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SUMMARY

Traditional solutions to information security in communication systems act in

the application layer and are oblivious to the effects in the physical layer. Physical-

layer security methods, of which information-theoretic security is a special case, try

to extract security from the random effects in the physical layer. The wiretap channel

model, where the transmitted symbols can be observed by a legitimate receiver and an

eavesdropper through two different noisy channels, is of special interest in information-

theoretic security. In information-theoretic security, there are two asymptotic notions

of secrecy—weak and strong secrecy.

This dissertation investigates the problem of information-theoretic strong secrecy

on the binary erasure wiretap channel (BEWC) with a specific focus on designing

practical codes. The codes designed in this work are based on analysis and techniques

from error-correcting codes. In particular, the dual codes of certain low-density parity-

check (LDPC) codes are shown to achieve strong secrecy in a coset coding scheme.

First, we analyze the asymptotic block-error rate of short-cycle-free LDPC codes

when they are transmitted over a binary erasure channel (BEC) and decoded using

the belief propagation (BP) decoder. Under certain conditions, we show that the

asymptotic block-error rate falls according to an inverse square law in block length,

which is shown to be a sufficient condition for the dual codes to achieve strong secrecy.

Next, we construct large-girth LDPC codes using algorithms from graph theory

and show that the asymptotic bit-error rate of these codes follow a sub-exponential

decay as the block length increases, which is a sufficient condition for strong secrecy.

The secrecy rates achieved by the duals of large-girth LDPC codes is shown to be an

improvement over that of the duals of short-cycle-free LDPC codes.

xiii



CHAPTER I

INTRODUCTION

Communication systems and wireless networks have been growing very rapidly in the

last few decades. The very nature of wireless systems allows anybody with a radio

receiver to capture signals which may carry sensitive information. In addition, there

is a growing trend among individuals and corporations to store personal and financial

information on the Internet, potentially making it accessible to anybody with an

Internet connection. Therefore, steps need to be taken to make sure that sensitive

information may not be intercepted by malicious parties.

The traditional means of securing information is through cryptography, which is

usually employed at the application layer; this security method is blind to what is hap-

pening at the physical layer. Recently, there has been some research on physical-layer

security to develop techniques that take advantage of the properties of the physical

communication medium to achieve security. There are several approaches to physical-

layer security, and one of them is information-theoretic security. Cryptographic secu-

rity assumes that the eavesdropper of a secure transmission has unlimited access to the

transmission, but a limited processing power; due to this, conventional cryptography

is sometimes also called computational security. On the other hand, information-

theoretic security assumes that the eavesdropper has a limited access to the trans-

mission, but an unlimited power to process it. This aspect of information-theoretic

security is crucial because computation hardware is getting drastically cheaper every

day; this means that computational security schemes that are currently considered

secure will no longer be secure in the future.

For example, the Data Encryption Standard (DES) encryption scheme employs a
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56-bit key and was approved as a standard by the U.S. National Bureau of Standards

in 1976. In 1997, a DES cryptogram was broken for the first time in public. In 1998,

the Deep Crack hardware broke a DES key in 56 hours [2]. The time taken to crack

a DES key was reduced to less than 23 hours in 1999 using distributed computing.

As computers keep getting more powerful every day, encryption schemes must also

catch up with them. In this aspect, information-theoretic security is superior because

it always assumes that the attacker has unbounded computing resources.

1.1 Physical-Layer Security

The point-to-point communication system with a single adversary is a fundamental

model for studying information security. In this model, the transmitter sends a secure

message to the legitimate receiver in such a way that the adversary cannot understand

it. The legitimate parties are aware of the presence of the adversary and its abilities.

In any secure communication scheme on the point-to-point communication system,

the legitimate receiver must have some advantage over the adversary that can be used

to achieve security. In the case of symmetric-key cryptography, the legitimate receiver

knows the secret key used by the transmitter, which is unknown to the adversary.

In asymmetric-key cryptography, the legitimate receiver can convey its public key,

which can be verified by the transmitter to be authentic. This is a clear advantage

over the adversary, who cannot mimic the actions of the legitimate receiver.

Any communication system that is deployed in the real world is subject to the ran-

dom nature of physical communication media. These random effects include thermal

(electronic) noise, interference, fading, etc. Suppose the point-to-point communica-

tion system is such that the physical communication medium affects the adversary’s

signal more unfavorably than the legitimate receiver’s signal. In terms of signal qual-

ity, the legitimate receiver has a clear advantage over the adversary. Exploiting this

2



Secured high-SNR region

Eavesdropper

Transmitter

Legitimate
receiver

Figure 1: A wireless communication system with an eavesdropper outside the secured
region.

advantage to achieve secure communication between the transmitter and the legiti-

mate receiver is the primary objective of physical-layer security.

1.1.1 Some Motivating Examples

1. Consider a wireless system (Fig. 1) where a transmitter and a legitimate receiver

are located in a secured area, say inside a building, that is inaccessible to an

eavesdropper. The eavesdropper can only listen in on the wireless signal from

outside the secured area, and therefore receives a signal with a lower intensity

than the legitimate receiver.

2. Consider a distributed data-storage system where sensitive information must

be stored in multiple storage nodes at different geographic locations. Once

the data is stored, the system provides on-line access to a legitimate party to

remotely read all the storage nodes. An illegitimate party (eavesdropper), who

does not have on-line access to the nodes, can obtain offline access to some of

the storage nodes. For example, the eavesdropper can bribe the caretaker of a

particular storage node to get access to it. Assuming that the eavesdropper can

3



corrupt only a fraction of storage nodes in this manner, the legitimate party

has a physical-layer advantage over the eavesdropper.

Though there are practical situations which can benefit from physical-layer se-

curity, the information-theoretic aspects of it are still not well-understood. Under-

standing the information-theoretic security aspects of simple abstract systems is an

important stepping stone for designing information-theoretically secure practical sys-

tems. In this dissertation, we focus on theoretical scenarios involving abstract system

models.

1.2 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, we discuss some of the fun-

damental ideas in information-theoretic security and give a brief overview of some

of the prior work related to this dissertation. In Chapter 3, we will introduce our

channel model and our strong secrecy goal. We will also show in Chapter 3 that we

can solve our strong secrecy problem by solving a related channel-coding problem. In

the next two chapters, we will discuss two of our solutions to the related channel cod-

ing problem. Chapter 4 discusses our solution involving short-cycle-free low-density

parity-check (LDPC) codes, where we show that LDPC codes without cycles of length

two or four, and minimum left degree more than two can be used to construct a cod-

ing scheme that achieves strong secrecy on our channel model. In Chapter 5, we show

that LDPC codes with girth growing logarithmically in block length can be used to

achieve strong secrecy. Finally, we summarize our contributions and outline some

future directions in Chapter 6.
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CHAPTER II

THE FUNDAMENTALS OF

INFORMATION-THEORETIC SECURITY

In this chapter, we summarize the basic ideas in information-theoretic security and

discuss works that are closely related to this dissertation. In the first section, we

give a quick overview of the definitions in information theory with regard to discrete

random variables. In the next section, we summarize the notions of information-

theoretic security on the wiretap channel. In the later sections, we will discuss some

of the prior works regarding wiretap channels and secrecy coding for wiretap channels.

2.1 Information Theory—Basic Definitions

In this dissertation, we will deal with only discrete random variables, i.e., random

variables distributed over a finite alphabet. This section summarizes the definitions

in information theory that will be used in the subsequent chapters. These definitions

are narrow in scope since our random variables are all discrete. For a more general

discussion, we refer the reader to the book by Cover and Thomas [3].

Definition 2.1 (Shannon Entropy). Given a discrete random variable X taking val-

ues in a finite alphabet X according to the probability distribution pX(x), the Shan-

non entropy of X is defined as

H(X) = ∑
x∈X

−pX(x) log2 pX(x)

where we set 0 log2 0 to 0 (strictly speaking, the summation is over the values for

which pX(x) > 0). ▼

5



Intuitively, the Shannon entropy H(X) is a quantitative measure of the random-

ness in X. In this dissertation, we call Shannon entropy as just “entropy.”

Definition 2.2 (Conditional Entropy). Given two random variables X and Y taking

values in finite alphabets X and Y, respectively, the conditional entropy H(Y ∣X) is

defined as

H(Y ∣X) = ∑
x∈X

pX(x)H(Y ∣X = x)

where H(Y ∣X = x) is the entropy of Y calculated using the conditional probability

distribution pY ∣X(y∣x) over y ∈ Y. ▼

The conditional entropy H(Y ∣X) is the measure of the randomness in Y given the

knowledge of X.

Definition 2.3 (Mutual Information). The mutual information between two discrete

random variables X and Y is defined as

I(X;Y ) = H(X) −H(X ∣Y )

▼

The mutual information I(X;Y ), which is a symmetric function, is the amount of

information obtained about X by observing Y (and vice versa).

2.2 Information-theoretic Secrecy

The focus of this dissertation is the wiretap channel model, a generalized version of

which is depicted in Fig. 2. This system consists of three parties,

1. Alice—the transmitter

2. Bob—the legitimate receiver

3. Eve—the eavesdropper

6



Eve

Channel

Secret 
message

Alice Bob

Encoder Decoder

Figure 2: The generalized wiretap system model.

Eve is a “passive” eavesdropper in the sense that she cannot influence Alice or the

channel in any way. This is one of the fundamental models used in classical cryptog-

raphy and in information-theoretic security. It is important to note that the current

works in classical cryptography consider fairly advanced attack models where the

attacker can control the channel and also influence the transmitter. In fact, there

are practical cryptographic schemes that provide security even in such models in-

volving powerful adversaries. However, the area of information-theoretic security has

not yet advanced to a sufficiently mature level to consider models involving powerful

attackers.

Information-theoretic security usually considers the case where the wiretap chan-

nel is memoryless, and has discrete input alphabet and a discrete output alphabet.

The input alphabet is X , and the output alphabets are Y and Z for Bob and Eve,

respectively. The alphabets X ,Y and Z are finite. For a memoryless channel, suc-

cessive transmissions are independent of each other and the channel is defined by its

joint transition probability pY Z∣X(y, z∣x).

Alice has a secret message S, uniformly distributed over a discrete alphabet S,

that she wants to convey to Bob through the wiretap channel in such a way that Eve

cannot obtain S. To this end, Alice encodes S into a cryptogram Xn, which is an

n-symbol vector over X , and transmits it over the channel. In this case, the block

7



length of the encoder En is defined to be n and the rate R of the encoder is defined as

R =
log2 ∣S∣

n

The encoder and the channel characteristic pY Z∣X are assumed to be publicly

known, i.e., Eve’s knowledge about the channel and the encoder is as good as Bob’s.

Alice’s objective is to design the encoder such that the following objectives are met.

1. Reliability: Bob should be able to decode the secret S from his observation

Y n.

2. Secrecy: Eve should not be able to obtain S from her observation Zn.

The precise definition of “secrecy” is the difference between cryptography and

information-theoretic security. In cryptography, secrecy is defined in terms of the

(infeasible) amount of computation required on Eve’s part to decode S from Zn. In

the information-theoretic approach, secrecy is defined in terms of the mutual infor-

mation between the secret and Eve’s observation. Even under the information theory

umbrella, there are different definitions of secrecy, namely, Shannon perfect secrecy,

strong secrecy, and weak secrecy.

Definition 2.4 (Perfect Secrecy). An encoder for the wiretap model achieves perfect

secrecy in Shannon’s sense if the probability of error in Bob’s estimate Ŝ is zero and

the mutual information between Eve’s observation Zn and the secret S is zero; that

is,

Pr(Ŝ ≠ S) = 0 (Reliability)

I(S;Zn) = 0 (Secrecy)

Equivalently, perfect secrecy is said to be achieved if the a priori probability distri-

bution of S is the same as Eve’s a posteriori probability distribution of S. ▼
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2.2.1 Asymptotic Secrecy

Even when abstract wiretap models are considered, the above perfect secrecy criterion

is achieved only in very few cases. The definition of perfect secrecy considers a single

encoder En and a single secret message alphabet S. In contrast, the notions weak

and strong secrecy are asymptotic notions that consider a sequence of constant-rate

encoders (Enk)k∈N with increasing block lengths (nk) and message alphabets (Snk).

For simplicity, the subscript k can be dropped. Since the rates of the encoders are all

equal to R, we have

R =
log2 ∣Sn∣

n
, ∀n ∈ {nk}

For a given encoder block length n, the asymptotic notions of secrecy consider the

case where the message S, which is distributed uniformly over the message alphabet

Sn, is encoded using En into an n-symbol vector Xn and transmitted over the wiretap

channel. The reliability criterion of the encoder sequence is specified in an asymptotic

manner.

Definition 2.5 (Reliability). An encoder sequence (En), with constant rate and in-

creasing block length n, is said to achieve reliability on the wiretap channel if there

exists a sequence of decoders (Dn) for which the probability of error in Bob’s estimate

Ŝ ≜ Dn(Y n) of the secret S obeys

lim
n→∞

Pr (S ≠ Ŝ) = 0

In other words, the probability that Bob decodes the message incorrectly goes to zero

as n increases. ▼

Definition 2.6 (Weak Secrecy). An encoder sequence (En), with constant rate and

increasing block length n, is said to achieve weak secrecy on the wiretap channel if

it achieves reliability, and the mutual information between Eve’s observation Zn and

9



the secret S is such that

lim
n→∞

1

n
I(S;Zn) = 0

That is, the rate of information leakage to Eve converges to zero as n increases. ▼

Definition 2.7 (Strong Secrecy). The encoder sequence (En), with constant rate and

increasing block length n, is said to achieve strong secrecy on the wiretap channel if

it achieves reliability, and the mutual information between Eve’s observation Zn and

the secret S is such that

lim
n→∞

I(S;Zn) = 0

That is, the amount of information leaked to Eve goes to zero as n increases. ▼

A secret information rate R is said to be achievable with strong (weak) secrecy

on the wiretap channel if there exists a sequence of encoders of rate R that achieve

strong (weak) secrecy.

Definition 2.8 (Secrecy Capacity). The strong secrecy capacity C̄s of the wiretap

channel is the supremum of all possible information rates R that are achievable with

strong secrecy. The weak secrecy capacity Cs is defined as the supremum of all

possible information rates that are achievable with weak secrecy. ▼

2.3 Historical Background

2.3.1 Perfect Secrecy using a Secret Key

The idea of using information theory to analyze cryptosystems was first introduced by

Shannon in his 1949 paper. In [4], Shannon considers the system model illustrated in

Fig. 3. Prior to transmission, Alice and Bob share a secret key K, which is a random

variable distributed over a set of finite values. The key K is not revealed to Eve.

The secret message S must be conveyed to Bob through a noiseless wiretap channel,

10
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Figure 3: A schematic of Shannon’s secrecy system

i.e., Xn = Y n = Zn. The encoder En uses both K and S as inputs and outputs the

codeword Xn. Shannon showed that perfect secrecy on this model can be achieved

only if

H(K) ≥ H(S)

In other words, perfect secrecy can be achieved only if the secret key is at least as

long as the secret message.

To achieve perfect secrecy on this model, Alice may encode S using Vernam’s

cipher, also known as the one-time pad [5]. For example, when S and K are inde-

pendent uniformly distributed n-bit random vectors, the one-time pad encoder will

output Xn = S ⊕K, where ⊕ denotes the bit-wise exclusive-OR operation. Given K,

Bob can easily decode S from Xn. Eve, on the other hand, does not know K and the

amount of information leaked to her by Xn is zero, i.e., I(S;Xn) = 0.

However, we note that secure schemes that use a secret key require an addi-

tional channel to transmit the key. The channel for the secret key is assumed to

be completely off-limits to the eavesdropper, and such a channel may not exist in

certain scenarios. This additional requirement is not present most of the schemes in

information-theoretic security, since they do not rely on a pre-shared secret key.
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Figure 4: A schematic of Wyner’s wiretap model.

2.3.2 Secrecy Capacity of Wiretap Channels

Degraded Wiretap Channels

The idea of analyzing cryptosystems with noise was introduced by Wyner in his 1975

paper on wiretap channels [6]. Wyner’s wiretap model, illustrated in Fig. 4, consists

of a discrete memoryless channels (DMCs) for both Bob and Eve, with Eve’s channel

being a degraded version of Bob’s channel; in other words, Xn → Y n → Zn forms a

Markov chain. Wyner showed that whenever the channel capacity CM of the main

channel is more than the channel capacity CMW of the wiretap channel (i.e., the

capacity of the cascade of DMC 1 and DMC 2), the weak secrecy capacity Cs of the

wiretap model is positive. In particular, he showed [6, Thm. 3] that

Cs = max
pX∈P(Cs)

(I(X;Y ) − I(X;Z))

≥ CM −CMW

where P(Cs) represents the set of all distributions pX on the single channel input X

for which I(X;Y ) ≥ Cs.

Non-degraded Wiretap Channels

Csiszár and Körner [7] generalized Wyner’s model to cases where Eve’s observation

Zn need not be a degraded version of Bob’s observation Y n. For their channel model,

illustrated in Fig. 5, they showed [7, Cor. 2] that the weak secrecy capacity Cs is
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Figure 5: The wiretap model studied by Csiszár and Körner.

given by

Cs = max
V→X→Y Z

(I(V ;Y ) − I(V ;Z))

where V is an auxiliary random variable such that V → X → (Y,Z) forms a Markov

chain and the maximization in the above expression is done over all such V . In [8],

Körner and Marton introduced the notion of one channel being “less noisy” than

another channel—channel 1, given by X → Y , is said to be less noisy than channel 2,

given by X → Z, if

I(V ;Y ) ≥ I(V ;Z)

for all V → X → (Y,Z). Under this notion, Csiszár and Körner proved [7, Thm. 3]

that whenever the channel from Alice to Bob is less noisy than the channel from Alice

to Eve, the weak secrecy capacity is given by

Cs = max
pX

(I(X;Y ) − I(X;Z))

From Weak to Strong Secrecy

In the early years of the research on wiretap channels, the weak secrecy notion intro-

duced by Wyner [6] was in predominant use. It can be seen that a scheme with weak

secrecy can leak asymptotically unbounded amount of information, even though the

leakage rate may be zero. For example, the amount of leaked information can scale
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as n1−δ for arbitrarily small δ > 0; here the information leakage is unbounded while

the leakage rate goes to zero. Due to this, Csiszár [9], and, independently, Maurer

and Wolf [10] defined the notion of strong secrecy, and argued that this is a much

better security condition compared to weak secrecy. In [9], it was proved that the

technique of the earlier work by Csiszár and Körner [7], which focuses on achieving

weak secrecy, actually leads to strong secrecy. In [10], Maurer and Wolf proposed a

generic procedure to derive a strongly secret scheme from a weakly secret one using

extractors [11,12]. The key result of these two works is that for any wiretap channel,

the weak secrecy capacity Cs is equal to its strong secrecy capacity C̄s.

2.4 Wiretap Codes

Until recently, the majority of the work on wiretap channels used non-constructive

methods like the random-coding argument to show the existence of methods to achieve

secrecy capacity. In particular, they did not provide explicit construction of encoders

or wiretap codes to achieve secrecy, even at rates below the secrecy capacity. For

example, Wyner [6, §V] uses a random-coding argument to prove his main result,

while Csiszár and Körner [7, §IV] use an argument based on typical sequences.

Historically, the first explicit construction of wiretap codes was done in a slightly

modified version of the wiretap channel with combinatorial constraints. For proba-

bilistic channels, there are currently two approaches to secrecy coding—the LDPC

code based approach, and the polar coding approach.

2.4.1 Wiretap Channel with Combinatorial Constraints

While the works of Wyner, and Csiszár and Körner are concerned with a discrete

memoryless wiretap channel, the work by Ozarow and Wyner [13] considers a wiretap

model with a combinatorial constraint. This channel, called a type-II wiretap channel,

has a noiseless binary link between Alice and Bob such that a constant fraction of
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the transmitted bits are leaked to Eve. That is, if n bits are transmitted over the

channel and α is the leakage fraction, Eve is allowed to see µ = αn of the n transmitted

bits. Alice knows only the fraction α, but not the bit positions seen by Eve. Given

the parameter α, the secrecy capacity of the type-II wiretap channel is Cs = 1 − α.

Ozarow and Wyner proved [13, Thms. 2 & 3] that it is possible to achieve the weak

secrecy capacity of the type-II wiretap channel using a coset coding scheme. They

also showed [13, Thm. 4] that there exists a coset coding based wiretap code that

asymptotically leaks at most one bit to Eve; this result is stronger than the weak

secrecy notion and only slightly weaker than the strong secrecy notion.

Unlike the probabilistic channels of [6,7], it is possible to achieve perfect secrecy on

channels with combinatorial constraints. Wei [14] introduced the notion of generalized

Hamming weight of linear codes and related it to the problem of achieving perfect

secrecy on the type-II wiretap channel using coset coding.

Secret Sharing Schemes

In the cryptography community, a version of the type-II wiretap problem was studied

under the name secret sharing scheme. The first constructions of secret sharing

schemes were the ones by Blakley [15] and Shamir [16]. They studied the problem of

distributing a secret among n parties such that a cooperation of any k − 1 of them

cannot recover the secret whereas coalitions of any k of them can. McEliece and

Sarwate [17] showed that Shamir’s scheme was equivalent to coset coding with a

Reed-Solomon code.

In [18], Karnin, et al. generalized Shamir’s threshold scheme to ramp secret sharing

schemes. Here, a d-symbol long secret is broken into n different pieces so that any

k − d pieces or fewer do not give any information about the secret, whereas any k

pieces give complete information about the secret. In the same work, it was also

shown that any ramp scheme corresponds to a maximum distance separable code [19].
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In a secret sharing scheme, the subsets of pieces that can recover the secret are

called access sets, the subsets that convey no information about the secret are called

non-access sets, and the remaining subsets are called semi-access sets. Under this

terminology, Blakley and Shamir considered the case where all the subsets of size k

are access sets and there are no semi-access sets; Karnin, et al. considered the case

where sets of size k or more are access sets, sets of size k − d or less are non-access

sets and the remaining sets are semi-access sets.

The secret sharing problem was further generalized by Brickell and Davenport [20]

and Kurosawa, et al. [21] to include access sets of more general structures. Under this

framework, the secret sharing problem was linked [21] to combinatorial objects called

matroids [22]. Massey [23, 24] studied secret sharing schemes based on puncturing

linear codes and showed that the access structures in this scheme are related to the

minimal codewords of the underlying linear code.

2.4.2 The LDPC Code Approach

The first explicit code construction for probabilistic channels was done by Thangaraj,

et al. [1] using LDPC codes, where they consider a noiseless main channel and a binary

erasure channel for the wiretapper. They use the coset coding scheme of [6,13] using

the duals of LDPC codes and show that this scheme achieves weak secrecy at rates

close to secrecy capacity. The security mechanism of their technique is based on the

threshold effect of LDPC codes—when the limiting performance of LDPC codes over

a noisy channel is studied by varying the channel parameter, the asymptotic block-

error rate suddenly drops from a non-zero value to zero. The approach in [1] was

later extended to certain cases where the main channel is also noisy [25,26].
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2.4.3 The Polar Coding Approach

A new class of channel codes, called polar codes, were recently invented by Arıkan [27].

For a given binary input symmetric output channel, Arıkan showed that the polar

codes designed for that channel achieve the channel capacity. The basic mechanism

behind their capacity achieving property is channel polarization—by transforming n

bits using a carefully chosen linear transformation and transmitting them over the

channel, a portion of the bits (“bad” bits) can be made to appear as if they are

transmitted through a pure-noise channel and the remaining bits (“good” bits) can

be made to appear as if they are transmitted through a noiseless channel. The polar

code is defined by assigning a preset value to the bad bits and transmitting the

message using the good bits. It was shown in [27] that the fraction of the good bits

approaches the capacity of the channel, which directly means that polar codes are

capacity achieving.

The idea of designing wiretap codes using channel polarization was published by

several research groups almost simultaneously, namely, by Mahdavifar and Vardy [28,

29], Andersson, et al. [30], Hof and Shamai [31], and Koyluoglu and El Gamal [32].

The polar coding technique for wiretap codes can be outlined as follows.

1. Transmit the secret message on bit positions that are good for Bob, but bad for

Eve.

2. Transmit uniform independent and identically distributed (i.i.d.) random bits

on bit positions that are good for both Bob and Eve.

3. Transmit zeros on bit positions that are bad for both Bob and Eve.

The above technique works because of the channel capacity achieving property of

polar codes. The i.i.d. random bits are transmitted at a rate close to Eve’s channel

capacity and they can be perfectly decoded by Eve using a successive cancellation

decoder [27]. This means that Eve’s channel cannot carry any significant information
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about the secret message since it would be a violation of Shannon’s Noisy-Channel

Coding Theorem [33].

In the aforementioned works on the polar coding technique, it was shown that

this technique achieves the entire rate-equivocation region of degraded binary-input

symmetric-output wiretap channels. In particular, their schemes achieve weak se-

crecy at rates close to the secrecy capacity. For the case of non-degraded wiretap

channels and non-symmetric wiretap channels, this technique achieves weak secrecy,

but at rates away from the secrecy capacity. Among these works, the technique of

Mahdavifar and Vardy [29] is unique because it achieves strong secrecy for wiretap

models with a noiseless main channel at rates arbitrarily close to secrecy capacity.
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CHAPTER III

STRONG SECRECY OVER THE BINARY ERASURE

WIRETAP CHANNEL

In this dissertation, we are concerned with the problem of designing encoders for

achieving strong secrecy on the binary erasure wiretap channel (BEWC) model. In

this chapter, we will introduce the BEWC model and do an information-theoretic

analysis of the coset coding scheme for this model. We will then show (Lemma 3.3)

that the duals of certain “good” channel codes for an appropriate binary erasure

channel (BEC) can be used in a coset coding scheme to achieve strong secrecy on the

BEWC.

3.1 System Model and Motivation

3.1.1 Binary Erasure Wiretap Channel Model

The BEWC model is a special case of the wiretap channel model introduced in Sec-

tion 2.2. The BEWC model (Fig. 6), first studied by Thangaraj, et al. [1], consists

of two legitimate parties, Alice and Bob, who want to communicate in the presence

of a passive eavesdropper, Eve. The channel between Alice and Bob is a noiseless

binary channel. The channel between Alice and Eve, denoted by BEC(ξ), is a BEC

with erasure probability ξ. A bit sent through a BEC is either received unmodified

or is erased. Whenever an erasure occurs, the channel outputs the erasure symbol

‘?’. The BEC is a memoryless channel, which means that bits sent successively are

erased independently.

In the BEWC model, Alice’s secret S is a random variable uniformly distributed

over an alphabet Sn. Alice’s objective is to convey this secret message to Bob without
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Figure 6: The binary erasure wiretap channel model.

revealing it to Eve. In order to do this, Alice uses an encoder En to convert S into an

n-bit random variable Xn and then transmits Xn over the BEWC. The rate of the

encoder En is given by ratio of the input entropy to the output block length, i.e.,

Rn =
H(S)

n
=

log2 ∣Sn∣

n

The encoder En is known both to Bob and Eve. In our research, we focus on achieving

asymptotic secrecy and we consider a sequence (Snk ,Enk)k∈N of message alphabet and

encoder pairs such that the encoder rates are lower-bounded by R > 0 and the block

length nk increases monotonically with k. The subscript k is present because the

block length n need not increase in increments of one and its purpose is strictly to

make the definition of the alphabet-encoder sequence precise. In order to make the

notation easier, we will drop the subscript k and denote to the alphabet-encoder

sequence using (Sn,En).

3.1.2 Application of BEWC Analysis to Other Channel Models

In our work, we study the BEWC model because it is a fundamental model and its

analysis is extendable to a lot of different wiretap models. For example, Rathi, et

al. [25] consider the wiretap model where the main channel and the wiretap chan-

nel are independent BECs and their analysis is an extension of the BEWC analysis.
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Figure 7: The decomposition of a BMC (a) into a degraded BEC (b).

Moreover, any wiretap model with a noiseless main channel and a binary-input mem-

oryless channel (BMC) for the wiretapper can be modeled as a degraded BEWC. This

is possible because of the Erasure Decomposition Lemma [34, Lemma 4.78] and its

generalization [35, Prop. 6.4] to non-symmetric channels. According to this lemma,

any BMC can be considered as the cascade of an appropriate BEC and an appropriate

DMC.

For example, Channel 1 in Fig. 7, which is an arbitrary BMC, can be represented

as the result of a cascade of Channel 2, a BEC, and Channel 3, a DMC. Consider the

wiretap model where the main channel is noiseless and the wiretapper’s channel is

Channel 1 (Fig. 8a). To achieve strong (weak) secrecy on this wiretap model, we may

use encoders that achieve strong (weak) secrecy on the BEWC model with Channel

2 as the wiretapper’s channel (Fig. 8b). These encoders achieve I(S; Z̃n) → 0 (or

alternatively 1
nI(S; Z̃n) → 0 for weak secrecy). Since Xn → Z̃n → Zn forms a Markov

chain, we have the following well-known data-processing inequality.

I(Xn; Z̃n) ≥ I(Xn;Zn) (1)

From the above inequality, one can immediately see that codes that are designed to

achieve strong (weak) secrecy on the BEWC model in Fig. 8b also achieve strong

(weak) secrecy on the wiretap model in Fig. 8a.
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Figure 8: A wiretap model with a BMC wiretapper (a) and its corresponding BEWC
model (b) based on the Erasure Decomposition Lemma.

It is important to note that the above approach to secrecy coding for BMC wiretap

models cannot achieve secrecy capacity. In our example (Fig. 8), we see that I(Xn;Zn)

is bounded away from I(Xn; Z̃n), except for trivial cases like when Channel 3 is

noiseless. This means that the secrecy capacity Cs of the model in Fig. 8a, which is

given by

Cs = max
PX

(H(X) − I(X;Z))

is strictly greater than that of the BEWC model in Fig. 8b, which is given by

C̃s = max
PX

(H(X) − I(X; Z̃))

Though the BEWC approach to achieving secrecy on BMC wiretaps is sub-optimal

in terms of achievable rates, it is useful because we do not have to do any additional

analysis of the BMC wiretap model.

3.1.3 Our Research Goal

The goal of our research is to design encoders (En) for Alice such that we are able

to achieve strong secrecy on the BEWC model. Mathematically, the conditions for
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strong secrecy are

1. There must exist a decoder for Bob such that estimate Ŝ of the secret message

S must have a vanishing probability of (block) error. That is,

Pr (Ŝ ≠ S) → 0 as n→∞

2. The mutual information between Eve’s observation Zn and the secret message

S must vanish as the block length increases. That is,

I(S;Zn) → ∞ as n→∞

3.2 The Coset Coding Scheme

The sequence of encoders (En) to be used in the BEWC model must have rate at

least R. In the classical channel or source coding scenario, the case where the En’s are

deterministic encoders or, equivalently, functions is usually considered. In contrast to

deterministic encoders, stochastic encoders are not functions and have many possible

outputs for a given input. In particular, given an input vector s, a stochastic encoder

En is such that its output En(s) is a random variable. In the secrecy coding scenario,

deterministic encoders, in general, have a poorer secrecy performance compared to

stochastic encoders. Due to this reason, almost all secrecy coding works deal only

with stochastic encoders. In our work, we will be doing the same.

In the secrecy coding problem, Alice must not only keep the message S hidden

from Eve; she must also reliably convey it to Bob. Therefore, we only consider

stochastic encoders En for which the set of possible values of the random variables

En(s) and En(s̃) are disjoint for s ≠ s̃. In this case, the set of possible output vectors of

the encoder En can be partitioned (Fig. 9) into different subsets such that all vectors

in the a single subset correspond to only one possible input vector. Clearly, such

an encoder will achieve reliability on the BEWC since there exists a straightforward
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Figure 9: The partitioning of the set of all possible output vectors of a stochastic
encoder En according to the input message. Each horizontal bold line represents an
output codeword.

decoder with

Pr (Ŝ ≠ S) = 0

3.2.1 Binary Linear Block Codes—Background

For integers n and k with 0 ≤ k ≤ n, an (n, k) binary linear block code C is a k-

dimensional vector subspace of the n-dimensional vector space Fn2 over the binary

field F2 ≜ {0,1}. The number n is called the length or the block length of the code C.

The rate of the code C is defined as the ratio k/n. Due to its linearity, the code C can

be defined as the row space of a carefully chosen k × n binary matrix G. That is,

C = {mG ∶ m ∈ Fk2}

The matrix G is called a generator matrix of C. The code C can also be defined as

the null-space or kernel of an appropriate (n − k) × n binary matrix H. That is,

C = {x ∈ Fn2 ∶ HxT = 0}
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In such a case, H is called a parity-check matrix of C. Note that the parity-check

matrix and the generator matrix are not necessarily unique for a given code.

3.2.2 Description

In our research, we will be using a class of stochastic encoding schemes called coset

coding schemes. A coset coding scheme, which was introduced by Wyner [6], is based

on a linear code and its cosets. Given the block length n and the rate R of the coset

coding scheme, a binary linear block code C of block length n and rate 1−R is used as

a starting point. This code is a linear subspace of the n-dimensional vector space Fn2

over the binary field F2 ≜ {0,1}. The code C has dimension n(1 − R) and therefore it

has 2nR different cosets. Let C0,C1, . . .C2nR−1 be the cosets of C. The input S to the

coset coding scheme is an nR-bit vector. Let s0, s1, . . . , s2nR−1 be the possible values

for S (we will discuss how the possible messages are indexed in the next paragraph).

Given S = si, the coset coding scheme outputs a vector Xn, chosen uniformly at

random from the coset Ci.

Let H be the parity-check matrix of the linear code C. The matrix H is a (nR)-

by-n binary matrix. Any n-bit vector cn is a codeword in C if and only if it satisfies

the system of parity-check equations given in the matrix form by

cn HT = 0

For any binary vector xn, the nR-bit vector xnHT is called the syndrome of xn with

respect to H. It can be easily seen that two binary vectors xn and x̃n belong to the

same coset of C if and only if they have the same syndrome. Based on this, cosets

can be labeled according to their syndrome. For example, the coset corresponding to

the input message S = si is Ci = {xn ∈ Fn2 ∶ xn HT = si}.
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3.2.3 Equivocation Analysis Under Erasures

Given the output vector Xn of the coset coding scheme, we can find its input S

without ambiguity since the cosets {Ci} are mutually disjoint. Suppose we receive a

vector Zn which is an erasure degraded version of Xn. The number and the position

of these erasures may be random. Denote the set {1,2, . . . , n} using [n]. Let J be

the random vector containing the indices of the erased bits and let j be a particular

instance of J . We have the following observation due to Ozarow and Wyner [13].

Lemma 3.1 ( [13, Lemma 4]). For an index set j ⊆ [n] , I(S;Zn∣J = j) = 0 if and

only if

rank(G[n]/j) = n − ∣j∣

Here, G[n]/j denotes the sub-matrix of G constructed using the columns indexed

by [n] ∖ j. The above lemma means that given an instance J of erasures in Zn, the

message S remains completely secret if and only if the submatrix G[n]/J correspond-

ing to the revealed bits has full rank. Whenever this happens, the bits corresponding

to the revealed positions in Zn cycle through all 2n−∣J ∣ possibilities in the linear code

C. That is, the projection of C onto the bit positions in [n]/J is the entire space

Fn−∣J ∣. This immediately means that in each coset Ci of the code C, the bits corre-

sponding to the revealed bit-positions cycle through all possibilities. Therefore, given

the observation Zn, all cosets of C will have the same number of vectors that match

with Zn, which means that I(S;Zn) = 0.

Example 3.2. Consider the coset coding scheme using the linear code C defined by

the following generator matrix G

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 1

0 1 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The code C has block length n = 5, dimension two and eight ( = 25−2) cosets. There-

fore, the coset coding scheme will take eight possible messages, each message si being

26



1 1 10 0
1 1 10 0

1 1 0 1 1

0 0 0 0 0
1 1 00 0
1 1 10 1

1 1 0 1 0

0 0 0 0 1
1 1 10 1
1 1 00 0

1 1 0 0 1

0 0 0 1 0
1 1 00 1
1 1 00 1

1 1 0 0 0

0 0 0 1 1

1 0 10 0
1 0 10 0

1 1 1 1 1

0 0 1 0 0
1 0 00 0
1 0 10 1

1 1 1 1 0

0 0 1 0 1
1 0 10 1
1 0 00 0

1 1 1 0 1

0 0 1 1 0
1 0 00 1
1 0 00 1

1 1 1 0 0

0 0 1 1 1

Figure 10: Example 3.2: An illustration of the cosets and the corresponding secret
messages.

a 3-bit vector, and it will output a 5-bit vector Xn. The cosets of C and the corre-

sponding secret messages are illustrated in Fig. 10.

Suppose the secret message S = s3 = [0 1 1]. To transmit this secret message, the

coset coding scheme based on C will select the coset C3 and output a random vector

from it as Xn. In this example, suppose Xn = [0 1 1 0 1]. To illustrate the reasoning

behind Lemma 3.1, consider two different cases.

� Suppose Zn is the erased version of the output vector Xn with the first, second

and fifth bits erased. That is, J = {1,2,5} and Zn = [? ? 1 0 ?]. The submatrix

corresponding to the revealed bits is

G{3,4} =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0

1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and it has full rank. We can also see (Fig. 11) that for this case, each coset

contains exactly one vector that matches with the observation Zn = [? ? 1 0 ?].

In this case, Zn does not reveal which three-bit pattern is intended as the secret

S.
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1 1 10 0
1 1 10 0

1 1 0 1 1

0 0 0 0 0
1 1 00 0
1 1 10 1

1 1 0 1 0

0 0 0 0 1
1 1 10 1
1 1 00 0

1 1 0 0 1

0 0 0 1 0
1 1 00 1
1 1 00 1

1 1 0 0 0

0 0 0 1 1

1 0 10 0
1 0 10 0

1 1 1 1 1

0 0 1 0 0
1 0 00 0
1 0 10 1

1 1 1 1 0

0 0 1 0 1
1 0 10 1
1 0 00 0

1 1 1 0 1

0 0 1 1 0
1 0 00 1
1 0 00 1

1 1 1 0 0

0 0 1 1 1

Figure 11: Example 3.2: The vectors matching the observation Zn = [? ? 1 0 ?].

� Now suppose Zn = [0 ? ? ? 1], that is, the second, third and fourth bits are

erased. In this case, the submatrix of G corresponding to the revealed bits is

G{1,5} =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and it does not have full rank. Moreover, only four out of the eight cosets

match the observation Zn. Therefore, some amount of information about S is

revealed by Zn. In particular, note from Fig. 12 that the last bit of S is leaked

by Zn. ▼

3.3 From Secrecy Codes to Channel Codes

3.3.1 Equivocation Analysis for the BEWC

Suppose the coset coding scheme using the linear code C is used to send a secret

message over BEWC(ξ). Let us analyze the amount of information leaked to Eve

through her observation Zn. Let J be the index set of the erased bits in Eve’s

received vector. The vector J is a random vector dictated by the erasure probability
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1 1 10 0
1 1 10 0

1 1 0 1 1

0 0 0 0 0
1 1 00 0
1 1 10 1

1 1 0 1 0

0 0 0 0 1
1 1 10 1
1 1 00 0

1 1 0 0 1

0 0 0 1 0
1 1 00 1
1 1 00 1

1 1 0 0 0

0 0 0 1 1

1 0 10 0
1 0 10 0

1 1 1 1 1

0 0 1 0 0
1 0 00 0
1 0 10 1

1 1 1 1 0

0 0 1 0 1
1 0 10 1
1 0 00 0

1 1 1 0 1

0 0 1 1 0
1 0 00 1
1 0 00 1

1 1 1 0 0

0 0 1 1 1

Figure 12: Example 3.2: The vectors matching the observation Zn = [0 ? ? ? 1].

ξ. Let F be the event that G[n]/J has full-rank and F̄ be the complementary event.

We can now write the following.

I(S;Zn) = Pr(F ) I(S;Zn∣F ) + Pr(F̄ ) I(S;Zn∣F̄ )

By Lemma 3.1, the conditional mutual information I(S;Zn∣F ) is zero. The condi-

tional mutual information I(S;Zn∣F̄ ) can be upper bounded by the entropy of the

secret, that is

I(S;Zn∣F̄ ) ≤ H(S) = nR

Therefore, we have

I(S;Zn) ≤ n R Pr(F̄ ) (2)

3.3.2 A Channel Coding Problem

Now, consider the channel coding problem involving the binary erasure channel with

erasure probability 1 − ξ and the dual of the code C. The dual code C⊥ is defined as
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the set of all n-bit vectors orthogonal to C. That is,

C⊥ ≜ {x ∈ Fn2 ∶ x ⋅ c = 0,∀c ∈ C}

where x ⋅ c is the dot product of the vectors x and c. The code C⊥ is a (n,nR) binary

linear code.

Suppose a uniformly distributed nR-bit message is encoded using C⊥ and the re-

sulting n-bit codeword is transmitted over BEC(1 − ξ). Let Ẑn be the output of the

channel with Ĵ being the index set of the revealed bits (unerased bits) in the channel

output. In the previous section, we transmitted n-bits through BEC(ξ) and denoted

the index set of the erased bits by J . We can easily see that J and Ĵ are identically

distributed random variables.

It can be immediately seen that the generator matrix G of the code C is also the

parity-check matrix of the dual code C⊥. The parity-check equation for the encoded

word X̂ is given by

G X̂T = 0

⇒GĴ X̂Ĵ + G[n]/Ĵ X̂[n]/Ĵ = 0

⇒G[n]/Ĵ X̂[n]/Ĵ = GĴ X̂Ĵ (3)

Since Ĵ corresponds to the revealed bit-positions in Ẑn, the right hand-side of (3)

is a known vector. The maximum-a-posteriori decoder for the erasure channel must

solve (3) for the unknown vector X̂[n]/Ĵ . There is a unique solution to this equation if

and only if the sub-matrix G[n]/Ĵ has full rank. Let F̂ be the even that G[n]/Ĵ has full

rank. Let us denote the probability of decoder failure under maximum a posteriori

(MAP) decoding by PMAP
B (C⊥,1 − ξ), where the first parameter denotes the code used

over the BEC and the second parameter denotes the erasure probability of the BEC.

We immediately note the following

Pr(F̂ ) = 1 − PMAP
B (C⊥,1 − ξ)
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Since the event F in the previous section and the event F̂ are identically distributed,

we may substitute the above equation in (2) to get

I(S;Zn) ≤ n R Pr(F̄ ) = n R Pr(
¯̂
F )

⇒ I(S;Zn) ≤ n R PMAP
B (C⊥,1 − ξ) (4)

For k ∈ N, suppose we have a sequence of binary linear codes (Cnk) with block

length nk increasing monotonically as k increases, such that the codes have a constant

rate 1 − R. In order to make the notation easier, we drop the subscript k and denote

the sequence of codes by Cn. Suppose we use these codes in the coset coding scheme

to transmit a secret message over BEWC(ξ), for arbitrary ξ ∈ [0,1]. We have the

following sufficient condition for strong secrecy.

Lemma 3.3. The coset coding scheme using the sequence (Cn) achieves strong secrecy

on BEWC(ξ) whenever the asymptotic block-error probability of the dual sequence (C⊥n)

over BEC(1 − ξ) decays as

PMAP
B (C⊥n,1 − ξ) = O (

1

n2
)

From the union bound, we know that for any code over any channel, we have

Pr(bit-error) ≤ Pr(block-error) ≤ n Pr(bit-error)

We have the following sufficient condition using the above bound.

Lemma 3.4. The coset coding scheme using the sequence (Cn) achieves strong secrecy

on BEWC(ξ) whenever the asymptotic bit-error rate (BER) of the dual sequence (C⊥n)

over BEC(1 − ξ) decays as

PMAP
b (C⊥n,1 − ξ) = O (

1

n3
)

Note that the above sufficient condition involves the MAP decoder. Since MAP

decoding is optimal, PMAP
B can be upper bounded by the block-error probability under
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any suboptimal decoder. Therefore, the duals of codes whose block-error probability

under suboptimal decoding decays as O(1/n2) will achieve strong secrecy on the

BEWC when used in a coset coding scheme. In the next two chapters, we will

describe two codes which have this property.
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CHAPTER IV

SHORT-CYCLE-FREE LDPC CODES FOR STRONG

SECRECY

The objective of our research is to design coding schemes to achieve strong secrecy

on the BEWC model. In Chapter 3, we showed that this problem can be reduced

to the problem of finding a sequence of binary linear block codes whose block-error

probability on the BEC decays as 1/n2 as the block length n increases. In this chapter,

we will discuss our strong secrecy result using short-cycle-free LDPC codes. We study

the block-error probability of LDPC codes under belief propagation (BP) decoding

by analyzing its stopping sets. The key result in this chapter is that LDPC codes

with minimum variable node degree at least three and girth at least six (hence called

“short-cycle-free”) have a BP block-error probability that decays as 1/n2. The work

discussed in this chapter was presented in [36,37].

This chapter is organized as follows. In the first section, we give a quick overview

of LDPC codes and discuss some of the results involving stopping sets of LDPC codes

that form the basis of the our work. In the next section, we provide an overview of

the key ideas in our result. In the third and fourth sections, we prove our main

result. In the final section, we describe the strong secrecy region achieved by using

short-cycle-free LDPC codes.

4.1 Fundamentals of LDPC Codes

LDPC codes are linear error-correcting codes introduced by Gallager in his thesis [38].

After their original discovery in the 1960’s, these codes were forgotten for a few

decades until their rediscovery in the 1990’s. In this section, we will give a brief
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Figure 13: A parity-check matrix and its corresponding Tanner graph representation.

introduction to LDPC codes, with sufficient details to follow the remainder of this

chapter. Most of the material in this section is based the notation and presentation

from the book Modern Coding Theory by Richardson and Urbanke [34]. The material

on stopping sets (§ 4.1.4) is based on the paper by Orlitsky, et al. [39].

Definition 4.1 (Tanner graph). Given the (n − k) × n parity-check matrix H of a

binary linear code C, the Tanner graph corresponding to C is a bipartite multigraph

G with the vertex bipartition V (G) = Vv ∪ Vc such that

� The set Vv has n variable nodes, with each node vi representing a codeword bit

xi in C.

� The set Vc has (n − k) check nodes, with each node cj representing a row hj of

the parity-check matrix H of C.

� There is an edge between a variable node vi and a check node cj if and only if

the codeword bit xi corresponding to vi appears in the parity-check equation

corresponding to the row hj represented by cj. ▼
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Fig. 13 shows a parity-check matrix and its corresponding Tanner graph. In

this dissertation, we will allow Tanner graphs with multiple edges with the following

equivalence—a multiple edge with odd multiplicity is equivalent to having a single

edge between the two involved nodes and a multiple edge with even multiplicity is

equivalent to having no edge between the two nodes. Following this convention, we

will use the term graph to mean a multigraph with no loops.

4.1.1 LDPC Codes

Given a binary linear block code C, the parity-check matrix H of C is not necessarily

unique. This means that C has several Tanner graph representations. LDPC codes

are a special class of linear codes with the property that for a given family of codes,

there exists a Tanner graph family corresponding to these codes such that the number

of edges in the Tanner graph family increases linearly with block length. The term

low-density is applied to these codes because the number of edges in the Tanner graph

sequence grows slowly (linearly) with the block length n; in other words, the density

of ones in the parity-check matrix remains constant as n increases. We define an

LDPC code family by defining its Tanner graph family, or specifically, the number of

variable and check nodes in the Tanner graphs and their degrees.

Definition 4.2 (LDPC Code). Given two polynomials

λ(x) =
lmax

∑
i=lmin

λix
i−1, ρ(x) =

rmax

∑
j=rmin

ρjx
j−1

with λi, ρj ∈ [0,1] ∩Q and ∑i λi = ∑j ρj = 1, a (λ, ρ) LDPC code of block length n is

defined as the binary linear block code which corresponds to a Tanner graph with n

variable nodes such that the fraction of edges connected to degree-i variable nodes is

λi, and the fraction of edges connected to degree-j check nodes is ρj. The polynomial

pair (λ, ρ) is called the degree distribution pair (DDP) of the LDPC code. ▼

Definition 4.3 (Regular and Irregular LDPC Codes). Given two positive integers
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l and r with r ≥ l, an (l,r)-regular LDPC code is one in which all variable nodes

have the same degree l and all check nodes have the same degree r, i.e., λ(x) = xl−1,

ρ(x) = xr−1. An LDPC code that is not regular is called an irregular LDPC code.

The Tanner corresponding to a regular (irregular) LDPC code is called a regular

(irregular) Tanner graph. ▼

While defining Tanner graphs in terms of the fraction with degree-i variable nodes

and the fraction with degree-j check nodes may appear straightforward, the above

indirect description of the degrees is employed because the polynomials λ(x) and ρ(x)

play an important role in the performance analysis of LDPC codes. The description

of the degrees using the polynomials (λ, ρ) is often called the edge-perspective degree

distribution. If we denote the edge set of the Tanner graph by E, then the number

of variable nodes with degree i is ni = ∣E∣λi/i and the number of check nodes with

degree j is mj = ∣E∣ρj/j. The number of variable nodes n and the number of check

nodes m in the Tanner graph are given by

n = ∣E∣∑
i

λi
i
= ∣E∣ ∫

1

0
λ(x)dx

m = ∣E∣∑
j

ρj
j
= ∣E∣ ∫

1

0
ρ(x)dx

The fraction Li of variable nodes with degree i and the fraction Rj of check nodes

with degree j are given by

Li =
λi
i

1

∫
1

0 λ(x)dx
, Rj =

ρj
j

1

∫
1

0 ρ(x)dx

The node-perspective degree distribution polynomials are defined as

L(x) =
lmax

∑
i=lmin

Lix
i

R(x) =
rmax

∑
j=rmin

Rjx
j

Note that the definition of L(x) is not quite analogous to the definition of λ(x)

because in the former we multiply Li by xi, whereas in the latter we multiply λi by

xi−1. The definitions of R(x) and ρ(x) differ in the same point.
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Clearly, an LDPC code with block length n and node-perspective degree distri-

bution pair (L,R) must be such that nLi is an integer for all i. Therefore, the code

is defined only when n is an integral multiple of some integer a such that aLi ∈ N for

all i.

The design rate R∗ of the LDPC code is defined as

R∗ = 1 −
m

n
= 1 −

∫
1

0 ρ(x)dx

∫
1

0 λ(x)dx

Clearly, λ(x) and ρ(x) should be such that R∗ ∈ [0,1] for this discussion to be mean-

ingful. The actual rate R of the code can be higher than R∗, and we have R = R∗ if

and only if the m parity-check equations represented in the Tanner graph are linearly

independent.

4.1.2 The Standard Ensemble of LDPC Codes

When classical error-correcting codes are studied in coding theory, a single code is

considered and its performance over a noisy channel is studied. In contrast to this, a

single instance of an LDPC code is not studied; instead, an ensemble of LDPC codes

with a given degree distribution and block length is considered, and the average

performance of the codes in this ensemble is studied. This is done because studying

the properties of a single LDPC code is very hard. Moreover, certain LDPC code

ensembles are such that most of the codes in it closely follow the average performance.

In such a case, we say that there is concentration around the average performance.

While studying LDPC codes, we usually consider the standard ensemble, which is

defined subsequently.

Given a degree distribution pair (DDP) (λ, ρ) and block length n, let m be the

number of check nodes in a (λ, ρ) Tanner graph with n variable nodes. A fraction

Li of the n variable nodes have degree i and a fraction Rj of the m check nodes

will have degree j. To construct the standard ensemble of Tanner graphs, denoted by

G(n,λ, ρ), we create n variable nodes and m check nodes such that nLi of the variable
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Permutation

Figure 14: The construction of the standard ensemble G(5, 1
2x +

1
2x

2, x3).

nodes have i “sockets” each and mRj of the check nodes have j sockets each (for all

possible i and j). We label the variable node sockets as 1,2, . . . , ∣E∣ and the check node

sockets as 1,2, . . . , ∣E∣. This labeling is done in some arbitrary manner, but remains

fixed throughout the construction of G(n,λ, ρ). Consider a permutation function

π ∶ {1,2, . . . , ∣E∣} → {1,2, . . . , ∣E∣}. The Tanner graph in G(n,λ, ρ) corresponding to

the permutation π is constructed by connecting the ith variable-node socket to the

π(i)th check-node socket with an edge, for i ∈ {1,2, . . . , ∣E∣}. The ensemble G(n,λ, ρ)

is constructed by considering all possible permutation functions π. Therefore, this

ensemble will have ∣E∣! Tanner graphs. For example, Fig. 14 depicts the construction

of the ensemble G(5, 1
2x +

1
2x

2, x3), where the permutation function π is varied over

all 12! different possibilities.

Note that G(n,λ, ρ) will contain Tanner graphs with parallel (multiple) edges.

In practice, we will never use such LDPC codes. However, we allow the possibility

of multiple edges because the ensemble becomes much easier to study. Typically,

we will study the probability that a randomly chosen graph from G(n,λ, ρ) has a

particular local structure. Given a subset of socket connection pairs (local structure),

the number of graphs that have this structure is precisely equal to the number of ways

we can connect the remaining sockets. The combinatorial analysis of the number of
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ways to connect the remaining sockets is much easier if we allow the possibility of

multiple edges.

4.1.3 Belief Propagation Decoding of LDPC Codes Over the BEC

One of the main advantages of LDPC codes is that they can be decoded efficiently

using a class of iterative algorithms called message-passing algorithms. A message-

passing algorithm can be visualized in terms of a sparse network connecting simple

distributed computing hardware [40, Ch. 16]. Messages are passed between vertices

in the Tanner graph along the edges with the property that the outgoing message sent

by a vertex along a particular edge depends on the incoming message on all other

edges adjacent to that vertex and the channel observation (if any). The BP algorithm

is one such message-passing algorithm where the messages are probabilities or beliefs

of what codeword was sent on the channel.

Consider an LDPC code C with the Tanner graph representation G transmitted

over a BEC. That is, a randomly selected codeword from C is transmitted and the re-

ceived word is a vector in {0,1, ?}, where ? represents an erased bit. The BP decoding

algorithm for recovering the erased bits is equivalent to the following algorithm.

� The messages sent along the edges are from the alphabet {0,1, ?}.

� Variable node processing: An erasure message ‘?’ is sent along an edge if the

channel observation for the variable node is an erasure and all other incoming

messages are also erasures. Otherwise, the channel observation or an incoming

non-erasure message from any of the other edges is sent. In the latter case,

all incoming non-erasure messages at a variable node will be identical; if the

channel observation is not an erasure, they will be identical to the channel

observation.

� Check node processing: An erasure message is sent along an edge if any of
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the other incoming messages are erasures. Otherwise, the sum (over F2) of all

other incoming messages is sent.

For general channels, we must specify a schedule for the BP algorithm, i.e., we

need to specify the sequence in which the node processing is done for all the nodes

in the Tanner graph. In the case of the BP algorithm for the BEC, any reasonable

schedule will yield the same performance. For the sake of clarity, we assume that we

use the flooding schedule.

The flooding schedule is the most commonly used schedule for BP decoding and

it operates as follows. In the zeroth iteration, the variable nodes send their received

value along all their edges simultaneously. All further iterations consist of two steps.

In the first step, all check nodes are processed simultaneously. In the second step,

all variable nodes are processed simultaneously. The flooding schedule is so called

because the messages are released on to all the edges at the same time (i.e., “flooded”).

In practical applications, only a finite number of iterations of the BP algorithm are

performed. The BP algorithm for erasures is a special case where the number of

“errors” (strictly speaking, undecoded bits) decreases monotonically as the number

of iterations increases; the BP decoder will reach a certain stage where no more

decoding is possible. In this chapter, we will only consider the operation of the BP

decoder until this saturation point.

The erasure BP decoding algorithm with the flooding schedule is equivalent to

the following iterative graphical evolution algorithm.

1. Let G∗ be the subgraph of the Tanner graph G induced by the variable nodes

associated with the unknown codeword bits, and their neighboring check nodes.

If G∗ is an empty graph, then declare decoding success and exit.

2. Find all variable nodes in G∗ that are connected to degree-one check nodes (in

G∗). If there are no such nodes, then declare decoding failure and exit.
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Figure 15: An example of the graphical evolution under BP decoding. The edges
and vertices in black denote the subgraph G∗ induced by the unsolved variable nodes
and their neighbors.

3. Solve the codeword bits associated with the variable nodes found in the previous

step.

4. Go to Step 1.

From the above description of BP decoding, we can see that whenever BP decoding

failure occurs, the unknown codeword bits at the last stage induce a subgraph G∗

such that all the check nodes in G∗ have degree two or more.

4.1.4 Stopping Sets

Definition 4.4 (Stopping Set). Let G be a Tanner graph with variable-node set Vv

and check-node set Vc. We call a set S ∈ Vv a stopping set if the subgraph G∗ induced

by S and its neighbors (in Vc) has no degree-one check nodes. ▼

For example, in Fig. 15, the set {v1, v2} is a stopping set. For a given LDPC code

C, we denote the collection of all stopping sets in its Tanner graph G by S(C). The BP

decoder for LDPC codes with erasures fails if and only if the erasure pattern contains

a stopping set. If we denote the probability of block error of the code C transmitted
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over BEC(ε) under BP decoding by PBP
B (C, ε), we have

PBP
B (C, ε) = Pr (∃S ⊆ Ve ∶ S ∈ S(C))

where the random variable Ve denotes the set of all variable nodes inG that correspond

to the bits erased during channel transmission. Note that in the above, we define the

block-error probability for a fixed code C. In this dissertation, we usually deal with

the case where C itself is random. If the graph G is chosen uniformly at random from

the standard ensemble G(n,λ, ρ), then the average probability of block error can be

calculated as

E (PBP
B (C, ε)) = E (Pr (∃S ⊆ Ve ∶ S ∈ S(C)))

where the expectation E is taken over all G ∈ G(n,λ, ρ). From the above equation, we

see that by characterizing the asymptotic distribution of stopping sets, we can com-

pletely characterize the average probability of block error of the standard ensemble

of LDPC codes. We will now discuss some of the definitions and results from [39].

For an arbitrary integer s ∈ {0,1, . . . , n}, the average stopping set distribution of

the standard ensemble is defined as

E(s) = E (∣{S ∈ S(C) ∶ ∣S∣ = s}∣)

In other words, E(s) is the average number of stopping sets of size s in the standard

ensemble.

For any rational α ∈ [0,1], it is assumed that there exists a sequence (nk)k∈N of

increasing block lengths such that E(αnk) > 0 for all nk. Under this assumption, the

normalized stopping set distribution can be defined as

γ(α) = lim
k→∞

1

nk
log2 E(αnk)

It can be shown that γ(α) is continuous over the set of rationals in [0,1] and hence,

it can be extended to a continuous function over [0,1].
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One of the main results in [39] is that below a certain “error-floor threshold”,

the average block-error probability of the standard ensemble of LDPC codes decays

polynomially over the BEC.

Theorem 4.5 ( [39, Thm. 16]). For a code C chosen uniformly at random from the

ensemble G (n,λ, ρ) with lmin ≥ 2, if ε < εef , then

E (PBP
B (C, ε)) = Θ(

ε

n⌈ lmin
2

⌉−1
)

as ε→ 0 and n→∞.

The parameter εef for a given DDP (λ, ρ) is defined [39, §V] as

εef ≜ sup{ε ∶ max
α∈[0,ε]

(γ(α) + (1 − α)h(
ε − α

1 − α
) − h(ε)) ≤ 0}

where h(x) ≜ −x log2(x) − (1 − x) log2(1 − x) is the binary entropy function.

4.2 An Overview of Results and Intuition

The research presented in this chapter uses the results of Orlitsky, et al. [39] as a

starting point. One of the key ideas in [39] is the use of the union bound to upper

bound the average block-error probability of an ensemble of LDPC codes. Given a

countable set of events {A1,A2,A3, . . .}, the union bound says that the probability of

at least one of the events happening is less than the sum of the individual probabilities.

That is,

Pr (A1 ∪A2 ∪A3 ∪⋯) ≤ ∑
i

Pr (Ai)

The average block-error probability of an ensemble of LDPC codes is given by the

probability that the erasure pattern Ve contains a stopping set S ∈ S(C).

PBP
B (C, ε) = Pr (∃S ⊆ Ve ∶ S ∈ S(C))
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The event that Ve contains a stopping set is the union of the events Ai defined as

Ai ≜ Ve contains a size-i stopping set

⇒ Pr(Ai) = Pr{∃S ⊆ Ve ∶ S ∈ S(C), ∣S∣ = i}

= ∣{S ∈ S(C) ∶ ∣S∣ = i}∣ εi

Therefore, it can be seen that

E (PBP
B (C, ε)) ≤ E(∑

i

Pr(Ai))

= ∑
i

εi E (∣{S ∈ S(C) ∶ ∣S∣ = i}∣)

=
n

∑
i=1

εi E(i) (5)

Orlitsky, et al. [39] showed that whenever ε < εef , the above summation decays to

zero as n increases. Moreover, the asymptotically significant term in (5) is the one

corresponding to size-1 stopping sets, namely, εE(1), and this term decays as

O(
1

n⌈ lmin
2

⌉−1
)

4.2.1 Expurging Graphs with Short Cycles

In (5), the summation is over the contribution of stopping sets of size one or more.

The intuition behind our work is based on the following observation (§4.4.1). If we

sum the terms εi E(i) for stopping sets of size k or greater, where k is a positive

integer, then the asymptotically significant contribution is the one corresponding to

i = k and this term decays as

O(
1

n⌈ lmin
2
k⌉−k

)

This means that ∑
n
i=k ε

i E(i) decays at the above rate, which is faster than that of the

summation in (5). This gives rise to the intuition that by removing stopping sets of

size less than k, we will have a faster decay of the block-error rate. In other words,
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we must expurgate Tanner graphs with stopping sets of size less than k from the

standard ensemble G(n,λ, ρ).

Instead of expurgating graphs with small stopping sets, we consider the expur-

gation of graphs with short cycles from the standard ensemble. We do this because

the girth of graphs is a well studied property with a lot of mathematical results.

Moreover, there is a fundamental relationship between girth and stopping sets.

Lemma 4.6. For lmin ≥ 2, any graph G ∈ G(n,λ, ρ) with girth 2k or more will not

have any stopping sets of size less than k.

Proof. We will prove this by contradiction. Assume that the graph G has a stopping

set of size s < k. Consider the subgraph G∗ induced by this stopping set and its check-

node neighbors. All the check nodes in G∗ have degree two or more. Since lmin ≥ 2,

all the variable nodes in G∗ also have degree two or more. This means that G∗ is

not a tree and should therefore contain a cycle. Since there are only s variable nodes

in G∗ and G∗ is bipartite, the length of the cycle cannot be more than 2s, which, in

turn, is less than 2k. Since G∗ is a subgraph of G, this is a contradiction.

So far, we have established that removing graphs with short cycles from G(n,λ, ρ)

will give us an expurgated ensemble that does not have any small stopping sets. We

now consider the probability of block-error for the expurgated ensemble. Suppose

a code C1 is chosen at random from the expurgated ensemble and transmitted over

BEC(ε). The expected BP block error probability is given by

E (PBP
B (C1, ε)) = ∑

i

εi E (∣{S ∈ S(C1) ∶ ∣S∣ = i}∣)

=
n

∑
i=1

εi E1(i)

=
n

∑
i=k
εi E1(i) (6)
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where E1(i) ≜ E (∣{S ∈ S(C1) ∶ ∣S∣ = i}∣). The final equality in (6) is because the expur-

gated ensemble has no stopping sets of size less than k. So far, we know that

n

∑
i=k
εi E(i) = O(

1

n⌈ lmin
2
k⌉−k

) (7)

This does not necessarily mean that the expression in (6) decays at the same rate.

This is because we have not shown that E1(i) and E(i) are equal. In fact, explicit

computation of E1(i) is difficult because the combinatorial analysis of the expurgated

ensemble is hard. We get around this by showing that we can bound E1(i) using E(i).

4.2.2 Bounding Expectations over the Expurgated Ensemble

We have two codes C and C1 selected at random. The code C is uniformly sampled from

G(n,λ, ρ), the standard ensemble, and C1 is uniformly sampled from G2k−2(n,λ, ρ), the

ensemble consisting of Tanner graphs of girth at least 2k. Let f be some function

that maps a code to a non-negative real number. We have

E(f(C1)) = E(f(C) ∣ C ∈ G2k−2(n,λ, ρ))

Also, we observe that

E(f(C)) = E(f(C) ∣ C ∈ G2k−2(n,λ, ρ)) Pr(C ∈ G2k−2(n,λ, ρ))

+E(f(C) ∣ C ∉ G2k−2(n,λ, ρ)) Pr(C ∉ G2k−2(n,λ, ρ))

a
≥ E(f(C) ∣ C ∈ G2k−2(n,λ, ρ)) Pr(C ∈ G2k−2(n,λ, ρ))

= E(f(C1))
∣G2k−2(n,λ, ρ)∣

∣G(n,λ, ρ)∣

Here, (a) follows from the fact that f(C) is always non-negative. We then show

(Lemma 4.9) that for a given k, λ and ρ, we have

∣G2k−2(n,λ, ρ)∣

∣G(n,λ, ρ)∣
≥ p > 0
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for large enough n and some positive number p. Therefore,

E (f(C)) ≥ pE (f(C1))

⇒ E (f(C1)) ≤
1

p
E (f(C))

We require p > 0 in order to write the last step in the above. By substituting f(C) =

∣{S ∈ S(C) ∶ ∣S∣ = i}∣, we obtain

E1(i) ≤
1

p
E(i)

4.3 The Asymptotic Fraction of Short-Cycle-Free LDPC
Codes

When we study LDPC codes, we usually consider the standard ensemble of Tanner

graphs. As discussed in §4.1.2, this ensemble contains Tanner graphs that have par-

allel edges, i.e., cycles of length two. Given a DDP (λ, ρ) and an even number g > 0,

we show that the asymptotic fraction of Tanner graphs with girth greater than g in

the standard ensemble G(n,λ, ρ) is positive, i.e.,

∣Gg(n,λ, ρ)∣

∣G(n,λ, ρ)∣
> 0

for large enough n. Here, Gg(n,λ, ρ) denotes the subset of G(n,λ, ρ) that consists

of graphs with girth greater than g. Strictly speaking, we show that this result is

true for a given (λ, ρ) and g > 0 for a particular sequence of increasing block lengths.

We conjecture that the result holds without any restrictions on the sequence of block

lengths. However, the conjecture is not required for the results in this chapter.

4.3.1 Short-Cycle-Free Regular Bipartite Graphs

The result in this section hinges on the following result from the graph theory commu-

nity, which states that for any even number g > 0, the asymptotic fraction of d-regular

bipartite graphs with girth greater than g is positive.
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Lemma 4.7 (McKay, et al. [41, Cor. 3]). Let n, g be even positive integers and d ≥ 3

be an integer. As n grows, let (d − 1)2g−1 = o(n). Then, the fraction of (labeled)

d-regular bipartite graphs on n vertices with girth greater than g is

exp
⎛

⎝
−

g/2
∑
s=1

(d − 1)2s

2s
+ o(1)

⎞

⎠

as n→∞.

While the above lemma is true when d and g vary with n, we will consider only

the special case where d and g are constant with n.

In the Lemma 4.7, McKay, et al. [41] consider the ensemble of vertex-labeled d-

regular bipartite graphs in n vertices. Let us denote this ensemble by G∗(n, d). To

build a graph in G∗(n, d), we first take n vertices, half of them on the left side and

half of them on the right side, and assign them some arbitrary (but fixed) labels. In

the second step, we add edges such that each vertex has exactly d edges, with each

edge connecting a left vertex to a right vertex while allowing the possibility of parallel

edges. By varying the second step, we generate all the graphs in G∗(n, d).

The ensemble G∗(n, d) is related to the standard ensemble of LDPC codes given

by G(n/2, xd−1, xd−1)—they both consist of d-regular bipartite graphs in n vertices.

In the ensemble G(n/2, xd−1, xd−1), we label the sockets of the vertices instead of the

vertices themselves. Given a socket labeling, we can create an ordering of the labels

such that all sockets of a node form a contiguous cluster in the ordering. In this

sense, the socket labeling in G(n/2, xd−1, xd−1) naturally induces a vertex labeling

(ordering). Let f ∶ G(n/2, xd−1, xd−1) → G∗(n, d) be a function that takes a graph from

the standard ensemble, and assigns the natural labels for the vertices and removes the

socket labels to create a graph in the vertex-labeled ensemble. For example, Fig. 16

illustrates a socket-labeled graph G and its vertex-labeled counterpart f(G).

Clearly, the map f is a surjection, i.e., f (G(n/2, xd−1, xd−1)) = G∗(n, d). We ob-

serve that since f only changes the labels and does not affect the structure of the
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Figure 16: A socket-labeled graph G and its vertex labeled counterpart f(G).

graph in any way; in particular,

girth(G) = girth(f (G) )

Therefore, we have

f (Gg(n/2, x
d−1, xd−1)) = G∗g (n, d)

Here, G∗g (n, d) denotes the subset of G∗(n, d) that consists of graphs with girth greater

than g.

Consider the inverse image of any graph G in G∗(n, d). As long as G has no

parallel edges, it has exactly (d!)
n

elements, i.e., ∣f−1(G)∣ = (d!)
n
. This is because

any given vertex has d sockets, which can be labeled in d! different ways. There are

n vertices, so the number of graphs in G(n/2, xd−1, xd−1) that map to G is exactly

(d!)
n
. However, the case where G has multiple edges is a little more complicated. It

can be easily seen that (d!)
n

is an overcount of the number of graphs in f−1(G). If

M1,M2, . . . is the multiplicity of the parallel edges in G, then we observe that

∣f−1(G)∣ =
(d!)n

∏iMi!

In any case, we have ∣f−1(G)∣ ≤ (d!)
n
. From the above discussion, we note the
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following.

∣G∗(n, d)∣ (d!)
n
≤ ∣G(n/2, xd−1, xd−1)∣ (8)

∣G∗g (n, d)∣ (d!)
n
= ∣Gg(n/2, x

d−1, xd−1)∣ (9)

Note that in (9), we have an equality because the restriction ‘girth > g’ gets rid of

graphs with parallel edges. We now have

∣Gg(n/2, xd−1, xd−1)∣

∣G(n/2, xd−1, xd−1)∣
≥

∣G∗g (n, d)∣

∣G∗(n, d)∣

a
= exp

⎛

⎝
−

g/2
∑
s=1

(d − 1)2s

2s
+ o(1)

⎞

⎠

where (a) follows from Lemma 4.7.

Corollary 4.8. Let g, n be positive even numbers and let d ≥ 3 be an integer. Let

d and g remain constant as n → ∞. Then, the fraction of graphs in the ensemble

G(n/2, xd−1, xd−1) with girth greater than g is at least

exp
⎛

⎝
−

g/2
∑
s=1

(d − 1)2s

2s
+ o(1)

⎞

⎠

as n→∞. In particular, the fraction is bounded away from zero for large n.

4.3.2 Short-Cycle-Free Irregular Tanner Graphs

In Corollary 4.8, we showed that short-cycle-free (d, d)-regular Tanner graphs form

an asymptotically significant fraction of the graphs in the corresponding standard

ensemble. In this section, we show a similar result for (λ, ρ) irregular Tanner graph

ensembles—for a certain sequence (nk)k∈N of block lengths, we show that the asymp-

totic fraction of the graphs in G(nk, λ, ρ) with girth greater than g is positive.

Lemma 4.9. Let (λ, ρ) be a DDP and let g > 0 be an integer that remains constant.

There exists an increasing sequence (nk) of positive integers such that the fraction of
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graphs with girth greater than g in G(nk, λ, ρ) is bounded away from zero as k → ∞.

That is,

∣Gg(nk, λ, ρ)∣

∣G(nk, λ, ρ)∣
> 0 as k →∞

Proof. Let d be the least common multiple of all the vertex degrees in the graph, i.e.,

d = LCM ({i ∶ λi > 0} ∪ {j ∶ ρj > 0})

If the above calculation gives d = 2, set d = 4. Clearly, d > 2 and it is a function of

only λ and ρ. Let a be the smallest positive integer such that

aLi
d
,
aRj

d
∈ N, ∀i, j

Here, Li is the fraction of variable nodes with degree i and Rj is the fraction of

check nodes with degree j. Consider the sequence of block lengths (nk)k∈N given by

nk = ak. By choosing a in a specific manner, we have made sure that the number

of degree-i variable nodes and the number of degree-j check nodes in G(nk, λ, ρ) are

both divisible by d for all i and j.

We now define a node-grouping map, which maps the graphs in G(nk, λ, ρ) to

(d, d)-regular Tanner graphs. Given a graph G from the former ensemble, we group

d/i of the degree i variable nodes to get one variable node of degree d. If we do this

for all the variable node degrees, we will have a left-regular Tanner graph with left

degree d. Similarly, we can repeat this process for the check nodes to get a d-regular

Tanner graph on n∗k variable nodes and n∗k check nodes, where

n∗k =
lmax

∑
i=2

i

d
nkLi =

rmax

∑
j=2

j

d
nkRi

Fig. 17 shows an example of the node grouping map from G(4, x, x3) to G(2, x3, x3).

In this node grouping process, we preserve the number of edges (sockets) by allowing

the possibility of multiple edges. We also preserve the socket labels while grouping
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Figure 17: An example of the node grouping process. For simplicity, the socket
labels are omitted.

the nodes. This directly means that the number of graphs in the ensembles G(nk, λ, ρ)

and G(n∗k, x
d−1, xd−1) are equal, i.e.,

∣G(nk, λ, ρ)∣ = ∣G(n∗k, x
d−1, xd−1)∣ (10)

Let us denote the node grouping map by φ ∶ G(nk, λ, ρ) → G(n∗k, x
d−1, xd−1). By

the socket preserving property of φ, we can immediately see that φ is a bijection. It

is also clear that by combining nodes, we cannot increase the lengths of the existing

cycles. Therefore, for any graph G ∈ G(nk, λ, ρ), we have girth(G) ≥ girth(φ(G)).

Therefore, we can say that

φ−1 (Gg(n
∗
k, x

d−1, xd−1)) ⊆ Gg(nk, λ, ρ)

⇒ ∣Gg(n
∗
k, x

d−1, xd−1)∣ ≤ ∣Gg(nk, λ, ρ)∣ (11)

Using (10) and (11), we obtain

∣Gg(nk, λ, ρ)∣

∣G(nk, λ, ρ)∣
≥

∣Gg(n∗k, x
d−1, xd−1)∣

∣G(n∗k, x
d−1, xd−1)∣

By Corollary 4.8, the right-hand-side term in the above inequality is positive for large

enough n∗k. Therefore, we have

∣Gg(nk, λ, ρ)∣

∣G(nk, λ, ρ)∣
> 0

for large enough k.
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4.4 Asymptotic Block-Error Probability

Theorem 4.10. Let (λ, ρ) be a DDP with minimum variable node degree lmin, maxi-

mum variable node degree lmax and maximum check node degree rmax > 2. If the code

C1 is chosen uniformly at random from G2k−2(n,λ, ρ) and if ε < εef , we have

E (PBP
B (C1, ε)) = O(

1

n⌈ lmin
2
k⌉−k

)

and in the limits of small ε and large n,

E (PBP
B (C1, ε)) = O(

εk

n⌈ lmin
2
k⌉−k

)

4.4.1 Proof of Theorem 4.10

Let Ve be the set of variable nodes corresponding to the random erasures that occur

during transmission. The BP decoder fails iff Ve contains a stopping set. So,

PBP
B (C1, ε) = Pr(∃S ∈ S(C1) ∶ S ⊂ Ve)

For any δ1, δ2 > 0, we bound PBP
B (C1, ε) using union bound as

PBP
B (C1, ε) ≤ Pr(∃S ∈ S(C1) ∶ S ⊂ Ve, k ≤ ∣S∣ ≤ δ1n)

+Pr(∃S ∈ S(C1) ∶ S ⊂ Ve, δ1n ≤ ∣S∣ ≤ (ε + δ2)n)

+Pr(∃S ∈ S(C1) ∶ S ⊂ Ve, (ε + δ2)n ≤ ∣S∣ ≤ n)

The constants δ1, δ2 can be arbitrarily chosen by us and we will carefully set their

values in the remainder of the proof. In the above, we only count stopping sets of size

k or more because by restricting girth to 2k or more, we have eliminated stopping sets

of size less than k. The probability PBP
B (C1, ε) is a function of the random variable
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C1. The expected value of the function is

E (PBP
B (C1, ε)) ≤ E(Pr(∃S ∈ S(C1) ∶ S ⊂ Ve, k ≤ ∣S∣ ≤ δ1n))

+E(Pr(∃S ∈ S(C1) ∶ S ⊂ Ve, δ1n ≤ ∣S∣ ≤ (ε + δ2)n))

+E(Pr(∃S ∈ S(C1) ∶ S ⊂ Ve, (ε + δ2)n ≤ ∣S∣ ≤ n))

⇒ E (PBP
B (C1, ε)) ≤

1

p
E(Pr(∃S ∈ S(C) ∶ S ⊂ Ve, k ≤ ∣S∣ ≤ δ1n))

+
1

p
E(Pr(∃S ∈ S(C) ∶ S ⊂ Ve, δ1n ≤ ∣S∣ ≤ (ε + δ2)n))

+
1

p
E(Pr(∃S ∈ S(C) ∶ S ⊂ Ve, (ε + δ2)n ≤ ∣S∣ ≤ n)) (12)

Here, C is a code selected from G(n,λ, ρ) uniformly at random and p > 0 is some real

number such that

∣G2k−2(n,λ, ρ)∣

∣G(n,λ, ρ)∣
≥ p

for large enough n (Lemma 4.9).

The proof of the theorem follows from the following three claims.

Claim 4.11. As n→∞ and ε→ 0, the first term in (12) decays as

E(Pr(∃S ∈ S(C) ∶ S ⊂ Ve, k ≤ ∣S∣ ≤ δ1n)) = O(
εk

n⌈ lmin
2
k⌉−k

)

Claim 4.12. As n increases, the second and the third terms in (12) decay exponen-

tially in n.

Claim 4.12 was proved by Orlitsky, et al. [39, Proof of Thm. 16] in a related

context. The condition ε < εef is required in their proof of this claim. The proof of

Claim 4.11, provided below, is our novel contribution.

Proof of Claim 4.11. The probability that the erasure pattern Ve contains a stopping
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set of size between k and δ1n can be upper bounded by the union bound as follows

Pr(∃S ∈ S(C) ∶ S ⊂ Ve, k ≤ ∣S∣ ≤ δ1n) ≤
δ1n

∑
i=k

∣{S ∈ S(C) ∶ ∣S∣ = i}∣Pr (S ∈ Ve)

=
δ1n

∑
i=k

∣{S ∈ S(C) ∶ ∣S∣ = i}∣ εi

=
δ1n

∑
i=k
εi E(i) (13)

Now, we analyze E(i), the average number of stopping sets of size i in the standard

ensemble. A stopping set of i variable nodes can have nodes of different degrees.

Let us denote the number of degree-s variable nodes in the variable-node subset

by is. Let Si denote the set of all non-negative integer solutions to the equation

ilmin
+ ilmin+1 + ⋯ + ilmax = i. In other words, Si is the number of ways we can select

the degrees of the i variable nodes. The number of ways we can form a variable-node

subset S ⊆ Vv such that it has is variable nodes of degree s for all s is given by

(
nLlmin

ilmin

)(
nLlmin+1

ilmin+1

)⋯(
nLlmax

ilmax

)

We can choose δ1 to be sufficiently small so that i, which is always smaller than δ1n,

cannot exceed nLis for any s. The probability that this variable node subset S is a

stopping set is given by

EPr(S ∈ S(C)) = no. of ways to connect S to form a stopping set

no. of ways to connect S

If we denote the number of ways to connect S to form a stopping set by A, we have

EPr(S ∈ S(C)) = A

(
∣E∣
∑ sis)

By noting that

(
nLlmin

ilmin

)(
nLlmin+1

ilmin+1

)⋯(
nLlmax

ilmax

) ≤ (
n

i
)

we can say that

εi E(i) = εi ∑
{is}∈Si

(
nLlmin

ilmin

)(
nLlmin+1

ilmin+1

)⋯(
nLlmax

ilmax

)
A

(
∣E∣
∑ sis)

≤ εi(
n

i
) ∑

{is}∈Si

A

(
∣E∣
∑ sis)

(14)
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The quantity A is the number of ways of choosing ∑ sis check-node sockets such that

we select at least two sockets from each participating check node. As long as i is a

small fraction of n, which we can ensure by selecting a small enough δ1, we can keep

A independent of n (for a given i). Also note that if we increase the degree of all the

check nodes, A can only increase. Therefore, we can upper bound A by the number of

ways to select check-node sockets assuming that all check nodes have the maximum

degree rmax.

For a non-negative integer rj ≤ rmax, the number of ways of choosing rj sockets

from a check node of degree rmax is (
rmax

rj
). To form a stopping set, we must choose rj

sockets from the jth check node in the Tanner graph such that rj ∈ {0,2,3,4, . . . ,rmax}

and ∑
m
j=1 rj = ∑ sis. The total number of ways to select the sockets (assuming maxi-

mum check node degree for all check nodes) is

∑
(rj)∶∑mj=1 rj=∑ sis

rj∈{0,2,3,...,rmax},∀j

m

∏
j=1

(
rmax

rj
) = coef(((1 + x)rmax − rmaxx)

m
, x∑ sis)

Here, coef(p(x), xr) denotes the coefficient of xr in the polynomial p(x). Note that

we are subtracting the term rmaxx because rj ≠ 1 for any j. We can now upper bound

the quantity A as follows.

A ≤ coef (((1 + x)rmax − rmaxx)
m
, x∑ sis)

≤ (
m + ⌊∑ sis2 ⌋ − ⌈∑ sis

rmax
⌉

⌊∑ sis2 ⌋
)(2rmax − 3)∑ sis

where the last inequality follows from [39, Lemma 18]. If we denote ∑ sis by w, we
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have ilmin ≤ w ≤ ilmax. Substituting the above in (14), we get

εi E(i) ≤ εi(
n

i
) ∑

{is}∈Si
(
m + ⌊w2 ⌋ − ⌈ w

rmax
⌉

⌊w2 ⌋
)
(2rmax − 3)w

(
∣E∣
w
)

≤ εi(
n

i
)(2rmax − 3)ilmax ∑

{is}∈Si
(
m + ⌊w2 ⌋ − ⌈ w

rmax
⌉

⌊w2 ⌋
)

1

(
∣E∣
w
)

≤ εi(
n

i
)(2rmax − 3)ilmax ∑

{is}∈Si
(
m + ilmax

2

⌊w2 ⌋
)

1

(
∣E∣
w
)

≤ εi(
n

i
)(2rmax − 3)ilmax ∑

{is}∈Si

(m + ilmax

2
)
⌊w
2
⌋
w!

⌊w2 ⌋! (∣E∣ − ilmax)
w (15)

Note that in the last step we have used the following two inequalities.

(
m + ilmax

2

⌊w2 ⌋
) ≤

(m + ilmax

2
)
⌊w
2
⌋

⌊w2 ⌋!

(
∣E∣

w
) ≥

(∣E∣ −w)
w

w!
≥

(∣E∣ − ilmax)
w

w!

If we denote the summand in (15) by f(w), we have

f(2r + 1)

f(2r)
=

2r + 1

∣E∣ − ilmax

≤
ilmax

∣E∣ − ilmax

≤
δ1nlmax

∣E∣ − δ1nlmax

≤ 1

if we choose δ1 small enough. Also,

f(2r + 2)

f(2r + 1)
= 2

m + ilmax

2

∣E∣ − ilmax

≤ 2
m + δ1nlmax

2

∣E∣ − δ1nlmax

Since rmax > 2 we have ∣E∣ > 2m. Again, if we choose δ1 small enough, we will have

f(2r + 2)/f(2r + 1) ≤ 1. So, f(w) is a non-increasing function and w ≥ ilmin, we can

upper bound all the summands in (15) by f(ilmin). We now have

εi E(i) ≤ εi(
n

i
)(2rmax − 3)ilmax × ∑

{is}∈Si

(m + ilmax

2
)
⌊ ilmin

2
⌋
(ilmin)!

⌊
ilmin

2 ⌋! (∣E∣ − ilmax)
ilmin

a
≤ εi(

n

i
)(2rmax − 3)ilmax(i + 1)lmax ×

(m + δ1nlmax

2
)
⌊ ilmin

2
⌋
(ilmin)!

⌊
ilmin

2 ⌋! (∣E∣ − δ1nlmax)
ilmin

≤ εi(
n

i
)(2rmax − 3)ilmax

(i + 1)lmax

n⌈ ilmin
2

⌉
×

(α + δ1lmax

2
)
⌊ ilmin

2
⌋
(ilmin)!

⌊
ilmin

2 ⌋! (β − δ1lmax)
ilmin

≜ εiJi (16)
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In step (a), we have used the fact that ∣Si∣ ≤ (i + 1)lmax . Also, α ≜m/n and β ≜ ∣E∣/n

depend only on ρ and λ. If i remains constant as n→∞, we have

Ji = Θ(
1

n⌈ ilmin
2

⌉−i
)

Also,

Ji+2

Ji
=

(
n
i+2

)

(
n
i
)

(2rmax − 3)2lmax
(α + δ1lmax

2 )lmin

(β − δ1lmax)
2lmin

× (
i + 3

i + 1
)

rmax (ilmin + 2lmin)!⌊
ilmin

2 ⌋!

(ilmin)! (⌊
ilmin

2 ⌋ + lmin)! nlmin

≤
(n − i − 1)(n − i)

(i + 1)(i + 2)
(2rmax − 3)2lmax (

i + 3

i + 1
)

rmax

×
(α + δ1lmax

2 )lmin

(β − δ1lmax)
2lmin

(ilmin + 2lmin)
2lmin

(⌊
ilmin

2 ⌋ + 1)
lmin

nlmin

Using i+3
i+1 ≤ 2, ilmin + 2lmin ≤ 3ilmin, ⌊x⌋ + 1 ≥ x,

Ji+2

Ji
≤
n2

i2
(2rmax − 3)2lmax2rmax

(α + δ1lmax

2 )lmin

(β − δ1lmax)
2lmin

×
(3ilmin)

2lmin

( ilmin

2
)
lmin

nlmin

Choosing δ3 ∈ (0,1) such that β − δ3lmax > 0 and letting δ1 < δ3,

Ji+2

Ji
≤ (2rmax − 3)2lmax 2rmax

(α + δ3lmax

2 )lmin(3lmin)
2lmin

(β − δ3lmax)
2lmin (lmin

2
)
lmin

(
i

n
)

lmin−2

≜ B (
i

n
)

lmin−2

≤ Bδlmin−2
1 (17)

where B depends only on λ and ρ. Going back to (13), and substituting (16) and

(17), we get

Pr(∃S ∈ S(C) ∶ S ⊂ Ve, k ≤ ∣S∣ ≤ δ1n) ≤
δ1n

∑
i=k
εi E(i) ≤

δ1n

∑
i=k
εiJi ≤ ε

k
δ1n

∑
i=k
Ji

≤ εk (Jk + Jk+1)

⌈δ1n/2⌉
∑
i=0

(Bδlmin−2
1 )

i

If δ1 is small enough, then the summation in the final expression is bounded by a

decreasing geometric sum. Moreover,

Jk = Θ(
1

n⌈ lmin
2
k⌉−k

) , Jk+1 = Θ(
1

n⌈ lmin
2

(k+1)⌉−k−1
)
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and among these two terms, Jk has a slower decay. Therefore,

Pr (∃S ∈ S(C) ∶ S ⊂ Ve, k ≤ ∣S∣ ≤ δ1n) = O(
εk

n⌈ lmin
2
k⌉−k

)

as ε→ 0 and n→∞.

4.5 Secrecy Regions

Recall that for strong secrecy on BEWC(ξ), we require a sequence of codes whose

block-error probability over BEC(1−ξ) decays as 1/n2. From Theorem 4.10, we know

that the block-error probability of LDPC codes without cycles of length 2k − 2 or

smaller, and minimum left degree lmin decays as

O(
1

n⌈ lmin
2
k⌉−k

)

over BEC(ε) for ε < εef . In particular, the duals of (λ, ρ) LDPC codes with lmin ≥ 3

and without cycles of length four or less will achieve O(1/n2) block-error on an

average. Loosely speaking, a randomly selected code from this ensemble can be

“expected” to achieve strong secrecy on BEWC(ξ) for all ξ > 1 − εef . In a stricter

sense, this is an existence result—there exists an LDPC code in the aforementioned

ensemble that achieves strong secrecy for all ξ > 1 − εef .

4.5.1 The Value of εef

Given the value of the function γ(α) for α ∈ [0,1], the computation of εef is straight-

forward. The computation of γ(α) depends on whether the the DDP corresponds to

a regular or an irregular LDPC code.

Theorem 4.13 ( [39, Thm. 2]). For (l,r) regular LDPC codes, we have

γ(α) =
l

d
log2 (

(1 + x0)
r − rx0

xαr0

) − (l − 1)h(α)

where x0 is the only positive solution of

x ((1 + x)r−1 − 1)

(1 + x)r − rx
= α
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For an irregular DDP, the computation of εef is much more involved and we refer

the reader to [39, Lemma 4, Thm. 5].

Since the computation of εef is completely indirect, there is no known direct ana-

lytic technique to track its value. For our strong secrecy application, we are interested

in achieving large values of εef . The following upper bound is obvious

εef ≤ εth < 1 −R (18)

The closer bound follows from two facts.

1. For ε < εef , the probability of block-error for a randomly selected LDPC code

from the standard ensemble over BEC(ε) goes to zero [39, Thm. 16].

2. For ε > εth, the BER of a randomly selected LDPC code from the standard

ensemble over BEC(ε) is bounded away from zero.

We performed numerical computation of εef for a collection of DDPs and found that

εef is bounded away from εth. Fig. 18 shows a plot of the values for rate-1
2 DDPs

optimized for high εth using the LDPCOPT online database [42]. In this case, we

also note that the maximum value of εef is achieved by the (3,6) regular LDPC code.

4.5.2 Strong and Weak Secrecy Regions

In this chapter, we consider a DDP of rate R and lmin ≥ 3, analyze the strong secrecy

region—the values of ξ for which there exist LDPC codes with girth at least six

achieve strong secrecy—for the BEWC(ξ). We have shown that

1 − εef < ξ ≤ 1

Thangaraj, et al. [1, §IV-B] considered achieving weak secrecy using the duals of

LDPC codes over the BEWC and showed that the weak secrecy region is given by

1 − εth < ξ ≤ 1
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Figure 18: The values of εef and εth for threshold-optimized rate-1
2 LDPC codes.

The arrows indicate the values for regular LDPC codes.
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Figure 19: A sketch of the weak and strong secrecy regions achieved by short-cycle-
free LDPC codes.
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Figure 20: Weak and strong secrecy regions achieved by the DDPs (0.9131x2 +

0.0124x17+0.0651x18+0.009363x70,0.2703x8+0.7297x9) (Code A) and (x2, x5) (Code
B).

Combining the above two secrecy regions and using the bound (18), we sketch the

secrecy region of short-cycle-free LDPC codes in Fig. 19.

For example, Fig. 20 shows the secrecy regions of two rate-1
2 LDPC codes. Code

A is a threshold-optimized LDPC code and Code B is the (3,6) regular LDPC code.

Code A has εth ≈ 0.460 and εef ≈ 0.184 and the duals will achieve weak secrecy for

ξ ∈ (0.540,0.816] and strong secrecy for ξ ∈ (0.816,1]. The (3,6) regular code has

εth ≈ 0.429 and εef ≈ 0.365. Therefore, the dual codes will achieve weak secrecy for

ξ ∈ (0.571,0.635] and strong secrecy for ξ ∈ (0.635,1].
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CHAPTER V

LARGE-GIRTH LDPC CODES FOR STRONG SECRECY

In Chapter 3, we showed that we can achieve strong secrecy on the BEWC model

using the duals of codes whose block-error probability decays as 1/n2 as the block

length n increases. A solution to this problem was discussed in Chapter 4, where we

considered short-cycle-free LDPC codes, i.e., LDPC codes whose Tanner graphs did

not have any cycles of length less than six. Using a stopping-set analysis, we studied

the asymptotic block-error probability of these codes under BP decoding and showed

that they indeed satisfy the requirement for strong secrecy.

In this chapter, we consider “large-girth” LDPC codes, i.e., LDPC codes corre-

sponding to Tanner graphs whose girth grows logarithmically fast as the block length

increases. Instead of directly studying the block-error rate of these codes, we study

their bit-error rate using density-evolution analysis and use it to upper bound the

block-error rate. For certain large-girth LDPC codes, we show that the BER and the

block-error rate over BEC decay in a sub-exponential manner, i.e., as O(exp (−c1nc2))

for some constants c1 > 0 and 0 < c2 ≤ 1, when the erasure probability is below the

threshold. The results pertaining to this chapter were published in [43].

This chapter is organized as follows. We begin with a discussion of the density

evolution analysis of LDPC codes over the BEC. In the second section, we show that

the density evolution BER estimate decays in a double-exponential manner below

the BEC threshold as the number of iterations increases. In the third section, we

motivate the use of large-girth LDPC codes for strong secrecy and provide a short

survey of some prior work regarding LDPC codes with high girth. In the fourth

section, we provide a brief overview of Lubotzky-Phillips-Sarnak (LPS) graphs, their
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properties, and their applications in error-correction coding. In the fifth section, we

provide an algorithm to construct large-girth LDPC codes from LPS graphs. The

sub-exponential fall of the BER of these LDPC codes is proved in the sixth section.

In the final section, we discuss the strong secrecy region achieved by our large-girth

LDPC codes.

5.1 Background on Density Evolution

As discussed in our brief introduction to LDPC codes (§4.1) in the previous chap-

ter, the performance of individual LDPC codes is not usually studied; instead, the

analysis focuses on the average performance of an ensemble of LDPC codes. One of

the quantities of interest is the average BER of LDPC codes uniformly sampled from

the standard ensemble. One of the ways to study this quantity is to use an analysis

technique called density evolution. Density evolution provides a generalized frame-

work to analyze the bit-error rate of sparse-graph codes over symmetric channels.

The analysis in this chapter is limited to LDPC codes over the BEC. In the following

discussion, we will give a brief introduction to the density evolution analysis of the

bit-error rate of the BP decoder when it decodes an LDPC codeword transmitted over

a BEC. The material in this section is based on the discussion in the book Modern

Coding Theory [34, §3.7-3.11].

Let Hn be an arbitrary ensemble of Tanner graphs with n variable nodes. Suppose

a graph G is selected uniformly at random from Hn and a random codeword from the

associated code is transmitted over BEC(ε). The receiver, with the knowledge of G,

tries to decode the transmitted word using the BP decoding algorithm. For a family

of ensembles (Hn) with increasing block length n, let

� x(t, n) = the probability that a randomly selected edge in the Tanner graph G

transmits an erasure message from its variable node to its check node at the tth

iteration
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� y(t, n) = the probability that a randomly selected codeword bit is unknown after

t iterations. In other words, y(t, n) is the average bit-error probability of Hn

after t iterations of BP decoding.

5.1.1 Computation Graphs

To evaluate x(t, n) and y(t, n) explicitly, the computation graphs [34, §3.7] associated

with the Tanner graph ensemble Hn may be considered. Suppose a graph G is selected

from Hn uniformly at random and a random edge e is picked from G. Let v be the

variable node connected to e. The level-t edge-rooted computation graph C⃗t of Hn is

defined as the subgraph obtained by traversing from v up to iteration depth t in all

initial directions except along e. Since the selection of the graph G and the edge e

are both random, the computation graph C⃗t is a random graph whose distribution

depends only on t andHn. Also, x(t, n) can be uniquely determined given the possible

realizations of C⃗t and their probabilities.

To evaluate y(t, n), the level-t node-rooted computation graph C̊t, defined subse-

quently, may be considered. As before, a graph G is selected from Hn uniformly at

random. Then, a variable node v is picked from G uniformly at random. The graph

C̊t is defined as the subgraph obtained by traversing from v up to iteration depth t

in all directions. Like C⃗t, the distribution of C̊t is also dependent only on t and Hn.

The probability y(t, n) can be uniquely determined given the possible realizations of

C̊t and their probabilities.

Fig. 21(a) shows the level-2 edge-rooted computation graph corresponding to the

edge e in the Tanner graph in Fig. 21(b). Fig. 22(b) shows the level-2 node-rooted

computation graph corresponding to the variable node v1 in the same Tanner graph.

Note that in both the figures, we have duplicated some of the nodes and we have

drawn the graphs like a tree. This is done for the sake of simplicity in visualization.

The actual computation graphs are constructed by identifying duplicate vertices and
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Figure 21: A Tanner graph (a) and the level-2 computation graph (b) rooted at the
edge e. The edge e (dotted) is not a part of the computation graph.

(a) (b)

Level-0

Level-1

Level-2

Figure 22: A Tanner graph (a) and the level-2 computation graph (b) rooted at the
node v1.
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duplicate edges in the two figures, and they will contain some cycles.

It can be noted that even though the computation graphs in Figs. 21 and 22 are

expanded from the same variable node, they are different. In general, the computation

graphs C⃗t and C̊t are slightly different in the following two aspects.

� The root node degrees are different in the two graphs. Loosely speaking, the

root node degree in C̊t is one more than that of C⃗t. This is because, while

constructing C⃗t, we don’t travel along the root edge.

� Even ignoring the difference in the degrees, the degree distribution of the “root”

variable node is different for C⃗t and C̊t. This is because, the degree of a vari-

able node attached to a randomly chosen edge is dictated by λ(x), the edge-

perspective degree distribution, while that of a randomly chosen variable node

is dictated by L(x), the node-perspective degree distribution.

5.1.2 Tree Ensembles

While studying the error-correcting performance of LDPC codes, the codes corre-

sponding to the standard ensemble of Tanner graphs G(n,λ, ρ) are usually considered.

The graphs in this ensemble contain n variable nodes, whose degrees are determined

by the degree distribution polynomial λ(x) = ∑i λix
i−1, where λi is the fraction of

edges that are connected to degree-i variable nodes. The check-node degree distri-

bution is determined by the polynomial ρ(x) = ∑j ρjx
j−1, where ρj is the fraction of

edges connected to degree-j check nodes.

In the classical setting, Hn = G(n,λ, ρ) is considered, and x(t, n) and y(t, n)

are analyzed while keeping t fixed and letting n grow monotonically. The possible

computation graphs of G(n,λ, ρ) are not cycle-free and hence enumerating them is

cumbersome. Doing an exact analysis of the average bit-error probability y(t, n) for

this ensemble is therefore difficult. By enumerating the computation graphs, one can

note that for a fixed iteration depth t and increasing n the computation graphs C⃗t
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and C̊t will be trees with probability converging to unity at a rate that is O(1/n). In

other words,

Pr (C⃗t is not a tree) ,Pr (C̊t is not a tree) = O(
1

n
)

The term density evolution refers to the calculation of the bit-error probability by

assuming that the computation graphs are identical to the limiting trees. The density

evolution analysis is so called because it analyzes the evolution of probability density

of the messages sent along the edges as the number of decoding iterations increases.

The level-t node-rooted tree ensemble T̊t corresponding to the DDP (λ, ρ) is a

random tree that has a Tanner-graph-like bipartite structure. The tree T̊t is built

iteratively starting from a root variable node according to the following steps.

1. The root variable node of the tree has i sockets with probability Li, where Li

is the fraction of degree-i variable nodes allowed by the DDP (λ, ρ).

2. For levels 1 to t, do the following

(a) For each free variable-node socket in the previous level, add a check node.

Each such check node has j sockets with probability ρj and one of these

sockets connects to the corresponding variable-node socket in the previous

level. The number of sockets in a check node is independent from all other

events.

(b) For each free check-node socket from the previous step, add a variable node.

A variable-node added at this way will have i sockets with probability λi

and one of these sockets connects to the corresponding check-node socket.

The number of sockets in the variable nodes are chosen independently.

In the above process, the leaf variable nodes, which are the level-t variable nodes,

will have only one fulfilled socket. The unfulfilled sockets are discarded from the

construction.
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Figure 23: An instance T of the node-rooted tree ensemble and the probabilities
associated with the node degrees.

The level-t edge-rooted tree ensemble T⃗t is constructed with a nearly identical

algorithm except for the fact that the root variable node has degree i with probability

λi+1. It can be shown that T⃗t is an asymptotic approximation of C⃗t, and T̊t is an

asymptotic approximation of C̊t.

For a given tree T , the probability of the tree ensemble T̊t being equal to T can

be calculated as follows. Suppose the tree T has qj check nodes of degree j and

pi non-leaf variable nodes of degree i, with the root variable node having degree i0.

Then,

Pr (T̊t = T ) = Li0
1

λi0

lmax

∏
i=lmin

λpii

rmax

∏
j=rmin

ρ
qj
j

The probability of the edge-rooted tree ensemble T⃗t being equal to T is given by

Pr (T⃗t = T ) = λi0+1
1

λi0

lmax

∏
i=lmin

λpii

rmax

∏
j=rmin

ρ
qj
j

For example, given the DDP (λ, ρ), the probability of the node-rooted tree ensemble

T̊2 is equal to the tree T in Fig. 23 is given by the product of all the node-degree

probabilities in the figure. That is,

Pr (T̊t = T ) = L2 ρ
5
3 ρ

4
4 λ

3
2 λ

2
3
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5.1.3 The Density Evolution Equations

The tree ensemble T⃗t is a Tanner graph, and hence it has a binary linear code associ-

ated with it. Suppose a random codeword from this code is transmitted over BEC(ε)

and decoded using t iterations of the BP decoding algorithm. Let xt denote the bit-

error probability of the root variable node after BP decoding. A similar probability

yt for the tree ensemble T̊t can be defined. It can be easily seen that xt and yt are

given by the following recursive relationship.

x0 = ε

xt = ελ(1 − ρ(1 − xt−1)), t > 0

yt = εL(1 − ρ(1 − xt−1)), t > 0

The above equations are the density evolution equations for the BEC.

Definition 5.1 (Threshold). The erasure threshold εth of an LDPC DDP (λ, ρ) is

defined as the supremum of the erasure parameter ε for which the density evolution

estimate for BEC xt, or equivalently yt, converges to zero. That is,

εth ≜ sup{ε > 0 ∶ xt
t→∞
Ð→ 0}

▼

In other words, the threshold is loosely defined as the “worst” channel parameter

for which the density evolution BER estimate converges to zero.

5.1.4 Density Evolution Estimate vs. Bit-Error Probability

The quantity yt given by density evolution is an estimate of the average bit-error

probability when a random code Cn from the standard ensemble G(n,λ, ρ) of LDPC

codes is transmitted over BEC(ε). For a given code Cn, let PBP
b (Cn, ε, t) denote the

probability of bit error after t iterations of BP decoding. It can be shown that the
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average bit-error probability E (PBP
b (Cn, ε, t)) ≜ y(t, n) approaches yt as long as t

remains constant and n increases. In particular, it can be shown that for a constant

integer t

∣E (PBP
b (Cn, ε, t)) − yt∣ = O (

1

n
) , as n→∞

5.2 Asymptotic Behavior of Density Evolution Estimate

It is a well-known result that the quantities xt and yt exhibit a double-exponential

decay as t goes to infinity for ε < εth. A proof of this result for regular codes was

provided by Lentmaier, et al. [44, §V-A]. For the sake of completeness, we state

the more general result for irregular codes and provide an alternative proof involving

mathematical induction.

Lemma 5.2. For a DDP (λ, ρ) with minimum variable node degree lmin ≥ 3 and

ε < εth, we have

xt, yt = O (exp(−β(lmin − 1)t)) (19)

as t→∞, where β > 0 is a constant.

Proof. For any x ∈ [0,1], we have

(1 − x)d−1 ≥ 1 − (d − 1)x, ∀d ∈ N

⇒ ρ(1 − x) =
rmax

∑
d=rmin

ρd(1 − x)
d−1

≥
rmax

∑
d=rmin

(1 − (d − 1)x)ρd

= 1 − (ravg − 1)x

⇒ 1 − ρ(1 − x) ≤ (ravg − 1)x

where ravg = ∑j jρj is the average check-node degree from the edge-perspective. For
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0 ≤ (ravg − 1)x ≤ 1,

f(ε, x) = ελ(1 − ρ(1 − x))

a
≤ ελ((ravg − 1)x)

= ε
lmax

∑
i=lmin

λi((ravg − 1)x)i−1

b
≤ ε

lmax

∑
i=lmin

λi((ravg − 1)x)lmin−1

⇒ f(ε, x) ≤ ε((ravg − 1)x)lmin−1 =∶ g(ε, x) (20)

Note that (a) follows from the monotonicity of λ(x), and (b) follows from the given

condition 0 ≤ (ravg − 1)x ≤ 1. To make the notation easier, let us denote A = ε(ravg −

1)lmin−1. Since we are operating in the region ε < εth where xt converges to zero, there

exists an R such that Axlmin−2
R ≤ 1 and (ravg − 1)xR ≤ 1. The first inequality will be

used later in the proof.

Let us construct a sequence zR+i+1 = g(ε, zR+i) with zR = xR. It is immaterial what

zi takes when i < R. We then claim that xR+i ≤ zR+i for any non-negative integer i.

We can prove this claim by induction. The base case is when i = 0 and it is true by

our choice of zR. Assuming the claim is true for some integer i ≥ 0, we have

xR+i+1 = f(ε, xR+i) ≤ g(ε, xR+i) ≤ g(ε, zR+i) = zR+i+1

The first inequality is due to (20) and the second inequality is due to the monotonicity

of g and the induction hypothesis. This proves the claim.
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We now have,

zR+1 = Az
lmin−1
R

zR+i = A
1+(lmin−1)+(lmin−1)2+⋯+(lmin−1)i−1z

(lmin−1)i
R

= A
(lmin−1)

i−1
lmin−2 z

(lmin−1)i
R

= A
−1

lmin−2 (A
1

lmin−2xR)
(lmin−1)i

= A
−1

lmin−2 exp((lmin − 1)i (
logA

lmin − 2
+ logxR))

= A
−1

lmin−2 exp (−αR(lmin − 1)i)

Due to our choice of R, αR ≜ −1
lmin−2 logA − logxR is positive. For t ≥ R, we have

xt ≤ zt

= A
−1

lmin−2 exp (−αR(lmin − 1)t−R)

= A
−1

lmin−2 exp(−
αR

(lmin − 1)R
(lmin − 1)t)

= A
−1

lmin−2 exp (−β(lmin − 1)t)

Note that

β ≜
αR

(lmin − 1)R
> 0

Therefore, we have

xt = O (exp(−β(lmin − 1)t)) as t→∞

To prove the second half, we note that for x ∈ [0,1]

L(x) = ∑Lix
i ≤ ∑Lix

i−1

=
1

∫
1

0 λ(x)dx

lmax

∑
i=lmin

λi
i
xi−1

≤
1

lmin ∫
1

0 λ(x)dx
λ(x)

⇒ yt ≤
1

lmin ∫
1

0 λ(x)dx
xt

⇒ yt = O (exp(−β(lmin − 1)t))

73



It is important to note that a similar double exponential decay result is not true

for DDPs that have degree-two variable nodes, i.e., with lmin = 2. Working out the

expressions for this case, we can see that xt and yt exhibit only an exponential decay

as the number of iterations t increases. Note that xt is the expectation of the root-

node bit-error probability taken over the possible outcomes of the tree ensemble T⃗t.

The dominating term in this expectation is the contribution of the worst-case trees,

namely, the trees that contain a long chain of nodes such that the only participating

variable nodes are the ones with the minimum left degree lmin. DDPs with lmin =

2 form a special case where the contribution by the worst-case trees decays only

exponentially fast in t.

5.3 Motivation for Large-Girth LDPC Codes

Suppose we are given a DDP (λ, ρ) with lmin ≥ 3. For k = 1,2,3, . . ., let (nk) be a

strictly increasing sequence of positive integers and let tk be such that

tk = ⌈
log lognk + log a − logβ

log(lmin − 1)
⌉

for any positive integer a. By Lemma 5.2, we have ytk = O (1/nak). In particular,

we have yt = O (1/n3) for a = 3 (we drop the subscript k for convenience). Since

the density evolution estimate yt is only an approximation of the actual BER of the

standard ensemble, this does not necessarily mean that the actual bit-error probability

y(t, n) itself decays as O(1/n3). In particular, note that we want to analyze the BER

under BP decoding as the number of iterations t increases with n.

There are only a few rigorous results regarding the “closeness” of the density

evolution approximation and to our knowledge, none of these fit our requirement.

For example, we know the following results

� For G(n,λ, ρ)

lim
n→∞

x(t, n) = xt, lim
n→∞

y(t, n) = yt
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as long as t remains constant [34, Thm. 3.49]. We cannot use this result directly

since we let t grow with n.

� Korada and Urbanke [45] consider a randomly selected code Cn from G(n,λ, ρ)

and analyze the expected BER as the iteration count t(n) increases monotoni-

cally with the block length n. In particular, they show that

lim
n→∞

E (PBP
b (Cn, ε, t(n))) = 0

whenever either of the following conditions are met.

1. The minimum variable-node degree is at least five and the channel param-

eter is below the threshold, i.e.,

lmin ≥ 5 ε < εth

2. The minimum variable-node degree is at least three and the channel pa-

rameter is below a quantity ε̄th, which is less than the threshold εth, i.e.,

lmin ≥ 3 ε < ε̄th

The above result states the regions where y(t, n) converges to zero when t is a

non-decreasing function of n. However, for our strong secrecy result, we must

also know that speed at which it converges to zero.

To achieve strong secrecy, we must find some ensemble Hn for which y(t, n) =

O(1/n3), where t is growing with n at least as fast as log logn. In general, this

is not true for G(n,λ, ρ). For example, any irregular DDP with lmin = 3 does not

satisfy y(t, n) = O(yt) any ε > 0. In particular, from one of the results by Orlitsky, et

al. [39, Thm. 16] we can infer that the following for the standard ensemble

y(t, n) ≥ lim
t→∞

y(t, n) = EPBP
B (Cn, ε) = Θ(

1

n⌈ lmin
2

⌉−1
)
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for lmin ≥ 2 and ε < εth. This means that we require the minimum variable-node

degree lmin to be at least five for strong secrecy. However, this reduces the erasure

threshold εth to low values. From the discussion in Chapter 3, it is clear that we must

have very high values of εth to achieve strong secrecy at high rates. Our objective

is to achieve fast block-error (bit-error) decay and high thresholds simultaneously,

and the standard ensemble of LDPC codes is not adequate for these requirements.

Therefore, we must construct special ensembles of LDPC codes.

5.3.1 Strong Secrecy Using Large-Girth Regular LDPC Codes

Let Gg(n,λ, ρ) denote the subset of Tanner graphs in G(n,λ, ρ) whose girth is more

than g. Clearly, the level-t computation graphs of G4t(n,λ, ρ) are cycle free. This

means that any possible outcome of C̊t is also a possible outcome of T̊t; in other words,

the random trees C̊t and T̊t have the same “support.” This does not necessarily mean

that C̊t and T̊t are identically distributed and therefore, y(t, n) = yt is not necessarily

true for G4t(n,λ, ρ).

The regular LDPC code ensemble G4t(n,xc−1, xd−1) is a special case for which C̊t

and T̊t are equal to a unique tree T . This is because the girth condition forces the

two random variables to have the same support and the regularity of the code forces

that support to be of size one. Since y(t, n) is calculated from C̊t in the same way as

yt is calculated from T̊t, we have y(t, n) = yt. Using a similar reasoning, we can also

say that x(t, n) = xt.

In essence, density evolution analysis is approximate because it makes the follow-

ing assumptions.

1. The decoding neighborhood is a tree.

2. The node degrees in the decoding tree are independent.

For large-girth Tanner graphs, the first assumption is true. For large-girth regular
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Table 1: The validity of density evolution assumptions for different ensembles of
LDPC codes.

Ensemble C̊t is a tree? C̊t = T̊t statistically?
Standard enesemble 7 7

Large-girth irregular 3 7

Large-girth regular 3 3

Tanner graphs, there is a unique decoding neighborhood with only one choice for

variable-node degrees and only one choice for check-node degrees, and hence the

second assumption is also true. However, the second assumption is not justified for

large-girth irregular Tanner graphs. Therefore, we are able to assert that the density

evolution estimate is exact in the case of large-girth regular LDPC codes, but are

unable to do the same for the irregular counterpart. This means that large-girth

irregular LDPC codes require a much closer analysis to prove any strong secrecy

results.

Assume that there exists a sequence (C⊥n) of (c, d)-regular LDPC codes with c ≥ 3

such that their Tanner graphs have girth more than 4t, where

t = ⌈
log logn + log 3 − logβ

log(c − 1)
⌉

(The existence of such codes will be proved in the next section). For these codes, we

have

PBP
b (C⊥n, ε, t) = y(t, n) = yt = O(

1

n3
)

for ε < εth. Here, PBP
b (C⊥n, ε, t) denotes the bit-error probability after t iterations. By

the above equation, the coset coding scheme using the dual sequence (Cn) will achieve

strong secrecy on BEWC(ξ) for ξ > 1 − εth.

5.3.2 Existing Constructions for LDPC Codes with High Girth

Construction of LDPC codes with high girth (not necessarily with logarithmic growth)

has received significant attention from the coding theory community. We know of the
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following constructions.

1. The progressive edge growth (PEG) algorithm by Hu, et al. [46] constructs

LDPC codes with a prescribed left (variable-node) degree distribution and rate.

The PEG algorithm, which is a greedy algorithm, starts with a Tanner graph

with no edges, and for each variable node, it chooses the farthest away check

node and adds an edge to it. If two check nodes are equidistant from the given

variable node, then the one with the least degree is chosen. In this way, edges

are added to satisfy all the left degree requirements.

The LDPC codes produced by PEG have a very good error-correcting perfor-

mance over additive white Gaussian noise (AWGN) channels, and empirical

evidence shows that PEG can create Tanner graphs with high girth even for

short block lengths. Under the assumption that the maximum right degree is

bounded, Hu, et al. [46] proved that PEG can create large-girth Tanner graphs.

However, we are unable to ascertain whether this assumption about the right

degrees is true. Therefore, we are unable to conclude that PEG is a large-girth

construction.

2. An algorithm to construct near-regular graphs with large-girth was proposed

by Chandran [47]. The ideas behind this algorithm are very similar to PEG.

For a given positive integer k and an arbitrarily large integer n, this algorithm

constructs a graph in n vertices with minimum degree k − 1, maximum degree

k+1 and average degree k such that the girth of the graph is lower-bounded by

logk(n) + O(1) as n increases.

The above algorithm was modified by Krishnan, et al. [48] to construct large-

girth near-regular LDPC codes. Given the integers c, d with 1 < c < d, and

increasing block length n, the modified algorithm constructs large-girth Tanner

graphs with variable-node degrees in the set {c− 1, c, c+ 1} with average c, and
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check-node degrees in the set {d − 1, d, d + 1} with average d.

3. For any odd number k ≥ 3 and a prime power q, Lazebnik and Ustimenko [49]

gave an algebraic construction of q-regular bipartite graphs on 2qk vertices with

girth at least k+5. It was later shown in [50] that this graph is disconnected and

its connected components are isomorphic. For k ≥ 6, it was shown that each

component has 2qk−⌊
k+2
4

⌋+1 vertices. The graphs produced by this algorithm

are large-girth graphs. Based on these graphs and their underlying algebraic

structure, Kim, et al. [51] constructed LDPC codes having asymptotically large

girth. It can be noted that the existing code constructions using this graph

produce codes that either have rate 1/q or have rate very close to 1.

4. Margulis [52] constructed 2r-regular graphs of girth at least c(logn)/(log r) on

n vertices for some constant c > 0. In the same work, he also outlined a method

to construct rate-1
2 regular LDPC codes using these graphs.

5. Based on Margulis’ idea, Rosenthal and Vontobel [53, 54] constructed large-

girth regular LDPC codes using the large-girth graphs by Lubotzky, Phillips

and Sarnak [55].

6. A construction of high girth regular LDPC codes was proposed by Gallager [38,

Appendix C] in his monograph. In his construction, a parity-check matrix is

built heuristically to avoid short cycles.

It can be noted that the above constructions produce only LDPC codes of specific

rates and specific (regular) degree distributions. For our problem, we require an

ensemble of large-girth LDPC codes with arbitrary irregular degree distributions and

to our knowledge, none of the prior constructions fit our requirement.
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5.4 LPS Graphs—Background

In [55], Lubotzky, Phillips and Sarnak published a construction of a family of regular

graphs that have the large-girth property. In this section, we provide a very brief

overview of these graphs; for a more detailed discussion, we point the reader to

the book by Davidoff, et al. [56]. We shall call these graphs LPS graphs, after the

inventors. LPS graphs belong to the class Cayley graphs. Given a group G and an

inverse-closed subset S of G, i.e., s−1 ∈ S, ∀s ∈ S, the Cayley graph Γ(G,S) is an

undirected simple graph defined as follows:

� The vertex set of Γ(G,S) is G.

� For any g ∈ G and s ∈ S, there is an edge between g and gs.

5.4.1 Construction

The LPS graphs Xp,q are defined for odd primes p and q with q > 2
√
p. To construct

Xp,q, one first chooses a set Sp,q with p + 1 elements from the projective linear group

PGL2(q) of invertible 2 × 2 invertible matrices over Fq. We will not discuss how Sp,q

is chosen, since it is beyond the scope of this dissertation. The LPS graph Xp,q is

constructed as follows.

1. If p is a quadratic residue modulo q, then Xp,q = Γ (PSL2(q), Sp,q).

2. If p is a quadratic non-residue modulo q, then Xp,q = Γ (PGL2(q), Sp,q).

Here PSL2(q) is the special linear group of 2 × 2 invertible matrices over Fq.

5.4.2 Properties

LPS graphs belong to the class of Ramanujan graphs, defined subsequently. The

adjacency matrix of a simple graph with n vertices is an n×n matrix [ai,j] such that

ai,j = 1 whenever vertices i and j are adjacent, and ai,j = 0 otherwise. Consider the
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eigenvalues of the adjacency matrix. For a k-regular graph, any eigenvalue µ is such

that ∣µ∣ ≤ k. A Ramanujan graph is a k-regular graph such that if µ is an eigenvalue

and ∣µ∣ ≠ k, then ∣µ∣ ≤ 2
√
k − 1.

LPS graphs also have the large-girth property, as noted by the following.

Theorem 5.3 ( [56, Thm. 4.2.2]). Let p, q be distinct, odd primes, with q > 2
√
p. The

graphs Xp,q are (p+ 1)-regular graphs that are connected and Ramanujan. Moreover,

1. If p is a quadratic residue modulo q, then Xp,q is a non-bipartite graph with

q(q2−1)
2 vertices, satisfying the girth estimate girth(Xp,q) ≥ 2 logp q

2. If p is a quadratic non-residue modulo q, then Xp,q is a bipartite graph with

q(q2 − 1) vertices, satisfying girth(Xp,q) ≥ 4 logp q − logp 4

The large-girth property of LPS graphs is independent of their Ramanujan prop-

erty. In fact, Ramanujan graphs containing loops exist [57].

5.4.3 Applications in Error-Correction Coding

LPS graphs have good expansion, which is a direct consequence of their Ramanujan

property. The expansion property of these graphs was used by Sipser and Spiel-

man [58] to construct asymptotically good LDPC codes that are also expanders. The

large-girth property of LPS graphs was used to construct large-girth LDPC codes by

Rosenthal and Vontobel [54].

5.5 Construction of Large-Girth Tanner Graphs

In this section, we will describe our construction of large-girth Tanner graphs for an

arbitrary DDP (λ, ρ). Our construction works for both regular and irregular DDPs

and it relies on existing constructions of large-girth regular graphs, which may or may

not be bipartite.
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LPS graphs

• Large girth
• (p+1)-regular
• Not bipartite

• Large girth
• (p+1)-regular
• Bipartite

• Large girth
• (λ, ρ)-irregular
• Bipartite

A known 
algorithm from 
graph theory

Node-splitting 
algorithm

Step 1 Step 2

Figure 24: An overview of the algorithm to construct large-girth LDPC codes.

The following is a high-level description of our algorithm (illustrated in Fig. 24).

Given a DDP (λ, ρ), we start with a sequence of large-girth (p + 1)-regular graphs

for a suitable integer p. In the first step, we use a well-known algorithm from the

graph theory community to convert these into bipartite graphs; we create a sequence

of large-girth (p + 1)-regular bipartite graphs from the given sequence of graphs. In

the second step, we use a node-splitting algorithm to create nodes of smaller degrees

in such a way that the resulting graph is a (λ, ρ) Tanner graph. For a given node of

degree (p + 1), we create new nodes and reassign some of the edges from the given

node to the newly created nodes. Note that in both the steps, we increase the number

of nodes linearly without decreasing the girth. This maintains the logarithmic growth

in the girth, thereby giving rise to a sequence of large-girth (λ, ρ) LDPC codes. Our

algorithm can start with any sequence of large-girth regular graphs and the results

in this chapter are true regardless of our starting sequence. For the sake of clarity,

we will only discuss the case where we start with LPS graphs.

5.5.1 Large-Girth Bipartite Graphs from Large-Girth Graphs

The first step in our algorithm is to create a large-girth (p + 1)-regular bipartite

graph from the LPS graph Xp,q. For this purpose, we make use of an algorithm from

the book Extremal Graph Theory by Bollobás [59]. This algorithm is outlined as

Algorithm 5.1 in this dissertation. Given a simple graph G, this algorithm creates a
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Figure 25: An illustration of Algorithm 5.1 to create bipartite graphs.

bipartite graph B(G) with twice the number of vertices and edges.

Algorithm 5.1 Constructing a bipartite graph given any graph [59, §3.1].

1: Given a graph G in n vertices, create an identical copy G′ with V (G)∩V (G′) = ∅.
Let f ∶ V (G) → V (G′) be a graph homomorphism.

2: Create a graph H with vertex set V (H) = V (G) ∪ V (G′) and edge set E(H) =

{{x, y} ∶ x ∈ V (G), y ∈ V (G′), f(x) ∼ y in G′}. That is, if a1, b1 ∈ V (G),
a2 = f(a1), b2 = f(b1) and a1b1 ∈ E(G) (or equivalently, if a2b2 ∈ E(G′)), then
a1b2, a2b1 ∈ E(H).

Lemma 5.4. Given a graph G, if H = B(G) then girth(H) ≥ girth(G).

Proof. For any cycle C in H with the vertices in the order

(u0, v0, u1, v1, . . . , ur−1, vr−1, u0)

there exists a closed walk

W = (u0, f
−1(v0), u1, f

−1(v1), . . . , ur−1, f
−1(vr−1), u0)

in G. Note that r ≥ 2. We show that this closed walk W contains a cycle. We do

this by showing that while traversing W , we do not retrace an edge, i.e., we do not

encounter an edge twice in succession.

Suppose otherwise. Let vi be the vertex where we traceback. The sequence

ui, vi, u(i+1) mod r is such that ui = u(i+1) mod r. This is a contradiction since all the

vertices in the original cycle are distinct and r ≥ 2.
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Figure 26: An illustration of Algorithm 5.2 to split a vertex.

Therefore, W contains a cycle C∗. We have

length(C) ≥ length(C∗) ≥ girth(G)

which proves that girth(H) ≥ girth(G). Note that the second inequality in the above

equation follows from the fact that C∗ is a cycle in G.

5.5.2 Large-Girth Tanner Graphs from Large-Girth Regular Bipartite
Graphs

The Basic Node-Splitting Step

The basic step involved in creating vertices of smaller degrees from a given vertex

of larger degree is the node-splitting step, Algorithm 5.2. This step is illustrated in

Fig. 26, where a node of degree six is split into two nodes of degrees three each.

Algorithm 5.2 Splitting a vertex into vertices of smaller degrees.

1: Given a vertex v in a graph G, we partition the set of all its neighbors N(v) into
N1,N2, . . . ,Ns.

2: We create a new graph H by deleting v from G and adding new vertices
v1, v2, . . . , vs and connecting vi to the vertices in Ni for all i.

In this work, we will only consider the creation of equal sized partitions Ni in

Step 1 of Algorithm 5.2. Under this restriction, the partitioning of N(v) can be done

in two ways.

� Deterministic version. Let (e1, e2, . . . , eM) be a simple ordering of the edges

in G. If N(v) = {ei1 , ei2 , . . . , eisk} with i1 ≤ i2 ≤ ⋯ ≤ isk, we choose N1 =

{ei1 , ei2 , . . . , eik}, N2 = {eik+1 , eik+2 , . . . , ei2k}, etc.
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� Random version. The partitioning of N(v) is done in a random fashion.

Though the girth properties of the graphs obtained by both the versions of Algorithm

5.2 are similar, it is easier to count graphs of a particular configuration when we use

the deterministic version than when we use the random version. The deterministic

version will be used in our construction of irregular Tanner graphs. In the following

lemma, we show that node-splitting does not decrease girth.

Lemma 5.5. Given a graph G, if H is a graph obtained by splitting an arbitrary

vertex of G according to either version of Algorithm 5.2, then girth(H) ≥ girth(G).

Proof. Suppose H does not have any cycles. In this case, girth(H) = ∞ and the

lemma is true.

We are now left with the case where H has cycles. Consider any cycle C in H.

Let v be the vertex of G that is being split and let Vnew = {v1, v2, . . . , vs} be the set

of new vertices created. By traversing along C and identifying vertices vi with v, we

will get a closed walk W in G. We show that W contains a cycle.

If C has less than two vertices from the set Vnew, then W is a cycle and we are

done. Otherwise, C has at least two of these vertices. We can pick vi, vj such that

while traversing from one to the other along C, we don’t encounter any other vertices

from Vnew. Let this path (excluding vi, vj) be denoted by P . Since vi and vj are not

adjacent and N(vi) ∩N(vj) = ∅, this path has at least two vertices. Therefore, vPv

is a cycle C∗ in W that is smaller than C. Since G contains the cycle C∗, we have

length(C) ≥ length(C∗) ≥ girth(G), which shows that girth(H) ≥ girth(G).

Note that Algorithm 5.2 can sometimes create a disconnected graph. That is, H

may be disconnected even if G is connected. However, we can see that Lemma 5.5 is

valid regardless of any disconnections introduced by node splitting. Furthermore, the

proof of the main result in this chapter relies only on Lemma 5.5 and is valid even

though some of the Tanner graphs in our ensemble may be disconnected.
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Regular Bipartite Graphs with Arbitrary Degree

When p is a quadratic residue modulo q, we can use the construction in Algorithm

5.1 to generate a bipartite (p+1)-regular graph in q(q2−1) vertices with girth at least

2 logp q. Therefore, given primes p and q with q > 2
√
p, it is possible to construct a

(p + 1)-regular bipartite graph in q(q2 − 1) vertices with girth at least 2 logp q.

In our overall construction, we want to split the vertices of a k-regular graph into

vertices of smaller degree. It is easier to work with large-girth k-regular bipartite

graphs for arbitrary k, than it is with large-girth (p + 1)-regular bipartite graphs for

prime p. With this in mind, we propose Algorithm 5.3 to create the former from

the latter using node-splitting. In this algorithm, we first find an integer s such that

there exists a prime p with p + 1 = sk. Then, we split each vertex of the (p + 1)-

regular bipartite graph into s new vertices each to get a k-regular bipartite graph.

The existence of s (and p) is guaranteed by a corollary to the following.

Theorem 5.6 (Dirichlet’s Theorem on Arithmetic Progressions [60, Ch. 7]). Given

two positive integers a, b that are relatively prime, i.e., gcd{a, b} = 1, the sequence

(an + b)n∈N contains an infinite number of primes.

By observing that gcd{k, k − 1} = 1, we have the following.

Corollary 5.7. Given any positive integer k, there are infinite number of primes of

the form sk − 1, with s ∈ N.

Large-Girth Regular Tanner Graphs

Recall from §5.3.1 that for the case of large-girth regular LDPC codes, the security

result is straightforward. We provide Algorithm 5.4 to construct large-girth regular

Tanner graphs for a given left degree c and right degree d.
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Algorithm 5.3 Constructing large-girth k-regular bipartite graphs.

1: Given a positive integer k, find the smallest solution for s ∈ N such that p = sk−1
is a prime. The existence of s is guaranteed by Dirichlet’s Theorem on Arithmetic
Progressions. Denote sk − 1 by p.

2: Pick a sequence of primes greater than 2
√
p. For each such prime q, generate the

LPS graph Xp,q.
3: If p is a quadratic residue modulo q, then G = B(Xp,q). Otherwise, G = Xp,q.

In either case, G is an (sk)-regular bipartite graph on q(q2 − 1) vertices and
girth(G) ≥ 2 logp q.

4: Split each vertex of G successively into s vertices of degree k according to either
version of Algorithm 5.2. The resulting graph H is a k-regular bipartite graph
with sq(q2 − 1) vertices and girth(H) ≥ girth(G) ≥ 2 logp q.

Algorithm 5.4 Constructing large-girth (c, d)-regular bipartite graphs.

1: Let k = LCM{c, d}. Construct a sequence of k-regular bipartite graphs of large
girth according to Algorithm 5.3.

2: Given a k-regular bipartite graph G with sq(q2−1) vertices and girth(G) ≥ 2 logp q,

let (Vv, Vc) be the bipartition of the vertices. We have ∣Vv ∣ = ∣Vc∣ =
sq(q2−1)

2 .
3: Split each vertex in Vv into k/c new vertices of degree c each according to either

version of Algorithm 5.2 to get k
c
sq(q2−1)

2 left vertices of degree c.
4: Split each vertex in Vc into k/d new vertices of degree d each according to either

version of Algorithm 5.2 to get k
d
sq(q2−1)

2 right vertices of degree d. The resultant
graph H is a (c, d)-regular bipartite graph with girth(H) ≥ 2 logp q.
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Large-Girth Irregular Tanner Graphs

For an arbitrary sequence of large-girth irregular LDPC codes, we are unable to show

that the girth property directly implies a strong secrecy result. However, we are

able to prove the same for large-girth irregular LDPC codes constructed in a specific

manner, namely by Algorithm 5.5. In Algorithm 5.5, we create a large-girth k-regular

bipartite graph G according to Algorithm 5.3. Then, we randomly order the nodes

and split them into nodes of smaller degrees such that contiguous blocks give rise to

daughter nodes of identical degree.

5.6 Asymptotic BER of Large-Girth LDPC Codes

For a given DDP (λ, ρ), we can create a sequence of large-girth (λ, ρ)-irregular LDPC

codes (Cn) of increasing block-length n using Algorithm 5.5. We denote the large-girth

graphs associated with Cn by Rn.

Theorem 5.8. For a given DDP (λ, ρ) with minimum left degree lmin ≥ 3, the se-

quence of large-girth (λ, ρ)-irregular LDPC codes (Cn) created using Algorithm 5.5 is

such that whenever ε < εth we have

EPMP
b (Cn, ε) = O (exp(−c1n

c2)) (21)

for some positive constants c1, c2.

5.6.1 Proof of Theorem 5.8

The only sources of randomness in Algorithm 5.5 for a given large-girth graph G (at

the end of Step 3) are the permutation functions σ and π. The probability distribution

of Rn given G is easier to analyze than that of Rn when G is not specified. Clearly,

(21) is true whenever

E (PMP
b (Cn, ε)∣G) = O (exp(−c1n

c2)) (22)
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Algorithm 5.5 Constructing large-girth (λ, ρ) irregular bipartite graphs.

1: Let k be the least common multiple (LCM) of all the left and right degrees. Let
a be the smallest positive integer such that aλi, aρj ∈ N for all i, j.

2: Let s be the smallest natural number such that sak−1 is a prime number. Call this
prime number p. Choose an arbitrary prime q > 2

√
p. Construct an (ak)-regular

bipartite graph G0 according to Algorithm 5.3. The graph G0 has sq(q2 − 1)
vertices and girth(G0) ≥ 2 logp q.

3: Split each vertex of G0 into a vertices of degree k by successively applying Algo-
rithm 5.2 (either version) and denote the resulting k-regular bipartite graph by
G. The graph G has n0 vertices on the left and n0 vertices on the right, where

n0 =
asq(q2−1)

2 , and girth(G) ≥ 2 logp q.
4: Let (v1, v2, . . . , vn0) be some ordering of the “left” vertices in G and let

(c1, c2, . . . , cn0) be some ordering of the “right” vertices in G. Also, let
(e1, e2, . . . , en0k) be some ordering of the edges in G.

5: Let σ and π be two randomly chosen permutation functions over the set
{1,2, . . . , n0}.

6: Consider the ordered set (v′1, v
′
2, . . . , v

′
n0
), where v′i = vσ(i). In this ordered set,

� split the first n0λlmin
vertices into n0kλlmin

/lmin vertices of degree lmin,

� split the next n0λlmin+1 vertices into n0kλlmin+1/(lmin + 1) vertices of degree
lmin + 1,

� ⋯

� split the last n0λlmax vertices into n0kλlmax/lmax vertices of degree lmax.

In the above, we split the vertices according to the deterministic version of Algo-
rithm 5.2.

7: Do a similar operation for the check nodes using the ordered set (c′1, c
′
2, . . . , c

′
n0
),

where c′j = cπ(j), and the distribution ρ. The resulting graph H is a (λ, ρ) irregular
bipartite graph with

n =
aksq(q2 − 1)

2 ∫

1

0
λdx

vertices and girth at least 2 logp q.
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is true uniformly for all possible G in Step 3 of Algorithm 5.5.

Note that PMP
b (Cn, ε) denotes the probability of bit-error after infinite iterations

of the MP algorithm (or equivalently, when a stopping set is encountered). This

probability is clearly less than the probability of bit-error after a finite number of

iterations. Therefore (22) is true whenever

E (PMP
b (Cn, ε, t(n))∣G) ≤ A(n) = O (exp(−c1n

c2)) (23)

is true for some function t(n). The role played by the quantity A(n) is to ensure that

we are able to upper bound the left hand side uniformly in G. We pick t(n) = a logn,

where a > 0 is such that girth(Rn) ≥ 4a logn + 2. We know that a exists because of

the large-girth property of Rn. Let amax be the maximum possible value for a.

Lemma 5.9. For any δ ∈ (0,1), there exists a natural number N , dependent only on

n,λ, ρ and δ, such that for all n ≥ N we have

E (PMP
b (Cn, ε, t(n))∣G) ≤

1

1 − δ
yt(n)(ε) (24)

where yt(n)(ε) is the quantity defined in Lemma 5.2.

We know from Lemma 5.2 that

yt(n)(ε) = O (exp(−β(lmin − 1)t(n)))

= O (exp(−βna log(lmin−1)))

The above equation, along with Lemma 5.9, completes the proof of the theorem.

Proof of Lemma 5.9. Consider the computation graph C̊t of Rn (we write t for t(n)

to simplify notation). Clearly, Pr(C̊t = T ) > 0 if and only if Pr(T̊t = T ) > 0.

Let T be any valid level-t tree in the sense that Pr(T̊t = T ) > 0. Let Pe(T, ε) be

the probability that the root node of T is in error when the tree code associated with
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T is transmitted over BEC(ε) and decoded with t iterations of the MP decoder. Note

the following two equations

yt(ε) = ∑Pr(T̊t = T )Pe(T, ε)

E (PMP
b (Cn, ε, t)∣G) = ∑Pr(C̊t = T ∣G)Pe(T, ε)

From the above, we can see that the proof is complete once we show that for all large

enough n, we have

Pr(C̊t = T ∣G) ≤
1

1 − δ
Pr(T̊t = T )

Let T be a valid level-t tree with i0 being the degree of the root node. Let this

tree have pi variable nodes of degree i (including the root node, but excluding the

leaf nodes) and qj check nodes of degree j. We have

Pr(T̊t = T ) = Li0λ
pi0−1

i0

lmax

∏
i=3,i≠i0

λpii

rmax

∏
j=2

ρ
qj
j (25)

Now, consider C̊t. The probability that the root node v has degree i0 is clearly

Li0 . The i0 edges incident with v in Rn will correspond to i0 edges in G incident

with u, the parent node of v. Let b(1), b(2), . . . , b(i0) be the i0 neighbors of u in G

corresponding to those edges. Let c(1), c(2), . . . , c(i0) be the daughter nodes in Rn

corresponding to the same edges. The number of ways of choosing the permutation

function π such that node c(1) has degree j is equal to the number of ways of putting

b(1) into a slot that corresponds to degree j, which is n0ρj. Note that these slots

are numbered. Here, n0 = 2n/ (k ∫
1

0 λdx) is the number of left (right) vertices in G,

where k is the LCM of all the degrees in (λ, ρ).

In general, whenever T is a valid level-t tree, we have

Pr(C̊t = T ) = Li0(
n0λi0−1
pi0−1

)(pi0 − 1)!

×
(n0 − 1 −∑

lmax
i=2 pi)!

n0!

lmax

∏
i=lmin,i≠i0

(
n0λi
pi

)pi!

×
(n0 −∑

rmax
j=rmin

qj)!

n0!

rmax

∏
j=rmin

(
n0ρj
qj

)qj! (26)
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We note the following inequality.

(n0 − 1 −∑
lmax
i=2 pi)! (n0 −∑

rmax
j=rmin

qj)!

n0! n0!

<
1

(n0 −∑pi)(∑pi)−1 (n0 −∑ qj)∑ qj
(27)

We also see that

Li0(
n0λi0−1
pi0−1

)(pi0 − 1)!
lmax

∏
i=lmin,i≠i0

(
n0λi
pi

)pi!
rmax

∏
j=rmin

(
n0ρj
qj

)qj!

< Li0(n0λi0)
pi0−1

lmax

∏
i=lmin,i≠i0

(n0λi)
pi

rmax

∏
j=rmin

(n0ρj)
qj

= n
(∑pi+∑ qj)−1
0 Li0λ

pi0−1

i0

lmax

∏
i=lmin,i≠i0

λpii

rmax

∏
j=rmin

ρ
qj
j

= n
(∑pi+∑ qj)−1
0 Pr(T̊t = T ) (28)

Substituting (27) and (28) in (26), we get

Pr(C̊t = T ) <
Pr(T̊t = T )

(1 − ∑pin0
)
(∑pi)−1

(1 − ∑
qj
n0

)
∑ qj (29)

The proof is complete once we show that

(1 −
∑pi
n0

)

(∑pi)−1

(1 −
∑ qj
n0

)

∑ qj
→ 1 as n→∞ (30)

First, we note that ∑pi and ∑ qj grow exponentially in t. Hence, there exist

constants α1, α2, β1, β2 > 0 such that

α1n
β1 < ∑pi,∑ qj < α2n

β2 (31)

We have

1 >(1 −
∑pi
n0

)

(∑pi)−1

(1 −
∑ qj
n0

)

∑ qj

> (1 −
α2nβ2

n0

)

α2n
β2−1

(1 −
α2nβ2

n0

)

α2n
β2

= (1 −
α2nβ2

n0

)

2α2n
β2−1
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The proof is complete once we show that

⎛

⎝
1 −

1
2α2k ∫

1

0 λdx

n1−β2

⎞

⎠

nβ2

→ 1 (32)

For this, we pick the constant a ∈ (0, amax] small enough so that β2 < 0.5. Observe

that for any θ > 1 and α > 0, we have

lim
n→∞

(1 −
α

nθ
)
n

= 1 (33)

Substituting m = nβ2 in the left hand side of (32), we have

⎛

⎝
1 −

1
2α2k ∫

1

0 λdx

m(1−β2)/β2

⎞

⎠

m

which goes to 1 as m→∞.

5.7 Strong Secrecy Region

The asymptotic decay of the bit-error probability achieved by the codes in Theo-

rem 5.8 is faster than the inverse cubic decay required for strong secrecy. This di-

rectly implies that the duals of the LDPC codes constructed by Algorithm 5.5 achieve

strong secrecy on the BEWC under the coset coding scheme.

For a given DDP (λ, ρ), we have constructed a sequence (Cn) of large-girth LDPC

codes based on Ramanujan graphs. For minimum left degree at least three, we showed

that for ε < εth, we have

EPMP
b (Cn, ε) = O(exp(−βna log(lmin−1)))

the dual sequence (C⊥n) achieves strong secrecy on BEWC(ξ) for ξ > 1 − εth.

5.7.1 Difference Between Regular and Irregular Codes

For any large-girth regular LDPC code sequence (Cn), we have

PMP
b (Cn, ε) = O (exp(−βna log(lmin−1)))
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for ε < εth. This means that the dual sequence achieves strong secrecy on BEWC(ξ)

for ξ > 1 − εth.

For irregular codes constructed by Algorithm 5.5, we have shown that

E (PMP
b (Cn, ε)) = O (exp(−βna log(lmin−1)))

for ε < εth. Note that our algorithm for irregular LDPC codes incorporates two

random permutation functions, thereby producing a random LDPC code. Moreover,

there must be at least one code whose bit-error rate is as good as, if not better than,

the above average bit-error rate. This means that there must exist codes in the dual

sequence that achieve strong secrecy on BEWC(ξ) for ξ > 1 − εth.

For the irregular code construction, we also have a concentration around the strong

secrecy behavior. For any integer k > 0 and a function f(n) = Θ(1/nk), we have the

following due to Markov’s inequality

Pr (Pb (Cn, ε) ≥ f(n)) ≤
EPb (Cn, ε)
f(n)

→ 0, as n→∞

This means as n increases, the irregular LDPC code output by our algorithm has

a bit-error rate O(1/nk) with very high probability. The concentration around the

strong secrecy behavior follows by setting k = 3.

Our result for regular LDPC codes is stronger than that that of irregular LDPC

codes. However, irregular LDPC codes are important because they have 1−εth closer

to their rate than regular LDPC codes. Therefore, irregular codes are instrumental

in achieving strong secrecy at higher rates compared to regular LDPC codes.

5.7.2 Comparison with Other LDPC Code Approaches

Thangaraj, et al. [1] introduced the LDPC code approach to achieve weak secrecy

on BEWC(ξ) for ξ > 1 − εth. The short-cycle-free LDPC code approach of Chapter 4
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Figure 27: A sketch of the secrecy regions achieved by (a) LDPC codes [1], (b)
short-cycle-free LDPC codes, and (c) large-girth LDPC codes.

achieves weak secrecy for ξ ∈ (1 − εth,1 − εef] and strong secrecy for ξ ∈ (1 − εef ,1].

The large-girth LDPC code approach in this chapter achieves strong secrecy for ξ ∈

(1 − εth,1], which is an improvement over the other two technique. Note that these

secrecy regions are valid only for LDPC code ensembles with lmin ≥ 3, i.e., minimum

degree at least three. The secrecy regions achieved by these three techniques is plotted

in Fig. 27

5.7.3 Gap Between Achievable Region and Secrecy Capacity

For a secret information rate R, we are interested in the minimum value of Eve’s

erasure probability ξ for which we can ensure strong secrecy over the BEWC using

our scheme. Since our proof works only for lmin ≥ 3, this involves finding an optimal

DDP of rate R and lmin ≥ 3 for which the BEC threshold εth is as high as possible. It

can be noted that εth < 1 − R. Most of the capacity achieving DDP sequences require

lmin = 2 (e.g., the tornado sequence and the right regular sequence in [61]). Therefore,

there is a small gap between the strong secrecy rate achievable by our technique and

the secrecy capacity of the BEWC.

For example, when we performed a search on LDPCOPT [42], an online database,
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for R = 0.5 and lmin ≥ 3, we found that an optimal value of εth = 0.4619 is achieved

by the DDP λ(x) = 0.9043388x2 + 0.03300419x16 + 0.01434268x17 + 0.03535427x18 +

0.01296008x99 , ρ(x) = x10. This means that the duals of the LDPC codes constructed

using Algorithm 5.5 will achieve a strong secrecy rate of 0.5 over BEWC(ξ) for all

ξ > 0.5381. Note that for ξ close to 0.5381, the secrecy capacity of the BEWC is close

to 0.5381. Our coding scheme will achieve a secrecy rate of 0.5 over this channel,

which is 7% less than the secrecy capacity.
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CHAPTER VI

CONCLUSION

Information-theoretic security is the technique of achieving information security by

leveraging the randomness in real-world communication channels. This notion of se-

curity is relatively new and judging by the number of technical papers published in

this topic, information-theoretic security has been attracting growing interest. How-

ever, most of the research work in this topic are very theoretical in nature and there

are few immediate practical applications of information-theoretic security. Neverthe-

less, understanding theoretical problems is an important initial step towards practical

implementations. In this dissertation, we have studied the problem of designing se-

cure encoders that offer information-theoretic security. This work borrows ideas from

the design and analysis of error-correcting codes for noisy channels.

6.1 Contributions

In this dissertation, we deal with the problem of designing secure encoders for a

special case of the wiretap channel, namely, the binary erasure wiretap channel. The

security criterion in our work, namely, information-theoretic strong secrecy, leads us

to a related problem of finding certain good channel codes. It was shown in Chapter 3

that code sequences that achieve O( 1
n2 ) block-error rate or O( 1

n3 ) bit-error rate over

the binary erasure channel can be used to design encoders for strong secrecy over the

binary erasure wiretap channel.

In Chapter 4, we showed that certain short-cycle-free low-density parity-check

codes achieve the required O( 1
n2 ) asymptotic decay in block-error rate. Further, we

showed that these codes form an asymptotically significant fraction, which means
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that a Monte Carlo algorithm may be used to find these codes.

In Chapter 5, we designed LDPC codes with girth growing logarithmically in

block-length. Our explicit construction is based on the large-girth regular graphs

invented by Lubotzky, Phillips, and Sarnak [55]. We showed that LDPC codes

constructed in this manner achieve a sub-exponential asymptotic bit-error rate of

O(exp (−c1nc2)), with c1 > 0 and 0 < c2 < 1, over the binary erasure channel for

erasure probabilities below the erasure threshold. These codes satisfy the sufficient

condition required for strong secrecy over the binary erasure wiretap channel. We

also showed that the strong secrecy region achieved by these codes is a significant

improvement over the technique outlined in Chapter 4.

6.2 Future Directions

The following are some of the immediate directions where our work can be extended.

6.2.1 Closing the Gap to Secrecy Capacity

The large-girth LDPC codes designed in this dissertation have minimum variable-node

degree at least three. We argued in §5.7.3 that we may be able to use LDPC codes

with minimum variable-node degree two to achieve secrecy capacity. The intuition

behind this idea is that these a standard ensemble of these LDPC codes has a bit-

error threshold εth very close to 1 − R, where R is the code rate—such codes are the

so-called “capacity achieving” LDPC codes [61]. However, we use the block-error

threshold for our strong secrecy result and these codes do not have a block-error

threshold for the BEC [39, Thm. 17]. It has been suggested [62] that we may be able

to design special ensembles of LDPC codes with minimum variable-node degree two

to get a block-error threshold. One of the means of doing this is to use ideas behind

multi-edge-type LDPC codes [34, §7.1], [63]. One of the setbacks of considering special

ensembles is that they have different thresholds compared to the standard ensemble,
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which means that finding capacity achieving multi-edge-type LDPC codes is highly

non-trivial. Multi-edge-type LDPC codes are still not well-understood and to our

knowledge, there are no capacity-achieving multi-edge-type LDPC codes, excepting

certain designs [25] that don’t fit our strong secrecy requirement. The area of multi-

edge-type LDPC codes is a promising field that requires significant research and we

believe these codes will play a role in information-theoretic security.

6.2.2 Coding Techniques for Other Wiretap Models

The LDPC code strategy presented in this dissertation achieves strong secrecy only

for the binary-erasure wiretap channel. This is because, the security analysis uses

a linear algebra approach that is tailored for this channel model. For cases with a

noiseless main channel and a binary memoryless wiretap, we proposed an erasure

decomposition approach in §3.1.2. However, this approach achieves low secrecy rates.

Better secrecy rates are achieved [37] for binary symmetric wiretaps with a more

direct approach. In this respect, the polar coding approach [29] is more attractive

since it achieves secrecy capacity for all wiretap models with a noiseless main channel.

For wiretap models with a noisy main channel, we are not aware of any current

techniques that achieve strong secrecy. One coding approach for these channels is

to use an outer channel code to correct errors on the main channel. This approach

was used by Rathi, et al. [25] to achieve weak secrecy on a wiretap model with a

BEC main channel and an independent BEC wiretap channel, where they modify the

LDPC coding approach in [1] to correct errors on the main channel. Achieving strong

secrecy on this model by modifying our large-girth LDPC codes in Chapter 5 is a

problem worth investigating.
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APPENDIX A

LARGE-GIRTH LDPC CODES OVER BMSCS

In Chapter 5, we designed large-girth LDPC codes whose BER decays as O(−c1nc2)

with growing block length n when they are transmitted over a BEC with the erasure

parameter below the threshold. In this chapter, we will show an analogous result

when these codes are transmitted over a class of binary-input memoryless symmetric-

output channels (BMSCs) when the channel parameter is below the threshold for the

given class.

A.1 Fundamentals

In this section, we give a quick introduction of LDPC codes over arbitrary BMSCs.

In particular, we provide an overview of the notion of L-densities and the density-

evolution analysis of LDPC codes using L-densities. This section is based on the

discussion in the Modern Coding Theory textbook [34, Ch. 4].

We consider BMSCs whose output alphabet is the extended real number line

defined as follows.

Definition A.1 (BMSC). A binary-input memoryless symmetric-output channel, de-

noted by X Ð→ Y is a memoryless channel whose input alphabet is {−1,1} and output

alphabet is R̄ = R∪{−∞,+∞}, such that its transition probability, given by the condi-

tional probability density function (pdf) pY ∣X(y∣x), follows the symmetry requirement

pY ∣X(y∣1) = pY ∣X(−y∣ − 1), ∀y ∈ R̄

▼

Clearly, any BMSC is uniquely defined by its transition probability pY ∣X(y∣x).
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A.1.1 L-Density Representation of BMSCs

The log-likelihood ratio (LLR) function l(y) of a BMSC is defined as

l(y) = ln
pY ∣X(y∣1)

pY ∣X(y∣ − 1)

Suppose a single random bit X is transmitted over the BMSC, which outputs the

random variable Y . Let the LLR random variable L be defined as L = l(Y ). It can

be shown [34, Lemma 4.7] that L is a sufficient statistic for decoding.

A.1.2 BP Decoding of LDPC Codes

The BP decoder for LDPC codes transmitted over a BMSC works as follows.

1. At iteration t = 0, all the variable nodes send the LLR associated with the

corresponding channel observation over their incident edges.

2. At iteration t > 0, the following two steps take place in this order.

(a) Check-node processing: Along each incident edge, a check node sends

the message Lout, which is calculated based on the incoming messages along

the other edges, say L1,L2, . . . ,Lk−1, as

tanh(
Lout

2
) =

k−1

∏
i=1

tanh(
Li

2
) (34)

(b) Variable node processing: Along each incident edge, a variable node

sends the LLR message Lout, which is the sum of the incoming LLR mes-

sages L1,L2, . . . ,Lj−1 along the other edges and the channel output LLR

Lchannel. That is,

Lout = Lchannel + L1 + L2 +⋯ +Lj−1 (35)
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3. At the last iteration, the usual check-node processing takes place, following

which a hard-decision estimate of the transmitted bit is calculated at each vari-

able node. At a degree j variable node, the following is calculated.

Lfinal = Lchannel + L1 + L2 +⋯ +Lj

The hard-decision output X̂ is calculated as follows.

(a) If Lfinal > 0, X̂ = 1

(b) If Lfinal < 0, X̂ = −1

(c) If Lfinal = 0, X̂ is either −1 or 1 based on the outcome of a fair coin flip.

In this chapter, we will only consider the BP decoder with the flooding schedule

(§4.1.3).

A.1.3 Density Evolution Analysis

Due to the symmetry of the BMSC, the BP decoder for LDPC codes can be ana-

lyzed by assuming that the all-one codeword (considering the alphabet {−1,1}) is

transmitted. According to density evolution analysis, the BP decoder performance

for LDPC codes closely follows the BP decoder performance for codes associated with

tree ensembles. Therefore, it is enough to analyze the pdfs of the LLR messages sent

along the edges during BP decoding of the tree codes.

L-density

Since the all-one codeword from the tree code was assumed to be transmitted, the

corresponding conditional pdfs of all LLR messages are considered. This conditional

pdf is given a special name—L-density. The L-density associated with the channel

observation is denoted by aBMSC(z). Given the channel observation LLR Lchannel, the

L-density aBMSC(z) is the conditional pdf pLchannel∣X(z∣1). The L-density aBMSC(z) is
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a channel characteristic that plays an important role in analyzing the performance of

codes under iterative decoding.

Considering the BP decoder for the tree code over the given BMSC, let at(z) be

the L-density of the variable-to-check message at the tth iteration and let bt(z) be the

L-density of the check-to-variable message at the tth iteration.

Check Node Analysis

Given two LLRs L1,L2 with L-densities a1, a2, we define the operation � as the

follows: the result of a1 �a2 is equal to the L-density of the random variable L3, and

it is calculated as:

tanh(
L3

2
) = tanh(

L1

2
) tanh(

L2

2
)

That is, a3 = a1 �a2 is the L-density of L3. It can be easily noted that the � operator

is both commutative and associative.

Consider a degree-k check node at the check-node processing stage of iteration

t > 0. The incoming messages are i.i.d. with L-density at−1. The outgoing message

along the kth edge is calculated using (34). Therefore, the L-density of the outgoing

message will be

bout = at−1 � at−1 �⋯� at−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k−1 times

≜ a
�(k−1)
t−1

Since we are considering the tree-ensemble, the degree of a check node is a random

variable distributed according to ρ. Therefore, we can write

bt = ∑
k

ρka
�(k−1)
t−1 ≜ ρ(at−1) (36)

Variable Node Analysis

At the 0th iteration of BP decoding, the variable nodes send the channel output LLRs.

Therefore, the L-density of the variable-to-check messages at the 0th iteration is equal
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to the L-density of the channel. That is,

a0(z) = aBMSC(z)

Consider a degree-j variable node at the variable-node-processing stage of iteration

t > 0. The incoming messages are i.i.d. with L-densities equal to bt−1(z). Since the

processing in (35) involves the addition of LLRs, the L-density of Lout is given by

the convolution of all the associated L-densities. In the case of a degree-j node, it is

given by

aout = aBMSC ⊛ bt−1 ⊛ bt−1 ⊛⋯⊛ bt−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(j−1) times

= aBMSC ⊛ b
⊛(j−1)
t−1

where a⊛i denotes the convolution of a with itself i times.

In the tree ensemble, the probability distribution of the degree of a non-root

variable node is given by λ. Therfore, we have

at = aBMSC ⊛∑
j

λjb
⊛(j−1)
t−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≜λ(bt−1)

= aBMSC ⊛ λ(bt−1)

Using (36), we get the recursive equation

at = aBMSC ⊛ λ(ρ(at−1)) (37)

BER Estimate

Consider the root node of T̊t(λ, ρ) in the final iteration. The L-density of the final

LLR Lfinal of the root node is given by

ct = aBMSC ⊛L(ρ(at−1)) (38)

where

L (b(z)) ≜ ∑
j

Ljb
⊛j
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with Lj being the fraction of degree-j variable nodes in the LDPC code.

The probability of error in the hard-decision decoding is given by the error prob-

ability functional of the L-density of Lfinal. The error probability functional of a

symmetric L-density a is defined as

E(a) ≜ Pr(L < 0) +
1

2
Pr(L = 0)

=
1

2 ∫
∞

−∞
a(z)e−∣z/2∣−z/2 dz

where L is a random variable with L-density a. It can be noted that the probability

of error of the root node of T̊t(λ, ρ) after t iterations of belief propagation is given by

PBP
T̊t(λ,ρ)

(aBMSC) = E(ct)

By [34, Lemma 4.64], for any L-density a, we have

E(a) ≤
1

2
B(a)

where B(a) is the Bhattacharyya functional, which is given by

B(a) = ∫
∞

−∞
a(z)e−z/2 dz

The Bhattacharyya functional is used in our analysis because it is easier to track

when the operations ⊛ and � are performed than the error functional. We know the

following result for the operation ⊛.

Lemma A.2 ( [34, Lemma 4.63]). Let a and b be two L-densities. Then B(a⊛ b) =

B(a)B(b)

For the operation �, we derive the following result using some of the ideas from

Lentmaier, et al. [44].

Lemma A.3 (Based on [44, Appendix I]). Let a and b be two L-densities. Then

B(a� b) ≤B(a) +B(b)
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Proof. Let L1,L2 be random variables distributed according to a, b. Note that the

correlation between L1 and L2 plays no role in the proof. Let L3 be a random variable

such that

tanh(
L3

2
) = tanh(

L1

2
) tanh(

L2

2
)

Now,

B(a� b) = E (e−L3/2)

= E (
√
e−L3)

= E
⎛
⎜
⎝

¿
Á
Á
ÁÀ

1 − tanh (L3

2
)

1 + tanh (L3

2
)

⎞
⎟
⎠

= E
⎛
⎜
⎝

¿
Á
Á
ÁÀ

1 − tanh (L1

2
) tanh (L2

2
)

1 + tanh (L1

2
) tanh (L2

2
)

⎞
⎟
⎠

The proof is complete once we show that

1 − tanh (L1

2
) tanh (L2

2
)

1 + tanh (L1

2
) tanh (L2

2
)
≤ (e−L1/2 + e−L2/2)

2

The LHS of the above equation can be written as

1 − tanh (L1

2
) tanh (L2

2
)

1 + tanh (L1

2
) tanh (L2

2
)
=

1 − 1−e−L1
1+e−L1

1−e−L2
1+e−L2

1 + 1−e−L1
1+e−L1

1−e−L2
1+e−L2

=
(1 + e−L1)(1 + e−L2) − (1 − e−L1)(1 − e−L2)

(1 + e−L1)(1 + e−L2) + (1 − e−L1)(1 − e−L2)

=
e−L1 + e−L2

1 + e−(L1+L2)

≤ e−L1 + e−L2

≤ (e−L1/2 + e−L2/2)
2

A.1.4 Double Exponential Decay of the Estimated Error Probability

Theorem A.4. For a given DDP (λ, ρ) with minimum left degree lmin ≥ 3,

PBP
T̊t(λ,ρ)

(aBMSC) = O (exp(−β(lmin − 1)t)) as t→∞

whenever the channel parameter is below the threshold value.
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Proof of the theorem

We begin by noting two inequalities. Firstly,

ρ(a) = ∑
k

ρka
�(k−1)

⇒B(ρ(a)) =B(∑
k

ρka
�(k−1))

= ∑
k

ρkB (a�(k−1))

≤ ∑
k

ρk(k − 1)B(a)

= (ravg − 1)B(a)

Secondly,

λ(a) = ∑
j

λja
⊛(j−1)

⇒B(λ(a)) = ∑
j

λjB (a⊛(j−1))

= ∑
j

λj (B(a))
j−1

≤ ∑
j

λj (B(a))
lmin−1

= (B(a))
lmin−1

Summarising the above, we have the following two inequalities.

B(ρ(a)) ≤ (ravg − 1)B(a) (39)

B(λ(a)) ≤ (B(a))
lmin−1

(40)

Recall that the density evolution recursion is given by

at = aBMSC ⊛ λ(ρ(at−1))

ct = aBMSC ⊛L(ρ(at−1))

with a0 = aBMSC
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We can write

B(at) =B(aBMSC)B(λ(ρ(at−1)))

(40)
≤ B(aBMSC) (B(ρ(at−1)))

lmin−1

(39)
≤ B(aBMSC) ((ravg − 1)B(at−1))

lmin−1

⇒B(at) ≤ A(B(at−1))
lmin−1 (41)

where A ≜ B(aBMSC)(ravg − 1)lmin−1 is a positive quantity that depends only on the

channel and the DDP (λ, ρ).

Since the channel parameter of the BMSC is “below” the threshold, we have

E(at) → 0 as l →∞. This also means that B(at) → 0 as l →∞ because

E(a) ≤
1

2
B(a) ≤

√
E(a)(1 −E(a))

for any L-density a.

Since B(at) → 0, there exists an R ∈ N such that

zR ≜B(aR) < min{
1

ravg − 1
,

1

A1/(lmin−2)}

For i > 0, let

zR+i = Az
lmin−1
R+i−1

Claim A.5. For i ≥ 0, we have B(aR+i) ≤ zR+i.

Proof. We prove this by induction. The base case is for i = 0 and it is true by our

choice of R.

Assume that the claim is true for some i ≥ 0. We have

B(aR+i+1) ≤B(aBMSC) ((ravg − 1)B(aR+i))
lmin−1

≤B(aBMSC) ((ravg − 1)zR+i)
lmin−1

= zR+i+1

This proves the claim.
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Continuing with the main proof, we have

zR+i = A
1+(lmin−1)+(lmin−1)2+⋯+(lmin−1)i−1z

(lmin−1)i
R

= A
(lmin−1)

i−1
lmin−2 z

(lmin−1)i
R

= A
−1

lmin−2 (A
1

lmin−2xR)
(lmin−1)i

= A
−1

lmin−2 exp((lmin − 1)i (
logA

lmin − 2
+ logxR))

= A
−1

lmin−2 exp (−αR(lmin − 1)i)

Due to our choice of R, αR ≜ −1
lmin−2 logA − log zR is positive. For t ≥ R, we have

zt = A
−1

lmin−2 exp (−αR(lmin − 1)t−R)

= A
−1

lmin−2 exp(−
αR

(lmin − 1)R
(lmin − 1)t)

= A
−1

lmin−2 exp (−β(lmin − 1)t)

Note that β ≜
αR

(lmin−1)R > 0. Therefore, we have

B(at) = O (exp(−β(lmin − 1)t)) as t→∞

It is easy to see that the following is true.

B(ct) ≤ A(B(at−1))
lmin−1

This inequality is analogous to (41) and therefore we can repeat the above proof to

show that

B(ct) = O (exp(−β(lmin − 1)t)) as t→∞

Theorem A.6. For a given DDP (λ, ρ) with minimum left degree lmin ≥ 3, the

sequence of large-girth (λ, ρ)-irregular LDPC codes (Cn) created using Algorithm 5.5,

when transmitted over an arbitrary BMSC with its L-density aBMSC below the threshold

in the channel class, achieve an expected probability of bit-error that decays as

EPMP
b (Cn, aBMSC) = O (exp(−c1n

c2)) (42)

for some positive constants c1, c2.
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Proof. Given Theorem A.4, the proof is identical to the proof of Theorem 5.8.
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