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very supportive and like a little sister to me during my stay in Atlanta. My time
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SUMMARY

With the rapid development of optical communications and the increasing

amount of data exchanged, it has become utterly important to provide effective ar-

chitectures to protect sensitive data. The use of chaotic optoelectronic devices has

already demonstrated great potential in terms of additional computational security at

the physical layer of the optical network. However, the determination of the security

level and the lack of a multi-user framework are two hurdles which have prevented

their deployment on a large scale. In this thesis, we propose to address these two

issues.

First, we investigate the security of a widely used chaotic generator, the external

cavity semiconductor laser (ECSL). This is a time-delay system known for providing

complex and high-dimensional chaos, but with a low level of security regarding the

identification of its most critical parameter, the time delay. We perform a detailed

analysis of the influence of the ECSL parameters to devise how higher levels of security

can be achieved and provide a physical interpretation of their origin.

Second, we devise new architectures to multiplex optical chaotic signals and realize

multi-user communications at high bit rates. We propose two different approaches

exploiting known chaotic optoelectronic devices. The first one uses mutually cou-

pled ECSL and extends typical chaos-based encryption strategies, such as chaos-shift

keying (CSK) and chaos modulation (CMo). The second one uses an electro-optical

oscillator (EOO) with multiple delayed feedback loops and aims first at transpos-

ing coded-division multiple access (CDMA) and then at developing novel strategies

of encryption and decryption, when the time-delays of each feedback loop are time-

dependent.

xxviii



CHAPTER I

GENERAL INTRODUCTION

1.1 Abstract

This chapter details the large variety of our research topics: chaos-based communi-

cations using optoelectronic devices. Being at the crossroads of many fields (nonlin-

ear sciences, photonics, communication theory and cryptography) not only gives the

unique opportunity to understand and quantify the limitations and performances of

existing chaotic cryptosystems, but also to propose new and innovative architectures.

We review the concepts of physical-layer security and their applications using chaotic

optoelectronic systems. We explain the principles of chaos-based communications and

highlight the current limitations and challenges addressed in this thesis.
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1.2 General Context of Physical Layer Security

Optoelectronic technologies have shaped the landscape of the existing optical telecom-

munication networks and have contributed in the information revolution of the last

four decades.

These networks are made of various levels (or layers), each of them being con-

trolled by a particular set of protocols. The typical open systems interconnection

(OSI) representation of a network is composed of seven layers (Fig. 1), which all

play a role in communicating between distant systems. Inseparable from the devel-

opment of modern communications, the question of security is of prime importance.

Indeed, the existence of multiple layers in the network offers many possible breaches

for illegitimate users, Eve (eavesdroppers), to steal or alter sensitive information ex-

changed between two legitimate users commonly referred to as Alice (sender) and

Bob (receiver).

Figure 1: Schematic diagram of the OSI representation of a communication network.

To prevent the occurrence of such scenarios, mathematical-based cryptography

was invented. It consists of two essential elements: an algorithm that is usually

publically known by both legitimate and illegitimate users and a key that remains

private. The security of this type of scheme depends strongly on the capacity for a

given algorithm to mix the key with a plain message such that the obtained cipher
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will not leak information about the key, given knowledge of the algorithm. Today,

there exist many cryptographic techniques that guarantee a high level of security (e.g.

RSA, El-Gamal, PGP, AES, DES)[6]. These mathematical-based approaches provide

a computational level of security and are adapted to the top layers of the network

stack shown in Fig. 1.

Only recently, the physical layer has attracted attention. With our current tech-

nological level, it is now possible to harness physical principles existing in the devices

transmitting and receiving the information. For optoelectronic systems, two widely

discussed solutions exist to provide additional security at the physical layer:

• quantum-based communications for quantum key distribution (QKD) with the

guarantee of information-theoretic security [7],

• chaos-based communications for additional computational security, similar to

that of the conventional mathematical cryptographic schemes.

Current QKD systems still suffer from significant limitations in terms of bit rate

(few tens of kbits/s) and of practical applicability (only few tens of km for transmis-

sion with unconditional security)[8], thus stimulating active research to improve their

performances. Chaos-based communications exploit deterministic noise-like signals

generated by physical nonlinear oscillators to disguise sensitive data. Optoelectronic

devices are extremely popular because of their fast fluctuations, which can securely

transmit data streams at high bit rates (several Gbits/s) over large distances [9].

The development of optical chaos cryptography results from three scientific mile-

stones late in the 20th century: (i) the concept of stimulated emission (discovered by

Einstein in 1917) demonstrated with semiconductor materials in 1962 [10], (ii) the

development of the chaos theory to describe erratic evolutions occurring in nonlinear

systems with sufficiently high dimensionality [11], and (iii) the synchronization of

chaotic oscillators proved in the 1990’s [12].
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A generic optical chaos-based cryptographic chain consists of a legitimate user Al-

ice, who injects with an appropriate technique the data to be transmitted in a chaotic

optoelectronic device (E). The system’s output, which bears the message, is then sent

on a public channel wiretapped by an eavesdropper Eve. The channel couples Alice’s

emitter with a legitimate receiver (R) (physical copy of Alice’s system) owned by Bob.

Bob’s system will synchronize only with the deterministic part of the signal transmit-

ted, a property known as chaos-pass filtering. He duplicates Alice’s chaotic carrier

and uses a generalized subtraction operation to recover Alice’s concealed data (Fig.

2). This approach was experimentally proposed by R. Roy and G.D. VanWiggeren

in 1998 [13]. The instabilities in optoelectronic oscillators, traditionally considered as

undesirable, were constructively used to disguise data at the physical level.

Figure 2: The physical layer of a communication network in the case of a chaos-based
encryption and decryption using optoelectronic devices.

Optical chaos-based cryptography has great potential in terms of additional com-

putational complexity at the physical layer and is ready for real-field applications;

an experiment was conducted on a commercial fiber network in Athens (Greece) in

2005 with encrypted transmission at high bit rates (Gbit/s) [9]. The chaotic optoelec-

tronic generators are typically based on edge-emitting semiconductor lasers (EEL),

a technology also used in diverse industrial and scientific applications, such as DVD

player, bar-code readers, fiber optic networks, printers, metrology, and ultrafast mea-

surements. Being already widely deployed in optical networks, they subsequently
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make good candidates for a large-scale implementation of optical chaos cryptography.

Their ubiquitous presence is explained by their remarkable performance in terms of

electro-optical efficiency, compactness, modulation speed, and lifetime.

1.3 Critical Issues and Challenges

1.3.1 Security of Chaos-Based Encryption

A critical issue, which has marginalized chaos cryptography and slowed down its

deployment, is the analysis of security. It remains an open problem primarily due to

two specific aspects of chaos-based encryption [14]:

• the use of nonlinear functions (or maps) mostly defined on continuous num-

ber sets (sometimes finite number sets) contrary to non-chaos-based encryption

schemes that are exclusively defined on finite number sets.

• the analysis of security is not performed with the typical tools of mathematical

cryptanalysis.

These two fundamental differences do not prevent an analogy between no chaos-

based and chaos-based encryption techniques; the chaotic system’s parameters and its

nonlinear function are respectively equivalent to a key and an algorithm. This justifies

the existence of the various possible methods of attack on chaos-based cryptosystems

described below:

• Attack on the imperfect mixing of information. This type of attack does not

require any a priori knowledge of the parameters (key) or the nonlinear function

(algorithm) and aims at a direct extraction of the message from the chaotic

dynamics [15].

• Attack on the key with partial knowledge of the chaotic cryptosystem. This

type of attack is analogous to those performed in conventional cryptography

techniques, where the algorithm (respectively nonlinear function) is known, the
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eavesdropper has access to the encrypted data (respectively chaotic time series

bearing the message), and only the key (resp. parameters) remains unknown.

• Attack with no a priori knowledge of the system. The eavesdropper only has

access to the encrypted data. He must infer the nonlinear function and the

parameters.

The last type of attack tests the intrinsic level of privacy that a chaos-based

cryptosystem can provide. Concerning the optical-chaos generators, no studies have

fully investigated the security of a large class of optoelectronic devices, namely optical

delayed systems, and more specifically external-cavity semiconductor lasers (ECSL).

This may prevent the use of optical chaos-based cryptography in field applications.

1.3.2 Multiplexing and Multiuser Communications

Over the past two decades, optical chaos-based communications have made tremen-

dous progress on encryption, transmission, and decryption of a single message and

have reached multi-Gbit/s secure communications [16, 17]; however, some limitations

still exist; including the performance in terms of (i) bit error rate (BER) and (ii)

power and spectral efficiency, which are still below those of conventional no chaos-

based encryption.

To improve the BER, the use of error control correction [18] has been proposed to

improve BER performance [19]. In optoelectronic systems, the main reasons under-

lying BER limitations are the existence of internal or external noise sources (sponta-

neous emission of light or electronic noise, and channel noise, respectively) and the

imperfect match between two twin physical systems (parameter mismatch). In both

cases, perfect chaos synchronization is lost, subsequently leading to an increase of

decryption error.

Improving spectral efficiency would consist of a better use of the available power

and bandwidth by transmitting multiple messages in a same communication channel

6



using either a single or multiple chaotic optoelectronic devices (see Fig. 3).

Figure 3: General description of the multiplexing problem using optoelectronic de-
vices. Two possibilities exist: (a) the use of multiple oscillators (Ei) owned by Alicei
to encrypt various data streams mi and the use of multiple receiver (Ri) to decrypt
each message m̂i; (b) the use of a single emitter share by the Alices to encrypt their
message and a single shared receiver (R) owned by the Bobs.

In conventional optical communications, various approaches to multiplex data

have been developed, including time- and wavelength-division multiplexing (TDM and

WDM), and more recently code-division multiple access (CDMA) [20]. In the case of

chaotic systems, two approaches have been considered: type-i asynchronous methods

using chaotic systems at the emission but without exploiting synchronization, and

type-ii synchronous methods using chaotic systems and synchronization.

The type-i methods are well documented and understood. Their performance has

been tested with various systems and architectures. A detailed review can be found

in [21] and references therein. Most of the single-user optical chaos-based communi-

cations, however, rely on chaos synchronization. Consequently, any development of

multiplexing techniques will naturally fall within the type-ii category. As illustrated

by Fig. 3, there are two possibilities to encrypt/decrypt data:

• using multiple chaotic systems to encode independently the different Alices’
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data streams. Then, each output is multiplexed (combined) in a single signal

that is sent trough the communication channel. At the receiver, each Bob has

his own chaotic unit and will decode his corresponding message [Fig. 3(a)],

• using a single chaotic unit to encode the messages of the various Alices. A single

multiplexed signal bearing all the messages is sent to a single receiver where the

decryption is performed [Fig. 3(b)].

Each possibility highlights fundamental questions concerning the independent syn-

chronization of emitter-receiver pairs injected by a single multiplexed signal (chaos

multiplexing), the injection and mixing of each message, the realization of the mul-

tiplexing and demultiplexing operations, and the limitations in terms of number of

users, bit rates, and computational complexity of the decryption. Most of these fun-

damental questions have not been deeply investigated. As a matter of fact, the first

studies of chaos multiplexing were published late in the 1990’s and focused on the

question of multiplexed synchronization [22, 23] (no information encoded). They were

followed by studies of strategies to encrypt and decrypt multiple messages using chaos

synchronization and innovative encoding techniques [24, 25]. None of them, however,

were exploiting optoelectronic systems with time delays.

1.4 Outline of the Thesis

This thesis focuses on the two major issues developed in the previous section, security

analysis and the development of multi-user architectures with optoelectronic devices.

The present work is organized as follows.

In Chapter 2, we present the basics of chaos theory, synchronization, and cryptog-

raphy. More specifically, we introduce the fundamental concepts of nonlinear systems,

attractors, bifurcations, and the notions of complexity (Lyapunov exponents, dimen-

sion, and entropy). We also highlight the particular class of time-delayed systems,

which appears in many areas of engineering and sciences. Such systems have achieved
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great success in the development of secure chaos-based communications because of

the large dimension of their attractor and strong entropy (apparent randomness). We

conclude the chapter by detailing the most-encountered chaos-based cryptographic

architectures; they are chaos masking (CMa), chaos shift keying (CSK), and chaos

modulation (CMo).

In Chapter 3, we focus on the generation of optical chaos using optoelectronic

devices. We review the main mechanisms and principles of operation of semiconductor

lasers and detail Arrechi’s classification, which justifies most of the schemes used to

generate optical chaos. Finally, we describe typical chaotic optoelectronic devices that

exploit either internal or external nonlinearities, and we present their mathematical

models.

Security and cryptanalysis of time-delay optical chaotic emitter are introduced

in Chapter 4. The analysis is performed on an edge-emitting laser (EEL) with an

optical feedback, with no prior knowledge of the system. Similar to a situation often

faced by an eavesdropper, only a scalar time series (light intensity) is available. Here,

the security is considered to be the amount of information about the structure and

the parameters that a system leaks in its state variables. In the case of time-delay

systems, as it will be detailed later, the information on the time delay is of crucial

importance to maintain a high level of confidentiality. To extract information from a

time series, techniques and metrics from signal processing and information theory will

be presented as well as the detection of the time-delay signature. In the case of an

EEL with optical feedback, we unveil conditions on the tunable operational parame-

ters (length of the external cavity, pumping current, and strength of the retro-injected

light) that allow for strong concealment of the time-delay information. We also high-

light the fundamental role of the nonlinear dynamics preceding the appearance of

chaos in this system to explain the diversity of time-delay concealments previously

observed, and to devise strategies to enhance them.
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In Chapter 5, we propose a type-ii architecture to multiplex chaotic optical fields

generated by several EELs. We go beyond the traditional approaches of the litera-

ture, consisting of an application of WDM on the top of chaotic lasers. We succeed

in adapting a fundamental result from the theory of synchronization, known as the

active-passive decomposition (APD) using simple optical components. Our solution

consists of mutually coupling the emitters using a shared external cavity. A multi-

plexed optical field is subsequently generated and is injected with the proper cou-

pling strengths into the uncoupled receivers. We derive a general semiclassical model

for our global architecture and prove the possibility to achieve perfect independent

synchronization of chaos for multiple pairs of lasers, yet sharing a single optical com-

munication channel. We study the influence of the coupling parameters and number

of units on the quality of synchronization, the spectral properties of the resulting

scheme, and its robustness to parameter mismatch and internal sources of noise (e.g.:

spontaneous-emission noise). Finally, we propose theoretical solutions to encrypt si-

multaneously multiple data streams using either the phase or the amplitude of the

optical fields composing the multiplex signal associated with the different lasers.

One of the main issues in multiplexing techniques resides in the generation of

suitable carriers to convey data while remaining separable for independent decryp-

tion of each user’s data stream. Chapter 6 addresses this issue and proposes a type-ii

architecture, inspired by the CDMA approach existing in conventional optical com-

munications. Briefly described, CDMA is a spread-spectrum technique that produces

and uses carriers (also known as codes), that are separable with respect to a statistical

criterion, which is different from the time of emission or wavelength used in TDM

and WDM, respectively. In this chapter, we show how to generate such codes using

an optoelectronic oscillator (OEO) with multiple nonlinear delayed feedback loops.

We analyze the statistics and complexity of the generated chaos as well as conditions

to achieve orthogonality between each user, a fundamental property to ensure linear
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complexity of the decryption with the number of users [26]. The main challenge is

that optical chaotic systems generate codes that are highly time-varying, contrary

to those of conventional communications designed offline and fixed during the entire

transmission. We demonstrate theoretically that our architecture can transmit multi-

ple data streams, and we propose different decoding strategies depending on the level

of orthogonality between the codes.

In Chapter 7, we probe new directions to multiplex data with a high degree of

confidentiality using time-delay systems. Similar to the previous chapter, we propose

the use of a single oscillator with multiple delayed feedback loops, except that the

data of each user is now encoded directly on each time-delay. The information sources

being random, the resulting emitter is a stochastic time-delay system. The fast and

random variations of the time delay offer great security with respect to known time-

delay identification techniques used in Chapter 4. We focus on the conditions and

various encryption strategies that will ensure maximum security, and we describe the

method to retrieve the independent variations of each time delay. As a conclusion, we

theoretically demonstrate the transmission at high bit rate of multiple data-streams

by using the model of an optoelectronic oscillator.

Finally, in Chapter 8 we summarize the main results of the thesis and launch some

perspectives and possible directions to investigate.
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CHAPTER II

INTRODUCTION TO CHAOS THEORY,

SYNCHRONIZATION, AND CRYPTOGRAPHY

2.1 Abstract

In the general introduction, we have presented the various notions necessary for the

achievement of chaos cryptography. In this chapter, we detail fundamental concepts

existing in nonlinear sciences, such as chaos theory and synchronization of periodic

or chaotic oscillators. We also show how the appropriate combination of these two

important notions can lead to innovative physical-layer encryption setups, that ensure

a high level of computational security.
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2.2 Chaos Theory

The theory of chaos is one of these mathematical and physical frameworks that can

instantaneously seize our imagination and interest. It transcends the disciplines:

philosophy, religion, mythology, and science each has its own perspectives on chaos. In

this section, we give some mathematical insight and facts on the theory of chaos. We

will start from a historical point of view that lays the grounds of what is known today

as nonlinear science and chaos theory1. Then, we will present fundamental concepts

such as the theory of dynamical systems, the attractors, bifurcations, route to chaos,

and finally give some notions on complexity. These key concepts are illustrated on

typical nonlinear systems.

2.2.1 Historical Perspective

In ancient Greek mythology, chaos was the “primeval emptiness preceding the gene-

sis of the universe, turbulent and disordered, mixing all the elements” (adapted from

[29]). From this turmoil, order eventually emerged to shape the world. Though naive,

this tale connects two key concepts of the modern theory of chaos and makes them

interdependent: order and disorder. Philosopher Aristotle also articulated an impor-

tant property that characterizes chaos, and will be later known as the sensitivity to

initial conditions (SIC). The conclusion he drew was that ”the least initial deviation

from the truth is multiplied later a thousandfold” [30] (and see Stanford Encyclope-

dia). With this statement, Aristotle described a form of exponential divergence with

time; a slightly modified (one could say disturbed) original concept or ”truth” may

end with a complete different and unexpected final form.

Finding its roots in social sciences and Greek myth, the idea of chaos and SIC were

considered as irrelevant from a scientific point of view for centuries. Only in 1876,

1Excellent historical introductions to chaos theory can be found on the web site of the Stanford
Encyclopedia, J. Gleick’s book [27], M.W. Lee PhD thesis [28], and M. Sciamanna PhD thesis [1].
Some examples were adapted from these various references.
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as James Clerk Maxwell was developing his kinetic theory, he argued that a small

variation in the current state make the prediction of future states impossible. At this

time, however, he was convinced that the key factor rendering his effect visible was

the complexity of the system through its large number of variables. Later in 1892, the

problem of stability was addressed mathematically by Russian mathematician Alek-

sandr Lyapunov. For the first time, he calculated the divergence rates between the

evolutions of a dynamical system with different initial conditions. At about the same

time in 1898, French mathematician Jacques Hadamard remarked that a discrepancy

in initial conditions of a system could lead to unpredictable long-term evolution of dy-

namical systems. In 1908, another French mathematician, Henri Poincaré, deepened

Hadamard’s idea and concluded that any prediction of future states was impossible,

as a result of his famous study of the stability of the 3-body problems.

Other significant milestones in the theory of dynamical systems were initiated

after Henri Poincaré discoveries. We cite the work of B. Van der Pol and Aleksander

Andronov in the 1920’s and 1930’s on the study of oscillations in relaxed and self-

sustained oscillators, respectively. In the 1950’s, Kolmogorov, Arnold, and Moser

focused their attention on the persistence of motion of quasi-periodic oscillators and

obtained the fundamental KAM Theorem.1

In the 1960’s, the theory of chaos received unprecedented attention as Edward

Lorenz, a meteorologist at the Massachusetts Institute of Technology (MIT), pro-

posed a graphical representation of SIC in a simplified numerical model of the Earth

atmosphere. Lorenz wanted to analyze data produced by his model on large sequences;

however, at this time computing power was extremely limited. Therefore, to obtain

large sequences, one had to run multiple sequential simulations. It is precisely what

he did, except that when he initiated the next simulation with the last results from

1The KAM Theorem proves the existence of invariant tori (quasi-periodic trajectories) in the
phase space of an integrable hamiltonian system after perturbation.
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the previous run with a lower precision, he noticed that the model did not duplicate

the expected evolution that a single simulation would have produced (see Fig. 4).

Figure 4: Numerical evidence of the sensitivity to initial condition in the Lorenz
system, as observed historically by Lorenz. Depicted in grey is the evolution with
initial condition with 5-digit precision; depicted in red the same evolution with a
duplicated initial condition with a 3-digit precision.

Contrary to his expectations, the lower-precision initial conditions would not have

negligible consequences on the system’s dynamics. This discovery and subsequent

work contribute to explain the inaccuracy of long-term weather forecasting and were

summarized by E. Lorenz at the 139th meeting of American Association for the

Advancement of Science (AAAS) with this now famous statement: “Does the flap of

a butterfly’s wings in Brazil set off a tornado in Texas?” [11]. That is how the SIC

was also known as the “butterfly effect”. After this major turn, research on nonlinear

dynamics and chaos theory stepped up.

In 1971, David Ruelle and Floris Takens proposed an alternative mathematical

explanation of the turbulence in fluid dynamics based on the existence of so-called

”strange attractors” [31]. A couple of years later, Tien-Yien Li and James A. Yorke

used the term chaos to describe the erratic and unpredictable behaviors arising in

deterministic nonlinear maps. At the same period, Mitchell J. Feigenbaum unraveled

universality of behavior occurring in a particular class of systems as they transition

to chaos, and derived the Feigenbaum constant [32].
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2.2.2 Fundamentals of Nonlinear Systems Theory

2.2.2.1 Continuous Systems

A system, in which the state is changing with time, is called a dynamical system or

oscillator. If the system is time-continuous, then the mathematical description of its

evolution is given by an ordinary differential equation (ODE)1 and a set of initial

conditions,

ẋ(t) = f(x(t)), (1)

x(t0) = x0, (2)

where x ∈ Rn is the state vector, f is a function Rn → Rn, also called vector field,

and x0 ∈ Rn is the initial state vector at initial time t0. The initial conditions of the

system are rarely explicitly given in the representation of a system. If the function

f is nonlinear, then the system is said to be nonlinear, and linear otherwise. We

define the dimension of a nonlinear system as the size of its state vector (number n

of coordinates). This notion of dimension, as discussed later, is of prime importance

to explain the emergence of chaotic behaviors in this type of system.

As an example, consider the nonlinear pendulum. It is comprised of a point mass

m that can swing freely. It is at a distance l from its pivot and subject only to gravity

g. The position of the mass is given by its angle θ, and its speed is given by v = θ̇.

These are the two quantities necessary to describe its evolution,
θ̇ = v,

v̇ = −2λω0v + ω2
0 sin θ.

(3)

The frequency of the oscillator is 2πω0 =
√
g/l and the damping ratio is denoted by

λ > 0. With the notation of Eq. 1, the state vector is given by x = (θ, v)T and the

vector field by f = (fθ, fv)
T = (v,−2λω0v + ω2

0 sin θ)T .

1If the system’s mathematical representation does not depend explicitly on time, it is said to be
autonomous.

16



2.2.2.2 Discrete Systems: Maps

If a system takes its values only at regularly distributed instants, it is called time-

discrete or discrete. Its mathematical representation is given by a map, which reads

with the previous notations of Eqs. 1-2

xk+1 = f(xk), (4)

xk0 = x0, (5)

with k the time index, k0 the initial discrete time, and x0 an initial vector.

Concerning nonlinear maps, we cite the logistic map that models the behavior of

predator-pray and was proposed by Robert May [33]. It is a discrete-time analog of

the logistic equation and it reads

xn+1 = µxn(1− xn), (6)

where xn represents the population at year n and µ > 0 the rate of maximum popu-

lation growth.

2.2.2.3 Time-Delay Systems

In the two previous cases, the evolution of the state depends only on the current state

(continuous time) or previous time (discrete time). Here in time-delay systems, it

depends also of state in the past, a delayed state. They are mathematically described

by delay differential equations (DDE),

ẋ(t) = f(x(t),x(t− τ)) for t > τ, (7)

x = ϕ(t) for t ∈ [0, τ ], (8)

with ϕ : R → Rn a vectorial function. Contrary to systems described by ODEs, or

maps, it is necessary to specify the initial conditions over a complete interval.

Time-delay or delayed systems have received considerable attention due to their

peculiar properties such as infinite degrees of freedom, very large dimension of the

corresponding attractor, which is often proportional to the time-delay τ .
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Historically, one of the first time-delay systems ever exhibited was a Mackey-

Glass system, named after the two physiologist who discovered it [34]. It models the

production of blood cells in the human body and takes into account the delay existing

between the genesis of cells and their maturation before injection in the blood stream.

The system is described by

ẋ(t) = −ax(t) +
bx(t− τ)

1 + x(t− τ)n
, (9)

with x ∈ R the state variable, a, b, n ∈ R parameters of the models, and τ the time

delay.

2.2.3 Notion of Stability of Nonlinear Systems

The concept of stability is ubiquitous in dynamical system theory and it underlies the

notions of attractors, bifurcation theory, and synchronization. We focus on definitions

for continuous systems (described by Eq. 1) .

A vector xe is an equilibrium point if

f(xe) = 0. (10)

It is possible to define several types of stability:

• Lyapunov stability: An equilibrium point is stable in the Lyapunov sense if

for all ε > 0, there exists δ(t0, ε) such that

∀t > t0 ‖x(t0)− xe‖ < δ(t0, ε)⇒ ‖x(t)− xe‖ < ε. (11)

It guarantees that the trajectory of the system in phase space will remain in

the vicinity of the equilibrium point if the initial state belongs to this vicinity.

If δ does not depends on t0, the stability is said to be uniform.

• Asymptotic stability: An equilibrium point is asymptotically stable if

‖x(t0)− xe‖ < δ(ε)⇒ lim
t→∞
‖x(t)− xe‖ = 0. (12)
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Asymptotic stability includes the Lyapunov stability, but imposes for all tra-

jectories initiated in the neighborhood of the equilibrium point to converge

asymptotically to it. Furthermore, a system is globally asymptotically stable if

for all trajectories x(t), lim
t→∞
‖x(t)− xe‖ = 0; in other words the system has a

unique equilibrium point.

A major inconvenient with the definition of stability is that it requires the finding

of the system’s trajectory. Nevertheless, methods exist to determine the stability

considering the system in its differential form Eq. 1:

• The indirect Lyapunov method: It consists of analyzing the eigenvalues of

the linearized system at the equilibrium point (∂f/∂x)x=xe . If the linearized

system is uniformly asymptotically stable then the nonlinear system described

in Eq. (1) is locally asymptotically stable at equilibrium point xE.

• The direct Lyapunov method: It relies on the Lyapunov theorem, that pro-

vides information on the global asymptotic stability of a system by constructing

an energy function V (x) and study how its time derivative behaves. The results

can be summarized in Table 1 (adapted from [35]).

Table 1: Synoptic view on the Lyapunov method and its conclusion on stability.

V (x) −dV (x)/dt Conclusion on stability

Locally definite posi-

tive (ldp)

locally positive stable

ldp and decrescent locally positive uniformally stable

ldp and decrescent ldp asymptotically stable

definite positive and

decrescent

definite positive globally asymptotically

stable

As an example, we apply the direct Lyapunov method to the relaxed damped

nonlinear oscillator defined by ẍ(t) − 2λω0ẋ(t) + ω2
0 sin(x(t)) = 0, with ω0, λ > 0.
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Evidently, the equilibrium point is xe = 0. We consider the Lyapunov function

V (x, t) = 1
2
x(t)2 + ω2

0 cos2(x(t)) which is positive definite. We have for the time

derivative V̇ (x, t) = ẋ (ẍ− ω2
0 sin(x)) = −2λω0ẋ

2(t), which is evidently negative def-

inite. As a consequence, the Lyapunov theorem concludes for a damped oscillator,

that its equilibrium point is globally asymptotically stable.

There exists other types of stability such as the exponential asymptotic stability

with a corresponding Lyapunov theorem. For more details on the question of stability,

we suggest the reference [36] to the reader.

2.2.4 Attractors and Bifurcations Theory

2.2.4.1 Notion of Phase Space

In physics, a space comprising all the accessible states of dynamical system (position

and velocity, to a large sense) is called the phase space. For a time-continuous system

with finite dimension n, the phase space is spanned by the components of its state

vector, in the case of time-delay system its dimension is infinite [37].

The evolution of the dynamical system is represented by a trajectory in phase

space called the orbit. An important property of a deterministic system is that

its trajectory cannot self-intersect; otherwise it would contradict the uniqueness of

evolution of a system for a given initial condition as stated by the Cauchy theorem.

2.2.4.2 Notions of Dissipation and Attractors

As highlighted by Ruelle and Takens [31], a complex time evolution may sometimes

be advantageously represented in the phase space (S). Depending on the dissipation

of a given system, the trajectories in a region of phase space may eventually converge

to a subset A ⊂ S, which is typically referred to as an attractor. In the case of

continuous-time system, the dissipation is defined by analyzing the evolution of a

volume V of phase space,

V̇ (t) =

∫
V

∇ · fdx, (13)
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with ∇ · f the divergence of the vector field f and defined by ∇ · f =
∑n

i=1 ∂fi/∂xi

with fi and xi the components of the vector field f and state vector x, respectively.

For the example of the pendulum, the vector field is defined by fx = v and

fv = −γv − ω2
0 sinx; the divergence reads ∇ · f = ∂fθ/∂θ + ∂fv/∂v = −2λω0. The

lack of damping (λ = 0) makes the pendulum a conservative system; otherwise (λ > 0)

the divergence is less than zero, and the pendulum is dissipative.

If the system is a map, the dissipation is defined after the amplitude of the de-

terminant of the Jacobian matrix associated to the discrete vector field: |det(∇xf)|.

If |det(∇xf)| = 1, the system is conservative, else if |det(∇xf)| < 1 the system is

dissipative.

An Example for discrete system is the baker’s map. This transformation is defined

on the unit square mapped to itself and is named after the baker, because it squeezes,

cuts, and stacks iteratively the unit square, as a baker would do with the dough.

Mathematically this system is modelled by

 xn+1

yn+1

 =

 2 0

0 a


 xn

yn

+


0 0, xn 6 1

2

1
2
, xn >

1
2

 (mod 1). (14)

The nonlinearity results in the modulo operation that is responsible for the cut-

and-stack. In this map, the Jacobian matrix is evidently ∇f =

 2 0

0 a

 and its

determinant is equal to det(∇f) = 2a. According to the definition, if a ∈ [0, 1
2
[

the system is dissipative with a squeezing of volume that imposes the trajectories to

asymptotically converge in a bounded region of the phase space; otherwise if a = 1
2

the map is conservative.

Typically, a nonlinear dissipative system can exhibit basic attractors with four

different geometries: (i) an equilibrium point (EP or fixed point) corresponds to a

stationary evolution of the system, (ii) a limit cycle (LC), which is a closed curve
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in the phase space and corresponds to a periodic evolution in the time domain with

frequency f0, (iii) a torus (T), which is also a closed curve in phase space embedded

in a torus and corresponds to a quasi-periodic motion in the time domain, defined by

the coexistence of multiple incommensurate frequencies f0i, (iv) a strange attractor

is a complex set with a fractal geometry1 usually associated with unpredictable and

erratic evolution of an oscillator in the time domain, called chaotic fluctuations.

2.2.4.3 Bifurcations Theory

The theory of bifurcations studies the topological changes of a trajectory of a dynam-

ical system defined by

ẋ = f(x, λ), f : Rn → Rn, x ∈ Rn, λ ∈ Rp, (15)

in response to smooth variations of the system’s parameter λ ∈ Rp, commonly called

the bifurcation parameter. A bifurcation is often seen as a collision or exchange of

stability between two or multiple attractors (equilibrium points, limit cycles, torus),

or two or multiple manifolds2 [39, 40, 41].

When attractors collide, this induces a local topological modification of the phase

space in the immediate vicinity of the collision; this is referred to as a local bifurcation.

However, when two manifolds collide and exchange their stability the phase space

structure may be globally affected; this is referred to as a global bifurcation. The

complexity of the bifurcation is given by its codimension, an integer representing the

number of scalar parameters amongst the vector λ that one must vary to observe a

bifurcation. It represents the codimension of the parameter vector λ.

The last characteristic of a bifurcation is related to the nature of the collision

between the attractors and/or manifolds. The bifurcation is said to be supercritical if

1A fractal geometry characterized a “rough or fragmented geometric shape that can be split into
parts, each of which is (at least approximately) a reduced-size copy of the whole” as described by
B. Mandelbrot in [38].

2Manifold: In differential geometry a manifold is a smooth (highly differentiable) mathematical
space.
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the collision occurs with a stable structure at λ > λc, leading to a smooth transition,

λc being the critical value of parameter for which the bifurcation occurs. On the

other hand, the bifurcation is said subcritical if the collision occurs with an unstable

structure existing for λ > λc; this results in a sudden transition.

Various bifurcations have been studied, especially those with a low codimension

(one or two) as well as global bifurcations. We can cite the most common bifurcation

encountered in dynamical systems:

• Local bifurcations

– Saddle-node bifurcation: Before the bifurcation, two equilibrium points

(EP) exist. They collide and disappear; no equilibrium points remain after

the bifurcation.

– Transcritical bifurcation: Before the bifurcation, two equilibrium points

exist with different stability. They collide and after the bifurcation their

stability is exchanged.

– Pitchfork bifurcation: A type of bifurcation that occurs in system with

symmetry. The bifurcation can be supercritical, when a stable equilibrium

point EPs becomes unstable and two new stable equilibrium points ap-

pears. The bifurcation can be subcritical when two unstable fixed points

(EPu1, EPu2) coexist with a third stable equilibrium point EPs that re-

spectively disappear and becomes unstable after the bifurcation.

– Hopf Bifurcation: This bifurcation can be supercritical or subcritical.

In the first case, an equilibrium point looses its stability while a limit cycle

is appearing. In the latter case, an unstable limit cycle coexists with a

stable equilibrium point before the bifurcation. After the bifurcation, the

limit cycle disappears and the equilibrium point becomes unstable.
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– Period-doubling bifurcation: An existing limit cycle with period T

disappears, a newborn limit cycle appears with period 2T .

– Neimark-Sacker bifurcation: A limit cycle disappears and a torus at-

tractor emerges.

• Global bifurcations:

– Homoclinic bifurcation: A limit cycle and a saddle point (unstable

equilibrium point) collide together. This results in the appearance of a

homoclinic orbit defined as particular trajectory of the system xH(t) that

satisfies the following limits’ equality,

lim
t→−∞

xH(t) = lim
t→∞

xH(t) = p, (16)

with p an equilibrium point.

– Heteroclinic bifurcation: A limit cycle and two or more saddle point

collide together. This results in the appearance of an heteroclinic orbit

xHe(t) that satisfies

lim
t→−∞

xHe(t) = p1 and lim
t→∞

xHe(t) = p2, (17)

with p1 6= p2 two equilibrium points.

2.2.5 Chaos Theory

When one is asked to define chaotic behavior, there is no single answer; for G.P.

William, “Chaos is sustained and disorderly-looking long term evolution that satisfies

certain special mathematical criteria and that occurs in a deterministic non-linear

system” [29]; for E. Lorenz it is also “The property that characterizes a dynamical

system in which most orbits exhibit sensitive dependence.” In this subsection we will

give necessary conditions to observe chaotic behaviors in dynamical system.
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In the case of a continuous system, there are three basics ingredient to ensure the

emergence of chaotic behaviors: (i) a sufficient dimensionality, (ii) a nonlinearity, and

(iii) a proper set of parameters that will allow the strange attractor to be the stable

limit set.

The condition of dimensionality comes as a corollary of the Bendixon-Poincaré

theorem, which states that given a differential equation ẋ = f(x) in the plane (2D)

and assuming x(t) is a solution curve which stays in a bounded region, then either

x(t) asymptotically converges for to an equilibrium point, or it converges to a single

periodic cycle. It is necessary to have a system with dimension greater or equal to

three (which is precisely the case of the Lorenz system studied in the next paragraph).

The nonlinearity is necessary to couple the state variable in such a way that

solutions other than the predictable solution of a linear system ẋ(t) = A(t)x(t), with

A ∈Mn×n(R) of the form x(t) = x0 exp
(∫ t

t0
A(u)du

)
, appear.

2.2.5.1 Route to Chaos

Contrary to linear systems, nonlinear systems can exhibit a various dynamics apart

from chaotic ones (if the dimension is large enough). This diversity and the transitions

(bifurcations) occurring between each of them can be probed by making varying one

or several system’s parameters (called bifurcation parameters). This makes it possible

to observe a cascade of bifurcations to stable attractors until a strange attractor is

reached. This is called a route to chaos. In the literature, the routes to chaos are

graphically represented by a bifurcation diagram where the system’s output is plotted

as a function of the bifurcation parameter. There exists a large variety of routes

but amongst them, three scenarios are often encountered and may be considered as

universal [42]:

• Period-doubling route to chaos: Also called Feigenbaum route to chaos,

in this scenario, a steady state is first destabilized through a Hopf bifurcation
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resulting in a limit cycle of period T . Then, this limit cycle undergoes a cas-

cade of period-doubling bifurcations until the n−th limit cycle of period 2nT

destabilized and the strange attractor becomes stable. This route is illustrated

in Fig. 5.

Figure 5: Experimental bifurcation diagram of an optoelectronic oscillator picturing a
period-doubling route to chaos (courtesy of former UMR 6603 GTL-CNRS Telecom).
States and bifurcation points are indicated on the figure.

• Ruelle-Takens-Newhouse route to chaos: Also called the quasi-periodic

route to chaos. It consists of the following succession three bifurcations when

the bifurcation parameter is steadily increased: First, a Hopf bifurcation that

leads to a stable limit-cycle of period T , second a Torus bifurcation that leads to

a quasi-periodic dynamics with two incommensurate frequencies associated with

a torus attractor T 2, and finally a last bifurcation turns the torus T 2 into a new

attractor T 3 with three incommensurate frequencies, which rapidly destabilizes

into a strange (chaotic) attractor.

• Intermittency route to chaos: Also called Pomeau-Maneville route to chaos

[43], in this scenario a single bifurcation is responsible for the alternation (or

intermittence) of zones of chaotic (“turbulent”) motion with zones of smooth
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regular (“laminar”) motion. As the bifurcation parameter increases, the tur-

bulent zones last longer and eventually, above a critical threshold, the system

is always turbulent (or chaotic). The intermittency route to chaos is classified

into three different types (I,II,III) depending on how the destabilization occurs.

2.2.5.2 Strange Attractors

In dissipative systems, the trajectory is asymptotically localized in a bounded region

of the phase space called attractor. When a system exhibits chaotic behaviors, the

time evolution is seemingly random. However, when the system is represented in

the phase space, an ordered geometric structure becomes visible. This structure was

originally called strange attractor by D. Ruelle and F. Takens. To illustrate it, we

consider a celebrated example: the Lorenz system. It is defined as

ẋ = σ(y − x), (18)

ẏ = ρx− y − xz, (19)

ẋ = xy − βz, (20)

with σ the Prandtl number, ρ the Rayleigh number, and σ, ρ, and β = 4/(1+a2) with

a a horizontal wavenumber for the convection cells. All the parameters are positive.

This is a simplified model of the convection in the atmosphere. In the phase plane

defined by the coordinates (x, y, z), this system reveals a butterfly shape that later

became emblematic of the chaos theory. Times series and 3D representation of the

attractor are given in Fig. 6.
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Figure 6: Numerical simulation of the Lorenz flow with σ = 10, ρ = 28 and β = 8/3.
(a) The strange attractor with a butterfly shape in the 3D phase space (x, y, z). (b)
Time series of each state variables (adapted from [1]).

The strange attractor is said to be fractal, if its dimension is non-integer and has

a complex geometry. Considerations on the calculation of dimension of attractor will

be detailed in the following subsection.

2.2.5.3 Sensitivity to Initial Conditions (SIC) and Lyapunov Exponents

In the chaotic regime, there exists one or several directions in phase space for which an

hypervolume of phase space would be stretched as time progresses. As a consequence,

two neighboring trajectories arbitrary close will progressively move away from each

other while remaining on the strange attractor. The system is said to be sensitive

to initial conditions (SIC). Uncertainty of the initial conditions of a given system is

unavoidable due to finite precision of measurement and will be amplified with time,

preventing any possible forecasting. This is one of the fundamental properties of

chaotic systems that E. Lorenz was the first to observe (see Fig. 4).

Intuitively, the unpredictability will depend on how fast two close trajectories di-

verge and it is consequently related to the expansion’s speed of the initial hypersphere

in all the directions of the phase space. The expansion rates are usually referred to
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as Lyapunov exponents. Mathematically, we consider a trajectory x(t) solution of

the differential system Eq. 1 and an elementary perturbation’s vector δx(t) solution

of the linearized equation around the trajectory x(t): δẋ(t) = ∇fxδx(t) and δx(0)

denoting the initial perturbation. The components δxi of the perturbation will be

stretched or contracted with specific rate λi as illustrated in Fig. 7.

Figure 7: Representation of the deformation of a 3D hypersphere along the exten-
sion/contraction direction of the dynamical flow along the trajectory x(t).

The rates are defined for a continuous system by

λi = lim
T→∞

1

T
log

(
‖δx(T )‖
‖δx(0)‖

)
. (21)

If an iterated map is considered, a small perturbation evolves as δxn = ∇fxn−1δxn. It

is analogous to a geometric series except that the reason will change at every steps.

By analogy to the expression in continuous time, the Lyapunov exponent is defined

by λi = limn→∞ 1/n log (‖δxn‖ / ‖δx(0)‖). The set of all the Lyapunov exponents is

called the Lyapunov spectrum. For a system to be chaotic, the spectrum must have

at least one positive Lyapunov exponent to guarantee the existence of SIC.

Consider the Baker’s Map to illustrate a straightforward calculation of the Lya-

punov spectrum. An infinitesimal sphere is centered on a trajectory point (xn, yn).

The perturbated coordinated along each direction are defined by x̄n = xn + δxn and

ȳn = yn + δyn. The evolution of the perturbation after n iterations of the map reads

δxn = 2nεx0 and δyn = anδy0 with δx0, δy0 the initial perturbations. The Baker’s map

stretch the phase space in the x−direction, while contracting it in the y−direction.
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This gives an illustration on how it is possible to have infinitely diverging trajectory

yet confined in finite phase-space volume.

2.2.6 Complexity

The complexity of chaos is characterized by two quantities: dimension and entropy.

This subsection is mainly devoted to their intrinsic definitions and connection with

the Lyapunov spectrum.

2.2.6.1 Dimension and Kaplan-Yorke Conjecture

To characterize the dimension of an attractor and its fractal geometry, one can use the

fractal dimension (also known as Kolmogorov capacity). Self-similar structure such

as fractals do not have an integer dimension such as typical mathematical objects of

Euclidean geometry. To calculate this dimension, the attractor is discretized, covered

with N(ε) hyperboxes of size ε (see Fig. 8(a)). The idea behind the fractal dimension

is to observe the evolution of the number of hyperboxes necessary as their size tends

to zero (refinement of the discretization). The definition reads

dc = lim
ε→0

log(N(ε))

log(1/ε)
. (22)

There is another approach to calculate the dimension of an attractor. Instead of

discretizing the attractor, the whole phase space is partitioned with hyperboxes of

size ε. In the phase space, the attractor intersects a finite subset of boxes (see Fig.

8). We introduce the probability pi that the attractor visit the ith hyperbox and we

define the information dimension,

dI = lim
ε→0

log(I(ε))

log(1/ε)
, (23)

with I(ε) = −
∑N(ε)

i=1 pi log(pi), the information relative to the attractor geometry

with a precision ε.

30



Figure 8: (a) Discretization of the attractor for the calculation of the fractal dimen-
sion in a 3D case. (b) Discretization of the phase space for the calculation of the
information dimension. The attractor (red solid lines) intersects several boxes.

Although based on different calculation principles, these two dimensions are equal

if the attractor visits with identical probability all the hyperboxes, i.e. pi = 1/N(ε).

In most cases, this situation is not satisfied and dI ≤ dc.

Numerically, the calculation of the information dimension becomes rapidly in-

tractable as the dimension n of the phase space increases. To overcome this, D.T.

Kaplan and J. Yorke came up with a conjecture linking the information dimension dI

with the Lyapunov spectrum [44],

dI = dKY = j +
1

|λj+1|

j∑
i=1

λi, (24)

with j the index that satisfy
∑j

i=1 λi ≥ 0 and
∑j+1

i=1 λi ≤ 0, and dKY the Lyapunov

or Kaplan-Yorke dimension.

2.2.6.2 Entropy and Pesin Inequality

The Kolmogorov-Sinäı entropy of a dynamical system characterizes how the precision

of the prediction of a future state decreases with time due to the uncertainty of the

initial conditions. It measures the average rate of information loss. Its definition

supposes a partition of the phase state as in the case of the information dimension

dI . In practice, Kolmogorov-Sinäı entropy is defined as

hKS = lim
ε→0

lim
n→∞

1

n
H (B) , (25)

with B = {Bi}i=1,...,m a partition of the phase space with diameter ε that captures

the attractor in the phase space during a time interval of length n (more details in
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footnote), H (B) = −
∑m

i=1 µ (Bi) logµ (Bi), µ a probability measure.1

This quantity is also linked with the Lyapunov spectrum through the Pesin in-

equality [46] defined as

hKS ≤
∑
i|λi>0

λi. (26)

2.3 Synchronization

2.3.1 Historical Perspective

Synchronization comes from the greek words “syn” (with) and “chronos” (time),

literally occurring at the same time. Synchronization of oscillators is a universal and

ubiquitous phenomenon in nature [47]. It was discovered by Chritiaan Huygens in

1665, who observed perfect in- and out-of-phase oscillations of two pendulum clocks

dynamically coupled by their common support (see Fig. 9) and concluded on the

existence of “sympathy on two clocks” [48].

Figure 9: Portrait of Christiaan Huygens (a), his drawing of the synchronization
experiment between two clocks located respectively in position A and B in (b), and
the experiment revisited at the School of Physics at Georgia Tech [2] (c).

1Notes on Kolmogorov-Sinäı entropy: Entropy for dynamical systems is rigorously defined
in the theoretical framework of measure-preserving dynamical systems. This considers a probability
space (X,A , µ, f) with X the state space, A = {Ai}i=1,...,p a partition of X, µ a probability
measure on X, and f an automorphism of X. Consider the refinement of two partitions C ∨ D =
{Ci ∩Dj |C = {Ci}i=1,...,n and D = {Dj}j=1,...,n}i,j , Kolmogorov-Sinäı entropy is defined as

hKS = sup
A

lim
n→∞

1

n
H

(
n−1∨
k=0

f−k(A )

)
.

The supremum is taken over all possible partitions A for the limit of the entropy H of partition
B =

∨n−1
k=0 f

−k(A ) = {Bi}i=1,...m, that reads H(B) = −
∑m
i=1 µ(Bi) logµ(Bi). Assuming B is a

generating partition, the supremum over A corresponds to the limit to zero of diameter of partition
B. This finally leads us to Eq. 25. A detailed analysis can be found in [45].
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Approximately two centuries later in 1870, Lord Rayleigh reported for sound pipes

their possibility to sound at unison and the effect of quenching, known as the sup-

pression of oscillations in interacting systems [49]. In the 1920’s, V. Appleton [50]

and B. van der Pol [51] studied the synchronization phenomenon in triode generators

under the influence of weak synchronization signals. Later in the 1940’s, V. Adler

described the locking phenomenon, a key concept in the synchronization of periodic

oscillator [52]. Synchronization phenomena continue to be reported with spectacu-

lar examples in nature like the synchrony of flashing fireflies [53], chirping crickets

[54], or more recently genetic clocks [55]. Such a phenomenon has also found an

application in telecommunication and is used to synchronize electronic circuits with

the phase-locked loops (PLL). We recommend to the reader an excellent and more

detailed introduction in [47].

2.3.2 Synchronization of Periodic Oscillators

Historically, the synchronization of periodic oscillators was studied with two types

of interactions or couplings: unidirectional (forcing) or bidirectional (mutual). In

the unidirectional configuration, a master (decoupled) drives the dynamics of a slave

system. Each oscillator is characterized by its free-running frequency: respectively

ωm and ωs, and the coupling strength is denoted η. As a result, the master (ωm)

forces the slave (ωs) to lock on its frequency; this depends on the set of parameters

(ω, η). In this parameter plane, the frequency locking region forms what is known

as an Arnold tongue [56] (see Fig. 10(a2)). This triangle-shaped zone illustrates the

increasing of the synchronization frequency range with the amplitude η [Fig. 10(a2)].

As a result, the phase of each oscillator are bounded |φm(t)− φs(t)| = constant.1 If

the frequency of master and slave are identical, their phases are also synchronized

φm(t) = φs(t). With a mutual interaction, each system influences the dynamics of

1In the case of unidirectional forced oscillator, the synchronization is seen as a stabilization of
the phase difference between master and slave.
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its coupled partner. The frequency of each system is denoted ω1,2 and the coupling

from System 1 to System 2 denoted η1 (respectively η2 for System 2 to System 1) as

depicted in Fig. 10(b1). In the context of mutual interactions, the frequency of each

oscillator changes and becomes Ω1,2. If ω1 < ω2, then the frequencies of the interacting

systems typically satisfy ω1 < Ω1,Ω2 < ω2. When the coupling is strong enough, then

there is a mutual frequency locking and Ω1 = Ω2 = Ω and ω1 < Ω < ω2 [see Fig.

10(b2)]2 Under these conditions, the phases of each oscillators are also locked when

the oscillators have different frequencies. When the oscillators are nearly identical,

then the oscillator can be synchronized in phase or anti-synchronized (as observed by

C. Huygens). This paragraph has been inspired by a detailed description made in

[47].

Figure 10: Illustration of unidirectional and mutual synchronization of two oscil-
lators, respectively (a1) and (b1). In the unidirectional case, the master (M) pulls
the slave’s frequency ωs (dotted arrow), and eventually under appropriate coupling
strength it locks it ωm = ωs. (a2). In the mutual case, both systems interact resulting
in a push-pull effect on the synchronization of each system. Under appropriate cou-
pling conditions, the two systems locks on a single frequency Ω different from their
respective free running frequencies ω1,2.

2In particular cases involving complicated interactions between the oscillators, the frequency of
the synchronized system can lie outside of the frequency range [ω1, ω2], an exceptional feat.
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2.3.3 Synchronization of Chaotic Oscillators

The synchronization of chaotic systems was long thought to be counterintuitive or

impossible, especially because of the sensitivity to initial conditions preventing two

identical chaotic systems from displaying perfectly correlated time evolutions. How-

ever, in 1983, Fujisaka and Yamada paved the way with their pioneering studies on

chaos synchronization [57, 58, 59] followed by the work of L. Pecora and T. Carroll,

who demonstrate theoretically and experimentally the existence of complete synchro-

nization with an electronic version of a Lorenz system [12].

2.3.4 Mathematical Definition and Types of Synchronization

There exist various types of synchronization. We propose in this subsection a non-

exhaustive rapid overview of their mathematical formulations:

• Complete Synchronization the states of the interacting systems x ∈ Rn and

y ∈ Rn converge asymptotically to the same evolution:

lim
t→∞
‖x(t)− y(t)‖ = 0. (27)

This type of synchronization was described in [60].

• Generalized Synchronization: In generalized synchronization, we suppose

that the states of the two interacting systems are functionally synchronized.

There exists a function ψ : Rn → Rn such that

lim
t→∞
‖x(t)− ψ(y(t))‖ = 0. (28)

This type of synchronization was proposed for the first time in [61].

• Anticipating Synchronization: In most cases described so far, the interac-

tion between the systems were instantaneous. In practice and particularly in
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the optoelectronic systems described in Chapter 3, the interactions are delayed.

This leads to the definition of the anticipating synchronization,

lim
t→∞
‖x(t)− y(t− τ)‖ = 0, (29)

with τ the time delay. This type of synchronization was proposed for the first

time in [62].

• Phase synchronization: Phase synchronization is phenomenologically de-

scribed for the periodic oscillators and can also be defined for chaotic systems.

It relies on an extension of the notion of phase based on an analytical signal

s(t) derived from the state of the system x(t),

s(t) = x(t) + ix̃(t) = a(t)eiϕ(t), (30)

where x(t) ∈ R, and x̃(t) = 1
π
p.v.

∫ −∞
−∞

x(u)
t−u du analytical transform of x(t) with

p.v. the Cauchy principal value. In this representation, a(t) and ϕ(t) are the

analogs of an amplitude and a phase, respectively. Phase synchronization con-

dition for chaotic systems is then identical to that of a periodic oscillator (con-

sidering ϕ(t) in each system as the variable to be synchronized).

For a detailed treatment of the synchronization of nonlinear systems, we recommend

to the reader Ref. [63].

The concept of synchronization is of fundamental importance for the chaos-based

cryptographic setups that will be described in the next section.

2.4 Chaos-Based Communications

2.4.1 Principles

A chaos transmission chain consists of two parties, classically named Alice (sender)

and Bob (receiver), who secretly exchange data on a public communication channel.
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Alice realizes encryption by embedding a data stream within the noise-like fluctua-

tions generated by her chaotic emitter. Bob possesses an emitter’s copy which syn-

chronizes under appropriate coupling conditions. The deterministic nature of chaos

implies that the chaotic receiver will only synchronize when the binary symbol “0” is

emitted. This chaos-pass-filtering property allows for the extraction of the original

message.

There exists various methods to realize the message embedding. The most fa-

mous ones are chaos masking (CMa), chaos-shift keying (CSK) and chaos modulation

(CMo).

2.4.2 Typical Architectures

2.4.2.1 Chaos Masking (CMa)

This approach was demonstrated for the first time in [64, 65, 66]. Alice adds her

message m(t) at the output yE(t) of her chaotic emitter (E). The output is defined

as a nonlinear function h of the state variable of the emitter yE(t) = h(xE(t)). If the

nature of the carrier is different from that of the message, it is possible to precondition

it and transform it into a physical signal m(t) compatible with the carrier. The

signal s(t) = yE(t) + m(t) is then transmitted into the communication channel. The

chaotic fluctuations of yE(t) act as a deterministic noise that covers the message

and prevent an eavesdropper to detect its presence easily. It is assumed that the

message’s amplitude remains negligible in comparison to the carrier’s amplitude to

ensure proper concealment and avoid the disturbance in the synchronization process.

Indeed, the signal s(t) is also used to chaotically synchronize the receiver (R) with

(E). If the message is continuous and has a large amplitude, then the output of the

receiver may significantly differ from the emitter and the recovery of the message may

eventually be compromised. The legitimate receiver Bob recovers an estimate of the
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message performing the operation

m̂(t) = s(t)− yR. (31)

If the synchronization error is small, then m̂(t) ≈ m(t) and the message is decrypted.

This is illustrated in Fig. 11. This method was one of the first proposed, but it lacks

security because of the weak mixing of the message with the chaotic dynamics. One

advantage, however, is that any type of message can be transmitted: analogous or

digital. This is not the case with the approach of CSK.

Figure 11: Chaos Masking (CMa) architecture.

2.4.2.2 Chaos Shift Keying (CSK)

This approach was demonstrated for the first time in [67, 68] and is tailored for digital

messages with a finite set of values. Typically two binary symbols (often denoted “0”

and “1”) compose the message and activate a switch between two different emitters

(E1) and (E2).They can be either structurally identical with different parameters or

completely different. Alice encrypts her data-stream by switching between these two

chaotic oscillators depending on the type of bit to be transmitted. For instance, each

time a bit “0” is transmitted, the output of (E1) yE1(t) is sent in the communication

channel, yE2(t) otherwise. At the receiving end Bob has two receivers (R1) and (R2)

(physical copies of (E1) and (E2), respectively). Each time that (R1) (resp. R2) will

synchronize with (E1) (resp. (E2)) it will means that m(t) = 0 (resp. m(t) = 1) was

transmitted by Alice. Therefore Bob can recover the message transmitted by Alice
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considering the errors of synchronization at each receiver:

m̂ = 0 if yR1 − s = 0 (m = 0 transmitted), (32)

m̂ = 0 if yR2 − s = 0 (m = 1 transmitted). (33)

This approach is illustrated in Fig. 12(a). It is possible to transmit an M -ary mes-

sage as well, but it would require 2M emitters and receivers. The complexity of the

decryption in a CSK approach is therefore exponential with the number of users.

Figure 12: (a) Chaos Shift Keying (CSK) with two different emitters, the message m
controls a switch. The decryption is performed by monitoring synchronization errors
at each receiver output. (b) CSK with a single emitter, the message controls the value
of a parameter of the system. The decryption is similar to (a).

It is also possible to simplify substantially the CSK approach and reduce the

number of emitters involved. In the case of binary message, it is possible to consider

a single emitter (E). Alice chooses one parameter θ amongst all of those in (E) and

will modulate its value between two different levels: θ = θ0 (respectively θ = θ1) when

m = 0 (respectively m = 1). To decrypt the message, Bob has a single receiver, with

the parameter θ fixed in either of the two values. In this particular configuration,

the decryption equation is similar to Eq. 34. A fundamental limit of the method is
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the synchronization time between (E1,E2) and (R1,R2) [or (E) and (R)] thus reducing

the maximum bit rate compared to that of CMa. The security of this method is also

considered weak, as the statistics (average or variance) of the transmitted signal may

drastically change as the switch between the emitter (or parameter) is performed.

2.4.2.3 Chaos Modulation (CMo)

This approach was demonstrated for the first time in [69, 70]. It consists in the

inclusion of a message m(t) within a signal s(t) which drives both the dynamics of

the chaotic emitter and receiver. This constitutes a particular application of the so-

called active-passive decomposition (APD) [71] where the message does not disturb

the synchronization process. The encryption and decryption are illustrated in Fig.

13.

Figure 13: Chaos modulation (CMo) architecture. An additive CMo is illustrated.

The legitimate receiver Bob recovers an estimate of the message performing a

similar operation to that of the one used in CMa. The estimated message reads

m̂(t) = s(t)− yR. (34)

2.5 Conclusion

In this chapter, we have reviewed the fundamental concepts of nonlinear sciences

necessary to the realization of chaos-based cryptosystems. In a first section, we have

introduced the theory of Chaos, starting with an historical perspective and details on

the fundamental notions that are associated with it; continuous and discrete systems,
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the stability of equilibrium points, the class of attractors and bifurcations. We also

give some insight on complexity theory used to described properties of chaotic attrac-

tors and time-series. Then in a second section, we have given insight on the theory of

synchronization of periodic and chaotic oscillators. Finally in the last section, we have

combined these two theories to explain the principles of chaos-based communications

and some typical architectures chaos masking (CMa), chaos-shift keying (CSK), and

chaos modulation (CMo).
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CHAPTER III

CHAOTIC OPTOELECTRONIC SYSTEMS

3.1 Abstract

In this chapter, we review the fundamentals concepts of the physics of semiconductor

lasers and unveil the existing bridge between lasers and nonlinear science. We focus

our attention on conventional edge-emitting lasers (EEL), which can be modelled

semiclassically using rate equations. We explain how EELs, in certain configurations,

become unstable and exhibit complex dynamics. Finally we describe other optoelec-

tronic systems typically encountered in the field of optical chaos-based communica-

tions such as wavelength, phase, and intensity chaos generators based on continuous

wave EEL laser sources and nonlinear delayed feedback configurations. We conclude

the chapter by showing various realizations of cryptographic setups with typical en-

cryption approaches (CMa, CSK, and CMo).
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3.2 Physics of Lasers

3.2.1 Principles

A laser is a physical system that generates light by amplification of stimulated emis-

sion of radiation (LASER) [72]. Its principle of operation can be phenomenologically

described by a two-level atomic system in a resonant unidirectional (ring) cavity. The

energy of the two-level system is increased by means of optical or electrical excita-

tion, pumping electrons from the ground state of energy E0 to higher-energy states

thus increasing the population in level E1. This configuration is unstable; the system

releases energy by emitting a photon of frequency ω associated with the electronic

transition between the two energy levels. The photon’s energy satisfies ~ω = E1−E0,

~ being the Planck constant. This phenomenon known as spontaneous emission is a

stochastic process (noise). It initially generates many photons in the resonant cavity

that induce additional electronic transitions as they propagate through the excited

population. This phenomenon is known as stimulated emission. The stimulated pho-

tons share identical physical properties (frequency and phase) with those that seeded

their emission. This repeated interplay between the constantly repopulated high-

energy level and the photons trapped by the resonant cavity leads to what is known

as light amplification.

Below, we give the main steps leading to a comprehensive dynamical model that

reflects the previous phenomenological description of a laser made in a two-level

medium. More details can be found in [73, 74].

3.2.2 Maxwell-Bloch Equations

The dynamics of a laser is described by the dynamical interactions between three

physical quantity: the electric field (E) that propagates in a ring cavity (unidirec-

tional propagation), the macroscopic polarization (P ), and the population inversion
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N of the medium. The laser’s equations are derived within the semiclassical ap-

proach. The large number of photons involved are collectively treated as a single

classical continuous wave, i.e. the electric field (amplitude and phase). The medium,

a collection of two-level systems, is described at the microscopic level using quantum

mechanics. The evolution of the electric field is described by the Maxwell Equations

and the properties the medium by the Bloch Equations. The two sets of equations

are combined at the macroscopic level in the Maxwell-Bloch Equations after a se-

ries of simplifications detailed in the literature [74]. Ultimately, the Maxwell-Bloch

equations for a homogeneously broadened two-level laser read

∂E

∂z
+
η

c

∂E

∂t
= i

k

2ε0η2
P − n

2Tphc
E (35)

∂P

∂t
= −i (ωA − ω0)P + i

µ2

~2
EN − P

T2

(36)

dN

dt
= −i1

~
(EP ∗ − E∗P ) +

N0 −N
T1

, (37)

with c the speed of light in vacuum, ~ the reduced Planck constant, η the refractive

index of the medium, µ0 the magnetic permeability of vacuum, ε0 the electric permit-

tivity of the vacuum, ω0 the angular oscillation frequency of the electric field when

described as planar wave, k = ηω0/c the wave number, ωA the angular frequency of

light associated with a transition (emission or absorption) in the two-level system,

Tph the photon lifetime, T2 the relaxation time of the dipole moment, T1 the popula-

tion inversion rate, N0 is the population inversion induced by the pump at the laser

threshold.

This description does not include spontaneous emission (intrinsic noise), but re-

fined models take into account this effect [73]. In 1975, Haken highlighted a re-

markable analogy between the semi-classical description of a two-level laser and the

equations used by Lorenz (see Chapter 2) to describe the dynamic of the atmosphere

[75].

If the variations of the electric field along the propagation z-axis are neglected
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|∂E/∂z| � η/c|∂E/∂t|, the Maxwell-Bloch equations become an ordinary differential

system. Considering the proper change of variables

x = T2
µ

~
E, y = i

T2Tphω0µ

~ε0η2
P , z =

T2Tphω0µ
2

2ε0~η2
(N0 −N), and t =

t

T2

, (38)

and considering new parameters defined by

σ =
T2

2Tph
, β =

T2

T1

, ρ =
T2Tphω0µ

2

2~ε0η2
N0, and δ = (ω0 − ωA)T2, (39)

Equations 35-37 finally read

dx

dt
= σ (y − x) (40)

dy

dt
= − (1− iδ) y + ρx− xz (41)

dz

dt
= −βz + Re (x∗y) . (42)

These equations are equivalent to those of Lorenz and the isomorphism previously

detailed between the two models is known as the Haken-Lorenz equivalence. It has

triggered the first investigations dynamical and chaos behaviors in lasers [76].

3.2.3 A Dynamical Classification of Lasers: Arecchi’s Classification

The Maxwell-Bloch equations (35)-(37) present three characteristic time scales T1,

T2, and Tph respectively affecting the dynamics of the inversion of population N , the

polarization of the medium P , and the electric field E. By comparing their relative

order of magnitudes, Arecchi proposed a dynamical classification of lasers [77, 78].

There are three classes:

• Class-A lasers: they have response times satisfying T1, T2 � Tph, justifying

the adiabatic elimination of the polarization and inversion of population. Con-

sequently, the dynamics of a class-A laser are entirely described by the electric

field equation (cf. Eq.35). Examples of class-A lasers are He-Ne lasers.
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• Class-B lasers: they have response times satisfying T1, Tph � T2, meaning

that only the polarization may be adiabatically eliminated. The dynamics of a

class-B laser are entirely described by the dynamics of its field and population

inversion. Examples of class-B lasers are Nd-YAG, CO2 and semiconductor

lasers.

• Class-C lasers: they have response times with approximately identical order

of magnitude T1 ≈ T2 ≈ Tph. The three Maxwell-Bloch equations are necessary.

Examples of class-C lasers are the NH3 and He-Ne lasers. They have sufficient

degree of freedom to intrinsically exhibit chaotic behaviors [76, 79].

3.3 Physics of Semiconductor Lasers

3.3.1 Description and Principles

A semiconductor laser is typically made of a semiconductor junction coupled with

an optical resonator, which in the case of an edge emitting laser (EEL) can be a

Fabry-Pérot resonator. A common type of EEL is the double heterostructure laser.

As shown in Fig. 14, the gain medium (equivalent of the two-level system in the

previous section) is made of a thin semiconductor layer sandwiched between two

cladding layers made of different semiconductor materials. The cleaved facets in the

x− y planes are partially reflecting mirrors resulting in a resonant cavity.

The principles of operation of a semiconductor laser are similar to those of a

two-level system described in the previous section. The mathematical model remains

semiclassical with a quantum description of the medium, now a semiconductor mate-

rial.

3.3.2 Physics of Semiconductor Junctions

In this subsection, a simple model for a single-mode EEL is presented. This model

is known as the semiconductor rate equations. A complete and rigorous derivation of
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Figure 14: Schematic of an edge-emitting laser (EEL) based on the double het-
erostructure. Both facets emit coherent light. Electric pumping is provided by the
strip contacts on the top and bottom of the structure.

these equations is beyond the scope of this thesis; however, we provide the fundamen-

tal concepts that allow us to understand the principles of operation of semiconductor

lasers.

3.3.2.1 Basics of Semiconductors

A semiconductor material has a temperature-dependent electric conductivity whose

value lies between those of an isolator and a conductor. The band structure accounts

for the energy levels of the many atoms in the material and their couplings leading to

continua of energy levels, referred to as energy bands, or simply bands [80]. The bands

split into two groups: the conduction bands and valence bands, where the electrons

are distributed as a function of their energy E. This distribution depends on two

factors: the density of states and the probability of occupancy of an electron at a

given energy E. The electron occupancy is given by the Fermi-Dirac distribution,

fc,v(Eec,ev) =
1

1 + e
Eec,ev−EFc,Fv

kBT

, (43)

where the indices (c, v) refers to the conduction and valence bands, kB is the Boltz-

mann constant, T is the temperature, Eec,ev and EFc,Fv are the energy of an electron
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and the quasi-Fermi levels of each band, respectively.1

The valence and conduction bands are energetically separated by a forbidden

energetic zone called the band-gap with energy Eg = Ec − Ev, the difference of the

minimum and maximum energy level of each band.

3.3.2.2 Light-Matter Interactions and Semiconductor Junctions

In a semiconductor, the stimulated emission competes with other light-matter in-

teractions such as the spontaneous emission, photon absorption, and non-radiative

recombination (see Fig. 15). To ensure lasing, the net rate Rst defined as the differ-

Figure 15: Representation of various light-matter interactions in a semiconductor
material [in the plane energy-wave vector (E,k) using a parabolic approximation for
the energy band] (a) absorption of a photon of energy ~ω, (b) spontaneous emission
of a photon via electron-hole recombination, and (c) stimulated emission.

ence between the stimulated emission and absorption process has to be positive for

a photon of given energy ~ω. One shows that Rst ∝ fc(Eec) − fv(Eev) [81]; there-

fore, Rst is positive only if population inversion is achieved (the occupancy proba-

bility of an electron in the conduction band is greater than that of an electron in

the valence band). This imposes a condition of separation of the quasi-Fermi levels:

EFc − EFv > ~ω > Eg. A simple structure that allows population inversion is a

p− n homojunction, where a p−type semiconductor is put in contact with a n−type

semiconductor. To emit light by stimulated emission, an additional layer of intrinsic

1The difference between the two quasi-Fermi levels gives a measure of how far the semiconductor
is from equilibrium, when EFc = EFv = EF the system is at the equilibrium
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semiconductor is usually inserted within the p − n junction and used as an active

medium to enhance the stimulated emission. This forms the double heterostructure

described in Fig. 14. The band diagram of a biased double-heterostructure laser is

shown in Fig.16.

Figure 16: Representation of the structure and the band diagram of a double-
heterostructure laser under forward bias V > 0. The dashed lines represent the
quasi-Fermi levels EFc,Fv and the solid lines represent the energy levels Ec,v associ-
ated to each band.

The advantages are good confinement of the carriers, which are trapped in a po-

tential well within the active layer (no leakage of electrons in the p−type layer, or

holes in the n−type layer). The active region in the heterostructure also acts as the

core of a waveguide and confines the photons in the transverse direction because the

bandgap being smaller, the refractive index is larger than for the heterolayers. The

cleaved facets at the boundaries of the medium are partially reflecting and form a

Fabry-Perot resonator. The voltage is applied to the structure to create the inversion

of population and generates spontaneous emission to seed the stimulated emission.

Beside sustaining the amplification, the Fabry-Perot resonator has three other con-

sequences: (i) the selection of the longitudinal modes emitted, (ii) the selection of

the polarization of the emitted light (by its geometry), and (iii) the generation of

supplementary losses of photons (via the partial reflectivity of the mirrors).
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3.3.3 Semiconductor-Laser Rate Equations

One of the main difficulties encountered in the modelling of a semiconductor laser

using a semi-classical approach is the inhomogeneous broadening1 of the optical transi-

tions and the interactions of the electrons among themselves and with the crystal lat-

tice of the semiconductor material. The dynamics of an semiconductor edge-emitting

laser (ELL) is still performed under the framework of the semi-classical description.

However, the derivation the Maxwell-Bloch equations, also called semiconductor-

Laser rate equations, become more complicated especially because of the quantum

description of light-matter interaction with a semiconductor material [80]. An alter-

nate method to derive the equation There exists several approaches to derive these

equations summarized in [82, 83].

After a number of assumptions, the description of the system simplifies to two

ordinary differential equations:

dE

dt
=

1

2

(
g(N)− 1

Tph

)
E, (44)

dN

dt
=

J

e
− N

T1

− ε0n
2
0

2~ω0

g(N) |E|2 . (45)

The quantity denoted g(N) is related to the gain material and is usually approximate

with a first order Taylor expansion because of its weak carrier-density dependence

above the lasing threshold. The resulting expression for the gain reads

g(N) = g(Nth) + (1 + iα)gN(N −Nth), (46)

where α is the linewidth enhancement factor (or Henry factor) accounting for the

coupling of the phase and amplitude of the complex electric field which is caused by a

dependence of refractive index on the number of carriers in the gain medium [84], The

1Carriers occupy multiple energy within the valence or conduction band. Consequently, the
transition will statistically generate photons with various frequencies centered with respect to ~ω0 =
Eg. The imperfect monochromaticity of the laser optical spectrum is known as the inhomogeneous
broadening.
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value of α is typically comprised in the range 3−7 for semiconductor-bulk lasers [85],

Nth is the population inversion at lasing threshold, g(Nth) is the threshold value of the

gain that compensates exactly the losses g(Nth) = 1/Tph, and gN is the differential

gain. When the laser operates above threshold, the gain eventually saturates. This

saturation is phenomenologically included in the differential gain, which now depends

on the photon density in the cavity via

gN =
GN

1 + εs
ε0n2

0

2~ω0
|E|2

, (47)

with GN the linear gain and εs the saturation coefficient. Making the changes of

variable Ē =
√

(ε0n2
0/2~ω0)E, Tph = τp, and T1 = τs, we finally obtain the rate

equations for a semiconductor laser

dĒ

dt
=

1

2
(1 + iα)GN,ĒĒ (48)

dN

dt
=

J

e
− N

τs
−
(
GN,Ē +

1

τp

) ∣∣Ē∣∣2 (49)

with GN,Ē = GN (N −Nth) /
(

1 + εs
∣∣Ē∣∣2). It is noteworthy mentioning a sim-

ilar version of the rate equations defined for the population at the transparency

N0 and not at the lasing threshold Nth. In these conditions, we have GN,Ē =

GN (N −N0) /
(

1 + εs
∣∣Ē∣∣2)− 1/τp = G

(N0)
N,E − 1/τp. This second expression is widely

encountered in the literature and will be used in the thesis.

3.3.4 Typical Dynamics of a Class-B Semiconductor Laser

The rate equations couple the complex electric field (phase ϕ(t) and amplitude Ē)

with the population inversion N(t). The third degree of freedom of the EEL, polar-

ization P (t), being eliminated from the dynamics of the equations, the system can

not exhibit cannot exhibit complex chaotic dynamics such as those of a Class-C laser.

As a matter of fact, it exists only two degrees of freedom because the phase ϕ is

completely determined when the amplitude and the carrier density are known. As a
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consequence, a semiconductor laser alone cannot exhibit chaos and requires additional

degrees of freedom.

An EEL, as we will demonstrate it below, behaves as damped relaxed oscillator.

Towards this end, we consider a small perturbation of the EEL’s state vector from

the steady state (Es, ϕs, Ns):

Ē = Ēs + δĒ, (50)

ϕ = ϕs + δϕ, (51)

N = Ns + δN. (52)

The steady state is obtained by setting to zero the derivatives in Eqs. 44-45. It satisfy

the following relations

GN (Ns −Nth)

1 + εE2
s

− 1

τp
= 0 (53)

J − Ns

τs
− GN (Ns −Nth)

1 + εE2
s

E2
s = 0 (54)

Based on these relationships and considering the magnitude of perturbation vector

to be small in comparison with that of the steady state. This leads to a linearized

system to describe the evolution of the perturbation.1 The system reads

d

dt


δĒ

δϕ

δN

 =


− 1
τp

εE2
s

1+εE2
s

0 GNEs
2

1
1+εE2

s

−αεEs
τp

1
1+εE2

s
0 αGN

2
1

1+εE2
s

−2Es
τp

1
1+εE2

s
0 − 1

τs
−GNE

2
s

1
1+εE2

s




δĒ

δϕ

δN

 . (55)

The determination of the eigenvalues of this matrix gives insight on rates of evolution

of each state variable. Their determination is possible by first calculating the de-

terminant det(λI − ∇fE=Es,ϕ=ϕs,N=Ns) = 0. The resulting characteristic polynomial

1The linear matrix of transition is obtained by considering the Jacobian matrix ∇fE,ϕ,N of the
vector field of the rate equations.
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reads

λ

λ2 +

 1

τs
+
GNE

2
s + E2

sε
τp

1 + εE2
s

λ+
1

1 + εE2
s

(
GNE

2
s

τp

(
1 +

ε

1 + εE2
s

)
+

ε

τpτs

) = 0.

(56)

This third-order polynomial has three roots λ = 0 and two complex conjugate roots

λ± = ΓRO ± iωRO, with ΓRO the damping ratio and νRO = ωRO/2π the relaxation-

oscillation frequency. Their expressions read

ΓRO =
1

2τs
+

(
GN

2
+

ε

2τp

)
E2
s

1 + εE2
s

(57)

ωRO =

(
1

1 + εE2
s

(
GNE

2
s

τp

(
1 +

ε

1 + εE2
s

)
+

ε

τpτs

)
− Γ2

RO

)1/2

. (58)

Usually, the saturation gain ε � 1 is neglected in the expression of ωRO; this allows

to derive a simplified expression

νRO =
1

2π

(
1

τpτs
(µ− 1)− µ2

4τ 2
s

)1/2

with µ = GNτpτs

(
J − N0

τs

)
. (59)

These relaxation oscillations physically correspond to an exchange of energy between

the number of photons and the electronic carriers. As an illustration, we simulate the

behavior of an EEL in Fig. 17. Because of the positivity of the damping coefficient

ΓRO, the relaxation oscillation are systematically damped; a free-running laser cannot

exhibit other dynamics than a relaxation to a steady state. In the analysis above is

made from a dynamical system without noise. However, due to the existence of the

spontaneous emission there is always noise in the intensity of emitted light (that can

be modeled by a stochastic process on the amplitude and the phase). The spectrum

of this noise is known as the relative intensity noise (RIN). It is locally amplified at

the relaxation oscillation frequency νRO such that an experimental measure of the

relaxation oscillation is possible experimentally.
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Figure 17: Relaxation oscillations of the electric field and the population inversion.
The red (a) and gray (b) lines represent the normalized electric field (E/Es) and
population inversion (N/Ns), respectively. In (c) corresponding evolution is shown
in phase plane (E/Es, N/Ns). The numerical values of the parameters are: α = 4,
τp = 2 ps, τs = 2 ns, ε = 5 × 10−7, GN = 1.5 × 10−4 s−1, N0 = 1.5 × 108, and
J = 1.05Jth with Jth the threshold current.

3.4 Generation of Optical Chaos with Laser Diodes

In this section, we review the various systems classically encountered in optical chaos-

based communications. The generators are mostly based on semiconductor technol-

ogy. Being in essence class-B laser, EEL can not be used to generate chaos with

respect to the corollary of the Poincaré-Bendixon theorem (see Chapter 2). As a con-

sequence, additional degrees of freedom must be added to the laser. Two strategies

have been widely discussed:

• The internal nonlinearity of the semiconductor laser is exploited and additional

degrees of freedom are used (optical or optoelectronic feedback, modulation,

optical injection).

• The semiconductor laser is used as a continuous wavelength (CW) source that

powers an external structure chaotically modulating the properties of the emit-

ted light (amplitude, phase, wavelength, or polarization).
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3.4.1 Chaos Generation with Laser’s Intrinsic Nonlinearity

A class-B semiconductor laser will always relax to a stationary solution. The addition

of external degrees of freedom is necessary for the emergence of chaotic behaviors.

Various configurations have been used (Fig. 18). They include the following

Figure 18: Schematics of various configurations of semiconductor lasers with addi-
tional degrees of freedom tailored for the generation of optical chaos; (a) modulation
of the injection current, (b) unidirectional optical injection (c) delayed optical feed-
back also called external cavity (d) optoelectronic feedback. The abbreviations stand
for SL: semiconductor laser, CS: current source, OI: optical isolator for unidirectional
transmission, PD: photodiode (adapted from [1]).

The different optoelectronic systems exploiting an internal nonlinearity are de-

scribed by the semiconductor rate equations with additional terms. A single set of

equation is used: 1

dE

dt
=

1

2
(1 + iα)

(
GN,E −

1

τp

)
E + F (t), (60)

dN

dt
=

J(t)

e
− N

τs
−GN,E |E|2 . (61)

Depending on the type of configuration, the terms F (t) and J(t) will have different

expressions. We detail the different configuration below:

1Usually in the literature Ē and G
(N0)
N,E are simply noted E and GN,E , respectively.
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• (a) Modulation of the injection current: Under standard operational con-

ditions, the laser is electrically pumped with a DC current. The addition of

an AC component with sufficient amplitude and or large frequency induces

chaotically-pulsed behaviors of the emitted light [86]. In this type of archi-

tecture, however, the dimension of the chaotic pulsing is rather limited [87]

due to the few additional degrees of freedom, compared to system with de-

layed optoelectronic feedback (Configuration (c)). In Configuration (a), we

have J(t) = J0 + J1 sin Ωt and F (t) = 0, with Ω the angular frequency of

modulation, and J1 the amplitude of modulation.

• (b) Optical injection: This consists of the use of an additional laser (master)

that unidirectionally injects the laser generating chaos (slave). Similarly to

what is observed in unidirectional synchronization of oscillators, depending on

the coupling parameter (strength and frequency) the slave laser can lock its

phase and frequency to those of the master. Furthermore, a proper adjustment

of the coupling parameters can induce chaotic behavior through quasi-periodic

or period-doubling routes to chaos [88, 89]. A route to chaos by breaking of a

torus was also reported in [90]. In this configuration, we have J(t) = J0 and

F (t) = ηinje
−i∆ωinjtEinj(t), with Einj(t) the complex optical field injected by the

first semiconductor laser, ηinj the injection’s strength, and ∆ωinj the frequency

detuning between the two lasers.

• (c) Optoelectronic feedback: A photodiode detects the light emitted by the

semiconductor, the resulting voltage proportional to the detected light is added

after a certain delay to the current pumping the laser. In this configuration, we

have J(t) = J0(1 + η |E(t− τ)|2) and F (t) with η the optoelectronic feedback

strength and τ the propagation time in the optoelectronic feedback. Depending

on the sign of η, we refer to positive or negative optoelectronic feedback (POEF
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and NOEF, respectively). With a POEF, a period-doubling and quasiperiodic

routes to chaos have been reported; they both lead to a chaotic pulsing (CP)

regime of the light intensity [91, 92].

• (d) Optical feedback: A mirror is added at the output of the semiconductor

laser. It forms an external cavity, where the emitted light propagates, and is

partially reinjected into the laser cavity. The roundtrip introduces a time delay

to the laser’s dynamics and adds an infinite number of degrees of freedom to

the dynamical equations. The duration of the time delay τ (or length of the

external cavity) with respect to the relaxation oscillation period τRO define two

particular regimes: the long-cavity regime (τ > τRO) and short-cavity regime

(τ < τRO). In the following, we will mainly focus our attention on the long-

cavity regime.

There exist various dynamical behaviors that an ECSL can produce; for instance

two different chaotic regimes, the low-frequency fluctuations (LFF) character-

ized by sudden drops of the intensity [93], and the coherence collapse (CC)

regime [94], for which the temporal coherence of laser light suddenly drops.

The chaos in CC regime has also a very large optical linewidth [95]. The origin

of chaos in an ECSL are linked to the stability of its stationary solutions, called

external-cavity modes (ECM). These ECMs only exist by pairs composed of sta-

ble (mode) and unstable (anti-mode) solutions. These ECMs can be deduced

from solving the Lang-Kobayashi equations with the left-hand side term equal

to zero. We denote |Es|, ϕs = ωst, and Ns the stationary solutions and inject
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them in the equations describing an ECSL

gN (Ns −N0)

1 + ε |Es|2
− 1

τp
= −2η cos (ωs + ω0) τ, (62)

α

(
gN (Ns −N0)

1 + ε |Es|2
− 1

τp

)
= 2ωs + 2η sin (ωs + ω0) τ, (63)

J − Ns

τs
− gN (Ns −N0)

1 + ε |Es|2
|Es|2 = 0. (64)

The solution of this system of equations start first with the determination of

the stationary angular pulsation ωs. It can be obtained by combining Eqs. 62

together 63 and reformulated as it follows

Ωτ = ω0τ − ητ
√

1 + α2 sin (Ωτ + atan(α)) , (65)

with Ω = ωs +ω0. Solutions of this transcendental equation do not have an an-

alytical expression. However, they can be found numerically and correspond to

the intersection points between the sine and linear parts of Eq. 65 as illustrated

in Fig. 19(a).

Figure 19: Graphical representation of the solution of the transcendental equation for
the ECM. The linear and sine parts of the equation are plotted for (a) γ = 1 GHz and
(b) γ = 2 GHz with τ = 2 ns and J = 1.5Jth. The ECM are located ( and represented
by a red circle) at the intersection of the two curves. The other parameters are α = 4,
τp = 2 ps, τs = 2 ns, GN = 7.5× 10−13 m3s−1, N0 = 3× 1024 m−3, Jth = 1.83× 1033

m−3s−1, and ε = 2.5× 10−23 m−3.

When the feedback strength η or the time-delay τ increase, ECMs disappear

and give birth to more ECMs (see Fig. 19(b)) through saddle-node bifurcations
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[96]. The expression of ωs can be later used to find the expressions of the |Es|

and Ns,

|Es|2 =
1

1 + ε
τsgN

(
J − N0

τs
1
τp
− 2η cos (ωs + ω0) τ

− 1

τsgN

)
, (66)

Ns = N0 +

(
1

τpgN
− 2η

gN
cos (ωs + ω0) τ

)
1 + ε |Es|2 . (67)

When the feedback strength or the time-delay are further increased the ECMs

undergo a cascade of bifurcations, starting usually with a Hopf bifurcation until

a stable chaotic attractor is reached by the ECSL.

We have depicted in Fig. 20(a) the bifurcation diagram of a route to chaos

undergone by an ECSL, when the feedback strength η is taken as the bifurcation

parameter. We also show a chaotic intensity time series I(t) = |E|2(t) (CC

regime) and the associated RF spectrum in Fig. 20(b) and (c), respectively.

Detailed studies on the destabilization of ECM and existence of various routes

to chaos have been reported, for instance, in [97, 98].

Figure 20: Chaos in an ECSL. (a) Diagram of bifurcation that unveils a cascade
of bifurcation until a strange attractor is reached. The bifurcation parameter is the
feedback strength η. An ECM is depicted by a red circle, the Hopf bifurcation that
destabilizes the ECM into a limit cycle (LC) are also marked in red. In (b), a chaotic
time series of the intensity I(t) = |E(t)|2 is represented and in (c) its RF spectrum
for η = 7 GHz. The parameters are identical to those of Fig. 19.
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The complexity (dimension dKY and entropy hKS) of the chaotic dynamics has

been also characterized in [99] in the short- and long-cavity regimes. The dynamics are

typically hyperchaotic, an expression associated with the existence of multiple positive

Lyapunov exponents. This allows the strange attractor to reach very large dimension

(several tens), which is a desirable property for secure chaos-based cryptosystems.

3.4.2 Chaos Generation with External Nonlinearities

In this subsection, we present optoelectronic architectures where the semiconductor

laser is a continuous wave (CW) source whose properties are modified externally.

Three architectures are presented wavelength, intensity, and phase chaos generators.

3.4.2.1 Wavelength Chaos Generator

The architecture is described in Fig.21. It was presented for the first time in 1998

in [100, 101]. In this paragraph, we recall the main characteristic of the system and

give the important steps necessary to understand the derivation of the model. The

wavelength chaos generator (WCG) is composed of a multielectrode tunable DBR

laser diode and a delayed feedback loop with an optical isolator, a nonlinear element,

an optical delay line, a photodetector, and an RF low-pass filter.

The DBR laser diode has two sections: an active section pumped by current I0

emits light at central wavelength Λ0, and a passive section with a DBR [see Fig.

21(b)]. The DBR current IDBR = I0 + i(t) controls the refractive index of the grating

and allows for a smooth continuous variation of the laser’s wavelength around Λ0

(no mode hopping). The emitted wavelength is Λ(t) = Λ0 + λ(t) with λ(t) directly

proportional to its driving current λ(t) = Si(t) and S the tuning rate of the laser

diode.

In the delayed feedback loop, the birefringent crystal inserted between the two

1DBR stands for distributed Bragg reflectors, an interlacing of semiconductor layers with different
refractive index

2Mode hopping refers to as sudden jumps between different longitudinal modes in the laser cavity
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polarizers acts as a nonlinear filter that converts the variations of wavelength into

variations of light’s intensity between its input and output:

Pout(t) = Pin(t) sin2

(
πD

Λ(t)

)
, (68)

where D is the difference of optical path in the crystal and Pin(t) the light intensity

at the output of the DBR laser diode. The excursion in wavelength being negligible

compared to the central frequency λ(t) � Λ0, a first-order Taylor expansion of Eq.

68 gives

Pout(t) = Pin(t) sin2

(
πD

Λ0

λ(t)− Φ0

)
, (69)

with Φ0 = πD/Λ0. Such an intensity modulation is a direct consequence of the

filter’s structure, where the directions of the optical axes of the two polarizers are

Figure 21: Schematic of the wavelength chaos generator based on a nonlinear fedback
DBR laser diode. (a) Typical architecture with the following notations: OI: an optical
isolator to prevent undesirable optical feedback, P1 and P2 two polarizers; BP the
birefringent crystal; PD: the photodiode, DL: the delay line, RF: the RF low-pass
filter. (b) Details on the nonlinear element, a birefringent crystal sandwiched into
two polarizers. The directions of the optical axes of each optical components are
indicated on the figure. (c) Details on the structure of a DBR laser diode and its
two sections; the active section (similar to that of the EEL in Fig. 14) and the DBR
section driven by independent electrodes.
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perpendicular and the axes of the first polarizer are inclined by π/4 with respect to

those of the birefringent crystal (Fig.21 (c) and for more details see [102]). The light

is linearly converted into a current KPin(t) that is delayed by τ and finally low-pass

filtered before it drives the DBR’s electrode. This leads to

T
di(t)

dt
+ i(t) = GKP0 sin2

(
πD

Λ0

λ(t− τ)− Φ0

)
, (70)

with G and T the gain and response time of the RF low-pass filter, respectively.

By multiplying each side of the equation by SπD/Λ0 we finally obtain an Ikeda-like

equation [103] to describes the WCG

T ẋ(t) + x(t) = β sin2 (x(t− τ) + φ0), (71)

with x(t) = πD/Λ0λ(t) the dimensionless state variable, β = πD/Λ0SKP0 the non-

linear gain, and ϕ0 = −Φ0 the phase shift.

3.4.2.2 Intensity Chaos Generator

Intensity chaos generator (ICG) was first presented in 2002 [104] and is depicted

in Fig.22. It exhibits a remarkable structural analogy with the WCG, except for

the nonlinear element, the RF filter and the laser diode, which are different. It is

composed of a standard monochromatic EEL laser diode, a Mach-Zehnder modulator,

an optical fiber delay line, a photo-diode and a RF band-pass filter.

Figure 22: Schematic of the intensity chaos generator. (a) Overall architecture with
the following acronyms: MZ: integrated Mach-Zehnder modulator, DL: delay line,
PD: photodiode, RF: RF band-pass filter. (b) Zoom on the structure of an integrated
Mach-Zehnder modulator with its RF and DC electrodes, and two arms (L) and (R).
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The nonlinear element is the Mach-Zehnder modulator; it uses the electro-optic

effect that characterizes the dependence of the refractive index n(E) of a material

on an electric field [102]. In each arm of the modulator, the light is phase-shifted

differently before recombining at the output [see Fig. 22(b)]. In the left arm (L),

no voltage is applied, and the field undergoes a natural phase shift ∆ϕL = ∆ϕ0.

In the other, a driving electrode imposes a voltage with a varying component V (t)

(RF voltage) and a constant DC level VDC ; this result in a additional phase-shift

δϕR = ∆ϕ0 + ∆ϕRF + ∆ϕDC . The modulation of input power reads

Pout(t) = Pin cos2

(
πV (t)

2VπRF
+
πVDC
2VπDC

)
, (72)

with VπRF and VπDC the halfwave voltages ensuring a phase-shift equal to π and

associated with the varying and constant electric fields, respectively.

The modulated light is then delayed by time τ in the delay line before being

converted by the photodiode. The electrical signal is amplified and band-pass filtered.

These steps lead to an integro-differential delay equation (with similar notations to

those of [105])

1

2πfH
V̇ (t)+

(
1 +

fL
fH

)
V (t)+2πfL

∫ t

t0

V (u)du = gGSP0 cos2

(
πV (t− τ)

2VπRF
+
πVDC
2VπDC

)
,

(73)

with G, fL, and fH the gain, low and high cut-off frequency of the RF filter, S the

photodiode’s sensitivity, P0 the laser’s light intensity, and g an aggregate attenua-

tion of the feedback loop. A more condensed form of the equation can be obtained

considering that usually fH � fL and changing variables to give

T ẋ(t) + x(t) +
1

θ

∫ t

t0

x(u)du = β cos2 (x(t− τ) + ϕ0) , (74)

with x(t) = πV (t)/(2VπRF ) the dimensional state variable, T = 1/(2πfH) the high cut-

off response time, θ = 1/(2πfL) the low cut-off response time, β = πgGSP0/(2VπRF )

the nonlinear gain, and ϕ0 = πVDC/(2VπDC ) the normalized bias offset.
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3.4.2.3 Phase Chaos Generator

Phase chaos generators were developed and successfully implemented in 2004 [106]

and later simplified in 2009 [107]. The motivation to develop such an architecture is

mainly due to the experimental complexity associated with the mixing of message in

the optical intensity chaos in the case of an ICG [108]. Its structure, shown in Fig.

23(a), is similar to an ICG except that interference is generated with a fiber-based

interferometer before detection with a photodiode and the Mach-Zehnder modulator

is replaced by a standard electro-optic phase modulator [see Fig. 23(b)].

Figure 23: Schematic of the phase chaos generator using an optoelectronic oscillator
with delayed feedback. (a) Overall architecture with the following abbreviations: PC:
polarization controller, PM: integrated phase modulator, DL: delay line, OC: optical
coupler, FBI: fiber-based interferometer, PD: photodiode, RF: RF band-pass filter.
The delays τ and δτ respectively introduced by DL and FBI are indicated. (b) Details
on the structure of an integrated phase modulator.

It is composed of a single arm (waveguide) where the phase is modulated through

the electro-optic effect by a time-varying voltage V (t), similarly to what we have in

an ICG. It generates an additional phase shift ∆ϕ = πV (t)/VπRF . We can represent

the complex electric field in a slow-varying approximation by E(t) = E0e
jϕ0 and

assume its amplitude being constant and phase slowly varying. After going through

the phase modulator, the additional phase is added, E(t) = E0e
jϕ0+∆ϕ(t). The optical

field propagates in the delay line for a time τ before being equally split in the two

arms of a fiber based interferometer. At its output, the electric field is

E(t− τ) =
E0

2
ejϕ0+∆ϕ(t−τ) +

E0

2
ejϕ0+∆ϕ(t−τ−δτ), (75)
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with δτ the time difference introduced between the two arms of the fiber-based inter-

ferometer. Photodiode of sensitivity S detects the light intensity and converts it into

a voltage:

VPD(t) = SP0 cos2

(
πV (t− τ)

2VπRF
+
πV (t− τ − δτ)

2VπRF
+

2πδτ

λ0

)
, (76)

with P0 = |E0|2. The electronic part of the feedback is structurally identical to that

of an ICG and therefore leads to a similar adimensionnal model. It reads

T ẋ(t) + x(t) +
1

θ

∫ t

t0

x(u)du = β cos2 (x(t− τ) + x(t− τ − δτ) + ϕ0) , (77)

with ϕ0 = 2πδτ/λ0 and identical notations to those used for Eq. 74 for all the

remaining variables and parameters.

3.5 Optical Chaos Synchronization and Cryptography

In this section, we illustrate how the main techniques of chaos-based cryptography

make use of optoelectronic devices. As in Chapter 2, a chaos-based communication ar-

chitecture requires three essential features: (i) two identical-twin chaotic systems (E)

and (R), (ii) the possibility to synchronize E and R, and (iii) a decryption operation

to extract the message from the chaotic fluctuations. The introduction of the chaos

synchronization concept has triggered numerous investigations using lasers. The first

noteworthy results were achieved numerically for semiconductor lasers by Winful and

Rahman in 1990 [109], and experimentally for CO2 lasers by Roy and Thornburg in

1994 [110]. They paved the way to the first optical chaos transmission chains the-

oretically devised the same year by P. Colet and R. Roy using coupled solid state

Nd:YAG lasers [111]. Later in 1996, C.R. Mirasso et al proposed a numerical study

of secure transmission with ECSL at the Gbit/s level [16]. But only in 1998, G.D.

Van Wiggeren and R. Roy successfully implemented the first optical cryptographic

setup based on chaotic erbium doped fiber ring lasers (EFRL) with an achievable bit

rate of 126 Mbit/s [13, 112, 113]. Meanwhile, J.-P. Goedgebuer et al. achieved secure
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transmission of a sine-wave message using a wavelength chaos generator based on an

optoelectronic oscillator [100, 114]. These first milestones ensured successful develop-

ment of optical-chaos based communications. Shortly after these studies, numerous

optical configuration involving semiconductor-lasers were proposed. Architectures us-

ing optoelectronic feedback were successful in their optical versions of CMa, CSK and

CMo, ensuring Gbits/s data rates [115, 116, 117] .

3.5.1 Communications Architectures for Optoelectronic Devices with In-
ternal Nonlinearities

In this subsection, we focus on the application of chaos masking (CMa), chaos shift

keying (CSK), and chaos modulation (CMo) using optical chaos generators with in-

ternal nonlinearities. In a chaotic laser diode, there are essentially two possibilities

to encrypt a message: (i) to act on the pumping current or (ii) to act on the optical

output of the laser diode. For CMa and CMo the message is mixed in the optical

carrier, whereas for CSK digital modulations of the current are typically used. This

is has been summarized in Fig. 24 (adapted from [3]). It is noteworthy that for

CMo using laser diodes, the system requires feedback (optic or optoelectronic). At

the receiver, feedback is not necessary to ensure a proper decryption; however when

it is present, it usually modifies the conditions of synchronization. This results in

the following classification of communication setups into open-loop and closed-loop

configurations.

3.5.1.1 Transmission Chain with an ECSL

In this subsubsection, we consider a transmission chain made with single-mode external-

cavity semiconductor lasers (ECSL). Within the framework of the Lang-Kobayashi

equations and neglecting the spontaneous emission noise, the cryptographic chain is
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Figure 24: Schematic of the three typical chaos encryption techniques (CMa, CSK,
and CMo) when chaotic optoelectronic devices with internal nonlinearity are used.
The open- or closed-loop configuration depends on the existence of a feedback at the
receiver (adapted from [3]).

modeled by

dEe
dt

=
1

2
(1 + iα)

(
GN,Ee −

1

τp

)
Ee + Fe(t), (78)

dEr
dt

=
1

2
(1 + iα)

(
GN,Er −

1

τp

)
Er + Fr(t), (79)

dNe,r

dt
=

Je,r
e
− N

τs
−GN,Ee,r |Ee,r|

2 , (80)

where the indices e, r denote variables associated with the emitter or receiver, respec-

tively, and Fe,r(t) is a feedback term that depends on the type of configuration and

encryption used. Due to the complexity of the Lang-Kobayashi equations, only neces-

sary conditions on the complete synchronization between two ECSLs can be derived.

When no message is encoded, the feedback terms read

Fe(t) = ηee
−iω0eτeEe(t− τe), (81)

Fr(t) = ηre
−iω0rτrEr(t− τr) + ηce

−iω0eτcEe(t− τc), (82)

with ηe,r
1 the feedback strength, ηc the injection strength, τe,r the roundtrip times

in the external cavities, and τc the propagation time in the communication channel.

Assuming the two chaotic oscillators identical and in absence of frequency detuning

∆ωe/r = ωr−ωe, it has been proven [62] that complete synchronization exists as soon

1When the communication chain is open-loop, the feedback strength at the receiver is zero ηr =
0 GHz.
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as the injection and feedback strengths satisfy

ηe = ηr + ηc. (83)

Under these conditions, the synchronization manifold reads

Er(t) = Ee(t− (τc − τe)), (84)

φr(t) = φe(t− (τc − τ))− ω0e(τc − τ), (85)

Nr(t) = Ne(t− (τc − τ)). (86)

These equations highlight the crucial influence of the transmission time τc in the

synchronization of distant ECSLs. Interestingly when τc < τ , the receiver can an-

ticipate the behavior of the master.1 This is known in the literature as anticipating

synchronization [118]. Another type of synchronization exists with unidirectionally

coupled ECSLs, the injection-locking synchronization [119]. This is observed when

the injection strength is far greater than the feedback strengths (at the emitter and/or

receiver) ηc � ηe,r. This type of synchronization is more robust than CS, but remains

imperfect [120, 121] though sufficient for optical-chaos transmission.

With chaos synchronization, the encryption or mixing of information in the dy-

namics of an ECSL is the second important issue. CMa is extremely popular and has

led to successful field experiments on the Athens optical-fiber network (Greece) [9].

However, the method systematically disturbs the synchronization process which may

increase the bit error rate (BER). Another popular encryption method is the CSK

technique, because of its simplicity when used with ECSL [122]. Nevertheless, as

any CSK method, the bit-rate will be fundamentally limited by the synchronization

time of the ECSLs. Performance is usually inferior to those of a CMa [123]. When

CMo is used, it generally offers the best level of performances, however, its practical

implementation may become challenging especially to include the message.

1This does not violate the principle of causality. It simply states the possibility for the signal
driving and synchronizing the two ECSLs to reach the receiver first.
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Mathematically, the feedback terms have different expressions depending on the

type of encryption used:

• For a CMa encryption, the feedback terms at the emitter and receiver read

Fe,CMa(t) = Fe(t) and Fr,CMa(t) = Fr(t) +m(t− τc), respectively.

• For a CSK encryption, the feedback terms at the emitter and receiver remain

identical to the case without encryption Fe,r,CSK(t) = Fe,r(t). The pumping

current is modulated.

• For a CMo encryption, the feedback terms read Fe,CMo(t) = Fe(t) + m(t − τ)

and Fr,CMo(t) = Fr(t) +m(t− τc).

3.5.1.2 Transmission Chain with Semiconductor Lasers with Optoelectronic Feed-
back

Communication setups using semiconductor lasers with optoelectronic feedback share

many features with those using ECSLs. The mathematical description is similar to

that of an ECSL chain except for the optical feedback terms Fe(t) = Fr(t) = 0.

The optoelectronic feedback affects the population inversion Ne,r(t) with pumping

currents depending on the delayed electrical field. These currents read

Je(t) = J0e

(
1 + ηe|Ee(t− τe)|2

)
, (87)

Jr(t) = J0r

(
1 + ηr|Er(t− τr)|2 + ηc|Ee(t− τc)|2

)
. (88)

The complete synchronization manifold has a similar structure to that of Eqs. 84-86

with the possibility of anticipation and requires analogous necessary conditions on

the feedback and injection strengths ηe,r,c to that of Eq. 83 [124, 125]. The interest in

these systems is that any standard encryption technique can be easily implemented,

especially CMo (the only technique that does not disturb the chaos synchronization);

it now becomes as simple as CMa or CSK with ECSL. The expressions of the currents

Je(t) and Jr(t) for each type of encryption are given by the following:
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• CMa encryption: the pumping current at the emitter and receiver respectively

read Je,CMa(t) = Je(t) and Jr,CMa(t) = J0r(1 + ηr|Er(t− τr)|2 + ηc|Ee(t− τc) +

m(t− τc)|2). In CMa, the message is optically injected at the chaotic output of

the emitter.

• CSK encryption: the pumping current at the emitter and receiver respectively

read Je,CSK(t) = Je(t) + m(t− τe) and Jr,CSK(t) = Jr(t). The message m(t) is

digital and usually binary.

• CMo encryption: the pumping current at the emitter and receiver respec-

tively read Je,CMo(t) = J0e (1 + ηe|Ee(t− τe) +m(t− τe)|2) and Jr,CMo(t) =

J0r (1 + ηr|Er(t− τr)|2 + ηc|Ee(t− τc) +m(t− τc)|2).

Extensive work by J.-M. Liu et al at the University of California at Los Angeles

(UCLA) has been made with these systems. As a result, multi Gbit/s secure trans-

missions were successfully demonstrated [115, 116, 117].

3.5.2 Communications Architectures for Optoelectronic Devices with Ex-
ternal Nonlinearities

In this subsection, we detail cryptographic setups involving either WCG, ICG, or

PCG. Comparing with a single laser diode with only two possibilities to include a

message (with a modulation of the pumping current or an optical addition at the

output of the emitter), the optoelectronic generators with external nonlinearities of-

fer more possibilities of message’s inclusion due to their block structure combining

various components and internal transmission lines [4]. The three different chaos gen-

erators follow a generic loop structure connecting each of the following elements: a

controlled or passive source, a nonlinear component, a detector, a filter, and a delay

line. Subsequently, each connection between components becomes a potential input

Ii to mix a message (i ∈ [1, 5] with controlled source, i ∈ [1, 4] with a passive source)

therefore leading to many possible configurations for CMo. Each connection is also a
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potential output Oi that could be used in a CMa methods. Finally, some components

in the loop structure may also have tunable parameters to be controlled by a user

to encode a message; this gives multiple choices to implement CSK. Some of these

findings are represented in Fig.25. The WCG is a typical structure with a controlled

DBR laser diode; the nonlinear element is a birefringent crystal, the detector a photo-

diode, the filter an RF low-pass filter, and the delay line is an electronic buffer. ICG

and PCG are typical architectures that make use of passive laser sources (standard

CW semiconductor EEL).

Figure 25: Schematics of the loop structure and the possible locations for a message’s
inclusion and output’s selection (adapted from [4]), depending on the controllability
of the source the loop ends before or just after the source. Inputs and outputs are
labelled Ii and Oi, respectively. The positions of the delay line and the detector are
interchangeable, thus ensuring the choice between an optical and an electrical delay
line.

As in the previous case, one of the key issues is the synchronization of chaos

which is necessary in optical chaos-based cryptographic schemes. Independent from

the message’s inclusion, the choice of the output will influence the coupling method

between emitter and receiver. There are two main coupling configurations that are

encountered:

• A diffusive-coupling configuration, a typical closed-loop approach at the receiver.

• An unidirectional-coupling configuration, a typical open-loop approach at the

receiver.
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With the optoelectronic cryptosystems presented in this chapter, the latter cou-

pling configuration is often preferred in the literature because of its simpler exper-

imental implementation. As an illustration, ICG is used to implement CMa and

CMo. The two different configurations can be modelled by two unidirectionally cou-

pled integro-delay differential equations:

Teẋe + xe +
1

θe

∫ t

t0

xe(u)du = se,CMa/CMo(t) (89)

Trẋr + xr +
1

θr

∫ t

t0

xr(u)du = sr,CMa/CMo(t), (90)

with se,CMa(t) = β cos2 (xe(t− τ) + ϕ0), se,CMo(t) = β cos2(xe(t− τ) +ϕ0 +mCMo(t))

at the emitter and sr,CMa(t) = β cos2(xe(t− τc) + ϕ0) + mCMa(t − τc), sr,CMo(t) =

β cos2(xe(t−τc)+ϕ0 +mCMo(t−τc)) at the receiver. When no message is encrypted, the

two systems are driven by an identical signal, though delayed by the transmission time

τc. In the absence of message encryption, parameter mismatch between the emitter

and receiver, and noise during transmission, the delayed synchronization error defined

as e(t) = xr(t) − xe(t − (τc − τ)) follows the dynamics of a damped oscillator and

converges asymptotically to zero. Consequently, the two chaotic ICGs are completely

synchronized. For CMa and CMo encryption, the messages are decrypted using a

simple subtraction in both cases:

m̂CMa/CMo(t− τc) = sr(t)− se(t). (91)

Such configurations have been experimentally implemented and the secured trans-

missions of data achieved using WCG [17], ICG [108], and more recently PCG [107].

In terms of performance, systems based on ICG and PCG have experimentally

reached transmission at 3 Gbit/s with NRZ pseudo-random binary messages with a

BER approximately 10−7 with an optical-fiber channel of a hundred of km [17]. These

systems outperform architectures based on an ECSL assuming similar experimental

conditions. As an example, at 2.5 Gbit/s the BER of ECSL cryptographic setups de-

teriorate significantly to approximately 5×10−2 (in the same experimental conditions
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to those mentioned above) [9].

3.6 Conclusions

In this chapter, we have reviewed the basics of semiconductor lasers and their applica-

tion to various chaos-based cryptographic setups. First, we used a two-level medium

placed in ring cavity to derive the Maxwell-Bloch equations. Then, we presented

some fundamental concepts of the physics of semiconductor materials and their ap-

plications to derive the well known semiconductor-laser rate equations. After that, we

discussed and model the most encountered optoelectronic systems used to generate

optical chaos using either internal or external nonlinearities. A semiconductor laser

being a crucial element in most of the architectures, our objective was for the reader

to become familiar and understand the origins of simplified models that will be used

extensively throughout the thesis. We conclude the chapter by a general overview of

the use of such systems in classical chaos encryption based on CMa, CSK, and CMo.
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CHAPTER IV

SECURITY ANALYSIS OF CHAOTIC OPTICAL

SYSTEMS: THE EXTERNAL-CAVITY

SEMICONDUCTOR LASER

4.1 Abstract

A critical issue in optical chaos-based communications is the possibility for an eaves-

dropper to identify the parameters and the nonlinear function of a chaotic emitter

and, hence, to break its security. In this chapter, we first recall various methods to

break and identify a key parameter that threatens the security of time-delay chaotic

systems: the time-delay. We introduce standard methods such as the autocovariance

function (ACF), mutual information (MI), local linear models (LLM), and global non-

linear models (GNM). Then, we focus our attention on a chaotic emitter that consists

of a semiconductor laser with optical feedback, and the identification of its time delay

corresponding to the external-cavity round-trip time, using the previously described

methods applied to a chaotic time-series with no a priori knowledge on the ECSL. We

unveil the key influence of the experimentally tunable parameters, i.e., the feedback

rate, the pumping current, and the time-delay value, in the identification process.

Finally, we demonstrate that the time delay can be efficiently concealed and connect

this result with the successive appearance of time scales in the system dynamics as it

undergoes its route to chaos.

This chapter is mainly based on the two following publications:

• D. Rontani, A. Locquet, M. Sciamanna, and D.S. Citrin, “Loss of time-delay

signature in the chaotic output of a semiconductor laser with optical feedback,”

Opt. Lett. 32, 2960-2962 (2007).

74



• D. Rontani, A. Locquet, M. Sciamanna, D.S. Citrin, and S. Ortin, “Time-

delay identification in a chaotic semiconductor laser with optical feedback: A

dynamical point of view,” IEEE J. Quantum Electron. 45, 879-891 (2009).
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4.2 Introduction

4.2.1 Security of Chaos-Based Cryptosystems

Security provided by most current software-based mathematical cryptosystems does

not ensure information-theoretic security [6] except for the so-called one time pad

(Vernam cipher) [126]. The computational complexity offered by these mathematical

algorithms is what the chaotic oscillators aim at achieving using laws of physics. In

a chaos-based cryptographic setup, the key corresponds to the set of parameters and

the algorithm to the nonlinear dynamical representation of the system.

As recalled in the general introduction, two strategies exist for an eavesdropper to

break a chaotic cryptosystem: (i) a direct retrieval of the embedded data stream in

the chaotic carrier or (ii) a reconstruction the chaotic dynamics with an a posteriori

retrieval of the message. Under certain circumstances the eavesdropper can exploit her

complete knowledge of the chaos-generating process (white box), partial knowledge

(gray box), or total lack of knowledge (black box) to perform his attacks.

In the white-box case, the structure of the chaotic emitter is known; only the

parameter set (the key) is unknown. In this case, the question of robustness of

synchronization is central. On the one hand, a lack of robustness of synchronization

will imply that even a legitimate receiver will not be able to synchronize and recover

the encrypted message. On the other hand, if synchronization is too robust, an

eavesdropper will easily synchronize even with a significantly different key.

Within this context, countless methods have been developed to break classical en-

cryption schemes (CMa, CSK, or CMo) such as autocorrelation and spectral analysis

[15], return-maps [127, 128], and parameter identification using synchronization [110].

However, in many situations the eavesdropper has only a partial or no informa-

tion on the structure of the cryptosystem. He can only process a single time series

wiretapped from the communication channel. The time series constitutes incomplete

information on its underlying chaotic generation process. Under certain conditions
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known as the embedding theorem [129, 130]; however, it is possible to construct an

isomorphic representation of the system’s dynamics in an alternate phase space. For

example, in the delay reconstruction method, the system is described by a delayed

vector [x(t), x(t − τ∆), . . . , x(t − (m − 1)τ∆)] with m the embedding dimension and

τ∆ a time-interval delay. This isomorphic representation is an embedding if m > 2dc,

where dc is the fractal dimension of the attractor. This alternate representation of

the system shares the same invariants (entropy, dimension, Lyapunov spectrum) [131]

and allows for an eavesdropper to extract sensitive information from the cryptosys-

tem. This approach has been successfully used to crack low-dimensional chaos-based

cryptosystems [132, 133].

4.2.2 Security of Time-Delay Systems

The aforementioned reconstruction of the dynamics in a black-box context is tractable

only for low-dimensional systems [134, 135]. Consequently, the use of high-dimensional

chaotic systems should provide a higher level of computational security that renders

difficult the use of embedding techniques. A simple method to design such chaotic

systems is the introduction of a time delay in the dynamics. As a matter of fact,

many optical chaotic systems possess this feature, such as wavelength chaos gener-

ators (WCG) [100, 101, 114], intensity chaos generators (ICG) [17, 104], and semi-

conductor lasers with optical (ECSL) [136] or optoelectronic (OECSL) feedback [115]

(see Chapter 3). It has been proven that high dimension and entropy occurs in these

types of systems [37, 99, 5]. However, the complexity can be threatened by knowledge

of the time delay. In delayed hyperchaotic systems, the security assumption is based

on the computational complexity to reconstruct a high-dimensional attractor from

the time series. Indeed, knowing the time delay used by a hyperchaotic generator, an

eavesdropper can reconstruct the dynamics of the system in a reduced-dimensional

phase space [137], thus allowing low-complex computational reconstruction methods
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to be efficient [138, 139]. The key behind the success of such breaking techniques

relies on the knowledge of the time delay, which can be inferred from the time series

using statistical signal analysis [140]. Concealing the time delay is therefore funda-

mental to preserve the computational security of a chaotic system. We illustrate in

Fig. 26 a security leak resulting from the knowledge of the time delay, when a WCG

is analyzed.

Figure 26: Identification of the nonlinear function of the optoelectronic WCG with
knowledge of the time delay. The gray dots represent the discretized time series, in
the projected plane (ẋ(t), x(t − τ ∗)). (a) τ ∗ = τ (b) τ ∗ = 1.1τ 6= τ . Depicted in
the solid red line is the shape of the theoretical nonlinear function of the WCG. The
parameters used in the simulation are T = 10 µs, β = 30, ϕ0 = π/4, and τ = 500 µs.

In Fig. 26(a), the time delay is known. As a result, the time series, when pro-

jected in the plane (ẋ(t), x(t − τ ∗)), is distributed along a geometric structure with

a shape depending on the system’s nonlinear function. In Fig. 26(b), however, even

a 10% error in the time delay results in an apparent random distribution in the pro-

jected phase space. As a consequence, the time delay critically affects the knowledge

that one can extract from the system in the reduced phase space (ẋ(t), x(t − τ ∗)).

Time-delay identification should therefore be considered as an additional argument

to appreciate the level of security of optical chaos-based communications, besides

chaos complexity and robustness of synchronization. The security threat associated

with the time delay has triggered strategies to counter its straightforward estimation;
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random commutations [141] and stochastic evolution of the time delay [142] are two

examples. These methods will prevent an eavesdropper to access the time-delay in-

formation using standard statistical estimation from a time series transmitted in the

communication channel (described in the next section).

4.2.3 System Investigated: the ECSL

4.2.3.1 Interest in ECSL and Security Issues

Semiconductor lasers with an external cavity (ECSL) have been considered as rich

sources of optical chaos, with well-known chaotic regimes such as the so-called co-

herence collapse [94] and low-frequency fluctuation (LFF) regimes [143]. These two

regimes have received considerable attention, since they represent key elements of

optical secure chaotic communications, as illustrated in the previous chapters. Their

omnipresence in optical setup is explained by high modulation speed of the system,

and the generation of high-dimensional and complex chaos [99], which make the ECSL

a suitable chaotic optical system for secure communications.

Nevertheless, it is also essential that an ECSL’s time delay should not be easily

identifiable from the analysis of its time series. Until recently, ECSLs with a sin-

gle optical feedback were considered as weakly secure [144, 145], such that the use

of several external cavities has been suggested [145]. Interestingly, the security was

systematically investigated for parameters values that ensures high chaos complex-

ity (dimension and entropy) by analogy with situations occurring in optoelectronic

systems such as WCG or ICG. In fact, in laser diodes with optical feedback, high-

dimensional chaos is typically found where the optical feedback strength (η) is large,

but then the time-delay value is easily retrieved from the analysis of the chaotic

output using straightforward techniques. As a matter of fact, the highest level of

security with respect to time-delay identification may not correspond to parameter

regions where the complexity of the ECSL is maximum. This is what we propose to

theoretically investigate in the next section.
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4.2.3.2 Modeling & Framework of Analysis

Before investigating the theoretical estimation of the time delay, we consider a model

of an chaotic ECSL owned by a legitimate user Alice. The ECSL is composed of a

single-mode semiconductor laser with coherent optical feedback and is represented in

Fig.27.

Figure 27: Experimental scheme of an external cavity laser (ECSL). It is composed of
a laser diode (LD) electrically pumped by a current source (CS). The external cavity
is composed of a variable attenuator (VA) and a mirror (M). A beam-splitter (BS)
and a photodiode (PD) are used by the eavesdropper (Eve) to record the intensity
time series and post-process it.

The system is modeled by the Lang-Kobayashi rate equations [136]. To reiterate,

they are

dE (t)

dt
=

1

2
(1 + iα)

(
GN,E −

1

τp

)
E (t) + ηE (t− τ) e−iω0τ + F (t) , (92)

dN (t)

dt
= J − N

τs
−GN,E|E|2, (93)

where E(t) = |E| eiϕ(t) is the slowly varying complex electric field, N is the aver-

age carrier density in the active region, α is the linewidth-enhancement factor that

describes the amplitude-phase coupling, GN,E = gN(N − N0)/(1 + ε |E|2) is the op-

tical gain where ε is the saturation coefficient, N0 is the carrier density at trans-

parency, ω0 is the angular frequency of the solitary laser, η is the feedback rate, τp

is the photon lifetime, τs is the carrier lifetime, Jth is the threshold current, p is

the pumping factor, and τ is the delay corresponding to the round-trip time of light

in the external cavity. The Langevin force F (t) models the spontaneous-emission
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noise. Its polar decomposition in amplitude and phase is given by the two terms

F|E|(t) = 2βN(t)/E(t) +
√

2βN(t)ζ|E|(t) and Fϕ(t) = 1/E(t)
√

2βN(t)ζϕ(t), where

β is the spontaneous-emission rate. The variables ζ|E|(t) and ζϕ(t) represent uncor-

related white Gaussian noise that satisfies
〈
ζ|E|(t)

〉
= 〈ζϕ(t)〉 = 0,

〈
ζ|E|(t)ζ

∗
|E|(t

′)
〉

=〈
ζϕ(t)ζ∗ϕ(t′)

〉
= δ (t− t′), and

〈
ζ|E|(t)ζ

∗
ϕ(t′)

〉
= 0.

The ECSL transmits its chaotic time series in an optical communication channel.

We assume that an eavesdropper (Eve) can wiretap the channel and retrieve the

total information on the transmitted time series. In our case, the security of the

ECSL is investigated under favorable conditions where the eavesdropper wiretaps

directly the optical channel, recording and analyzing the intensity time series defined

as I(t) = |E(t)|2.

4.3 Time-Delay Identification

In this section, we present standard techniques to recover the time-delay information:

the autocovariance function (ACF), the delayed entropy and mutual information (DE

and DMI), local linear models (LLM), and global nonlinear model (GNLM) such as

neural networks [131]. These methods are sensitive to the presence of particular time

scales in a given time series, such as a time delay. Each method will eventually detect

the signature of a particular time-scale through a local resonance (extremum), which

will later be referred to as a peak or valley. Finally, the time location of a peak or

valley will be considered as a possible estimation of the time delay.

4.3.1 Autocovariance Function (ACF)

If we consider a stochastic process X(t), the autocorrelation function is defined by

the real function

RX(t1, t2) = E(X(t1)X(t2)), (94)
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where E(·) is the mathematical expectation operator.1 If we suppose that the process

is wide-sense-stationary (WSS),2 it is possible to define the autocovariance function

(ACF)

ΓX(θ) = E ((X(t)− µX)(X(t+ θ)− µX)) , (95)

with µX = E(X(t)) the mean of the stochastic process. If we consider the process to

be ergodic,3 it is possible to replace the mathematical expectancy by the time average

〈X(t)〉 = limT→∞ 1/2T
∫ T
−T X(t)dt and compute the ACF from an single time series,

ΓX(θ) = 〈(X(t)− µX)(X(t+ θ)− µX)〉. (96)

For a given value of θ, we can geometrically interpret the ACF as a measure of the

tendency of the cloud (X(t), X(t − θ)) of points to be aligned along a straight line.

The ACF thus measures a linear relationship between X(t) and X(t− θ).

4.3.2 Delayed Entropy (DE) & Delayed Mutual Information (DMI)

The entropy and mutual information are metrics originally used in information theory

[7]. Given two continuous variables X and Y with joint probability density function

(pdf) fX,Y (x, y), and marginal pdfs fX(x) and fY (y), the entropy and mutual infor-

mation are respectively defined by

H(X) = −E (ln(fX(X)) , (97)

I(X, Y ) = E
(

ln

(
fX,Y (X, Y )

fX(X)fY (Y )

))
. (98)

In our context, the two variables X and Y are obtained by sampling the random

process X(t) at two times t and t+ θ, and such a process is assumed to be stationary

1If we consider a random variable X defined on the probability space (Ω,F , P ) with P a measure
of probability, then the expectancy operator is defined by E(X) =

∫
Ω
XdP . If the variable X admits

a pdf fX(x), then E(X) =
∫
R xfX(x)dx

2Wide-sense-stationary (WSS): A stochastic process X(t) is WSS if its mean is constant
E(X(t)) = µX and its autocorrelation depends only on θ = t1 − t2, RX(t1, t2) = RX(θ) =
E(X(t)X(t+ θ)).

3Ergodicity: A random process is ergodic if its averaging over a time and over its probability
space are equal.
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and ergodic. The probability density functions fX(t),X(t+θ), fX(t), and fX(t+θ) will be

estimated by their respective histogram f̂X(t),X(t+θ), f̂X(t), and f̂X(t+θ) computed from

their time series. They lead to the approximate entropy and mutual information

estimator, also called delayed entropy (DE) and delayed mutual information (DMI),

Ĥ(θ) = −E
(

ln(f̂X(t)(X)
)
, (99)

Î(θ) = E

(
ln

(
f̂X(t),X(t+θ)(X, Y )

f̂X(t)(X)f̂X(t+θ)(Y )

))
. (100)

The entropy corresponds to an average measure of disorder in a given system or

random variable. The mutual information corresponds intuitively to the quantity of

information that the two random variables X(t) and X(t + θ) share. In time-delay

systems, the presence of a delayed feedback term induces a nonlocal time dependence

in the time evolution of its state variables. The integral definition of the estimators

under consideration allows for the detection of nonlocal time dependencies that are

linear for the ACF and nonlinear for the DMI.

4.3.3 Local Linear Models (LLM)

The use of local linear models (LLMs) was first suggested for single time-delay scalar

systems in [146, 147] and for vectorial systems in [137] and can be generalized to

systems with multiple delays. A vectorial system with p time delays is considered,

ẋ(t) = f(x(t),x(t− τ1), . . . ,x(t− τp)), (101)

with x ∈ Rn, the state vector of the system. As a consequence, each coordinate of the

reduced phase space Σ = (ẋ(t),x(t),x(t− τ1), . . . ,x(t− τ)) is functionally related.

This compels the system’s attractor projection to lie within a surface S ⊂ Σ. In

practice, the continuous space and most of the coordinates of the state vector are

inaccessible; that is why we consider a discrete series of scalar measurements {xk}k∈N

sampled from the system’s output. A delayed phase space is then built with the
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coordinates

Σd,{τi}i=1,...,N
= (xk+1, xk, . . . , xk−(m+1), xk−τ1 , . . . ,

xk−τ1−(m+1), . . . , xk−τp , . . . , xk−τp−(m+1)).

(102)

The number m of additional coordinates is necessary to take into account the vari-

ables (state vector components) that are not captured by the time series and has

to satisfy m > 2n. It is assumed that the projection of the reconstructed at-

tractor Sd in Σd,{τi}i=1,...,N
will have close geometric properties to those of the sur-

face S associated to the true projected attractor. When the time delays are un-

known and a candidate for the reconstructed phase space is considered, Σd,{θi}i=1,...,N
,

it would correspond to the discretization of a true projected phase space Σθ =

(ẋ(t),x(t),x(t− θ1), . . . ,x(t− θN)) where the functional relationship is not ensured

and therefore the attractor is not projected on a surface S. This property is used

to retrieve the information concerning the time delay. We first use a family of hy-

perplanes {Lk,{τi}i=1,...,N
}k∈N defined in each point of the reconstructed discrete phase

space Σd,{θi}i=1,...,N
, leading to the local linear models. The average quadratic er-

rors are computed between this family and the projected attractor. When the set

{θi}i=1,...,N is equal to {τi}i=1,...,N , this error becomes minimal and this is how a single

or multiple time delays can be retrieved. This method allows one to detect when the

projected attractor lies on the surface S, a situation occurring only in Σ.

4.3.4 Global Nonlinear Models (GNLM)

The principles of a global nonlinear model (GNLM) are similar to those used for

the LLM approach; however, instead of minimizing the quadratic error with a set of

local planes, a global nonlinear function is used. A class of global discrete nonlinear

functions, such a modular neural networks (MNN), has been proposed in [148] to

identify a single time delay. We illustrate the MNN approach in this subsection.

84



The neural network aims at mimicking the structure of the equations of the non-

linear system under consideration. Toward this end, it incorporates two modules, (i)

one for the non-delayed part (ND) of the system and a second one for its delayed

part (D). A feedforward neural network is used for each of the modules. The first

non-delayed module is fed with input data xND = (xn, . . . , xn−(mND+1)) whereas the

second module is fed with xD = (xn−θ, . . . , xn−θ−(mD+1)), with the number of inputs

mND and mD of each module independently chosen , and θ being a candidate time

delay. The output of the modular neural network is defined by

yNN = fND(xND) + fD(xD), (103)

with fND and fD the nonlinear function associated to each module. These functions

result from the particular topology of the neural network activated after being trained.

Comparing to standard feedforward neural networks, the modular approach results in

more flexibility for the network, with each module interacting with each other. Each

module can then specialize in the reproduction of the behavior of the non-delayed and

delayed vector fields of the real time-delay system. To perform the identification, the

forecasting error σ(θ) = ||xn− yn,NN || is computed. A given value θ∗ is considered to

be an estimation of the true time delay τ , if the forecasting error is globally minimized.

4.4 Security Analysis of the ECSL

4.4.1 Influence of the Operational Parameters

In this subsection, we focus our attention on the capacity of an ECSL to produce

consistent time-delay signatures (TDS) using ACF and DMI estimators. We illustrate

the key role of (i) the feedback strength η, (ii) the pumping current J , and (iii) the

time delay τ in the estimation of the time delay.
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4.4.1.1 Influence of the Feedback Strength

The feedback strength η controls the optical power reinjected in the laser cavity and

hence drives the contribution of the delayed intensity I(t − τ) to the time evolution

of I(t) wiretapped by an eavesdropper. As a matter of fact, the time-delayed feed-

back term ηE (t− τ) e−iω0τ is linearly introduced in the Lang-Kobayashi equations;

it is thus expected that the stronger η is, the larger the information shared between

I(t − τ) and I(t) will be. The structure of the Lang-Kobayashi equations is such

that the separation of the delayed and non-delayed part are pretty straightforward.

This specificity can qualitatively explain the particular interplay of time scales, the

relaxation-oscillation period τRO and the time delay τ , each associated to the respec-

tive parts of the equation. Figure 28 pictures a case of time-delay identification. Each

line displays the recorded time series; the ACF and DMI computed for a given value

of η. Large values of η lead to a strongly developed chaotic regime (Fig. 28(j)) for

which a sharp signature of the time delay is observed. It has a large amplitude and

a precise location in both the ACF and DMI (see Fig. 28(k)-(l)), and is a typical

situation reported in the literature [144].

The autocovariance also reveals the presence of signature at integer multiples of

the time delay with the remarkable property that the ratio of the amplitude between

consecutive signatures is approximately constant, ΓI(kτ)/ΓI((k + 1)τ) ≈ γ < 1 and

leads to an exponential decrease of the signatures with the multiplicity order. This

also reveals that the ECSL uniformly destroys the information between the intensity

and its successive delayed versions. The progressive decrease in feedback strength

first induces a decrease of the signature’s amplitude while preserving the exponential

decrease of amplitude for the signature in both estimators at the multiples of the

time delay (Fig 28(h)-(i)), until it reaches a minimum value (Fig. 28(e)-(f)). Then, a

qualitative change of behavior appears in the estimator for relatively weak feedback

strengths; instead of a sharp peak emerging from a noisy background, the estimator
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Figure 28: Intensity time series produced by an ECSL and recorded by the eaves-
dropper (1st column), autocovariance function (2nd column) and delayed mutual
information (3rd column) for increasing value of the feedback rate η = 2 GHz (1st
row), 5 GHz (2nd row), 10 GHz (3rd row), and 15 GHz (4th row) with a time-delay
value τ = 5 ns and τRO = 0.75 ns. The vertical red dashed and purple dashed lines
give the time location of τRO and τ , respectively.

present oscillations with an approximate period equal to τRO. These oscillations are

locally amplified in the vicinity of integer multiple of the time delay τ (Fig. 28(b)-

(c)). They complicate the time-delay identification; the location and amplitude are

perturbed, and the estimation of the time delay will be at the precision of τRO/2. As a

consequence, at weak feedback strengths a relative increase of the ECSL’s security is

observed, a phenomenon that was not hitherto reported. It is however still possible to

retrieve a trustworthy estimation of the time delay, through the local amplification of

the oscillations of the estimators. At this point, no benefit in security can be achieved

by further reducing the feedback strength; if it is too weak, the ECSL is not chaotic

any more.

87



4.4.1.2 Influence of the Pumping Current

All parameters being fixed except the time delay, the scenario of progressive loss

of the clarity of time-delay signatures with decreasing feedback strength is relatively

universal. In the previous subsubsection, the choice of the relaxation oscillation period

τRO = 0.75 ns corresponded to a level of pumping current close to the threshold (5 %

above threshold current), the internal ECSL’s parameters remaining identical. To

investigate the influence of the pumping current J , we analyze quantitatively the

location and amplitude of the time-delay signature when the feedback varies for three

different pumping currents. The findings are reported in Fig. 29.

Figure 29: Impact of the feedback strength η and pumping current pJth on the
amplitude and time location of the most significant peak in the vicinity W (τ) =
[4.5 ns; 5.5 ns] of the time delay τ = 5 ns. Sub-figures (a)-(b) give respectively the
amplitude and time location of maxθ∈W (τ) |ΓI(θ)|; (c)-(d) gives respectively the am-

plitude and time location of maxθ∈W (τ) |Î(θ)|. The solid lines with gray-triangles
(4), red-circles (©), and purple-squares (2) stands for p = 1.05, 1.26, and 1.72,
respectively. These three different values of p correspond to the relaxation oscillation
periods τRO = 0.75 ns, 0.33 ns, and 0.2 ns, respectively. In sub-figures (b)-(d), the
dot-dashed lines give the time location of the time delay τ = 5 ns.
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Figure 29 is obtained by considering the signature with the largest amplitude (in

the ACF and DMI) in a vicinity W (τ) of the theoretical time-delay location. The

curves associated with different pumping currents (triangles, circles, and squares) all

present similar tendencies: V-shaped where the amplitude starts decreasing until it

reaches a global minimum followed by an increasing phase as the feedback strength

increases (Fig. 29(a)-(c)). Qualitatively, the decreasing region of the curve corre-

sponds to a weak chaotic regime, where the laser’s intrinsic nonlinearity and the

delayed feedback term have equivalent driving actions. Under these conditions, the

estimators (ACF, DMI,...) may still exhibit structural relationships within the inten-

sity time series associated with the relaxation-oscillation dynamics and the influence

of the delayed injected optical field. As the feedback is increased, the influence of

the relaxation oscillation becomes weaker and the signature of the relaxation oscilla-

tions tends to disappear. When the global minimum is achieved, the driving action

are conforming. Then the increase of feedback strength makes the influence of the

delayed field more significant, thus leading the amplitude of the time-delay signa-

ture to steadily increase. The increasing of the pumping current, however, shifts and

opens the V-shape of the curve; the global minimum of the amplitude of time-delay

signature increases and occurs for larger values of feedback strength. This implies

that large pumping currents have a detrimental effect on the security of the ECSL.

With the values of pumping used in Fig. 29, the relaxation-oscillation periods are

respectively τR0 = 0.75 ns, 0.33 ns, and 0.2 ns. As a consequence, for weak feedback

strengths, the disturbance of the oscillations in the estimators observed in Fig 28

will be reduced because of the precision of the time delay signature modulo τRO/2 in

this regime. This effect is illustrated in Fig. 29(b)-(d). The maximum shift in the

location of the estimated time delay is about τRO/2, for the weakest possible feedback

strengths that allow the ECSL to be chaotic. As the feedback strength increases, the

locations of the signature have similar evolution and ultimately only a small time
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shift persists.

In summary, this first analysis shows the key role of two operational parameters

(feedback strength η and pumping current J) in the characteristics of the time-delay

signature (amplitude and location). Qualitatively, it is suggested that a combination

of weak feedback strength (still ensuring a chaotic regime of the ECSL) combined

with a pumping current close to threshold ensures the strongest loss of information

about the time delay. However, the concealment is not perfect and it is still easy

for an experienced eavesdropper to recover the time-delay signature using standard

techniques such as ACF or DMI. Amongst the operational parameters, there is still

the time-delay that can be tuned. In the next subsection, we will address specifically

the role of this parameter and show how a proper choice could lead to optimized

time-delay concealment with a complete loss of signature.

4.4.2 Optimized Time-Delay Concealment: Influence of the Time Delay
Relatively to the Relaxation-Oscillation Period

The previous section has clearly identified a form of competition at weak values

of feedback strength η between two primary time scales existing in an ECSL: the

relaxation-oscillation period and the time delay. This competition results in the

coexistence of two signatures with dual features: a localized and impulsional shape

for the time delay and a delocalized and oscillating shape for the relaxation-oscillation

period. The idea behind an optimization of the concealment consists in bringing the

two time scales close to each other such that it becomes difficult to identify the

contribution of each time scale. A new scenario of identification is considered in Fig.

30 with the value of the time delay τ = 1.2 ns and the other parameters kept identical

to those of Fig. 28.

Following the line of reasoning of the previous subsection, we show that the effect

of the coexistence of two time scales at weak feedback and weak pumping is stronger.

When the time delay is close to the free-running relaxation-oscillation period, this
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Figure 30: Scenario of identification with close time scales. The ECSL’s intensity
time series (1st column), autocovariance function (2nd column), and delayed mutual
information (3rd column) are plotted for increasing value of the feedback strength
η = 2 GHz (1st row), 5 GHz (2nd row), 10 GHz (3rd row), and 15 GHz (4th row)
with a time delay τ = 1.2 ns and τRO = 0.75 ns. The vertical red dashed and purple
dashed lines give the time location of τRO and τ , respectively.

may have an even stronger effect on the time-delay signature. Figure 30 illustrates

this fact. At large feedback strength, the reduction of the time separation between

τ and τRO does not produce a qualitative change of the time-delay identification;

both estimators exhibit sharp time-delay signature with a precise time-location close

to the theoretical time-delay (Fig. 30(k)-(l)). Then, a diminution of the feedback

strength leads to a decrease in the signature’s amplitude (Fig. 30(h)-(i)), as reported

in Fig. 28. Then for a sufficiently small value of the feedback strength, the effect of

the relaxation oscillation dynamics is enhanced. This leads to a time-delay signature

hardly retrievable [Fig. 30(e)-(f)], whereas it is still possible to retrieve it when the

two time scales are sufficiently disparate (Fig. 28(e)-(f)). We notice first that the

transition between the pulse-like shape and oscillating shape of the estimator (at
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η = 5 GHz) corresponds to a particularly adapted situation to conceal the time-

delay signature. Finally, the time-delay signature is completely lost; only oscillations

are visible in the estimator and they correspond roughly to the relaxation-oscillation

period [Fig. 30(b)-(c)] exponentially-damped oscillations in the ACF and DMI with

an approximate period of τRO.

The ACF and DMI are relatively simple estimators, and the loss of time-delay

signature from the analysis of intensity time series may be connected to intrinsic

limitations of the identification methods. To guarantee the robustness of the conceal-

ment, other identification methods have been tested such as the LLM and GNLM.

The analysis tends to confirm that in the case of close values of τ and τRO, weak feed-

back strengths η and weak pumping currents J the time delay is not retrievable even

with those methods. Figure 31 illustrates this fact by presenting the evolution of the

forecasting error of a modular neural network (MNN) as a function of the candidate

time delay θ.

Figure 31: Identification with close time scales using a modular neural network
(MNN) generated with the following parameters: τ = 1.2 ns, τ = 0.75 ns, and η =
2 GHz. The evolution of the forecasting error σ(θ) is plotted as a function of θ with
an resolution of 5 ps. The vertical purple and red dashed lines give the time location
of the delay and the relaxation oscillation period, respectively.

Figure 31 presents the results of a time-delay extraction based on a MNN com-

posed of six neurons in the first layer and three neurons in the second layer for the

delayed module (D) and only one neuron for the non-delayed module (ND). The plot
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of the forecast error reveals only a minimum for values close to θ = 0 ns, that corre-

sponds to the linear correlation time [148]. We do not observe, however, any other

minimum in the vicinity of the time delay τ .

4.5 Dynamical Origin of the Time-Delay Concealment

The previous section has shown that the identification of the time delay strongly

depends on the operational parameters of the ECSL: the feedback rate η, the pumping

current (J), and the value of τ relatively to τRO. At high feedback strength, the

estimators always possess a predictable behavior: a pulse-like shape with a clear

time-delay signature. However, this regularity disappears, when the feedback rate is

weak.

The detection of the relaxation-oscillation dynamics in the estimator at weak

injection strength suggests a closer analysis of the time scales involved in the early

stages of the ECSL dynamics. We show that the route to chaos and the frequency

generated during the cascade of bifurcation shaped the dynamics of the estimators

at weak feedback strength, close to the first appearance of the chaotic attractor.

The feedback strength η will be taken as the bifurcation parameter in the following

investigations.

4.5.1 Interpretation of a Disparate Time-Scales Scenario

In this subsection, we consider the case studied in subsection 4.4.1.1 for which the

time delay and the relaxation oscillation period are relatively disparate, τ = 5 ns and

τRO = 0.75 ns.

The dynamics associated with this scenario are depicted in Fig. 32. The bifur-

cation diagram of the ECSL’s intensity reveals a quasiperiodic (QP) route to chaos

[Fig. 32(a)]; the stationary solution of the ECSL, an external cavity mode (ECM),

is first destabilized through a Hopf bifurcation (H1) and induces time-periodic dy-

namics [Fig. 32(a1)], at frequency fH1 ≈ fRO = 1.34 GHz (Fig. 32(b1)). This
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periodicity is revealed by both estimators (ACF and DMI): the signature of the time

scale τH1 = 1/fH1 manifests with oscillations [Fig. 32(a1)-(d1)]. An increase of feed-

back strength destabilizes the limit cycle into a torus [Fig. 32(b2)] and produces new

frequencies in the power spectrum [Fig. 32(c2)].

One strong frequency component appears separated from fH1 by ∆f = 0.19 GHz,

which is a value close to the external-cavity frequency fEC = 1/τ = 0.2 GHz. As a

result, this new time-scale signature is superimposed on the top of the previous ones

and induces a slow undamped periodic modulation of both the ACF and DMI [Fig.

32(d2)-(e2)]. A further increase of feedback strength is followed by the appearance

of numerous new frequencies that increases the attractor complexity [Fig. 32(b3)-

(c3)]. Nevertheless, the strong frequency components still have the identical frequency

locations, thus guarantee the persistence of a global order of the time series over the

long term even if on a short time the complexity (disorder) is increased. This is

manifested in the estimators by a strong modulation [Fig. 32(d3)-(e3)]. Finally, the

torus destabilizes into a chaotic attractor, whose structure in the projected space

retains a vestige of the torus geometry [Fig. 32(b4)]. The strong aperiodicity of

ECSL’s chaotic regime induces the progressive loss of correlation within the intensity

time series, which appears with a damp modulated shape of the estimators (Fig.

32(d4)-(e4)).

In conclusion, from the study of this scenario, it appears that the behavior of the

estimators (ACF,DMI) is strongly conditioned by the time scales that concentrate

most of the spectral energy during the cascade of bifurcations until the appearance

of chaos. In this particular scenario, these are the undamped relaxation-oscillation

period τH1 = 1/fH1 ≈ τRO born from the Hopf bifurcation (H1) and a frequency

at fH1 − ∆f with ∆f = 0.19 GHz. Interestingly, the time delay is given by τ ≈

1/∆f . The presence of two strong frequency components will induce a beating in

the estimators behavior. Fast oscillations are observed at the composite frequency
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Figure 32: Dynamical interpretation of security in a case of disparate time scales.
The time delay is τ = 5 ns and τRO = 0.75 ns (a) A quasiperiodic route to chaos
is observed; a projection of the attractor in the (|E|, N) plane (first row), power
spectrum |FT (I(t))|2 (second row), autocovariance (third row), and delayed mutual
information (fourth row) for increasing value of the feedback rate. Each column (num-
bered from 1 to 4) corresponds to the feedback strengths η = 0.35 GHz, 0.55 GHz,
0.85 GHz, and 1 GHz, respectively. The vertical purple and red dashed lines give the
time location of τRO and τ , respectively.
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fH1−∆f/2 with a slow modulation at frequency ∆f/2 (or period 2τ), responsible for

the maximum of modulation at every multiple of τ . It is noteworthy to mention the

typicality of such a scenario in ECSLs, when the time scales τRO and τ are sufficiently

separated. It is also representative of what could be considered as a weakly-secure

regime for an ECSL. Indeed, the time delay appears early in the dynamics after a torus

bifurcation (in Figs. 28-32), while the ECSL is still predictable and the frequency fH1

and fH1 −∆f persists in the early stages of the chaotic dynamics at weak feedback

strengths. As a consequence, a sufficient condition to conceal the time-delay signature

relies on its absence in the early stages of the ECSL’s dynamics that will ensure in

the weakly chaotic regime no information on the time delay. This is a situation

encountered in many case when the time scales τRO and τ are close to each other.

4.5.2 Interpretation of a Close Time-Scales Scenario

Similar to the previous section, the influence of the bifurcation cascade is investigated

when the two time scales τRO and τ have close values. In this case, the analysis is

performed using parameters identical to those in Fig. 30. The cascade of bifurca-

tions is first analyzed in Fig. 33(a), and it shows a Period-Doubling route to chaos.

Similar to what was observed in Fig. 32, we notice that the frequencies generated by

the ECSL nonlinear dynamics also significantly influence the shape of the estimators.

The progressive increasing in feedback strength leads to time-periodic dynamics of

the ECSL [Fig. 33(b1)] with a frequency fH1 = 1.34 GHz [Fig. 33(c1)] and induces

an oscillating behavior of the estimators [Fig. 33(d1)-(e1)]. At a larger feedback

strength, a period-doubling bifurcation is observed and leads to the appearance of a

new frequencies f = fH1/2 [Fig. 33(c2)]. The coexistence of these two time scales

modulates the shape of the estimators [Fig. 33(d2)-(e2)], making 2τH1 = 2/fH1 and

its multiples the time-locations of the strongest contributions in the time-delay es-

timators. Further increase of the feedback strength η leads to the appearance of
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many frequencies in the ECSL’s power spectrum, and has two effects on the esti-

mators: a global amplitude’s decrease, and an enhancement of the modulation [Fig.

33(d3)-(e3)]. Then, the appearance to many frequencies in the spectrum leads to a

chaotic regime, which shows up as of exponentially damped oscillations at a frequency

approximately equal to fH1 in both estimators [Fig. 33(d4)-(e4)].

In contrast to the previous case, the time delay does not appear early in the ECSL’s

dynamics after the occurrence of the first bifurcations nor in the power spectrum,

which contains a single strong frequency component at approximately fH1. This

prevents a clear time-delay signature to appear in the estimators at low feedback

rates. The only information given by the estimator is a measure of the undamped

oscillation frequency fH1, which in the case presented, is close to the relaxation-

oscillation frequency fRO = 1/τRO.

4.5.3 Summary

In conclusion and based on the two scenarios illustrated in Figs. 32-33, the cascade

of bifurcations plays a significant role in the behavior of the time-delay estimators.

The first bifurcation usually leads to oscillations in the estimators at a fundamen-

tal frequency, and subsequent bifurcations shape them. The diversity of time-delay

identification scenarios appearing at weak feedback strength is a direct consequence

of the many existing route to chaos. Furthermore, it appears that a sufficient condi-

tion to conceal the time-delay signature is that it must not appear early in the route

to chaos (as observed in Fig. 32(c2)). For an experienced eavesdropper, however,

the information on the relaxation oscillation may still be of interest, especially if the

emitter is guessed to be an ECSL. In many scenarios investigated in our analysis of

security, the oscillations in the estimator had always a period approximately equal to

τRO. These oscillations are related to the frequencies with a strong concentration in

spectral-energy density. This frequency usually appears early in the ECSL nonlinear
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Figure 33: Dynamical interpretation of security in a case of close time scales. The
time delay is τ = 1.2 ns and τRO = 0.75 ns (a) A period-doubling route to chaos
is observed as well as a projection of the attractor in the (|E|, N) plane (first row),
power spectrum |FT (I(t))|2 (second row), ACF (third row), and DMI (fourth row)
for increasing value of the feedback rate. Each column (numbered from 1 to 4)
corresponds to the feedback strengths η = 0.6 GHz, 0.8 GHz, 1.2 GHz, and 1.5 GHz,
respectively. The vertical purple and red dashed lines give the time locations of τRO
and τ , respectively.
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dynamics from an Hopf bifurcation, and it is somehow preserved during the entire

route to chaos. This further motivates the study of the influence of the first frequency

on the security.

4.5.4 Security and Frequency Concentrating a High Energy Level

In the previous illustrations, the time (or frequency) scale appearing on the first Hopf

Bifurcation τH1 (or fH1 = 1/τH1) remained dominant in the ECSL dynamics even

when the system becomes chaotic, because it systematically concentrates a significant

amount of spectral energy. Its presence seems to be systematically responsible for the

fast oscillating behavior of the time-delay estimators that persists during the entire

cascade of bifurcations and can blur or even mask the time-delay signature (Figs. 32-

33). The frequency fH1 also seems to be close to fRO. However, a systematic study

has shown first that fH1 can be significantly shifted from fRO. Figure 34 displays the

evolution of fH1 as a function of τ (time delay) for a given value of τRO. The evolution

is not monotonic; fH1 periodically oscillates around fRO (horizontal purple dashed

line). The period is close to τRO, and the oscillations’ amplitudes are slowly damped.

Similar conclusions have been obtained for other sets of parameters than those used

in this manuscript in previous studies on ECSL dynamics [149, 150, 151]. In our

context, this interesting property could be used to increase the ECSL’s security. The

use of frequency fH1 shifted from the relaxation oscillations frequency potentially lead

to fast oscillating estimators that prevent an eavesdropper to gain insight on τRO or

τ .

Our previous choice of parameters (in the disparate and close time-scales scenar-

ios), as indicated in Fig. 34, coincidentally leads to situations where fH1 ≈ fRO.

However, there are also situations, where the evolution of fH1 can be significantly

shifted from fRO, when τ and τRO are close (situation corresponding to optimized

time-delay concealment). Using this particular feature, it would be possible to design
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Figure 34: Evolution of the first Hopf frequency fH1 as a function of the time
delay τ for τRO = 0.75 ns. The horizontal and vertical dot-dashed lines represent,
respectively, the relaxation oscillation frequency fRO = 1/τRO and multiples of the
relaxation-oscillation period τRO. The scenarios of Figs. 32 and 33 are indicated.

an ECSL-based chaotic emitter with an ever greater security with no leakage of the

time-delay and relaxation-oscillation information.

We have to be cautious in our conclusions: a strong shift of fH1 with respect to

fRO is a criterion that guarantees strong security only if fH1 concentrates most of

the spectral energy until weakly-developed chaos is reached. This would result in

estimators with oscillating signatures associated with τH1 = 1/fH1. As a matter of

fact, due to the extremely complicated behaviors of the Lang-Kobayashi equations,

making such a prediction is extremely difficult. It is usually necessary to simulate

the system to determine a posteriori the route to chaos and the corresponding level

of security achieved by an ECSL-based emitter.

We illustrate this fact in Fig. 35. We consider for instance two close values

for the time delay and the relaxation-oscillation period, respectively, taken equal

to τ = 0.85 ns and τRO = 0.75 ns (a scenario where a strong level of security is

achieved due to the proximity of the time scales). In this scenario, the route to

chaos does not correspond to a standard route (QP or PD). The ECSL is destabilized

through a Hopf bifurcation before it locks on a limit cycle with a frequency fH1b

and undergoing the cascade of bifurcations. Such a situation is illustrated in the

bifurcation diagram in Fig. 35(a). After a first Hopf bifurcation, a limit cycle LC1
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is generated with frequency fH1 = 1.64 GHz shifted from fRO = 1.33 GHz [Fig.

35(b1)-(c1)]. As the feedback strength is increased, LC1 is replaced by two news

branches associated with a new limit cycle LC1b with a different frequency fH1b =

1.02 GHz [Fig. 35(b2)-(c2)]. Then, LC1b is destabilized with the ECSL locking on

a PD limit cycle with fundamental frequency fPD = 0.88 GHz (Fig. 35(b3)-(c3)).

Finally, the system enters in a weakly developed chaotic regime that inherits the

spectral contents of this last stable attractor (Fig. 35(b4)-(c4)). In this scenario, the

ECSL has undergone discontinuous variations of its frequency that concentrate the

largest amount of spectral energy. These variations have visible consequences on the

estimators (Fig. 35(d1)-(d4) and (e1)-(e4)); the oscillatory shape is not related to any

a priori known frequencies such as fRO, fEC , or fH1. This particular route to chaos

leads to nontrivial variations of the estimators such that it is virtually impossible to

identify the time delay or the relaxation-oscillation period from either the ACF or

DMI [Fig. 35(d4) and (e4)].

In conclusion, we have shown that the frequencies that appears in the cascade

of bifurcations and concentrates most of the spectral energy are responsible for the

oscillatory behavior observed in the weakly chaotic regimes. In numerous situations,

the frequency fH1 of the first Hopf bifurcation controls these oscillations. It appears

they can be made to be frequency shifted with respect to the relaxation-oscillation

frequency fRO and therefore enhance the security of an ECSL-based chaotic emitter

by hiding these key information. Nevertheless, it is not systematically responsible

for the fast oscillatory shape of the estimators as suggested by the last scenario

investigated. Various frequencies arise from the cascade of bifurcations occurring in

the ECSL shape and modify the oscillations in the time-delay estimators and are

in every case responsible for blurring the time-delay signature when the feedback

rate is taken relatively weak and the ECSL weakly chaotic. Finally, the diversity

of routes to chaos also explains why there is so much differences in the behaviors
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Figure 35: Dynamical interpretation of security in a case of close time scales, not
controlled by the first Hopf bifurcation frequency fH1. The time delay is τ = 0.85 ns
and τRO = 0.75 ns (a) A nontrivial route to chaos is observed. Projection of the
attractor in the (|E|, N) plane (first row), power spectrum |FT (I(t))|2 (second row),
ACF (third row), and DMI (fourth row) for increasing value of the feedback rate. Each
column (numbered from 1 to 4) corresponds to the feedback strengths η = 0.6 GHz,
0.8 GHz, 1.2 GHz, and 1.5 GHz, respectively. The vertical purple and red dashed
lines give the time locations of τRO and τ , respectively.
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of the estimators at weak feedback strength (where the influence of the route is

still significant) by opposition to the strong feedback regime, where the estimators’

behavior are predictable.

4.6 Influence of Internal Parameters: Gain Saturation and
Noise

In this section, we discuss the potential influence of two internal laser’s parameters

(spontaneous emission noise and gain compression coefficient), whose interpretation

is easy in the framework we have developed. In this context, we will analyze results

on security and how some of the dynamical interpretation holds in this particular

context.

4.6.1 Influence of the Spontaneous-Emission Noise

The results of the previous sections are based on a fully deterministic model of the

ECSL. However, the stochastic processes modeled by the Langevin force appearing in

Eqs. 92-93 may affect our results. Indeed, this additional stochastic part of the Lang-

Kobayashi equations blurs the cascade of bifurcations that has already proven to be

directly responsible for the blurred time-delay signatures observed in the time-delay

estimators. When the feedback strength is weak, the noise acts as a significant driving

force for the dynamics that weakly excites the intrinsic nonlinearity of the ECSL.

This stochastic excitation, however, does not influence the time-delay identification;

the signature is still blurred by the time-scales related to the cascade of bifurcations.

Larger feedback strength values make the noise effect negligible in comparison with the

delayed-feedback term and a clear signature with an impulsional shape is observed,

similar to the noiseless case. Figure 36 shows this result using the ACF, which is

comparable to the third column of Fig. 28.

In conclusion, the presence of noise does not threaten or enhance significantly the

security of ECSL in terms of time-delay identification.
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Figure 36: Influence of the rate of spontaneous emission β on the time-delay iden-
tification. The spontaneous emission rate is taken equal to β = 10−3 s−1. Each
column is associated with a given feedback strength. From left to right, η = 2.5 GHz,
5 GHz, 10 GHz, and 15 GHz. The time delay and the relaxation period are equal
to τ = 5 ns and τRO = 0.75 ns. They are represented by the purple and red dashed
lines, respectively.

4.6.2 Influence of Gain Saturation

Gain saturation ε is phenomenologically introduced in the rate equations by con-

sidering an explicit intensity dependence of the gain. Since it modifies significantly

the ECSL’s nonlinearity, it may significantly affect security in terms of time-delay

estimation.

It has already been reported that the saturation gain has a stabilizing effect on

the ECSL dynamics [152]. As a consequence, reducing the value of ε will favor the

driving action of GN,|E|2E(t) relative to the feedback term ηeiω0τE(t− τ). In terms of

time-delay identification, the consequences would be a persistence at larger feedback

strength of the competition between the time scales generated by the cascade of bi-

furcation with the time delay, thus increasing the range for which an ECSL exhibits

a high level of security. Figure 37 presents these results; two different identification

scenarios based on the ACF are considered for various choices of τRO,τ for increasing

values of the saturation gain ε. The first row shows simulations with close time-scales

(τRO = 0.2 ns and τ = 1 ns). For η = 10 GHz and a strong saturation gain ε, a clear

time-delay signature is observed, as expected [Fig. 37(a4)]. A progressive disappear-

ance of the time-delay signature at this feedback level, however, was not expected and

yet it is observed, as the saturation gain is weakened (Fig. 37(a3)-(a2)-(a1)). These

results hold also in a disparate time scale scenario described above (second row of
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Fig. 37); the slow modulation at a period close to 2τ is also progressively weakened,

thus increasing security even in a disparate time-scale scenario.

In conclusion, decreasing values of the gain saturation favor the fast time scales

emerging from the laser’s intrinsic nonlinearities with respect to the delay time scale.

This has also proven to enhance the range of feedback rate and separation of time-

scales to conceal the time delay.

Figure 37: Influence of the gain saturation ε on the time delay signature for two
different scenarios. The first row corresponds to a (relatively) close time-scale scenario
with τRO = 0.2 ns and τ = 1 ns at η = 10 GHz. The second row is a disparate time-
scale scenario with τRO = 0.75 ns and τ = 1 ns. The vertical purple and red dashed
lines represent the relaxation oscillation period and the time delay, respectively. Each
column corresponds to a increasing values of the saturation gain. From left to right
: ε = 0 m3, 0.625 m3, 1.25 m3, and 2.5 m3. The purple and red vertical dashed lines
gives the locations of the relaxation oscillation period and time delay, respectively.

4.7 Conclusion

In this chapter, we have analyzed the security of an ECSL in terms of time-delay iden-

tification using mainly typical time-delay estimators (ACF and DMI). The key role of

the feedback strength η, the pumping current J , as well as the choice of the time-delay

τ relative to the relaxation-oscillation period τRO, has been underlined. It appears

that the maximum of security, corresponding to loss of time-delay signature, occurs

for moderate feedback strength and pumping current combined with close values of

the two time-scales τ and τRO. The efficiency of the time-delay concealment find its

origin in the specific nonlinear dynamics and time scales generated in the ECSL’s
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bifurcation cascade preceding chaos. Indeed, chaos is reminiscent of the time scales

involved in the early stage of the laser dynamics, such as the undamped relaxation os-

cillation time and possibly PD and QP dynamics. The time-delay estimators exhibit

complex modulated shapes showing these different ECSL dynamics time scales. In

case the time delay τ and the relaxation oscillation period τRO are close to each other,

the time-delay information is efficiently concealed thanks to a shift of the first Hopf

frequency fH1 with respect to the relaxation oscillation frequency fRO. The laser

output at the Hopf frequency starts pulsating at a frequency that is neither close to

fRO = 1/τRO nor f = 1/τ . We have also found that a suitable choice of internal

parameters could lead to wider regions of operational parameter values that ensure

security. It appears that the decrease in gain saturation coefficient allows to use more

distant values of and as well as to increase the pumping factor while maintaining

time-delay concealment. The robustness of our results has been checked with other

signal processing techniques such as neural networks and filling-factor methods. We

expect our results to be of interest for a proper design of a laser chaotic emitter that

would allow for the best concealment of its system parameters, hence also improving

security in optical chaos-based communications.
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CHAPTER V

MULTIPLEXING CHAOTIC LIGHT

5.1 Abstract

We theoretically analyze the possibility of multiplexing multiple chaotic optical fields

with a strong spectral overlap. Instead of considering regular wavelength-division mul-

tiplexing (WDM) or time-division multiplexing (TDM) approaches on top of chaotic

systems, we propose a radically different perspective relying on one of the fundamental

concepts of the theory of synchronization, which is the active passive decomposition

(APD). We numerically show that the combination of mutually coupled lasers at

the emitter with a unidirectional injection into decoupled receivers can be used to

multiplex and demultiplex chaotic optical fields. The separation is realized through

complete chaos synchronization by each receiver, even when the various free-running

lasers operate at identical frequencies. This offers new perspectives in high spectral

efficiency and multiplexed transmission of information. We also demonstrate theo-

retically the possibility of encrypting and decrypting multiple data streams, when

they are properly embedded in the phase or the amplitude of the various multiplexed

optical fields.

This chapter is based on the following publication:

• D. Rontani, A. Locquet, M. Sciamanna and D.S. Citrin,“Spectrally Efficient

Multiplexing of Chaotic Light”, Opt. Lett. 35, pp. 2016-2018 (2010)
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5.2 Introduction

In this chapter, we aim at presenting an alternative view of the problem of multi-

plexing chaotic light fields generated by optoelectronic devices such as edge-emitting

lasers (EEL). When more than two lasers are involved with a single available op-

tical channel, it is necessary to multiplex the chaotic signals of the various users.

In conventional optical communications, time- and wavelength-division multiplexing

(TDM and WDM) are well-known protocols that make use of different time slots and

wavelength bands, respectively, to convey each user’s signal. In each case, either a

given user has access to the whole channel bandwidth but only during specific time

intervals (TDM) or has permanent access to a frequency slot (WDM).

Applying WDM to optical chaotic communications has already been proposed.

This is commonly referred to as chaotic WDM in the literature and can be achieved

using either multiple chaotic single-mode lasers operating at detuned wavelengths

[153, 154] or multi-mode lasers [155, 156, 157]. In both cases, the lasers at the

receiving end synchronize their chaotic fluctuations with those of the same-frequency

emitter. Though interesting, chaotic WDM has the disadvantage of requiring a large

frequency separation between channels to avoid interference between each user’s wide

spectrum [158], or in other words, a high degree of synchronization between the

respective emitter/receiver pairs. Consequently, chaotic WDM is far less spectrally

efficient than conventional WDM, thus obviating its practical deployment. Although

it has not been studied in the context of optical chaos-based communications, the

application of the other typical multiplexing approach, TDM, would not lead to any

improvement of the spectral efficiency.

Other than the spectral inefficiency of such approaches, one of the main concerns

was to find how to exploit in the best possible way the specificity of chaotic opto-

electronic devices and go beyond the classical paradigms of WDM or TDM. This has

led us to an analogue of the code-division multiple access (CDMA) approach, where
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discrimination between users’ signals is made at a statistical level. As will be later

illustrated, this separation is performed through the independent chaos synchroniza-

tion of the various emitter/receiver pairs.

To help understand our approach, we first reinterpret the classical paradigm of

unidirectional synchronization of chaotic EELs in the theoretical framework of active-

passive decomposition (APD).

5.3 Optical-Chaos Synchronization Revisited

In this section, we show the close analogy that exists between APD, as established

by Kocarev et al. in [71], and the classical problem of unidirectional synchronization

of chaotic EELs [62, 118]. We first introduce the concept of APD, and then we show

to what extent the result holds for a configuration involving EELs.

5.3.1 Active Passive Decomposition (APD)

Historically, APD is a generalization of the master-slave decomposition (MSD) in-

troduced by Pecora and Carroll in [12]. Here, we recall this important milestone by

considering two systems: the emitter (E) and the receiver (R) with identical struc-

tures and parameters. These systems are described by their respective state variables

xE ∈ Rn and xR ∈ Rn; their dynamics are controlled by ODEs. Then, each system is

decomposed into two interconnected subsystems, (Em,Es) and (Rm,Rs), as illustrated

in Fig. 38(a); the subscripts m and s denote master and slave, respectively.

The state variables are also decomposed into xj = (xjm ,xjs)
T with j = E,R. The

dynamical representation of such system reads

(E,R)


ẋjm = fjm(xjm ,xjs)

ẋjs = fjs(xjm ,xjs)

. (104)

To completely synchronize both E and R, a subsystem Rm identical to Em is
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constructed [see Fig. 38(b)], upon which Eq. 104 becomes

(E)


ẋEm = fEm(xEm ,xEs)

ẋEs = fEs(xEm ,xEs)

, and (R)


ẋRm = fRm(xEm ,xRs)

ẋRs = fRs(xEm ,xRs)

. (105)

The subsystems Es and Rs are synchronized, if and only if the equilibrium points

of Em and Rm are stable. In other words, the Lyapunov exponents of subsystem Rs

conditioned to the trajectories of subsystem Em have to be negative [12]. However,

this method makes chaos synchronization possible only if MSD exists, where one

subsystem has stable fixed points. This consequently limits the application of such a

decomposition to a reduced number of chaotic systems. Furthermore, the number of

possible MSD per system is limited.

Figure 38: Illustration of the concept of master-slave decomposition (MSD) of (a) a
single nonlinear system (E) into two interconnected subsystems (Em,Es) and of (b)
two systems (E) and (R) potentially to ensure chaos synchronization.

As proposed by Kocarev et al. in [71], APD is a generalization of the MSD frame-

work. Emitter E, which is usually in its autonomous form, is rewritten into a non-

autonomous form1 as

ẋE = f(xE, s(t)), (106)

1See Chapter 2 for the definitions of autonomous and non-autonomous forms.
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with s(t) = h(xE) (or ṡ(t) = h(xE, s(t))), f : Rn × Rp → Rn, and h : Rn → Rp (or

Rn × Rp → Rp if s(t) is described by a differential equation).

If receiver R is built with an identical structure to that of emitter E and coupled

with the same signal s(t), its non-autonomous form reads

ẋR = f(xR, s(t)). (107)

It is possible for E and R to be synchronized; the conditional Lyapunov exponents of

Eq. 106 have to be negative (whatever the driving signal s(t) is). This also means that

when E is not driven (s(t) = 0), it will tend to a stable equilibrium point. In other

words, E is a damped or passive oscillator. This explains the APD appellation; the

system is decomposed into its passive and active driving parts through the nonlinear

functions f and h. A graphical representation of APD is given in Fig. 39.

Figure 39: Illustration of the concept of active-passive decomposition (APD), where
a Driver (D) injects emitter E and receiver R. They may under certain conditions
chaotically synchronize.

5.3.2 Application to the Synchronization of Chaotic Lasers

The synchronization of chaotic EELs has been thoroughly investigated in the litera-

ture [62, 118], with details under which conditions it can be achieved. Amongst the

many existing optical configurations of EELs used to exhibit chaos (see Chapter 3),

the ECSL has proven to be of particular interest. It injects coherently and unidirec-

tionally a receiver laser as depicted in Fig. 40. Each device can be modelled within the

framework of the well known Lang-Kobayashi equations [136]. With similar notation
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to that used in Chapter 3, one has

dEm
dt

=
1

2
(1 + iα)

(
GNm,Em −

1

τp

)
Em + ηme

−iω0mτEm(t− τ), (108)

dEs
dt

=
1

2
(1 + iα)

(
GNs,Es −

1

τp

)
Es + ηce

−iω0mτcEm(t− τc), (109)

dNm,s

dt
= J − γsNm,s −GNm,s,Em,s |Em,s|

2 , (110)

with index (m, s) referring to as master (or emitter) and slave (or receiver), respec-

tively. The lasers used in this setup are class-B, which means that in the absence of

an additional degree of freedom such as an external feedback they exhibit damped

relaxed oscillations before emitting a stable constant output. An EEL is therefore

passive, and in the proposed configuration of Fig. 40, the feedback term is considered

as the driving signal or the active part. By symbolically rearranging Eqs. 108-110,

the model reads

Ėm = fE
(
Em, Nm, ηme

−iω0mτEm(t− τ)
)
, (111)

Ės = fE
(
Es, Ns, ηce

−iω0mτcEm(t− τc)
)
, (112)

Ṅm,s = fN (Em,s, Nm,s) . (113)

Rigorously, master and slave lasers can be synchronized if they are physical twins1

driven by identical signals. In our configuration, however, the time delays (τ and

τc) are different in the general case. This issue can be simply solved by rewriting

the equations of the master and slave lasers in shifted time frames: t → t − τc and

t→ t−τ , respectively. The two feedback signals now read ηme
−iω0m∆τEm(t−∆τ) and

ηce
−iω0m∆τEm(t − ∆τ) with ∆τ = τc − τ . Consequently, for the two driving signals

to be equal and to ensure complete synchronization, one has necessary to satisfy

ηc = ηm, which is known as the necessary conditions of anticipating synchronization

1It is important to avoid parameter mismatch and noise to guarantee complete chaos
synchronization.
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[118]. Therefore, the synchronization manifold reads2

Es(t) = Em(t−∆τ), (114)

ϕs(t) = ϕm(t−∆τ)− ω0m∆τ mod(2π), (115)

Ns(t) = Nm(t−∆τ). (116)

The unidirectional coupling configuration is described in Fig. 40.

Figure 40: Illustration of an active-passive decomposition (APD) realized with a
single pair of semiconductor laser. The master’s optical field is used to drive both the
master and the slave. EEL LD: Edge-emitting laser diode, CS: current source, OI:
optical isolator, Mf : mirror, VAm, VAc: variable attenuator.

APD constitutes a powerful framework to investigate this classical synchronization

problem. However, it only provides structural information about the nature of the

driving signal, but not on the coupling values (sufficient conditions). Therefore APD,

like other typical methods to determine synchronization conditions, gives necessary

conditions for synchronization. Identifying synchronization of chaotic ECSLs as an

APD-like problem (for the first time to the best of our knowledge) is a first important

step before realizing the multiplexing of chaotic optical signals, as described in the

next section.

5.4 Optical Chaos Multiplexing

5.4.1 Model

In this section, we propose a new method to multiplex various chaotic optical sig-

nals produced by semiconductor lasers with identical free-running optical frequencies.

2The additional term ω0m∆τ is a direct consequence of the time-reference shifts.
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Hitherto, optical-chaos multiplexing and demultiplexing techniques proposed in the

literature have used lasers with different free-running frequencies [153, 158, 159], sim-

ilar to the conventional WDM. In our approach, we propose to go further than this

classical paradigm and make the multiplexing and demultiplexing possible using only

the properties of chaos synchronization with lasers operating at identical free-running

frequencies. Using simple optical components, we create a delayed optical analogy

of APD. On the emitting side, a single signal ET (t) resulting from the mixing of

chaotic electromagnetic fields Em
k (t) produced by multiple semiconductor lasers Mk

(k = 1, . . . , n) being globally mutually coupled, is retro-injected with different feed-

back strengths and time-delays in each master laser Mi. Consequently, signal ET (t)

is perceived by each master as a specific multiplexed signal Em
T,k(t). The signal ET (t)

is then coherently and unidirectionally transmitted on an optical channel. On the

receiving side, there are n independent semiconductor lasers Sk (k = 1, . . . , n) which

operate under exactly the same conditions as the respective Mk. More specifically,

they are injected with identical strength and the time-delay topologies are preserved.

This implies that each slave Sk is injected by a delayed version of Em
T,k(t), namely

Es
T,k(t).

Figure 41 shows a two-user setup composed of two mutually coupled master lasers

(M1,M2) unidirectionally coupled with two slave lasers (S1,S2). Each master is sub-

jected to delayed optical feedback from mirror Mrf and to delayed optical injection

from the other master. A linear combination of the two masters’ delayed complex

optical fields is thus injected into each master, but with specific strength (different

variable attenuators), phase, and delay (different optical paths) for each field. The

same linear combinations are then optically injected, after propagation on a shared

optical channel, into the uncoupled slave semiconductor lasers S1 and S2.
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Figure 41: Multiplexing scheme based on semiconductor lasers optically-coupled in
an APD fashion. LD: laser diode (labeled M1, M2 for the masters and S1, S2 for the
slaves), CS: current source, Mr, Mrf : mirrors, VA1,VA2: variable attenuators, BS:
50/50 beam splitter, OI: optical isolator.

The complete system is modeled assuming single-mode semiconductor lasers and

the theoretical framework of Lang-Kobayashi [136]. The system of equations reads

dEm
k

dt
=

1

2
(1 + iαmk )Gm

k E
m
k + Fm

k +
n∑
j=1

ηmjke
−iωm0jτmjk+i∆ω

m/m
jk tEm

j

(
t− τmjk

)
,(117)

dNm
k

dt
= Jmk − γmskNm

k − (Gm
k + 1/τmpk)|Em

k |
2, (118)

dEs
k

dt
=

1

2
(1 + iαsk)G

s
kE

s
k + F s

k +
n∑
j=1

ηcjke
−iωs0jτcjk+i∆ω

m/s
jk tEm

j

(
t− τ cjk

)
, (119)

dN s
k

dt
= Jsk − γsskN s

k − (Gs
k + 1/τ spk)|Es

k|
2, (120)

where the subscript k denotes the kth lasers pair (Mk/Sk) and subscripts m, s de-

note master or slave variables, respectively. Em,s
k = |Em,s

k |eiφ
m,s
k is the slowly-varying

complex electric field and Nm,s
k the carrier number. Gm,s

k = gm,sk (Nm,s
k −Nm,s

0k )/(1 +

εm,sk |E
m,s
k |2)−1/τm,spk is the nonlinear gain with gm,sk the differential gain, Nm,s

0k the car-

rier number at transparency, εm,sk the gain-saturation coefficient, and τpk the photon

lifetime. αm,sk is the linewidth enhancement factor, γm,ssk the carrier decay rate, Jm,sk

the pumping current density, and ωm,s0k the free-running laser frequency of the kth free

running laser. τmjk (τ cjk), η
m
jk (ηcjk), and ∆ω

m/m
jk = ωm0j − ωm0k (∆ω

m/s
jk = ωm0j − ωs0k) are
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the flight time, injection strength, and detuning between the j-th and the k-th mas-

ter laser (the jth master laser and the kth slave laser). Spontaneous-emission noise

is modeled by Langevin sources Fm,s
k =

√
2βm,sk Nm,s

k ζm,sk with βsp the spontaneous-

emission rate and ζm,sk independent Gaussian white noises with unit variance.

5.4.2 Necessary Conditions for Synchronization

Assuming identical perfectly reflecting mirrors and identical optical coupling efficien-

cies in all laser cavities, the geometry of the system in Fig. 41 leads to the following

relations between flight times and coupling strengths

τmjk = τmkj = τmjj + ∆τmkj/2, (121)

ηmkj = ηmjk =
√
ηmkkη

m
jj , (122)

with ∆τmjk = −∆τmkj = τmjj − τmkk.

The scheme has been devised in such a way that each laser in a pair (master

or slave) is subjected to n master electric fields, Em
k (k = 1, . . . , n), with the same

relative time shift. Mathematically, this means that τmjj − τmkj = τ cjj − τ ckj.

Interestingly, due to the coupling strength and geometry, each laser pair (Mk,Sk)

perceives its own multiplexed signal Em,s
T,k (t) derived from a unique mathematical

multiplexed chaotic optical field that reads

ET (t, θ, σ, µ) =
n∑
j=1

√
ηmjje

iωm0j(θ+∆τmσj/2)+it∆ωµjσEm
j (t− θ −∆τmσj/2), (123)

with θ = τmkk or τ ckk and µ = m/m or m/s. This optical field ET (t) can be used to

derive the expression of the multiplexed field injected into the kth laser pair; Mk is in-

jected by Em
T,k(t) =

√
ηmkkET (t, τmkk, k,m/m) and Sk byEs

T,k(t) =
√
ηckkET (t, τ ckk, k,m/s).

Each pair (Mk,Sk) can exhibit a regime of complete synchronization in the presence

of identical internal parameters, and bias current, and in the absence of noise, and

frequency detuning ∆ω
m/s
kk = 0. These necessary conditions are completed by the

following injection-strength constraint ηmjk = ηcjk (equivalent to ηmkk = ηckk with respect
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to the geometry adopted in our setup) which naturally extends the single master/slave

case [62, 118, 119, 120]. Moreover, non-zero flight times are responsible for specific

time lags ∆τk in the synchronization manifold of Mk/Sk defined by

Es
k(t) = Em

k (t−∆τk), (124)

φsk(t) = φmk (t−∆τk)− ωm0k∆τk(mod 2π), (125)

N s
k = Nm

k (t−∆τk). (126)

The expression of the time lags can be simply deduced from the analysis of each

electrical field injected into a given pair, namely Em
T,k(t) and Es

T,k(t) for the kth pair.

The time lags are simply deduced from the necessary conditions of synchronization

and read

∆τk = τ ckk − τmkk. (127)

A simulation of two laser pairs (n = 2) is reported in Fig. 42. It shows the

anticipating synchronization manifolds under ideal conditions. The time lags ∆τk

are here both equal to zero due to additional symmetry between the emitting and

receiving ends.

An additional aspect of our architecture is its spectral efficiency, since the free-

running lasers operate at identical wavelengths. However, when the chaotic regimes

appear, the optical spectrum of each laser is broadened and can exhibit bandwidth

of hundred of megahertz. If conventional WDM were applied on top of an optical

chaos-based architecture, each chaotic optical spectrum would have to be sufficiently

separated to be properly discriminated.

5.4.3 Spectral Efficiency

The proposed architecture can alleviate the spectral constraint existing in WDM

by using a different method to separate multiple carriers with significant spectral

overlap, i.e. the use of independent chaos synchronization between the different pairs
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Figure 42: Theoretical synchronization diagrams without spontaneous-emission noise
(βsp = 0 s−1). The synchronization diagrams present the evolutions of (Im1 (t), Is1(t−
∆τ1)) in (a), (Im2 (t), Is1(t−∆τ1)) in (b), (Im1 (t), Is2(t−∆τ2)) in (c), and (Im2 (t), Is2(t−
∆τ2)) in (d). The numerical values are Jm1 = Js1 = 2.75Jth, J

m
2 = Js2 = 2.5Jth,

and ηm11 = ηc11 = 10 GHz, ηm22 = ηc22 = 15 GHz, ηm12 = ηm21 = ηc12 = ηc21 =
√
ηm1 η

m
2 ,

and τm11 = 1 ns, τm22 = 4 ns, τ c11 = 1 ns and τ c22 = 4 ns. The internal parameters
are taken different for each pair : αm,s1 = 5, αm,s2 = 4, τm,sp1 = 2 ps, τm,sp2 = 1 ps,
γm,ss1 = 2 ns, γm,ss2 = 1 ns, εm,s1 = 5 × 10−7, εm,s2 = 2.5 × 10−7, gm,s1 = 1.5 × 10−4 s−1,
gm,s2 = 1× 10−4 s−1, Nm,s

01 = 1.5× 108, Nm,s
02 = 2× 108.

Mk/Sk. Figure 43 shows, in the case of two pairs of lasers, the optical spectrum

of each master field
√
ηm11E

m
1 (t) and

√
ηm22E

m
2 (t) and the formal multiplexed signal

ET (t). The bandwidth is defined as the spectral width 20 dB below the maximum

value of the optical spectrum. Under these conditions, the total bandwidth occupied

by the multiplexed field ET is comparable to the bandwidth of a single chaotic optical

field. Taking numerical values similar to those used for Fig. 42, the bandwidths are

∆fET ≈ ∆fEm1 ≈ ∆fEm2 ≈ 25 GHz. This means that for one data stream encoded

per laser, potentially twice the amount of information per Hz could be conveyed in a

single optical channel.
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Figure 43: Theoretical optical spectra in the case of two pairs of lasers. The spectra of√
ηm11E

m
1 (t),

√
ηm22E

m
2 (t), and ET (t) are plotted. The parameters are assumed identical

to those used for Fig. 42. The inset shows the free-running optical spectrum of each
laser (no coupling considered). The spectra are numerically computed with Welch’s
method.

5.4.4 Discussion on the Influence of Parameters on the Stability of Chaos
Synchronization

The necessary conditions for the existence of chaos synchronization between external-

cavity semiconductor lasers exhibited in the previous subsection do not guarantee the

stability of the synchronization manifold. As far as ECSLs are concerned, the value

of the operational and coupling parameters in this regard are of fundamental impor-

tance as detailed in [119, 120, 160]. The particular form of the semiclassical model

described by Eqs. 108-110 requires a numerical investigation of sufficient conditions

for stability. Under the necessary conditions of synchronization for a single pair of

ECSL, it is assumed that the master and slave are identical and driven under similar

conditions. The synchronization properties depend on the pumping current Jm and

the feedback strength ηm (the coupling strength is ηc = ηm, according to the neces-

sary conditions). The plane (Jm, ηm) is therefore a privileged 2D parametric plane to

analyze the stability and quality of complete chaos synchronization. In our context,

however, it becomes much more complicated. Assuming the necessary conditions of

the APD configuration are fulfilled, there is still a 4D parameter space to investigate:

(Jm1 , J
m
2 , η

m
11, η

m
22). In this chapter, we will not give a fully detailed picture of the

synchronization regions, but general tendencies on the parameter range that ensure a
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stable synchronization manifold. We consider a completely symmetric case in terms

of the feedback strength (ηm11 = ηm22) and cavity length (∆τm12 = 0), where only the

pumping currents are varying at various levels of feedback strength. The quality of

synchronization is measured by the correlation coefficient

Ckk (θ) =
〈[Imk (t− θ)− 〈Imk (t)〉] [Isk(t)− 〈Isk(t)〉]〉〈

[Imk (t− θ)− 〈Imk 〉]
2〉1/2 〈

[Isk(t− θ)− 〈Isk〉]
2〉1/2

, (128)

with Im,sk = |Em,s
k |2 the optical intensity and θ = ∆τk corresponding to the maximum

correlation between Mk/Sk.

Figure 44 displays the evolution of cross-correlation of two pairs of lasers in the

plane (Jm1 /Jth,1, J
m
2 /Jth,2) [with Jth,1/2 the threshold currents of each laser pair] for

increasing levels of feedback; each row corresponds to a pair of lasers.

Figure 44 reveals that the synchronization of chaos is stable for a large range of

operational parameters; it also highlights the existence of mixed regimes, where only

one of the two pairs of lasers is synchronized whereas the other is weakly correlated.

Figure 44: Evolution of the cross-correlation coefficients C11(∆τ1) (1st row) and
C22(∆τ2) (2nd row) in the plane (Jm1 /Jth,1, J

m
2 /Jth,2) for increasing values of the feed-

back strength ηm11,22 (coupling strength) in a symmetric-coupling configuration: (a)
ηm11 = ηm22 = 5 GHz, (b) ηm11 = ηm22 = 10 GHz, (c) ηm11 = ηm22 = 12.5 GHz, and (d)
ηm11 = ηm22 = 15 GHz. The internal parameters of the EELs are identical to those used
for Fig. 42.
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Interestingly, when the feedback is increased symmetrically for both masters (the cou-

pling being adjusted accordingly), the zone of weak correlation shrinks dramatically

for each pair. The analysis provides insight into the evolution of the general behavior

of the synchronization region as the feedback strengths and pumping currents are

increased. Figure 44 also differs from most of the plots presented in [119, 120, 160],

because the necessary conditions (ηmkk = ηckk) are always satisfied in our simulations.

This is why a large region of the parameter plane exhibits a maximum level of cor-

relation (C11(∆τ1) ≈ C22(∆τ2) ≈ 1). This study remains nonexhaustive, since the

investigation is limited to particular 2D intersections of the 4D parametric plane.

Still, it confirms that the existence of multiplexed synchronized states is not a behav-

ioral artefact of the architecture’s dynamics and that it does exist in a large region

of operational parameters. As a consequence, it should be relatively easy to observe

demultiplexed synchronization experimentally.

Finally, it is worth mentioning that interest in our architecture also relies on the

freedom in the choice of internal parameters for the various master lasers. As long

as systems within a given pair Mk/Sk are physical twins, a complete freedom in the

choice of the type of lasers is allowed. It is even possible to consider frequency detuned

masters (free-running frequencies ωm0i 6= ωm0j for i 6= j) although for spectral-efficiency

purposes the frequencies should be close to each other.

5.4.5 Robustness of Synchronization

In this subsection, we quantify the robustness of the synchronization with respect to

two major impairments: noise and parameter mismatch. Essentially, the results show

that the robustness is similar to that of the complete synchronization of a single-

master/single-slave configuration.
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5.4.5.1 Influence of Spontaneous-Emission Noise

In the previous subsection, perfect synchronization was observed for both pairs of

lasers Mk/Sk. However, the model did not take into account the existence of the

intrinsic noise source due to spontaneous emission. In this subsection, we consider

that the spontaneous-emission rate has the numerical value βsp = 1000 s−1, typi-

cally encountered in the literature [16]. Figure 45 represents the synchronization

diagrams (Im,sk , Im,sj ) with k, j = {1, 2}. The introduction of noise destroys the per-

fect synchronization observed in Fig. 42 since now C11(∆τ1) ≈ C22(∆τ2) ≈ 0.97, but

the trajectories in the plane (Imk , I
s
k) remain relatively close to the noiseless synchro-

nization manifolds [Figs. 45(a)-(b)]. These correlation levels are suitable to ensure

chaos-based communications with a level of performance comparable to single-user

architectures: fast transmissions with low bit-error rates (Gbit/s with BER lower

than 10−7 [9]).

Figure 45: Robustness of the synchronization with respect to the presence of intrinsic
noise (spontaneous emission βsp = 1000 s−1) in the case of two pairs of lasers. The
parameters are identical to those used for Fig. 42.

The level of decorrelation between the two different pairs remains small and is

barely affected [C12(∆τ1 − ∆τ2) ≈ 0.07] by the presence of spontaneous-emission

noise.
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5.4.5.2 Influence of Parameter Mismatch

We determine that perfect synchronization remains robust to parameter mismatch

between lasers in a given pair Mk/Sk, if the mismatch levels are comparable to those

encountered in a single-emitter/single-receiver laser configuration. This is highlighted

in Fig. 46. Additionally, it must be noted that our APD-based coupling configuration

does not limit the amount of mismatch between two different pairs (so long as they

remain in chaotic regimes).

Figure 46: Robustness of the synchronization with respect to parameter mismatch
in the case of two lasers, illustration of the pair M2/S2. The error of synchroniza-
tion e(%) = |Is2 − Im2 |/|Im2 | is function of (a) the influence of the laser’s internal
parameters and (b) the influence of the external parameters (pumping current and
injection/coupling strengths). The parameters are identical to those used for Fig. 42.

5.4.6 Generalization of the Architecture

As an illustration, the case of two laser pairs has been presented, but it is possible

to generalize our architecture to a larger number of lasers. As many units as desired

can be introduced through the use of additional beam splitters as illustrated in Fig.

47.

The necessary conditions for synchronization remain unchanged when the number
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of users increases. Interestingly, the overall energy carried by the multiplexed optical

field ET (t) increases in the shared cavity with the number of lasers; master and slave

Mk/Sk in each pair will be coupled more strongly. Therefore, it is expected that

the size of the parameter region that ensures synchronization will increase with the

number of lasers. For instance, the pumping currents region {Jmk }k=1,...n that ensures

the various pairs of lasers to be synchronized would become larger at given coupling

strengths. We have numerically verified this assumption by doubling the number

of pairs (n = 4). Assuming a configuration with symmetric couplings (similar to

Fig. 44), we find that for ηkk = 7.5 GHz (j = k, . . . , 4) smaller pumping currents

(Jmk /Jth,k ∈ [1.1, 1.25]) can be used to ensure the chaos synchronization of the different

pairs of lasers, although such a range of values did not work when two pairs of

lasers were considered. In terms of robustness, an increase in the number of units

is not fundamentally limited by parameter mismatch. As illustrated in the previous

subsection, parameter mismatch matters only within a given pair. The robustness

to spontaneous-emission noise has also been demonstrated with four pairs of lasers.

If the amount of noise in the overall architecture increases, so does the amplitude of

the multiplexed field ET (t). As a consequence, we still achieve good levels of chaos

synchronization between the masters and slaves of the various pairs of lasers.

Figure 47: Possible generalization of our multiplexed architecture with a larger num-
ber of lasers. They share the cavity thanks to additional beam-splitters. LD: laser
diode (labeled Mj and Sj for the masters and slaves, respectively), CS: current source,
Mr,Mrf : mirrors, VAj,m/s: variable attenuators, BS: 50/50 beam splitter, OI: optical
isolator, OC: optical coupler, Mod: amplitude/ phase modulator.
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However, it requires the use of larger coupling strengths to achieve a high level of

correlation compared to the case with two pairs. For instance, with n = 4, a symmet-

ric coupling configuration, and a range of pumping current Jmk /Jth,k ∈ [1.45, 1.85], it

requires coupling strengths of ηkk = 20 GHz to achieve Ckk(∆τk) ≈ 0.92 (on average)

with the spontaneous-emission rate taken identical for the various lasers βsp = 1000

s−1.

This quick analysis highlights the potential of our architecture for multi-user com-

munications. Nevertheless, the synchronization properties should be thoroughly in-

vestigated to find the sets of parameters that guarantee the best level of performance.

An increasing number of lasers will also make the experimental realization of our setup

more difficult.

5.5 Multiplexing of Information

This study is a first inquiry into the design of a multiplexed optical chaos-based

transmission chain based on the use of multiple ECSLs. In this section, we describe

how information can be encrypted while exploiting our APD structure. We propose

a generalization of chaos-shift keying (CSK) and chaos modulation (CMo). The

messages will be either encrypted on the pumping currents for CSK, on the phase (or

amplitude) of each optical field composing the multiplexed field ET (t) for CMo.

We detail the extent to which multi-user CSK and CMo encryptions are suited

to our initial architecture. To reach this conclusion, we build on existing single-

user methods (CMa, CSK, and CMo), analyze if their generalization to a multi-user

transmission is possible, and determine their performance levels.

5.5.1 Multiplexed Optical Chaos Masking

Chaos masking (CMa) is a straightforward chaos-based encryption for single-message

transmission. With optical systems, it is realized through an optical addition of

uncoded binary message m(t) at the output of a chaotic ECSL [161, 162]. The
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decryption results from the perturbation induced on the chaos synchronization at the

receiving end. However, transmission of multiple messages appears to be impossible if

the messages have identical properties. For instance, a two-user CMa would imply the

optical addition of two uncoded messages m1(t)+m2(t) to the multiplexed optical field

at the output of the shared cavity, before its injection into the optical channel. The

main issue under these conditions is that part of the information on each message

is lost. For instance, if two binary messages are used by each user independently,

their sum results in four different levels labelled 00, 01, 10, and 11.1 These various

values allow for the recovery of m1 and m2 independently, except in the case {01, 10},

for which the indeterminacy cannot be removed. Furthermore, when the number of

units is increased, the number of bits that cannot be decoded increases accordingly.

For instance with three binary messages, it is only possible to make the distinction

between four levels out of eight: 000, 111, {001, 010, 100}, {011, 101, 110}. As a

consequence, CMa cannot be transposed to a multi-user context, if uncoded data are

used with our architecture.

5.5.2 Multiplexed Optical Chaos-Shift-Keying

Chaos-shift-keying (CSK) encryption is performed through the digital modulation of

the pumping current of each ECSL [164, 165, 166]. The multiplexed field carries

implicit information on each message. Every time the pumping current of the kth

master laser switches between one of its two levels {Jmk,0(t), Jmk,1(t)}, the optical field

Em
k (t) is associated with a different chaotic attractor. Figure 48 shows a possible

implementation of a CSK encryption method based on our original APD-based ar-

chitecture. As a consequence, the multiplexing field summing n optical fields results

1We suppose that each user is not aware of the presence of other users on the channel. If this is
the case, there exist advanced coding techniques used in the framework of the multiple-access binary
erasure channel to overcome such a limitation [7, 163]. In most of chaos-based communication
schemes, however, users transmit uncoded messages. As a consequence, CMa is here inadequate
compared to CSK or CMo, as illustrated below.
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Figure 48: Theoretical multiplexed chaos shift-keying scheme. The two lasers are
coupled in an APD fashion. Each master Mi is subjected to current Jmk,0/1 with
k = 1, 2. Only two receivers are used for the decryption; this corresponds to the case
of a linear decryption later described in this chapter. LD: laser diode (labeled Mk

and Sk for the masters and slaves, respectively), CS: current source, Mr,Mrf : mirrors,
VA1,VA2: variable attenuators, BS: 50/50 beam splitter, OI: optical isolator.

from 2n combinations of different chaotic attractors. For the decryption, 2n receivers

are used (the kth master is duplicated twice, each twin operating at Jmk,0 and Jmk,1,

respectively). Their outputs are summed to generate the 2n possible combinations.

The messages bits minimize the expression

{mi}i∈[[1,n]] = min
{Jsi }i∈[[1,n]]

|ET (t)|2 − |ED(t)|2 , (129)

with

ED(t) = ED(t, θ, σ, µ) =
n∑
j=1

√
ηmjje

iωs0j(θ+∆τsσj/2)+it∆ωµjσEs
j (t− θ−∆τ sσj/2). (130)

The squared amplitude of the field corresponds to the detection by a photodiode. The

main problem with this decryption approach would be its computational complex-

ity, which grows exponentially fast with the number n of users. Generating all the

different candidate fields ED(t) will rapidly become unrealistic from an experimental

point of view (because of the 2n possibilities). Our exponentially complex decryp-

tion transposes results on a two-user CSK approach with electronic systems [167] to

ECSLs. We propose another solution that consists of using a suboptimal decryption.
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We consider only n receivers (instead of 2n) set at one of the two pumping currents

{Jmi,0/1}i=1··· ,n used to encode the various messages. At slave laser Sk, Bobk monitors

either of the two currents (depending on the configuration we chose),

ID,k(t) ∝
(
|ET (t, τ ckk, k,m/s)|

2 − ηmkk |Es
k(t− τmkk)|

2) , (131)

ID,k(t) ∝
∣∣ET (t, τ ckk, k,m/s)−

√
ηmkke

iωs0kτ
m
kkEs

k(t− τmkk)
∣∣2 . (132)

In Eq. 131 two photodiodes are necessary per legitimate user Bobk, whereas in Eq.

132 only one photodiode is used. This latter technique, however, requires an optical

subtraction. To recover Alicek’s transmitted message, Bobk simply needs to compare

the average evolution of the current ID,k(t). Without loss of generality, we assume

that Sk is pumped with the current Jsk = Jmk,0 corresponding to the current used by the

master Mk to encode the bit of information 0. Every time master Mk encodes a 0, its

chaotic attractor coincides with that of Sk. Consequently, the contribution of optical

field Em
k will be cancelled out by Es

k, thus inducing a decrease in the average value

of the intensity ID,k. When a bit 1 is encoded, Mk and Sk are on different chaotic

attractors. The field Es
k contributes constructively to the total intensity ID,k(t) at

the detector and will have a higher average value compared to the previous case.

To illustrate this approach, we propose the encryption/decryption of two bit

streams m1(t) and m2(t). Figure 49 shows how to multiplex and demultiplex two

data streams at 500 Mbit/s. It appears that Eq. 131 achieves clearer decryption than

Eq. 132. In this approach, in the decryption of some bits, the differences in intensity

levels of ID,k are not sharp and may induce bit errors. Nevertheless, the complexity of

the decryption remains linear with the number of users. This makes such an approach

a realistic technique, when the number of lasers is increased.

The CSK method, however, has fundamental limitations. The first one is relative

to the bit rate, which is limited by the resynchronization time.

Every time the pumping current is switched, it takes a certain duration (few
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nanosecond in ECSLs, depending on the parameters used) for the system to jump

from a chaotic attractor and stabilize on another (time also associated to the re-

laxation oscillations of the free-running laser). The second limitation concerns the

choice of the message amplitude. In a linearly complex decryption, the amplitude

has to be large enough to guarantee the detectability of the encoded bits. This must

be done in a way that the values of pumping current ensure sufficiently high syn-

chronization levels in the pairs of laser Mk/Sk when the pumping currents Jmk and

Jsk matched each other. Otherwise, the discrimination between synchronized and

unsynchronized states, used in the decryption, would become inefficient. In our sim-

ulations and with our choice of parameters, the bit rate tops around 500 Mbit/s

with the pumping current modulation for the encryption satisfying the following ra-

tio Jm1,1/J
m
1,0 ≈ Jm2,1/J

m
2,0 ≈ 3/2. An increase of bit rate makes the linearly complex

decryption inefficient; the discrimination between two pumping levels is not observed

with the parameters under consideration, even with a large ratio Jmk,0/J
m
k,1.

To a certain extent, CSK has been successfully transposed to a multi-user context

with the main advantage of its structural simplicity.

Figure 49: Theoretical multiplexing/demultiplexing of two binary messages m1 and
m2 at 500 Mbit/s encoded on two pumping current levels for each laser diode Jm1/2 ∈
{Jm1/2,0, Jm1/2,1}. The intensity of each detector ID,k has been normalized with respect
to its maximum value. The blue and red dashed lines represent the original messages
encoded by Alice1 in (a) and by Alice2 in (b), on their respective laser M1 and M2.
The numerical values are similar to those used for Fig. 42.
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Nevertheless, its level of performance is limited.

5.5.3 Multiplexed Optical Chaos Modulation

In contrast to the previous approach, chaos modulation (CMo) aims at encoding

the messages such that they participate in the dynamics of each emitter Mk. As a

consequence, the encoding can be only performed on the amplitude or the phase of

the optical fields that couple the emitters together and inject the receivers. If done

properly, the encryption does not disturb the synchronization and the quality of the

decryption as well as the bit-rate can be enhanced, compared to CSK. Indeed in

the case of single emitter and a single receiver, CMo has already proven to be more

efficient than CSK [115]. However, even if it presents theoretical advantages, CMo

requires a modification of the multiplexed architecture presented in Fig. 41. The

inclusion of phase/amplitude modulators in the emitter’s shared optical cavity is not

straightforward because of the following reasons:

• The modulators would contaminate the optical fields of each master, and have

an averaging effect in the encoding information similar to that of the multiplexed

chaos masking.

• The modulation speed will be limited to that of the cavity length, since it is

necessary to wait for the multiplexed light field to make a complete round trip in

the shared cavity before the modulator switches its state, thus limiting the bit

rate in most situations. In the case of a single-emitter/single-receiver, a phase

modulator has been placed in the cavity and the so-called on-off phase-shift

keying (OOPSK) was derived [168]. It was praised for its relative security, but

the modulation speed was bounded at a hundred of Mbit/s where traditional

chaos-based encryption techniques reach multiple Gbit/s.

To solve this problem, we must design a structure based on the physical model

described by Eqs. 120, where the the kth data stream is encoded only onto the kth
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master optical field Em
k (t). A theoretical structure is proposed for two users in Fig.

50 (and is easily generalized to a larger number).

Figure 50: Theoretical multiplexed chaos modulation scheme. The two lasers are
coupled in an APD fashion. Each modulator is included to affect only its designated
field. LD: laser diode (labeled M1, M2 for the masters), CS: current source, Mr,Mrf :
mirrors, VA1,VA2: variable attenuators, BS: 50/50 beam splitter, OI: optical isolator,
OC: optical coupler, Mod: amplitude/ phase modulator.

Although, such a setup may be difficult to realize experimentally, it still gives us

a driving principle to make a multiplexed CMo with an encryption on the amplitude

or the phase of the optical field. The optical circulators introduced in the various

arms of the shared external cavity allow each message to be encoded only on single

master field Em
k .

The multiplexed field therefore reads

ET,CMo(t, θ, σ, µ) =
n∑
j=1

√
ηmjje

iωm0j(θ+∆τmσj/2)+it∆ωµjσ+ψm,j(t−θ−∆τmσj/2)

×(1 + am,j(t− θ −∆τmσj/2))Em
j (t− θ −∆τmσj/2),

(133)

with am,j(t) and ψm,j(t) the jth message encoded either on the amplitude or the phase

of the optical field Em
j , respectively.
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Under these conditions, the inclusion of the various messages does not disturb the

decryption process. With a multiplexed CMo, the masters do not switch between

different chaotic attractors, thus removing the limitations imposed by the resynchro-

nization time in the CSK approach. As a consequence, higher bit rates and quality

of chaos synchronization are achieved. In the case of chaotic lasers, the decryption

relies mostly on intensity measurements acquired by photodiodes. However with

multiplexed optical fields such as ET (t, θ, σ, µ), inevitable interferences between the

master fields Ek
m will render the decryption sightly more difficult. As in the case of the

multiplexed version of CSK, it is possible to design both exponentially and linearly

complex decryption approaches. We illustrate each by considering an encryption on

the phase.

5.5.3.1 Exponentially Complex Decryption Strategies

Without loss of generality, we consider the case of two pairs of lasers Mk/Sk coupled

as described in Fig. 50. Assuming a binary encryption on the phase of each master

field, there are four possible message combinations (also called states) labeled: 00,

01, 10, and 11. Each pair of lasers is completely synchronized, but the receiver has

no knowledge of the encrypted messages. To decrypt them, different combinations

of messages are formed at the receiver end to create candidate multiplexed fields

ED,b1b2∈{00,01,10,11}(t, θ, σ, µ). These fields will be then compared to the original multi-

plexed signal ET,CMo(t). When one of the combinations at the receiver matches that

of the emitter, then the difference is minimum, and it means that the state b1b2 with

bj = {0, 1} and j = {1, 2} (formally associated with the four possible combinations

made out of the two binary phased-encoded messages ψm1 and ψm2 ) was originally en-

coded at the emitter. The existence of such a minimum naturally leads to a decoding

method via threshold detection. In our example, if we consider a detector composed

of two photodiodes (to detect independently ET,CMo(t) and ED,b1b2(t) before being

132



subtracted, then the output of the detector is a current intensity). The intensity at

the output of this type of detector reads

ID,b1b2 ∝ ηm11(|Em
1 |2 − |Es

1|2) + ηm22(|Em
2 |2 − |Es

2(t)|2) + 2
√
ηm11η

m
22

×
(
|Em

1 E
m
2 | cos(ϕm1 + ψm1 − ϕm2 − ψm2 )− |Es

1E
s
2| cos(ϕs1 + ψm1,b1 − ϕ

s
2 − ψm2,b2)

)
,

(134)

with Em
1,2 = Em

1,2(t − ∆τ1,2), Es
1,2 = Es

1,2(t), and ψm1,2 ∈ {ψm1,0/1, ψm2,0/1} the binary

messages.1 Figure 51 reports a decryption scenario realized with identical parameters

to those used for Fig. 42.

Each row presents the output of a different detecting circuit ID,00, ID,01, ID,10, and

ID,11 (if two bits are encrypted, four detectors are necessary). When the intensity of a

given detector is minimum with respect to the others, it means that the corresponding

pair of bits was encoded at the emitter end. Assuming no noise in the transmission

and no parameter mismatch within a given pair of lasers, the messages’ retrieval is

error free.

The computational complexity (2n for a binary message and n users) of this de-

cryption method grows exponentially fast and will rapidly limit the number of users.

This has motivated the derivation of linearly complex decryption similar to what was

done for the CSK in the previous subsection.

Similar results to those of Fig. 51 can be achieved if the encryption is performed

on the optical field’s amplitude.

5.5.3.2 Linearly Complex Decryption Strategies

To overcome the computational limitations in terms of users, the recovery should

be performed independently on each message. We have derived decoding equations

1It is possible to consider another type of detection such as the balanced homodyne detection.
Before being independently detected, each multiplexed field recombines on a 50/50 beam splitter.
The decoding equations, however, are more complex.
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Figure 51: Theoretical multiplexing of two binary phased-encoded messages ψm1 and
ψm2 at 1 Gbit/s. The messages are jointly decrypted by four decoding circuits. The
recovery of the bits is given by b1b2 = min (ID,00, ID,01, ID,10, ID,11). The normalized
intensity are represented on each row. The parameters are identical to those used for
Fig. 42.
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similar to Eqs. 131-132, which can be used to recover the binary messages

ICMo
D,k ∝

∣∣∣ET (t, τ ckk, k,m/s)−
√
ηmkke

−jωs0kτ
m
kk+ψm

k,0/1(1 + amk,0/1)Es
k(t− τmkk)

∣∣∣2 , (135)

ICMo
D,k ∝ |ET (t, τ ckk, k,m/s)|

2 −
∣∣∣√ηmkke

−jωs0kτ
m
kk+ψm

k,0/1(1 + amk,0/1)Es
k(t− τmkk)

∣∣∣2 . (136)

These equations correspond to two different methods of detection. Equation 135

corresponds to an optical subtraction of the fields ET and Es
k followed by a detection

by a single photodiode. On the contrary, Eq. 136 uses two photodiodes; first each

optical field (ET and Es
k) is detected independently, then the two electrical currents

are subtracted. After numerical simulations, it appears that the first method gives

better results when the encoding is performed on the phase; the other detection

performs better on an amplitude encoding.

The detection is threshold-based, similar to the case of exponentially complex

decryption. For each laser Sk, the legitimate user Bobk chooses one fixed value of

phase ψmk (or amplitude amk ) among the interval {ψmk,0, ψmk,1} (or {amk,0, amk,1}). Every

time Alicek is transmitting the bit arbitrary chosen by Bobk, the average value of the

intensity at the kth detector (ID,k) will drop out, thus allowing for a particular user to

detect his data-stream. However, the detection is not as sharp as in the exponentially

complex case, since only a fraction of the multiplexed signal will be cancelled out.

As a consequence, the method appears not to be sufficiently sensitive to discrim-

inate multiple-level message (M-ary). In addition, the encoding range is intrinsically

limited either by the phase or amplitude; phase information can be encoded only

within the range [−π, π] and amplitude information has to remain small to ensure its

proper concealment in the optical chaotic carrier.

We present in Fig. 52 the transmission of two binary messages at 1 Gbit/s. The

output of each detector is represented by a solid line, whereas the original messages,

encoded on two difference phase levels {0, π}, are represented on the same figure in

dashed lines. The decryption is realized with Eq. 135.
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Figure 52: Theoretical multiplexing/demultiplexing of two binary phase-encoded
messages ψm1 and ψm2 at 1 Gbit/s. The intensity of each detector ID,k has been
normalized with respect to its maximum value. Ten decoded bits are represented.
The blue and red dashed lines represent the original messages encoded by Alice1 in
(a) and by Alice2 in (b), on their respective laser M1 and M2. The parameters are
identical to those used for Fig. 42.

The decryption of each message shows the sudden dropouts of the detectors’ in-

tensity when Alicek’s encoded bits ψmk,0/1 match the preset value (in our simulation

ψmk,0) used by Bobk. The level of intensity seems close to zero, but it is mainly a

scaling effect due to the normalization by the highest level of ID,k reached during the

whole transmission. The small variations at these low levels of intensity result from

the non-cancelled part that is still present in the detection.

5.6 Conclusion

In summary, we have analyzed the possibility of multiplexing multiple chaotic optical

fields generated by semiconductor lasers. We have theoretically devised an archi-

tecture based on a shared external cavity, which allows for the various lasers to be

globally mutually coupled. The multiplexed field obtained in the cavity results from

the superposition of the fields generated by the various lasers at the emitter. This

signal is then sent through a communication channel and injects slave lasers (physical

copies of the masters used at the emitter end) at the receiver end; this is an optical

analogue of an APD with multiple time-delay systems. We demonstrate that each
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pair master/slave can be chaotically synchronized when the necessary coupling condi-

tions, which naturally extend the single-emitter/single-receiver case, are satisfied. A

rapid analysis also shows a wide range of operational parameters (pumping currents

and coupling strengths) ensuring the stability of the chaos synchronization manifold

for each pair of lasers. The robustness of synchronization with respect to intrinsic

noise and parameter mismatch is similar to that of a single pair of lasers. Therefore,

the robustness is good enough to envisage the development of multiplexed optical

chaos-based communications.

Concerning the transmission aspects, we proposed extending the classical encryp-

tion techniques of CMa, CSK, and CMo to a multi-user context. It appears that only

CSK and CMo are adequate for the uncoded messages used. The multi-user CSK

approach consists of the digital modulation of the laser pumping currents between

two different levels to encrypt the messages. They are retrieved at the receiving end

using either low- or high-computational complexity decryption. The latter method

involves the use of multiple receivers (2× n with n users) and the computation of all

the possible combinations of signals at the receiver end that, when subtracted from

the multiplexed field, lead to minima. The complexity increases exponentially fast

with the number of users, thus limiting the number of messages that can be transmit-

ted and decoded. This has motivated the development of a decryption method with a

linear computational complexity; an identical number of emitters and receivers (with

identical sets of parameters to those of the emitters) is used. The multiplexed field

is compared individually to the various receivers’ fields and each message is retrieved

by a threshold-based detection. The complexity increases linearly with the number n

of users, but CSK is still limited to hundreds of Mbit/s per user due to perturbations

of the synchronization at the reception (intrinsically associated with the encryption).

The multi-user CMo approach consists of the independent modulation of each laser
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field’s amplitude or phase. It relies on identical decryption strategies to those de-

veloped for multi-user CSK. Nevertheless, transmissions at the Gbit/s data rates are

achieved. This paves the way towards highly efficient multiplexed optical chaos-based

communications.
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CHAPTER VI

MULTIPLEXING CHAOS USING OPTOELECTRONIC

OSCILLATORS

6.1 Abstract

This chapter is dedicated to the analysis and design of an optoelectronic device to

multiplex optical chaos and transmit multiple messages. The proposed architecture

is derived from an existing single-loop electro-optic oscillator (EOO). We use a sin-

gle chaotic optoelectronic oscillator with multiple delayed feedback loops to generate

multiple orthogonal optical carriers tailored for a secure multiplexed encryption of

several data streams with a decryption whose computational complexity increases

linearly with the number of users. Similar to code-division multiple access (CDMA)

in optical communications, chaotic signals generated by the Mach-Zehnder modulator

(present in each delayed feedback loop) are used as orthogonal spreading sequences

(codes) to transmit multiple messages. Chaos synchronization is then used to repro-

duce identical chaotic codes at the receiver’s end to be later used in a correlation-based

detector to recover the various messages independently. We apply numerically this

method and successfully decrypt multiple digital data streams at high bit rates (multi

Gbit/s).

This chapter is based on the following publication:

• D. Rontani, A. Locquet, M. Sciamanna, D.S. Citrin, and A. Uchida “Generation

of Orthogonal Codes with Chaotic Optical Systems”, Accepted for publication

in Optics Letters.
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6.2 Introduction

Chaos-based communications are spread-spectrum techniques that provide physical-

layer security but have low spectral efficiency, unless multiple data streams are en-

coded simultaneously. A possible solution consists of transposing the concept of

code-division multiple access (CDMA) with orthogonal carriers to the context of

chaos-based communications, using signals generated by chaotic optoelectronic de-

vices with identical structures. In conventional multi-user communications, CDMA

makes use of multiple fixed binary pseudo-random signals also called codes to spread

out the spectrum of various binary data streams, as illustrated in Fig. 53.

Figure 53: Illustration of the principles of CDMA on a binary sequence of bits of
period Tb which is spectrally spread by a fixed pseudo-random sequence of period
Ts < Tb.

Then, the spread data streams are recombined into a single signal and overlap

spectrally. To recover them, a correlation-based detector [26] is used at the receiver

assuming the fixed codes to be accessible. Though orthogonality (decorrelation) be-

tween each user’s code is not necessary, it is desirable as it guarantees for the decryp-

tion a linear computational complexity with the number of users (or messages).

Transposing the principles of CDMA to the context of chaos-based communica-

tions is naturally suggested by the spectral properties of the chaotic signals that can
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be considered as time-varying non-binary spreading sequences (time-varying codes)

because of their large bandwidth compared to that of the message to be transmitted.

In a single-user chaos-based cryptsystem, chaos synchronization is then used at the

receiver to reproduce the chaotic signal (spreading sequence) and recover the message.

Although chaos-based cryptography bares some similarities with a CDMA technique,

its adaptation to the transmission of multiple messages is difficult, mostly because

of the time-varying nature of the generated codes (continuously changing for every

bit of transmitted messages), which requires generating processes that permanently

guarantee orthogonality. This design constraint has already proven to be particularly

challenging, when multiple chaotic Lorenz systems with identical structure and vari-

ous set of parameters were used [24]. Indeed, the existence of general synchronization

(GS) between chaotic signals generated by each system was responsible for significant

cross-correlation levels. It was also proven that orthogonality was hardly achieved as

the number of chaotic Lorenz systems (or users) increases. To overcome this issue,

complexifying the emitters’ structure was necessary and a cascaded Lorenz structure

was proposed.

In this chapter, we propose to address the generation of orthogonal chaotic codes

by exploiting the statistical properties of chaotic signals generated by a modified ver-

sion of a single delayed electro-optic generator (EOO) [114, 100], ultimately aiming

at the simplest possible transposition of CDMA to the context of optical chaos-based

communications. Then, we devise strategies to encrypt and decrypt the various mes-

sages.

6.3 Description and Modeling of the Optoelectronic Oscil-
lator with Multiple Loops

In this section, we propose two different architectures based on an EOO with multiple

feedback loops that are suited for multi-user communications. The first one uses

multiple photodetectors and the second one uses a single photodetector, the latter
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being tailored for the transmission of information with an optical channel. We derive

the models associated to each configuration to determine the simplest architecture

that can be used to transpose CDMA.

6.3.1 Configuration (1) with Multiple Photo-Detectors

In Configuration (1), an EOO-based architecture with multiple delayed feedback loops

(each of them comprises its own photodetector) is proposed for the emitter (E). Fig-

ure 54 depicts a realization of the modified EOO with n = 2 feedback loops associated

with different cosine-square nonlinearities. It is composed of a monochromatic (wave-

length λ0 = 2π/ν0) CW semiconductor laser diode with optical power P0 divided in

the n separate arms, where the light is modulated by a Mach-Zehnder modulators

(MZj) with respective constant-valued rf and dc half-wave voltages Vπrfj and Vπdcj

and biased by voltage Vdcj . The optical signals travel through different optical fibers

DLj with fixed time delays Tj. Before being recombined, they are independently de-

tected by multiple photodetectors PDj (of efficiency S), one per optical arm. The

resulting electrical signals are combined into a single electrical multiplexed signal. It

is then amplified with gain G and filtered by a band-pass filter with low and high

cut-off frequencies fL and fH . The total attenuation of each loop is denoted gj < 1

and is obtained, for instance, by using a voltage divider Dj.

These two attenuations induce different frequencies of oscillation ωj for the cosine-

square nonlinearities1 because they reduce the electrical voltage V (t) before driving

the respective Mach-Zehnder modulator MZj.

The voltage output of the RF band-pass filter V (t) and its input Vin(t) (sum of

1The term frequency of oscillation ωi of the nonlinearity is interpreted as a frequency in the
following sense: with a simple delayed nonlinear feedback defined by f(x(t − T )) = β cos2(x(t −
T ) + ϕ0), when x(t − T ) varies by an amount of π/β the nonlinear function f oscillates once.
Consequently, by modifying the nonlinear function with the inclusion of an additional internal gain
ωj , the nonlinear function f(x(t− T )) = βj cos2(ωjx(t− T ) + ϕ0j) oscillates once if x(t− T ) varies
by an amount of π/βjωj . In this framework, we can either consider that the required amount of
variation for x(t−T ) is smaller (clearly a gain effect) or that the nonlinear function oscillates faster.
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Figure 54: Chaotic CDMA system used as the emitter (E) in a transmission chain.
As an illustration, a single optoelectronic oscillator with two feedback loops and two
photodetectors is presented. LD: laser diode, MZj=1,2: Mach-Zehnder modulator,
DLj=1,2: optical delay line, PDj=1,2: photodetector, RF: band-pass amplifier, Dj=1,2:
voltage divider ensuring reduction factor gj=1,2 < 1, mj=1,2: messages to be encrypted.

the voltage generated by the n photodetectors) are related by(
1 +

fL
fH

)
V (t) +

1

2πfH

dV (t)

dt
+ 2πfL

∫ t

t0

V (s)ds = GVin(t) = G
n∑
j=1

Vin,j(t). (137)

Following the filter (labeled RF in Fig. 54), each electric branch of the loop has a

specific voltage divider Dj that attenuates the voltage V (t) by the parameter gj < 1.

At the output of the j−th photodetector, the voltage Vin,j(t) = SGIs,j(t) with Is,j(t)

the optical intensity at the output of MZj. Adopting similar notations to those used

in [105], we derive a dimensionless dynamical model that reads

τ
dx

dt
+ x+

1

θ

∫ t

t0

x (u) du =
n∑
j=1

βj cos2
(
ωjxTj + ϕ0i

)
, (138)

with x(t) = g1
πV (t)
2Vπrf1

the dimensionless state variable, xTi = x(t − Ti) the delayed

variable, ωj =
gjVπrf1

g1Vπrfj
the frequency of oscillation of the jth nonlinearity, βj = g1

πGSPj
2Vπrf1

the nonlinear gain of the jth loop, and ϕ0j =
πVdcj
2Vπdcj

the phase-shift associated to the

dc bias of the MZj. The multiplexed signal s(t) =
∑n

j=1 βj cos2
(
ωjxTj + ϕ0j

)
will

be transmitted into an electrical communication channel. Without loss of generality,

we have chosen to use V1(t), the voltage applied to the RF electrode of modulator

MZ1 and its associated reduction factor g1, as references to derive the dimensionless

model.
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Interestingly, this design prevents the creation of interferences during the de-

tection. The total feedback signal s(t) is the sum of the feedback signals sj(t) =

βj cos2(ωjxTj + ϕ0j). These signals, assuming they satisfy adequate statistical prop-

erties, are natural candidates for the chaotic codes that will simultaneously carry the

various data streams. However, the architecture is inadequate for an application in

optical networks because the multiplexed signal is electrical. To circumvent this issue,

the feedback signal have to be optically combined before being detected, as described

below.

6.3.2 Configuration (2) with a Single Photodetector

In this subsection, we propose a solution to overcome the main drawback of the previ-

ous architecture: the electrical nature of the multiplexed signal s(t) to be transmitted.

The solution consists of a recombination of the optical fields from the various feed-

back loops before being detected by a single photodetector; the multiplexed signal

is optical and couples both the emitter and receiver. The physics associated to the

detection of multiple optical fields may under certain conditions lead to the creation

of interference1, which is not desirable for communication purposes. We propose

two configurations (2a) and (2b) that use an optical multiplexed signal and are both

described in Fig. 55.

In Configuration (2a), a single monochromatic light source is used (or multiple

light sources with identical wavelength λ0 = 2π/ν0 if additional optical power is nec-

essary to power the architecture). As previously, each loop contains a Mach-Zehnder

1Recall on interference on a photodetector. If two optical fields E1e
iφ1−iω1t and E2e

iφ2−iω2t

are summed, their photodetection reads

ID ∝ |E1|2〈cos2(ω1t)〉τd + |E2|2〈cos2(ω2t)〉τd + 2E1 ·E2〈cos(ω1t− φ1) cos(ω2t− φ2)〉τd , (139)

with 〈·〉τd the time-average operator performed on duration τd the integration time of the pho-
todetector. The observation of interference requires three conditions: 1) the use of identical light
sources (same optical frequency) or with different optical frequencies but with the following con-
dition |ν1 − ν2| � 1/τd, 2) a strong temporal coherence of the light sources, 3) the use of parallel
polarization (optical field with orthogonal polarization do not interfere).
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Figure 55: Chaotic CDMA systems used for the emitter (E). A single optoelectronic
oscillator with two feedback loops and a single photodetector is used as an illustration.
In configuration (a), the polarizations of the optical fields are rotated to minimize in-
terference between the different optical arms powered by a single monochromatic
source (λ0 = 2π/ν0). In configuration (b), multiple monochromatic sources oper-
ating at different wavelength (λj = 2π/νj) are used to prevent interferences on the
photodetector. LD: laser diode, MZj=1,2: Mach-Zehnder modulator, DLj=1,2: optical
delay line, PCj=1,2: polarization rotator, OC: optical coupler, PD: photodetector,
RF: band-pass amplifier, Dj=1,2: voltage divider ensuring reduction factor gj=1,2 < 1,
mj=1,2: messages to be encrypted.

modulator MZj, an optical delay line DLj which delay the jth optical field by Tj.

A polarization controller PCj is added to the different loop to choose polarization

direction of the jth electromagnetic field Eje
iφj−2πνjt to possibly minimize the inter-

ference, their complete avoidance being impossible as soon as the number of loops is

greater than two. Configuration (2b), however, uses either multiple laser diodes with

different wavelengths λj = 2π/νj (with sufficiently large frequency detuning) or mul-

tiple incoherent laser diodes with identical wavelength λ0 to prevent the appearance

of interferences.

The use of a single photodetector impacts the derivation of the mathematical

model for our architecture. The feedback signal will undergo significant changes with
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the appearance of potential interference terms (depending on the configuration (2a)

or (2b) and the number of loops). First, we give an expression for the jth electric

field at the output of MZj; it reads

Ej,out(t) = Ej cos

(
πVj(t− Tj)

2VπRFj
+
πVDCj
2VπDCj

)
eiφj−2πνjt, (140)

with Vj(t) referring to as the amplified voltage applied to the RF electrode of MZj.

Assuming that the n optical fields interfere when detected by the single photodetector,

the intensity Is(t) at the output of the photodetector reads

Is(t) =
n∑
j=1

|Ej|2〈cos(2πνjt)〉τd cos2

(
πVj,Tj
2Vπrfj

+
πVdcj
2Vπdcj

)

+
n∑

j,k=1,j 6=k

Ej · Ek cos

(
πVj,Tj
2Vπrfj

+
πVdcj
2Vπdcj

)
cos

(
πVk,τk
2Vπrfk

+
πVdck
2Vπdck

)
× 〈cos(φj − 2πνjt) cos(φk − 2πνkt)〉τd ,

(141)

with τd the integration time of the photodetector. During τd, we have

〈cos2(2πνjt)〉τd = 1/2, (142)

〈cos(φj − 2πνjt) cos(φk − 2πνkt)〉τd =


cos (φj − φk) if νj = νk = ν0,

0 otherwise.

(143)

We denote the optical power associated to the jth optical field by Pj = |Ej|2/2 and

the factor Cij = cos(αj − αk) cos(φj − φk), with αj the polarization direction of the

jth linearly-polarized optical field with a reference direction. In Configuration (2a),

interference appears and the dynamical model will have an additional component in

its feedback term by comparison with Configurations (1) and (2b).

Therefore, we can derive its model

τ
dx

dt
+ x+

1

θ

∫ t

t

x(u)du =
n∑
j=1

βj cos2(ωjx (t− Tj) + ϕ0j)

+
n∑

j,k=1

√
βjβkCjk cos

(
ωjxTj + ϕ0j

)
cos (ωkxTk + ϕ0k) .

(144)
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As detailed previously, interference is inseparable from a detection by a single detector

of multiple fields with similar properties (wavelength and polarization detection).

Indeed, if more than two feedback loops are considered, it would require for the various

polarization directions between the coherent light beams to satisfy simultaneously

αj−αk = π/2 (modπ) j, k ∈ {1, n}. This would be equivalent to guarantee the linear

independence of a set of n vectors in a two-dimensional space, which is impossible.

Configuration (2b) has a similar model to that of Configuration (1) because the

various wavelengths prevent the existence of interference. However, if the adimen-

sional models are identical, Configuration (2b) has the spectrum of the multiplexed

signal s(t) defined over multiple wavelengths. This makes Configuration (2b) similar

to a WDM architecture, which is not a major drawback except for security reasons.

Indeed, the multiplexing operation being only realized at the RF level, an eavesdrop-

per could devise a spectral attack for which each optical component of s(t) could be

independently attacked thanks to the use of frequency filters. Nevertheless, Configu-

ration (1) and (2b) are of great interest to determine the potential of such multiloop

architectures for multiplexing purposes. Towards this end, we will start by analyzing

the statistical properties of the multiplexed signal s(t) and the existence of orthogo-

nality between its components sj(t), a desired properties to ensure simple decryption

strategies.

6.4 Statistical Properties

In this section, we will analyze from a theoretical and a numerical point of view

the properties of an EOO with a single and multiple delayed feedback loops. The

statistical and spectral properties of the multiplexed signal s(t), the state variable of

the system, and the existence of orthogonality between components sj(t) are detailed.

Before, analyzing the case of multiple loops, we recall known properties of single-loop

EOO and see how the theoretical framework of [5] may apply.
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6.4.1 Case of a Single Feedback Loop

Systems described by a delay-differential equation (DDE) with a single cosine-square

(or cosine) nonlinearity can generate high-dimensional chaos with Gaussian statistics

[114]. We propose in this subsection to recall the origins of such statistics (a question

thoroughly studied by Dorizzi et al. in [5]). They are linked to the fast oscillations of

the cosine-square feedback that destroy the internal correlations on short time scales.

Mathematically, the solution of the DDE can be represented under an integral form.

For instance with a WCG1, it reads

x (t) =

∫ t

t0

e
−u
τ
β

τ
sin2(x(t− u− T ) + ϕ0)du. (145)

In this functional relation, x(t − T ) becomes less correlated to x(t) as the feedback

function oscillates and when the delay T is large. In this particular situation, the

feedback is often referred to as a “random-like driving force”. Indeed, the feedback

function f : x(t)→ β sin2(x(t) + ϕ0) has fast variations such that its values remains

correlated only during a single oscillation of f , corresponding to the time for which

x(t) varies from an amount πτ/β. The integral solution and the concept of oscillations

of function f are shown in Fig. 56(a). It also unveils inhomogeneities in the width

of the oscillations, which are due to the irregular variations of x(t). We denote

εk = [tk, tk+1] the length of the kth oscillation. For large values of the nonlinear gain

β, the duration of these oscillations becomes smaller and satisfies |εk| � 1. This

allows Eq. 145 to be rewritten with the approximation

x(t) ≈
∞∑
k=0

e−
tk
τ Xk(t) with Xk(t) =

∫ tk+1

tk

β

τ
sin2 (x(t− u− T ) + ϕ0) du. (146)

The processes Xk(t) are considered approximately independent and identically dis-

tributed (iid). The durations εk are supposed to be approximately equal to an aver-

age value ε (both are reasonable assumptions when β is large). It was proven that a

1The WCG is described by an Ikeda-like equation τ ẋ+ x = β sin2(x(t− T ) + ϕ0).
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modified version of the Central-Limit Theorem could be used to prove that x(t) has

Gaussian statistics1 [5].

Figure 56: Interpretation of the integral solution of (a) a delay differential equation
describing a WCG (adapted from [5]) and (b) an integro-delay differential equation
of an ICG, in both case with a single feedback loop and a cosine-square nonlinearity.
A variation of x(t − T ) of π/β achieved in the time interval εn is associated with
an oscillation of the feedback function. The sum of the gray and red shaded regions
represent x at time t for a WCG and an ICG, respectively.

To the extent of our knowledge, this theory has not been applied to an integro-

delay differential system. However, systems such as the ICG also exhibit Gaussian

statistics, which is a strong indication that similar mechanisms of destruction of

correlation may occur. Indeed, it is possible to give an integral representation for the

state variable x(t) of an ICG [169]

x (t) =

∫ t

t0

(
1

τ
e
−u
τ − 1

θ
e
−u
θ

)
β cos2(x(t− u− T ) + ϕ0)du, (147)

assuming the characteristic times linked by the following relationship θ � τ and

t � τ to neglect the transient evolution as in [169]. The integral representation of

1The state variable x(t) is a deterministic value. Nevertheless, it can be considered as stochastic
process for the sake of explaining its statistical properties.
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x(t), which is depicted in Fig. 56(b), presents remarkable similarities with that of the

WCG. By adopting similar notations, we can also consider the state variable x(t) to

be an infinite sum of independent stochastic processes:

x(t) ≈
∞∑
k=0

(
e−

tk
τ

τ
− e−

tk
θ

θ

)
Xk(t) with Xk(t) =

∫ tk+1

tk

β cos2(x(t− u− T ) + ϕ0)du.

(148)

The application of a modified Central-Limit Theorem under similar assumptions to

those used in [5] will also lead to the generation of Gaussian statistics. This has been

observed both numerically and experimentally.

6.4.2 Case of Multiple Feedback Loops

In our context, the addition of multiple loops is associated with the use of cosine-

square nonlinearities with different frequencies of oscillation ωj, phase shifts ϕ0j, and

time delays Tj (j = 1, . . . , n). In this subsection, we propose to address the question

of statistical properties from a qualitative point of view. In the case of configurations

(1) and (2) highlighted in the previous section, the nonlinear feedback is composed

of a sum of cosine-square functions with possibly cross-product of cosine functions

if interference exists in the system. Contrary to the case of single-loop systems, the

feedback function is not necessarily periodic1 but it still presents fast oscillations.

The destruction of the correlation is realized at multiple time-scales, when the cosine

square functions have different frequencies ωj. As an illustration, we consider a feed-

back without interference s(t) =
∑n

j=1 βj cos2(ωjx(t− Tj) + ϕ0j) and identical time

delays (Tj = T for all j). Assuming the product of frequencies and nonlinear gains are

ordered ω1β1 > · · · > ωnβn, when x(t− T ) varies from an amount π/ω1β1, the func-

tion β cos2(ω1x(t− T ) + ϕ01) oscillates once, thus destroying the correlation existing

between x(t) and x(t−T ). Meanwhile, the other nonlinear functions oscillate
⌊
ωjβj
ω1β1

⌋
times, destroying at finer time scales the existing correlations. Consequently, if we

1The sum of two periodic function does not result in a periodic function.
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consider time intervals εk = [tk, tk+1] (k ∈ N) for which x(t) varies from π/βω1, then

the processes Xk(t) =
∫ tk+1

tk
s(t− u)du can be considered statistically independent.

Figure 57: (a)-(b) Time series of x(t), (c)-(d) probability density function of x(t)
(gray solid line) with a variance and the corresponding theoretical Gaussian distribu-
tion with identical mean and variance (red solid line), in the case of an EOO in Con-
figuration (1) or (2b) with two feedback loops without interference (a)-(b) and with
four feedback loops with interference (c)-(d). In (a)-(b), parameters are τ = 25 ps,
θ = 5 µs, T1 = T2 = 30 ns, βi|i=1,2 = 5, ϕ0i|i=1,2 = −π/4, ω2 = 2ω1 = 2, and time step
∆t = 5 ps. In (c)-(d), parameters are τ = 25 ps, θ = 5 µs, Tj = 30 + 15(j − 1) ns,
βj = 5, ϕ0j = −π/4, ωj = 1 + 2(j − 1), Cij = cos((i− j)π

4
) with i 6= j = 1, . . . , 4.

An equation similar to Eq. 148 can be used to theoretically guarantee the ex-

istence of Gaussian statistics for systems with multiple loops. When multiple time

delays are considered, a similar approach can be used as well. The nonlinear feedback

function under consideration still acts similar to a random-like driving force, when

the nonlinear gains βj are sufficiently large. Figure 57 shows this property with two

nonlinearities. Numerical simulations confirm the first theoretical conjectures; they

reveal a time series [Fig. 57(a)] with an approximately Gaussian probability density

function (pdf) for x(t) [Fig. 57(b)] in the case of an EOO with two feedback loops

and no interference. When interference exists in the feedback, its oscillating proper-

ties qualitatively change (the modified Central-Limit theorem cannot be rigorously
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applied anymore), thus inducing distribution with an imperfect Gaussian shape, es-

pecially if the number of loops and the values of βj and ωj are not large enough.

Nevertheless, it is still possible to ensure approximate Gaussian statistics, as plotted

in Fig. 57(c)-(d), in which we have simulated Configuration (2a) with four feedback

loops and interference.

Next, we investigate the internal correlations existing within x(t) and s(t) in

the case without interference with two feedback loops (T1 = T2, and β1 = β2).

We define their normalized autocovariance functions by ρxx(u) = Γxx(u)/Γxx(0) =

〈(x(t) − 〈x〉)(x(t + u) − 〈x〉)〉/〈(x(t) − 〈x〉)2〉 and ρss(u) = Γss(u)/Γss(0) = 〈(s(t) −

〈s〉)(s(t+u)−〈s〉)〉/〈(s(t)−〈s〉)2〉 where 〈·〉 denotes the time average. The normalized

autocovariance ρxx(u) decreases exponentially fast [Fig. 58(c)] as a consequence of

x(t) being a filtered version of s(t). It also reveals typical correlation revivals at lags

equal to multiple of the time delay T (because of the values of β we used), see Fig.

58(a).

Figure 58: Normalized autocovariance functions ρxx and ρss of x(t) in (a) and s(t) in
(b), respectively. A zoom of their behavior in the vicinity of the zero lag is provided in
(c) and (d), respectively. The parameters for the simulation are τ = 25 ps, θ = 5 µs,
T1 = T2 = 30 ns, βi|i=1,2 = 5, ϕ0i|i=1,2 = −π/4, ω2 = 2ω1 = 2, and time step
∆t = 5 ps.
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The multiplexed signal s(t) looses its memory faster than x(t) and may be consid-

ered approximately white, ρss(u) going to zero in approximately 25 ps and remaining

totally flat except for the lag u = 0 [see Fig. 58(b)] and the associated zoom [see Fig.

58(d)].

These results demonstrate that an EOO with multiple delayed cosine-square feed-

back nonlinearities with different frequencies of oscillation bares similar statistical and

spectral features to those of an EOO with a single delayed feedback, especially when

no interference exists in the feedback term. These properties will be later exploited

for the derivation of signals to carry the digital messages associated with the various

users Alicej (j = 1, . . . , n).

6.5 Orthogonality

Orthogonality is studied between the various components comprising the multiplexed

signal s(t), which will be used as chaotic codes for the transmission of messages. In

this section, we restrict ourselves to a feedback signal without interference, such as

in Configurations (1) and (2b). Each code is an optical signal that propagates in its

optical loop and is defined by sj(t) = βj cos2(ωjxT +ϕ0j) (j = 1, . . . , n). To guarantee

a reasonable level of security, we consider that all these codes have approximately the

same variance, which consists of using identical nonlinear gains (βj = β). Indeed,

with identical variance for the codes, we prevent a potential eavesdropper to identify

the presence of multiple carriers in the multiplexed signal s(t). We propose to employ

these chaotic codes to transmit multiple messages. Our approach will be similar to

CDMA except that the codes are time-dependent chaotic waveforms that change for

every transmitted bit (or symbol) of duration Tb. Furthermore, to ensure a linear

computational complexity for the decryption, the generated chaotic codes have to be

orthogonal at all times. In this section, we provide analytical and numerical insight

on this issue before devising strategies of encryption and decryption.
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6.5.1 Analytical Results

We make the assumption that the state variable of the EOO with multiple feedback

is a Gaussian random variable.1 We consider that the length or duration of the

code Tb is such that it is possible to assimilate the calculations over an infinite time

duration with those on Tb. We consider two codes si(t) = β cos2(ωix(t − Ti) + ϕ0i)

and sj(t) = β cos2(ωjx(t−Tj)+ϕ0j). Our objective is to calculate the crosscovariance

between them. The crosscovariance is defined as

Γsisj = (si(t)− 〈si〉) (sj(t)− 〈si〉) , (149)

= 〈si(t)sj(t)〉 − 〈si〉 〈sj〉 , (150)

with Γsisj = Γsisj(0). From Section 6.4, we assume that x(t) is purely Gaussian at

every time scale with mean mx = 0 and variance σ2
x. We define its characteristic

function:

ψx(u) = eimxu−1/2σ2
xu

2

. (151)

By stationarity of the process x(t), the variable xTi = x(t−Ti) and x(t) will have the

same statistical properties.

We evaluate first 〈si〉:

〈si〉 =
〈
β cos2 (ωixTi + ϕ0i)

〉
,

(a)
=

〈
β

2
(1 + cos (2ωixTi + 2ϕ0i)

〉
,

(b)
=

β

2
+
β

2
E (cos (2ωixTi + 2ϕ0i)) ,

(c)
=

β

2
+
β

2
Re
(
ψx(2ωi)e

i2ϕ0i
)
,

〈si〉 =
β

2

(
1 + cos 2ϕ0ie

−2σ2
xω

2
i

)
. (152)

(a) comes from the power reduction formula: cos2(x) = 1/2(1 + cos(2x)); (b) comes

1The state variable is a deterministic quantity with respect to our physical model. However,
in a first approximation it is considered as a random variable for the analytical calculations to be
tractable.
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from the ergodicity of x(t) (or x(t−Ti)) and the linearity of the expectancy operator

E(·); (c) comes from the characteristic function ψx(u) of a random variable.

We consider the least favorable case for the decorrelation of the chaotic codes,

meaning Ti = Tj = T for all i, j. Then, we calculate the analytical expression of

〈si(t), sj(t)〉 using 1D statistics:

〈si(t), sj(t)〉 = E (si(t)sj(t)) ,

= β2E
(
cos2(ωixTi + ϕ0i) cos2(ωjxTj + ϕ0j)

)
,

〈si(t), sj(t)〉 =
β2

8

(
cos(2ϕ0i + 2ϕ0j)e

−2(ωi+ωj)
2σ2
x + cos(2∆ϕ0ij)e

−2∆ω2
ijσ

2
x

)
,

+
β2

4

(
1 + cos 2ϕ0ie

−2ω2
i σ

2
x + cos 2ϕ0je

−2ω2
jσ

2
x

)
. (153)

The same steps to those of the derivation of 〈si〉 were used: ergodicity of x(t), power

reduction formula, trigonometric identities, and the linearity of E(·).

It is finally possible to derive the expression of the cross-covariance between two

different codes by combining the expressions of Eqs. 152 and 153. It reads:

Γsisj =
β2

8

(
1− e−4ωiωjσ

2
x

)
×(

cos(2∆ϕ0ij) + cos(2ϕ0i + 2ϕ0j)e
−4ωiωjσ

2
x

)
e−2∆ω2

ijσ
2
x . (154)

The analytical expression of the cross-covariance shows that

Γsisj ∼
∆ωij→∞

β2

8
cos 2∆ϕ0ije

−2∆ω2
ijσ

2
x , (155)

if we assume that all the parameters are fixed except for ∆ωij. As a consequence,

when the frequency detuning ∆ωij increases the correlation between two given chaotic

codes tends to decrease exponentially fast.

The nonlinear gain β appears explicitly as a multiplicative factor in Γsisj and

implicitly in the expression the variance σ2
x ∝ β2. (A parabolic dependence is observed

similar to [5]). By denoting cβ the proportionality coefficient, we end up with

Γsisj ∼
β→∞

β2

8
cos 2∆ϕ0ije

−2∆ω2
ijcββ

2

. (156)
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Since the increase (or decrease) of an exponential function is faster than any poly-

nomial function (limβ→∞ β
ne−β

2
= 0), hyperchaotic regimes generate by large values

of β also leads to better orthogonality between the chaotic codes at fixed detuning.

Another tunable parameter that can ensure orthogonality is the relative phase shift

∆ϕ0ij = ϕ0i − ϕ0j and respective phase of each chaotic code. They are involved

in the cross-covariance expression through the multiplicative factor cos(2∆ϕ0ij) +

cos(2ϕ0i + 2ϕ0j)e
−4ωiωjσ

2
x . It is possible to ensure perfect orthogonality between the

codes when each term in this sum is equal to zero, leading to ∆ϕ0ij = (2p + 1)π/4

and ϕ0i + ϕ0j = (2p+ 1)π/4 with p ∈ Z. This equalities can make only two codes to

be orthogonal, but it does not ensure orthogonality of a set of codes of arbitrary large

cardinality. Therefore, the phase shift ∆ϕ0ij is not the most an appropriate parameter

to ensure orthogonality compared to the detuning in frequencies of oscillation ∆ωij.

Finally, the duration Tb also plays a fundamental role in achieving orthogonality,

defined with cross-covariance measurements. Therefore, obtaining a soundable cross-

covariance estimation requires the two chaotic codes (si,sj) to fluctuate sufficiently

enough, in other terms Tb should be greater than several times the maximum decorre-

lation time of the two chaotic codes. In addition to that and because the chaotic codes

are both seeded by the same x(t), each code can exhibit different evolutions only if

x(t) also fluctuates sufficiently enough. Quantitatively, we have noticed that it is not

possible to rely on cross-covariance measurements if Tb is smaller than approximately

twice the decorrelation time of x(t).

In conclusion, this analytical study has demonstrated the existence of a particu-

lar set of parameters that guarantees the various codes sj(t) to be orthogonal with

each other, the role of the frequency detuning ∆ωij being crucial. In the following

subsection, we propose a numerical investigation to supports our theoretical findings.
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6.5.2 Numerical Results

The orthogonality is studied as a function of the frequency detuning ∆ωij = ωi − ωj,

the nonlinear gain β, the relative phase difference ∆ϕ0ij = ϕ0i − ϕ0j with a short bit

duration Tb. To numerically evaluate the orthogonality, we consider the normalized

cross-covariance coefficient

ρsisj = Γsisj/(ΓsisiΓsjsj)
1/2, (157)

calculated on a finite period Tb. To ensure that orthogonality exists for all times

with the time-varying codes, we repeat and average the cross-covariance measures

over 5000Tb. Figure 59 plots |ρsisj | for a bit duration Tb = 0.4 ns (the bit duration in

the OC-48 standard) in two different parameter planes (∆ωij, β) in Fig. 59(a), and

(∆ωij,∆ϕ0ij) in Fig. 59(b). Figure 59(a) maps |ρsisj | with ∆ϕ0ij = 0 and shows the

dependence of orthogonality on the nonlinear gain β. Indeed, the frequencies of os-

cillations of the nonlinear functions satisfy π/βωi,j, which makes the code correlated

Figure 59: Evolution of correlation coefficient ρsωisωj in parameter space (∆ωij, β)

in (a) and in (∆ωij,∆ϕ0ij) with β = 5, T = 30 ns in (b) for Tb = 0.4 ns. The results
are averaged over 5000Tb. The other parameters are identical to those of Fig. 57
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enough at weak values of β even if the detuning is significant. It also shows that or-

thogonality becomes almost perfect when the nonlinear gain is strong enough and the

detuning sufficiently large, as forecasted by the analytical results (calculated under

the assumption that Tb → ∞). However, when setting aside the frequency detuning

∆ωij, the relative phase shift ∆ϕ0ij could also be advantageously used to generate in-

dependent codes. That is why we mapped the evolution of |ρsisj | in (∆ωij,∆ϕ0ij) with

β = 5 to ensure a hyperchaotic regime. Figure 59(b) shows only four narrow zones of

orthogonality when ∆ωij = 0. They become wider as the detuning is increased and

ultimately lead to almost perfect orthogonality at any point of the parameter space

(∆ωij,∆ϕ0ij). At zero detuning, the cross-covariance between two different codes is

maximum for a phase shift ∆ϕ0ij = kπ/2, k ∈ N, leading to the striped zones. Their

existence is related to the construction of the codes that satisfy si|ωi,ϕ0i
= si|ωi,ϕ0i+kπ/2,

thus explaining the stripes at zero detuning. These two analyses confirm that one

of the most interesting parameter, which easily ensures orthogonality between two

arbitrary codes si(t) and sj(t), is the frequency detuning ∆ωij.

In conclusion, the numerical findings support the theoretical results highlighted

in the previous subsection. We have a guarantee that almost-perfect orthogonality is

achievable with the proper set of parameters even on short durations (Tb = 0.4 ns).

This makes the codes restricted to this time interval suitable carriers to be digitally

modulated and convey independently various messages. The strategies to encrypt

and decrypt information will be detailed in the next section.

6.6 Multiplexing of Information

In this section, we describe how messages can be encrypted and decrypted. A first

decryption strategy makes use of orthogonality and covariance measurements, then

we devise a decryption method based on covariance or least-square optimization,

when orthogonality is not satisfied but linear independence is still ensured between
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the various codes. These methods are tailor-made for Configurations (1) and (2b)

but inadequate if interference exists in the multiplexed feedback signal s(t). As a

consequence, we detailed how decryption could be achieved in Configuration (2a),

where interference constitutes a major challenge as they couple the square-roots of

the codes sj together.

6.6.1 Architecture & Chaos Synchronization

We consider two EOOs: an emitter (E) and a receiver (R) that are subjected to an

identical driving signal s(t), but delayed by the transmission time Tc in the case of R.

The equations of the chaotic transmission chain read

τ ẋE(t) + xE(t) +
1

θ

∫ t

t0

xE(s)ds = s(t), (158)

τ ẋR(t) + xR(t) +
1

θ

∫ t

t0

xR(s)ds = s(t− Tc). (159)

This transmission chain constitutes an active-passive decomposition (APD). The left-

hand sides of Eqs. 158-159 are typical of second-order damped oscillators. This

architecture is depicted in Fig. 60 for Configuration (2a) and two feedback loops.

Figure 60: Chaotic CDMA transmission chain using for the emitter (E) and receiver
(R) a single optoelectronic oscillator with two feedback loops and a single photode-
tector in the case of Configuration (2a). The structure of the decoding box depends
on the presence of interferences or not. LD: laser diode, MZj=1,2: Mach-Zehnder
modulator, DLj=1,2: optical delay line, λ/2: halfwavelength plate, OC: optical cou-
pler, PD: photodetector, RF: band-pass amplifier, Dj=1,2: voltage divider ensuring
reduction factor gj=1,2 < 1, mj=1,2: messages to be encrypted.
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By translating the time reference frame of (E) by Tc, the dynamics of the lagged-

synchronization error eTc(t) = y(t)− x(t− Tc) can be derived:

τ ėTc(t) + eTc(t) +
1

θ

∫ t

t0

eTc(s)ds = 0, (160)

and equivalently represented by the damped oscillator

ëTc(t) + 2λω0ėTc(t) + ω2
0eTc(t) = 0 with


2λω0 =

1

τ
,

ω2
0 =

1

θτ
.

(161)

This proves the asymptotic convergence to zero of the synchronization error and

guarantees chaos synchronization between (E) and (R) for any set of parameters.

This is of paramount importance to guarantee that the receiver can reproduce the

chaotic code and ultimately decrypt the various messages.

6.6.2 Encryption

To encrypt her message, each user Alicej (j ∈ [[1, N ]]) modulates digitally the non-

linear gain β of its associated code sj(t) during the time Tb. Typically, in secure

chaos-based communication, the modulation depth is taken small with respect to the

amplitude of the chaotic signal to prevent any direct recovery from the observation

of the multiplexed signal s(t). Moreover, in our there has to be an upper limit on the

modulation depth to preserve orthogonality and thus message decoding.

Mathematically, the digital data stream mj(t) is composed of a series of bits m
(k)
j ∈

{−1; 1} such that

mj(t) =
∞∑
k=0

m
(k)
j rect(t− kTb), (162)

with rect(t − kTb) = H(t − kTb) − H(t − (k + 1)Tb) and H the Heaviside function.

These messages are finally embedded in the multiplexed feedback signal s(t) that

becomes

s(t) =
n∑
j=1

βj(1 + δmj(t)) cos2 (ωjxT + ϕ0j), (163)
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with δ a multiplicative factor that satisfies |δ| � 1. In practice, this modulation can

be realized by the adjunction of an additional amplitude modulator in each optical

arm, between the CW laser source and the Mach-Zehnder modulator MZj.

The gain modulation of the codes, which have a very large bandwidth and linear

statistical independence or orthogonality (for a proper choice of parameters), is similar

to digital modulation and spread-spectrum techniques encountered in CDMA [26].

Consequently, analogous strategies of decryption based on covariance measurements

can be inferred in our context, as illustrated in the following subsection.

6.6.3 Decryption without Interferences

Various decryption approaches are presented in this section. They all exploit the sta-

tistical independence (partial or quasi-total) between the various chaotic codes sj(t)

composing the randomly multiplexed feedback term s(t). At the receiving end, each

legitimate user Bobj will generate a copy of the code employed by Alicej to recover a

targeted information. We denote this code’s duplicate s′j(t) = β cos2(ωjxR(t−T )+ϕ0j)

6.6.3.1 Decryption by Covariance

This methods relies on the calculation of cross-covariance between each duplicated

code s′i and the multiplexed signal s(t).

Γss′i = 〈(s(t)− 〈s〉) (s′i(t)− 〈s′i〉)〉 ,

(a)
=

N∑
j=1

(1 + δmj(t))〈(sj(t)− 〈si〉) (s′i(t)− 〈s′i〉)〉,

Γss′i(0) =
N∑
j=1

(1 + δmj(t))Γsjs′i .

Now, if we assume E and R to be chaotically synchronized, it implies the code

si and its duplicates s′i to be equal. Consequently, the cross-covariance becomes

Γss′i =
∑N

j=1(1 + δmj(t))Γs′js′i . The cross-covariance between s(t) and s′i can be ex-

pressed in terms of the cross-covariance Γs′js′i of the duplicated codes generated by the
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various Bobs. This expression offers to the legitimate users Bobs two possibilities:

(i) decrypting their own message independently from the evolution of others or (ii)

decrypting jointly all the messages at every bit period Tb.

The first approach requires that the decorrelation or orthogonality between the

various codes is strong enough to neglect the contribution of other users, meaning

that |Γs′js′i | � |Γs′is′i |. This leads to an approximate expression of Γss′i , where the con-

tribution of all the messages mj(t) (j 6= i) can be neglected: Γss′i ' (1+δmi(t))Γs′is′i +∑N
j=1,j 6=i Γsjs′i . Finally the approximate decoding equation reads:

δmi(t) '
1

Γs′is′i

(
Γss′i −

N∑
j=1

Γs′js′i

)
. (164)

Equation 164 is similar to that in [24] except that we are considering autocovariance

and not autocorrelation. We demonstrate numerically in Fig. 61 that it is possible to

transmit two data streams at 2.5 Gbit/s (OC-48 standard) with Configuration (2a).

In the simulations, we have chosen δ = 1/32, which does not significantly disturb the

multiplexed signal waveforms (good concealment) and the value of the nonlinear gain

of each chaotic code (quasi-perfect orthogonality guaranteed). Furthermore, to avoid

the appearance of interference, the polarization of the optical field of the two loops

are set to be orthogonal (a half-wavelength plate is inserted in one optical arm).

It requires to neglect the messages sent by Alicej 6=i. If they were not neglected,

then the left hand of the decoding equation would be written as

δmi(t) (1 + λij) with λij =
N∑

j=1,j 6=i

mj(t)Γs′js′i(0)

mi(t)Γs′js′i(0)
. (165)

Equation 165 shows the effect of other messages and their associated spreading codes

(mj and sj, respectively). To ensure a systematic error-free decryption it is important

to guarantee that the factor λij will not affect the sign of the decrypted message. This

naturally imposes the condition |λij| < 1, which by triangular inequalities leads to a
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Figure 61: Numerical simulation of a multiplexed transmission two different messages
for the simultaneous transmission of two binary messages at 2.5 Gbit/s (OC-48 stan-
dard) per user. The purple dashed line indicates the threshold used to discriminate
different bit values. the dashed and solid lines represent the encrypted and decrypted
messages, respectively. The simulation’s parameters are βi|i=1,2 = 5, ϕ0i|i=1,2 = −π/4,
θ = 10 µs, τ = 25 ps, T = 30 ns, ∆ω12 = 2, and δ = 1/32.

sufficient (weaker) condition ∑
i 6=j

∣∣Γs′isj ∣∣∣∣Γs′isi∣∣ < 1. (166)

This ensures an error-free decryption of Alicei’s message and also gives an upper

bound for the number of users who can transmit simultaneously decodable messages.1

One may see orthogonality and the decryption strategy as limiting design con-

straints. They can be alleviated, but they will ultimately result in an increase in

computational complexity for the decryption. It is still possible to decrypt the mes-

sage while keeping the contributions of the various Alices. Therefore, the various

cross-covariance Γss′j (j = 1, . . . , N) are now related by the linear system
...

Γss′i
...

 =


...

· · · Γs′isj · · ·
...




...

1 + δmi(t)

...

 , (167)

which is written in the condensed form y = Γ(1 + δm) with m,1,y ∈ RN and

Γ ∈ MN,N(R), the covariance matrix. In this new framework, one has to invert

1Equations 165-166 are derived following the method described in [24]. Their mathematical
expressions are similar to those of [24], except that covariance functions are used instead of correlation
functions.
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the covariance matrix to retrieve the various messages. This matrix is square, real

valued, and symmetric; therefore it is diagonalizable in an orthonormal basis. If the

N codes are orthogonal (or quasi-orthogonal), then the covariance matrix is already

diagonal and invertible, the general decoding equation Eq.167 degenerates into Eq.

164. Orthogonality between codes {sj}j∈[1,n], however, is not necessary to retrieve the

various messages without error. Linear independence, a weaker constrain, is sufficient

to avoid the existence of null eigenvalue that will prevent the inversion of Γ. In our

context, this gives more flexibility for the choice of parameters of the chaotic codes.

Finally, the generalized decoding equation reads

δm = Γ′−1(y)− 1, (168)

with Γ′ the covariance matrix calculated with the duplicated codes s′j(t). The com-

putational complexity of the decryption is that of the inversion of a square matrix

of size N , which is O(N3) if a Gauss-Jordan elimination is used. The complexity

becomes polynomial.

6.6.3.2 Decryption by Least-Square Optimization

Another method to decrypt the various data consists of a least-square regression.

This method allows for all the messages of various users to be retrieved at once. The

method is pretty similar to the previous one, except that the matrices and vectors

involved are different. In this approach, we consider that we have at our disposal Nb
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samples every time-slots for which a bit is encoded.

s =

(
s(0) · · · s(Nb−1)

)T
, (169)

=

(
N∑
j=1

(1 + δmj)s
(0)
i · · ·

N∑
j=1

(1 + δmj)s
(Nb−1)
j

)T
, (170)

=


s

(0)
1 · · · s

(0)
N

...
. . .

...

s
(Nb−1)
1 · · · s

(Nb−1)
N

 (1 + δm) , (171)

= H (1 + δm) , (172)

with s ∈ RNb , 1,m ∈ RN and H ∈ MNb,N(R). Similarly to susbection 6.6.3.1, the

codes generated by the Alices are replaced in H by their duplicate generated by the

Bobs (this is possible due to the chaos synchronization between (E) and (R)). We

denotes H′ this matrix with duplicated codes. Contrary to Eq. 168, Matrix H′ is

not square in general and therefore not invertible. This is the standard problem of

least-square regression that can be solved by considering the pseudo inverse of H′

(which exists if rank(H′) = N). The decoding equation finally reads

δm =
(
H′TH′

)−1
H′y − 1. (173)

This methods has similar level of complexity to that of Eq. 168 and is not bounded in

terms of number of users, as long as linear independence is achieved for the sampled

chaotic codes. With this method, we also manage to achieve transmission at 2.5

Gbit/s with a number of users comparable to that of the covariance-based decryption

method.

The various decryption strategies highlighted in the previous subsection are effi-

cient only if interference does not exist within the multiplexed signal s(t) as in Con-

figurations (1) and (2b). In the case of Configuration (2a), however, a new decoding

equation must be determined, as illustrated in the following subsection.
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6.6.4 Decryption with Interferences

In this subsection, we detail a possible strategy to decrypt multiple data streams,

when Configuration (2a) is under consideration. This configuration is ideal for opti-

cal communications and uses a single wavelength (thus ensuring optical spectrum

efficiency). However, the presence of interference makes the previous decryption

strategies unusable. Therefore, we have to devised decryption techniques adapted

to this specific configuration. In Configuration (2a), the message inclusion is similar

to that of Fig. 60 (optical injection of each message in the separate arms) and the

multiplexed signal becomes

s(t) =
n∑
j=1

(1 + δmj)βj cos2(ωjxTj + ϕ0j)+

∑
16j,k6n

Cjk

√
βjβk(1 + δmj)(1 + δmk) cos(ωjxTj + ϕ0j) cos(ωkxTk + ϕ0k),

(174)

with |δ| � 1 and xTj,k = x(t− Tj,k). Similar to the case without interferences (Con-

figurations (1) and (2b)), the multiplexed signal is used to synchronize an emitter

and a receiver, and Bobi can generate at the receiving end the duplicated codes

s′i = βi cos2(ωiyTi + ϕ0i). Interference creates a natural crosstalk between the var-

ious messages, making the decoding equation 164 inefficient, even when the carrier

{si}i∈[[1,n]] is a set of orthogonal signals. Here, we propose a modified decoding equa-

tion to decrypt accurately each message. We first introduce the set of root-square

codes {ri}i∈[[1,n]] defined by:

ri =
√
βi cos(ωixTi + ϕ0i). (175)
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At the receiving end, Bobi will perform the crosscovariance measure between his

generated waveform and the multiplexed signal s:

Γss′i =
n∑
k=1

(1 + δmk)Γsks′i +
∑

16j,k6n

Cjk

√
(1 + δmj)(1 + δmk)Γrkrjs′i , (176)

= (1 + δmi)Γsis′i +
n∑
k=1
k 6=i

(1 + δmk)Γsks′i

+
∑

16j,k6n

Cjk

√
(1 + δmj)(1 + δmk)Γrjrks′i︸ ︷︷ ︸

I({rj ,rk}(j,k)∈[[1,n]]2)

. (177)

We rewrite the last term of the crosscovariance measurement by highlighting the

message δmi:

I
(
{rj, rk}(j,k)∈[[1,n]]2

)
(a)
=

√
(1 + δmi)

n∑
j=1
j 6=i

2Cij

√
(1 + δmj)Γs′irirj

+
∑

16j,k6n
j,k 6=i

Cjk

√
(1 + δmj) (1 + δmk)Γs′irjrk , (178)

(b)
≈

(
1 +

δmi

2

) n∑
j=1
j 6=i

2Cij

(
1 +

δmj

2

)
Γs′irirj

+
∑

16j,k6n
j,k 6=i

Cjk

(
1 +

δmj

2

)(
1 +

δmk

2

)
Γs′irjrk , (179)

(c)
≈ δmi

n∑
j=1
j 6=i

CijΓs′irirj +
∑

16j,k6n

CjkΓs′irjrk . (180)

In Equality (a), we have separated the terms factorized by
√

1 + δmi from those

which are not. Then, in Approximation (b), we consider a Taylor expansion of the

square function thanks to the factor |δ| � 1. In approximation (c), we neglect all the

contributions coming from δmj with j 6= i and the cross-products of messages mjmk

(j, k 6= i), which are a O(δ2). We finally obtain a linear expression in δmi. Since

the codes and square-root codes are not perfectly orthogonal, we have to keep the

contributions of Γs′irjrk to ensure a reliable decryption.
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In a similar way, it is possible to simplify the second term of Eq. 177 by neglecting

the cross-covariance factorized by δmk (k 6= i). Therefore, the second term becomes

n∑
k=1,k 6=i

(1 + δmk) Γs′isk ≈
n∑

k=1,k 6=i

Γs′isk . (181)

Finally, the approximate value of the cross-covariance Γss′i becomes linear in the

messages δmi and reads

Γss′i ≈ δmi

(
Γs′isi +

n∑
k=1,k 6=i

CikΓs′irirk

)
+

n∑
k=1

Γs′isk +
∑

16j,k6n

CjkΓs′irjrk . (182)

The chaos synchronization of Emitter (E) and Receiver (R) allows for each user

Bobk to replicate the code sj. However, duplicating the square-root codes is more

challenging, since it would require additional photodiodes (n(n−1)/2) at the reception

to generate the interference terms between all the pairs of optical fields. We assume

that that r′j =
√
βj cos(ωjyTj + ϕ0j) = rj and s′j = βj cos2(ωjyTj + ϕ0j) = sj for

j = 1, . . . , n. After simplifications and injection of the duplicated codes, the decoding

equation Eq. 177 becomes

δmi ≈
1

Γs′is′i +
n∑

k=1,k 6=i
CikΓs′ir′ir′k

(
Γss′i −

n∑
k=1

Γs′is′k −
∑

16j,k6n

CjkΓs′ir′jr′k

)
. (183)

The decryption equation (183) is very similar to Eq. (164) with no interference,

except for the correcting terms at the numerator and denominators.

We have tested the modified decryption equation by simulating the encryption

and decryption of four messages at 2.5 Gbits/s in an architecture with a single pho-

todiode and four feedback loops. The results are shown in Fig. 62. The recovered

messages present a slightly larger dispersion when compared to those recovered in

non-interference architectures. Assuming the Taylor expansion of Γss′i to remove the

square-root functions of the messages, the left-hand side of Eq. 183 can be more
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Figure 62: Theoretical multiplexing of four binary messages mi at 2.5 Gbit/s (25 bits
are represented for each messages). The messages are independently decrypted and
requires 4 decoding circuits. In each panel, the dashed line represent the originally-
encrypted messages (mj) and the solid gray lines represent the decrypted message
(m̂j) using decoding equation Eq. 183. The numerical values are βj = 5, Cij =
cos((i−j)π

4
), θ = 25 ps, τ = 5 µs, Tj = 30 ns, δ = 1

32
, and ∆ωij = 2 with i, j = 1, . . . , 4

and i 6= j.
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rigorously written δmi(1 + γik) with

γik =
n∑
k=1
k 6=i

mkΓs′is′k
miΛik

+
n∑
k=1
k 6=i

mkCik
miΛik

Γs′ir′ir′k +
∑

16j,k6n
j 6=k

Cjk
2miΛik

(mk +mj +
δmjmk

2
)Γs′ir′jr′k ,

(184)

with Λik = Γs′is′i +
n∑
k=1
k 6=i

Cik
(
1 + δmk

2

)
Γs′ir′ir′k . This is similar to the expression δmi(1 +

λik) in Eq. 165. It is important that the factor γik does not induce a sign change

otherwise it will induce error in the decryption in the message bit mi. This naturally

imposes the condition |γik| < 1. A sufficient condition for the decryption can be

deduced by considering a stronger constrain on γik; by introducing the absolute values

within γik and applying the triangular inequality, we deduce the following

n∑
k=1
k 6=i

∣∣Γs′is′k∣∣+
n∑
k=1
k 6=i

∣∣CikΓs′ir′ir′k∣∣+ (2 + δ)
∑

16j,k6n
j 6=k 6=i

∣∣∣CjkΓs′ir′jr′k∣∣∣ < |Λik| . (185)

Moreover, we have |Λik| <
∣∣Γs′is′i∣∣+

n∑
k=1
k 6=i

∣∣CikΓs′ir′ir′k∣∣ (1 + δ
2

)
. Therefore, we can deduce

a sufficient condition for the decryption to be possible:

n∑
k=1
k 6=i

∣∣Γs′is′k∣∣+ (2 + δ)
∑

16j,k6n
j 6=k 6=i

∣∣∣CjkΓs′ir′jr′k∣∣∣ < ∣∣Γs′is′i∣∣+
δ

2

n∑
k=1
k 6=i

∣∣CikΓs′ir′ir′k .∣∣ (186)

The form of the sufficient condition is pretty similar to that of the case without

interference (Eq. 166). It highlights the undesired effects of the interference cross-

covariance terms that may rapidly saturate the inequality in Eq. 186. Therefore to

ensure a satisfying level of performance with this decryption method, the codes and

the square-root codes have to be quasi-orthogonal.

In summary, we have demonstrated theoretically how to decrypt messages when

interference exists in the multiplexed feedback signal s(t), which drives the dynamics

of the emitter and the receiver. With proper adjustments, a new decoding equation

was derived and it ensures a comparable level of performance to the case without

interference. However, one of the main difficulty for the decryption would be the
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reproduction of interference patterns at the receiver end, a major challenge for an

experimental realization.

6.7 Conclusion

In this chapter, we have demonstrated that a single electro-optic oscillator (EOO)

with multiple delayed feedback loops can be used to generate orthogonal chaotic

codes. This allows to transpose efficiently code-division multiple access (CDMA) con-

cept in the framework of optical chaos-based communications. Several configurations

were illustrated to ensure and prevent optical interference during the transmission:

Configuration (1) using multiple photodetectors and Configurations (2a)-(2b) using

a single photodetector.

The pseudo-random sequences (codes) used to spread the data-streams result, in

our context, from the output of Mach-Zehnder modulators. Each of them generates

a cosine-square nonlinearity with a specific frequency of oscillation (denoted ωj).

The statistical properties of the different chaotic codes are controlled by three

different parameters: the nonlinear gain (βj), the frequency (ωj), and the off-set phase

(ϕ0j). We have proven that for a sufficiently large frequency detuning ∆ωij = ωi−ωj

and nonlinear gain βj, the codes are orthogonal and can be used to transmit and

recover, with a linear computational complexity, binary messages without cross-talk in

configurations (1) and (2b). We numerically demonstrate encryption and decryption

of several messages at high bit rate (2.5 Gbit/S, OC-48 standard). In case of imperfect

orthogonality, we have also shown that it was still possible to decrypt the messages

by considering a joint decryption, using either a covariance-matrix approach or least-

square optimization. In both cases, however, the decryption involves the inversion of

square matrices, increasing the computational complexity.

Finally, we focus our attention on Configuration (2a) that systematically exhibits

interference when more than two feedback loops are considered. We have devised a
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decryption strategy with a linear computational complexity that guarantees an error-

free decryption when the messages have sufficiently small amplitudes. However, it

makes the structure of the decoder far more complex and requires to duplicate specific

interference patterns at the receiver. We numerically achieve similar performance to

that of configurations (1) and (2b) in terms of transmission.

As a consequence, our approach may constitute a first significant step for the

application of code-division multiple access concepts to optical chaos-based commu-

nications.
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CHAPTER VII

MULTIPLEXING CHAOS USING STOCHASTIC

TIME-DELAYS ARCHITECTURES

7.1 Abstract

This chapter investigates an efficient and fast bit-multiplexed encryption scheme ex-

ploiting hyperchaotic regimes of a single nonlinear oscillator with multiple time-delay

feedback loops. This structure is of particular interest because the data stream of

each user Alicei (i = 1, . . . n) is encrypted through a digital modulation of the various

time delays and decrypted using chaos synchronization and cross-correlation metrics.

In this chapter, we will describe our particular structure, the mechanisms for encryp-

tion and decryption, and give the fundamental limitations in terms of bit rate and

number of users. Our approach is numerically illustrated for a chaotic electro-optic

oscillator structure based on a standard continuous-wave semiconductor laser sub-

jected to multiple nonlinear feedback loops. We numerically demonstrate successful

data transmission and recovery between multiple users at several Gbits/s on a single

communication channel.

This chapter is based on the following publication:

• D. Rontani, M. Sciamanna, A. Locquet, and D.S. Citrin, “Multiplexed encryp-

tion using chaotic systems with multiple stochastic-delayed feedbacks”, Phys.

Rev. E 80, 066209 (2009).
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7.2 Introduction

The following chapter focuses on multi-user chaos-based communications using time-

delay systems. Our primary objective is to make better use of the wide bandwidth

provided by the chaotic oscillator, but also to increase significantly the level of security

compared with the other architectures presented in this thesis.

In the two previous chapters, we have proposed architectures to multiplex op-

tical chaotic signal and encrypt multiple messages in a CDMA fashion. Although,

they allow fast and reliable Gbit/s transmissions, the level of security was not sig-

nificantly enhanced compared to that of existing single-message chaos-based trans-

missions. When it comes to fixed time-delay systems, the computational security

relies on the concealment of the time-delay information [144, 146, 147, 170] (and see

Chapter 4). A natural idea to increase the security of the time-delay information is

to make the delay time-varying. Following this line of reasoning, several strategies

have been devised to increase the level of security:

• Periodic time-varying delays [171]: This was the first attempt to counter time-

delay identification based on typical estimators (ACF, DMI, LLM, and GNM).

• Chaotic time-varying delays [172]: The optical path of an optoelectronic gen-

erator was controlled by a delayed-differential equation, thus leading to chaotic

modulations of the time delay.

• Stochastic time-varying delays [142]: This was introduced as the strongest con-

cealment of time delay thus ensuring the highest level of security. Existing

time-delay identification methods fail, thus maintaining a high level of security.

• Stochastic commutating delays [141]: A nonlinear system was used with a pro-

grammable time-delayed feedback. The time-delay switches randomly between

two different values.
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These different configurations were first studied for the generation of highly secure

chaotic carriers, but rapidly the idea that time-delay modulation could be used as a

transmission vector was proposed in [173] with chaotic logistic maps. In the proposed

setup, a user Alice encrypts her message m(t) as an additional modulation of a state-

dependent time delay τ(t) = g(xE(t), t) + m(t) with xE ∈ Rm the state variable of

emitter (E) and g : Rm → R a continuous function. The state xE(t− τ(t)) drives the

dynamics of both the emitter owned by Alice and the receiver owned by a legitimate

receiver Bob,

Alice: ẋE(t) = f (xE(t),xE(t− τ(t))) , (187)

Bob: ẋR(t) = f (xR(t),xE(t− τ(t))) , (188)

where xE,xR ∈ Rm is the state variable of (E) and (R) and f : Rm → Rm is the

vector field associated with the nonlinear oscillator. To decrypt the message, Bob

considers the metrics

M(ε) = ε− |xE(t− τ(t))− xR(t− θ)|, (189)

where θ ∈ [0, τm] with τm = max τ(t). By maximizing M(ε) during the duration of

a bit transmitted, the authors of [173] obtain an estimation of the unknown value

of τ(t). Then due to chaos synchronization at the receiver, they generate τ0,R(t) =

g(xR(t), t) = τ0(t) and recover the values of the message by simple subtraction. This

method was adapted to the transmission of a single message, but either the structure

or the metrics used did not allow for the transmission of multiple data-streams.

In this chapter, we will show how time-delay systems (under certain conditions)

can be used favorably to overcome simultaneously these two major limitations in

chaos multiplexing. We use a single chaotic oscillator with n time-delay feedback

loops, each of the time delays being digitally modulated by a specific user. This

approach, which is neither the overlay of TDM nor of WDM on top of a conven-

tional chaotic system, uses a single chaotic oscillator that ensures the simultaneous
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encryption of n messages in a single wide-spectrum chaotic carrier. This is therefore

beneficial to achieve higher spectral efficiency on the communication-channel band-

width in comparison with WDM. Extraction of the various messages can be realized

either with a high complexity (HC) or low complexity (LC) decryption strategy based

on finite-time cross-correlation measurements. Additionally, the stochastic modula-

tions of the time delays at the rate of the messages participate in the dynamical

evolution of the chaotic oscillator and contribute to enhancing greatly the security of

transmissions. We numerically apply our multiplexing/demultiplexing technique to

an optoelectronic chaos generator based on a well-tested and reliable physical model

and demonstrate theoretically multi-Gbit/s transmission per user. A discussion on

the performances (spectral efficiency, bit rate) and on the limitations of the architec-

ture will be presented as well.

7.3 Description of the Architecture

Our setup is described in Fig. 63. It is composed of two parts, a global emitter (E)

and a global receiver (R). These two systems are unidirectionally coupled via a single

communication channel and also share identical structural properties. Both use a

single nonlinear oscillator described by their respective state variable: xE ∈ Rp and

xR ∈ Rp. In E, the nonlinear oscillator is fed back by n time-delayed feedback loops.

As illustrated in Fig. 63, at the emitter end, every legitimate user Alicei possesses

a specific loop incorporating a specific nonlinearityNLi, which processes the nonlinear

oscillator’s state vector hAi(xE(t)), with hAi a continuous nonlinear function defined

on Rp → Rn. The second element of the feedback loop is a tunable delay line DLi

that controls the variable time delay τi(t). This quantity is digitally modulated by

Alicei to encode her data stream. Finally, the various contributions of all the users

are summed in a single multiplexed signal s(t) that reads

s(t) =
n∑
i=1

hAi(xE(t− τi(t))). (190)
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Figure 63: Architecture to multiplex multiple digital data streams using a single
chaotic oscillator with multiple feedback loops. NLi: the ith nonlinearity, DLi: vari-
able delay line modulated by Alicei, DL∗i : variable delay line used by Bobi to search
for a maximum of cross-correlation. mi: message encrypted by Alicei, m∗i : message
decrypted by Bobi (i=1,. . . ,n), Ωk: time during which a symbol (or bit) of the message
mi is maintained constant.

The multiplexed signal s(t) is generally vectorial (s(t) ∈ Rm); however, the scalar

case (m = 1) will be considered to simplify the notation and calculations.

For example, let us consider an optoelectronic oscillator such as those described

in the previous chapter. The multiplexed signal with variable delays now reads

T ẋ(t) + x(t) +
1

θ

∫ t

t0

x(u)du =
n∑
i=1

βi cos2 (x(t− τi(t) + ϕ0i), (191)

assuming no use of voltage dividers before injecting the various Mach-Zehnder mod-

ulator MZi (see Chapter 6).

The structure initially proposed in Fig. 63 can be slightly modified by considering

an additional nonlinear function h : Rm → Rn applied to the sum of the delayed

feedback signals hAi(x(t− τi(t)). This leads to a new multiplexed signal

s(t) = h

(
n∑
i=1

hAi (x(t− τi(t))

)
. (192)

A particular example was proposed in [139] using a wavelength chaos generator with

multiple electronic loops. It results in a single cosine nonlinearity applied to a sum

of delayed variables,

T ẋ(t) + x(t) = β cos2

(
n∑
i=1

x(t− τi(t)) + ϕ0

)
. (193)
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In this example, the nonlinear functions are hAi(y) = 1 and h(y) = β cos2(y + ϕ0).

This signal is then sent through the communication channel and will couple the

global receiver R. The nonlinear oscillator located in R is a physical twin of that of

E. Consequently, the dynamics of E and R are described by the equations

ẋE(t) = f (xE(t), s(t)) , (194)

ẋR(t) = f (xR(t), s(t)) , (195)

where f : (Rp,Rm)→ Rp is the nonlinear function of the nonlinear oscillator.

Assuming both systems are damped oscillators when no feedback signal is in-

jected1, E and R are passive systems. Therefore, the multiplexed feedback signal

s(t) is, in our case, an active part that will drive the dynamics of E and R. Under

these conditions, the APD’s requirement are fully satisfied for the two systems to be

completely chaotically synchronized,

lim
t→∞
‖xE(t)− xR(t)‖ = 0. (196)

The chaos synchronization is one of the key features used in the extraction of the

various messages by the legitimate users Bobi (i = 1, . . . , n). In Receiver R, each Bob

has a loop sharing similar features to that of his corresponding Alice, except that

his loop does not feed back the nonlinear oscillator. Bobi’s loop is also composed of

the same nonlinearity NLi described by a nonlinear function hBi = hAi : Rm → Rp

and a tunable delay line DL∗i generating candidate time delays τ ∗i (t) different a priori

from τi(t). Each loop process the state variable xR as it follows hBi(xR(t − τ ∗i (t))).

These open loops at Receiver R are used to reproduce what the Alices are doing at

Emitter E. Recovery of the information is then possible by analyzing the evolution of

particular metrics (based on correlation or L2-norm).

In the two following sections of this chapter, we will describe precisely the mech-

anisms used by Alices and Bobs respectively to encrypt and decrypt the multiplexed

1Mathematically this is equivalent to the asymptotic convergence of each state to zero.
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data in our architecture. One of the objectives is to guarantee a low level of computa-

tional complexity for the decryption, while maintaining a good level of computational

security.

7.4 Encryption Strategies

In this section, we describe how the Alices encode their respective messages. Each

user has at his disposal a random source of information composed of Mi different

symbols c
(µi)
i (µi = 1, . . . ,Mi). These symbols’ values are mapped onto a specific

interval of value ∆i (i = 1, . . . , n), later referred to as an encryption slot where the

time delay τi(t) varies. In the context of digital communications, the variation of τi(t)

must be time-discrete in their interval of definition ∆i. We define the period of time

when a symbol c
(µi)
i is maintained constant by Ts and the associated time intervals

Ωk = [kTs, (k + 1)Ts] (k ∈ N), later referred to as a time-slot. The mathematical

formulation of a digital time-delay encryption by Alicei therefore reads

τi(t) =
∞∑
k=0

τi|Ωk (H(t− kTs)−H(t− (k + 1)Ts)), (197)

where τi|Ωk is the encoding value of the kth symbol generated by Alicei in the time

slot Ωk, and H(t) is the Heaviside function.

The method of encryption of a single user is now described. It is noteworthy to

mention a simplification in our encryption compared to what is done in [173]; the

time-delay modulation will be solely induced by the various information sources (no

additional state dependence is considered). Among the advantages is a simplification

of the decryption process with the use of more conventional metrics such as correlation

and norm 2.

Inherent to the presence of multiple users, there are several possibilities to realize

the multiplexed encryption. Indeed, each loop has two degrees of freedom: the nature

of the nonlinearity (NLi) used and the encryption slots (∆i). As it will be detailed

later, it is important to perform carefully the encryption by incorporating into it a
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discrimination criterion, otherwise the decryption would not be possible: the Bobs

could not recover their data. Essentially, we propose two different types of encryption.

7.4.1 Encryption with Multiple Disjoint Encryption Slots

This first encryption method consists of disjoint encryption slots (∆i ∩∆j = ∅ for all

i 6= j) with the freedom for the various users to choose their nonlinear function hAi .
1

Each interval is centered on a specific value: ∆i = [τi0 − ∆τi
2
, τi0 + ∆τi

2
], where ∆τi is

the width of ∆i. Figure 64 illustrates this approach.

Figure 64: Graphical representation of the time-delay encryption realized by two
different users Alicei and Alicej in their respective encryption slots ∆i and ∆j to be
multiplexed. Two consecutive symbols are encrypted for each users τi|Ωk and τj|Ωk .

7.4.2 Encryption with Multiple Overlapping Encryption Slots

This second encryption method consists of the use of encryption slots that can (par-

tially or totally) overlap (∆i ∩ ∆j 6= ∅ for all i 6= j). Under these conditions, the

encryption performed by each Alice necessary relies on different nonlinear functions

as a discriminant criterion incorporated in the encryption. Figure 65 illustrates this

approach with a single encryption slot shared by all the users.

1The use of identical nonlinearities for all the Alices is possible (hAi
= hAj

for all (i, j)).
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Figure 65: Graphical representation of the time-delay encryption realized by two
different users Alicei and Alicej in their respective encryption slots ∆i and ∆j that
completely overlap. Two consecutive symbols τi|Ωk and τj|Ωk are encrypted for each
user.

7.5 Decryption Strategies and Complexity Issues

There are many degrees of freedom to encrypt multiple data streams with our archi-

tecture; however, demultiplexing at Receiver R places restriction on how these can

be chosen. Decrypting the multiplexed data stream is equivalent for each Bobi to

recover the time-delay modulation τi|Ωk for all i = 1, . . . , n and Ωk, k ∈ N. To achieve

this goal, the Bobs first generate independently or jointly the candidate time delay

τ ∗i|Ωk by means of their tunable delay line DL∗i . Second, they consider an optimiza-

tion problem defined with respect to appropriate metrics. Its solution will serve as a

decryption for the multiplexed data streams. In the forthcoming subsections, we will

detail necessary conditions for the decryption to be possible, as well as the various

metrics and optimization approaches that can be used.

7.5.1 Necessary Conditions for Decryption

In the case of disjoint encryption slots, the distance between the intervals ∆i is the

discriminating criterion, whereas in the case of overlapping encryption slots the non-

linearity is used to identify the contributions associated to the various users. In both

case, the criterion has to ensure the statistical independence between the nonlinear
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signals hAi(xE(t − τi(t)) for all i = 1, . . . , n and all time. This results in additional

constrains on the class of systems that can be used with our architecture, when the

encryption slots ∆i overlap. Independently of the encryption technique used, there is

a set of universal conditions that are necessary for a proper decryption:

Condition (i) (Reproducibility): Emitter E and Receiver R have to be com-

pletely synchronized.

Condition (ii) (Unicity): The decryption is performed by the resolution of an op-

timization problem with a unique global extremum to ensure the unicity of the

decrypted message for the various legitimate users, Bobs.

Condition (iii) (Metric Resolvability): Two symbols used by a given user, when

encoded on time delays belonging to to the same encryption slot, have to be

separable in the framework of the metrics we choose.

7.5.2 Choices of Metrics

We call a metric a mathematical operation that maps a vector space to the set of real

numbers R. In our case, we can use either the L2-norm or the autocorrelation. Both

are based on the definition of an inner product on a functional space.

We consider two signals (φi, φj), with finite energy (belonging to L2(R)), and we

define the inner product by

〈φi, φj〉 =

∫
R
φi(t)φj(t)dt. (198)

There is, however, a need for an inner product also defined on finite set Ωk,

〈φi, φj〉Ωk =

∫
Ωk

φi(t)φj(t)dt. (199)

If the signals depend upon time as a consequence of the definition of the inner product,

it is possible to define cross-correlation measurements on infinite and finite sets, Γ
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and ΓΩk . More precisely, we have Γφi,φj(0) = 〈φi, φj〉 and ΓΩk
φi,φj

(0) = 〈φi, φj〉Ωk . If

the two signals are time delayed with each other then the scalar product becomes

〈φi(t− τi), φj(t− τj)〉 =

∫
R
φi(t−∆τij)φj(t)dt = Γφi,φj(∆τij), (200)

with ∆τij = τi − τj.

The L2-norm is simply defined in terms of the inner product by

||φi||Ωk2 =
(
〈φi, φi〉Ωk

)1/2
. (201)

7.5.3 Decryption with High Computational Complexity

We consider the architecture described in Fig. 63 with n different users Alicei and

the metrics on the finite time slot Ωk defined above. Emitter E is fed back with

s(t) =
∑n

i=1 sAi,τi .

We assume that R is perfectly synchronized with E (Condition (i)) and that the

set (Ts, sAi ,∆i) used by each Alice is also known by their respective Bob.

Collectively for each symbol slot Ωk, the Bobs generate a single candidate multi-

plexed waveform with a set of known delays (τ ∗i|Ωk)i∈[[1,n]] that may not correspond to

the delay used by the Alices,

s∗(t) =
n∑
i=1

hAi(xR(t− τ ∗i (t))) =
n∑
i=1

sAi,τ∗i . (202)

The objective for Bobi is to recover Alicei symbols encoded onto the set of time delays

(τi|Ωk)i∈[[1,n]]. If this condition is fulfilled, then the two signals s(t) and s∗(t) will be

equal on every time slot Ωk. A closer look at the signals s(t) and s∗(t) shows that the

only difference relies on the value of the time delays. Adjusting the time delay used in

s∗(t) allows the decryption to be possible only if the set of time delays leading to s(t) =

s∗(t) is unique (Condition (ii)). The unicity originally comes from the construction

of the chaotic carriers sAi,τi and a proper use of encryption intervals ∆i (disjoint with

any nonlinear function or overlapping with adequate nonlinear functions). Indeed,
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the set of carriers B = (sAi,τi)i∈[[1,n]] may be viewed as a vector basis in which s(t) is

trivially decomposed. The signal s∗(t) is also trivially decomposed into a candidate

basis B∗ = (sAi,τ∗i )i∈[[1,n]] with unitary coefficients. Both bases are constructed with

the same linearly independent functions except for the time delays that differ. The

proper use of encryption slots ∆i and nonlinear functions further guarantees that for

all (i, j), it is not possible to find τ ∗j ∈ ∆j such that sAi,τi = sAj ,τ∗j . As a consequence,

s(t) = s∗(t) ⇒
n∑
i=1

(sAi,τi − sAi,τ∗i ) = 0, (203)

⇒ sAi,τi = sAi,τ∗i for [[1, n]] . (204)

Finally, based on the previous discussion and the one-to-one equality of vectors of

bases B∗ and B, we can conclude that

∀i ∈ [[1, n]] sAi,τi = sAi,τ∗i is equivalent to τi = τ ∗i . (205)

In a high-complexity (HC) decryption scheme, all the possible delay values are ex-

plored and tested in the product encryption space
∏n

i=1 ∆i, as illustrated in a simpli-

fied situation in Fig. 66.

Figure 66: Graphical representation of a high complexity time-delay decryption
realized by two different users Bobi and Bobj in the product encryption slot ∆i×∆j.
The recovery of each time-delay is realized jointly and is represented by a red circular
mark located at [θi, θj] = [τ̂i|Ωk , τ̂j|Ωk ].
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The unique combination of time delays that belongs to the different encryption

intervals and corresponds to a good estimation of the original message (τi|Ωk)i∈[[1,n]]

encrypted by the Alices is retrieved by solving either of the two following optimization

problems (depending on the chosen metrics):

(τ̂i|Ωk )i∈[[i,n]] = arg min

(τ∗
i|Ωk

)i∈[[i,n]]∈
n∏
i=1

∆i

‖s− s∗‖Ωk
2 , (206)

or

(τ̂i|Ωk )i∈[[i,n]] = arg max

(τ∗
i|Ωk

)i∈[[i,n]]∈
n∏
i=1

∆i

〈s, s∗〉Ωk . (207)

After decryption, the estimated values are transferred to the targeted users Bobi.

The main disadvantage of this type of decryption is its exponential computational

complexity. If we consider that each Alice can encrypt M different values of time

delay by interval, this results in the computation of Mn operations for each time-

slot Ωk. This rapidly limits either the number of symbols used (the bit rate) or the

number of users (the spectral efficiency).

To overcome this problem, we present in the next subsection a decryption method

that is computationally linear with the number of users.

7.5.4 Decryption with Low Computational Complexity

We have seen that the linear independence of the different nonlinear signals sAi,τi|Ωk

is used to ensure the recovery of a unique set of time delays (τ̂i|Ωk)i∈[1,n] in each

encryption slot ∆i and time slot Ωk corresponding to the actual time-delay values

(τi|Ωk)i∈[1,n]. But this property, although it allows for the decryption to be possible,

does not provide low complexity calculations for the decryption. Decrypting at a lower

computational complexity is possible if each Bobi can extract his own information

independently while having just the multiplexing signal s(t) at disposal and Alicei’s

key. Furthermore, in the previous subsection we have shown that the total minimiza-

tion (or maximization) of the global optimization problem result in the recovery of all
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the time delays at once. All the basis vectors participate in this minimization process,

but it appears that the recovery of a single delay of a basis signal sAi,τi reduces the

difference between s and s∗ (i.e., increase the correlation). With this phenomenon,

each Bob can recover his own information independently. Mathematically, we can

write both cases as

〈
s, sAi,τ∗i

〉Ωk =
〈
sAi,τi , sAi,τ∗i

〉Ωk +
n∑

j=1,j 6=i

〈
sAj ,τj , sAi,τ∗i

〉Ωk , (208)

∥∥s− sAi,τ∗i ∥∥Ωk

2
=

∥∥∥∥∥sAi,τi − sAi,τ∗i +
n∑

j=1,,j 6=i

sAj ,τj

∥∥∥∥∥
Ωk

2

. (209)

On the right-hand side of both equations, there is the resonant (antiresonant) part〈
sAi,τi , sAi,τ∗i

〉Ωk (or sAi,τi − sAi,τ∗i if L2-norm is considered) that will be identified

and lead after optimization to the value of Alicei’s encrypted time delay in the time

slot Ωk. The other part will be referred to as the background and corresponds to

the crosstalk and contribution of all other users. The principles of decryption using

correlation metrics are illustrated in Fig. 67.

Figure 67: Graphical representation of the time-delay decryption realized by two
users Bobi and Bobj. (a) Configuration associated with multiple disjoint encryption
slots ∆i and ∆j used by Alicei and Alicej, respectively. (b) Configuration with a single
encryption slot ∆0 share by the different user at the emission and the reception. For
the given time-slot Ωk, each Bob is detecting a resonance to recover his time-delay.
The cross-correlation measurements are used for the metrics.

In Fig. 67(a), using either the cross-correlation measurement or L2-norm, we

observe either a local maximum or minimum in each encryption interval ∆i. Each
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user Bobi solves his own optimization problem by searching a maximum (or minimum)

in his specific encryption slot ∆i for each time slot Ωk. The recovery of each symbol

emitted by Alicei is described as

τ̂i|Ωk = arg max
τ∗
i|Ωk
∈∆i

〈
s, sAi,τ∗i|Ωk

〉Ωk
, (210)

or

τ̂i|Ωk = arg min
τ∗
i|Ωk
∈∆i

∥∥∥s− sAi,τ∗i|Ωk ∥∥∥Ωk

2
. (211)

The linear complexity comes from the reduction in size of the interval explored for the

decryption. However, the reduction in complexity is responsible for the appearance

of a correlation background (L2-norm background) that limits the number of users,

as detailed in the following sections.

7.6 Application to Optoelectronic Oscillators

7.6.1 Encryption and Decryption with Multiple Disjoint Intervals

In this section, we follow the theoretical framework presented in the previous section

and numerically apply our approach to a transmission chain composed of two cou-

pled optoelectronic oscillators subjected to four delayed feedback loops to transmit

n = 4 independent messages. The oscillators can be built using two configurations:

(i) an intensity chaos generators based on multiple Mach-Zehnder modulators in their

nonlinear regimes and subjected to single time-delay feedback, or (ii) a single Mach-

Zehnder fed back by multiple electronic delay loops. The total feedback signal is

denoted s(t); unidirectionally injects both E and R. The coupled oscillators are mod-

eled by the set of integro-differential delay equations similarly to the previous chapter,

T ẋE + xE +
1

θ

∫ t

t0

xE(u)du = s(t), (212)

T ẋR + xR +
1

θ

∫ t

t0

xR(u)du = s(t), (213)
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where

s(t) = s1(t) =
n∑
i=1

βi cos2 (xE,τi + ϕ0i), (214)

s(t) = s2(t) = β cos2

(
n∑
j=1

xE,τj + ϕ0

)
, (215)

xE, xR ∈ R are the dimensionless driving voltages of E and R, respectively, T is

the high cutoff response time, θ is the low cutoff response time, βi is the normalized

feedback strength of the ith Mach-Zehnder modulator, and ϕ0i is its normalized offset

phase. The set of delay integro-differential equations Eqs. 212-213 can be rewritten

in ordinary differential form if the variable change yE,R =
∫ t
t0
xE,R(u)du is introduced,

and thus the above theory can be applied. With the notations used in the first section,

for Configuration (i) we have hAi(xE,τi) = βi cos2(xE,τi + ϕ0i) and h(y) = 1 and for

Configuration (ii) hAi(xE,τi) = xE,τi and h(y) = β cos2(y + ϕ0).

7.6.1.1 Simulation of a High Computational Complexity Case

We have simulated the system with the following numerical values: T = 25 ps, θ =

10 µs, βi = 30, ϕ0i = 2iπ
4

, ∆i = [20i ns, 20i + 10 ns], and a symbol duration of

Ts = 1 ns (i = 1, . . . , 4). Each user Alicei has a data source Mi = 4 symbols (to

ensure tractable computational levels) associated with corresponding time delays in

the encryption slot ∆i. We have considered the two type of signals s1(t) and s2(t);

in both cases error-free decryption were achieved as long E and R were completely

synchronized. The use of a multiplexed signal with the form of s2(t) allows only high-

complexity decryption to work, because the function h(y) = β cos2(y + ϕ0) is not

bijective on the interval of definition of y =
∑n

j=1 xE,τj thus preventing its inversion,

necessary for a low complexity decryption.

7.6.1.2 Simulation of a Low Computational Complexity Case

We have considered a system with multiple nonlinearities with numerical values for

the parameters similar to the previous subsubsection with a multiplexed signal of the
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form s(t) = s1(t).

Figure 68 shows the numerical results with ideal transmission conditions: no noise

and no distortion induced by the communication channel. The symbols are main-

tained constant during symbol time slots of duration Ts = 1 ns. This leads to 1 Giga

symbols/s transmission per user and appears to be the lower bound of Ts when four

users send their messages. This corresponds to an equivalent 5 Gbits/s transmission

per user considering that each symbol requires 5 bits to be encoded. The first and the

second rows in Fig. 68 represent the data randomly generated by each user Alicei and

the data recovered by the corresponding receiver Bobi, respectively. The third row

displays, for each user, the relative errors ei = (τi− τ̂i)/τi in symbols recovery, which

are all on average smaller than 0.5%. The decryption errors are due to uncertainties

generated by the finite-time calculation of cross-correlation on the time slots Ωk.

Figure 68: Simultaneous decryption of four messages composed of Mi = 32 symbols
(i = 1, . . . , 4) at 1 Giga symbols/s per user. The equivalent bit rate is 5 Gbits/s
per user. The first line represents the input messages mi, the second line the recov-
ery messages m̂i, and the third line relative error ei on each decrypted symbol in
percentage. The equivalent aggregate bit rate is 20 Gbits/s. The metrics used are
cross-correlation measurements.

189



This intrinsically limits the resolution of the cross-correlation. However these

errors can be suppressed, if the Bobs know a priori the sets of possible symbols used

by the Alices, as would be expected when digital symbols are used, and if the duration

of Ωk are long enough. This proves that near-perfect decryption is achieved for four

digital messages and also that these can be encoded on a large number of symbols.

Correct decryption at a given symbol rate 1/Ts also depends on the number of users

n. It affects the amplitude of the background fluctuations present in the correlation

〈s, sBi,τ∗i 〉
Ωk , thus increasing the probability to infer an incorrect value of τi|Ωk from

τ ∗i|Ωk . This usually induces a decrease in the largest achievable bit rate when the

number of users increases. As an illustration, maintaining identical parameters to

those above, we achieve a maximum of six users, resulting in an equivalent aggregate

bit rate of 30 Gbits/s.

7.6.2 Encryption and Decryption with Overlapping Intervals

In this subsection, we use the theoretical framework presented in the previous chapter,

where an intensity chaos generator has multiple feedback loops with cosine functions

with different oscillation frequencies ωi. We still consider an architecture with four

delayed feedback loops to transmit n = 4 independent messages. The system are

modelled similar to Chapter 6 except that the time delays are time varying,

T ẋE + xE +
1

θ

∫ t

t0

xE(u)du =
4∑
j=1

βi cos2(ωixE(t− τi(t)) + ϕ0i), (216)

T ẋR + xR +
1

θ

∫ t

t0

xR(u)du =
4∑
j=1

βi cos2(ωixE(t− τi(t)) + ϕ0i). (217)

In this example, we consider the extreme case where the encryption slots completely

overlap ∆i = ∆. As we explain it later, this configuration appears to particularly

interesting for security since the symbols used by the various users have identical

values. The following numerical values are used in the simulation: βi = 30, ϕ0i = iπ
4
,

∆ = [20 ns, 30 ns], and ∆ωij,i6=j = ωi − ωj = 1 (i = 1, · · · , 4). With these values, the
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frequency detuning is large enough to ensure the decorrelation between the various

carriers sAi(t) = β cos2(ωixE(t− τi(t)) + ϕ0i), thus leading to tractable decryption of

each message independently.

Figure 69 shows an effective transmission at 5 Gbit/s per user with a low level of

relative error when compared to those of disjoint intervals.

Figure 69: Simultaneous decryption of four messages composed with overlapping
encryption slots. The structure of the figure is equivalent to that of Fig. 68. The
equivalent aggregate bit rate is also 20 Gbits/s. The metrics used are cross-correlation
measurements.

As explained above, the discrimination criterion relies here on the nonlinear func-

tions that must produce the statistically decorrelated carriers to recover each message.

With OEO-based architectures, the use of a cosine-square nonlinearity with different

frequencies of oscillations gives a simple and flexible method to generate decorrelated

carriers. However, in the general case producing such carriers is not easy and does not

straightforwardly lead to the results observed with OEO. As an example, a numerical

simulation was carried out with a Mackey-Glass system with two feedback loops to

generate the signals used as carriers (similar to what was done with Eqs. 216-217).

It resulted in systematic high BER if overlapping intervals were considered due to
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the high correlation levels between the two carriers even when strongly mismatched

parameters were used in each feedback loop.

7.7 Performance and Limitations

In this section, we analyze the performance and limitations of the proposed architec-

ture when realized with an optoelectronic oscillator with multiple nonlinear delayed

feedback loops. The performance of the system is characterized by the spectral effi-

ciency and security in terms of time-delay identification. One of the key issues is the

limitation on the number of users and on the bit rate due to the metrics used (for in-

stance, correlation measurements). Indeed, the extraction of meaningful information

is closely associated with the duration of a symbol Ts.

7.7.1 Spectral Properties and Efficiency

One of the principal objectives of multiplexed chaos-based architectures is the im-

provement of spectral efficiency. In the case of a single user, the proposed time-delay

encryption technique can increase the intrinsic spectral efficiency of the carrier sig-

nal s(t). In the case of an OEO, the increase of symbol rate (1/Ts) and number

of symbols M , as illustrated in Fig. 70, leaves the bandwidth (defined at -20 dB)

unchanged. This is an extremely interesting feature of the proposed method in the

case of a single message encrypted. However, when multiple users are consider, the

use of several loops will affect the spectral properties of the multiplexed signal s(t).

Although additional feedback loops induce an increase of bandwidth (see Fig.

71), there is a relative increase of spectral efficiency. In the context of optoelectronic

oscillators, we monitor the evolution of the spectral properties of s(t) as the number

of loops increases. We notice that the bandwidth remains relatively unaffected by

an increase in the number of loops, either with multiple disjoint (Fig. 71(a)) or

overlapping encryption slots (Fig. 71(a)). Meanwhile, the quantity of transmitted

information has been multiplied by four. If we denote Wn the bandwidth of the
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Figure 70: Power spectral density of the multiplexed carrier s(t) in the case of a
single user for an optoelectronic oscillator. (a) Influence of the symbol rate Fs = 1/Ts
for M = 2; (b) influence of the number of symbol at fixed symbol rate Fs = 1 GHz.
The simulations have been realized with the following numerical values: T = 25 ps,
θ = 5 µs, β = 5, ϕ0 = π/4 and ∆ = [20 ns, 30 ns].

architecture with n feedback loops and suppose that all the users at emitter transmit

with identical bit rates Bn = B, then the relative increase of efficiency between a

single and n users is E = nW1/Wn− 1. In our cases, the bandwidths W1 and W4 are

respectively measured as the spectral width 20 dB below the maximum value of the

PSD. In each case, identical numerical values to those of Figs. 68 and 69 are used in

the simulations. The bandwidths W1 and W4 are respectively measured 20 dB below

the maximum value of the estimated PSD. When each of the four users is transmitting

at 5 Gbit/s (Fs = 1GHz, Mi = 32), the percentage of relative increase of spectral

efficiency is approximately 100 % when disjoint intervals are used and approximately

300 % when they completely overlap. These large values found their explanation

first in the relatively small increase of bandwidth of the multiplexed signal when the

number of loops in the case of disjoint encryption intervals and second in the relative

decrease in bandwidth observed with overlapping encryption slots.
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Figure 71: Analysis of the spectral efficiency of the architecture. The power spectral
density of the multiplexed carrier s(t) is represented for n = 1, . . . , 4 users with
identical 5 Gbit/s bit rate per user, when the encryption slots ∆i are (a) disjoint or
(b) overlapping. The numerical values used are T = 12.5 ps, θ = 5 µs, βi = β = 20,
ϕ0i = iπ/4.

7.7.2 Bit-Rate Limitations with Low-Complexity Decryption

A possible solution to increase the bit-rate while using a low complexity decryption

consists of minimizing the fluctuations of the metric’s background (correlation or L2-

norm) that represents the primary source of errors when the bit rate increases, as

illustrated in Fig. 72(a). In some cases such as the ICG, it is possible to improve

the quality of the decoding by considering a modified optimization problem that will

reduce the metric’s fluctuations. It is assumed for the term 〈sBj ,τj , sBi,τ∗i 〉
Ωk to have

approximately the same behavior for every pair (τ ∗i , τj) ∈ ∆i × ∆j. Consequently,

even without knowing which symbols are transmitted by the other users Alicej, Bobi

can boldly assume that τj0 is always transmitted to attenuate strongly the variations

of the term
n∑

j=1,j 6=i

〈
sBi,τ∗i , sAj ,τj

〉Ωk . If correlation measurements are used as a metric,
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the optimization problem to solve becomes1

τ̂i = arg max
τ∗i ∈∆i

〈s, sBi,τ∗i 〉Ωk −

〈
sBi,τ∗i ,

n∑
j=1,j 6=i

sBj ,τj0

〉Ωk
 . (218)

Figure 72(b) shows the elimination of the false positive detected by the optimization

method (Eq. 210) in Fig. 72(a), the decrease in average of the correlation background

value and minimization of its large fluctuations. However, it does not allow us to

cancel all the false detection generated by a significant increase in bitrate (short

values for Ts). For instance, when the transmission conditions are optimal, with

n = 4 the BER is null when each user transmit at 1 Gsymbols/s and the standard

optimization problem of Eq. 210 is used. If the symbol rate is doubled, then the

BER is approximately 10−1. Using the modified optimization problem (Eq. 218 and

keeping the numerical values used previously, it allows one to improve on average

the BER by a factor of approximately 2 − 3. Figure 72 illustrates these results.

Figure 72(a) depicts the evolution of 〈s, sB1,θ〉Ωk for a time delay encrypted τ1|Ωk =

21.5625 ns. A sharp peak is located at θ = 21.6250 ns but its amplitude is not

a global extremum. In this particular case, the peak detected for the decryption

correspond to τ̂1|Ωk = 27.6250 ns thus leading to a decryption error. By considering

the correcting quantity 〈s−
∑4

j=2 sBj ,τj0 , sB1,θ〉Ωk , we observe a significant reduction of

the oscillations of the correlation background as well as an enhancement of the peak

located at θ = 21.6250 ns that becomes the global extremum. As a consequence, the

message encrypted by Alice1 is properly decrypted. The improvement of the BER

is illustrated in Fig. 72(c); the five previously corrupted bits are properly recovered,

when Eq. 218 is used.

1The L2-norm can also be used as a metric for

τ̂i = arg min
τ∗
i ∈∆i


∥∥∥∥∥∥s− sBi,τ∗

i
−

n∑
j=1,j 6=i

sBj ,τj0

∥∥∥∥∥∥
Ωk

2

 .
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Figure 72: Decryption using the modified optimization problem with correlation
measurements and a four-users architecture with Mi = 32 symbols (i = 1, . . . , 4) at 2
Giga symbols/s per user. (a) Decryption of the message transmitted by Alice1 using
the LC optimization based on the evolution of 〈s, sB1,θ〉Ωk . (b) Decryption using the
modified LC optimization based on the evolution of 〈s−

∑4
j=2 sBj ,τj0 , sB1,θ〉Ωk . (c) De-

crease of BER between the original (first row) and modified (second row) optimization
problem on a sequence of 50 bits.

There exists a lower bound for the symbols’ duration Ts under which systematic

errors are generated with a LC decryption. This limit depends on the number of

points to compute the metric (sampling rate) and on the typical time of fluctuations

of signals sAi(t). If one still wants to increase the bit rate at a fixed value of Ts, he

has to increase the density of symbols used per encryption slot without violating the

resolvability condition of the metric (necessary to ensure proper decryption). In our

approach, the density of symbol in a given interval ∆i is analog to the constellations

used in conventional digital communications (e.g. quadrature amplitude modulation

(QAM), phase-shift keying (PSK)). However, instead of being limited by the amount
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of energy attributed to each symbol, we are limited by the time separation in an en-

cryption interval. In conventional digital communications, it is known that when the

signal-to-noise ratio (SNR) is increased, the BER decreases thus leading to enhanced

decryption.2 When the channel is noisy, the symbols occupy a larger area in the

energy plane (see Fig. 73(a)). Without channel coding, the symbols’ spheres must

not intersect for the decryption to be error free. Therefore at a constant energy level,

this limits the size of the constellation. However, with more energy per symbol (in-

crease of SNR) it is possible to increase the size of the constellation and still maintain

error-free decryption (see Fig. 73(b)). By analogy, the increase of energy per symbol

in a constellation corresponds to enlarge the encryption slot ∆i.

Figure 73: Analogy between constellation of symbols in M -ary digital coding and M -
ary time-delay encoding with M = 8. (a) A 4-QAM is represented in the plane of the
two quadrature (P,Q) with energy Es and 8-QAM with energy 2Es (b) Time-delay
encoding in ∆i with Mi = 4 and in 2∆i with Mi = 8. The noise in the case of time-
delay-based decoding is related to the limit of resolution of correlation measurements
calculated on time slot Ωk.The noisy symbols are represented by disc, whose radius
correspond at the scattering at 3σ induced by a Gaussian noise N(0, σ2).

The noise induced by the communication channel scatters the position of each

2We do not account for the use of error control coding, that can optimize the BER at a given
energy level. We simply give a general tendency of the BER as a function of the SNR.
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symbol in the quadrature plane (P,Q). In our architecture, we suppose first that

the transmission is noiseless; otherwise it would disturb the chaos synchronization

between E and R. In our case, the noise source comes from the computation of the

metric. For instance, correlation measurements are calculated on finite time-slots Ωk,

therefore their resolution is limited. This loss of resolution can be interpreted as a

noisy effect or uncertainty on the measurement. For the simulations in Fig. 68 the

relative error of decryption is a few percent and it increases if the symbols’ durations

are reduced, because it becomes close to the limit in resolution of the metric. This

naturally imposes a certain separation between the different symbol to ensure a proper

decryption.

As an illustration, by considering an interval ∆i with average length 1280 ns and

M = 256 symbols, we maintain a density of 3.2 symbol/ns identical to the one used

with M = 32 and an average length of the encryption slots of 10 ns. These values

have proven to work well at 1 Gsymbol/s. Now, the binary representation of the

alphabet requires 8 bits thus leading to a cumulative bit rate of 32 Gbit/s with four

users instead of the 20 Gbit/s previously reached with a 5 bits binary representation.

7.8 Security and Cryptanalysis

The security (with respect to time-delay identification) in our approach benefits from

the fast stochastic and independent oscillations of each time delay on which data

is encoded. It is known that fixed time-delay systems face security flaws when the

values of the time delays are known. Despite their high dimensionality, an eavesdrop-

per can attack these systems in a low-dimensional space corresponding to its actual

state space dimension and where the nonlinear function of the system is identifiable

at a low computational cost, thus allowing for an easy reconstruction of the emitter

dynamics by analyzing the time series of the transmitted signal. Our approach cor-

responds to a generalization of time-delay commutations with a the single feedback

198



case (n = 1, M1 = 2) proposed in [141], except that in our architecture the commu-

tations are controlled by sources of information. In a single feedback loop case with

random commutation, it has been shown that a commutation time Ts smaller than

the smallest symbol value could prevent an eavesdropper from sequentially cracking

the cryptosystem using sections of the transmitted time series of length Ts where the

delays are maintained constant.

More precisely, by considering a system with a single discrete time-varying time

delay τ1 ∈ [τ10 −∆τ1/2, τ10 + ∆τ1/2] and Ts > min∆1 τ1(t), an eavesdropper can the-

oretically perform a time-delay estimation on each time-slot Ωk = [kTs, (k + 1)Ts].

Indeed, the detection of the a resonance associated to τ1 is possible only if this

value belongs to Ωk mod (Ts). Assuming now that the commutation time is faster

than the smallest value of τ1(t), then it will be necessary for Eve to use at least

b(max∆1 τ1 −min∆1 τ1)/Tsc intervals to perform the detection of a resonance associ-

ated to a time delay used to encrypt a message. Meanwhile, the time delay undergoes

many variations, such that an eavesdropper will detect the time-delay signatures but

not their respective time of emission. This principle remains true in the multi-users

case. Thus, to fulfill security requirements in our case, it is necessary for the symbol

duration to satisfy the inequality

Ts < min
i,k

τi|Ωk , (219)

which naturally generalizes [141] and gives an upper bound to the symbol duration

for the all time delays to be simultaneously concealed, when s(t) is analyzed. In the

most favorable scenario for the eavesdropper, a symbol’s identification is possible, but

the actual message remains unknown.

As an illustration, we have performed a security analysis in terms of time-delay

identification using delayed mutual information (DMI, see Chapter 4). Our find-

ings are presented in Fig. 74. We study an intensity chaos generator (ICG) with a

single stochastic-delayed loop and analyze the impact on security of the frequency
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of commutation (Fs = 1/Ts), the number of symbols (M), and the nonlinear gain

(β). Figure 74(a) presents a typical timedelay identification performed by an eaves-

dropper ignoring the exact moments of the time-delay commutations with frequency

Fs satisfying the condition in Eq. 219 and M = 4. Interestingly, linear combi-

nations of the time delays are also observed (marked by red bullets). To under-

stand the orgin of these side signatures, we consider the two-delay case (τ10 and

τ11 with M1 = 2). The multiplexed signal s(t) is formally equivalent to a system

with two loops and constant time delays activated by a function α0(t) = {0, 1}

that switches only at times t = kTs and keeps its value constant otherwise: s(t) =

α0(t)[β cos2(xE(t− τ10) +ϕ0)] + (1−α0(t))[β cos2(xE(t− τ11) +ϕ0)]. In such a system

with multiple loops, it is known that combinations of time delays will be observed.

This is why linear combinations (τ11 ± τ10) of time delays are detected in our archi-

tectures when DMI is used.

At weak nonlinear gain β and a low symbol density (0.2 symbol/ns) and only

two symbols (M1 = 2), the frequency of commutation does not erase the time-delay

signatures; it even enhances their amplitude (Fig. 74(b)). The number Mi of symbols

used to encode Alicei’s data source plays an fundamental role in the architecture’s

security. Indeed, if a realistic data source is employed, it may present repetitive

patterns. This is particularly true in the case of binary data streams. The consecutive

repetition of the same bit during many periods Ts increases the probability for an

eavesdropper to access information about the system and the transmitted messages.

However, if instead of encoding a binary digit of information on two time-delay values,

blocks of log2Mi bits are used; they can capture large repetitive structures of bits and

encode them as single time-delay values. Furthermore, if the density of symbols per

encryption slot is increased, the individual symbol signatures become more fuzzy (Fig.

74(c)). Finally, asMi/|∆i| is growing and if Ts is small enough, it increases the number

of values to commute between and, thus, the fast digital random commutations can be
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considered as acting close to a continuous-valued continuous-time stochastic process

for which security with respect to correlation-based (or DMI-based) attacks has been

demonstrated [171].

Therefore, this suggests that the Alices should employ sets of symbols as large

and dense as possible to tend to a stochastic evolution of the delay. Nevertheless,

the decryption method intrinsically limits the density of symbols to be encoded per

finite-size encryption slot beacuse of its finite resolution (see Condition (iii)), and the

equivalent achievable bit rate. As far as OEO with fixed delayed feedback loop are

concerned (ICG, WCG, or PCG), the increase of the feedback gain β leads to the de-

crease of the magnitude of the time-delay signature without its complete cancellation.

With randomly commutated time delays, however, the signature totally disappears

even when the density of symbol is not high (Fig. 74(d)). Thus, a trade-off can

be found between the nonlinear strength, the commutations’ rate, and the symbol

density to ensure fast and secured transmission.

The analysis above has unveiled the driving principles that ensure a high level

of security for a single stochastic delayed feedback system. They can be applied

individually to the case of multiple users. As an illustration, in Fig. 75 we have

numerically investigated the security of the structure described by Eq. 212 in the

case of disjoint and overlapping intervals. The density of symbols is 3.2 symbols/ns,

the nonlinear gain is strong β = 20, and the frequency of commutation is fast Fs =

1/Ts = 1 GHz.

In these conditions, we see that no time-delay signatures are retrieved while using

DMI regardless of the type encryption chosen. However, the case for which encryption

slots ∆i completely overlaps will provide a higher level of security. Indeed, if an

eavesdropper perform a time-delay estimation based on the signal s(t) and that he

can (in the best-case scenario) recover the time delays used to encode the symbols,

he cannot determine a priori how many users are using a given set of symbols, when
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Figure 74: Security of our architecture based on an OEO for a single user (see Eq.
212). (a) Side time-delay signatures marked by red dots when M1 = 4, Fs = 1 GHz,
β = 5, and ϕ0 = π/4. (b) Influence of the commutation frequency frequency Fs =
1/Ts with M1 = 2, β = 5, ϕ0 = π/4. (c) Influence of the density of symbols M1/|∆1|
with Fs = 1 GHz, β = 5, ϕ0 = π/4, and |∆1| = 10 ns. (d) Influence of the nonlinear
gain β with Fs = 1 GHz, M1 = 4, and ϕ0 = π/4.
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Figure 75: Security analysis of the architecture based on the delayed-mutual infor-
mation estimator (DMI) with n = 4 users and (a) disjoint or (b) totally overlapping
encryption slots. The nonlinear gain is identical for all nonlinear function in (a) and
(b), Fs = 1 GHz, βi = 20, Fs = 1 GHz and Mi = 32, thus leading to a density of 3.2
symbols/ns.

the symbols are emitted and by whom. Consequently, this encryption is more secure

than its counterpart with disjoint encryption slots for which the users can be more

easily identified based on the time-delay values.

7.9 Conclusions

In this chapter, we have demonstrated the ability of a cryptosystem to encrypt n differ-

ent messages using a single nonlinear oscillator subjected to n time-delayed feedback

loops and to decrypt these messages using a synchronization-based technique. Our

method combines the randomness of the data sources and the hyperchaotic behavior

of time-delay systems in an efficient and secure way. The messages are encrypted

through digital modulation of the time delays of each loop while respecting certain

rules to guarantee the decryption at the receiving end. Two types of encryption have

been devised to encode the message’s symbol onto a time-delay: the use of (i) disjoint

encryption slots ∆i or (ii) overlapping intervals. In Configuration (i) freedom is given

to the choice of the nonlinear function that carries the modulated time-delay infor-

mation, whereas for Configuration (ii) the nonlinear function have to ensure proper

decorrelation between the various carrier and ensure a decryption without crosstalk.

203



When applied to an optoelectronic oscillator, such as the intensity chaos genera-

tor, our approach has proven to theoretically achieve multi-Gbit/s transmission with

multiple users while preserving a low level of computation complexity for the decryp-

tion, linearly increasing with the number of users. The increase of spectral efficiency

of the architecture is significant as the number of user increases, the use of overlap-

ping encryption intervals ensuring a higher level of performance. Furthermore, the

level of security is considerably enhanced, the existing method of identification (ACF,

DMI, LLM, or GNM) does not reveal any leak of information on the modulation of

the time delay if the density of symbols is large and the period of switching is smaller

that the minimum time-delay value used by the users to encrypt the data. Therefore,

this may offer perspectives towards efficient multi-user chaos-based communications

with a high level of security.
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CHAPTER VIII

CONCLUSION

8.1 Abstract

We recall our main results on security of optical-chaos cryptography, multiplexing,

and multi-user private communications. We also propose perspectives and future

directions of our research.
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8.2 Summary of the Results

Optical chaos-based communications have attracted considerable attention since high-

bit-rate physical-layer security have been achieved by exploiting the natural instabil-

ities existing in optoelectronic systems. This type of communication exploits the

noise-like appearance of a chaotic carrier to conceal an information-bearing mes-

sage. Then, with the property of chaos synchronization the message is decrypted at

the receiving end. The type of systems used as crypto-generators are mainly edge-

emitting lasers (EEL) or vertical-cavity surface-emitting lasers (VCSEL) in various

configurations (optical or optoelectronic feedback, current modulation, optical injec-

tion), optoelectronic oscillators (wavelength, intensity, or phase chaos generators),

and erbium-doped fiber ring lasers (EDFRL).

Within this particular framework, a particular focus was given to fundamental

properties of optical chaos synchronization, bifurcation mechanisms, and dynamical

regimes of these various systems transmitting a single data stream using conventional

chaos encryption techniques (chaos masking (CMa), chaos-shift keying (CSK), or

chaos modulation (CMo)).

We have identified two open problems of fundamental importance that may pre-

vent a large-scale deployment of optical-chaos cryptography in current optical net-

works: the quantification of security of optical cryptosystems and the possibility

to multiplex multiple chaotic optical signals to simultaneously transmit several data

streams with a high level of privacy while using a single communication channel.

In this thesis, we addressed the questions of security for the class of external cavity

semi-conductor lasers (ECSL) and of multiplexing using different systems (ECSL, or

electro-optic chaos generators) and demonstrated the possibility of multi-user com-

munications.
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8.2.1 Security Analysis of Chaotic Optoelectronic Devices

In Chapter 4, we have analyzed the security of an ECSL in terms of time-delay iden-

tification. Indeed, the use of a time-delay is known as a simple method to generate

high-dimensional chaos, which is a desirable property to prevent the most threaten-

ing attacks (reconstruction or forecasting techniques) performed by an eavesdropper.

The resulting computational security depends on the knowledge of the time-delay by

the eavesdropper. Therefore, it is critical to conceal this value to avoid attacks on the

system in a low-dimensional phase-space. With optoelectronic devices, the time-delay

identification is performed on the light intensity wiretapped from the communication

channel and analyzed by standard time-delay estimators such as the autocovariance

function, the delay-mutual information, or global nonlinear models. First, we have

demonstrated the key role of the tunable and operational ECSL parameters on the

time-delay concealment: the feedback strength (η), the pumping current (J), and the

choice of the time-delay (τ , TD) value in comparison with the relaxation-oscillation

period (τRO, ROP). We have also highlighted the scenarios of difficult time-delay

identification (TD signature invisible or strongly perturbated in the estimators) that

occur for a combination of relatively weak feedback rates, weak pumping currents,

and close values of the two time-scales TD and ROP. Second, we linked the origin

of the difficult identifications with the specific nonlinear dynamics and time-scales

appearing in the ECSL during its bifurcation cascade leading to chaos. At weak feed-

back rates, the ECSL’s chaotic dynamics is reminiscent of the time scales involved in

the early stages of its dynamics, such as the undamped relaxation-oscillation (UROP)

time-scale and possibly time scales of Period-Doubling and Quasi-Periodic dynamics

(if these routes are taken by the ECSL). In these chaotic regimes, the time-delay

estimators exhibit complex modulated shapes typical of the presence of those vari-

ous ECSL time scales. When TD and ROP are close to each other, the true value

of the time delay is efficiently concealed in various ways: (1) significant shift of the

207



location of the strongly-damped TD signature and (2) complete disappearance of the

time-delay signature replaced by relaxed oscillations. The choice between these two

generic types of concealment is made by the system as it undergoes its route to chaos.

If the time delay does not appear in the early stages of the ECSL dynamics, Scenario

(2) will be observed. Otherwise, it will be Scenario (1) that ensures an imperfect

concealment (an experienced eavesdropper could still infer partial knowledge on the

TD). The influence of some of the internal parameters of the lasers has been also

investigated. We have identified that they may impact the range of the operational

parameters for which a good time-delay concealment is ensured. Finally, the robust-

ness of our results has been checked with other signal processing techniques such as

neural networks, filling-factor methods, or statistics of extrema. Our results are of

particular interest for designing a chaotic emitter based on an ECSL with the best

concealment of its critical system parameters, hence also improving overall security

in optical chaos-based communications using semiconductor-laser technologies.

8.2.2 Chaos Multiplexing and Multi-User Communications

In the second topic of the thesis, we studied various configurations and encryption

methods to increase the spectral efficiency of optical chaos-based cryptosystems. We

have devoted our attention to fundamental properties of chaos-synchronization of

multiple chaotic lasers, and optoelectronic systems with multiple delayed nonlinear

feedbacks. We have also addressed key issues on multiplexing and demultiplexing of

digital information with these different architectures.

In Chapter 5, we have reported the possibility to multiplex chaotic optical fields

generated by multiple edge-emitting semiconductor lasers (EELs). At the emission,

the various optical fields are combined inside a shared external optical cavity into

a single multiplexed signal. Each master laser (Mk, k = 1, . . . , n) at the emitting

side is optically injected by the other lasers with specific coupling strengths and
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time-delays. The multiplexed signal is then unidirectionally sent through an opti-

cal channel and injects decoupled slaves lasers (Sk). The EELs are damped-relaxed

or passive oscillators that require external degrees of freedom to exhibit chaotic be-

havior. The multiplexed electric field is considered as a driving signal for both the

master and the slave of a given pair Mk/Sk. Our architecture, which is a general-

ization of the classical single-emitter/single-receiver synchronization problem, can be

seen as an active-passive decomposition (APD) problem. Under the right necessary

coupling conditions, we have demonstrated that each pair of lasers could completely

synchronize with specific lag times. These coupling conditions correspond to a sim-

ilar injection strength of the multiplexed field to the master and to the slave of an

identical pair; the time lag being the time difference between the flight time in the

communication channel with the optical delay associated to the shared-cavity arm.

The system being modeled in the Lang-Kobayashi framework, we unveiled several

properties on the stability of the synchronization manifolds. Through a numerical

analysis, we have shown that

• The region in the 2n−dimension operational parameters space (pumping cur-

rents of each master and injection strengths), for which complete chaos synchro-

nization is achieved for each pair, is large. We also highlighted the existence of

hybrid regimes where only specific pairs of lasers are synchronized.

• The synchronization manifold is robust with respect to intrinsic noise source

(such as the spontaneous-emission noise), but the quality of synchronization

degrades.

• The synchronization manifold is robust with respect to parameter mismatch

(both internal and operational) between the master and the slave lasers of

a given pair with similar performances to those of the single-emitter/single-

receiver case. However, there are no limitations in the amount of mismatch
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between two different pairs.

Finally, we addressed the question of multiplexing of information. We adapted

conventional encryption techniques of digital messages to the multi-user case. Only

CSK and CMo could be applied to our context, where uncoded messages were used.

The use of CMa resulted in a partial loss of information (some combination of

bit/symbol could not be recovered). With EEL systems,

• CSK is performed by modulating the pumping current of each laser between

two different levels (Jmk,0 and Jmk,1). Subsequently, each master Mk (k = 1, . . . , n)

jumps from a chaotic attractor to another one depending on the pumping cur-

rent. The resulting multiplexed field can therefore be generated by 2n different

combinations of chaotic attractors (associated with each master laser) and will

lead to an exponentially complex decryption. The decryption is made possible

by the existence of chaos synchronization. However, the transition between a

combination of attractors to another one is bounded by the resynchronization

time, which intrinsically limits the maximum achievable bitrate (several hun-

dreds of Mbit/s per user in our context). Different decryption strategies can

be devised with either a linear or exponential computational complexity. The

use of 2n receivers was first proposed (for each master Mk, two slaves Sk,0 and

Sk,1 respectively pumped with the currents Jmk,0 and Jmk,1). Candidate combi-

nations (2n ) are generated and subtracted from the multiplexed field before

being detected by a photodiode. A minimum is observed, when a combina-

tion of n pumping currents at the receiving end matches the one used at the

emitting end, and it serves as the decrypted values for the n messages at once.

The complexity of this method is exponential. Another possibility consists of

using n receivers and set each of them with either one of the two pumping

currents (Jsk = Jmk,0/1) used by their corresponding master. To recover the kth
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message, the kth optical field is then subtracted from the multiplexed field and

the result is photodetected. The messages are recovered because of dropouts in

the amplitude of the detector’s output (when the pumping current of kth slave

matches that of the kth master) that correspond to the cancellation of kth mas-

ter field from the multiplexed field. This methods is suboptimal and does not

ensure a perfect discrimination threshold between the transmitted bits, but its

computational complexity is linear with the number of messages.

• CMo is performed by encoding each user’s message either on the amplitude or

the phase of the optical field of his corresponding master. This requires the

modification of the original setup by including an optical circulation. The main

advantage over the CSK method is that the various messages participate to the

dynamics of each emitter Mk and therefore a single chaotic attractor is used per

laser. This prevents the limitations in terms of bit rate and quality of synchro-

nization imposed by the resynchronization time in CSK. In terms of decryption,

the CMo suffers from the same computational complexity issues as those of CSK

and the decryption strategies are essentially identical to those exposed herein-

before. We demonstrated numerically the possibility to encrypt two messages

at 1 Gbit/s using either exponentially- or linearly-complex decryption.

Our architecture could be easily generalized to a larger number of users and could

potentially handle private communications for large optical networks. It constitutes

a first natural extension of the classical paradigm of a single secure transmission of

message using chaotic optoelectronic devices.

In Chapter 6, we have proposed to go beyond the traditional optical chaos cryp-

tography relying essentially on CMa, CSK, and CMo. We were aiming at applying

code-division multiple access (CDMA) approaches to chaotic optoelectronic devices.

CDMA is a multiplexing technique widely employed in conventional communications.
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Contrary to time- or wavelength- division multiplexing (TDM or WDM), it offers the

entire channel’s bandwidth at all times for every user. The discrimination is made at

the statistical level and not by the time of emission (TDM) or the frequency range

(WDM). In conventional multi-user communications, CDMA makes use of multiple

fixed pseudo-random binary signals (known as codes) to spread out the spectrum of

various data streams, which then are modulated and summed to overlap spectrally. At

the receiver, the code are available and used to recover the data with correlation-based

detection. These codes are orthogonal (with respect to a particular inner product)

and guarantee a linear complexity of decryption. These are desirable properties that

we have transposed to the context of optical chaos-based communications. The main

issue was the time-varying nature of the chaotic codes employed, changing for every

bit transmitted. We proposed to use an electro-optic oscillator (EOO) with multiple

delayed feedback loops, with a different cosine-square nonlinearity generated by each

Mach-Zehnder modulator. Each of these nonlinearities will be used as a chaotic code

to spread, modulate, and transmit a specific user’s data stream. The chaotic codes

have to be recombined into a single multiplexed signal before being reinjected in the

dynamics of the EOO. Two configurations have been investigated:

• Configuration (1) uses multiple photo-detectors, one per optical arm. This

results in an electrical multiplexed signal comprised of a sum of cosine-square

nonlinearities.

• Configuration (2) uses a single photo-detector. This results in a single opti-

cal multiplexed signal that is later electro-optically converted. Depending on

the characteristic of the optical sources and optical arms used, interference

may (Configuration (2a)) or not (Configuration (2b), with multiple CW laser

sources emitting at different frequencies) appear, thus affecting the dynamics

of the EOO architecture. In this configuration, the multiplexed signal is not

necessarily a sum of cosine square functions.
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For each configuration, the multiplexed signal is then transmitted to a physical copy of

the EOO emitter. Chaos synchronization is ensured thanks to an APD-like structure

of the overall transmission chain. In the various configurations, obtaining orthogo-

nality (decorrelation) between the different codes is desirable to allow a large number

of users to communicate and ensure a linearly-complex correlation-based decryption.

The statistical properties of the code are controlled by the following parameters the

external gain (βi), the frequency of the nonlinearity (ωi, physically an internal gain),

and a phase-shift (ϕ0i). We unveil that a combination of large values of βi and fre-

quency detuning (∆ωij = ωj − ωi) ensures a quasi perfect orthogonality. We also

devised several decoding strategies and demonstrated numerically private multi-user

transmissions at 2.5 Gbit/s per user (bit rate of the OC-48 standard). When interfer-

ence is considered in the model, performance slightly degrades but the independent

recovery of multiple messages is still possible, providing an adaptation of the decoding

formula.

Finally in Chapter 7, we proposed an architecture that encompasses the two as-

pects developed in this thesis: the security in term of time-delay concealment and the

multi-user communications. We consider a nonlinear oscillator with multiple delayed

nonlinear feedback loops, whose time delays are digitally modulated on M different

levels (associated with M−ary messages) by legitimate users Alicei (i = 1, . . . , n).

Each time-delay varies discretely in a specific encryption slot (∆i, i = 1, . . . , n). Two

encryption strategies were devised:

• Configuration (1): disjoint encryption intervals are used, with no restriction on

the choice of the nonlinear functions.

• Configuration (2): overlapping encryption intervals are used, the nonlinear func-

tions being different.

Each time-delay-modulated nonlinearity carries a specific user’s data stream; they
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are all combined into a single multiplexed signal that drives the dynamics of both

the emitter (E) and receiver (R). The decryption strategies for legitimate users to

exchange securely information rely on the calculation of a particular metric (cross-

correlation or L2−norm) between the multiplexed signal and the various candidate

carriers identical to those used by Alicei except for the knowledge of the time delay.

The time delays can be inferred jointly (exponentially complex calculations) or in-

dependently (linearly complex calculations) by finding the maximum (or minimum)

argument of the metric. The simulation of an electro-optic oscillator (EOO) demon-

strates four-users-transmission at 5 Gbits/s per user. The security of the proposed

architecture was evaluated using standard time-delay estimators such as the delayed

mutual information (DMI). We have highlighted the key roles of the density of sym-

bols per encryption slot (M/|∆i|) and the symbol rate on the security, canceling the

time-delay signatures (associated with M different levels).

Our method combines the randomness of the data sources and the hyperchaotic-

ity of time-delay systems, and offers perspectives both in terms of bit rate, spectral

efficiency, and security enhancement for future multi-user optical chaos-based com-

munications.

8.3 Perspectives

In future research, we will complemented the two axes developed in this proposal:

(1) security analysis and (2) chaos multiplexing and multi-user communications. The

following section presents various points that could lead to complementary results in

our current research.

8.3.1 Perspectives on Security Analysis

• Our security analysis has revealed that ECSL, contrary to common knowledge,

can exhibit a high level of confidentiality with respect to the time-delay iden-

tification. This result has been interpreted from a dynamical point of view;
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however there are still configurations that require additional study. Configu-

rations for which the relaxation-oscillation period τRO is greater than the time

delay τ (the so-called short-cavity regime) have to be investigated and their

level of security has to be compared to the cases studied in the thesis where

τRO was smaller than τ (the so-called long-cavity regimes). The short-cavity

configurations could be more efficient than the long-cavity ones by ensuring for

instance a larger parameter range (feedback strength and pumping current) for

the time-delay signature concealment. The identification of the complete struc-

ture of the ECLS and its remaining parameters based on the analysis of a single

scalar intensity time series is also a possible direction.

• Our findings are based on theoretical and numerical simulations; the realization

of an experimental setup to implement the optimized concealment scenarios

would allow us to quantify performance in real conditions.

8.3.2 Perspectives on Chaos Multiplexing and Multi-User Communica-
tions

• Multiplexing optical chaos using ECSL. Our setup has highlighted for the

first time a method to multiplex optical signals generated by coupled ECSLs.

The synchronization and the evolution in size of the parameter space (allowing

the existence of synchronization) with an increasing number of lasers is crucial

to the generalization of our multiplexing architecture. Our architecture could be

also used to generate orthogonal optical signals to perform CDMA-like encryp-

tion, similar to our work with chaotic electro-optical oscillators with multiple

loops. The difference would be that signals are generated by multiple chaotic

oscillators. This would require a detailed analysis of the influence of internal

and coupling parameters on the orthogonality.
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The realization of an experimental setup starting with two pairs of lasers consti-

tutes a major perspective of our work. This investigation could also trigger the

application of our approach to other types of systems that are known to be less

sensitive to external perturbations such as integrated external-cavity lasers or

lasers with optoelectronic feedback. Finally, a detailed security analysis has to

be performed to quantify the potential enhancement of privacy due to the use

of multiple coupled systems with the various encryption setups studied: CMa,

CSK, and CMo.

• Generation of Code using Electro-optic Generators. We have proposed

various configurations for a multiplexing architecture based on electro-optic os-

cillators (EOO) with multiple feedback loops. The complexity of the decoding

equation in the configuration with interference and the limitations in term of

bit rate are two different significant limitations that results mainly from our

encryption strategy. Investigating alternate structures of EOO to prevent in-

terference and alternate encryption strategies are important issues that need

additional studies. Hitherto, our encryption and decryption methods have been

tested only in optimal transmission conditions. Consequently, it is necessary

to evaluate performance of the architecture in the presence of noise and pa-

rameter mismatch in order to probe the fundamental limits of our structures

with additional realistic constraints. This would pave the way toward successful

implementation of an experimental setup.
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et Application à la cryptographie. PhD in Engineering Sciences, Université de
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