusing the result of step 2 of

Figure 7, CMM(IM), as the user model in M1. Since the user model is generated as the

byproduct of step 2, we do not need to separately construct CMM(UM) for the user

model. However, this approach can be used in limited situations. In order to reuse

CMM(IM) as the user model, CMM(IM) and the user model should be equivalent; that is,

given a tool T in a tool domain TD, CMM(IM(TD,syn(T,0))) = UM(TD,syn(T,1)).

 Practically, this condition means that a tool has to use XSD to specify the schema

of XML instance of its user model. This is technically viable because XSD has equivalent

expressiveness to class diagrams in UML [53]; XSD can express the same model as much

as a class diagram can. Furthermore, XSD includes all semantic information that is

necessary to define the user model because it is the complete meta-model of instance data.

If a tool uses XSD to define its user model, it can provide a user model definition

framework at no cost. Because of this, XSD plays roles of both the meta-model for the

user model and a complete meta-model of XML documents in many COTS tools.

 MS AccessTM is a good example of this situation. It allows us to define a database

schema, which is a user model in RBD domain, by importing an XSD file; this XSD file

is used to define the XML format in which the database can import and export its records.

The following figure depicts the two roles that the XSD plays as the complete meta-

model of XML of M0 and the schema model of M1. Thanks to the dual roles of XSD, a

model transformation (SM(2)) is able to generate both schema and records in the MS

Access compatible syntax.

 107

Figure 51. The Dual Roles of XSD in the Syntax of MS Access

 However, MS Access has a technical shortcoming. In RDB domain, foreign keys

play an important role in establishing reference relations between columns across tables;

the reference relations are crucial to describe an object oriented model in a relation

database. This means the foreign keys should be taken into account in the model

transformation with object oriented modeling domains. XSD is able to accommodate well

the foreign keys using a combination of ‘Key’ and ‘RefKey’ as shown in Figure 50.

However, MS Access does not have capability of handling the foreign key concept in

XSD import and export. Although the model transformation (SM2) generates the foreign

keys using ‘Key’ and ‘RefKey’, MS Access ignores them.

 Because of this technical issue, we cannot fully demonstrate our approach when

the model has to deal with the foreign key relation. Unfortunately, our transportation

example falls in this case; ‘Link’ refers to ‘Supply’ and ‘Demand’ through foreign keys

in RDB domain. We can complete the demonstration for components without foreign

keys such as ‘Supply’ and ‘Demand’.

 108

5.6 Conclusion

 In this chapter, we proposed the demonstration scenario where RDB and

optimization modeling domains are used to describe the transportation optimization

problem. In the scenario, we demonstrated the syntactical model transformations, which

generate the user models (M1) and the instance data (M0) in compatible forms to the

target implementation tools: MS Access for RDB domain, and AMPL for optimization

domain.

 As the first step, we analyzed both modeling domains semantically and

syntactically in terms of the layered language formalism. In M2, we developed the set-

oriented meta-model (or the table-oriented meta-model respectively) for optimization

domain (or RDB domain respectively). We also showed how the transportation problem

can be described in M1 and M0; semantically, the meta-models in M2 are used to

describe the user models (in M1) of the transportation problem, and then the user model

is specified by instance data to describe an instance of the transportation problem in M0;

syntactically, we reviewed how those models are described in the syntaxes of the

implementation tools.

 Understanding of the linguistic characteristics of the modeling domains, we

developed the complete meta-models, which are the key part of the syntactical model

transformation. Technically, we use two different types of frameworks to define the

complete meta-models; Xtext framework is used for the optimization domain, while

XSD/XML framework is used for the RDB domain. We view XSD/XML framework as a

special case of Xtext framework; we found that XSD/XML framework allows us to very

efficiently build up the complete meta-model in a limited condition where a modeling

tool use one XSD file as its user model as well as the complete meta-model of XML

documents written in M0.

 For the optimization domain, we developed the complete meta-model of

arithmetic expression in AMPL syntax. This complete meta-model is incorporated into

 109

the set-oriented meta-model through indexing letters. Using the compete meta-model, we

generated the mathematical constraints of the transportation problem as optimization

domain specific components.

 In addition, we demonstrated the reusability of the formally captured arithmetic

models. We developed another complete meta-model in LaTex syntax in a way that has

the same semantic meta-model but has different syntax specifications. We have shown

the mathematical constraints described in the shared semantic meta-model can be

converted into the two different syntactical representations through the different complete

meta-models. We believe that the reusability can play an important role in data exchange

among the various computation tools that collaboratively solve an optimization problem;

they share the same problem but capture some part of the problem in different syntaxes.

 110

CHAPTER 6

MULTI LAYER MODEL TRANSFORMATION

 We complete the scenario introduced in Chapter 5 by implementing the multi

layer model transformation incorporating the syntactical model transformation

implemented in Chapter 5.

 We start by showing that we can apply the correspondence model-based approach

to our scenario. In Chapter 4, we conclude that we can use the approach if a model

transformation model in M2, MTM(2), can be described in TGG. We show that our

scenario falls into this case by completing step 1 of Figure 29 using TGG; i.e., we use

TGG to define two model transformation models with the target domains RDB, and

Optimization in M2.

 In the rest of this chapter, we implement the correspondence model-based

approach in the context of our scenario. The approach converts the correspondence

associations that the above model transformations in step 1 generate into executable ATL

model transformation scripts using Xtext.

6.1 General Implementation Process of Correspondence Model-based Approach

 Although we implement the correspondence model-based approach in our

technical environment, we suggest a general implementation process. The process

consists of three steps:

 i) develop the meta-model of correspondence model

ii) develop the complete meta-model of the model transformation tool that

executes the model transformation model in M1 – MTM(1)

iii) build a model transformation model between the two meta-models defined in

the previous steps.

 111

 We suggest step 1 in order to make the correspondence model independent of the

model transformation tool for MTM(1). Since the meta-model of the correspondence

model is one of the source meta models of MTM(2) (See Figure 10 in Chapter 3), if the

meta-model depends on the model transformation tool, MTM(2) also becomes dependent

on the tool.

 This dependency is undesirable in that MTM(2) is a semantic transformation

between user models in M1. It is intended that the semantic transformation should deal

with domain specific knowledge of engineering problems; that is, it should be

independent of technical specifications of the tools used in the implementation. Moreover,

the independence allows us to reuse the meta-model of the correspondence model; that is,

the meta-model we propose can be reused for other circumstances where different target

domains and implementation tools are used. This makes the approach more efficient.

 All model transformation tool specific aspects are incorporated through steps 2

and 3. In step 2, the complete meta-model of the model transformation tool is intended to

define tool specific syntax for the key elements of the tool independent correspondence

model developed in step1. Step 3 makes a model transformation model between the key

elements and the corresponding syntax, and executes it to generate an executable model

transformation script.

6.2 Model Transformation Models in M2: MTM(2)

 We present two TGG-based model transformation models in M2 with the two

target domains of our scenario - RDB, and Optimization. Practically, these model

transformation models are used to implement step 1 of the scenario (See Figure 29 in

Chapter 5). Theoretically, these ensure that we can apply the correspondence model-

based approach to our scenario because of the conclusion we proved in Chapter 4.

 We present the TGG mapping rules using the visual representation of triple

production introduced in Figure 17. The visual representation is much easier to

 112

understand than the mathematical definition of triple production is. This helps us easily

figure out the mapping rules. Technically, we use ATL scripts to describe the TGG rules.

We use some part of the ATL scripts to explain key points.

 In the scenario, we use EMF as an object oriented (OO) modeling domain for

describing PIM. For more general discussion, we use general terms of general OO

modeling instead of EMF specific terms.

Model Transformation Model with RDB Domain

 We present mapping rules between the Table-oriented meta-model defined in

Section 5.2 and OO modeling domain. This following figure shows the two typical

mapping rules for RDB domain: Class to Table, and Attribute to Column. The before

condition of TP1-2 ensures that an attributed is converted into a column only when their

parents (Class and Table, respectively) already have a mapping relation created by TP1-1.

This prevents columns from being added to irrelevant tables.

Figure 52. Triple Production for RDB Domain – Part 1

 Figure 53. shows the mapping rule that handles a reference relation of a class. In

the OO modeling domain, a class refers to other classes through the reference relations,

which is mapped to foreign key in RDB domain. In the figure, we put notes on edges in

order to make the rule clear. The class on the upper left corner contains the reference

 113

through which it refers to the other class on the lower left. For the reference, the mapping

rule creates the foreign key relation from the table on the upper right to the table on the

lower right.

Figure 53. Triple Production for RDB Domain – Part 2

 Unfortunately, this foreign key relation is not fully implemented in our

demonstration because of the technical shortcoming of MS Access. As mentioned in

Chapter 5, although XSD is able to accommodate the foreign key relation, MS Access

does not provide any way to take the foreign key relation in XSD format. For this reason,

we implement our demonstration only for the following optimization domain. Since we

use more general EBNF-based approach in the optimization domain, it is enough to

demonstrate our concept.

Model Transformation Model with Optimization Domain

 We present mapping rules with the Set-oriented meta-model defined in section 5.2.

Unlike the RBD domain, a class is mapped into different components depending on

whether it has references or not. TP2-1 has a negative condition; if a class does not have

any reference, TP2-1 generates a SingleSet. In contrast, if a class has references, TP2-2

creates a CompoundSet. One example of the second case is ‘Link’ of the transportation

problem. In our transportation problem description (Figure 32), ‘Link’ refers to ‘Supply’

 114

(or ‘Demand’ respectively) as its source (or destination respectively). The OO domain

expresses these relations as reference relations from Link class to Supply class or

Demand class, whereas optimization domain uses a compound set with ‘referenceSet’

relations to describe the relations.

Figure 54. Triple Production for Optimization Domain – Part 1

 Two triple productions in Figure 55 show two different transformation rules for

‘Attribute’. If it is marked as derived, it is converted into ‘Variable; otherwise, it is

converted into ‘Parameter’. An attribute can be a parameter or a variable depending on

the problem we try to solve. If the attribute is given as part of the problem, it should be

considered as a parameter, whereas if the attribute is what we determine as the solution of

the problem, it is a variable. In order to indicate this, we use ‘derived’ property.

 Note that we use ‘Set’ on the right side instead of ‘SingleSet’ or ‘CompoundSet’.

Since ‘Set’ is the super class of ‘SingleSet’ and ‘CompoundSet’ (see Figure 30), these

rules are applicable to the both classes. Using a supper class allows us to avoid repeatedly

developing mapping rules for all the sub classes if they have the same rules.

 115

Figure 55. Triple Production for Optimization Domain – Part 2

Figure 56. Triple Production for Optimization Domain – Part 3

 The above mapping rule is for ‘CompoundSet’. If a class refers to other classes

through references, the corresponding CompoumdSet, which has been transformed from

the class, is associated with the sets that have been generated by the referred classes.

 In this section, we have shown that we can develop MTM(2) for both of the

domains in TGG. We can, therefore, apply the correspondence model-based multi layer

model transformation to our scenario. We demonstrate this in the rest of this chapter.

 116

6.3 Meta-model of correspondence model: Step 1

 In this section, we develop a meta-model of the correspondence model. The meta-

model consists of two parts: correspondence associations, and reference relations

between the associations.

 As discussed in Chapter 3, the first part, the correspondence association, captures

the result of execution of a mapping rule as a linkage between the source component and

the target component. This is included in the original definition of correspondence model

(Definition 8) as the basic element. In this section, we explain how to incorporate the

correspondence association into MTM(2) in order to actually capture the result of

MTM(2).

 The second part, the reference relation between the correspondence associations,

is not the part of the definition of the correspondence model - Definition 8. We add it in

order to deal with the execution order between the correspondence associations. This

order is not obtained directly from the execution of MTM(2). Instead, we construct an

efficient execution order using the algorithm we proposed based on a topological order of

the dependency graph (see Figure 28). Since the correspondence associations are used as

the mapping rules in the multi layer model transformation, the reference relation between

them can capture the one way dependency between triple productions (Definition 26) in

the dependency graph.

Proposed meta-model of correspondence model

 By Definition 8, a correspondence association links the source component that a

mapping rule takes as the input; and the target component that the mapping rule generates.

Therefore, a correspondence association could be a simple linkage between the sources

and the target components. However, we classify the linkage depending on the types of

the end components of the associations; e.g., class-class, class-primitiveType, and so on.

We suggest this classification because formal modeling framework provides different

 117

ways of handling the class and the primitiveType; a reference relation is used to point at

the class, whereas a simple attribute is used to store the value of the primitiveType. The

classification contributes to dealing with the difference. The following figure shows the

four classifications. Although they do not have additional information, they are

transformed in different ways when we convert the correspondence model into an

executable model transformation script.

Figure 57. The Meta-model of Correspondence Model

 ‘DependencyLink’ handles the dependency relation between correspondence

associations. Since the dependency relation is one way (Proposition 7),

‘DependencyLink’ has one source (fromLink) and one target (‘toLink’)..

 In the introduction of this chapter, we say the meta-model of correspondence

model should be independent of model transformation tools; this meta-model is designed

not to include information related to any model transformation tool; it uses only general

semantic terms that capture the key aspects of the correspondence model.

How to incorporate the correspondence meta-model into MTM(2)

 Now we need to incorporate the correspondence meta-model into MTM(2) so that

the correspondence model can capture necessary information that is generated as the

result of execution of MTM(2). In section 6.2, we develop the mapping rules of MTM(2).

The rules deal purely with the semantic model transformation between the modeling

 118

domains. We add parts that handle the correspondence model into the pure mapping rule

in ATL script.

Figure 58. ATL Script for Class to SingleSet

 Figure 58 describes the mapping rule that transformations a class without

reference into a single set (TP2-1 in Figure 54). Line (1) and (2) accounts for this pure

transformation part. Line (3) is added to create the correspondence association between

the class and the single set that is generated from the class. Since both sides can exist

independently, we use a Class2Class association.

 In addition, we need to figure out dependency relations between the

correspondence associations so as to determine the execution order. We suggested a

formal definition of the dependency in Figure 24. In our implementation, we do not come

up with an algorithm that determines dependency using the condition introduced in

Definition 26. Instead we obtain the dependency relations from the underlying structure

of the meta-models of OO domain. More specifically, we use ‘Reference’ and ‘Attribute’

as indicators of dependency.

rule Class2Set{
 from
 c : ECORE!EClass -------------------------------(1)

(c. getReferenceClasses().size() = 0 and
c.getIdAttributes().size() > 0

)
 to
 s: OPT!SingleSet(------------------------------(2)
 name <- c.name),

 cor: LinkModel!Class2Class ----------------------(3)
 (
 sources <- OrderedSet{c},
 targets <- OrderedSet{s}
)
 do{
 thisModule.topCorModel.links <- OrderedSet{cor};
 }
}

 119

Figure 59. ATL Script for Reference

 This figure is the mapping rule for ‘Reference’ in Figure 56. This mapping rule

does not create any independent component; it just creates a relation between the two

existing sets. For this reason, there is no object creation in the output side. Instead, the

connection operation between the set is carried out in the post condition (see Line 2).

What this script creates in the output side (Line 1) is a dependency relation between the

correspondence associations of the two classes associated through the reference. Since

both ends of the reference, classes, can independently exist, the correspondence

associations are independent; we can execute them in any order. We determine the

dependency in the same direction of the reference (i.e., from the class containing the

reference to the referred class) because it is technically much simpler to explore models

in that direction; all we need to do to get the referred class (C2) from the containing class

(C1) is just to call the following script: C1.C2; however, there is no direct way to go the

other direction. Within the output dependency link in Line 1, we put the correspondence

association of ‘ref.eContainingClass’ (or ‘ref.eReferenceType’ respectively) to

‘fromLink’ (or ‘toLink’ respectively).

rule ReferenceLink{
 from
 ref : ECORE!EReference
 to
 dLink : LinkModel!DependencyLink ----------(1)
 (
 name <- ref.name,
 type <- 'C2C-C2C',

fromLink <-
thisModule.resolveTemp(ref.eContainingClass, 'cor'),
toLink <- thisModule.resolveTemp(ref.eReferenceType,
'cor')

)
 do{ --(2)

thisModule.resolveTemp(ref.eContainingClass,'s')
.referenceSets<-
OrderedSet{thisModule.resolveTemp(ref.eReferenceType,'s
')

};
}
}

 120

Figure 60. ATL Script for Attribute

 Unlike ‘Reference’, ‘Attribute’ is converted into an independent component in the

optimization domain, i.e., ‘Parameter’ or ‘Variable’. In the output side, we create the

independent component (line 2) with the correspondence association (line 3), whose type

is ‘Primitive2Class’. This script also generates the dependency link. Since an attribute

cannot exist alone, mapping rules related to the attribute cannot precede the mapping rule

of the class that has the attribute; the dependency link should be established from the

containing class to the attribute. Line (4-1) and (4-2) create the link in that direction.

rule Attribute2Parameter{
 from
 a : ECORE!EAttribute --------------------(1)
 (
 not a.iD and
 not a.derived
)

 to
 p : OPT!Parameter --------------------(2)
 (
 name <- a.name,
 indexedBy <- a.eContainingClass
),
 cor: LinkModel!Primitive2Class -----------(3)
 (
 sources <- OrderedSet{a},
 targets <- OrderedSet{p}
),
 dLink : LinkModel!DependencyLink ---------(4)
 (
 name <- a.name,
 type <- 'C2C-A2C',

fromLink <- ------------------(4-1)
thisModule.resolveTemp(a.eContainingClass,'cor'),

 toLink <- cor ----------------(4-2)
)

 do{
 thisModule.topObj.declarations <- OrderedSet{p};
 thisModule.topCorModel.links <- OrderedSet{cor};
 }
}

 121

6.4 Syntactic transformation to an ATL script

 In this section, we develop a HOT (Higher Order Model Transformation) that

generates MTM(1) (see Definition 9 and Figure 11 for more details)..In our

implementation, the HOT generates MTM(1) as an ATL script; the HOT is defined

between the correspondence meta-model we defined in Section 6.2 and the complete

meta-model of the ATL language we develop as step 2 in this section.

Complete meta-model of ATL language: Step 2

 We define our own complete meta-model of the ATL language using Xtext rather

than the meta-model defined by ATL developers. The Xtext script defines how the key

components of the correspondence model (i.e., the four types of correspondence

associations and the dependency link in Figure 57) are individually and collectively

described in ATL syntax. We establish the syntactic specifications in the following steps.

For clarity, we use ‘Class2Class’ correspondence association (denoted in C2C) as our

example.

i) We manually develop the mapping rules of MTM(1) in ATL syntax for the

correspondence associations in C2C; i.e., ‘Link’, ‘Supply’, and ‘Demand’ are the

C2C type associations in our transportation example.

ii) We compare the mapping rules in order to understand their varying parts.

iii) We replace the varying parts by assignments of Xtext so that these parts can

be dynamically changed by the information of the correspondence model.

iv) We put all other parts that are common in the mapping rules as static string

patterns.

 Figure 61 is a sample mapping rule for ‘Demand’ in the syntax of ATL. The parts

that are bold and underlined should be changed in different contexts; they all depend on

what component the C2C association represents in which modeling domain. All other

parts are common for all C2C associations. Figure 62 shows the Xtext rule derived from

 122

the manually constructed script. The varying parts are replaced by assignments with

semantics meaning (see all underlined parts). They appear as the variables of the C2C

association in our ATL complete meta-model, and are involved in the HOT. In contrast,

the rest of the script is quoted as a static string. We do not need to care about the static

parts in the HOT.

 This approach has two advantages over using the original ATL complete meta-

model. First, it is easy to develop. Using the original ATL meta-model requires us to

understand all detailed semantics including even hidden components. In our approach, we

can just write a ATL script in the usual way we use ATL, and then turn the script into the

Xtext script in the above simple rules. This allows us to generate valid ATL scripts by

HOT without understanding all detailed semantics of ATL. Second, our approach

significantly simplifies the mapping rules of the HOT because our complete meta-model

is developed in a way that has similar structure to the correspondence meta-model. As

you will see in the next sub section, the HOT has very simple one-to-one mapping rule.

Figure 61. ATL Mapping Rule between Demand Class and Set

Figure 62. Xtext Rule for Class2Class

 We can easily develop Xtext rules for the other three types of correspondence

associations in the same way. However, we need a different way to develop the ATL

rule Demand {
from
so : OBJDOMAIN!Demand
to
ta : AMPL!Demand (
name<-so.name
)

Class2Class:
'rule' name =ID '{\n'
'from\n'
'so :' inputMetaModel = [Metamodel] '!' sourceComp = STRING '\n'
'to\n'
'ta :' outputMetaModel = [Metamodel] '!' targetComp = STRING '(\n'
(isNameID ?= 'name<-so.name\n')?
')’
’}';

 123

syntactic representation of dependency link, another key component of the

correspondence model. As discussed, we create the dependency link to specify execution

order of mapping rules. Hence we need to figure out how we can control the execution

order in ATL.

 In ATL, there is no independent link component that specifies the execution order.

Instead, ATL allows us to indirectly determine the execution order through an assignment

that calls other rules. The following figure is the ATL mapping rule of Link, which has

the calling assignments. Line (1) (or (2), respectively) assigns ‘Origin’ class (or

‘Destination’ class, respectively) of OO domain (the source domain) into ‘Supply’ set (or

‘Demand’ set). In order to accomplish the assignments, the classes should be transformed

to the corresponding sets; this triggers the execution of mapping rules of ‘Origin’ and

‘Destination’. In this way, the assignments affect the execution order.

Figure 63. Mapping Rule of Link in ATL Syntax

 In order to specify execution order, we associate a dependency link with a calling

assignment via Xtext cross-reference in the following way. We describe the dependency

link using a cross-reference; the correspondence association, from which the dependency

link goes, refers to the correspondence association, to which the dependency link comes,

through a cross-reference. Syntactically, Xtext uses the identifier of the referred

associations as the pointer of the cross-reference. As discussed in Chapter 5, we extend

rule Link {
from
so : OBJDOMAIN!Link
to
ta : AMPL!Link (
 supply <- so.origin -----------------------------(1)
,demand <- so.destination ------------------------(2)
)
do{
 thisModule.cost(so.cost).indexedBy <- ta ; ------(3)
}}

 124

Xtext so that we can customize the identifier. We combine the customized identifier with

string patterns in a way that generates the calling assignment shown in Figure 63.

Figure 64. Extended Xtext Rule for Class2Class

 In Figure 64, we extend the Xtext Rule depicted in Figure 62 so as to deal with

the calling assignments (i.e., line (1) through (3) in Figure 63). Line (1) and (2) are

assignments that call mapping rules from class to table. Since this type of mapping is

dealt with by Class2Class correspondence association, we represent the assignments by a

cross-reference list for Class2Class associations (see (a) in Figure 64). The assignments

do not have information from the referred correspondence associations. Therefore, we

can generate the assignment script without customization of the identifier. Furthermore,

since the identifier is unnecessary, we put the cross-reference list behind ‘- -‘, which is

the comment indicator of ATL, so that ATL ignore it.

 In contrast, line (3) connects ‘Link’ set, which is created from the mapping rule in

Figure 63, with ‘Cost’ parameter through the ‘indexedBy’ relation.

‘thisModule.cost(so.cost)’ is the part that obtains the ‘Cost’ parameter by triggering the

mapping rule from ‘Cost’ attribute in OO domain to ‘Cost’ parameter. As mentioned, this

is a Primtive2Class association. A dependency link with the Primtive2Class association is

used to generate the calling part; we put a cross-reference list with string patterns, and

Class2Class:
'rule' name =ID '{\n'
'from\n'
'so :' inputMetaModel = [Metamodel] '!' sourceComp = STRING '\n'
'to\n'
'ta :' outputMetaModel = [Metamodel] '!' targetComp = STRING '(\n'
(isNameID ?= 'name<-so.name\n')?
(',' tarRefname+=STRING '<-' 'so.' souRefName += STRING '--'
linkedR2R += [Class2Class] '\n')* -------------(a)
')’
do{
'('\n thisModule.' derivedA2R += [Primitive2Class|"ByHiddenRule"]
'.indexedBy <- ta' ';')*\n' --------------(b)
'}’
’}';

 125

customize the identifier of the Primtive2Class association as shown in the following

figure.

Figure 65. Xtext Rule for Primitive2Class and its Customized Indentifer

 Line (1) defines the Xtext rule for a Primitive2Class association. Interesting, it

does not have ‘from’ string pattern, which means that any ATL mapping rule created by

this Xtext rule does not have any input component. This is because a primitive type

cannot exist without a component containing the primitive type; the primitive type cannot

be an input component of a mapping rule. So we define a special type of mapping rule

that has only output components, and call the rule from the mapping rule of the

component containing the primitive type. In our implementation, line (3) in Figure 63 is

the calling point.

 Line (2) defines the rule for the customized identifier of the Primitive2Class

association. The strings surrounded by ‘< >’ are dynamically replaced by the value of the

properties whose name is equal to the strings; that is, <name> is substituted for by the

value of name property. The identifier rule in line (2) creates the calling statement (i.e.,

cost(so.cost)) using the name of the association.

Mapping rules of syntactical transformation: Step 3

 We define the syntactical transformation model (HOT) between the meta-model

of correspondence model and our complete meta-model of the ATL language. The HOT

Primitive2Class hidden (P2CRefRule, WS): -----------------(1)
 'rule' name =ID '(val :String)\n{\n'

'to ta :' outputMetaModel = [Metamodel] '!' targetComp =
STRING '(\n'

 'value <- val'
 '\n)'
 'do{'

'\n thisModule.' getTopMethod = [TopModelHelper] '().'
topPropName = ID '<- ta;\n'

 '\n ta; \n'
 '}
 }';
P2CRefRule: ---(2)
 "<name>(so.<name>)";

 126

generates model transformation models in M1 for instance data integration; they are

denoted as MTM(1) in the notation of the multi layer model transformation we

introduced in Chapter 3.

Figure 66. Class2Class Mapping in HOT

 As discussed, the mapping rule of the HOT is simple because of the way of

developing the complete meta-model of ATL language. Figure 66 shows the mapping for

Class2Class association. The mapping rule just creates the corresponding Class2Class

representation in ATL side and fills the necessary variables with the information from the

correspondence model side. All other mapping rule can be developed in the same way.

6.5 Conclusion

 In this chapter, we have shown that our example met the application condition of

correspondence model based multi layer model transformation we have proven in chapter

4. The condition requires that the model transformation rules in M2 can be described in

triple productions. In order to demonstrate it, we developed the two MTM(2) of our

scenario using triple productions: MTM(2) between PIM and RDB, and MTM(2)

between PIM and optimization. We presented the visual representations of the triple

productions; further, we captured the triple productions in ATL script and used them to

implement our scenario.

rule Class2Class
{
from
 corRel : COR!Class2Class
to
 mapRule : ATL!Class2Class (
 name <- corRel.sources->first().name,
 isNameID <- true,
 inputMetaModel <- thisModule.inMetaModel,
 outputMetaModel <- thisModule.outMetaModel,
 sourceComp <- corRel.sources->first().name,
 targetComp <- corRel.sources->first().name,
 getTopMethod <- thisModule.topHelper,
 topPropName <- corRel.sources->first().name.toLower() + 's'
)
}

 127

 In order to implement the correspondence model-based approach, we developed a

meta-model of the correspondence model. The meta-model consists of two key parts:

correspondence association and dependency link. The first part deals with linkages

between the source components and the target components, which are used as mapping

rules for instance data. The second part specifies the dependency relations between the

correspondence associations; they are used to determine an execution order of the

associations when converting the correspondence model into an executable model

transformation model. The meta-model of correspondence model has been incorporated

into MTM(2) so that the result of MTM(2) can be captured in a way that can generate an

executable model transformation.

 As the last step of the scenario, we generated an executable ATL script that

handles instance data integration from the correspondence model through a HOT (Higher

Order Model Transformation). As the output meta-model, we developed our version

complete meta-model of ATL language, which gives us efficiency in developing the

HOT.

 The HOT uses the two key parts of correspondence model in the following ways:

i) It converts the correspondence associations into ATL mapping rules; it generates

different styles of mapping rules depending on the types of associations we classified by

the types of their end components. ii) It uses the dependency link to control the execution

flow of the ALT script. Since there is no what explicitly specifies the order, we use an

indirect way, i.e., a calling assignment through which a mapping rule trigger an execution

of another mapping rule in ATL.

 Interestingly, we can view the HOT as a good example of syntactical model

transformation we demonstrated in Chapter 5. The correspondence model can be thought

of as a domain semantic model (DSM(MT)) for model transformation model, and the

complete meta-model of ATL specifies the syntactic representations of DSM(MT) in

ATL syntax; using mapping rules between the meta-models, the HOT generates a

 128

executable ATL script. The HOT can generate a valid model transformation model for

another model transformation tool simply by replacing the complete meta-model of ATL

by the new tool. This is exactly what the syntactical model transformation is intended to

and supposed to do.

 129

CHAPTER 7

CONCLUSION

7.1 Summary

 Modeling is a common endeavor across all engineering domains. Engineers

construct models to explain their engineering decision problems to other people and to

solve the problems. However, every engineering domain uses and defines models in its

own way. They have different modeling concepts and use them in different ways. These

differences have been hindering communications among engineers in different disciplines.

 In this dissertation, we proposed a model integration framework where engineers

can work together and communicate with one another through model transformation.

Since model transformation has been used in software engineering, its current state of the

art has limitations as an integration tool for general engineering domains. We raised two

key practical issues – instance data integration, and syntactic inconsistency- that are

crucial to the successful adaptation of model transformation to the engineering domain.

 In order to address the issues, we proposed multi layer syntactical model

transformation. It consists of both a multi layer model transformation, and a syntactical

model transformation. The multi layer model transformation addresses instance data

integration by converting the result of a user model transformation into an executable

model transformation model for instance data through a special type of model

transformation, HOT. The syntactical model transformation deals with syntactical

diversity of various engineering tools using model transformations based on complete

meta-models, which allow us to define our models syntactically as well as semantically.

 We have proven our approach theoretically and demonstrated it for a simple

scenario.

 130

 In the theoretic part (Chapter 4), we found one necessary condition under which

we can apply the correspondence model-based approach; i.e., MTM(2) should be

described in a set of triple productions. In order to show this, we have proven the two

properties of a set of triple productions under the disconnection assumption.

 The first property, the recursive property, ensures that the results of triple

productions are mathematically triple productions again; it says correspondence

associations can be individually valid mapping rules.

 The second property, the determinism property, says that a series of applications

of triple productions results in an equivalent graph at termination regardless of the

execution order. This determinism property allows us to construct the execution order,

which cannot be obtained from the result of MTM(2). We can make a complete model

transformation model by putting together the individual correspondence association in

that order. In order to prove the property, we use a dependency graph, which is an acyclic

graph that describes dependency relations among the triple productions. A topological

order of the dependency graph plays an essential role of the order construction.

 In the demonstrations (Chapter 5 and 6), we successfully demonstrated our

proposed approach in the scenario where RDB and optimization are used as data storage

domain and problem solving domain, respectively.

 In Chapter 5, we semantically and syntactically analyzed the target modeling

domains in terms of the layered language formalism. Based on the analysis, we

developed the complete meta-models for the target tools (MS Access, and AMPL) using

Xtext framework. For M1 (the user model), we manually constructed the complete meta-

model of the user models in M2, while for M0 (instance data), we developed a special

model transformation in M2 that generates the complete meta-model of the instance data

in M1.

 In practice, one important contribution is the extension of the Xtext framework in

a way that allows us to customize the pointer of a cross-reference by setting up a rule.

 131

This extension is crucial because engineering tools have a wide variety of ways of

referring to other components; indeed, the rule based cross-reference pointer resolves not

only the cross-referencing issue of multi sets in the AMPL syntax, which we originally

intended it to deal with, but also the complicated cross-referencing between the mapping

rules in ATL syntax, which is the key part of Chapter 6.

 Finally, Chapter 6 completed the demonstration by generating an executable ATL

script that integrates instance data from the correspondence model, the result of MTM(2);

the generation has been done by a HOT. For the input of the HOT, we developed the

meta-model of correspondence model independently of model transformation tools; this

independence enables us to reuse the meta-model no matter what model transformation

tool we work with. As the output meta-model of the HOT, we created a version of a

complete meta-model of the ATL language. Furthermore, we suggested a general way to

efficiently establish the complete meta-model of other model transformation tools, so that

the entire process of our demonstration can be more easily applied to other

implementation contexts.

 One important advantage of our approach demonstrated in chapters 5 and 6 is that

the model transformation models and the meta-models that we need to manually

construct all exist in M2. For the syntactical model transformation, we constructed one

complete meta-model in M2, and one model transformation in M2 that automatically

generates another complete meta-model in M1. For the multi layer model transformation,

we constructed MTM(2) and the complete meta-model of correspondence model and

ATL syntax, which are all in M2. Our approach, therefore, is independent of the user

model in M1; we can reuse all we constructed for other user models as long as M2 does

not change, i.e., modeling domains remain same.

 132

7.2 Contributions

 Our research aims at an engineering modeling framework that supports effective

decision making throughout contemporary interdisciplinary system design process. We

focus on model transformation as an essential integration tool among engineering models

in the framework. In this sense, this dissertation makes three significant contributions.

 First, we extended model transformation methodology to deal with model

integration in general engineering modeling domains. Specifically, we identified two key

issues: instance data integration, and syntactical inconsistency. We successfully resolved

the issues through the multi-layer syntactical model transformation where we use existing

meta-modeling and model transformation frameworks in different ways with a simple but

powerful change in perspective on model transformation (i.e., a model transformation

model is one type of model). This perspective allows us to use the existing frameworks to

address the issues of model transformation by manipulating model transformation models

using other model transformations.

 Second, we extended the theoretically foundation of model transformation. TGG

succeeded in formally representing model transformation. However, there has been very

little effort to explore theoretically the properties of model transformation using the

mathematically formalism (TGG). In our dissertation, we have proven the two interesting

properties of TGG: recursive property, and determinism property. The proofs of these

properties not only show that the multi-layer model transformation is viable, but also

provides a number of new concepts that can be generally used for further theoretical

discussion on model transformation. The proof of the determinism property, especially,

allows us to gain insight into the unique collective behaviors of a set of triple

productions; we proposed a number of new concepts and theorems related to dependency

among triple productions: the mathematical definition of the dependency, the effects of

the dependency on collective behaviors of the triple productions, dependency graph, etc.

These allow us to analyze how triple productions affect one another; it can be an

 133

important theoretical foundation on which further theoretical discussion on model

transformation can be made using TGG.

 Finally, we reviewed a number of modeling and model transformation tools in

practice. Furthermore, we suggested how to improve the tools in order to not only

implement our demonstration, but also achieve the ultimate goal of our research. There

are two sources of improvements. First, we technically added new functions to the tools.

For example, we implemented the customized identifier in Xtext framework so as to

manipulate the syntactical representation of cross-reference though which one object

refers to another one. Second, we came up with new ways to use existing tools based on

the perspective that a model transformation model is itself a type of model. Thus, we

should be able to use existing tools to transform model transformation models without

any technical extension. Indeed, in order to create an ATL script, we used a special ATL

script that treats the ATL script as the output model; and we suggested a new way of

using Xtext framework to define the complete meta-model of ATL language.

7.3 Future Research

 In the future, we will apply our multi-layer syntactical model transformation to

more realistic cases. In order to show that the new model transformation is practically

viable, we need to see if our approach can handle large scale problems within reasonable

computing time. In addition, we also have to show that our approach can support

contemporary engineering decision making environment where highly heterogeneous

models should be involved; we should demonstrate our approach with other modeling

domains such as simulation.

 The long term goal of our research is to establish an engineering design

framework that effectively supports engineering decision making for developments of

complex systems. We believe that effective modeling and model transformation

 134

methodology plays essential roles in achieving our goal. We hope our research make

significant contributions to the goal.

 135

APPENDIX A

DERIVED CANCELLATION RULE FOR CROSS-OVER CASE

 A given triple production p = ((SL,SR) ← sr ‒ (CL,CR) ‒ tr → (TL,TR)) and p1 =

((SL1,SR1) ← sr1 ‒ (CL1,CR1) ‒ tr1 → (TL1,TR1)) with cross-over relation with p, the two

intended cancellation rules are modified as follows:

((Ø,CR\CL,TR\TL), (Ø, Ø, Ø), NAC((SR\SL,CR\CL,TR\TL), (Ø, Ø, TR1\TL1))) and

((SR\SL,CR\CL,Ø), (Ø,Ø,Ø), NAC((SR\SL,CR\CL,TR\TL)), (SR1\SL1, Ø, Ø))).

 We add an additional negative condition (Ø, Ø, TR1\TL1), or (SR1\SL1, Ø, Ø) in

order to prevent the derived cancellation rule from completely rolling back p if the result

of p1 exists.

 136

REFERENCES

[1] G. Booch, et al., The Unified Modeling Language user guide: Addison Wesley

Longman Publishing Co., Inc., 1999.

[2] T. R. Gruber, "Toward Principles for the Design of Ontologies Used for
Knowledge Sharing," International Journal Human-Computer Studies, vol. 43,
pp. 907-928, 1993.

[3] P. Borst, et al., "Engineering Ontologies," International Journal of Human-
Computer Studies, vol. 46, pp. 365-406, 1997.

[4] T. Gruber, "Title," unpublished|.

[5] D. C. Schmidt, "Model-Driven Engineering," IEEE Computer, special issue on
model-driven software development, vol. 39, pp. 25-31, 2006.

[6] P. Integration. (2011, April 10th). ModelCenter® 9.0. Available:
http://www.phoenix-int.com/software/phx_modelcenter.php

[7] H.-K. Lin, et al., "Manufacturing system engineering ontology for semantic
interoperability across extended project teams," International Journal of
Production Research, vol. 42, 2004.

[8] J. A. Estefan, "Survey of Model-Based Systems Engineering (MBSE)
Methodologies ".

[9] R. Cloutier, "Model Driven Architecture for Systems Engineering," in Conference
on Systems Engineering Research (CSER), University of Southern California,
2008.

[10] OMG, "Systems Modeling Language (OMG SysML™)," ed, 2008.

[11] A. A. Shah, et al., "Enabling Multi-View Modeling With SysML Profiles and
Model Transformations," presented at the International Conference on Product
Lifecycle Management, University of Bath, UK, 2009.

[12] OMG, "XML Metadata Interchange (XMI®)," ed, 2011.

[13] R. Fourer, et al., "A Modeling Language for Mathematical Programming,"
MANAGEMENT SCIENCE, vol. 36, pp. 519-554, 1990.

[14] J. Bisschop and A. Meeraus, "On the development of a general algebraic
modeling system in a strategic planning environment," in Applications. vol. 20, J.-
L. Goffin and J.-M. Rousseau, Eds., ed: Springer Berlin Heidelberg, 1982, pp. 1-
29.

http://www.phoenix-int.com/software/phx_modelcenter.php

 137

[15] L. Schrage, Optimization Modeling With LINDO: Duxbury Press, 1997.

[16] M. Tisi, et al., "On the Use of Higher-Order Model Transformations," in Model
Driven Architecture - Foundations and Applications. vol. 5562, R. Paige, et al.,
Eds., ed: Springer Berlin / Heidelberg, 2009, pp. 18-33.

[17] A. Schürr, "Specification of graph translators with triple graph grammars," in
WG’94 Workshop on Graph-Theoretic Concepts in Computer Science, 1994, pp.
151-163.

[18] (Jan). Xtext Project Site. Available: http://www.eclipse.org/Xtext/

[19] Eclipse. ATL Project. Available: http://www.eclipse.org/m2m/atl/

[20] OMG. (2003). MDA Guide Version 1.0. Available:
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf

[21] OMG, "Meta Object Facility (MOF) Core Specification," ed, 2006.

[22] OMG, "Common Warehouse Metamodel Specification," vol. 1,1, ed, 2003.

[23] C. Atkinson and T. Kühne. (2003) Model-Driven Development: A Metamodeling
Foundation. IEEE Software. 36-41.

[24] OMG, "Query/View/Transformation Specification," ed, 2008.

[25] F. Jouault and I. Kurtev, "Transforming models with ATL," presented at the
Satellite Events at the MoDELS 2005 Conference, Montego Bay, Jamaica, 2006.

[26] C. Amelunxen, et al., "MOFLON: A Standard-Compliant Metamodeling
Framework with Graph Transformations," ed, 2006, pp. 361-375.

[27] EMF Project. Available: http://www.eclipse.org/modeling/emf/

[28] Y. Sun, et al., "A Model Engineering Approach to Tool Interoperability," in
Software Language Engineering. vol. 5452, D. Gaševic, et al., Eds., ed: Springer
Berlin / Heidelberg, 2009, pp. 178-187.

[29] I. Kurtev, et al., "Model-based DSL frameworks," presented at the Companion to
the 21st ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, Portland, Oregon, USA, 2006.

[30] J. Bézivin, et al., "Model Transformations? Transformation Models!," in Model
Driven Engineering Languages and Systems. vol. 4199, O. Nierstrasz, et al., Eds.,
ed: Springer Berlin / Heidelberg, 2006, pp. 440-453.

[31] E. Jackson and J. Sztipanovits, "Formalizing the structural semantics of domain-
specific modeling languages," Software and Systems Modeling, vol. 8, pp. 451-
478, 2009.

http://www.eclipse.org/Xtext/
http://www.eclipse.org/m2m/atl/
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf
http://www.eclipse.org/modeling/emf/

 138

[32] A. Konigs and A. Schurr, Tool Integration with Triple Graph Grammars - A
Survey vol. 148: ELSEVIER, 2006.

[33] H. Ehrig, "Introduction to the algebraic theory of graph grammars (a survey)," in
Graph-Grammars and Their Application to Computer Science and Biology. vol.
73, V. Claus, et al., Eds., ed: Springer Berlin / Heidelberg, 1979, pp. 1-69.

[34] H. Ehrig, et al., "Graph-grammars: An algebraic approach," presented at the
Proceedings of the 14th Annual Symposium on Switching and Automata Theory
(swat 1973), 1973.

[35] T. W. Pratt, "Pair grammars, graph languages and string-to-graph translations,"
Journal of Computer and System Sciences, vol. 5, p. 36, 1971.

[36] H. Ehrig, et al., Fundamentals of Algebraic Graph Transformation: Springer,
2005.

[37] R. Grzegorz, Ed., Handbook of graph grammars and computing by graph
transformation: volume I. foundations. World Scientific Publishing Co., Inc.,
1997, p.^pp. Pages.

[38] H. Herrlich and G. Strecker, Category Theory: Allyn and Bacon, 1973.

[39] A. Habel, et al., "Graph grammars with negative application conditions,"
Fundamenta Informaticae, vol. 26, pp. 287-313, 1996.

[40] H. Ehrig, et al., "Termination Criteria for Model Transformation," in
Fundamental Approaches to Software Engineering. vol. 3442, M. Cerioli, Ed., ed:
Springer Berlin / Heidelberg, 2005, pp. 49-63.

[41] R. K. Ahuja, et al., "Network flows: theory, algorithms, and applications," 1993.

[42] OMG, "MOF Model to Text Transformation Language RFP," ed, 2007.

[43] C. Krzysztof and H. Simon, "Classification of Model Transformation
Approaches," in Workshop on Generative Techniques in the Context of Model-
Driven Architecture, 2003.

[44] M. Alanen and I. Porres, "A Relation Between Context-Free Grammars and Meta
Object Facility Metamodels," ed, 2004.

[45] A. Kleppe, "Towards the Generation of a Text-Based IDE from a Language
Metamodel," in Model Driven Architecture- Foundations and Applications. vol.
4530, D. Akehurst, et al., Eds., ed: Springer Berlin / Heidelberg, 2007, pp. 114-
129.

 139

[46] D. Hearnden, et al., "Anti-Yacc: MOF-to-text," in Enterprise Distributed Object
Computing Conference, 2002. EDOC '02. Proceedings. Sixth International, 2002,
pp. 200-211.

[47] L. M. Garshol. (Dec.27). BNF and EBNF: What are they and how do they work?
Available: http://www.garshol.priv.no/download/text/bnf.html

[48] D. Steinberg, et al., EMF: Eclipse Modeling Framework, 2008.

[49] T. J. Parr and R. W. Quong, "ANTLR: A predicated-LL(k) parser generator,"
Software: Practice and Experience, vol. 25, pp. 789-810, 1995.

[50] E. T. Ray, Learning XML: O'Reilly & Associates, Inc., 2003.

[51] J. F. Benders, "Partitioning procedures for solving mixed-variables programming
problems," Numerische Mathematik, vol. 4, pp. 238-252, 1962.

[52] S. S. Gao, et al. (2011). W3C XML Schema Definition Language (XSD) 1.1 Part
1: Structures. Available: http://www.w3.org/TR/xmlschema11-1/

[53] T. Krumbein and T. Kudrass, "Rule-based generation of XML schemas from
UML class diagrams," 2003, pp. 213-227.

http://www.garshol.priv.no/download/text/bnf.html
http://www.w3.org/TR/xmlschema11-1/

 140

VITA

Kysang Kwon

Kwon was born in ChungBuk, Korea. He received a B.S. in mechanical

engineering from Seoul National University, Seoul, Korea in 2000. Afterward, he worked

at Sunyang Tech Co. as a mechanical engineer, and worked at USG PLM Korea as a

R&D process innovation consultant.

After over 6 year professional experience, he came back to school to pursue a

doctorate, and received a M.S. in industrial engineering from Georgia Institute of

Technology, Atlanta, Georgia in 2008.

His research interest includes model-based decision making framework, formal

modeling framework for engineering models, and model transformation among

engineering models. He is also interested in solving various decision problems

annalistically and numerically.

	LIST OF TABLES

